
IMPACT OF THE ORDER OF EAC AND SOS DURING INSTRUCTION ON 

RATIOS 

 

by 

Josephine Marlene Derrick 

 

 

 

 

 

 

 

 

A thesis 

submitted in partial fulfillment 

of the requirements for the degree of 

Master of Arts in Education, Curriculum and Instruction 

Boise State University 

May 2021  



 

© 2021 

Josephine Marlene Derrick 

ALL RIGHTS RESERVED  



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 

of the thesis submitted by 

Josephine Marlene Derrick 

Thesis Title: Impact of the Order of EAC and SOS during Instruction on Ratios 

Date of Final Oral Examination: 12 March 2021 

The following individuals read and discussed the thesis submitted by student Josephine 
Marlene Derrick, and they evaluated her presentation and response to questions during the 
final oral examination. They found that the student passed the final oral examination. 

Michele Carney, Ph.D. Chair, Supervisory Committee 

Tatia Totorica, Ed.D. Member, Supervisory Committee 

Laurie Cavey, Ph.D. Member, Supervisory Committee 

The final reading approval of the thesis was granted by Michele Carney, Ph.D., Chair of 
the Supervisory Committee. The thesis was approved by the Graduate College. 



iv 

DEDICATION 

I dedicate this thesis to my family, friends, and amazing teachers that I have worked with 

or been a student of. It is because of the endless amount of support and kindness that I 

have been shown throughout my life that I have been pushed to achieve my dreams and 

pursue my passions. I would not be where I am without the support and guidance of those 

in my life.  



v 
 

ACKNOWLEDGMENTS 

I must acknowledge my thesis chair, Michele Carney, whose commitment, time, support, 

and wisdom was invaluable to the completion of this thesis, and my other committee 

members, Tatia Totorica and Laurie Cavey, who have provided necessary support and 

critiques throughout the creation of this thesis. All members of my committee were not 

only critical in the successful completion of my thesis, but also in my personal growth 

throughout. I would additionally like to acknowledge Ya Mo and the support that she 

provided in the selection and understanding of statistical analyses used in this thesis.  

Finally, I would like to acknowledge the teachers who used my instructional materials, 

and the students who worked through them. Without such amazing teachers and students, 

this thesis would not have been possible. 



vi 

ABSTRACT 

The purpose of this study was twofold. First, a set of instructional materials surrounding 

proportional reasoning with ratios (particularly the understanding of the multiplicative 

relationship between the quantities within the ratio, referred to as functional reasoning 

throughout this thesis) were created using the free online tool, Desmos, with a goal of 

determining the impact of the lesson materials on student understanding. The second goal 

was to explore the impact of the order in which two instructional strategies, Explicit 

Attention to Concepts (EAC) and Students’ Opportunity to Struggle (SOS), had on 

student understanding. The lesson materials consisted of 5 lessons. These 5 lessons had 

two forms: EAC then SOS or SOS then EAC. In each of these instructional groups, all 

EAC and SOS sections were identical in each of the five lessons, the difference between 

materials in each of these groups was the order in which the EAC and SOS sections 

occurred. Students’ understanding was assessed anonymously, and answers were scored 

dichotomously (i.e. correct or incorrect). There was a total of 22 items on the full 

assessment with 8 items addressing functional reasoning specifically. The major findings 

of this study include that the lesson materials led to an increase in understanding for both 

overall understanding and the sub-area of functional reasoning, and the EAC then SOS 

instructional group’s understanding of functional reasoning was higher than that of the 

SOS then EAC instructional group.
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CHAPTER ONE: INTRODUCTION 

In this study, I explored the constructs of Explicit Attention to Concepts (EAC) and 

Students’ Opportunity to Struggle (SOS) and the impact of the order in which these two 

constructs occur within instruction. To facilitate this exploration, I created a set of lessons 

using Desmos which focus on ratios and proportional reasoning. Desmos was chosen 

with the intent to create online materials that are effective and flexible in that they can be 

applied in a variety of teaching settings. In this chapter, I begin by discussing why this 

mathematical context is meaningful to explore, explain the motivation behind exploring 

the impact of the order in which EAC and SOS occurs in instruction, then provide an 

overview of the study. Finally, I present definitions of relevant key terms to be used 

throughout this thesis. 

Motivations for Lesson Materials 

Though ratios and proportional reasoning itself have been researched for decades, we 

have entered a time when developing effective online materials is more important than 

ever. Due to the current Covid-19 pandemic, we have an unprecedented need for online 

materials that can be used flexibly by teachers in a variety of contexts such as online 

synchronous learning, online asynchronous learning, and hybrid learning (in which some 

students attend class online and others attend class in person). With such need, I chose to 

develop lesson materials using the free online tool, Desmos.  

The lessons created for this study focus on ratios and proportional reasoning. 

Specifically, the multiplicative relationship between two quantities in a ratio, which is 
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sometimes referred to as the functional relationship (Simon & Placa, 2012; Carney et al., 

2016). Developing students’ understanding of and ability to reason with ratios has been 

described as important both for students’ understanding of future mathematics and 

science concepts and also for use in the real world (Lamon, 1993; Akatufba & Wallace, 

1999; Langrall & Swafford, 2000; Steinthorsdottir & Sriraman, 2009; Team, 2011; 

Lobato et al., 2014; Ramful & Narod, 2014). It has also been described as a challenging 

skill for students to develop (Tourniaire & Pulos, 1985; Lobato et al., 2014). The 

importance of and challenge of understanding this concept for students has been well 

documented, and there is a large breadth of literature available describing ratio problems 

and proportional reasoning tasks and how students interact with them. This meant I could 

use the literature as a support for selecting and creating meaningful tasks for students, 

ensuring that the lesson was mathematically sound to guide students towards my lesson 

goals.  

Role of EAC and SOS 

Previous research (Hiebert & Grouws, 2007; Stein et al., 2017) identified EAC and SOS 

as teaching practices which can lead to increased depth of conceptual understanding in 

students, and suggests instruction that contains both of these practices will have the 

greatest increase in depth of understanding. However, there is still more to be known 

about these practices and how they impact student understanding. One aspect of the 

implementation of EAC and SOS that has not yet been studied is the impact of the order 

in which these constructs occur in instruction. The question arises: Is there a difference in 

student understanding when EAC occurs before SOS or vice versa? This question is the 

central focus of the study at hand.  
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Purpose 

The purpose of this study is to investigate if the lesson materials increase students’ 

understanding of ratios and proportional reasoning, particularly the use of functional 

reasoning, and how the order in which opportunities for EAC and SOS are presented in 

the lessons impact the level of student understanding, if at all.  

Research Questions 

With the goals specified above, two primary research questions arise as the focus of this 

study: 

● Do the lesson materials lead to an increased understanding of proportional and 

functional reasoning with ratios? 

● Is there a difference between students’ understanding of the functional 

relationship in ratios when instruction focuses first on EAC then on SOS 

compared to instruction that focuses first on SOS then on EAC? 

Hypotheses 

The null hypotheses for both research questions, respectively, are as follows: 

1. There is no difference between student understanding of proportional 

reasoning with ratios prior to and after the implementation of the lesson 

materials. 

2. There is no difference between student understanding of the functional 

reasoning with ratios prior to and after the implementation of the lesson 

materials. 
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3. Students’ understanding of the functional reasoning with ratios does not differ 

based on which instructional group (EAC then SOS or SOS then EAC) they 

are in. 

Because the lesson materials were created after a thorough review of the literature 

surrounding ratios and proportional reasoning, the alternative hypothesis for the first and 

second research questions are that there will be an increase in understanding of the 

proportional reasoning and the functional relationship, respectively, after students have 

worked with the lesson materials.  

As mentioned previously, there is a gap in literature specifically surrounding the impact 

of the order in which instruction focuses on EAC and SOS. Thus, it is unclear as to 

whether or not there will be a difference in understanding as a result of alternating the 

order in which these constructs are presented. However, the studies by Schwartz et al. 

(2011) and Kapur (2014) address similar ideas. In these studies, the authors explore the 

impact of providing students with the opportunity to explore mathematical ideas before 

giving explicit instruction on them, and show that there is an increased level of 

understanding. Based on the results of these studies, a reasonable alternative hypothesis 

for the third research question would be that students whose instruction focuses on SOS 

prior to EAC will have higher levels of understanding than students whose instruction 

focuses on EAC prior to SOS. However, it is important to note that the EAC does not 

necessarily provide specific formulas or present a single way of solving ratio problems. It 

instead focuses on pressing connections between students’ ideas or ideas presented to 

them. Thus, it is not identical to the explicit instruction described by Schwartz et al. 

(2011) and Kapur (2014).  
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Research Design 

When constructing the lessons used in this research, I found that the Hypothetical 

Learning Trajectory (HLT) described by Simon (first introduced in 1995) fit well with 

my natural approach to developing lessons, making it a useful tool for structuring the 

development of the lesson materials. Along with this trajectory, research into ratio and 

proportional reasoning tasks, development of students’ understanding of ratios, and EAC 

and SOS in instruction informed my creation of a set of 5 lessons on ratios and 

proportional reasoning with a goal of facilitating understanding of the functional 

relationship in ratios. There were two forms of the lessons: EAC then SOS and SOS then 

EAC. Each lesson was designed to take one class period (roughly 50 minutes), and had 

two distinct parts: one section focusing on EAC and the other focusing on SOS. In this 

way, both EAC then SOS and SOS then EAC focused lessons contained exactly the same 

content, with the only difference being the order in which those two sections were 

presented.  

 Sixth, seventh, and eighth grade teachers volunteered to implement these lesson 

materials in their classrooms and used a pre-/post-assessment designed with the support 

of my thesis chair (see Appendix A). Students were given the assessment prior to the 

implementation of the lessons and were given the same assessment after teachers 

implemented all five lessons.  

The assessment was created using a Google form and understanding was gauged by 

scoring questions as a 1 if they were correct or 0 if they were incorrect. The entire 

assessment had a possibility of 22 points, with 8 of those specifically addressing 

functional reasoning. Paired t-Tests were used to compare students’ pre- and post-
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assessment scores (matched via anonymous names) for both the full assessment and the 

functional reasoning specific portion of the assessment. This allowed me to look at 

growth in student understanding. ANCOVA was used to statistically compare the post-

assessment means of the students whose instruction focused on EAC then SOS and those 

whose instruction focused on SOS then EAC with the pre-assessment as a covariate. 

Assumptions and Limitations 

This study relied on several assumptions. The first assumption is the use of radical 

constructivism. I ascribe to the idea that new knowledge is built upon previous 

knowledge and this shapes our perception of reality. This idea of radical constructivism is 

described further in the literature review, but it is important to note that this underlying 

idea of how we learn guides my own perspective. There are also a few assumptions 

central to the assessment process used in this study. I assumed that students would do 

their best on the pre- and post-assessments, even though they are anonymous, that their 

effort will match their understanding, and that students will complete this assessment 

without support from others. When scoring the data, I assumed that the number a student 

submitted was the number they intended to write. For example, if a student wrote “108” 

when the problem’s answer is “180,” I assume 108 is the solution the student actually 

got, rather than a typo. This could mean that some students’ responses are considered 

erroneous due to mistyping rather than actual misunderstanding.  

There are several notable limitations of this study. Firstly, because this assessment is 

relatively short and scored via an overall score of correct answers, it may not be very 

sensitive to changes in depth of understanding. Here, when I refer to “depth” of 

understanding, I mean the development of a conceptual understanding of proportional 
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and functional reasoning with ratios rather than a procedural understanding. It is possible 

that students may answer questions correctly on the pre-assessment using a procedural 

understanding from previous instruction, and that they may again get the same questions 

correct on the post-assessment, which would not reflect any growth in conceptual 

understanding that may have occurred. Though descriptive answer questions were 

included on the assessment in hopes of being able to identify some of this type of growth, 

students’ explanations varied widely in terms of detail and as such these questions were 

often not enough to pick up on changes in conceptual understanding.  

Secondly, the freedom with which teachers had control over the implementation of the 

materials, including freedom in format (the materials could be used in face-to-face, 

online, or hybrid settings) is a limitation of this study. While teachers were asked to use 

the materials without changing any of their content, and to use strictly only one set of 

materials (the EAC first then SOS materials, or SOS then EAC materials, but not any 

mixture of the two), they had the freedom to make their own pedagogical calls when 

doing so. This freedom allows for the materials to be used in a natural way by the 

teachers, making the results easier to generalize to a wider population of teachers, but 

does cause some ambiguity in terms of interpreting whether the results of the study were 

due primarily to the differences in the lesson materials themselves or perhaps to 

differences of instructional choice by the teachers implementing the materials.  

Thirdly, the structure of this study includes pre- and post-assessments that were given to 

students were given within one week prior to and following the implementation of the 

instructional materials, respectively. Due to time constraints, we were unable to 

administer an additional delayed post-assessment to consider differences in retention. 
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That said, it is unclear if any observed differences (or lack thereof) will be maintained 

over a longer period of time or perhaps that a difference in retention might appear 

between the two groups that shows a difference in understanding that was not indicated 

by the immediate post-assessment. 

Finally, three teachers who participated in this study were also using these materials in an 

ongoing research grant, the ROOT project. For this project, they needed to collect data in 

a specified time frame, which occurred after they had completed the first three lessons. 

As a result, these teachers had to administer the post-assessment after completion of the 

third lesson as well as after completion of the fifth lesson. This means that their students 

were exposed to the pre-/post-assessment three times, instead of twice. Thus, there may 

be an increased testing effect with these students due to more exposure to the assessment.  

Definitions of Key Terms 

In this thesis, there are several terms of particular significance. These terms are described 

below: 

● Explicit Attention to Concepts (EAC) - An instructional strategy that focuses 

on addressing mathematical concepts and connections between concepts or 

representations directly. 

● Students’ Opportunity to Struggle (SOS) - An instructional strategy that 

focuses on providing students with mathematical tasks that are within reach of 

understanding but whose solutions are not immediately apparent and/or 

multiple solution strategies can be used. 

● Rate - A collection of infinitely many equivalent ratios (Lobato et al., 2010). 

A rate is distinct not because of the units (e.g. a ratio of quantities with 
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different units or a ratio where one of the quantities is a measure of time), but 

rather because of the way the student conceptualizes the quantities and is able 

to recognize any equivalent ratio (including non-integer ratios). 

● Composed Unit - A joining of two quantities in a ratio into a single unit, used 

primarily for partitioning or iterating/scaling. 

● Scalar Reasoning - Students conceptualize a ratio as a composed unit and can 

iterate or partition it. Students may iterate the unit using repeated addition or 

may move to more efficient methods such as multiplying both quantities in the 

composed unit by the same value. For example, given a paint mixture that is 4 

parts blue and 8 parts red, students might add 4+4 and 8+8 to get an 

equivalent ratio of 8 parts blue and 16 parts red. 

● Functional Reasoning - Students identify and use the multiplicative 

relationship between the two quantities in a ratio. For example, given a paint 

mixture that is 4 parts blue and 8 parts red, students recognize that the amount 

of red is 2 times the amount of blue.  
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CHAPTER TWO: REVIEW OF THE LITERATURE 

In this literature review, I discuss the lesson design constructs that guided my creation of 

lesson materials, important understandings of ratios and proportional reasoning, 

characteristics of ratio and proportional reasoning tasks, and provide a more detailed 

explanation of Explicit Attention to Concepts (EAC) and Students’ Opportunity to 

Struggle (SOS) and the research surrounding the identification of and impact of these 

practices. 

Lesson Design Constructs 

The primary underlying lesson design construct used in this study is the Hypothetical 

Learning Trajectory (HLT). The HLT was introduced by Martin A. Simon in his 1995 

article, which has been cited over 2000 times. Simon (1995) describes how the HLT 

developed, what the HLT encapsulates, and how it has impacted his pedagogical 

decisions. A primary theoretical framework for the HLT is social constructivism, which 

Simon describes as the, “coordination of psychological and sociological analyses,” (p. 

117) of the constructivist perspective. So, Simon’s social constructivist lens brings two 

perspectives on learning together. Namely, those focused on the cognitive individual and 

learning motivated by the social aspects of the classroom. Though Simon’s framework is 

primarily social constructivist, I found myself considering the development of student 

understanding through a radical constructivist lens, focusing on the cognitive individual. 
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Constructivism 

Piaget’s work on cognitive development, particularly his ideas on assimilation and 

accommodation of knowledge, provides a well-described theoretical perspective related 

to the development of intelligence and knowledge in children. In his book, The Origins of 

Intelligence in Children (1952), he describes six stages of children’s development of 

intelligence from their first sensorimotor reflexes to the use of intention, coordination of 

schema and their application, experimentation, and the use of deductive reasoning. An 

emphasis on adaptation, and specifically the roles of assimilation and accommodation is 

placed in each one of the stages described. In his introduction he connects adaptation of 

intelligence to evolutionary adaptation, describing, “The organism adapts itself by 

materially constructing new forms to fit them into those of the universe, whereas 

intelligence extends this creation and by constructing mentally structures which can be 

applied to those of the environment,” (p. 4). This description highlights intelligence as an 

organization of ideas which can be applied to the world outside the individual. He goes 

on to describe assimilation as a method of incorporating new ideas or actions into an 

existing schema that successfully interacts with the environment in a way that fits with 

the current expectations. Accommodation on the other hand occurs when a change in the 

environment results in a new outcome that does not fit with the current schema or 

expectation, and as a result the child must modify their schema to allow this new outcome 

to fit.  

Nowhere in this book does Piaget mention constructivism, and yet his ideas of 

assimilation and accommodation are so deeply connected to constructivism. Fox (2001) 

describes several claims of constructivism and highlights, “Learning is an active 
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process,” and “Knowledge is constructed, rather than innate, or passively absorbed,” (p. 

24) as two of the most central claims of constructivism, the second claim being a more 

expanded version of the first. In this way, a feature of the constructivist perspective is 

that students learn through interactions with the environment, which includes children’s 

own active investigation (actions). This is contrary to other ideas of children as empty 

vessels waiting to be filled with knowledge (passively receiving knowledge) or that 

knowledge is attained through stimulus-response conditioning. The concepts of 

assimilation and accommodation rely on interaction between the environment and 

children’s ideas, and continually involve looking at new experiences through the lens of 

previous experiences. Each new experience either fits well-enough with the students’ 

existing knowledge and is assimilated to further define their current conceptions, or it 

creates disequilibrium and requires the modification of existing schema to incorporate 

this new knowledge. In both cases, new knowledge is built onto existing knowledge to 

create the child’s reality.  

Von Glasersfeld (1984) describes radical constructivism as the perspective that 

knowledge is created by the way we perceive experiences, and that knowledge is 

disconnected from an objective reality (or that, indeed, there is no perceivable objective 

reality and that our reality is instead defined by our unique perspective and experiences). 

He describes, “Radical constructivism, thus, is radical because it breaks with convention 

and develops a theory of knowledge in which knowledge does not reflect an “objective” 

ontological reality, but exclusively an ordering and organization of a world constituted by 

our experience,” (p. 9). Von Glasersfeld himself described connections between Piaget’s 

work and this aspect of the radical constructivist perspective. For example, he asserts:  
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Whenever he [Piaget] says, for instance, that knowledge must not be thought of as 

a picture or copy of reality (and he says that often enough), it is easy to mistake it 

for a conventional admonition that a cognitive organism's picture of the world 

would necessarily be incomplete or somewhat distorted. Any realist will read it as 

such, rather than take it as an assertion that knowledge, of its nature, cannot have 

any iconic correspondence with ontological reality," (1982, p. 614).  

In this way, he establishes a clear connection between the language of Piaget and the 

argument that knowledge cannot represent an objective reality.  

Though the lack of objective reality may seem a radical idea, it’s connection to the 

perspective that our knowledge is developed through our experiences is not radical, and 

von Glasersfeld describes how this view has been presented by those even as far back as 

pre-socratic philosophers. Further, he describes the resolution to the issue of whether or 

not there is an objective reality by redressing the issue of knowledge as not trying to 

understand an objective truth, but instead, “as a search for fitting ways of behaving and 

thinking,” (p. 18). This extends the constructivist perspective of the building of 

knowledge through experiences and connects it to the pursuit of knowledge as an 

understanding of the environment. Piaget’s (1963) connection of assimilation and 

accommodation to the adaptation of an organism to its environment fits snuggly within 

this perspective. We see an argument that a child’s knowledge represents their current 

reality and only when their interaction with the environment does not fit with their reality 

are they prompted to adapt their knowledge.  

In essence, von Glasersfeld’s radical constructivism presents learning as identifying 

behaviors and ideas that are consistent throughout repeating events, and as such involves 
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the identification of whether two events are a repetition or two separate events that can 

have different fitting behaviors. We, as learners, are tasked then with identifying concepts 

or behaviors that “work” in different experiences. These concepts represent our reality 

until we are presented with an experience in which they do not work, and thus we can 

adapt them (or accommodate, to use the language of Piaget) to create a better fit. In this 

way, our reality builds on our knowledge from previous experiences and we must be 

presented with the experiences required to adapt our concepts to best fit reality. In other 

words, we will look at new experiences through the lens of our earlier understanding, and 

only adapt that understanding when it no longer fits the reality. Simon (1995) describes 

this aspect of constructivism as well, stating that, “we construct our knowledge of our 

world from our perceptions and experiences, which are themselves mediated through our 

previous knowledge,” (p. 116).  

From this, we see the perspective of constructivism that is central to the design of the 

lessons: our new knowledge is built upon our previous knowledge, and we only adapt our 

mental concepts when we are presented with experiences where our current concept is 

not the best fit. This radical constructivist perspective focuses on the cognitive 

perspective of understanding by focusing on the individual’s construction of knowledge, 

and allows the creator of lesson materials to consider opportunities in which students are 

pressed to further solidify or challenge their existing knowledge. The teacher can design 

opportunities that press students to a point of accommodation, leading to the students’ 

creation of beliefs and actions that are viable in the new reality we (teachers) have 

presented to them.  
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It is worth noting that while this perspective does not explicitly focus on the development 

of knowledge through social interaction, as a social constructivist perspective would, 

students are not developing knowledge in a vacuum and their interaction with the 

environment includes not only their interaction with lesson materials, but also 

interactions with peers and the teacher. Piaget has recognized this interpersonal 

interaction as well, “[t]he individual would not come to organize his operations in a 

coherent whole if he did not engage in thought exchanges and cooperation with others,” 

(Piaget, 1947, p. 174 as cited in Lourenço, 2012). However, as these more interpersonal 

interactions can be harder to predict, I find the focus on the individual that is present in 

radical constructivism and Piaget’s work to be a more fitting framework for the 

development of lesson materials that may be used by others and in a variety of learning 

environments.  

Features of the Hypothetical Learning Trajectory 

In Simon’s 1995 article, he discussed how he developed the Hypothetical Learning 

Trajectory (HLT) and how it connects to a specific teaching experience in which he 

engaged. He explains a lesson in which he uses his previous teaching experience to 

predict the depth of understanding of a group of prospective elementary teachers related 

to units of measure and the area of a rectangle. He believed that the teachers would have 

a formulaic or rule-bound approach to finding area and wanted to generate a deeper 

understanding of the formula for area and the creation of a standard unit of measure. 

After setting his goal and predicting the incoming knowledge, he considered tasks that 

were available and the types of thinking and learning the tasks would provoke. In Simon 

and Tzur (2004), they summarize the HLT with these characteristics, stating, “An HLT 
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consists of the goal for the students’ learning, the mathematical tasks that will be used to 

promote student learning, and hypotheses about the process of the students’ learning,” (p. 

91). This process was very similar to my own natural approach to designing lessons, 

which made it a natural choice for the underlying lesson design.  

In the HLT, the teacher’s learning goal provides the direction for the learning trajectory. 

As such, it is very influential on the overall structure of lesson(s) that will be used to 

reach said goal. Simon (2006) recommended Key Developmental Understandings as one 

way to choose an instructional goal. A Key Developmental Understanding (KDU) can be 

summarized as a conceptual advance without which students lack a particular 

mathematical ability. A KDU is often an essential step in understanding that students 

must make sense of in order to move to more advanced mathematical concepts. However, 

understanding of a KDU is not black and white; students may have a more complete 

understanding of some KDUs than others and may be in the process of learning multiple 

KDUs at the same time. I mentioned that a KDU is a conceptual advance, Simon (2006) 

describes a conceptual advance as, “a change in students’ ability to think about and/or 

perceive particular mathematical relationships," (p. 362). A KDU is not a single piece of 

information but rather students’ ability to think about and perceive mathematical ideas. 

For example, in the context of fractions a KDU would be, “Understanding that equal 

partitioning creates specific units of quantity,” (p. 361). If a student lacks a KDU, this 

does not mean that they will not be able to move forward, but it does mean that they will 

find future concepts more challenging and may rely more on rote memorization rather 

than creating further conceptualization of what is happening.  
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With a learning goal in mind, the teacher must hypothesize students’ understanding and 

consider tasks that will bridge their current understanding with the desired goal. How 

teachers form an hypothesis of student understanding can draw on a variety of sources, 

such as, “experience with the students in the conceptual area, experience with them in a 

related area, pretesting, experience with a similar group, and research data,” (Simon, 

1995, p. 132). Additionally, as the teacher begins to work with students on a particular 

understanding, their conceptualization of the students’ understanding will develop further 

and likely become more accurate. As a result, when implementing a lesson, teachers will 

likely modify their hypothesis of student understanding.  

The consideration of lesson tasks and the learning they may provoke is heavily 

influenced by the teachers’ own beliefs. Simon’s (1995) article provided little guidance 

on how one might think about the learning process, select a mathematical task, or 

conjecture the role of the mathematical tasks in the learning process. Simon and Tzur 

(2004) attempts to provide a framework for this process of considering mathematical 

tasks, the learning process, and the interaction between the two. They propose reflection 

on the activity-effect relationship as guidance for selection of mathematical tasks and a 

method of considering the learning that may be evoked. Simon and Tzur discuss Piaget’s 

idea of assimilation where students’ new knowledge is assimilated into their prior 

conceptions. The process of reflection on the activity-effect relationship begins with the 

learner setting a goal. This goal may not be directly related to the mathematical goal. For 

example, their goal may be to win a game, which does not relate to the mathematical goal 

explicitly. After setting their goal, students will choose activities in an attempt to reach 

that goal and continuously (though not necessarily consciously) reflect on the effect of 
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their activity in regard to meeting their goal. To use this mechanism for selecting and 

analyzing mathematical tasks, teachers should consider:  

● What will the students’ goal be when they are presented with the task? 

● Based on the hypothesis of student understanding, what activity/ies might 

students choose to do?  

● What effect will that activity have in regard to the goal students chose? 

These questions allow teachers to identify if students’ engagement with a given 

mathematical task will lead to the intended understanding. The goal of asking themselves 

this question is described by Simon and Tzur when they state, “We next endeavor to 

design or select tasks that are likely to cause the students to set a goal, to call on the 

intended activity, and to reflectively abstract the intended concept,” (p. 97). A teacher 

might first consider the activity-effect relationship they want students to go through, and 

then look at tasks and the (student) goals associated with them to consider if the activity-

effect relationship that students will go through matches the one they intend.  

Finally, I want to discuss the reason why the trajectory is hypothetical. The teacher 

cannot be sure of the students’ knowledge on the subject (regardless of how much the 

teacher has worked with a student, they do not have any direct access to the knowledge of 

a student and thus must hypothesize about the students’ knowledge). Based on the goal, 

the hypothesis of student understanding, and the learning that they believe will occur 

during the instruction, the teacher creates a plan for instruction. However, just like with 

planning a trip, as Simon (1995) analogized, no matter how detailed the plan, in the 

moment we must react to conditions and often have to make modifications. Thus, the 

HLT provides a structured way to plan lessons with specific goals and student 
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understanding in mind, but this trajectory is not set in stone and will likely be modified 

continually once enacted.  

Understanding Ratios and Proportional Reasoning 

When assessing students’ understanding of ratios and their ability to reason 

proportionally, it is important to understand the connection between what students “do” 

(i.e., how they approach solving problems) and what students “understand” (i.e., the 

mental connections and ideas they are attending to as they solve the problems). Students’ 

solution strategies and their depth of understanding are naturally very intertwined, and it 

is important to consider both when assessing student understanding.  

Common Reasoning Strategies and Errors 

As students approach problems involving ratios and proportional reasoning, the literature 

has clearly identified common strategies (including erroneous strategies) that students 

use. The strategies commonly identified throughout the literature are:  

● Random Calculations (erroneous) - students use operations randomly with the 

numbers given, rather than basing their arithmetic on the context of the 

situation (Langrall & Swafford, 2000; Steinthorsdottir & Sriraman, 2009) 

● Ignoring Information (erroneous) - students solve without attending to both 

quantities, for example by comparing only the numerators of two ratios even 

though the denominators differ as well (Tourniaire & Pulos, 1985; Lobato et 

al., 2010).  

● Incorrect Additive Reasoning (erroneous) - students try to use an additive 

relationship with the ratio rather than a multiplicative relationship by either 

adding the same amount to both quantities in the ratio or by maintaining a 



20 

 

constant difference between the two quantities in a ratio (Tourniaire & Pulos, 

1985; Lamon, 1993; Steinthorsdottir & Sriraman, 2009; Lobato et al., 2010; 

Team, 2011).  

● Scalar Reasoning - Students iterate a ratio or multiply both quantities in a ratio 

by the same value in order to scale it to the appropriate value. The language 

‘scalar’ is used by several authors (e.g., Tourniaire & Pulos, 1985; Misailidou 

& Williams, 2003; Carney et al., 2016). This strategy is often referred to as 

‘building up’ (Tourniaire & Pulos, 1985; Steinthorsdottir & Sriraman, 2009). 

Scalar reasoning can be further broken down into additive and multiplicative 

scalar reasoning. Additive scalar reasoning occurs when students iterate a 

ratio by repeatedly adding it to itself. Multiplicative scalar reasoning is a more 

sophisticated building up strategy (Tourniaire & Pulos, 1985) and occurs 

when students scale the ratio using multiplication rather than repeated 

addition. This may start initially with whole number multiples (or whole 

number division), but also applies to fractional multiples as a more 

sophisticated version of the strategy. This concept of multiplicative scalar 

reasoning has also been referred to as a ‘between ratio’ multiplicative strategy 

(Steinthorsdottir & Sriraman, 2009). Both categories of scalar reasoning are 

described as the “recursive relationship” by Simon & Placa (2012, p. 40), and 

Lobato et al. (2010) refers to this reasoning as ‘composed unit’. The idea of a 

‘composed unit’ and its connection to scalar reasoning is addressed in more 

detail in the Depth of Understanding section.  
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● Functional Reasoning - Students identify the multiplicative relationship from 

one quantity in a ratio to the other. The term ‘functional reasoning’ is used by 

Simon & Placa (2012) and Carney et al. (2016). This reasoning has also been 

referred to as a ‘within-ratio’ multiplication strategy (Steinthorsdottir & 

Sriraman, 2009), a ‘multiplicative comparison’ (Lobato et al., 2010) or, 

simply, ‘multiplicative’ reasoning (Tourniaire & Pulos, 1985). I choose to use 

the language ‘functional’ instead of other terms to keep this reasoning distinct 

from scalar reasoning since both involve multiplication (though in different 

ways).  

A visualization of each of these strategies is shown in Figure 1a below. 

 
Figure 1a Examples of Different Reasoning for the Same Problem 

Along with these different methods of reasoning, the literature also recognizes the use of 

the unit rate in student solution strategies. I did not state unit rate in the above list of 

strategies because, though it is certainly a unique and identifiable strategy, it is generally 

the result of either scaling a given ratio or recognizing the functional relationship 

between quantities in the ratio. The ‘unit rate’ refers to the identification of the amount of 

one quantity in the ratio that is required when the other quantity is one unit. This means 

that for any ratio there are two unit rates, depending on which quantity is the unit. Figure 
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1b shows the use of the unit rate used with multiplicative scalar reasoning to solve the 

same paint problem as in Figure 1a.  

 
Figure 1b Use of the Unit Rate within a Solution that uses Multiplicative Scalar 

Reasoning 

Though each of these strategies are presented distinctly here, it is very likely that students 

may use a mix of strategies in their work. This is true both across a variety of problems 

and within the same problem. For example, students may combine additive and 

multiplicative scalar strategies when solving problems, such as what is shown in Figure 

1c below. 

 
Figure 1c Solution Strategy Using Both Multiplicative and Additive Scalar 

Reasoning 

Depth of Understanding 

Along with the various strategies that students use when solving problems involving 

ratios and proportional reasoning, the literature describes several understandings that 

students encounter as they make sense of the mathematical concepts surrounding ratios. 
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From the literature, a picture of a general progression of ratio and proportional reasoning 

concepts can be ascertained as follows: 

1. Identification of Ratio - When making sense of ratios and developing 

proportional reasoning, students must be able to identify contexts in which the 

use of ratio is appropriate and recognize that the use of ratio requires 

identification of a multiplicative (rather than additive) change between 

quantities (Langrall & Swafford, 2000; Lobato et al., 2010).  

2. Composed Unit - Students can coordinate the quantities in a ratio by 

composing them into a single unit that can be iterated (Langrall & Swafford, 

2000; Steinthorsdottir & Sriraman, 2009; Lobato et al., 2010).  

3. Multiple Composed Units - Students recognize that there are multiple 

composed units that can represent a single ratio, such as by creating a new 

composed unit by partitioning or iterating the original (Langrall & Swafford, 

2000; Steinthorsdottir & Sriraman, 2009). This idea is presented in Lobato et 

al. (2010) as the concept of a rate, specifically stating that, “A rate is a set of 

infinitely many equivalent ratios,” (p.42). Students who have this 

understanding will be able to solve a wider variety of problems than those in 

the previous stage because they can work with a range of composed units to 

get an equivalent ratio that is not a whole number multiple or a whole number 

factor of the original ratio.  

4. Unit Rate - Students recognize and use the unit rate to solve problems 

(Langrall & Swafford, 2000). The unit rate is highlighted by Lobato et al. 

(2010) as a method to connect scalar and functional reasoning.  
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5. Functional Reasoning - Students understand that the multiplicative 

relationship between the quantities within a ratio does not change even when 

the ratio is iterated or partitioned and can use this to solve problems. In other 

words, students are able to identify the functional relationship between 

quantities in the ratio, and can use functional reasoning to solve problems 

(Langrall & Swafford, 2000; Steinthorsdottir & Sriraman, 2009; Lobato et al., 

2010).  

This is by no means the only progression of understanding that has been presented, and it 

is not intended to argue that a student has to fully grasp one part of the progression before 

being able to grasp the next idea. This progression begins with the ideas that students 

most naturally develop first (Tourniaire & Pulos, 1985; Steinthorsdottir & Sriraman, 

2009; Lobato et al., 2010), and transitions to more sophisticated concepts that are often 

developed later on. This does not mean that students can’t be showing levels of reasoning 

that occur in different locations of the progression, and it also does not mean that students 

in a higher level of the progression will not use ideas from earlier levels (in fact, at higher 

levels of understanding, students should be able to apply any relevant strategies flexibly 

to solve problems).  

Lobato et al. (2010) describes a progression similar to the one presented above (and in 

fact, many parts overlap, which can be seen in the citations above), but there are some 

key differences. Lobato et al. separates the identification of contexts in which 

proportional reasoning applies from the identification of the multiplicative relationship 

and places this contextual recognition at the end of their presented ideas. Lobato et. al. 

(2010) presents functional reasoning (which they describe as ‘multiplicative 
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comparison’) along with scalar reasoning (which they describe as reasoning with a 

‘composed unit’), suggesting that the two ideas can be developed in tandem. However, 

this does not necessarily go against the progression above because the authors state 

agreement that the scalar reasoning is something that is less sophisticated, “Forming a 

ratio as a composed unit does not by itself mean that the student has attained the 

sophisticated understanding of proportionality… Forming a composed unit is a 

rudimentary, yet foundational concept…” (Lobato et al., 2010, p. 19). Beyond the 

progression described here, Lobato et al. (2010) describe more than the development of 

ratio and proportional reasoning in isolation, and instead also connect the idea of ratio to 

that of fractions and quotients.  

The Progressions for the Common Core State Standards in Mathematics document 

(Team, 2011), and common core standards (on which the Idaho State Standards are 

currently based) aligns with the trajectory described above. The progression supports the 

idea that recognizing ratio in grade 6 is a key idea, and clearly describes students’ 

understanding as beginning with scalar strategies and building up to unit rate and 

functional reasoning. This is explicitly described in the progressions document, and is 

further supported by the standards including the fact that function reasoning ideas are not 

explicitly required in sixth grade but are required in seventh grade. As well, the 

recognition of contexts in which proportional reasoning is applicable is specified in 

seventh grade, but not sixth, suggesting that these standards align with the ideas of 

Lobato et al. presented above.  
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Ratio and Rate 

It is worth noting that the literature is inconsistent in regard to the terms ‘ratio’ and ‘rate’. 

I do not describe this distinction in detail, but if you would like to learn more about the 

distinction between the concepts and how they might be operationalized in the classroom, 

Thompson (1994) provides an excellent overview of the ambiguity in literature and an 

argument for what the distinction between the two should be. I ascribe to Thompson’s 

chosen definition of rate which is also the definition that Lobato et al. (2010) uses. This 

definition relies on how students conceptualize the situation rather than relying on 

characteristics of the problem setting and can be summarized as students conceptualizing 

“a set of infinitely many equivalent ratios,” (Lobato et al., 2010, p. 42). This means that 

students have conceptualized that all equivalent ratios have the same rate between them. 

For example, a 2:5 ratio of blue to yellow paint to make green is conceptualized as a rate 

not when students write ⅖ blue per unit yellow, but when they can identify any 

equivalent ratio using this rate. 

Characteristics of Tasks 

Ratio problems have been categorized in a vast variety of ways. Two main methods of 

categorizing ratio problems are what students are being asked to find (e.g., missing value 

problems, comparison problems, part-part-whole problems, etc.) (Ben-Chaim et al., 1998; 

Lobato et al., 2010), or categorizing by the type of information that we are providing 

(e.g., mixture problems, ‘rate’ problems, etc.) (Tourniaire & Pulos, 1985; de la Cruz, 

2013). However, these categories are overlapping (for example, one could be comparing 

two mixtures, making that problem both a mixture problem and a comparison problem). 

In this way, these two methods of categorization didn’t seem sufficient on their own, and 
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I chose to look at ratio problems using the structure presented by Heller et al. (1989), 

which compares primarily 2 aspects of ratio problem contexts: problem setting and ratio 

type. Though not the primary goal of the study, this article also discussed the problem 

format. Along with these three characteristics, I have additionally included number set as 

an important characteristic.  

● Problem Setting: The combination of the objects in the context, the variables 

used to describe the objects, and the units used to measure the variables. For 

example, consider the problem: a student runs 2 laps around the track in 7 

minutes. If they keep up this pace, how long will it take for them to run 4 

laps? In this problem, the object is a student, the variables are distance and 

time, and the measurements for those variables are laps and minutes, 

respectively. The more familiar that a student is with the problem setting, the 

more accessible the problem is for them. The inclusion of a visual model with 

the problem could be considered an aspect of the problem setting and can 

increase the accessibility of a problem (Misailidou & Williams, 2003). The 

choice of variable and measurement also impacts whether the quantities are 

going to be discrete or continuous. For example, if a variable is an amount of 

chocolate chips, this could be measured discretely with individual chocolate 

chips or with more continuous measurements, such as ounces.  

● Ratio Type: The type of ratio is connected to the variables of the problem 

setting. Heller et. al. (1989) described 9 ratio types, some of which are: 

exchange (buying goods or services, money earned per week), mixture (mix 

two or more things into one whole, such as lemon juice and sugar to make 
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lemonade), and speed (how fast or slow an object moves). This category 

aligns with the “the type of information that we are providing” category that I 

described earlier. Several problems can have the same ratio type but different 

problem settings. For example, earlier I described a mixture problem 

involving lemonade, but another mixture problem could involve making a 

specific color of paint.  

● Problem Format: The problem-format aligns with categories of ratio problems 

that are distinguished by what students are asked to find and includes missing 

value and comparison problems. Comparison problems are often considered 

more complex than missing value problems (Tourniaire & Pulos, 1985).  

● Number Set: This could be considered part of the problem setting, but is 

distinct in that we can change the number set without changing the problem 

setting and impact the difficulty of the problem as a result. The number set in 

a problem consists of both the numbers that are presented to students as well 

as the number relationship between the given information and the solution, 

and the solution itself. Number choice can greatly impact the challenge of a 

task (Tourniaire & Pulos, 1985). de la Cruz (2013) described one aspect of the 

number set that refers to the change between quantities in the ratio. These can 

be described as four categories:  

a. the two ratios have a whole number scalar relationship, but not a whole 

number functional relationship 

b. the two ratios have a whole number functional relationship, but not a 

whole number scalar relationship 
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c. the two ratios have both a whole number scalar and whole number 

functional relationship 

d. the two ratios have neither a whole number scalar nor whole number 

functional relationship 

Of these four categories, de la Cruz described that type d was significantly 

more difficult than the other three.  

Heller et al. (1989) looked to identify whether the ratio type or problem setting had a 

larger impact on the difficulty of ratio problems for two problem formats (missing value 

and comparison problems). They found that the ratio type has a larger impact on problem 

difficulty than the problem setting, but that familiarity with the problem setting (or lack 

thereof) became increasingly important as the ratio type became more challenging. The 

ratio types that they used were exchange, speed, and consumption. They describe 

consumption as, “how efficiently something is consumed (used up) or produced (made),” 

Their problem settings for each of these contexts were buying gum and buying records, 

running laps around a track and driving cars, and gas mileage of trucks and the oil 

consumption of furnaces, respectively. Of their ratio types, buying was the easiest and 

consumption was the most challenging for students.  

Explicit Attention to Concepts (EAC) and Students’ Opportunity to Struggle (SOS) 

Definition and Characteristics 

In 2007, Hiebert & Grouws looked across empirical research to identify similarities in 

instruction that led to an increase in conceptual understanding. They were able to identify 

two features of instruction that appeared consistently in research that led to increased 

conceptual understanding. They described these characteristics as, “Teachers and 
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Students Attend Explicitly to Concepts,” (p. 383), and “Students Struggle with Important 

Mathematics,” (p. 387). I refer to these characteristics as Explicit Attention to Concepts 

(EAC), and Students’ Opportunity to Struggle (SOS) using the language of Stein et al. 

(2017).  

Hiebert & Grouws describe attending to concepts as, “treating mathematical concepts in 

an explicit and public way,” (p. 383). They further describe: 

This could include discussing the mathematical meaning underlying procedures, 
asking questions about how different solution strategies are similar to and 
different from each other, considering the ways in which mathematical problems 
build on each other or are special (or general) cases of each other, attending to the 
relationships among mathematical ideas, and reminding students about the main 
point of the lesson and how this point fits within the current sequence of lessons 
and ideas (p.383). 
 

On the other hand, students’ opportunity to struggle involves students’ opportunity to 

explore and wrestle with mathematical ideas and to make sense of mathematics. 

Specifically, they describe that ‘struggle’ occurs when students are asked to, “figure 

something out that is not immediately apparent,” (p. 387). It is important to note the 

distinction they make about the term struggle: 

We do not use struggle to mean needless frustration or extreme levels of 
challenge created by nonsensical or overly difficult problems. We do not mean 
the feelings of despair that some students can experience when little of the 
material makes sense. The struggle we have in mind comes from solving 
problems that are within reach and grappling with key mathematical ideas that are 
comprehendible but not yet well formed (p. 387).  

 
In this way, when students are given opportunities to ‘struggle’ they are not pushed to a 

place where they are overwhelmed or want to give up, but they are presented with 

problems that are within reach, but not fully formed, and have the opportunity to explore 

more deeply than in situations where students are asked to memorize or repeat a 

demonstrated process.  
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Impact 

With these characteristics in mind, we can start to see what these constructs look like in 

instruction. Stein et al. (2017) built on the work of Hiebert & Grouws and looked at the 

impact of these two constructs, specifically the impact on students’ understanding when 

instruction has different levels of both EAC and SOS. They considered four combinations 

of EAC and SOS in instruction: High EAC and high SOS, high EAC and low SOS, low 

EAC and high SOS, and low EAC and low SOS. These categories were represented in a 2 

x 2 matrix and are henceforth referred to as ‘quadrants’. The researchers were interested 

in the relationship between which quadrant teachers primarily fell in and their students’ 

understanding as shown by standardized scores on the Tennessee Comprehensive 

Assessment Program (TCAP) and constructed response assessment (CRA). The TCAP 

test was a more procedural or skills-based assessment, and the CRA was a more 

conceptual assessment.  

Teachers were categorized into one of the four quadrants based on a survey involving 

self-reported preference for instructional practices related to EAC and SOS as well as 

through video evidence and artifacts of student work. Then, they used the TCAP and 

CRA data to gauge students’ understanding. Students whose teachers’ instruction was 

high in both EAC and SOS had the highest scores on both the TCAP (skills-based) and 

CRA (conceptual) assessments. Students whose teachers focused primarily on EAC had 

the next highest scores on both TCAP and CRA. Those who focused primarily on SOS 

followed, and those whose teachers had rarely had either element scored lowest. Only 

instruction with a high focus on both EAC and SOS had CRA scores higher than the 

TCAP. However, the only statistically significant differences occurred between the CRA 
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assessments with students whose teachers had high EAC and high SOS being statistically 

significantly higher than those whose teachers focus on only SOS, and from those who 

had both low EAC and SOS.  

Summary 

Building an understanding of ratios is a complex process, but the literature provides 

excellent guidance in this process. The hypothetical learning trajectory provides an 

underlying structure for designing lessons towards a set goal by having the instructor 

select an instructional goal, actively consider students’ incoming knowledge, and reflect 

on the impact of different activities considering students’ incoming knowledge and the 

goal for understanding. Though the Hypothetical Learning Trajectory provides an outline 

for unit design, the use of KDUs and the reflection on the activity-effect relationship 

provide a more defined structure for goal selection and mathematical task selection, 

respectively.  

Students’ understanding of ratios has been studied extensively and a meaningful 

progression of conceptualizations can be identified from this literature. Additionally, the 

literature describes characteristics of ratio and proportional reasoning tasks and the 

impacts of these characteristics students’ ability to engage with material. Overall, 

students’ understanding has been shown to progress from additive scalar reasoning to 

multiplicative scalar reasoning to identification of the unit rate, and finally to the use of 

functional reasoning.  

Tasks can be characterized in a variety of ways, but the problem setting, problem format, 

ratio type, and number set provide key characteristics for anticipating students’ ability to 

access, engage, and be challenged by the task. The problem setting includes surface level 
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features including the objects, variables, and how they are measured in a task. The choice 

of objects, variables, and measures can impact students' engagement based on how 

familiar they are with that context. For example, when working with exchange ratio 

types, students are likely to be more familiar with buying cookies than they would be 

with buying stocks and bonds. Each of these characteristics impact the accessibility of a 

problem for students and when working with more challenging number sets or ratio 

types, it is increasingly beneficial to provide students with more familiar contexts.  

Along with developing lesson materials and developing the understanding of ratios, the 

instructional constructs of EAC and SOS describe two aspects of instruction that have 

appeared frequently in empirical studies that show an increased conceptual understanding 

in students. SOS provides students with an opportunity to grapple with mathematics ideas 

and create connections between new ideas and their existing understanding. This plays 

nicely with the idea of constructivism that also underlies the hypothetical learning 

trajectory because they both include the feature of building on students’ existing 

understanding to create a new perception that is more accurate. Explicit Attention to 

Concepts serves as an opportunity to further solidify the connections that students are 

making or to encourage students to identify new connections that they may not have yet 

observed themselves. This further establishes connections between existing ideas or 

connections between new ideas and existing ideas. Having high levels of both EAC and 

SOS has been shown to encourage the highest conceptual understanding of students 

compared to instruction with lower levels of EAC and SOS. However, it is not yet clear if 

the order in which these instructional constructs occur impacts this level of 

understanding, and this question is the focus of the current study.
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CHAPTER THREE: METHODOLOGY 

The goal of this study was to investigate if the lesson materials increased students’ 

understanding and if the order in which opportunities for EAC and SOS were presented 

in the lessons impact the level of student understanding. Data were collected using a pre-

/post-assessment via a Google form. In this chapter, I describe the creation of the lesson 

materials, the research design, the participants, and the methods for data collection and 

analysis. 

Development of Lesson Materials 

Considering the progression of development of students’ understanding, I decided to 

focus on the learning goal of developing students’ ability to identify and use the 

functional relationship to solve ratio problems. This concept has been described as 

challenging for students to grasp (Simon & Placa, 2012), and is requisite for students to 

make the connection between ratios and proportional linear equations. Due to the 

importance of this understanding for future mathematics concepts, and a personal interest 

in functional understanding of students in general, I chose this as the focus of my lessons.  

The selection of a learning goal is the first step in a hypothetical learning trajectory. After 

making this selection, I began to consider task selection and reflected on the activity-

effect relationship when doing so. Based on the literature, I anticipated that most students 

would initially begin by using scalar reasoning to solve problems, and that they would 

apply scalar reasoning with varying levels of confidence. In particular, I anticipated that 

most students, but certainly not all, would be comfortable with multiplicative scalar 
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reasoning using integers, while others would be able to use this reasoning with non-

integers, and that there would be again others who are only comfortable using additive 

scalar reasoning.  

When first thinking about tasks, I wanted to limit confusion that could be caused by using 

several different problem settings. As a result, I chose to use primarily a single problem 

setting throughout the build of the materials (all but the EAC section of the final lesson, 

which focused on connecting students’ previous solutions to other problem settings). The 

problem setting used throughout the 5 lessons was the context of creating soap. This 

context uses a mixture ratio type and is similar to mixing paint problems, but uses 

materials that I had readily available. This allowed me to create videos representing 

problems and solutions throughout the lessons. The variables of the problems were 

volume (of different colors) measured in teaspoons. Problems presented students with a 

ratio of colors measured in teaspoons (e.g., 4 teaspoons of blue and 8 teaspoons of white) 

to create a specific color or shade of soap. Out of 34 problems presented, all but 7 were 

missing value or comparison problems.  

The missing value problems used in the lessons began with integer functional 

relationships and non-integer scalar relationships and ended with both non-integer 

functional and scalar relationships. For example, the first lesson’s SOS section used the 

ratio of 4 teaspoons of blue to 8 teaspoons of white, and had students determine different 

ways to correct a mixture of 3 teaspoons of blue to 7 teaspoons of white so that it makes 

the same shade. While 8 is in an integer multiple of 4, neither 3 nor 7 are integer 

multiples of 4 or 8. However, this doesn’t mean students will use the functional 

relationship to solve the problem. The problem required them to find two different 
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solutions. One solution could be adding 1 teaspoon of blue and 1 teaspoon of white to the 

mixture to match the 4:8 given ratio. For the second solution, they might double the given 

4:8 ratio to get 8:16 and thus add 5 teaspoons of blue and 9 teaspoons of white to the 

incorrect mixture to make it match. In doing this, students would not have had to use the 

functional relationship. However, additional questioning asking students to describe the 

relationship between blue and white was designed to encourage students to attend to the 

functional relationship, along with the EAC section, which included connections between 

both scalar and functional reasoning solutions. 

Before designing the next lesson, I reflected on the activity-effect relationship to 

anticipate where student understanding would likely be as a result of the lesson. With the 

SOS problems, I intended students’ goal to be to fix a given incorrect paint mixture, but, 

as previously stated, this doesn’t guarantee that they will do so using functional 

reasoning. Regardless of if they identify this reasoning or not, however, they are 

presented with this relationship during the EAC section to make connections. As a result, 

I anticipated that by the end of the lesson they could identify an integer functional 

relationship, and see a potential benefit for it, even though it still may not be the 

relationship that is natural or most comfortable to them (they may still prefer using scalar 

reasoning). With this in mind, I used comparison problems in the second lesson, which 

allow for both scalar, functional, and use of unit rate to solve. Students can solve 

comparison problems by scaling up or down two or more ratios so one of the quantities in 

the ratio are the same, by finding the unit rate for each ratio, or by identifying the 

functional relationship (which involves similar reasoning to that of the unit rate). In this 
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way, there were many opportunities to connect these three solution methods and allow 

students to identify places where each might be more efficient.  

This process of reflecting on the activity and potential ideas that students could develop 

from the activity allowed me to continually build each lesson on the previous with the 

idea that students’ new understanding should build on the ideas that they already have. 

The EAC portion of each lesson was crucial in being as sure as possible that students 

were able to make connections between functional reasoning and their current 

understanding if they were not yet using functional reasoning. As the problems 

progressed, students were asked to identify functional relationships more explicitly (such 

as with prompts like, “Complete this sentence: The amount of YELLOW soap is always 

_____ times the amount of BLUE soap.”). The SOS section of the final lesson further 

reinforces the unit rate and function reasoning by explicitly asking for them to be 

identified, and the EAC section connects students’ understanding of these mixture 

problems to additional ratio types. Namely, rate (miles per minute) and exchange 

(cupcakes to dollars). There is also additional reinforcement connecting visual and 

symbolic representations of functional reasoning in the EAC section of the final lesson. 

The intent here was to encourage transfer of the ideas to additional ratio types and further 

emphasize the connection between functional relationships symbolic representation and 

its visual representation, further solidifying the connection between these ideas for both 

integer and non-integer functional relationships.   



38 

 

Research Design 

In this study I focused on the following research questions: 

1. Do the lesson materials created lead to an increased understanding of 

proportional reasoning as a whole? 

2. Do the lesson materials created lead to an increased understanding of the 

functional relationship in ratios? 

3. Is there a difference between students’ understanding of the functional 

relationship in ratios when instruction focuses first on EAC then on SOS 

compared to instruction that focuses first on SOS then on EAC? 

To explore these questions, this research uses a quasi-experimental design in which there 

are two groups compared with (in this case) a pre-assessment, and post-assessment. This 

design does not include a control group but is instead looking for differences between 

students whose instruction focused on SOS then EAC compared to those whose 

instruction focused on EAC then SOS. There is no random assignment of students into 

these groups (it is instead determined by the selection of materials made by their 

teachers). A visualization of this research design is included in Figure 2. The lesson 

materials can be found in Desmos at the following links: 

● SOS then EAC materials: 

https://teacher.desmos.com/collection/5fa83cc4ee1cac78b386d5b1 

● EAC then SOS materials: 

https://teacher.desmos.com/collection/5fa83d7423d9f01b310d198b 

https://teacher.desmos.com/collection/5fa83cc4ee1cac78b386d5b1
https://teacher.desmos.com/collection/5fa83d7423d9f01b310d198b
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● A hard-copy version of the EAC then SOS materials was also created to 

accommodate two students who did not have a device to access the materials 

online (see Appendix B). 

 
Figure 2 Structure of Research Design 

 

Research Context 

This study was conducted during Fall 2020 and Spring 2021 in the midst of a national 

pandemic caused by Covid-19. Due to these circumstances, most local educators faced 

the challenge of working flexibly in a variety of formats including online, hybrid, and 

socially distanced in person instruction. In response to this unprecedented time, the lesson 

materials created for this study were designed with flexibility in mind. The use of 

Desmos allowed for the lesson materials to be implemented in an online-only, hybrid, or 

in-person format, provided that students had access to both an internet-accessible device 

and the internet. Of the seven teachers, six were in a hybrid setting with some students 
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working online synchronously and others working in person, and one teacher was fully 

in-person. All pre- and post- assessments were taken in the classroom, though the form 

itself required that the assessment be submitted online. A hard-copy version of the 

materials was also created upon request to accommodate two students who did not have 

access to the required technology to complete the materials online.  

Independent Variable 

The independent variable of this study was the lesson materials used during instruction. 

Teachers chose whether to use the set of lessons that focused on EAC then SOS or the set 

that focused on SOS then EAC during instruction. This structure was present in each of 

the 5 lessons that they implemented. This created two categories of students to be 

compared based on the type of instruction they received. The lesson materials were 

created with a section dedicated specifically to EAC and another section dedicated to 

SOS. The two sets of lessons differed only by the order in which these two sections were 

taught in each lesson. For example, in Lesson 1 of the EAC then SOS materials, slides 2-

14 focused on EAC and slides 15-27 focused on SOS (slide 1 instructed students to get 

out pencil and paper), whereas these sections were switched in SOS then EAC materials, 

having slides 2-14 focus on SOS and slide 15-27 focus on EAC. It was not the case that 

every lesson had the same number of slides dedicated to each section, but the overall 

structure of only swapping the order of two sections for the different materials was 

consistent.  

Dependent Variable 

The dependent variable of this study was student understanding of proportional reasoning 

and functional reasoning with ratios as measured by a proportional reasoning assessment. 
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Students took the assessment via a Google form (see Appendix A). After creating an 

anonymous name to be used for matching pre- and post-assessments, students were 

presented with four item blocks, each with a total of 5 items plus a prompt at the end of 

each item block for students to explain how they solved the items. The first item block 

included a visual support, but no other item blocks included a visual with the context. 

Within the item blocks, parts “a” and “e” were missing value problems, parts “b” and “c” 

required students to identify the functional relationship, and part “d” asked students to 

identify the unit rate. The final section of the assessment was a two-part comparison 

problem with prompts to explain how they solved the problem.  

Participant Selection 

Participants were sixth, seventh, and eighth grade students whose teachers voluntarily 

chose to implement the lesson materials and pre-/post-assessment as part of their regular 

instruction. Seven teachers of grades 6-8 implemented the lesson materials for this study. 

Three of the teachers implemented the SOS then EAC materials, and four of the teachers 

implemented the EAC then SOS materials. In the Data Collection section below, Table 1 

describes the number of pre- and post-assessments that were taken by students in each 

instructional group and grade level. 

Data Collection  

Data were collected anonymously via a Google form assessment. Teachers provided 

students with the link to the Google form that I created. The data was collected this way 

so that students could take the assessment at home or in-person depending on the school’s 

current teaching format, and all teachers who administered the materials were able to give 

the assessment to their students while they were in the classroom. In the assessment, 
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students were prompted to create an anonymous name, which was used to match pre- and 

post-assessments. This anonymous name was generated by answering the questions: 

● What is the first letter of your middle initial (if none, write X)? 

● What day of the month is your birthday? 

● Number of Older Brothers (half-brother, living, or deceased, if none write 0)? 

● Number of Older Sisters (half-sister, living or deceased, if none write 0)? 

Unfortunately, not all students consistently entered the identifier from the pre- to post-

assessment. The number of pre-assessments, post-assessments, and the number of pre- 

and post- assessment that were able to be matched is described in Table 1 below.  

Table 1 Number of Assessments Completed 

 Grade Pre-Assessment Post-Assessment Matched Assessments 

SOS then EAC 
instruction 

6 73 90 27 

7 12 12 10 

8 8 17 8 

Total 93 119 45 

EAC then SOS 
instruction 

6 90 96 47 

7 78 81 38 

Total 168 177 85 

 

After the creation of their anonymous name, students also provided their teachers name 

and their grade. Then, students answered a total of 22 items (5 items each within item 

blocks 1-4 and two comparison items not included in the item blocks). The score for the 
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assessment was the total correct numeric answers with a max score of 22. Before scoring, 

the data were cleaned so responses included only the number (e.g., “8 cookies” would be 

changed to “8”), and fractions and decimals were written in the form of a decimal 

rounded to two decimal places (e.g., “¼” would be changed to “0.25”).  

The total correct score was used to analyze student growth on proportional reasoning 

understanding (research question 1). To look at students’ understanding of functional 

reasoning with ratios (research question 2), the total correct from parts “b” and “c” of the 

first four item blocks was analyzed (total functional reasoning correct). The score for 

functional reasoning (out of 8 possible) was compared between the two groups of 

students to identify differences between the understanding of the EAC then SOS and SOS 

then EAC instructional groups (research question 3). Throughout this paper, the phrase 

“proportional reasoning scores” will refer to the score (out of 22) for the entire 

assessment and “functional reasoning scores” will refer to the score (out of 8) of the 

specific functional reasoning questions within the assessment.  

Analysis Approach 

To address research questions 1 and 2, Paired Sample t-Tests were used to identify if 

there is a significant difference in the understanding of proportional reasoning and 

functional reasoning between the pre- and post-assessments. These Paired Sample t-Tests 

used the scores from the entire sample of students, without separating by instructional 

group. Analysis of Covariance (ANCOVA) was used to statistically compare the means 

of the post-assessment scores for paired data between the two groups of students to 

identify if there was a difference in the understanding of the students’ functional 

reasoning ideas. The ANCOVA was chosen to compare the means of these two groups 
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with their scores on the pre-assessment as a covariant. By using the pre-assessment as a 

covariate, I hoped to equalize differences between the students making it more likely that 

any observed difference is due to the difference in instruction, rather than differences in 

students’ initial understanding. During the analysis of data, I observed that one student’s 

full assessment score decreased by 14 points from 17 to 3. This was the only student with 

such an extreme decrease, the next highest decrease being 9 points by another student. 

Due to this stark difference from the rest of the data, I chose to remove this student from 

my final data analysis, though I did run each of the statistical tests with this student as 

well and found the same levels of significance across each of the tests. 
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CHAPTER FOUR: RESULTS 

Students’ understanding of proportional reasoning and functional reasoning with ratios 

was measured by the proportional reasoning assessment administered via Google form. 

Here, I describe the statistical results addressing student growth in understanding of 

proportional reasoning with ratios as a whole group, growth of understanding of 

functional reasoning with ratios as a whole group, and differences in understanding of 

functional reasoning with ratios between the two instructional groups (SOS then EAC 

compared to EAC then SOS instruction). For each of the statistical analyses conducted, I 

used a significance level of 𝛼𝛼 = 0.05.  

Understanding of Proportional Reasoning with Ratios 

To address my first research question surrounding growth of understanding of 

proportional reasoning resulting from the lesson materials, I used a Paired Sample t-Test. 

Students’ scores on the entire assessment (out of a possible 22 points) were paired by 

their anonymous name (n = 129), and then the Paired Sample t-Test was used to identify 

whether growth in understanding had occurred. My alternative hypothesis was that the 

mean score of the post-assessment would be higher than the mean score of the pre-

assessment. So, I used a one-tailed t-test. The results of the t-test indicated that there was 

a statistically significant difference between the pre- and post-assessment means (t = 

6.238, df = 128, p < 0.001). The gain score (mean of the differences) was 1.946 and the 

median of the gain scores was 2. This positive difference shows an increase in 

understanding, and is further highlighted in the histogram of gain scores shown in Figure 



46 

 

3. The Cohen’s d effect size for Paired Sample t-Tests, which is based on the standard 

deviation of the differences, was 0.549. 

 
Figure 3 Histogram of Differences in Full Assessment Scores for the Whole 

Group  

Table 2 Full Assessment Summary Results 

Score n Mean Std. Deviation 

Pre-assessment 129 8.620 5.842 

Post-assessment 129 10.566 6.049 

Gain 129 1.946 3.543 

 

Understanding of Functional Reasoning with Ratios 

To address my second research question surrounding the growth of understanding of 

functional reasoning with ratios, I again used a Paired Sample t-Test. Questions 

specifically addressing functional reasoning (scored out of a possible 8 points) were 
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paired by their anonymous name (n = 129), and then a Paired Sample t-Test was used to 

identify if a growth in understanding of functional reasoning with ratios had occurred. 

My alternative hypothesis was that the mean score of the post-assessment results would 

be higher than that of the pre-assessment results. So, I again used a one-tailed t-test. The 

results of the t-test indicated that the difference between the pre- and post-assessment 

results was statistically significant (t = 4.911, df = 128, p < 0.001). The mean difference 

in score was 0.729, though the median was 0. This positive difference represented by the 

mean score shows an increase in understanding, and this increase is further highlighted in 

the histogram of gain scores shown in Figure 4. The Cohen’s d effect size for Paired 

Sample t-Tests was 0.432. 

 
Figure 4 Histogram of Differences in Functional Assessment Scores for the 

Whole Group  
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Table 3 Functional Reasoning Assessment Summary Results 

Score n Mean Std. Deviation 

Pre-assessment 129 1.736 2.064 

Post-assessment 129 2.465 2.456 

Gain 129 0.729 1.685 

 

Comparison of Functional Reasoning Across Instructional Groups 

To address my third and final research question surrounding differences in understanding, 

I ran an ANCOVA using the paired scores (n = 129) to determine if there was a 

difference between students’ functional reasoning with ratios score (out of 8 points) using 

the pre-assessment as a covariate. Based on the literature, my alternative hypothesis was 

that the mean score of the SOS then EAC group would be higher than that of the EAC 

then SOS group. The ANCOVA F-statistic has an asymmetrical distribution, and detects 

only differences between the groups not where those differences are (e.g. which group 

has a higher mean). Therefore, though my alternative hypothesis was directional, I did 

not run a “one-tailed” test as it is not applicable in this context. The results of the 

ANCOVA indicate that there is a significant difference between the mean scores of the 

two instructional groups (F(1, 126) = 10.395, p = 0.002).  

Because we only have two groups being compared (EAC first and SOS first), we know 

that the significant difference observed is between these groups. For post-hoc analysis, I 

looked at the estimated marginal means. The Bonferroni correction for multiple 

comparisons was not necessary because only two groups were being compared (EAC first 

and SOS first), and thus there was only one comparison. I found estimated marginal 
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means (controlling for the covariate of the pre-assessment score) of 2.81 +/- 0.347 (95% 

confidence) and 1.81 +/- 0.488 (95% confidence) for the EAC first and SOS first groups, 

respectively. This shows that when taking the pre-assessment into account the mean score 

for EAC then SOS instructional group was statistically significantly higher than that of 

the SOS then EAC instructional group. The box plots in Figure 5 shows the differences 

between the pre- and post-assessments for both instructional groups, which further 

highlights the increased growth in understanding in the EAC then SOS group compared 

to the SOS then EAC group. The effect size, partial eta squared, was 0.076. Table 4 

summarizes the pre-assessment, post-assessment, and gain scores for the two groups. You 

may notice that the actual mean post-assessment score for the SOS first group is higher 

than that of the EAC first group, but keep in mind that this mean does not account for the 

pre-assessment as covariate as the previously reported estimated marginal mean does. 

The raw post-assessment scores lose the paired nature of the data when considered alone.  

 
Figure 5 Box Plots of Gain Scores for Each Group using Matched Data  

Table 4 Functional Reasoning Assessment Results Compared by Group 
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Group Score n Mean Std. Deviation 

SOS First 

Pre-assessment 44 2.455 2.556 

Post-assessment 44 2.477 2.706 

Gain 44 0.023 1.372 

EAC First 

Pre-assessment 85 1.364 1.654 

Post-assessment 85 2.459 2.333 

Gain 85 1.094 1.722 
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CHAPTER FIVE: DISCUSSION 

In this study, I was interested in determining if the lesson materials I created led to 

increased understanding of proportional reasoning and functional reasoning with ratios, 

and in exploring differences in functional reasoning understanding that may have resulted 

from the order in which the instructional strategies of EAC and SOS were present. In this 

chapter, I interpret the results and discuss their implications and limitations.  

Growth of Understanding 

The data indicate that the lesson materials led to an increased understanding of 

proportional reasoning and functional reasoning with ratios that was likely due to 

instruction rather than random chance. For the full assessment, the median and mean of 

the differences were 2 and 1.946, respectively. For the functional reasoning questions, the 

median and mean differences were 0 and 0.729, respectively. Though the change that was 

observed is not likely to be due to random chance, the increase in understanding was not 

great as I had hoped to result from the lesson materials, particularly in regard to 

functional reasoning. Still, the fact that these materials were administered during a 

pandemic which meant that there were varied and difficult learning environments for 

students, and that the assessment was administered online (which often results in students 

trying to do calculations more mentally rather than doing their calculations on paper), this 

growth is notable. As well, there was a medium effect size for the full assessment and 

functional reasoning sub-section, respectively, which further supports the effectiveness of 

the lesson materials.  
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It is also worth noting that because many of the 6th grade students were being formally 

exposed to ratios for the first time, whereas higher grade level students would have been 

exposed to it in 6th grade, these materials may not have provided appropriate attention to 

the additive scalar and multiplicative scalar reasoning ideas that would have been more 

appropriate for students’ initial understanding. Without having the time to explore these 

ideas in depth, it may have been even harder for students to grasp the more complex 

functional reasoning ideas.  

Additionally, not only were the students learning when presented with the lessons, but the 

teachers may have been learning as well. One teacher reflected, “At the beginning I 

struggled on what I needed to say and what to expect from the students but as the lessons 

progressed, I was better at presenting the material!” It is possible that had teachers been 

more practiced with delivering instruction with Desmos activities (as well as delivering 

material in hybrid settings), there would have been a different amount of growth.  

Along with the growth in understanding, it is also worth noting that one aspect of 

learning that was not assessed was students’ engagement with lesson materials. Another 

teacher who implemented the materials commented, “One of my students emailed 

pictures of a yoga studio wall design she is painting and the ratio table she created to mix 

perfect paint combinations. You did a good job of making math authentic!” This 

comment demonstrates the engagement of one student with these materials. Another 

potentially interesting topic to explore surrounding SOS and EAC instructional strategies 

would be the impact of these strategies on student engagement. Was it the context of the 

problems alone that engaged this student (and hopefully others) or did the incorporation 

of SOS and EAC strategies on top of a real-world context lead to increased engagement? 
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Though engagement itself can be challenging to measure, this is an additional 

instructional characteristic that would be an interesting topic for future research and 

helpful for teachers to better understand.  

Differences in Understanding 

The data indicated a statistically significant difference in functional reasoning skills 

between the two instructional groups with the EAC then SOS group showing higher 

understanding than that of the SOS then EAC group. Not only was the understanding of 

the EAC then SOS instructional group statistically significantly higher than that of the 

SOS then EAC group (when accounting for initial differences in the pre-assessment), but 

there was a medium effect size for this difference. This indicates that the order in which 

the EAC and SOS instructional strategies occur may impact student understanding, 

specifically indicating this difference in a direction that contradicts earlier research.  

My alternative hypothesis based on the work of Schwartz et al. (2011) and Kapur (2014) 

was that the SOS then EAC group would have a deeper understanding of functional 

reasoning. However, there are differences in these past studies compared to the study at 

hand. It is worth noting that the deeper understanding observed by Schwartz et al. (2011) 

and Kapur (2014) was that of conceptual (rather than procedural) understanding. Kapur 

(2014) found that both teaching concepts and procedures then practicing problems, and 

working on problems prior to being explicitly taught concepts and procedures led to 

equal procedural knowledge, but that there was a statistically significant difference in 

conceptual knowledge. It is possible that the assessment used was not sensitive enough to 

more subtle conceptual understanding differences due to the reliance on numeric answer 
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questions rather than explanatory questions, and this may have impacted where the 

observed differences arose.  

Additionally, Schwartz et al. (2011) and Kapur (2014) were not specifically using the 

instructional strategies of EAC and SOS in their studies. They were, instead, looking at 

explicit instruction prior to problem exploration and vice versa. Though these are similar, 

there may be differences in both direct instruction and exploratory opportunities in their 

studies compared to the strategies used here. One notable potential difference is the type 

of explicit instruction. Schwartz et al. (2011) describe explicit instruction as a lecture on 

the topic at hand and providing formulas and worked examples prior to instruction. These 

lectures and worked examples may not be strategies that would be categorized as EAC 

because EAC strategies focus on connections between solutions, representations (e.g. 

connecting a visual to a symbolic representation), and ideas (e.g. connecting the current 

lesson to a ‘big picture’). It is unclear how many of these types of connections would 

have been made during the explicit instruction in the Schwartz et al. (2011) and Kapur 

(2014) articles. As well, some of these students in my study explored the lesson materials 

online at-home, which means it may be less likely that those students engaged as deeply 

in productive struggle without the support of teachers and peers that they would have in a 

classroom setting. So, the engagement with struggle in my study may differ from that of 

previous studies, though all students engaged in at least some of the lesson materials in 

the classroom (through hybrid and in-person settings).  

Along with differences between the ‘explicit’ instruction in my lesson materials 

compared to that of Schwartz et al. (2011) and Kapur (2014), it is possible that 

differences in the teachers’ instruction may have created differences in understanding for 
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the two instructional groups. If some teachers had more experience teaching ratios and 

proportional reasoning or more experience teaching with Desmos materials, this 

experience could have impacted the quality of instruction that the students received, and 

thus impacted the resulting student understanding.  

It is also important to note that, due to the lack of delayed post-assessment, it is unclear 

how these differences will be reflected in retention (if at all). Schwartz et al. (2011), 

observed that students’ conceptual understanding (demonstrated by students’ ability to 

transfer ratio problem structure to different physical applications) was statistically 

different both with the immediate transfer task and the delayed transfer task. There is no 

way of currently telling if the difference in understanding observed in my study would be 

retained. Future studies would benefit from including an additional delayed post-

assessment to provide insight into differences in retention of understanding (if they exist).  
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CHAPTER SIX: CONCLUSIONS 

The instructional materials themselves led to an increased understanding of both 

proportional reasoning with ratios as a whole and in the sub-area of functional reasoning 

with ratios. Though the increase in understanding may seem relatively small, there was 

medium or greater effect size, showing that this growth in understanding is meaningful. 

This suggests that the materials created are useful in increasing student understanding, 

even in a range of instructional formats (remote, hybrid, in-person, or a mix).  

With its combination of learning gains and the low learning curve required to 

successfully implement these lesson materials into instruction, teachers, no matter their 

instructional formats or pedagogical habits, can easily integrate these materials into their 

current curricula to affect growth in their students' understanding. However, a teacher 

should reflect, of course, on their learning goals for their students. If the learning goal is 

to foster a conceptual understanding of the functional relationship between quantities in a 

ratio, then these materials may be a good fit. However, it may be helpful for teachers to 

help students formalize their additive and multiplicative scalar reasoning strategies and 

build a strong foundational understanding of ratios in general prior to working on more 

complex ideas like functional reasoning with ratios.  

In this study, I worked under the assumption that Hiebert & Grouws (2007) and Stein et. 

al. (2017) were correct in concluding that the incorporation of EAC and SOS 

instructional strategies leads to increased understanding, particularly conceptual 

understanding. With that in mind, the results of this study provide some preliminary 
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evidence that the order in which these two instructional strategies occur may impact 

students’ understanding. Specifically, I found that students’ whose instruction focused on 

EAC before SOS showed a statistically significant increase in understanding of 

functional reasoning with ratios compared to those who were exposed to SOS before 

EAC. This contradicts the work of Schwartz et al. (2011) and Kapur (2014), which 

suggested that minimally aided problem exploration before direct instruction would lead 

to increased understanding compared to students’ who were exposed to direct instruction 

prior to exploring problems. However, additional research is necessary to identify if these 

differences are still present in long term retention. Further, particularly because this study 

contradicts earlier evidence, it will be important for future research to focus on the impact 

of the order in which EAC and SOS instructional strategies occur in order to identify if 

these results are replicable. 
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