
DEEP CONVOLUTIONAL SPIKING NEURAL NETWORKS FOR

IMAGE CLASSIFICATION

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Boise State University

May 2021

by

Ruthvik Vaila

c° 2021

Ruthvik Vaila

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the dissertation submitted by

Ruthvik Vaila

Dissertation Title: Deep Convolutional Spiking Neural Networks for Image

Classification

Date of Final Oral Examination: 03 March 2021

The following individuals read and discussed the dissertation submitted by student
Ruthvik Vaila, and they evaluated his presentation and response to questions dur
ing the final oral examination. They found that the student passed the final oral
examination.

John N. Chiasson, Ph.D. Chair, Supervisory Committee

Vishal Saxena, Ph.D. CoChair, Supervisory Committee

Hao Chen, Ph.D. Member, Supervisory Committee

Hani Mehrpouyan, Ph.D. Member, Supervisory Committee

Saeed Reza Kheradpisheh, Ph.D. External Examiner

The final reading approval of the dissertation was granted by John N. Chiasson,
Ph.D., Chair of the Supervisory Committee. The dissertation was approved by the
Graduate College.

DEDICATION

"Truth alone triumphs; not falsehood"

To my mother and father, who worked hard to provide for me and my brother.

To my wife, for her support.

To my brother, friends and other family members.

iv

ACKNOWLEDGEMENTS

I would like to express my appreciation to Prof. John Chiasson for guiding me

through my PhD. Dr. Chiasson played a key role in inspiring me to take a topic

in Neuromorphic computing. We spent numerous hours reading papers that guided

me in my research endeavors. He also encouraged me to take Statistics/Probability

courses from the Mathematics and ECE departments, these courses furthered my

mathematical maturity. Dr. Chiasson offered excellent courses such as Linear Sys

tems, Stochastic Signals & Systems, and Control Systems that benefited me in fur

thering my understanding of Machine Learning and Artificial Intelligence. He also

encouraged me to take up an internship position at ON semiconductor at a crucial

time in my career. The experience and expertise that I gained during my internship

at ON semiconductor has significantly advanced my qualitative, quantitative, and

programming skills in the new and upcoming Deep Learning area. He also played

a significant role in imparting scientific temper and spirit of inquiry.

I would also like to express my gratitude towards Prof. Vishal Saxena for being

my coadvisor, he played a crucial role in discussing research areas and topics to

work on. He was also a key contributor to all the research papers that I had written

during my PhD.

I would like to thank my colleagues Dr. Roohollah Amiri, Dr. Mojtaba Ahmadi

Almasi, Dr. Luka Daoud, Dr. Kamran Latif, and Dr. Sumedha Gandharava Dahl for

their support during my stay at BSU. Dr. Roohollah Amiri played a significant role

in discussing ideas pertaining to implementation of some of the algorithms during

my PhD. I thank Dr. Roohollah Amiri for being a true friend in need. Furthermore,

I would like to express my gratitude to Prof. Hao Chen for his course offerings and

encouraging discussions that we had during my stay at BSU. I would also like to

thank Prof. Hani Mehrpouyan for accommodating me in his lab. I would like to

thank the ECE department and the state of Idaho, USA for providing a Graduate

Fellowship for 3.5 years. Finally, I want to thank the administrative and IT staff in

v

the ECE department, especially, Dr. Jennifer Ambrose, Bailey Hazzard, Kristina

Martin, Jason Cook, Maureen Moore and others who tirelessly worked during the

pandemic years to keep the department running efficiently.

Furthermore, I would also like to thank my manager at ON semiconductor Dr.

Steve Nicholes, for providing an internship opportunity to me. Finally, I would also

like to thank Denver Lloyd, he played a key role in refining much of the code that I

had developed during my stay at ON semiconductor.

vi

BIOGRAPHICAL SKETCH

Ruthvik Vaila is a doctoral candidate from Hyderabad, India. He obtained his

Junior college degree from Narayana Junior College in 2010, he achieved a position

in top 0.9 percentile among 1 million candidates that took the AllIndia Engineering

Entrance Exam (AIEEE) in 2010. As a result, he gained admission to National

Institute of TechnologyCalicut (NITC) and obtained his Bachelor of Technology

(B.Tech) in Electrical and Electronics Engineering (EEE) in 2014. During his stay

at NITC he qualified for the merit scholarship that was awarded to selected students

from the erstwhile state of Andhra Pradesh by the Ministry of Human Resources

Development (MHRD), Government of India. Subsequently he spent the Summer

of 2014 at Yuktix Technologies, Bangalore where he worked on automation for

Industrial and Agricultural applications. He spent the Fall of 2014 and the Spring

of 2015 as an intern at the Robotics Research Center (RRC), International Institute

of Information Technology, Hyderabad (IIITH) under the guidance of Prof. K.

Madhava Krishna. He worked on topics such as lane detection and parallel parking

pertaining to the Autonomous driving field during his tenure at RRC, IIITH.

He joined Boise State University, (BSU), Boise as a Master of Science (MS)

student in Electrical and Computer Engineering in the Fall of 2015. After consult

ing with Prof. John Chiasson and Prof. Vishal Saxena he was convinced to join

the PhD program at BSU in the Spring of 2016. From the Spring of 2016 to Sum

mer of 2019, he worked towards his PhD full time in Neuromorphic Computing.

During his fulltime tenure at BSU, he was a Teaching Assistant (TA) for courses

such as System Modelling & Control, and Electronic Circuits lab. He joined ON

semiconductor as an intern during the Summer of 2019, subsequently the internship

was extended till the Summer of 2020. During his tenure at ON semiconductor, he

worked on applying modern Deep Learning tools and techniques towards reducing

the time required for calibrating an image sensor. He remained a part time PhD

student at BSU during his tenure at ON semiconductor. In the Summer of 2020

vii

he joined Bastian Solution (Toyota Advanced Logistics) in Boise, Idaho as a Ma

chine Learning Engineer where works in the field of Deep Learning for warehouse

automation.

viii

ABSTRACT

Spiking neural networks are biologically plausible counterparts of artificial neural

networks. Artificial neural networks are usually trained with stochastic gradient de

scent (SGD) and spiking neural networks are trained with bioinspired spike timing

dependent plasticity (STDP). Spiking networks could potentially help in reducing

power usage owing to their binary activations. In this work, we use unsupervised

STDP in the feature extraction layers of a neural network with instantaneous neu

rons to extract meaningful features. The extracted binary feature vectors are then

classified using classification layers containing neurons with binary activations.

Gradient descent (backpropagation) is used only on the output layer to perform

training for classification. Surrogate gradients are proposed to perform backprop

agation with binary gradients. The accuracies obtained for MNIST and the bal

anced EMNIST data set compare favorably with other approaches. The effect of

the stochastic gradient descent (SGD) approximations on learning capabilities of

our network are also explored. We also studied catastrophic forgetting and its effect

on spiking neural networks (SNNs). For the experiments regarding catastrophic

forgetting, in the classification sections of the network we use a modified synaptic

intelligence that we refer to as cost per synapse metric as a regularizer to immunize

the network against catastrophic forgetting in a SingleIncrementalTask scenario

(SIT). In catastrophic forgetting experiments, we use MNIST and EMNIST hand

written digits datasets that were divided into five and ten incremental subtasks

respectively. We also examine behavior of the spiking neural network and empiri

cally study the effect of various hyperparameters on its learning capabilities using

the software tool SPYKEFLOW that we developed. We employ MNIST, EMNIST

ix

and NMNIST data sets to produce our results.

x

TABLE OF CONTENTS

ABSTRACT . ix

CHAPTER ONE: INTRODUCTION . 1

1.1 Spike Timing Dependent Plasticity (STDP) 1

1.2 Convolution Operation . 5

CHAPTER TWO: LITERATURE SURVEY 8

2.1 Unsupervised Networks . 8

2.2 Reward Modulated STDP . 9

2.3 Spiking Networks with Backpropagation 10

2.4 Spike Encoding . 13

2.5 Realtime Spikes . 13

CHAPTER THREE: BACKGROUND. 14

3.1 Spiking Images . 14

3.2 Network Description . 17

3.2.1 Convolution Layers and STDP 18

3.2.2 Pooling Layers . 22

CHAPTER FOUR: CLASSIFICATION OF THE MNIST DATA SET 25

4.1 Classification with Two Convolution/Pool Layers 25

4.2 Classification with a Single Convolution/Pool Layer 28

CHAPTER FIVE: REWARD MODULATED STDP 30

xi

5.1 RSTDP as a Classification Criteria 33

5.1.1 Backprop Initialized Weights for RSTDP 33

5.1.2 Randomly Initialized Weights for RSTDP 37

CHAPTER SIX: CLASSIFICATION OF THE NMNIST DATA SET 38

6.1 Transfer Learning . 38

6.2 Training with NMNIST Spikes . 40

CHAPTER SEVEN: FEATURERECONSTRUCTIONANDOVERTRAIN

ING .

41

7.1 Feature Reconstruction . 41

7.2 Effect of Over Training the Convolution Kernels 48

CHAPTER EIGHT: SURROGATE GRADIENTS AND STDP. 51

8.1 Binary Activations and Surrogate Gradients 52

8.1.1 Weight Initialization . 52

8.1.2 Surrogate Gradient 1 . 53

8.1.3 Surrogate Gradient 2 . 54

8.2 MNIST . 55

8.3 Extended MNIST . 56

8.3.1 Why Use Unsupervised STDP Based Feature Extraction? . . 57

8.3.2 Effect of Gradient Approximation on Classification 60

8.3.3 Conditioning on Upper Case, Lower Case, and Digits 60

8.3.4 Computational Advantage of Binary Activations 62

8.3.5 Number of HighPrecision Multiplications 63

8.4 SPYKEFLOW . 65

8.5 Comparison with Other Works . 66

xii

CHAPTER NINE: CATASTROPHIC FORGETTING 68

9.1 Catastrophic Forgetting in NonSpiking Networks 68

9.2 Forgetting in Spiking Networks . 71

9.3 Continuous Learning in a SingleIncrementalTask Scenario with

Spike Features . 73

9.4 Network . 76

9.5 Continuous Learning . 77

9.5.1 Results with MNIST Dataset 81

9.5.2 Results with EMNIST Dataset 82

CHAPTERTEN:MODELLINGACMOS IMAGESENSORUSINGNEURAL

NETWORKS . 84

10.1 Introduction . 84

10.2 Data Visualization . 85

10.3 Data Preprocessing . 87

10.4 Neural Network . 88

10.4.1 How to Choose Neural Network Parameters ? 89

10.4.2 Modeling . 91

10.4.3 Prediction and Evaluation 91

10.5 Optimization . 96

CHAPTER ELEVEN: CONCLUSION . 101

11.1 Summary . 101

11.1.1 Chapter 4 . 101

11.1.2 Chapter 5 . 101

11.1.3 Chapter 6 . 102

11.1.4 Chapter 7 . 102

11.1.5 Chapter 8 . 102

xiii

11.1.6 Chapter 9 . 102

11.1.7 Chapter 10 . 103

11.2 Future work . 103

11.2.1 Time Dependent Classifier 103

11.2.2 Hardware Implementation 103

11.2.3 Learning Spike Times . 103

APPENDIX. 117

A.1 Effect of lateral inhibition in pooling layers on subsequent convolu

tion layers . 118

A.2 With lateral inhibition in pooling layer 118

A.3 Scarcity of the spikes . 119

xiv

LIST OF TABLES

Table 4.1 Classification accuracies on MNIST data set with various

classifiers when number of maps in L4 is 500. 26

Table 4.2 Classification accuracies on MNIST data set with various

classifiers when number of maps in L4 is 1000. 27

Table 4.3 Classification accuracies on MNIST data set with various

classifiers when a single convolution/pool layer is used. 29

Table 5.1 Classification accuracy onMNIST data set with RSTDPwhen

one neuron per class is used. 32

Table 5.2 Classification accuracy on MNIST data set with single layer

backprop. 32

Table 5.3 Classification accuracy onMNIST data set with RSTDPwhen

more than one neuron per class is used. 33

Table 5.4 Demonstration of sensitivity of RSTDP to N value with cor

rect initialization of hit and miss ratios. 35

Table 5.5 Demonstration of sensitivity of RSTDP to N value with in

correct initialization of hit and miss ratios. 35

Table 5.6 Demonstration of sensitivity of RSTDP. 36

Table 5.7 Demonstration of sensitivity of RSTDP for weight initializa

tion. 36

Table 5.8 Demonstration of sensitivity of RSTDP. 37

Table 6.1 Classification accuracies of NMNIST data set with one con

volution/pool layers for transfer learning. 39

xv

Table 6.2 Classification accuracies of NMNIST data set with one con

volution/pool layers when trained with NMNIST spikes. 40

Table 8.1 MNIST results. True gradients refers to Equations (8.1)(8.5). 56

Table 8.2 EMNIST accuracy with random and trained L2 layer. 57

Table 8.3 EMNIST results. True gradient refers to Equations (8.1)(8.5). 60

Table 8.4 Comparison of multiplications for a DNN and an SNN in

Figure 81. 63

Table 8.5 Comparison of EMNIST classification results. 66

Table 9.1 Demonstration of forgetting in a spiking convolution network. 73

Table 10.1 Concerned sensor of this work was presented with all the

combinations of Input1, Input2, Input3, Input4, Input6 values given

in the table. For each of the combination, Input5 was swept from

049 obtaining a single Signal [AU] vs SNR [dB] curve. Note that

the resolution of inputs for which outputs were recorded is 22, 8,

25, 200 and 200 respectively for Inputs 1, 2, 3, 4 and 6 respectively. 86

Table 10.2 Various criteria values when the predictions where optimized

for Signal [AU] vs SNR [dB] curve and Output3. 99

Table 10.3 Various criteria values when the predictions where optimized

only for Signal [AU] vs SNR [dB] curve. 99

xvi

LIST OF FIGURES

Figure 11 The neurons = 1 are the presynaptic neurons and

the output neuron is the postsynaptic neuron. 2

Figure 12 Spike generation by an output neuron. 4

Figure 13 The pattern is red and has a duration of 5 miliseconds.

This pattern is presented recurrently to the network at random times.

The random noisy spikes are represented in blue. 4

Figure 14 The grey box indicates the fixed pattern is present in

the input neurons . 5

Figure 15 Convolution operation. 5

Figure 16 Feature detection. 7

Figure 17 Feature detection. 7

Figure 31 On center filter has higher values in the center whereas the

off center filter has lower values in the center. Color code indicates

the filter values. 14

Figure 32 Left: Original greyscale image. Center: Output of the ON

DoG filter. Right: Accumulation of spikes (white indicates a spike,

black indicates no spike). 15

Figure 33 Left: Original greyscale image. Center: Output of the OFF

DoG filter. Right: Accumulation of spikes (white indicates a spike,

black indicates no spike). 15

Figure 34 Spike signal . 16

xvii

Figure 35 Rasterplot of spikes for an on center cell. Blue dots in the

plot indicates the presence of a spike for a particular neuron and bin

(timestep). 16

Figure 36 Demonstration of convolution with a 3D kernel. 17

Figure 37 Left: MNIST digit "5" input. Accumulation of spikes from

all 30 maps and 12 time steps in L2 without lateral inhibition. Cen

ter: Accumulation of spikes from all 30 maps and all 12 time steps

in L2 with lateral inhibition. Right: Accumulation of spikes across

all maps and 12 time steps with both lateral inhibition and STDP

competition imposed for a single image. 18

Figure 38 Plot of the weights of 30 maps of L2. The ON (green) 5× 5
filter and the OFF (red) 5× 5 filter are superimposed on top of each
other. 21

Figure 39 Spikes per map per digit. Headings for each of the subplots

indicate the dominant (most spiking) digit for respective features. . . 23

Figure 310 Network showing two convolution layers and a final global

pooling layer. 24

Figure 41 Network with two fully connected layers as a classifier. . . . 26

Figure 42 Network with three fully connected layers as a classifier. . . 27

Figure 43 Deep spiking convolutional network architecture for classi

fication of the MNIST data set. 28

Figure 51 Network with 750 maps in L4. 31

Figure 52 Plot of accuracies versus epochs when the weights were ini

tialized with backprop trained weights. 36

Figure 53 Plot of accuracies versus epochs when the weights were ran

domly initialized. 37

Figure 61 Network for NMNIST classification. 38

xviii

Figure 62 Left: Accumulated ON and OFF center spikes. Center: Ac

cumulate ON center spikes. Right: Accumulated OFF center spikes. 39

Figure 63 Left: Accumulated ON and OFF center spikes. Center: Ac

cumulate ON center spikes. Right: Accumulated OFF center spikes. 39

Figure 71 Network showing two convolution layers and a final global

pooling layer. 41

Figure 72 Left: SecondON 5×5 kernel (out of 30 kernels),1(1 0) ∈
R5×5. Right: Second 10 × 10 slice (out of 30 slices) of 1 feature
(out of 500 features) of pool 1 features, 1(0 1) ∈ R10×10 . . . 43

Figure 73 Reconstruction at Conv1 (L2). Figure shows 1 feature of

500 feature maps and 2 slice of 30 slices, 1(0 1) ∈ R14×14. 44

Figure 74 Reconstruction at Conv1 (L2), 1(0 1) ∈ R14×14. . . . 45
Figure 75 Left: Third ON 5×5 kernel (out of 30 kernels),1(2 0) ∈

R5×5. Right: Third 10×10 slice (out of 30 slices) of 1 feature (out
of 500 features) of pool 1 features, 1(0 2) ∈ R10×10 45

Figure 76 Reconstruction at Conv1 (L2), 1(0 2) ∈ R14×14. . . . 46
Figure 77 Reconstruction at Conv1 (L2), 1(0 2) ∈ R14×14 . . . 46

Figure 78 Weights of 150300 maps of L4 that is trained by in coming

spikes without lateral inhibition in L3, STDP competition region

in L4 set to R500×3×3 and with homeostasis signal applied in L4,

notice that the reconstructed features are quite complex and they

could well represent a digit or a major section of a digit, note that

all neurons of a map in a layer will have shared weights. In this

experiment number of maps is L4 was set to 500. Notice that the

reconstructed features are not as complex looking as in Figure A1 . 47

xix

Figure 79 Reduction in the complexity of learned features because of

over training. First row of this figure shows reconstruction of L3→L4
synapses after training for 15.5k images and second row shows the

reconstruction of L3→L4 synapses after training for 240k images
(4 epochs) . 48

Figure 710 Plot shows the difference of successive samples of synapses.

If the difference approaches zero it means that weights are not chang

ing hence features learnt by a neuron also remain the same. Notice

the sudden jump in difference between 80100 samples. 49

Figure 711 Plot shows the fashion of convergence for the synapses. Note

that the convergence factor dips sharply between the samples 80

100. 50

Figure 81 Layers 1 − 3 are the feature extraction layers and layer

3− 5 are the feature classification layers. 52

Figure 82 Activation function = () for neurons in layer 4 . . . 53

Figure 83 Surrogate gradient of activation function defined in equation

(8.6). 54

Figure 84 Classification accuracy per class with surrogate gradient 1. . 56

Figure 85 Confusion matrix of predictions with EMNIST dataset when

the synapses in layer L2 were learned in an unsupervised fashion

using STDP. 58

Figure 86 Confusion matrix of predictions with EMNIST dataset when

the weights (synapses) in layer L2 were random. 59

Figure 87 Frequently misclassified classes in the EMNIST dataset. P

and L denote predicted class and actual label, respectively. 59

Figure 88 Effect of input noise on the final classification accuracy. . . 59

Figure 89 Classification accuracy per class with surrogate gradient 1. . 60

Figure 810 Classification accuracy per class of EMNIST dataset with

surrogate gradient 1 after conditioning. 61

xx

Figure 811 Confusion matrix of predictions with EMNIST dataset when

the inputs are conditioned on Upper Case, Lower Case and Digits. . 62

Figure 812 Number of neurons with nonzero activations in layer L4 as

the training in classification sections of the network in Figure 81

progresses. 65

Figure 91 Network architecture for catastrophic forgetting. 68

Figure 92 Catastrophic forgetting in a convolutional network while re

vising a fraction of the previously trained classes. Note that epoch

1 indicates that the network was tested for validation accuracy be

fore training of the classes 59 started. Brackets in the legend shows

the fraction of previously trained classes that were used to revise the

weights from the previous classes. 70

Figure 93 Zoomed upper portion of the Figure 92 70

Figure 94 Catastrophic forgetting in a spiking convolutional network

while revising a fraction of the previously trained classes. Note

that epoch 1 indicates that the network was tested for validation

accuracy before training of the classes 59 started. Brackets in the

legend shows the fraction of previously trained classes that were

used to revise the weights from the previous classes. 72

Figure 95 Zoomed upper portion of the Figure 94 72

Figure 96 Note that as the number of training images for the classes

59 increases the total accuracy drops. 73

Figure 97 Layers L1L3 and L3L5 are feature extraction and feature

classification layers respectively. Shown in the figure is an expand

ing output layer from 210 output neurons to accommodate the five

classification tasks for the MNIST dataset. For the EMNIST dataset

the same network has been modified to accommodate the ten clas

sification tasks. EMNIST dataset with 47 classes has been divided

to 10 sub tasks. 76

xxi

Figure 98 Search for . 81

Figure 99 Test accuracy . 81

Figure 910 Search for . 82

Figure 911 Trend of test accuracy as the learning progresses in an SIT

scenario. 82

Figure 101 Resolution indicates number of values a particular setting

can assume. 85

Figure 102 Histogram of all the inputs and outputs. 86

Figure 103 Correlation between various inputs and outputs. 87

Figure 104 Plot of Signal [AU] vs SNR [dB] given Input1 and Input2. . . 87

Figure 105 Unnormalized input data. 88

Figure 106 Normalized input data. 88

Figure 107 Keras sumary of the final neural network that was used to

train the data. 88

Figure 108 Epochs vs Loss plot of the neural network. 92

Figure 109 Actual vs Predicted plot for SNR [dB] in the training dataset.

Goodness of fit (2) was found to be 0991 92

Figure 1010Actual vs Predicted plot for SNR [dB] in the testing dataset.

Goodness of fit (2) was found to be 0990 93

Figure 1011Actual vs Predicted plot for Signal [AU] in the training dataset.

Goodness of fit (2) was found to be 0999 93

Figure 1012Actual vs Predicted plot for Signal [AU] in the testing dataset.

Goodness of fit (2) was found to be 0999 94

Figure 1013Actual vs Predicted plot for Output3 in the training dataset.

Goodness of fit (2) was found to be 0999 94

Figure 1014Actual vs Predicted plot for Output3 in the testing dataset.

Goodness of fit (2) was found to be 0999 95

Figure 1015Plot of Signal [AU] vs SNR [dB]. 96

xxii

Figure 1016Plot of Signal [AU] vs SNR [dB] in the interval ≈ 3 ×
103 − 104 AU from the sensor for a single settings combination.
Recorded prominence (SNR[dB] drop) value for this settings com

bination was ≈ 577 dB. One of the methods of optimization is to
choose the settings combination that produces the least SNR drop

in the interval ≈ 3× 103 − 104 AU. 97
Figure 1017Plot of Signal [AU] vs SNR [dB] for the corresponding input

settings combination that resulted in a Signal [AU] vs SNR [dB

curve close to the ideal Signal [AU] vs SNR [dB]. Input1, Input2,

Input3, Input4, Input6 were found to be 430 120 485 2900 3525

respectively. Optimization was performed using all the six criteria

mentioned above. 98

Figure 1018Plot of Signal [AU] vs SNR [dB] for the corresponding input

settings combination that resulted in a Signal [AU] vs SNR [dB]

curve close to the ideal Signal [AU] vs SNR [dB]. Input1, Input2,

Input3, Input4, Input6 were found to be 426 112 495 3000 3600

respectively. Optimization was performed using all the six criteria

mentioned above. 99

Figure A1 Weights of first 150 maps of L4 that is trained by in com

ing spikes with lateral inhibition in L3, STDP competition region

in L4 set to R500×3×3 and with homeostasis signal applied in L4,

notice that the reconstructed features are quite complex and they

could well represent a digit or a major section of a digit, note that

all neurons of a map in a layer will have shared weights. In this

experiment number of maps is L4 was set to 500. 119

xxiii

1

CHAPTER ONE: INTRODUCTION

Deep learning, i.e., the use of deep convolutional neural networks (DCNN), is

a powerful tool for pattern recognition (image classification) and natural language

(speech) processing [80][66]. Deep convolutional networks use multiple convolu

tion layers to learn the input data [43] [82] [19]. They have been used to classify

the large data set IMAGENET [40] with an accuracy of 96.6% [8]. In this work deep

spiking networks are considered [72]. This is a new paradigm for implementing ar

tificial neural networks using mechanisms that incorporate spiketiming dependent

plasticity which is a learning algorithm discovered by neuroscientists [24] [56]. Ad

vances in deep learning have opened up a multitude of new avenues that once were

limited to science fiction [96]. The promise of spiking networks is that they are less

computationally intensive and much more energy efficient as the spiking algorithms

can be implemented on a neuromorphic chip such as Intel’s LOIHI chip [12] (oper

ates at low power because it runs asynchronously using spikes). Our work is based

on the work of Masquelier and Thorpe [58] [57], and Kheradpisheh et al. [35] [34].

In particular a study is done of how such networks classify MNIST image data [46]

and NMNIST spiking data [67]. The networks used in [35] [34] consist of multiple

convolution/pooling layers of spiking neurons trained using spike timing dependent

plasticity (STDP [83]) and a final classification layer done using a support vector

machine (SVM) [29].

1.1 Spike Timing Dependent Plasticity (STDP)

Spike timing dependent plasticity (STDP) [55] has been shown to be able to

detect hidden (in noise) patterns in spiking data [57]. Figure 11 shows a simple

2
2 layer fully connected network with input (presynaptic) neurons and 1 output

neuron. The spike signals () are modelled as being either 0 or 1 in one millisec

ond increments. That is, 1 msec pulse of unit amplitude represents a spike while

a value of 0 represents no spike present. See the left side of the Figure 11. Each

spike signal has a weight (synapse) associated with it which multiplies the signal to

obtain()which is called the post synaptic potential due to the input neuron.

These potentials are then summed as

 () =
X
=1

()

 () is called the membrane potential of the output neuron. At any time if the

membrane potential () is greater than a specified threshold , i.e., if

X
=0

 ()

then the output neuron spikes. is the entire duration of the simulation. By this

we mean that the output neuron produces a 1 msec pulse of unit amplitude. See the

right side of Figure 11.

Figure 11: The neurons = 1 are the presynaptic neurons and the output
neuron is the postsynaptic neuron.

Denote the input spike pattern () as

() =

⎡⎢⎢⎢⎢⎢⎢⎣
1()

2()
...

()

⎤⎥⎥⎥⎥⎥⎥⎦ (1.1)

3
Let 1 2 3 · · · be a sequence of times for which the spike pattern in
Equation 1.1 is fixed, that is, = (1) = (2) = (3) = · · · while at all
other times the values () are random (E.g., (() = 1) = 001 and (() =

0) = 099). The idea here is that the weights can be updated according to an

unsupervised learning rule that results in the output spiking if and only if the fixed

pattern is present. The learning rule used here is called spike timing dependent

plasticity or STDP. Specifically, we used a simplified STDP model as in given as

[35]

 ← +∆ ∆ =

⎧⎪⎨⎪⎩+
+(1−) if − ≤ 0

−−(1−) if − 0

Here and are the spike times of the presynaptic (input) and the postsynaptic

(output) neuron, respectively. That is, if the input neuron spikes before the output

neuron spikes then the weight is increased otherwise the weight is decreased.1

Learning refers to the change∆ in the synaptic weight with + and − denot

ing the learning rate constants. These rate constants are initialized with low values

(0004 0003) and are typically increased as learning progresses. This STDP rule is

considered simplified because the amount of weight change doesn’t depend on the

time duration between presynaptic and postsynaptic spikes.

To summarize, if the presynaptic (input) neuron spikes before postsynaptic

(output) neuron, then the synapse is increased. If the presynaptic neuron doesn’t

spike before the postsynaptic neuron then it is assumed that the presynaptic neuron

will spike later and the synapse is decreased. The membrane potential profile of the

type of output neuron considered here looks as shown in the Figure 12. In Figure

12 the output neuron is shown to receive a spike at 1 msec, two spikes at 2 msec

and another two spikes at 3 msec. The output neuron spikes at time 3 msec as its

membrane potential exceeded the threshold (= 45).

1The input neuron is assumed to have spiked after the output neuron spiked.

4

Figure 12: Spike generation by an output neuron.

Figure 13 shows a raster plot of an input neuron versus its spike times for the

first 54 msecs. Figure 13 shows = 100 input neurons and at any time a dot

(∗) denotes a spike while an empty space denotes no spike. Red dots in the plot
indicates a spike as part of the fixed pattern of spikes . In Figure 13 the

pattern presented to the output neuron is 5 msec long in duration. The blue part of

Figure 13 denotes random spikes being produced by the input neurons (noise).

On close observation of Figure 13 one can see that fixed spike pattern in red is

presented at time 0, time 13, and time 38.

Figure 13: The pattern is red and has a duration of 5 miliseconds. This
pattern is presented recurrently to the network at random times. The random noisy
spikes are represented in blue.

Using only the above STDP learning rule, the output neuron learns to spike only

when the fixed pattern is produced by the input neurons. With the weights

 set randomly from normal distribution, i.e., ∼ N (05 005) Figure 14 (top
plot) shows the output spiking for the first 50 msecs. However after about 2000

5
msec, Figure 14 (middle plot) shows the output neuron starts to spike selectively,

though it incorrectly spikes at times when the pattern is not present. Finally, after

about 3000 msec, Figure 14 (bottom plot) shows that the output neuron spikes only

when the pattern is present.

Figure 14: The grey box indicates the fixed pattern is present in the input
neurons

1.2 Convolution Operation

In this work spiking convolutional neural networks (SCNN) are used for feature

extraction. A short explanation of convolution is now presented. Figure 15 shows

a convolution operation on an input image.

Figure 15: Convolution operation.

Let

() 0 ≤ ≤ 4

6
denote a 5×5 convolution weight kernel (filter) indicated by the red square Figure 1
5 above. With the kernel centered on the location () of the input image I()

(0 ≤ ≤ 14) the value I() (0 ≤ ≤ 14) of the output image at () is
given by

I() =

=2X
=−2

=2X
=−2

I(+ +)()

Note that the shape of the output image is same as the input image, such convolu

tions are called same mode convolutions.

Convolution networks are used to detect features in images. To explain, consider

the convolution kernel 1(1) as shown in Figure 16. This kernel is used to

find vertical lines of spikes at any location of the spiking input image. For example,

at the location () at time , the kernel is convolved with the spiking image to

give
2X

=−2

2X
=−2

(+ +)1(1)

If there is a vertical line of spikes in the spiking image that matches up with the

kernel, then this result will be a maximum (maximum correlation of the kernel with

the image). The accumulated membrane potential for the neuron at () of map1

of the Conv1 layer is given by

(1) =
X

=0

Ã
2X

=−2

2X
=−2

(+ +)1(1)

!

The neuron at () of map 1 of the Conv1 layer then spikes at time if

 (1)
 () ≥ 1

where 1 is the threshold. If the neuron at () in map 1 of Conv1 spikes, then a

vertical line of spikes have been detected in the spiking image centered at ().

7

Figure 16: Feature detection.

Figure 17 shows that map 2 (second feature map) of Conv1 is used to detect

a line of spikes at 45 degrees. The third feature map (map 3) is used to detect a

line of spikes at 135 degrees and the fourth feature map (map 4) is used to detect a

horizontal line of spikes. A typical SCNN has multiple layers. Each layer will have

multiple feature maps.

Figure 17: Feature detection.

8

CHAPTER TWO: LITERATURE SURVEY

In 1951Hubel andWiesel [30] showed that a cat’s neurons in the primary visual

cortex are tuned to simple features and the inner regions of the cortex combined

these simple features to represent complex features. The neocognitron model was

proposed in 1980 by Fukushima to explain this behavior [17]. This model didn’t

require a "teacher" (unsupervised) to learn the inherent features in the input, akin

to the brain. The neocognitron model is a forerunner to the spiking convolutional

neural networks considered in this work. These convolutional layers are arranged

in layers to extract features in the input data. The terminology "deep" CNNs refers

to a network with many such layers. However, the deep CNNs used in industry

(Google, Facebook, etc.) are fundamentally different in that they are trained using

supervision (back propagation of a cost function). Here our interest is to return

to the neocognitron model using spiking convolutional layers in which all but the

output layer is trained without supervision.

2.1 Unsupervised Networks

A network equipped with STDP [55] and lateral inhibition was shown to de

velop orientation selectivity similar to the visual frontal cortex in a cat’s brain [13]

[101]. STDP was shown to facilitate approximate Bayesian computation in the

visual cortex using expectationmaximization [65]. STDP is used for feature ex

traction in multilayer spiking CNNs. It has been shown that deeper layers combine

the features learned in the earlier layers in order to represent advanced features, but

at the same time sparsity of the network spiking activity is maintained [15] [35]

[34] [58] [71] [87] [90] [89] [99]. In [14] a fully connected network trained using

9
unsupervised STDP and homeostasis achieved a 95.6% classification accuracy on

the MNIST data set.

2.2 Reward Modulated STDP

Mozafari et al. [61] [63] proposed reward modulated STDP (RSTDP) to avoid

using a support vector machine (SVM) as a classifier. It has been shown that the

STDP learning rule can find spiking patterns embedded in noise [57]. That is,

after unsupervised training, the output neuron spikes if the spiking pattern is input

to it. A problem with this unsupervised STDP approach is that as this training

proceeds the output neuron will spike when just the first few milliseconds of the

pattern have been presented. (For example, the pattern in Figure 13 is 5 msecs

long and the output starts to spike when only (say) the first 2 msecs of the pattern

have been presented to it though it should only spike after the full 5 msec pattern

has been presented. Mozafari et al. showed in [63] that RSTDP helps to alleviate

this problem.

When unsupervised training methods are used, the features learned in the last

layer are used as input to an SVM classifier [34][35] or a simple two or three layer

back propagation classifier [86]. In contrast, RSTDP uses a reward or punishment

signal (depending upon if the prediction is correct or not) to update the weights

in the final layer of a multilayer (deep) network. Spiking convolutional networks

are successful in extracting features [63][34][35]. Because RSTDP is a supervised

learning rule, the extracted features (reconstructed weights) more closely resemble

the object they detect and thus can more easily differentiate between a digit “1”

and a digit "7" compared to STDP. That is, reward modulated STDP seems to com

pensate for the inability of the STDP to differentiate between features that closely

resemble each other [16] [49] [61] [84]. It is also reported in [61] that RSTDP is

more computationally efficient. However, RSTDP is prone to over fitting, which is

alleviated to some degree by scaling the rewards and punishments, e.g., receiving

higher punishment for a false positive and a lower reward for a true positive [61]

10
[63]. In more detail, the reward modulated STDP learning rule is:

If a reward signal is generated then the weights are updated according to⎧⎪⎨⎪⎩∆ = +

+ (1−) if − ≤ 0

∆ = −

− (1−) if − 0

If a punishment signal is generated then the weights are updated according to⎧⎪⎨⎪⎩∆ = −

+ (1−) if − ≤ 0

∆ = +

− (1−) if − 0

Here and are the pre and postsynaptic times, respectively. For every in

put images, and are a number of misclassified and correctly classified

samples respectively. Note that + = , if the decision of the network

is based on the maximum potential of the network, if the decision of the network

is based on the early spike + ≤ because there might be not be any

spikes for some inputs.

2.3 Spiking Networks with Backpropagation

In [47] a two layer unsupervised spiking CNN was used for feature extraction.

The output of these layers were input to a type of softmax cost function for classi

fication with the error back propagated through all layers. They were able to obtain

a classification accuracy 99.1% on the MNIST data set. A similar approach with

comparable accuracy was carried by [88]. Other methods such as computing the

weights on conventional (non spiking) CNNs trained using the back propagation

algorithm and then converting them to work on spiking networks have been shown

to achieve an accuracy of 99.4% on MNIST data set and 91.35% on CIFAR10 data

set [78]. An approximate back propagation algorithm for spiking neural networks

was proposed in [3] [48]. In [32] a spiking CNN with 15C5P240C5P230010

layers using error back propagation through all the layers reported an accuracy of

11
99.49% on the MNIST data set. The authors in [32] also classified the NMNIST

data set using a fully connected threelayer network with 800 neurons in the hidden

layer and reported an accuracy of 98.84%.

Another approach to back propagation in spiking networks is the random back

propagation approach. Firstly, the standard back propagation equations in (non

spiking) neural networks are now summarized [66]. The gradient of a quadratic

cost =
P0

=1 (−)2 gives the error from the last layer as

 =

0() (2.1)

 is the activation of the neurons in the output layer, is the activation function and

 is the net input to the output layer. This error on the last layer is back propagated

according to

 = ((+1) +1)¯ 0() (2.2)

where +1 are the weights connecting the and (+1) layer. The weights and

biases are updated as follows:

= (2.3)

= −1 (2.4)

In equation (2.2), the weight matrix +1 connecting the and (+ 1) layer is

the same as the weight matrix used in forward propagation to calculate the activa

tions +1 of (+ 1) layer. This is bothersome to the neuroscience community

as it is not biologically plausible [50] [22] [76]. This is referred to as the weight

transport problem. Lillicrap et al. [52] showed that the back propagation algorithm

works well even if +1 in equation (2.2) is replaced with another fixed random

matrix (0)+1. This eliminates the requirement of weight symmetry, i.e., the same

weights for forward and backward propagations. A neuromorphic hardware spe

cific adaptation of random error back propagation that solves the weight transport

problem was introduced by [64] and was shown to achieve an error rate of 1.96%

12
for the MNIST data set. The cost function in [64] is defined as

 = 05
X

(()− ())
2 (2.5)

where () is the error of the output neuron and and are the firing rates of

the prediction neuron and the label neuron.

= −
X

()
 ()

 (2.6)

In equation (2.6)

 ()

was approximated as

 ()

∝

⎧⎪⎨⎪⎩1 if () = 1 and min () max

0 otherwise.
(2.7)

where () is the current entering into postsynaptic neuron and () = 1

indicates the presence of a presynaptic spike. For more details see [64]. The

weight update for the last layer is then

∆
 ∝

⎧⎪⎨⎪⎩−() if () = 1 and min () max

0 otherwise.
(2.8)

The weight update for hidden layers is

∆
 ∝

⎧⎪⎨⎪⎩−
P

 () if () = 1 and min () max

0 otherwise.
(2.9)

where () denotes the error term of the neuron in the output layer and is

a fixed random number as suggested by the random back propagation algorithm. In

the work to be reported below, random back propagation was not used. Specifically,

when back propagation is used below, it is only between the penultimate and output

13
layer making random back propagation unnecessary.

2.4 Spike Encoding

Spikes are either rate coded or latency coded [21] [38] [75] [6]. Rate coding

refers to the information encoded by the number of spikes per second (more spikes

per time carries more information). In this case the spike rate is determined by the

mean rate of a Poisson process. Latency encoding refers to the information encoded

in the time of arrival of a spike (earlier spikes carry more information). The raster

plot of Figure 13 shows that spatiotemporal information is provided by the input

spikes to the output neuron. That is, which input neuron is spiking (spatio) and

the time a neuron spikes (temporal) is received by the output neuron. The spiking

networks use this spatiotemporal information to extract features (e.g., detect the

pattern in Figure 13) in the input data [23] [60].

2.5 Realtime Spikes

Image sensors (silicon retinas) such as ATIS [73] and eDVS [10] [51] provide

(latency encoded) spikes as their output. These sensors detect changes in pixel in

tensities. If the pixel value at location () increases then an ONcenter spike is

produced while if the pixel value decreased an OFFcenter spike is produced. Fi

nally, if the pixel value does not change, no spike is produced. The spike data from

an image sensor is packed using an address event representation (AER [31]) proto

col and can be accessed using serial communication ports. A recorded version of

spikes from eDVS data set was introduced in [53] and a similar data set of MNIST

images recorded with ATIS data set was introduced in [67].

14

CHAPTER THREE: BACKGROUND

3.1 Spiking Images

We have considered the standard 27 × 27 greyscale MNIST images1 [46] and
the spiking NMNIST data files [67] for our experiments. In the case of the MNIST

images we needed to convert them to spikes. This was done by first using both

an oncenter and an offcenter Difference of Gaussian (DoG) convolution filter

Γ12() for edge detection given by

12() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

221

−
2 + 2

221 − 1

222

−
2 + 2

222 for − 3 ≤ ≤ 3−3 ≤ ≤ 3

0 otherwise

where 1 = 1 2 = 2 for the oncenter and 1 = 2 2 = 1 for the offcenter.

Figure 31: On center filter has higher values in the center whereas the off center
filter has lower values in the center. Color code indicates the filter values.

With the input image I() ∈ R27×27, the output of each of the two DoG
1We removed the outer most pixels in the data set [46] giving 27× 27 images.

15
filters is computed using the same mode convolution

Γ12() =

=3X
=−3

=3X
=−3

I(+ +)12() for 0 ≤ ≤ 26 0 ≤ ≤ 26

Figure 32: Left: Original greyscale image. Center: Output of the ON DoG filter.
Right: Accumulation of spikes (white indicates a spike, black indicates no spike).

Figure 33: Left: Original greyscale image. Center: Output of the OFF DoG filter.
Right: Accumulation of spikes (white indicates a spike, black indicates no spike).

Then these two resulting “images” were then converted to an on and an off

spiking image as follows: At each location () of the output image Γ12()

a unit spike () is produced if and only if [33]

Γ12() = 50

The spike signal ()() is temporally coded (rank order coding [13]) by having

16
it delayed “leaving” the Difference of Gaussian image Γ12() by the amount

() =
1

Γ12()
in milliseconds

That is, the more Γ12() exceeds the threshold the sooner it leaves

Γ12() or equivalently, the value of Γ12() is encoded in the value ()

Figure 34: Spike signal

For all experiments the arrival times of the spikes were sorted in ascending

order and then (approximately) equally divided into 10 bins (10 times in Figure 3

5). The raster plot shows which neurons (pixels of Γ12()) spiked to make up

bin 1 (time 0), bin 2 (time 1), etc. Figure 35 shows an example for ON center cell

spikes. In all the experiments each image is encoded into 10 msec (10 bins) and

there is a 2 msec silent period between every image.

Figure 35: Rasterplot of spikes for an on center cell. Blue dots in the plot indicates
the presence of a spike for a particular neuron and bin (timestep).

17

3.2 Network Description

We have a similar network as in [35][34] as illustrated in Figure 36. We let

1() denote the spike signal at time emanating from the () neuron of

spiking image where = 0 (ON center) or = 1 (OFF center). The L2 layers

consists of 30 maps with each map having its own convolution kernel (weights) of

the form

1() ∈ R2×5×5 for = 0 1 2 29

The “membrane potential” of the () neuron of map (= 0 1 2 29) of L2

at time is given by the valid mode convolution

2() =
X

=0

Ã
1X

=0

4X
=0

4X
=0

1(+ +)1()

!
for (0 0) ≤ () ≤ (22 22)

If at time the potential

2() = 15

then the neuron at () emits a unit spike.

Figure 36: Demonstration of convolution with a 3D kernel.

18

3.2.1 Convolution Layers and STDP

At any time all of the potentials 2() for (0 0) ≤ () ≤ (22 22)
and = 0 1 2 29 are computed (in theory this can all be done in parallel) with

the result that neurons in different locations within a map and in different maps

may have spiked. In particular, at the location () there can be multiple spikes

(up to 30) produced by different maps. The desire is to have different maps learn

different features of an image. To enforce this learning, lateral inhibition and STDP

competition are used [35].

Lateral Inhibition

To explain lateral inhibition suppose at the location () there were potentials

2() in different maps (goes from 0 to 29) at time that exceeded the

threshold Then the neuron in the map with the highest potential 2() at

() inhibits the neurons in all the other maps at the location () from spiking

for the current image (even if the potentials in the other maps exceeded the thresh

old). Figure 37 (left) shows the accumulated spikes (from an MNIST image of

“5”) from all 30 maps of Layer 2 at each location () without lateral inhibition.

For example, at location (19,14) in Figure 37 (left) the color code is yellow indi

cating in excess of 20 spikes, i.e., more than 20 of the maps produced a spike at that

location.

Figure 37: Left: MNIST digit "5" input. Accumulation of spikes from all 30 maps
and 12 time steps in L2 without lateral inhibition. Center: Accumulation of spikes
from all 30 maps and all 12 time steps in L2 with lateral inhibition. Right: Accu
mulation of spikes across all maps and 12 time steps with both lateral inhibition and
STDP competition imposed for a single image.

19
Figure 37 (center) shows the accumulation of spikes from all 30 maps, but now

with lateral inhibition imposed. Note that at each location there is at most one spike

indicated by the color code. Also, as explained next, only a few of these spikes will

actually result in the update of any of the 30 kernels (weights) of layer L2.

STDP Competition

After lateral inhibition we consider each of the maps in layer L2 that had one or

more neurons with their potential exceeding Let these maps be1 2

where2 0 ≤ 1 2 · · · ≤ 29. Then in each map we locate the neuron

in that map that has the maximum potential value. Let

(1 1) (2 2) () (3.1)

be the location of these maximum potential neurons in each map. Then the neuron

() inhibits all other neurons in its map from spiking for the remainder of

the time steps of the current spiking image. Further, these neurons can inhibit

each other depending on their relative location as we now explain. Suppose the neu

ron () of map has the highest potential of the neurons in (3.1). Then,

in an 11 × 11 area centered about () this neuron inhibits all neurons of all
the other maps in the same 11×11 area. Next, suppose the neuron () of map
 has the second highest potential of the remaining−1 neurons. If the location
() of this neuron was within the 11×11 area centered on neuron () of
map then it is inhibited. Otherwise, this neuron at () inhibits all neurons

of all the other maps in a 11× 11 area centered on it. This process is continued for
the remaining − 2 neurons. In summary, there can be no more than one neuron
that spikes in the same 11 × 11 area of all the maps3. The right side of Figure 37
shows the spike accumulation after both lateral inhibition and STDP competition

2The other maps did not have any neurons whose membrane potential crossed the threshold and
therefore did not spike.

3The use of the number 11 for the 11 × 11 inhibition area of neurons was suggested by Dr.
Kheradpisheh [33].

20
have been imposed. It is also shown that there is at most one spike from all the

maps in any 11 × 11 area. For this particular input image (the number 5), these
five spikes are from maps 14, 16, 19, 21, and 23 at locations (19, 4), (3,10), (17,

15), (9,12) and (3,19), respectively and will result in updates for these 5 map ker

nels (weights). Lateral Inhibition and STDP inhibition enforce sparse spike activity

and, as a consequence, the network tends to spike sparsely. This lateral inhibition

and STDP competition resulted in an average of only 5.8 spikes per image from the

30× 22× 22 neurons in 2 during training with EMNIST and MNIST datasets.

Spike Timing Dependent Plasticity (STDP)

Only those maps that produced a spike (with lateral inhibition and STDP com

petition imposed) have their weights (convolution kernels) updated using spike tim

ing dependent plasticity. Let be the weight connecting the presynaptic

neuron in the L1 layer to postsynaptic neuron in the L2 layer. If the post

synaptic neuron spikes at time with the presynaptic neuron spiking at time
then the weight is updated according to the simplified STDP rule [13]

 ←− +∆ where ∆ =

⎧⎪⎨⎪⎩+
+(1−) if

−−(1−) otherwise.

The parameters + 0 and − 0 are referred to as learning rate constants. + is

initialized to 0004 and − is initialized to 0003 and are increased by a factor of 2

after every 1000 spiking images. STDP is shown to detect a hidden pattern in the

incoming spike data [57]. In all of our experiments we used the above simplified

STDP model as in [35] (simplified STDP refers to the weight update not depend

ing on the exact time difference between presynaptic and postsynaptic spikes).

If the presynaptic neuron spikes before postsynaptic neuron then the synapse is

strengthened, if the presynaptic neuron doesn’t spike before postsynaptic neuron

then it is assumed that the presynaptic neuron will spike later and the synapse is

weakened.

21
Figure 38 is a plot of the weights (convolution kernels) for each of the 30

maps. Following [35], each column corresponds to a map and each row presents

the weights after every 500 images. For example,1(29) for = 0 1 and

(0 0) ≤ () ≤ (26 26) are the weights for the ON (green) and OFF (red) filters4
for the 30 map (rightmost column of Figure 38). It turned out that there were

approximately 17 spikes per image in this layer (L2). At the end of the training

most of the synapses will be saturated either at 0 or 1.

Figure 38: Plot of the weights of 30 maps of L2. The ON (green) 5× 5 filter and
the OFF (red) 5× 5 filter are superimposed on top of each other.

Homeostasis

Homeostasis refers to the convolution kernels (weights) for all maps being up

dated approximately the same number of times during training. With homeostasis

each kernel gets approximately the same number of opportunities to learn its unique

feature. Some maps tend to update their weights more than others and, if this con

tinues, these maps can take over the learning. That is, only the features (weights

of the convolution filter) of those maps that get updated often will be of value with

4That is, the ON (green) and Off (red) weight are superimposed on the same plot.

22
the rest of the maps not learning any useful feature (as their weights are not up

dated). Homeostasis was enforced by simply decreasing the weights of a map by

 → −−(1−) if it tries to update more than twice for every 5 of input

images.

3.2.2 Pooling Layers

A pooling layer is a way to down sample the spikes from the previous convolu

tion layer to reduce the computational effort.

Max Pooling

After the synapses (convolution kernels or weights) from L1 to L2 have been

learned (unsupervised STDP learning is over5), they are fixed, but lateral inhibition

continues to be enforced in L2. Spikes from the maps of the convolution layer

L2 are now passed on to layer L3 using max pooling. First of all, we ignored the

last row and last column of each of the 23 × 23 maps of L2 so that they may be
considered to be 22× 22 Next, consider the first map of the convolution layer L2.
This map is divided into nonoverlapping 2 × 2 area of neurons. In each of these
2 × 2 sets of neurons, at most one spike is allowed through. If there is more than
one spike coming from the 2× 2 area, then one compares the membrane potentials
of the spikes and passes the one with the highest membrane potential. Each 2 × 2
set of neurons in the first map is then a single neuron in the first map of the L3 layer.

Thus each map of L3 has 11×11 (down sampled) neurons. This process is repeated
for all the maps of L2 to obtain the corresponding maps of L3. Lateral inhibition is

not applied in a pooling layer. There is no learning done in the pooling layer, it is

just a way to decrease the amount of data to reduce the computational effort.

After training the L2 convolution layer, we then passed 60,000 MNIST digits

through the network and recorded the spikes from the L3 pooling layer. This is

shown in Figure 39. For example, in the upper lefthand corner of Figure 39 is

5And therefore STDP competition is no longer enforced.

23
shown the number of spikes coming out of the first map of the pooling layer L3 for

each of the 10 MNIST digits. It shows that the digit “3” produced over 100,000

spikes when the 60,000 MNIST digits were passed through the network while the

digit “1” produced almost no spikes. That is, the spikes coming from digit “1” do

not correlate with the convolution kernel (see the inset) to produce a spike. On the

other hand, the digit "3" almost certainly causes a spike in the first map of the L3

pooling layer. In the bar graphs of Figure 39 the red bars are the five MNIST digits

that produced the most spikes in the L3 pooling layer while the blue bars are the

five MNIST digits that produced the least.

Figure 39: Spikes per map per digit. Headings for each of the subplots indicate
the dominant (most spiking) digit for respective features.

Figure 310 shows a convolution kernel between the L3 pooling layer and the

L4 convolution layer. We chose to have 500 maps in L4 which means that for

 = 0 1 2 499 we have

2() ∈ R30×5×5 for 0 ≤ ≤ 29 and (0 0) ≤ () ≤ (4 4)

The spikes from the L3 pooling layer are then used to train the weights (convolu

tional kernels)2 in the same manner as1

In some of our experiments we simply did a type of global pooling to go to the

output layer L5. Specifically, at each time step, we convolve the spikes from L3 to

24

Figure 310: Network showing two convolution layers and a final global pooling
layer.

compute the potential for each of the 500 × 7 × 7 neurons of L4. The maximum
potential for each map in L4 was then found and stored (This is a vector in R500).

The potentials in L4 were then reset to 0 and the process repeated for each of the

remaining time steps of the current image. This procedure results in tenR500 vectors

for each image. The sum of these vectors then encodes the current image in L5, i.e.,

as a single vector in R500 The motivation to take the maximum potential of each

map at each time step is because all the neurons in a given map of L4 are looking

for the same feature in the current image. Unsupervised STDP training is done in

the convolution layers with both STDP competition and lateral inhibition applied

to the maps of the convolution layer doing training. Once a convolution layer is

trained, its weights are fixed and the spikes are passed through it with only lateral

inhibition imposed.

25

CHAPTER FOUR: CLASSIFICATION OF THE MNIST DATA

SET

In the following subsections we considered two different network architectures

along with different classifiers for the MNIST data set.

4.1 Classification with Two Convolution/Pool Layers

In this first experiment the architecture shown in Figure 310 was used. Max

pooled "membrane potentials", i.e., the L5 layer of Figure 310, was used to trans

form each 27 × 27 (= 729) training image into a new "image" in 500. Using

these images along with their labels, a support vector machine [29] was then used

to find the hyperplanes that optimally1 separate the training digits into 10 classes.

With ∈ R45×500 the SVM weights, the quantity was added to the SVM

Lagrangian for regularization. Both linear and radial basis function (RBF) ker

nels were used in the SVM. We used 20,000 MNIST images for the (unsupervised)

training of the two convolution/pool layers (Layers L2L5). Then we used 50,000

images to train the SVM with another 10,000 images used for validation (to de

termine the choice of). The SVM gives the hyperplanes that optimally separate

the 10 classes of digits. Table 4.1 shows classification accuracies when 500 maps

were used in L4. The first two rows of Table 4.2 give the test accuracy on 10,000

MNIST test images. In particular, note a 98.01 % accuracy for the RBF SVM and

a 97.8 % accuracy for a Linear SVM. Using a similar network with linear SVM,

Kheradpisheh et al. [35] reported an accuracy of 98.3%.

1It is optimal in the sense that a Lagrangian was minimized.

26
Table 4.1: Classification accuracies on MNIST data set with various classifiers
when number of maps in L4 is 500.

Classifier Test Acc Valid Acc Training Time Epochs
RBF SVM 97.92 % 97.98 % 8 minutes 1/3.6
Linear SVM 97.27 % 97.30 % 4 minutes 1/0.012

2 Layer FCN (backprop) 96.90 % 97.02 % 15 minutes 1.0 01
(1007)#

30
3 layer FCN (backprop) 97.8 % 97.91 % 50 minutes 6.0 01

(1007)#
30

For comparison purposes with SVM, we also considered putting the L5 neurons

(i.e., vectors in R500) into both a conventional two and three layer fully connected

network (FCN). Using a two layer FCN (see Figure 41) with sigmoidal outputs, a

crossentropy cost function, and a learning rate = 01(1001)# we obtained

97.97 % classification accuracy. Similarly with a three layer FCN (see Figure 42)

with the same conditions an accuracy of 98.01 % was obtained.

Figure 41: Network with two fully connected layers as a classifier.

Separability of the MNIST Set

With = 11000 the 50,000 training and 10,000 validation images converted to

R500 “images” turn out to be completely separable into the 10 digit classes! How

ever, the accuracy on the 10,000 test images drops to 97.01%. The original 60,000

MNIST (training & validation) images in 784 are not separable by a linear SVM

27

Figure 42: Network with three fully connected layers as a classifier.

(The SVM code was run for 16 hours with = 11000 without achieving separa

bility).

Increasing the Number of Output Maps

If the number of maps in the L4 layer are increased to 1000 with the L5 1 × 1
maps correspondingly increased to 1000, then there is a slight increase in test accu

racy as shown in Table 4.2. With = 1 the 50,000 training and 10,000 validation

images converted to R1000 “images” also turn out to be completely separable into

the 10 digit classes. However, with = 1 the test accuracy decreases to 97.61.

Table 4.2: Classification accuracies on MNIST data set with various classifiers
when number of maps in L4 is 1000.

Classifier Test Acc Valid Acc Training Time Epochs
RBF SVM 98.01 % 98.20 % 8 minutes 1/3.6
Linear SVM 97.80 % 98.02 % 4 minutes 1/0.012

2 Layer FCN (backprop) 97.71 % 98.74 % 15 minutes 1.0 01
(1007)#

30
3 layer FCN (backprop) 98.01 % 98.10 % 50 minutes 6.0 01

(1007)#
30

28

4.2 Classification with a Single Convolution/Pool Layer

The architecture shown in Figure 43 has a single convolutional/pooling layer

with 30×11×11 = 3630 pooled neurons in L3. Further, each neuron in L3 simply
sums the spikes coming into it from the previous layer (L2). The L4 (output) neu

rons are fully connected (with trainable weights) to L3 neurons. This final layer of

weights are then trained using backprop only on this output layer, i.e., only back

prop to L3. (See Lee at al. [47] where the error is back propagated through all the

layers and reported an accuracy of 99.3%). Inhibition settings are same as in the

above experiment.

Figure 43: Deep spiking convolutional network architecture for classification of
the MNIST data set.

The first row of Table 4.3 shows a 98.4% test accuracy using back propagation

on the output layer (2 Layer FCN). The second and third rows give the classification

accuracy using an SVM trained on the L4 neurons (their spike counts). The feature

extraction that takes place in the L2 layer (and passed through the pooling layer)

results in greater than 98% accuracy with a two layer conventional FCNN output

classifier. A conventional FC two layer NN (i.e., no hidden layer) with the 28× 28

29
images of the MNIST data set as input has only been reported to achieve 88% accu

racy and 91.6% with preprocessed data [44]. This result strengthens our view that

the unsupervised STDP can transform the MNIST classes into linearly separable

classes. Note that the increase in linear separability was also observed when the

MNIST classes were transformed to a lower dimension (R500) when compared to

original MNIST dimensions (R784, see Chapter 4.1). We also counted the spikes

in network with two convolution/pool layers (see Figure 310) but found that the

accuracy decreased (see Table 4.2) This decrease may be due to reduced number of

spikes in the output neurons compared to have only one convolution/pool layer.

Table 4.3: Classification accuracies on MNIST data set with various classifiers
when a single convolution/pool layer is used.

Classifier Test Acc Valid Acc Training Time Epochs
2 Layer FCN 98.4% 98.5% 10mins 110 01(1007)# 20
RBF SVM 98.8% 98.87% 150 minutes 136
Linear SVM 98.41% 98.31% 100 minutes 10012

In this chapter, we showed that the original MNIST dataset R50000×784 is not

linearly separable. However when MNIST dataset is transformed to R50000×500 by

passing it through an unsupervisedly trained SNN we showed that the MNIST data

becomes linearly separable.

30

CHAPTER FIVE: REWARD MODULATED STDP

Reward modulated STDP is a way to use the accumulated spikes at the output to

do the final classification (in contrast to SVM and a two layer backprop mentioned

above). Figure 51 shows the network architecture where the reward modulated

STDP is carried out between the (flattened) L5 layer and the ten output neurons

of the L6 layer. The weights between the fully connected neurons of Layer 5 and

Layer 6 are then trained as follows: For any input image the spikes through the

network arrive between = 0 and = 11 time steps. The final (= 11) membrane

potential of the output neuron for = 1 2 10 is then

 =
11X
=0

12000X
=1

5()

Denote by and the number of correctly classified and incorrectly classi

fied images for every (e.g., = 100 500 1500 etc.) input images so +

 = . If the output potential is maximum (i.e., for 6=) and

the input image has label then the weights going into the output neuron are

rewarded in the sense that

 ←− +∆ (5.1)

where ∆ =

⎧⎪⎨⎪⎩
+

+ (1−) if at least one presynaptic spike from j to k.

−

− (1−) otherwise.

(5.2)

31
If is the maximum potential, but the label of the image is 6= then the weights

going into output neuron are punished in the sense that

 ←− +∆ (5.3)

where ∆ =

⎧⎪⎨⎪⎩
−

+ (1−) if at least one presynaptic spike from j to k.

+

− (1−) otherwise.

(5.4)

Note that only the weights of those neurons connected to the output neuron with

the maximum potential are updated. The term “modulated” in reward modulated

STDP refers to the factors

and

which multiply (modulate) the learn

ing rule. Equation (5.1) refers to the case where the k output neuron also has

the high membrane potential of the ten outputs. If is small then the net

work accuracy is performing well in terms of accuracy and the change in weights

is small (as the weights are thought to already have learned to correctly classify).

On the other hand, equation (5.3) refers to the case where the k output has the

highest membrane potential, but the label is 6= Then, if is small, it

follows that is large the weights of the neurons going into the k neuron

have their values changed by a relatively large amount to (hopefully) correct the

misclassification.

Figure 51: Network with 750 maps in L4.

32
In this experiment with RSTDP, only 20,000 MNIST digits were used for train

ing, 10,000 digits for validation (used to choose the number of training epochs), and

the 40,000 remaining digits were used for testing. The RSTDP synaptic weights

between L5 and L6 were initialized using the normal distributionN (08 001). Ta
ble 5.1 shows that a test accuracy of only 90.1% was obtained.

Table 5.1: Classification accuracy on MNIST data set with RSTDP when one
neuron per class is used.

Maps in L4 Valid acc % Test Acc % Epochs
750 91.2 90.1 150

For comparison, we replaced the RSTDP classifier (from L5 to L6) with a

simple 2 layer neural network (from L5 to L6) which used error back propagation.

These weights for back propagation were initialized from the normal distribution

N (0 1√12000) as in [66]. Tables 5.2 and 5.3 show difference in performance
between RSTDP and a simple two layer backprop which ran for only 20 epochs.

Table 5.2: Classification accuracy on MNIST data set with single layer backprop.

Classifier Test Acc Valid Acc Epochs
2 Layer FCN 97.5% 97.6% 10 01(1007)# 20

Mozafari et al. [63][61] got around this poor performance by having 250 neu

rons in the output layer and assigning 25 output neurons per class. They reported

a 97.2 % test accuracy while training on 60,000 images and testing on 10,000 im

ages. We also considered multiple neurons per class in the output layer. As Table

5.3 shows, we considered 300 output neurons (30 per class) and also used dropout.

 = 04means that 04(300) = 120 output neurons were prevented from updat

ing their weights for the particular training image. For each input image a different

set of 120 randomly neurons were chosen to not have their weights updated. Table

5.3 shows that the best performance of 95.91 % test accuracy was obtained with

 = 04

33
Table 5.3: Classification accuracy on MNIST data set with RSTDP when more
than one neuron per class is used.

Maps in L4 #Output Neurons P Valid acc % Test acc % Epochs
750 300 0.3 95.81 95.84 400
750 300 0.4 96.01 95.91 400
750 300 0.5 95.76 95.63 400

5.1 RSTDP as a Classification Criteria

We experimented with RSTDP learning rule applied to L5L6 synapses of the

network in the Figure 51 by two different kinds of weight initialization and also

varying initialization of parameters like

and .

5.1.1 Backprop Initialized Weights for RSTDP

As given in Table 5.3 using an RSTDP as a classifier was not able to achieve

an accuracy 97.2% obtained by a two layer FCN. In particular, perhaps the weight

initialization plays a role in that the RSTDP rule can get stuck in a local minimum.

To study this in more detail the network in Figure 51 was initialized with a set

of weights that are known to give a high accuracy. To explain, the final weights

used in the 2 Layer FCN reported in Table 5.2 were used as a starting point. As

these weights are both positive and negative, they were shifted to be all positive.

This was done by first finding the minimum value min (0) of these weights

and simply adding −min 0 to them so that they are all positive. Then this

new set of weights were rescaled to be between 0 and 1 by dividing them all by

their maximum value (positive). These shifted and scaled weights were then used

to initialize the weights of the RSTDP classifier. The parameters + − + −
were initialized to be 0.004, 0.003, 0.0005, 0.004 respectively. With the network

in Figure 51 initialized by these weights, the validation images were fed through

the network and the neuron number with the maximum potential is the predicted

output. The validation accuracy was found to be 97.1%.

With weights of the fully connected layer of Figure 51 initialized as just de

34
scribed, the RSTDP rule was used to train the network further for various number

of epochs and two different ways of updating

and

Batch Update of

and

The first set of experiments were done with the

and

ratios updated

after every batch of images for = 100 500 1500 2500 As the weights of

the fully connected layer of Figure 51 with the backprop trained values, we expect

to be a low fraction or equivalently

to be high. Consequently, they were

initialized as

= 01

= 09 With these initialization, Table 5.4 shows

that accuracy on the validation set did not decrease significantly for not too large

e.g., 2500). In general, using larger values of (value of N depends on the

initialization of and) the accuracy goes down significantly. For

example, for the cases where = 0035 and = 0965 the accuracy

didn’t significantly decrease until the batch size was = 3500 In the case with

 = 00 and = 10 the accuracy didn’t decrease at all. This is

because the best performing weights for validation accuracy were used, but these

same weights also gave 100% accuracy on the training data.

Table 5.5 shows the classification accuracy with "poor" initialization =

09 and = 01 If the weights had been randomly initialized then the initial

ization = 09 and = 01 would be appropriate. However, Table

5.5 shows that RSTDP isn’t able to recover from this poor initialization.

Update of

and

After Each Image

Next, and were updated after every image using the most

recent images. Even with and initialized incorrectly, the vali

dation accuracies in Table 5.6 did not decrease significantly. Though the accuracy

still goes down slightly, the table indicates that updating and after

every image mitigates this problem.

Still updating and after each image, it was found that RSTDP

35
Table 5.4: Demonstration of sensitivity of RSTDP to N value with correct initial
ization of hit and miss ratios.

 Acc. at start Acc. at end

0.1 0.9 100 97.1% 96.91%
0.1 0.9 500 97.1% 96.96%
0.1 0.9 1500 97.1% 96.82%
0.1 0.9 2500 97.1% 90.76%
0.035 0.965 2500 97.1% 96.69%
0.035 0.965 3000 97.1% 96.58%
0.035 0.965 3500 97.1% 91.05%
0.035 0.965 4000 97.1% 90.98%
0.0 1.0 100 97.1% 96.93%
0.0 1.0 500 97.1% 96.93%
0.0 1.0 1500 97.1% 96.94%
0.0 1.0 2500 97.1% 96.94%
0.0 1.0 3000 97.1% 96.94%
0.0 1.0 3500 97.1% 96.94%
0.0 1.0 4000 97.1% 96.93%

Table 5.5: Demonstration of sensitivity of RSTDP to N value with incorrect ini
tialization of hit and miss ratios.

 Acc. at start Acc. at end

0.9 0.1 100 97.1% 91.52%
0.9 0.1 500 97.1% 90.67%
0.9 0.1 1500 97.1% 90.47%
0.9 0.1 2500 97.1% 90.45%

accuracy was very sensitive to the initialized weights. Specifically the L5L6 R

STDP weights were initialized using the backprop trained weights (as explained

above) by doing the backprop for just 10 epochs (instead of 20) and = 100 (reg

ularization parameter) which gave 99.6% training and 96.8% validation accuracies.

Table 5.7 gives the validation accuracies using RSTDP for 100 epochs. Surpris

ingly, even with a good initialization of the weights and the ratios and

 , the validation accuracy suffers.

For the same cases as Table 5.7 the RSTDP algorithm was run for 1000 epochs

with the training and validation accuracies versus epoch plotted in Figure 52. No

36
Table 5.6: Demonstration of sensitivity of RSTDP.

 Acc. at start Acc. at end

0.9 0.1 100 97.1% 96.93%
0.9 0.1 500 97.1% 96.94%
0.9 0.1 1500 97.1% 96.93%
0.9 0.1 2500 97.1% 96.94%

Table 5.7: Demonstration of sensitivity of RSTDP for weight initialization.

 Acc. at start Acc. at end

0.0 1.0 100 96.8% 90.75%
0.0 1.0 4000 96.8% 90.67%

tice that the validation accuracy drops to ~90%. It seems that RSTDP is not a valid

cost function as far as accuracy is concerned1. Interestingly, as shown next, training

with RSTDP with randomly initialized weights, the validation accuracy only goes

up to ~90% (see Figure 53).

Figure 52: Plot of accuracies versus epochs when the weights were initialized
with backprop trained weights.

1At least using one output neuron per class.

37

5.1.2 Randomly Initialized Weights for RSTDP

In the set of experiments with RSTDP the weights were randomly initialized

from the normal distributionN (08 001) and the parameters

initialized with the values given in Table 5.8. Validation accuracies are shown at

the end of 100 epochs and were updated after every image.

Table 5.8: Demonstration of sensitivity of RSTDP.

 Acc. at start Acc. at end

0.9 0.1 100 10.3 90.22
0.9 0.1 500 10.1 90.13
0.9 0.1 1500 10.2 90.12
0.9 0.1 2500 10.6 90.16

For these same cases as Table 5.8, the RSTDP algorithm was run for 1000

epochs with the training and validation accuracies versus epochs plotted in Figure

53. The validation accuracy only goes up to ~90%.

Figure 53: Plot of accuracies versus epochs when the weights were randomly
initialized.

In this chapter we showed that a simple linear neural network (without a hidden

layer) trained with error backpropagation performs better than RSTDP.

38

CHAPTER SIX: CLASSIFICATION OF THE NMNIST DATA

SET

6.1 Transfer Learning

Figure 61: Network for NMNIST classification.

In the above experiments, we artificially constructed spiking images using a

DoG filter on the standard MNIST data set as in [35][34]. However the ATIS (sil

icon retina) camera [73] works by producing spikes. We also considered classifi

cation directly on recorded output from the ATIS camera given in the NMNIST

data set [67]. A silicon retina detects change in pixel intensity and thus the MNIST

digits are recorded with camera moving slightly (saccades). Figure 62 shows the

raw accumulated spikes of the NMNIST data set as given in [67].

Figure 63 is the same as Figure 62, but corrected for saccades (camera mo

tion) using the algorithm given in [67]. Figure 61 shows the network we used for

39

Figure 62: Left: Accumulated ON and OFF center spikes. Center: Accumulate
ON center spikes. Right: Accumulated OFF center spikes.

Figure 63: Left: Accumulated ON and OFF center spikes. Center: Accumulate
ON center spikes. Right: Accumulated OFF center spikes.

classification of the NMNIST data. We first hard wired the weights 1 of the

convolution kernel from L1 to L2 of Figure 61 to the values already trained above

in subsection 4.2 (see Figure 43). Only the weights from L4 to L5 were trained

for classification by simply back propagating the errors from L5 to L4. This result

in given in the first row of Table 6.1. We also trained an SVM on the L4 neuron

outputs with the results given in row 2 (RBF) and row 3 (linear) of Table 6.1. All

the results in Table 6.1 were done on the raw spiking inputs from [67] (i.e., not

corrected for saccade) with training done on 50,000 (spiking) images, validation &

testing done on 10,000 images each.

Table 6.1: Classification accuracies of NMNIST data set with one convolu
tion/pool layers for transfer learning.

Classifier Test Acc Valid Acc Training Time Epochs
2 Layer FCN 97.45% 97.62% 5 minutes 1

100
01

1007#
20

RBF SVM 98.32% 98.40% 200 minutes 1
36

Linear SVM 97.64% 97.71% 100 minutes 1
0012

40

6.2 Training with NMNIST Spikes

In Table 6.2 we show the results for the case where the weights1 of the con

volution kernel from L1 to L2 of Figure 61 were trained (unsupervised) using the

NMNIST data set. In this instance we used NMNIST data corrected for saccades

since this gave better result than the uncorrected data. All the results in Table 6.2

were produced by training on 50,000 (spiking) images with validation & testing

done using 10,000 images.

Table 6.2: Classification accuracies of NMNIST data set with one convolu
tion/pool layers when trained with NMNIST spikes.

Classifier Test Acc Valid Acc Training Time Epochs
1 Layer FCN 97.21% 97.46% 5 minutes 1

100
01

1007#
20

RBF SVM 98.16% 98.2% 150 minutes 1
36

Linear SVM 97.38% 97.44% 100 minutes 1
0012

We also added an extra convolution layer, but found that the classification accu

racy decreased. Jin et al [32] reported an accuracy of 98.84% by using a modifica

tion of error back propagation (all layers) algorithm. Stromatias et al. [86] reported

an accuracy of 97.23% accuracy by using artificially generated features for the ker

nels of the first convolutional layer and training a 3 layer fully connected neural

network classifier on spikes collected at the first pooling layer.

In this chapter we used the NMNIST dataset to train the SNN. We also per

formed transfer learning on a network that was trained using synthetically generated

spikes from the MNIST dataset.

41

CHAPTER SEVEN: FEATURE RECONSTRUCTION AND OVER

TRAINING

7.1 Feature Reconstruction

Figure 71: Network showing two convolution layers and a final global pooling
layer.

We have already presented in Figure 38 a reconstruction of the convolution

kernels (weights) from Layer L1 to Layer 2 into features. Each of the 30 maps

of L2 has a convolution kernel in R2×5×5 associated with it which maps L1 to L2

using convolution. We now want to reconstruct (visualize) the features learned

by the second convolution layer. Each of the 500 maps of L4 (see Figure 71)

has a convolutional kernel associated with it which maps L3 to L4, i.e., for =

0 1 2 499. These kernels have the form

2() ∈ R30×5×5 for 0 ≤ ≤ 29 and (0 0) ≤ () ≤ (4 4)

42
So 2 ∈ R500×30×5×5, a 5 × 5 area of pooled layer L3 receives spikes from
10×10 area of neurons in L2. For = 0 1 2 499, the kernels2() ∈
R30×5×5 are reconstructed to be features

1() ∈ R30×10×10 for 0 ≤ ≤ 29 and (0 0) ≤ () ≤ (9 9)

connecting L2 to L4, so 1 ∈ R500×30×10×10. How is this done? 1 is initialized

with all zeros. Consider the 1 kernel 2(0) ∈ R30×5×5 and for the
5×5 slice of2(0) ∈ R5×5 the value of the () element is mapped to the
(2 2) element of the 10×10 slice of 1(0) ∈ R10×10 All other values
of the 10×10 slice in 1 are set to zero. This is repeated for all = 0 1 29

and for = 0 1 499 Now recall that there are 30 kernels in1. Specifically,

for = 0 1 2 29

1() ∈ R2×5×5 for 0 ≤ ≤ 1 and (0 0) ≤ () ≤ (4 4)

 = 0 is for ON center kernels and = 1 is for OFF center kernels so 1 ∈
R30×2×5×5. Note that 27×27 neurons in L1 map to 23×23 (275+1×275+1) neu
rons in L2 when using a valid mode convolution, conversely a 10×10 area of neu
rons in L2 receive spikes from a 14×14 area of neurons in L1.So1 kernels map

spikes from 14×14 area of neurons in L1 to a 10×10 area of layer of L2. Thus the
feature 1(0) ∈ R30×10×10 must be reconstructed to be a feature inR2×14×14
that corresponds to the input layer L1. That is, for = 0 1 499

1() ∈ R2×14×14 for 0 ≤ ≤ 1 and (0 0) ≤ () ≤ (14 14)

So 1 ∈ R500×2×14×14 (Each neuron in L4 has a field of view of 2 × 14 × 14
neurons in L1). How is this done?

Let the 5 × 5 matrix on the lefthand side of Figure 72 denote an ON cen
ter kernel 1(0) ∈ R5×5 for some = 0 1 29 In particular, let it

be the second kernel so = 1 1(1 0) ∈ R5×5 Now the 1 feature de

43
noted by 1(0) ∈ R30×10×10 can be visualized as being made up of 10× 10
slices for = 0 1 29 To go with the second kernel 1(1 0) ∈ R5×5 we
take the second slice (= 1) of the feature 1(0) ∈ R30×10×10 denoted as
1(0 1) ∈ R10×10 which we take to be the 10 × 10 matrix on the righthand
side of Figure 72. In practice these slices are sparse and we show the particular

slice in Figure 72 to have only two non zero elements, the (1 1) and the (5 5) el

ements. To carry out the reconstruction at L1 we compute (1)11 ×1(1 0) ∈

Figure 72: Left: Second ON 5 × 5 kernel (out of 30 kernels), 1(1 0) ∈
R5×5. Right: Second 10 × 10 slice (out of 30 slices) of 1 feature (out of 500
features) of pool 1 features, 1(0 1) ∈ R10×10 .

R5×5 and center it on (1)11 of 1(0 1) ∈ R10×10 as indicated in Figure 73.
We then repeat this process for all non zero elements of 1(0 1) ∈ R10×10
which in this example is just (1)55 . Filling in with zeros we end up with the 14× 14
matrix shown in Figure 74. Similarly, to reconstruct the third 14 × 14 matrix
we use the third kernel 1(2 0) ∈ R5×5 (= 2) taken to be the 5 × 5
matrix on the leftside of Figure 75 and the third slice (= 2) of the feature

1(0) ∈ R30×10×10 denoted as 1(0 2) ∈ R10×10 which we take to be
the 10×10matrix on the righthand side of Figure 75. Here the only non zero com
ponents are (2)11 and

(2)
51 . We compute

(2)
11 ×1(2 0) ∈ R5×5 and center

it on (1)11 of 1(0 2) ∈ R10×10 as indicated in Figure 76. We then compute

(2)
51 ×1(2 0) ∈ R5×5 and center it on (2)51 of 1(0 2) ∈ R10×10 In
non zero overlapping elements of the 14× 14matrix the components are just added

44

Figure 73: Reconstruction at Conv1 (L2). Figure shows 1 feature of 500 feature
maps and 2 slice of 30 slices, 1(0 1) ∈ R14×14.

together as shown in Figures 76 and 77. Finally, 30 of these 14 × 14 matrices
shown in Figures 74 and 77 are added up (

P29
=0 1(0) ∈ R14×14) to re

construct the 1 ON center feature of the 500 features learned by neurons of L4,

this procedure is repeated for the OFF center features as well. In other words, a

particular neuron of L4 spikes when it detects its corresponding (2× 14× 14) ON
and OFF center feature in the original image. Figure 78 shows 150 of the 500

reconstructed features from the 500 convolution kernels of the second convolution

from L3 to L4. Each feature is 14 × 14 neurons (pixels) of the original spiking
image with ON (green) and OFF (red) features superimposed on top of each other.

45

Figure 74: Reconstruction at Conv1 (L2), 1(0 1) ∈ R14×14.

Figure 75: Left: Third ON 5×5 kernel (out of 30 kernels),1(2 0) ∈ R5×5.
Right: Third 10 × 10 slice (out of 30 slices) of 1 feature (out of 500 features) of
pool 1 features, 1(0 2) ∈ R10×10 .

46

Figure 76: Reconstruction at Conv1 (L2), 1(0 2) ∈ R14×14.

Figure 77: Reconstruction at Conv1 (L2), 1(0 2) ∈ R14×14

47

Figure 78: Weights of 150300 maps of L4 that is trained by in coming spikes
without lateral inhibition in L3, STDP competition region in L4 set toR500×3×3 and
with homeostasis signal applied in L4, notice that the reconstructed features are
quite complex and they could well represent a digit or a major section of a digit,
note that all neurons of a map in a layer will have shared weights. In this experiment
number of maps is L4 was set to 500. Notice that the reconstructed features are not
as complex looking as in Figure A1

48

7.2 Effect of Over Training the Convolution Kernels

The first row of Figure 79 shows the reconstruction of the features from the

convolution kernels of the L3 to L4 layer after training with just 20,000 images. In

contrast, the second row of Figure 79 shows the reconstruction of the features from

the convolution kernels of the L3 to L4 layer after training with 60,000 MNIST

images for 4 epochs. This shows that more training results in individual kernel

weights () saturating to 1 or 0 (i.e., the reconstructions in the second row are

sharper), but the features become less complex. Figure 79 shows that we need a

Figure 79: Reduction in the complexity of learned features because of over train
ing. First row of this figure shows reconstruction of L3→L4 synapses after training
for 15.5k images and second row shows the reconstruction of L3→L4 synapses
after training for 240k images (4 epochs)

mechanism to stop training. To this end, we looked at the difference in weights

during training. Consider

()
2 = {()()} ∈ R500×30×5×5

49
where ()

2 is kernel 2 after the training is image has passed. The L3L4

(red) plot of Figure 710 is a plot of

P499
=0

P29
=0

P4
=0

P4
=0

¡
(∗150)()− ((+1)∗150)()

¢
375000

for = 0 1 130

where 375000 = 500 × 30 × 5 × 5. Similarly the L1L2 (blue) plot was done for

()
1 = {()()} ∈ R30×2×5×5.
For the L3L4 the weights dramatically change between = 80 and = 100

Multiple experiments indicated that over training of 2 kernels starts after =

100. If the network was trained further, we found that the final classification ac

curacy drops by by ∼2%. Kheradpisheh et al. [35] proposed a convergence factor

Figure 710: Plot shows the difference of successive samples of synapses. If the
difference approaches zero it means that weights are not changing hence features
learnt by a neuron also remain the same. Notice the sudden jump in difference
between 80100 samples.

given by

P499
=0

P29
=0

P4
=0

P4
=0

¡
(∗150)()(1 − (∗150)())

¢
375000

for = 0 1 130

The convergence plot is shown in Figure 711. The training was stopped when the

convergence factor is between 0.01 and 0.02. We found that using this criteria there

was a bit of over training resulting in 1%2% decrease in testing accuracy.

50

Figure 711: Plot shows the fashion of convergence for the synapses. Note that the
convergence factor dips sharply between the samples 80100.

In this chapter, we discussed the over training problem that arises when us

ing unsupervised STDP. We also showed that over training results in reduction in

complexity of the features learned in deeper layers. We also proposed a heuristic

method to prevent over training.

51

CHAPTER EIGHT: SURROGATE GRADIENTS AND STDP

In this chapter we shall discuss how to combine STDP based unsupervised fea

ture classification with stochastic gradient descent for the classification layers of

an SNN. We planned to use RSTDP as a classification criterion for the extracted

binary spike features, but we decided against it owing to its slow convergence (see

Chapter 5.1). Stochastic gradient descent (SGD) via backpropagation is the pri

mary choice for stateoftheart classification, regression, and generative learning

[95]. A cost function is assigned to the last layer of the network and the synapses

are updated to minimize the cost. In our network, backpropagation is used only in

the classification layers (L3L4L5) of the network which has a single hidden layer

L4. Let = () = −1 + denote the error vector, the activa

tion vector, the bias vector, the weights and the net input to the activation function

for the layer, respectively [66]. With the activation function and denotes the

output cost. For convenience we shall restate the backpropagation equations from

Chapter 2.

 = ∇ ¯ 0() (8.1)

where denotes the error vector on the last layer and the error vector for the hidden

layers are given recursively by

 = ((+1) +1)¯ 0() (8.2)

Updates to biases and weights of layer are calculated using

= (8.3)

52

= (−1) (8.4)

 denotes the cost in the final layer. We used a softmax activation with a cross

entropy cost function for the last layer so that equation (8.1) becomes

 = −(−) (8.5)

where and are softmax activation of the output layer and the one hot label

vector, respectively. For the remainder of the chapter we refer to gradients obtained

using Equations (8.1)(8.5) as true gradients with () an ReLU activation func

tion.

8.1 Binary Activations and Surrogate Gradients

Figure 81: Layers 1−3 are the feature extraction layers and layer 3−5 are
the feature classification layers.

8.1.1 Weight Initialization

The weights of the2 layer are initialized from the normal distributionN (08 004).
The weights of layers 4 & 5 layers are initialized from the normal distribution

N (0 001) but truncated to restrict them between ±002 A softmax activation is
used for the classification layer 5 with its inputs converted to integers using the

floor function. A lookup table containing predefined values of the exponential

53
function can be used to calculate softmax activation in a hardware implementa

tion. The activation functions employed in layer 4 (denoted by in Figure 81)

are discussed below (in Section 8.1).

In order to significantly reduce the number of high precision multiplications

the activation functions of the L4 layer are made binary. That is, if the net input

to a neuron is greater than zero the output is one. Otherwise the output is zero.

Consequentially this activation function is not differentiable (the gradient doesn’t

exist). Here we give two different possible functions that we used to replace the

true gradient, i.e., to be its surrogate [11].

8.1.2 Surrogate Gradient 1

The activation function of a neuron in layer 4 is defined by

 = () ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 0

 0 ≤ ≤ 1
 ≥

(8.6)

Figure 82 is a plot of this activation function which is a ReLU that saturates for

some 0 1.

Figure 82: Activation function = () for neurons in layer 4

The activation is required to be binary so its definition is modified to be (d·e

54
denotes the ceiling function)

 = d()e ,

⎧⎪⎨⎪⎩1 ≥ 0
0 0

(8.7)

For this activation (8.7) we define its surrogate gradient to be

0() ,

⎧⎪⎨⎪⎩1 0 ≤ ≤ 1
0 otherwise.

(8.8)

which is the derivative of Equation 8.6 and is shown in Figure 83.

Figure 83: Surrogate gradient of activation function defined in equation (8.6).

Simulations were performed by setting to 025 0125 005 and it was found

that 0125maximized the validation accuracy. As equation (8.7) is not differentiable

the derivative of () is taken to be equation (8.8). For convenience, we denote an

activation value of 1 as spike and an activation value of 0 as no spike.

8.1.3 Surrogate Gradient 2

We also considered a second activation given by

 = () ,

⎧⎪⎨⎪⎩1 ≥ 0
0 0

(8.9)

55
and define its surrogate gradient to be

0() ,

⎧⎪⎨⎪⎩1 ≥ 0
0 0

(8.10)

Note that 0() = () and is binary so that 0() = in the hidden layer. Equa

tion (8.2) then becomes

 = ((+1) +1)¯ (8.11)

where determines if a neuron spikes in the layer. That is, determines if a

neuron in the layer is to receive error information from the + 1 layer. Substi

tuting Equation (8.11) in Equation (8.4) gives

=
¡
(+1) +1 ¯

¢
(−1) (8.12)

This shows that a neuron in − 1 layer gets to update its synapse with a neuron in
 layer if both neurons have spiked, i.e., for

 to be a nonzero both
and −1 have to be nonzero.

8.2 MNIST

The MNIST digits were passed through the network in Figure 81 and encoded

into spike vectors as described in Chapter 3.2.2. Note that the extracted features

are binary valued. Table 8.1 shows that surrogate gradient 1 yields a test accuracy

074% higher or 74 more correct classifications compared to surrogate gradient 2

with 10 000 test images. Figure 84 shows the classification accuracy per class

using the surrogate gradient 1. For results reported in Table 8.1 a dropout (50%)

mechanism was used in the hidden layer for regularization, the number of neurons

in layer L4 were set to 900, and minibatch size was set to 5 and for the actual and

true gradients was set to 00125 and 001, respectively. These results were obtained

56
by averaging over five experiments with the classification layers of the network (in

Figure 81) trained for 30 epochs each time. For accuracies reported using the true

gradient a quadratic cost function with a ReLU activation function for layers L4,

L5 was used whereas for accuracies reported using the surrogate gradients a cross

entropy cost function with softmax approximation (see Section 8.1.1) for layer L5

and binary activation function for layers L3, L4 was used.

Table 8.1: MNIST results. True gradients refers to Equations (8.1)(8.5).

Gradient Type Mean Test Acc. Max. Test Acc.
True Gradient 9858% 9866%

Surrogate Gradient 1 9849% 9854%
Surrogate Gradient 2 9775% 9777%

Figure 84: Classification accuracy per class with surrogate gradient 1.

8.3 Extended MNIST

The EMNIST dataset has 47 classes containing handwritten upper & lower case

letters of the English alphabet in addition to the digits. This dataset is divided into

102 648 training images, 10 151 validation images, and 18 800 test images [9].

The minibatch size was set to 5 and a dropout of 50% was used in the hidden layer

(L4). The number of neurons in layer L4 was 1500. The number of epochs was set

to 35 and all the experiments were averaged over 5 trials.

57

8.3.1 Why Use Unsupervised STDP Based Feature Extraction?

In this section binary valued features vectors (i.e., vector with 0s and 1s) were

collected in layer 3 as described in Chapter 3.2.2. Classification was performed

using an ANN with binary activation for the hidden layer 4 neurons and an ap

proximated softmax output explained in Section 8.1.1. The synapses of L2 layer

(Conv1) were fixed with random weights and the binary spike features collected

in layer L3 were classified using surrogate gradient 1 resulting in 8043% maxi

mum test accuracy. Similarly, binary spike features collected from layer L3 with

unsupervised trained weights in layer L2 (Conv2) were classified using surrogate

gradient 1 and resulted in a maximum test accuracy of 856% or≈ 972more correct
classifications when compared to random weights in L2. Results averaged over five

trials are given in Table 8.2. Figures 86 and 85 show the confusion matrices for

the network with random synapses in L2 and STDP trained synapses in L2. When

the layer L2 was trained with STDP, Figure 85 shows that there is frequent mis

classification between the classes {f} and {F}, the classes {0} and {O}, the classes

{q} and {9}, the classes {1}, {I} and {L}, the classes{S} and {5}, and the classes

{2} and {Z}. Misclassifications for this case are explainable in the sense that one

might expect humans to make such errors. For example, in 6 element of the 3

row off Figure 87 the network predicted a lower case “f”, while the label was an

upper case “F”. In contrast, when layer L2 was not trained, Figure 86 shows that

the network frequently misclassified the classes {H} and {0}, the classes {E} and

{1}, the classes {A} and {1}, the classes {Z} and {7}, and the classes {h} and {L}.

One would not expect humans to make such mistakes.

Table 8.2: EMNIST accuracy with random and trained L2 layer.

Gradient Type Mean Test Acc. Max Test Acc. L2 Synapses
Surrogate Gradient 1 8021% 8043% Random
Surrogate Gradient 1 8535% 8560% STDP trained

We performed experiments to study the classification accuracy in the presence

of noise in the spiking input images (L1). To explain, suppose a particular image

58

Figure 85: Confusion matrix of predictions with EMNIST dataset when the
synapses in layer L2 were learned in an unsupervised fashion using STDP.

resulted in 100 spikes in L1. Then by 10% noise we mean that 5 of the randomly

chosen neurons that spiked were set to zero, while 5 randomly chosen nonspiking

neurons were forced to spike. Figure 88 shows the result of this input noise on the

final classification accuracy. As shown in Figure 88, the network can withstand

≈ 40% this input noise before the classification accuracy decreases to that of the
case where the L2 layer synapses were set randomly.

59

Figure 86: Confusion matrix of predictions with EMNIST dataset when the
weights (synapses) in layer L2 were random.

Figure 87: Frequently misclassified classes in the EMNIST dataset. P and L
denote predicted class and actual label, respectively.

Figure 88: Effect of input noise on the final classification accuracy.

60

8.3.2 Effect of Gradient Approximation on Classification

Table 8.3: EMNIST results. True gradient refers to Equations (8.1)(8.5).

Gradient Type Mean Test Acc. Max. Test Acc. Cond. Max. Test Acc. Activation
True Gradient 85.47% 85.7 % 94.49 % 0.05 ReLU

Surrogate Gradient 1 85.35 % 85.60 % 94.1 % 0.02 Binary
Surrogate Gradient 2 84.24 % 84.47 % 93.72 % 0.02 Binary

Table 8.3 shows that the true gradients results in best classification accuracy and

surrogate gradient 1 outperforms gradient surrogate 2 by 10% (188 more correct

classifications with 18800 test images).

8.3.3 Conditioning on Upper Case, Lower Case, and Digits

Figure 89: Classification accuracy per class with surrogate gradient 1.

Figure 89 shows the accuracy per class when surrogate gradient 1 is used for

classification. With handwritten data even a human classifier may not be able to tell

the difference between, for example, the upper case letter “O” and the digit “0”. To

study this we also ran the classifier conditioned on (given that) the image under test

was an either an upper case letter, a lower case letter, or a digit. No retraining was

done for this section. Table 8.3 shows the dramatic increase in accuracy under this

conditioning. The accuracy per class using this conditioning is given in Figure 810.

It is seen that the classes I, L, g, q have the least recognition rate, but still well above

their accuracies given previously in Figure 89 where conditioning was not used. In

61

Figure 810: Classification accuracy per class of EMNIST dataset with surrogate
gradient 1 after conditioning.

more detail we found that about 13% of the letters “q” were misclassified as the let

ter "g", about 4% of letters “q” were misclassified as the letter “a”, while about 83%

of letters "q" were correctly classified. About 20% of letters “g” were misclassified

as the letter “q” while about 73% of letters “g” were correctly classified. Similarly,

we found that about 27% of letters of upper case “I” (eye) were misclassified as the

upper case letter “L" while 68% of upper case “I” were correctly classified. As a

final observation about 20% of upper case letters “L” were misclassified as an upper

case “I” (eye) while about 78% of upper case letters “L” were correctly classified.

Figure 811 shows the confusion matrix for the conditioned case.

62

Figure 811: Confusion matrix of predictions with EMNIST dataset when the
inputs are conditioned on Upper Case, Lower Case and Digits.

8.3.4 Computational Advantage of Binary Activations

In the feedforward paths L1 through L4 the matrixvector multiplication op

erations can all be avoided in a hardware implementation as these layers all have

binary activations. For example, executing the multiplication of a set of (floating

point) weights times a set of spikes (binary activations) is simply.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w11 w12 w13

w21 w22 w23

w31 w32 w33
...

w1 w2 w3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎝
0

1

1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w12

w22

w32
...

w2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w13

w23

w33
...

w3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 (8.13)

That is, multiplication is replaced by addition. This technique avoids the need

for dedicated multiplier hardware and allows the feasibility of in memory com

63
puting [97][98]. Another advantage is found in backpropagation computations.

Specifically, as the surrogate gradient 0() is binary, the error vector for the

hidden layer can be obtained without having to do a majority of the rowcolumn

multiplications for example,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎝ w11 w12 w13

w21 w22 w23

⎞⎠
| {z }

(+1)

×

⎛⎜⎜⎜⎝
1

2.5

3.1

⎞⎟⎟⎟⎠
| {z }

+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
¯
⎛⎝ 0

1

⎞⎠
| {z }
0()

=

⎛⎝ 0

w21 + 25w22 + 31w23

⎞⎠

(8.14)

That is, in equation (8.14) the rowcolumn multiplications of the first row are

avoided as the result will zero due to the elementwise (Hadamard product) vector

multiplication. All the weight updates, can be obtained without explicitly

calculating the vector outer product (−1) as the activations of 3 and 4 layers

are binarized. For example,

⎛⎜⎜⎜⎝
a

b

c

⎞⎟⎟⎟⎠
| {z }

×
³
0 1 0

´
| {z }

(−1)

=

⎛⎜⎜⎜⎝
0 0

0 0

0 0

⎞⎟⎟⎟⎠ (8.15)

That is, the matrix on the right side of Equation (8.15) is found by simply tran

scribing into its columns as specified by (−1) .

8.3.5 Number of HighPrecision Multiplications

Table 8.4: Comparison of multiplications for a DNN and an SNN in Figure 81.

Architecture L2 L4 L5 Total
DNN 2.84×1012 3.92×1013 5.06×1011 ≈4.25×1013

Proposed SNN 5.22×107 1.87×1010 0 ≈1.87×1010

The majority of computations in a DNN are highprecision multiplications of

the weights with the activations during both the forward inference as well as the

64
backpropagation of the error. Energy consumption of the network is hardware ar

chitecture dependent, but in order to provide an estimate about the energy savings

in our SNN we compare the number of high precision multiplications between a

DNN and our SNN [77]. It requires × × high precision multiplications in

order to multiply an × matrix by an × matrix in a fully connected net

work. Convolution (in valid mode) of an × image with an × filter requires

(−+1)×(−+1)×× multiplications. As we employ temporally encoded
spikes with binary activations used in the classification layer, the forward path can

be implemented with no multiplications (See Equation (8.13) and Equation (8.15)).

Further, orders of magnitude less multiplications are required for backpropagation

as we explain next. Table 8.4 below compares the number of high precision mul

tiplications required for a DNN with our approach. In a neuromorphic system the

input spikes are typically provided by a silicon retina (eDVS [10]) so we assume

that the images are available in spike form. We begin by estimating the number of

multiplications in the L4 layer for our SNN. Figure 812 shows the average number

of neurons in the L4 layer (1500 total neurons) for each epoch that have a nonzero

activation. The number of multiplications required to calculate the error in layer

L4 according to Equation (8.14) is as follows: In the earliest epochs, the number of

multiplications during the training is approximately 145× 109 computed from

20500 mbatches× 5 images
mbatch

× 47 classes× 300 nonzero activations

In the latter epochs the number of nonzero activations decreases to 100 making the

number of multiplications approximately 20500× 5× 47× 100 = 45× 108. Sum
ming over the 35 epochs results in approximately 187 × 1010 multiplications. To
compute the number of multiplications in the L2 layer of our SNN, note that during

the unsupervised training of L2 (Conv1), the lateral inhibition and STDP compe

tition result in sparse neuronal activity in that there are only 5.8 weight updates

(winner spikes) per spiking input image (see Section 3.2.1). L2 was trained (unsu

pervised) on 6000 spiking input images. The number of multiplications required is

65
approximately 522× 107 computed from

58 avg updates× 2× 5× 5× 30 L2 synapses× 6000 images

Due to the binary activation of L4, layer L5 of our network can be implemented in

a custom hardware without any multiplications. Based on this quantitative analysis

our approach makes a suitable candidate for low power implementations as it uses

approximately 3−4 orders of magnitude less multiplications compared to a standard
DNN.

Figure 812: Number of neurons with nonzero activations in layer L4 as the train
ing in classification sections of the network in Figure 81 progresses.

8.4 SPYKEFLOW

The PYNN software tool with NEURON [93] [26] was considered as a simula

tion tool. However these tools are designed for neuroscientists with neuron models

much more complex than needed in our case. The software tool NENGO [5], de

veloped for bioinspired machine learning, uses a more complex neuronal model

than required here. Motivated by the simple spiking models in Kheradpisheh et

al.’s work [35], we developed a software tool called SPYKEFLOW. SPYKEFLOW1

primarily uses NUMPY to do the calculations of lateral inhibition, STDP updates,

neuron spike accumulation, etc. However, SPYKEFLOW also uses TENSORFLOW

for computationally intensive calculations such as convolution and pooling. There

fore, the users will have the ability to use a GPU, if one is available. Detailed

1https://github.com/ruthvik92/SpykeFlow

66
instructions to use the software are provided in [94]. Following [35] our package

supports instantaneous (non leaky integrate and fire) neurons, latency encoding,

and inhibition mechanisms to be able to simply extract meaningful features from

the input images. The feature extraction in our SNNs is done unsupervised using

STDP, which requires monitoring the weight updates (synapse changes) in the spik

ing network. The SPYKEFLOW software provides the capability to monitor spike

activity, weight evolution (updates), feature extraction (spikes per map per label),

and synapse convergence [91] [92]. Similar to SPYKEFLOW, Mozafari et al. re

leased the software tool SPYKETORCH in [62], which is based on the PYTORCH

deep learning tool.

8.5 Comparison with Other Works

A comparison of our work with recent publications that employ the EMNIST

dataset is provided in Table 8.5. Rate encoded spiking networks require hundreds of

timesteps of simulation for a single input image resulting in very high spike counts.

In contrast, latency encoded inputs to an SNN equipped with first spike based fea

ture extraction results in very few spikes, in turn this requires fewer synapse updates

implying lower power consumption.
Table 8.5: Comparison of EMNIST classification results.

Learning method Neuron model Input Encoding Max. Test Acc.
Supervised DNN [81] ReLU 90.59 %
Supervised SNN[32] LIF Rate 85.57 %

This work Instantaneous Latency 85.60 %

In this dissertation, neurons are essentially used as coincidence detectors with

latency encoded input spikes and first spike based feature extraction to transform

the inputs to spike feature vectors that contain robust object category information

as observed in biology [56]. These spike features were then classified using the

proposed backpropagation with surrogate gradients to demonstrate up to 85.60%

accuracy with the EMNIST dataset. This was achieved by employing backprop

agation only in the classification layers of the network which are decoupled from

67
the feature extraction layers. The accuracy achieved here is quite comparable to the

85.57% accuracy reported in [32] which used rate encoded (Poisson) input spikes

in a network with one hidden layer comprised of 800 neurons and with backpropa

gation performed in all the layers. Furthermore, [32] uses complex leaky integrate

andfire (LIF) neurons as opposed to our simple instantaneous summation neurons

that act as coincidence detectors. Using a conventional deep convolution network,

Shawon et al. [81] report an accuracy of 90.59% on the balanced EMNIST (see the

survey paper [4]). The deep network in [81] consisted of 6 convolution layers, a

hidden layer with 64 neurons, followed by a classification layer. Though our ac

curacy is lower than DNNs, we have proposed an energyefficient solution using

bioinspired unsupervised techniques. This energy efficiency can be realized by

implementing the proposed architecture using a Neuromorphic ASIC or FPGA. We

also demonstrated an accuracy of 94.49% when the classifier was given the infor

mation that an input image was either a letter (upper or lower case) or a digit. As

discussed in the above sections, this conditioning was considered due to the indis

tinguishability of some samples between a few of the classes e.g., betwen {0} and

{O} in Figure 87.

In this chapter we introduced binary activations to reduce the number of float

ing point multiplications. We also showed that the STDP trained network can be

resistent to the presence of stray spikes.

68

CHAPTER NINE: CATASTROPHIC FORGETTING

Catastrophic forgetting is a problematic issue in (non spiking) deep convolu

tional neural networks. In the context of the MNIST data set this refers to training

the network to learn the digits 0,1,2,3,4 and, after this is done, training on the digits

5,6,7,8,9 is carried out. The catastrophic part refers to the problem that the network

is no longer able to classify the first set of digits 0,1,2,3,4.

9.1 Catastrophic Forgetting in NonSpiking Networks

In this section we shall examine a conventional (nonspiking) convolutional

neural network whose weights were trained using backpropagation algorithm. In

more detail, Figure 91 shows a conventional neural network with one convolution

layer & one pool layer followed by a fully connected softmax output.

Figure 91: Network architecture for catastrophic forgetting.

This network has 10 outputs, but was first trained only on the digits 0,1,2,3,4

69
back propagating the error (computed from all 10 outputs) to the input (convolution)

layer. This training used approximately 2000 digits per class and was done for

75 epochs. Before training the network on the digits 5,6,7,8,9 we initialized the

weights and biases of the convolution and fully connected layer with the saved

weights of the previous training. For the training with the digits 5,6,7,8,9 we fixed

the weights and biases of the convolution layer with their initial values. The network

was then trained, but only the weights of the fully connected layer were updated.

(I.e., the error was only back propagated from the 10 output neurons to the previous

layer (flattened pooled neurons). This training also used approximately 2000 digits

per class and was done for 75 epochs. While the network was being trained on the

second set of digits, we computed the validation accuracy on all 10 digits at the

end of each epoch. These accuracies are plotted in Figure 92. The solid red line

in Figure 92 are the accuracies versus epoch on the first set of digits {0,1,2,3,4}

while the solid blue line gives the accuracies on the second set of digits {5,6,7,8,9}

versus epochs. Figure 93 is a zoomed in picture of Figure 92 for better resolutions

of the accuracies above 90%. These plots also show the validation accuracy results

when the second set of training data is modified to include a fraction of the data

from the first set of training digits {0,1,2,3,4}. For example, the dashed red line

is the validation accuracy on the first set of digits when the network was trained

with 2000 digits per class from {5,6,7,8,9} along with 200 (10%) digits per class

from{0,1,2,3,4}. The blue dashed line is the validation accuracy of the second set

of digits after each epoch. Similarly this was done with 15%, 25%, 27.5%, and

30% of the first set of digits included in the training set of the second set of digits.

The solid red line shows that after training with the second set of digits for a single

epoch the validation accuracy on first set goes down to 10% (random accuracy).

The solid blue line shows a validation accuracy of over 97% on the second set of

digits after the first epoch. Thus the network has now learned the second set of

digits, but has catastrophically forgotten the first set of digits shown by solid red

line.

70

Figure 92: Catastrophic forgetting in a convolutional network while revising a
fraction of the previously trained classes. Note that epoch 1 indicates that the
network was tested for validation accuracy before training of the classes 59 started.
Brackets in the legend shows the fraction of previously trained classes that were
used to revise the weights from the previous classes.

Figure 93: Zoomed upper portion of the Figure 92

71

9.2 Forgetting in Spiking Networks

For comparison we tested forgetting in our spiking network of Section 4.2 (see

Figure 43). The network was first trained only on the digits {0,1,2,3,4} with unsu

pervised STDP on the convolution layer and back propagating the error (computed

from all 10 outputs) just to the previous (flattened pool) layer. This training used ap

proximately 2000 digits per class and was done for 75 epochs. Then, before training

the network on the set of digits {5,6,7,8,9}, we initialized the weights of the con

volution and fully connected layer with the saved weights of the previous training.

For the training with the digits {5,6,7,8,9} we fixed the weights of the convolution

layer with their initial values. The network was then trained, but only the weights

of the fully connected layer were updated. I.e., the error was only back propagated

from the 10 output neurons to the previous flattened layer. This training also used

approximately 2000 digits per class and was done for 75 epochs. While the network

was being trained on the second set of digits, we computed the validation accuracy

on all 10 digits at the end of each epochs. These accuracies are shown in Figure

94. The solid red line in Figure 94 are the accuracies versus epochs on the first

set of digits {0,1,2,3,4} while the solid blue line gives the accuracies on the second

set of digits {5,6,7,8,9} versus epochs. Figure 95 is a zoomed in picture of Figure

94 for better resolutions of the accuracies above 90%. These plots also show the

validation accuracy results when the second set of training data modified to include

a fraction of data from the first set of training digits {0,1,2,3,4}. For example, the

dashed red line is the validation accuracy on the first set of digits when the network

was trained with 2000 digits per class of {5,6,7,8,9} along with 200 (10%) digits per

class of {0,1,2,3,4}. The blue dashed line is the validation accuracy of the second

set of digits after each epoch. Similarly this was done with 15%, 25%, 27.5%, and

30% of the first set of digits included in the training set of the second set of digits.

The solid red line shows that after training with the second set of digits for a single

epoch the validation accuracy on first set goes down to 77% (compared to the 10%

accuracy of a nonspiking CNN). The solid blue line shows a validation accuracy

72
of about 95% on the second set of digits after the first epoch. Thus the network has

now learned the second set of digits but has not catastrophically forgotten the first

set of digits shown by solid red line.

Figure 94: Catastrophic forgetting in a spiking convolutional network while re
vising a fraction of the previously trained classes. Note that epoch 1 indicates that
the network was tested for validation accuracy before training of the classes 59
started. Brackets in the legend shows the fraction of previously trained classes that
were used to revise the weights from the previous classes.

Figure 95: Zoomed upper portion of the Figure 94

As another approach we first trained on the set {0,1,2,3,4} exactly as just de

scribed above. However, we then took a different approach to training on the set

{5,6,7,8,9}. Specifically we trained on 500 random digits chosen from {5,6,7,8,9}

73
(approximately 50 from each class) and then computed the validation accuracy on

all ten digits. We repeated this for every additional 250 images with the results

shown in Figure 96. Interestingly this shows that if we stop after training on 1000

digits from {5,6,7,8,9} we retain a validation accuracy of 91.1% and 90.71% test

accuracy on all 10 digits.

Figure 96: Note that as the number of training images for the classes 59 increases
the total accuracy drops.

Table 9.1: Demonstration of forgetting in a spiking convolution network.

images (classes 59) # images (classes 04) Validation Test Epochs
10,000 1000(10%) 95.235% 95.1% 75
10,000 1500(15%) 95.95% 95.9% 75
10,000 2500(25%) 96.83% 96.81% 75
10,000 2750(27.5%) 96.98% 96.92% 75
10,000 3000(30%) 97.1% 97.043% 75

Jason et al. reported an accuracy of 93.88% for completely disjoint data sets[2].

9.3 Continuous Learning in a SingleIncrementalTask

Scenario with Spike Features

Typically, Spiking Neural Networks (SNNs) are trained using an unsupervised

algorithm called Spike Timing Dependent Plasticity (STDP) [35]. Spike features

74
extracted from latency encoded convolutional variants of SNNs have been used with

an SVM [35] and a linear neural network classifier [92] to achieve classification ac

curacies in excess of 985%. However, SNNs tend to achieve lower classification

accuracies when compared to Artificial Neural Networks (ANNs) [69]. ANNs are

trained using Stochastic Gradient Descent (SGD). The main assumption of SGD is

that the minibatches of the training data contain approximately equal number of

data points with the same labels (i.e., the data is uniformly randomly distributed).

This assumption does not hold for many of the machine learning systems that learn

online continuously. Different kinds of continuous learning schemes have been

proposed to mitigate the problem of catastrophic forgetting. Two main scenarios

of continuous learning are the MultiTask (MT) and the SingleIncrementalTask

(SIT) scenarios [54]. In the MT scenario a neural network with a disjoint set of

output neurons is used to train/test a corresponding set of disjoint tasks. In con

trast, a neural network for the SIT scenario expands the number of neurons in the

output layer to accommodate new classification tasks. The MT scenario is useful

when training different classification tasks on the same network thereby allowing

resource sharing. The SIT scenario is useful for online continuous learning ap

plications. That is, the SIT scenario is more suitable for online machine learning

systems and is more difficult compared to the MT scenario. This is because the

SIT network has to not only mitigate catastrophic forgetting, but also learn to dif

ferentiate classes that are usually not seen together (unless the system has some

kind of short term memory to be replayed later). SelfOrganizing Maps (SOM)

with shortterm memory were used in [18] [70] to achieve an accuracy of 85% on

the MNIST dataset using a SIT scenario and replaying the complete dataset. Using

STDP based unsupervised learning and plasticity modulation, controlled forgetting

was proposed in [2]. It was shown to achieve a 95% accuracy on MNIST dataset

using the SIT scenario. Unsupervised spiking networks with predictive coding have

been trained with STDP and shown to achieve an accuracy of 76% on the MNIST

dataset using the MT scenario [68]. In our work here, our network classifies the

data according to the AR1 method given in [54]. This uses the SIT scenario which

75
was inspired by synaptic intelligence for the MT scenario in [100]. In our previ

ous work [92] we used the MNIST dataset split into two disjoint tasks to show that

features extracted from a spiking convolutional network (SCN) demonstrated more

immunity to catastrophic forgetting compared to their ANN counterparts. In [92],

using early stopping, the first five output neurons were trained to classify the digits

{0 1 2 3 4} and then the remaining five output neurons were trained to classify
the digits {5 6 7 8 9}. The network was then tested on the complete test dataset
(digits 09) and achieved a 93% accuracy on this test data. In the work presented

here we exclusively work with spike features extracted from an SCN and study the

effect of continuous learning using the SIT scenario on the MNIST dataset. For

this study the MNIST dataset was split into the five disjoint classification tasks

{{0 1} {2 3} {4 5} {6 7} {8 9}}. The feature classification is done unsuper
vised in the convolution layer (L2) while the classification is done in the latter layers

using error backpropagation. Here we modify the synaptic intelligence regularizer

calculation of [100] in order to reduce the computational load.

76

9.4 Network

Figure 97: Layers L1L3 and L3L5 are feature extraction and feature classifica
tion layers respectively. Shown in the figure is an expanding output layer from 210
output neurons to accommodate the five classification tasks for the MNIST dataset.
For the EMNIST dataset the same network has been modified to accommodate the
ten classification tasks. EMNIST dataset with 47 classes has been divided to 10 sub
tasks.

The feature extraction part of the network is same as in [91] [92]. Input images

are encoded into spikes using ON and OFF center DoG filters followed by thresh

olding [35]. The L2 (convolution) layer consists of 30 maps and the neurons that

emerge as winners after lateral inhibition and STDP competition [94] get to update

their weights according to a simplified STDP [35] which was introduced in Chapter

1.1. For convenience the simplified STDP formula is given below

∆ =

⎧⎪⎨⎪⎩−
−(1−) if − 0

++(1−) if − ≥ 0

 ← +∆

 and are the spike times of the presynaptic (input) and the postsynaptic

(output) neuron, respectively. If the input neuron spikes before the output neu

77
ron spikes, the weight is increased; otherwise the weight is decreased.1 Learn

ing refers to the change ∆ in the (synaptic) weights with + and − denoting

the learning rate constants. These rate constants are initialized with low values

(0004 0003) and are typically increased for every 1500 input images as learning

progresses [35]. This STDP rule is considered simplified because the amount of

weight change doesn’t depend on the time duration between presynaptic and post

synaptic spikes. In this work, backpropagation is used only in the classification

layers (L3L4L5) of the network with a single hidden layer L4.

9.5 Continuous Learning

By continuous learning we mean that the network in Figure 97 will start with

two output neurons in L5 and be trained to classify the digits {0 1}. During this
training the error is backpropagated from layer L5 only as far as L3. After this train

ing is complete two new neurons will be appended to the L5 layer and then trained

to classify the digits {2 3}. This is continued in the same manner for the three
remaining classes {{4 5} {6 7} {8 9}}. We proceed in the rest of this section to
give the details of this training by specifying the cost function along with the (cost

per synapse) weight regularizer. The neural network in this work has a softmax

output layer which is the likelihood of the input image belonging to a particular

class. LetX ∈ 3630 denote the (flattened) spike features in L3 and ∈ 1500×3630

denote the weights from L3 to the hidden layer L4. For task 1 there are two output

neurons and we let 1 denote the crossentropy cost computed with the softmax

outputs of these two neurons. For task 2 there are now four output neurons and we

let 2 denote the crossentropy cost computed with the softmax outputs of these

four neurons. The costs 3 4 5 are defined in a similar manner. The L4 and the

L5 weights are updated using SGD on minibatches. ()
1 denotes the cost of the

 input minibatch for the task {0 1}. ()
2

()
5 are similarly defined. Dur

ing training for task 1 the weights ∈ 1500×3630 are updated as usual according to

1The input neuron is assumed to have spiked after the output neuron spiked.

78

∆ = −
()
1

 (9.1)

After training is completed for task 1, we need to know the importance of each

of the weights for = 1 1500 and = 1 3630 in terms of classifying

the images of task 1. This is necessary because when we proceed to train on task

2 these "important" weights should not be allowed to change significantly. That

is the network must be forced to use the other weights for the training of task 2.

Accordingly, we next define a cost per synapse regularizer during the training of

task 2 to help prevent changes to the so called important weights of the task 1. The

change in the cost per each synapse∆
()
1 is defined as

∆
()
1 ,

()
1

∆ = −

Ã

()
1

!2
(9.2)

with

∆
()
1 ,

n
∆

()
1

o
=11500
=13630

∈ R1500×3630 (9.3)

For each task there are minibatches with images per minibatch for a total of

 = input images for each task. The average change in cost for is given

by

1 ,
1

X
=1

∆
()
1 = −

1

X
=1

Ã

()
1

!2
(9.4)

with

1 , {1}=11500
=13630

∈ R1500×3630 (9.5)

A softmax output layer with a crossentropy cost function and onehot encoded

labels is the same as the loglikelihood cost function [66]. The MNIST label

 with ∈ {0 1 2 9} corresponds to the (= + 1) output neuron with

 ∈ {1 2 10}, respectively. Let X() = {(()) = 1 } denote
the images and corresponding labels in the minibatch. In Equation (9.4) the

average cost ()
1 for minibatch is

79

()
1 =

1

X
=1

1(X()) = − 1

X
=1

=2X
=1

 ln
5
 (X()) = −

1

X
(X())∈X

ln 5+1(X
()

)

(9.6)

as +1 = 1 and = 0 for 6= + 1. Here L5 indicates the last layer and 5(X)

indicates softmax output activations. Substituting Equation (9.6) in to Equation

(9.4), Equation (9.5) becomes

1 = − 1

X
=1

Ã

()
1

!2
∈ R1500×3630 (9.7)

In [37] the authors state that near a minimum of the cost the () component of

Equation (9.7) given by − 1

P
=1

Ã

()
1

!2
is the same as

() ,
1

X
=1

2
()
1

2
 (9.8)

with some limitations [41] and is the Fisher information [7] for the parameter ,

() is a measure of the “importance” of the weight A large value of ()

implies that small changes in the value of will lead to a large increase in average

cost (classification error). When the network is to train for task 2, those weights
with a large () computed from task 1 must now be constrained to only small

changes so the network will continue to classify the images of task 1 correctly.

That is, when training on task 2, the network must be forced to (essentially) use

only those weights that had a small value of () from task 1. So, the cost per

synapse for the first task 1 (calculated during the last epoch of training for the

first task) gives the relative importance of the weights for the task1 classification

problem. Let ∆1 ∈ R1500×3630 be the change in weights during the last epoch of
task 1. Further ̂1 denotes the value of the weights after training on task 1. The

80
second task is trained using the regularized cost function given by

2 , 2 +

2

X

(2 − ̂1)¯ 1 ¯ (2 − ̂1) (9.9)

with

1 , 1 ® (∆1 ¯∆1 +) (9.10)

where ¯ and ® represent the Hadamard product and division, respectively. is

a small positive number added to each element of the matrix to prevent division

by zero when doing Hadamard division. Similarly, is calculated during the last

epoch of training task , ∆ denotes the change in the weights during the last

epoch, and finally ̂ denotes the weights at the end of training task . Task is

trained by adding a weight regularizing term to prevent the "important" weights

from the previous tasks being changed significantly. With 0 ∈ R1500×3630 a matrix
of zeros define

 ,
−1X
=0

 ® (∆ ¯∆ +) (9.11)

then we can write the cost function of the task as

 = +

2

X

 ¯ (− ̂−1)¯ (− ̂−1) t=1,2,3,4,5 (9.12)

̂−1 are the weights between L3 and L4 layers at the end of (− 1) task and
 = is the number of input images. Remark Note that only the weights

connecting L3 to L4 are subject to cost per synapse regularization. The weights

connecting L4 to L5 are trained without regularization and use the AR1 method to

train sequentially [54]. The parameter updates for the cost function are

=

+

 ¯ (− ̂−1) (9.13)

In [100] the cost per synapse is calculated over all the training epochs (rather

than just the last epoch).

81

9.5.1 Results with MNIST Dataset

The parameter in Equation (9.13) was optimized with validation data. Figure

98 shows the effect of on accuracy. Results for each were obtained from 10 dif

ferent weight initializations. In this section the network was not presented with any

Figure 98: Search for

of the data from the previous tasks. Figure 99 shows the trend of testing accuracy

as the network is trained on disjoint tasks with 10 different weight initializations.

The highest testing accuracy achieved for this disjointly trained tasks was 8461%

Figure 99: Test accuracy

and was set to 203× 107. in Figure 99 ’Max’ in the legend indicates the weight
initialization that resulted in highest test accuracy and ’Min’ indicates the weight

initialization that resulted in lowest test accuracy. For all of the above reported ex

periments the hyperparameter = 10× 10−3, the minibatch size = 10 and the
value of was calculated based on the ratio of number of samples per task and the

minibatch size.

82

9.5.2 Results with EMNIST Dataset

The parameter in Equation (9.13) was optimized with validation data. Figure

910 shows the effect of on accuracy. Results for each were averaged from

10 different weight initializations. In this section the network was not presented

Figure 910: Search for

with any of the data from the previous tasks. Figure 911 shows the trend of testing

accuracy as the network is trained on disjoint tasks with 10 different weight initial

izations. The highest testing accuracy achieved for this disjointly trained tasks was

Figure 911: Trend of test accuracy as the learning progresses in an SIT scenario.

6226% and was set to 165×107. in Figure 99 ’Max’ in the legend indicates the
weight initialization that resulted in highest test accuracy and ’Min’ indicates the

weight initialization that resulted in lowest test accuracy. For all of the above re

ported experiments the hyperparameter = 10×10−3, the minibatch size = 10
and the value of was calculated based on the ratio of number of samples per task

and the minibatch size.

83
In this chapter, we demonstrate that STDP trained CNN is resistant to catastrophic

forgetting when compared to a nonspiking CNN. All the continual learning exper

iments in this chapter were performed using the MNIST and the EMNIST datasets.

84

CHAPTER TEN: MODELLING A CMOS IMAGE SENSOR

USING NEURAL NETWORKS

10.1 Introduction

This chapter presents the internship work done at ON Semiconductor Inc, to

model their image sensor using neural networks. Deep learning has been used in

a plethora of applications like autonomous driving, cancer prediction, low power

object recognition etc. [91] [92] [79]. In particular, neural networks as a regression

tool have been used in applications like, time series learning [27], stock prediction

[74], pose estimation in computer vision [42], cost predictions [85] etc. Tradition

ally, linear regression with linear or nonlinear coefficients has been used for mod

eling where real valued outputs are required. Neural networks are iterative methods

that minimize a loss function defined on the output layer of neurons. Universal

approximation theorem states that a feed forward neural network with at least one

hidden layer can approximate a continuous function of R [28]. Neural networks

use error backpropagation with stochastic gradient descent (SGD) [45] to achieve

an acceptable local minima that optimizes the output loss function.

Many industrial sensors require fine tuning of the input settings to attain a de

sired output. Figure 101 shows that the number of experiments to be conducted

grows exponentially with the resolution and number of inputs to a sensor. In this

work, we employ deep learning to model the relationship between inputs and out

puts of a sensor that were collected at set intervals. Once a satisfactory model is

achieved, it will be used to interpolate the outputs for any input combinations that

are within an allowed range. Using appropriate optimization criteria we show that

85
one can arrive at input settings that maximize or minimize required outputs for a

given sensor.

Figure 101: Resolution indicates number of values a particular setting can assume.

10.2 Data Visualization

Throughout the chapter, we shall use the image sensor data obtained from ON

Semiconductor. Given a sensor has seven inputs and three outputs, six of the inputs

are numerical and the seventh input is categorical and it can assume four possible

values. Histograms of all the numerical inputs and outputs are shown in Figure

102. Each of the numerical inputs assumes five different values therefore we have

a total of 55(3125) possible combinations. For each of the possible combinations,

Input5 was swept from 0−49. Categorical variable that assumes four unique values
is not shown in Figure 102. Each of the input setting combinations yields a table

(DataFrame) of 50 ∗ 4(= 200) rows. Because there are 3125 possible setting com
binations the output table contains 3125 ∗ 200(= 625000) rows. Each row in Table
10.1 is applied as a setting combination to the sensor resulting in three outputs con

sisting of Signal, SNR and Output3. Therefore, the input to the neural network is

∈ R625000×10 and the output is ∈ R625000×3.

86
Table 10.1: Concerned sensor of this work was presented with all the combinations
of Input1, Input2, Input3, Input4, Input6 values given in the table. For each of the
combination, Input5 was swept from 049 obtaining a single Signal [AU] vs SNR
[dB] curve. Note that the resolution of inputs for which outputs were recorded is
22, 8, 25, 200 and 200 respectively for Inputs 1, 2, 3, 4 and 6 respectively.

Input1 Input2 Input3 Input4 Input6
418 112 400 2850 3200
441 120 425 3050 3400
464 128 450 3250 3600
478 136 475 3450 3600
510 144 500 3650 4000

Figure 102: Histogram of all the inputs and outputs.

Figure 103 shows correlations between numerical inputs and outputs. Since the

data is in higher dimensions (R10), we cannot visualize the relationship between

inputs and outputs. However, we can plot the Signal vs SNR plot with at most two

of the input settings varied. Signal [AU] vs SNR [dB] plot with varied Input1 and

Input 2 is plotted in the Figure 104.

87

Figure 103: Correlation between various inputs and outputs.

Figure 104: Plot of Signal [AU] vs SNR [dB] given Input1 and Input2.

10.3 Data Preprocessing

The Signal vs SNR relation of the data from the concerned sensor is approx

imately piecewise log linear with some nonlinearities that are controlled by the

inputs 16. This is shown in the Figure 104. Signal [AU] column of the dataframe

was log transformed and all the inputs to the neural network were normalized by

dividing the input with the maximum value that the input could assume. So, all the

inputs to the neural network are in between 0 and 1 similarly, outputs were also

normalized. All the data were converted to dataframes using Pandas [59]. Original

and normalized sample sections of the dataframes are shown in Figures 105 and

88
106.

Figure 105: Unnormalized input data.

Figure 106: Normalized input data.

10.4 Neural Network

Figure 107: Keras sumary of the final neural network that was used to train the
data.

A neural network with three hidden layers, mean squared error cost function

and a leaky ReLU activation function was chosen. Our network has 10 input and

89
3 output neurons which are determined by the dataset. Training was performed

using Keras [8] with Tensorflow [1] back end. Network’s Keras summary is given

in Figure 107.

10.4.1 How to Choose Neural Network Parameters ?

Motivated by universal approximation theoremwe started with one hidden layer

with sigmoid activations and we found that using two hidden layers results in faster

convergence. One of the most important hyperparameters for neural networks is

the learning rate (). We started () with a value of 0.0005. Mean absolute error

(MAE) was chosen as the cost function and by experimentation we found that MAE

cost function and sigmoid neurons delayed the convergence. Weights were initial

ized with Glorot or He initialization depending on the activation functions. Glorot

initialization is beneficial for reducing the hidden neuron activation’s variance for

sigmoid neurons [20] and He initialization helps networks with ReLU activation

functions [25]. In deep neural networks it is desirable to have similar variance for

activations and gradients of the neurons in hidden layers.

Glorot Initialization

Weights between two layers are initialized with a normal distribution with mean,

 = 0 and standard deviation

 =

r
2

 +

where and are number of neurons in incoming and outgoing layers.

If a uniform distribution is used then the weights are sampled from

(−
r

6

 +

r
6

 +
)

Note that our network in this work utilizes Glorot initialization with normal distri

bution

90
He Initialization

He initialization is used for ReLU units. If a normal distribution is used then the

weights are sampled from a distribution with mean, = 0 and standard deviation,

 =

r
2

If a uniform distribution is used then the weights are sampled from

(−
r

6

r
6

)

Usually, a ReLU activation is used for efficient error backpropagation. How

ever, care should be taken when using ReLU activation, if a single “bad” weight

update results in negative activations for majority of the neurons in a layer then the

majority of the gradients will be nullified as ReLU function is zero for negative

inputs. Hence, the network will not be able to backpropagate the error from the

final layer. Equation 8.2 is modified accordingly. If a ReLU activation function is

chosen then

() =

⎧⎪⎨⎪⎩ if 0

0

Its derivative is given by

0() =

⎧⎪⎨⎪⎩1 if 0

0

 =

⎧⎪⎨⎪⎩−(−)¯ 0) if 0

0 if ≤ 0

If a component of the vector is negative then the corresponding component of

is zeroed out resulting in no error backpropagation. Gradient vectors were normal

ized to have a max value of one so that a single gradient update with larger negative

91
values doesn’t drive the net inputs of neuron to have a negative value resulting in

a zero activation value. This results in no forward propagation resulting in “dead

neuron phenomenon” and this issue can be mitigated by using Leaky ReLU acti

vation function. We found that Leaky ReLU with Mean squared Error (MSE) cost

function gives a faster convergence when compared to Sigmoid activations with

MSE or MAE. Leaky ReLU is able to backpropagate both positive and negative

components of the it is given by

() =

⎧⎪⎨⎪⎩ if 0

Where was set to a small value, 001. Derivative of Leaky ReLU is given by

0() =

⎧⎪⎨⎪⎩1 if 0

10.4.2 Modeling

Data were split into training (81%), validation (9%) and testing (10%). Our

network was trained for 100 epochs and learning rate was reduced by a factor of two

for every consecutive five epochs if the validation error did not decrease. Figure 10

8 shows the progress of the network in learning the dataset.

10.4.3 Prediction and Evaluation

Once the modeling was done, training data, testing data and validation data

were passed through the network to obtain the predictions for the required outputs

(SNR[dB], Signal [AU], Output3). Note that the model/network has not “seen” the

testing data directly and validation data was “seen ” indirectly in that it was used to

optimize for the learning rate. Figure 109 shows the Actual vs Predicted plot for

SNR[dB] and it is a linear plot indicating that the model was successful in recalling

92

Figure 108: Epochs vs Loss plot of the neural network.

the SNR[dB] values.

Figure 109: Actual vs Predicted plot for SNR [dB] in the training dataset. Good
ness of fit (2) was found to be 0991

Figure 1010 shows that predicted SNR [dB] values were quite close to the

actual SNR [dB] values of the testing set. Figures 1011, 1012, 1013, 1014 show

Actual vs Predicted plots of Signal [AU], Output3 for training and testing datasets

respectively.

93

Figure 1010: Actual vs Predicted plot for SNR [dB] in the testing dataset. Good
ness of fit (2) was found to be 0990

Figure 1011: Actual vs Predicted plot for Signal [AU] in the training dataset.
Goodness of fit (2) was found to be 0999

94

Figure 1012: Actual vs Predicted plot for Signal [AU] in the testing dataset. Good
ness of fit (2) was found to be 0999

Figure 1013: Actual vs Predicted plot for Output3 in the training dataset. Good
ness of fit (2) was found to be 0999

95

Figure 1014: Actual vs Predicted plot for Output3 in the testing dataset. Goodness
of fit (2) was found to be 0999

96

10.5 Optimization

The goal of the optimization process is to obtain a settings combination (of In

put1, Input2, Input3, Input4 and Input6) that results in a Signal [AU] vs SNR [dB]

curve that is closest to the ideal and minimize the value of Output3. For the sen

sor under consideration, the ideal [] = 10 log10(
p
[]). Each of

the settings combinations (of Input1, Input2, Input3, Input4 and Input6) results in a

dataframe of 200 rows because Input6 is swept from 0−49 and the categorical vari
able assumes four different categories and each of these dataframes yields a single

Signal [AU] vs SNR [dB] curve. Note that Signal [AU], SNR [dB] and Output3 are

the outputs of the trained neural network. The trained model was used to predict

Signal [AU] vs SNR [dB] plots for a large number (≈ 12 × 106) of interpolated
settings combinations within the domains of all the input settings, to that end we

increased the resolution of the numerical inputs listed in Table 10.1. Similar to the

original dataset, each of the interpolated input settings combinations also yields a

single Signal [AU] vs SNR [dB] curve. Shown in Figure 1015 is a Signal [AU] vs

SNR [dB] curve for a randomly chosen interpolated input settings, green and blue

colors indicate ideal and predicted Signal [AU] vs SNR [dB] relationships. In this

case, Input1, Input2, Input3, Input4 and Input6 happened to be 418, 112, 400, 2850

and 3200 respectively and the value of Output3 is 29365. The green colored line

indicates the fitted line of Signal [AU] with SNR [dB] for Signal [AU] values that

are less than 2× 103 .

Figure 1015: Plot of Signal [AU] vs SNR [dB].

97

Figure 1016: Plot of Signal [AU] vs SNR [dB] in the interval≈ 3×103−104 AU
from the sensor for a single settings combination. Recorded prominence (SNR[dB]
drop) value for this settings combination was ≈ 577 dB. One of the methods of
optimization is to choose the settings combination that produces the least SNR drop
in the interval ≈ 3× 103 − 104 AU.

The blue curve in Figure 1015 shows a linear relationship until Signal [AU]

reaches ≈ 3 × 103 AU. Ideally, we expect this behavior to continue for the rest of
the Signal values. A sudden dip of≈ 5 dB (see Figure 1016) is noticeable when the
Signal [AU] value is in the range,≈ 3×103−104 AU. Since it is highly unlikely to
achieve an ideal performance, we set a few criteria (heuristics) to choose a particular

settings combination that could give the smallest prominence in the SNR value at

the interval ≈ 3 × 103 − 104 AU and a Signal [AU] vs SNR [dB] curve that is
closest to the ideal Signal [AU] vs SNR [dB] curve. The best interpolated input

combination was filtered by applying different criterion described below. Lower

values are preferred for all the criteria except for criteria 4 and 5.

• MAE between ideal and predicted (criterion 1): MAE was calculated for
each of the settings combinations and serial numbers of each of the dataframes

(a single settings combination) was ordered in an ascending order of the cal

culated MAEs.

• Prominence of SNRdip (criterion 2): Serial numbers of each of the dataframes
(a single settings combination) was ordered in an ascending order of the cal

culated prominence values at ≈ 3× 103 − 104 AU.

• MAE between fitted line and predicted (criterion 3): Serial numbers of

98
each of the dataframes (of a single settings combination) was ordered in an

ascending order of the calculated MAE between fitted green line and pre

dicted blue curve of Figure 1015. Green line was fitted for Signal [AU] vs

SNR [dB] up to≈ 3×103−104 AU and extrapolated for the rest of the Signal
[AU] values.

• Area under curve (criterion 4): Serial numbers of each of the dataframes
(of a single settings combination) was ordered in an ascending order of the

calculated area under the curve of SNR [dB] vs Signal [AU].

• Minimum SNR value for the second transition (criterion 5): Serial num
bers of each of the dataframes (a single settings combination) was ordered

in descending order of the calculated minimum SNR [dB] for Signal [AU]

greater than ≈ 104 AU.

• Least value for Output3 (criterion 6): Serial numbers of each of the dataframes
(a single settings combination) was ordered in an ascending order of the cal

culated Output3 value.

The first index among the intersection of all the indices obtained from the above

steps gives the optimal input setting combination with a Signal [DN] vs SNR [dB]

curve that meets all the above criteria. Figure 1017 shows the optimized curve.

Figure 1017: Plot of Signal [AU] vs SNR [dB] for the corresponding input settings
combination that resulted in a Signal [AU] vs SNR [dB curve close to the ideal
Signal [AU] vs SNR [dB]. Input1, Input2, Input3, Input4, Input6 were found to be
430 120 485 2900 3525 respectively. Optimization was performed using all the
six criteria mentioned above.

99
Table 10.2: Various criteria values when the predictions where optimized for Signal
[AU] vs SNR [dB] curve and Output3.

criterion 1 criterion 2 criterion 3 criterion 5 criterion 6
1167.50 3.9 384.73 24.66 2.64

Table 10.2 shows the numerical values of different criteria used in the optimiza

tion process. If criterion 6 was excluded from the optimization criteria (i.e., Signal

[AU] vs SNR [dB] curve not optimized for Output3) then the Signal [AU] vs SNR

[dB] is shown in Figure 1018 and corresponding values of criteria are shown in

Table 10.3.

Figure 1018: Plot of Signal [AU] vs SNR [dB] for the corresponding input settings
combination that resulted in a Signal [AU] vs SNR [dB] curve close to the ideal
Signal [AU] vs SNR [dB]. Input1, Input2, Input3, Input4, Input6 were found to be
426 112 495 3000 3600 respectively. Optimization was performed using all the
six criteria mentioned above.

Table 10.3: Various criteria values when the predictions where optimized only for
Signal [AU] vs SNR [dB] curve.

criterion 1 criterion 2 criterion 3 criterion 5 criterion 6
1043.09 3.68 372.75 25.03 2.88

Figure 1018 was obtained by optimizing for only Signal [AU] vs SNR [dB]

curve. Hence, criterion 6 of Table 10.3 shows higher value than that of crite

rion 6 of Table 10.2.Many of the data preprocessing steps were parallelized using

python multiprocessing and neural network training and inference was performed

on NVIDIA TITAN GPUs. Effectively, we were able to cut down the time taken

for characterization from ≈15 days to ≈2 days.
In this chapter, we applied modern deep learning tools and methods to reduce

100
the time taken to characterize an image sensor. Specifically, we used a neural net

work as a function approximator to model the relationship between inputs and out

puts of an image sensor.

101

CHAPTER ELEVEN: CONCLUSION

In this work we employed spiking neural networks (SNNs) as an alternative to

deep neural networks (DNNs) to study the possibility of energy efficient neural net

works for classification tasks. We developed the required software tool (SPYKEFLOW)

[94] to facilitate various experiments conducted in this work. We documented the

effect of various hyperparameters on SNN’s learning abilities and we also explored

the abilities of SNNs in continual learning tasks. We proposed surrogate gradi

ents to classify the extracted spiking features for energyefficient neuromorphic/in

memory devices. In the last chapter, we presented the internship work done at ON

semiconductor for image sensor characterization using modern deep learning tools.

11.1 Summary

11.1.1 Chapter 4

In this chapter, we showed that MNIST training data ∈ R50000×784 transformed
to maxpooled neuron potentials ∈ R50000×500 after passing through an SNN with
two convolution and two pooling layers (2c2p) becomes linearly separable by an

SVM. We also showed that original MNIST training data ∈ R50000×784 is not lin
early separable by an SVM. These experiments were conducted to illustrate that

SNNs aid the separability of the input data.

11.1.2 Chapter 5

In this chapter, we examine ReinforcedSTDP (RSTDP) as a classification cri

teria for spike or membrane voltage feature vectors. We conclude that a simple

102
linear neural network (without a hidden layer) trained with error backpropagation

performed better than RSTDP.

11.1.3 Chapter 6

In this chapter, we use spikes obtained directly from a silicon retina (ATIS) to

train an SNN instead of using synthetically generated spikes from MNIST images.

We also show the results for transfer learning experiments conducted with a network

trained on synthetically generated spikes and tested on spikes from ATIS.

11.1.4 Chapter 7

In this chapter, we discuss the over training problem that arises when using

unsupervisedSTDP. We show that over training results in reduction in complexity

of the features learned in deeper layers and it can result in loss of classification

accuracy. We also presented a heuristic method to prevent over training.

11.1.5 Chapter 8

In this chapter, we introduce binary activations for the classification sections

of an SNNs. Subsequently, we introduce two different methods to calculate sur

rogate gradients for neurons with nondifferentiable activation functions. We also

showcase that binary activations and surrogate gradients help in significantly re

ducing the number of highprecision floating point multiplications. For example,

all the calculations in a matrix (floating point)vector (binary) multiplication can be

performed by simply choosing rows/columns.

11.1.6 Chapter 9

In this chapter, we demonstrate catastrophic forgetting in a DNN with 1c1p1fcn

structure. We also demonstrate that an SNN with same structure as a DNN is rel

atively more resistant to catastrophic forgetting. Subsequently, we also introduce

103
“importance per synapse” metric to immunize the classification sections of an SNN

against catastrophic forgetting in a single incremental task (SIT) scenario.

11.1.7 Chapter 10

In this chapter, we applied modern deep learning tools and methods to char

acterize an image sensor We demonstrate that a neural network can be used as a

function approximator to accelerate the characterization of an industrial sensor.

11.2 Future work

11.2.1 Time Dependent Classifier

In this work we used a binarized nonspiking DNN for classifying spike feature

vectors extracted using a spiking network. This work can be extended further by

having a feature classifier that can preserve the time information. This can poten

tially increase the classification accuracy. Further, time dependent classifier will

enable the network to use labelled and unlabeled data thereby making this approach

a suitable candidate for semisupervised learning applications.

11.2.2 Hardware Implementation

Current state of the art DNNs are not hardware friendly and their power con

sumption rates are not suitable for edge computing. The methods presented here

are a suitable candidate for implementation on hardware.

11.2.3 Learning Spike Times

In this work we used rank order coding and Difference of Gaussian (DoG) to

generate spikes, this approach limits the learnable texture information in the input

images which limits the problem solving ability of the rank order coding based

spiking networks. Methods that can learn the spike times such as BS4NN [36]

104
without using DoG can potentially enable spiking neural networks to solve complex

datasets such as ImageNet [40] and CIFAR100 [39]. Combining surrogate gradients

and methods that learn spike times can be promising approach to solve complex

datasets.

105

REFERENCES

[1] M. ABADI, A. AGARWAL, P. BARHAM, E. BREVDO, Z. CHEN, C. CITRO,

G. S. CORRADO, A. DAVIS, J. DEAN, M. DEVIN, S. GHEMAWAT,

I. GOODFELLOW, A. HARP, G. IRVING, M. ISARD, Y. JIA, R. JOZEFOW

ICZ, L. KAISER, M. KUDLUR, J. LEVENBERG, D. MANE, R. MONGA,

S. MOORE, D. MURRAY, C. OLAH, M. SCHUSTER, J. SHLENS,

B. STEINER, I. SUTSKEVER, K. TALWAR, P. TUCKER, V. VANHOUCKE,

V. VASUDEVAN, F. VIEGAS, O. VINYALS, P. WARDEN, M. WATTEN

BERG, M. WICKE, Y. YU, AND X. ZHENG. TensorFlow: LargeScale

Machine Learning on Heterogeneous Distributed Systems (2016).

[2] J. M. ALLRED AND K. ROY. Controlled Forgetting: Targeted Stimulation

and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learn

ing in Spiking Neural Networks. Frontiers in Neuroscience 14, 7 (2020).

[3] N. ANWANI AND B. RAJENDRAN. NormAD Normalized Approximate

Descent based supervised learning rule for spiking neurons. In “2015 In

ternational Joint Conference on Neural Networks (IJCNN)”, pp. 1–8 (July

2015).

[4] A. BALDOMINOS, Y. SAEZ, AND P. ISASI. A Survey of Handwritten Char

acter Recognition withMNIST and EMNIST. Applied Sciences 9(15) (2019).

[5] T. BEKOLAY, J. BERGSTRA, E. HUNSBERGER, T. DEWOLF, T. STEWART,

D. RASMUSSEN, X. CHOO, A. VOELKER, AND C. ELIASMITH. Nengo:

a Python tool for building largescale functional brain models. Frontiers in

Neuroinformatics 7, 48 (2014).

106
[6] D. BUTTS, C. WENG, J. JIN, C.I. YEH, N. A LESICA, J.M. ALONSO,

AND G. STANLEY. Temporal precision in the neural code and the timescales

of natural vision. Nature 449, 92–5 (10 2007).

[7] J. N. CHIASSON. “Introduction to probability theory and stochastic

processes”. Wiley (2013).

[8] F. CHOLLET. “Deep Learning with Python”. Manning Publications Co.,

USA, 1st ed. (2017).

[9] G. COHEN, S. AFSHAR, J. TAPSON, AND A. VAN SCHAIK. EM

NIST: an extension of MNIST to handwritten letters. arXiv eprints p.

arXiv:1702.05373 (Feb. 2017).

[10] J. CONRADT, R. BERNER, M. COOK, AND T. DELBRUCK. An embed

ded AER dynamic vision sensor for lowlatency pole balancing. In “2009

IEEE 12th International Conference on Computer Vision Workshops, ICCV

Workshops”, pp. 780–785 (Sep. 2009).

[11] M. COURBARIAUX, I. HUBARA, D. SOUDRY, R. ELYANIV, AND

Y. BENGIO. Binarized Neural Networks: Training Deep Neural Networks

with Weights and Activations Constrained to +1 or 1 (2016).

[12] M. DAVIES, N. SRINIVASA, T.H. LIN, G. CHINYA, P. JOSHI, A. LINES,

A. WILD, AND H. WANG. Loihi: A Neuromorphic Manycore Processor

with OnChip Learning. IEEE Micro PP, 1–1 (01 2018).

[13] A. DELORME, L. PERRINET, AND S. J. THORPE. Networks of integrate

andfire neurons using Rank Order Coding B: Spike timing dependent plas

ticity and emergence of orientation selectivity. Neurocomputing 3840, 539

– 545 (2001). Computational Neuroscience: Trends in Research 2001.

[14] P. DIEHL AND M. COOK. Unsupervised learning of digit recognition using

spiketimingdependent plasticity. Frontiers in Computational Neuroscience

9, 99 (2015).

107
[15] P. FERRÉ, F. MAMALET, AND S. J. THORPE. Unsupervised Feature Learn

ing With WinnerTakesAll Based STDP. Frontiers in Computational Neu

roscience 12, 24 (2018).

[16] R. FLORIAN. Reinforcement Learning Through Modulation of Spike

TimingDependent Synaptic Plasticity. Neural computation 19, 1468–502

(07 2007).

[17] K. FUKUSHIMA. Neocognitron: A selforganizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biologi

cal Cybernetics 36(4), 193–202 (Apr 1980).

[18] A. GEPPERTH AND C. KARAOGUZ. A BioInspired Incremental Learning

Architecture for Applied Perceptual Problems. Cognitive Computation 8(5),

924–934 (Oct 2016).

[19] R. GIRSHICK, J. DONAHUE, T. DARRELL, AND J. MALIK. Rich feature

hierarchies for accurate object detection and semantic segmentation. arXiv

eprints p. arXiv:1311.2524 (Nov 2013).

[20] X. GLOROT AND Y. BENGIO. Understanding the difficulty of training deep

feedforward neural networks. In Y. W. TEH AND M. TITTERINGTON, edi

tors, “Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics”, vol. 9 of “Proceedings of Machine Learning

Research”, pp. 249–256, Chia Laguna Resort, Sardinia, Italy (13–15 May

2010). PMLR.

[21] T. GOLLISCH AND M. MEISTER. Rapid Neural Coding in the Retina with

Relative Spike Latencies. Science 319(5866), 1108–1111 (2008).

[22] S. GROSSBERG. Competitive learning: From interactive activation to adap

tive resonance. Cognitive Science 11(1), 23 – 63 (1987).

108
[23] A. GUPTA AND L. LONG. Character Recognition using Spiking Neural

Networks. IEEE International Conference on Neural Networks Conference

Proceedings pp. 53 – 58 (09 2007).

[24] D. HASSABIS, D. KUMARAN, C. SUMMERFIELD, AND M. BOTVINICK.

NeuroscienceInspired Artificial Intelligence. Neuron 95, 245–258 (07

2017).

[25] K. HE, X. ZHANG, S. REN, AND J. SUN. Delving Deep into Rectifiers:

Surpassing HumanLevel Performance on ImageNet Classification (2015).

[26] M. HINES AND T. CARNEVALE. “NEURON Simulation Environment”, pp.

1–8. Springer New York, New York, NY (2013). In Encyclopedia of Com

putational Neuroscience, Jaeger, Dieter and Jung, Ranu, Editors.

[27] S. HOCHREITER AND J. SCHMIDHUBER. Long ShortTerm Memory.

Neural Computation 9(8), 1735–1780 (1997).

[28] K. HORNIK, M. STINCHCOMBE, AND H. WHITE. Multilayer feedforward

networks are universal approximators. Neural Networks 2(5), 359 – 366

(1989).

[29] C.W. HSU, C.C. CHANG, AND C.J. LIN. A Practical Guide to Support

Vector Classification. (November 2003).

[30] D. H. HUBEL AND T. N. WIESEL. Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. The Journal of Physi

ology 160(1), 106–154 (1962).

[31] U. JARAMILLOAVILA, H. ROSTROGONZALEZ, L. A. CAMUŇAS

MESA, R. DE JESUS ROMEROTRONCOSO, AND B. LINARES

BARRANCO. An address Event RepresentationBased Processing System for

a Biped Robot. International Journal of Advanced Robotic Systems 13(1),

39 (2016).

109
[32] Y. JIN, P. LI, AND W. ZHANG. HybridMacro/Micro Level Backpropagation

for Training Deep Spiking Neural Networks. arXiveprints (05 2018).

[33] S. R. KHERADPISHEH. private communication.

[34] S. R. KHERADPISHEH, M. GANJTABESH, AND T. MASQUELIER. Bio

inspired unsupervised learning of visual features leads to robust invariant

object recognition. Neurocomputing 205, 382 – 392 (2016).

[35] S. R. KHERADPISHEH, M. GANJTABESH, S. J. THORPE, AND

T. MASQUELIER. STDPbased spiking deep convolutional neural networks

for object recognition. Neural Networks 99, 56 – 67 (2018).

[36] S. R. KHERADPISHEH AND T. MASQUELIER. S4NN: temporal backpropa

gation for spiking neural networks with one spike per neuron (2019).

[37] J. KIRKPATRICK, R. PASCANU, N. RABINOWITZ, J. VENESS, G. DES

JARDINS, A. A. RUSU, K. MILAN, J. QUAN, T. RAMALHO, A. GRABSKA

BARWINSKA, D. HASSABIS, C. CLOPATH, D. KUMARAN, AND R. HAD

SELL. Overcoming catastrophic forgetting in neural networks. Proceedings

of the National Academy of Sciences 114(13), 3521–3526 (2017).

[38] M. KISELEV. Rate coding vs. temporal coding is optimum between? In

“2016 International Joint Conference on Neural Networks (IJCNN)”, pp.

1355–1359 (July 2016).

[39] A. KRIZHEVSKY. Learning Multiple Layers of Features from Tiny Images.

University of Toronto (05 2012).

[40] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON. ImageNet Clas

sification with Deep Convolutional Neural Networks. Neural Information

Processing Systems 25 (01 2012).

[41] F. KUNSTNER, L. BALLES, AND P. HENNIG. Limitations of the Empirical

Fisher Approximation for Natural Gradient Descent (2019).

110
[42] S. LATHUILIÉRE, P. MESEJO, X. ALAMEDAPINEDA, AND R. HORAUD.

A comprehensive analysis of deep regression (2018).

[43] Y. LECUN, Y. BENGIO, AND G. HINTON. Deep Learning. Nature 521,

436–44 (05 2015).

[44] Y. LECUN, L. BOTTOU, Y. BENGIO, AND P. HAFFNER. Gradientbased

learning applied to document recognition. Proceedings of the IEEE 86(11),

2278–2324 (Nov 1998).

[45] Y. LECUN, L. BOTTOU, Y. BENGIO, AND P. HAFFNER. Gradientbased

learning applied to document recognition. Proceedings of the IEEE 86(11),

2278–2324 (Nov 1998).

[46] Y. LECUN, C. CORTES, AND C. BURGES. MNIST handwritten digit data

base. ATT Labs [Online]. Available: http://yann. lecun. com/exdb/mnist 2

(2010).

[47] C. LEE, P. PANDA, G. SRINIVASAN, AND K. ROY. Training Deep Spik

ing Convolutional Neural Networks With STDPBased Unsupervised Pre

training Followed by Supervised FineTuning. Frontiers in Neuroscience 12,

435 (08 2018).

[48] J. H. LEE, T. DELBRUCK, AND M. PFEIFFER. Training Deep Spiking

Neural Networks Using Backpropagation. Frontiers in Neuroscience 10, 508

(2016).

[49] R. LEGENSTEIN, D. PECEVSKI, AND W. MAASS. Theoretical Analysis of

Learning with RewardModulated SpikeTimingDependent Plasticity. arXiv

eprints 20 (01 2007).

[50] Q. LIAO, J. Z. LEIBO, AND T. POGGIO. How Important is Weight Symme

try in Backpropagation? arXiv eprints p. arXiv:1510.05067 (Oct 2015).

111
[51] P. LICHTSTEINER, C. POSCH, AND T. DELBRUCK. A 128× 128 120 db 15

s latency asynchronous temporal contrast vision sensor. IEEE Journal of

SolidState Circuits 43(2), 566–576 (2008).

[52] T. LILLICRAP, D. COWNDEN, D. TWEED, AND C. J. AKERMAN. Random

synaptic feedback weights support error backpropagation for deep learning.

Nature Communications 7, 13276 (11 2016).

[53] Q. LIU, G. PINEDAGARCĨA, E. STROMATIAS, T. SERRANO

GOTARREDONA, AND S. B. FURBER. Benchmarking SpikeBased Visual

Recognition: A Dataset and Evaluation. Frontiers in Neuroscience 10, 496

(2016).

[54] D. MALTONI AND V. LOMONACO. Continuous learning in single

incrementaltask scenarios. Neural Networks 116, 56 – 73 (2019).

[55] H. MARKRAM, W. GERSTNER, AND P. J. SJÖSTRÖM. SpikeTiming

Dependent Plasticity: A Comprehensive Overview. Frontiers in Synaptic

Neuroscience 4, 2 (2012).

[56] T. MASQUELIER. “Spikebased computing and learning in brains, machines,

and visual systems in particular (HDR Report)”. PhD thesis, Université

Toulouse III Paul Sabatier (10 2017).

[57] T. MASQUELIER, R. GUYONNEAU, AND S. J. THORPE. Spike Timing

Dependent Plasticity Finds the Start of Repeating Patterns in Continuous

Spike Trains. PLOS ONE 3(1), 1–9 (01 2008).

[58] T. MASQUELIER AND S. J. THORPE. Unsupervised Learning of Visual

Features through Spike Timing Dependent Plasticity. PLoS Computational

Biology 3, 1762 – 1776 (2007).

[59] W. MCKINNEY ET AL.. Data structures for statistical computing in python.

In “Proceedings of the 9th Python in Science Conference”, vol. 445, pp. 51–

56. Austin, TX (2010).

112
[60] B. MEFTAH, O. LEZORAY, AND A. BENYETTOU. Segmentation and Edge

Detection Based on Spiking Neural Network Model. Neural Processing Let

ters 32(2), 131–146 (Oct 2010).

[61] M. MOZAFARI, M. GANJTABESH, A. NOWZARI, S. THORPE, AND

T. MASQUELIER. Combining STDP and RewardModulated STDP in Deep

Convolutional Spiking Neural Networks for Digit Recognition. arXiv e

prints (03 2018).

[62] M. MOZAFARI, M. GANJTABESH, A. NOWZARIDALINI, AND

T. MASQUELIER. SpykeTorch: Efficient Simulation of Convolutional

Spiking Neural Networks With at Most One Spike per Neuron. Frontiers in

Neuroscience 13, 625 (2019).

[63] M. MOZAFARI, S. R. KHERADPISHEH, T. MASQUELIER, A. NOWZARI

DALINI, AND M. GANJTABESH. FirstSpikeBased Visual Categorization

Using RewardModulated STDP. IEEE Transactions on Neural Networks

and Learning Systems 29(12), 6178–6190 (Dec 2018).

[64] E. O. NEFTCI, C. AUGUSTINE, S. PAUL, AND G. DETORAKIS. Event

Driven Random BackPropagation: Enabling Neuromorphic Deep Learning

Machines. Frontiers in Neuroscience 11, 324 (2017).

[65] B. NESSLER, M. PFEIFFER, L. BUESING, AND W. MAASS. Bayesian Com

putation Emerges in Generic Cortical Microcircuits through SpikeTiming

Dependent Plasticity. PLOS Computational Biology 9(4), 1–30 (04 2013).

[66] M. A. NIELSEN. Neural Networks and Deep Learning (Jan 2015).

[67] G. ORCHARD, A. JAYAWANT, G. K. COHEN, AND N. THAKOR. Con

verting Static Image Datasets to Spiking Neuromorphic Datasets Using Sac

cades. Frontiers in Neuroscience 9, 437 (2015).

[68] A. ORORBIA. Spiking Neural Predictive Coding for Continual Learning

from Data Streams (2019).

113
[69] P. PANDA, A. AKETI, AND K. ROY. Towards Scalable, Efficient and Accu

rate Deep Spiking Neural Networks with Backward Residual Connections,

Stochastic Softmax and Hybridization (2019).

[70] G. I. PARISI, R. KEMKER, J. L. PART, C. KANAN, AND S. WERMTER.

Continual lifelong learning with neural networks: A review. Neural Net

works 113, 54 – 71 (2019).

[71] L. PAULUN, A. WENDT, AND N. KASABOV. A Retinotopic Spiking Neural

Network System for Accurate Recognition of Moving Objects Using Neu

Cube and Dynamic Vision Sensors. Frontiers in Computational Neuro

science 12, 42 (2018).

[72] M. PFEIFFER AND T. PFEIL. Deep Learning With Spiking Neurons: Oppor

tunities and Challenges. Frontiers in Neuroscience 12, 774 (2018).

[73] C. POSCH, D. MATOLIN, R. WOHLGENANNT, M. HOFSTÄTTER,

P. SCHÖN, M. LITZENBERGER, D. BAUER, AND H. GARN. Live demon

stration: Asynchronous timebased image sensor (ATIS) camera with full

custom AE processor. In “Proceedings of 2010 IEEE International Sympo

sium on Circuits and Systems”, pp. 1392–1392 (May 2010).

[74] A. N. REFENES, A. ZAPRANIS, AND G. FRANCIS. Stock performance

modeling using neural networks: A comparative study with regression mod

els. Neural Networks 7(2), 375 – 388 (1994).

[75] P. REINAGEL AND R. C. REID. Temporal Coding of Visual Information in

the Thalamus. Journal of Neuroscience 20(14), 5392–5400 (2000).

[76] A. ROCKE. “The weight transport problem”. paulispace (Jun 2017).

[77] B. D. ROUHANI, A. MIRHOSEINI, AND F. KOUSHANFAR. DeLight:

Adding Energy Dimension To Deep Neural Networks. In “Proceedings of

the 2016 International Symposium on Low Power Electronics and Design”,

114
ISLPED âĂŹ16, p. 112âĂŞ117, New York, NY, USA (2016). Association

for Computing Machinery.

[78] B. RUECKAUER, I.A. LUNGU, Y. HU, AND M. PFEIFFER. Theory and

Tools for the Conversion of Analog to Spiking Convolutional Neural Net

works. arXiv eprints p. arXiv:1612.04052 (Dec 2016).

[79] V. SAXENA, X. WU, I. SRIVASTAVA, AND K. ZHU. Towards Neuromor

phic Learning Machines Using Emerging Memory Devices with BrainLike

Energy Efficiency. Journal of Low Power Electronics and Applications 8(4)

(2018).

[80] J. SCHMIDHUBER. Deep learning in neural networks: An overview. Neural

Networks 61, 85 – 117 (2015).

[81] A. SHAWON, M. JAMILUR RAHMAN, F. MAHMUD, AND M. M. AREFIN

ZAMAN. Bangla Handwritten Digit Recognition Using Deep CNN for Large

and Unbiased Dataset. In “2018 International Conference on Bangla Speech

and Language Processing (ICBSLP)”, pp. 1–6 (Sep. 2018).

[82] E. SHELHAMER, J. LONG, AND T. DARRELL. Fully Convolutional Net

works for Semantic Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence 39(4), 640–651 (April 2017).

[83] J. SJÖSTRÖM AND W. GERSTNER. SpikeTiming Dependent Plasticity.

Scholarpedia 5(2), 1362 (2010). revision #184913.

[84] S. SKORHEIM, P. LONJERS, AND M. BAZHENOV. A Spiking Network

Model of Decision Making Employing Rewarded STDP. PLOS ONE 9(3),

1–15 (03 2014).

[85] A. E. SMITH AND A. K. MASON. COST ESTIMATION PREDICTIVE

MODELING: REGRESSION VERSUS NEURAL NETWORK. The Engi

neering Economist 42(2), 137–161 (1997).

115
[86] E. STROMATIAS, M. SOTO, T. SERRANOGOTARREDONA, AND B. L.

B. LINARESBARRANCO. An EventDriven Classifier for Spiking Neural

Networks Fed with Synthetic or Dynamic Vision Sensor Data. Frontiers in

Neuroscience 11, 350 (2017).

[87] A. TAVANAEI, M. GHODRATI, S. R. KHERADPISHEH, T. MASQUELIER,

AND A. S. MAIDA. Deep Learning in Spiking Neural Networks. arXiv

eprints p. arXiv:1804.08150 (Apr 2018).

[88] A. TAVANAEI, Z. KIRBY, AND A. MAIDA. Training Spiking ConvNets by

STDP and Gradient Descent. 2018 International Joint Conference on Neural

Networks (IJCNN) pp. 1–8 (07 2018).

[89] A. TAVANAEI AND A. S. MAIDA. Multilayer unsupervised learning in a

spiking convolutional neural network. In “2017 International Joint Confer

ence on Neural Networks (IJCNN)”, pp. 2023–2030 (May 2017).

[90] A. TAVANAEI, T. MASQUELIER, AND A. S. MAIDA. Acquisition of visual

features through probabilistic spiketimingdependent plasticity. 2016 Inter

national Joint Conference on Neural Networks (IJCNN) pp. 307–314 (July

2016).

[91] R. VAILA, J. CHIASSON, AND V. SAXENA. Deep Convolutional

Spiking Neural Networks for Image Classification. arXiv eprints p.

arXiv:1903.12272 (Mar 2019).

[92] R. VAILA, J. CHIASSON, AND V. SAXENA. Feature Extraction Using Spik

ing Convolutional Neural Networks. In “Proceedings of the International

Conference on Neuromorphic Systems”, ICONS âĂŹ19, New York, NY,

USA (2019). Association for Computing Machinery.

[93] R. VAILA, J. CHIASSON, AND V. SAXENA. Spiking CNNs with PYNN

and NEURON. In “NICE Workshop Series”, Portland, Oregon, USA (Feb.

2019). Intel.

116
[94] R. VAILA, J. CHIASSON, AND V. SAXENA. A Deep Unsupervised Feature

Learning Spiking Neural Network with Binarized Classification Layers for

EMNIST Classification (2020).

[95] R. VAILA, D. LLOYD, AND K. TETZ. Regression with Deep Learning for

Sensor Performance Optimization (2020).

[96] R. VANRULLEN. Perception Science in the Age of Deep Neural Networks.

Frontiers in Psychology 8, 142 (2017).

[97] X. WU, V. SAXENA, AND K. ZHU. Homogeneous Spiking Neuromorphic

System for RealWorld Pattern Recognition. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems 5(2), 254–266 (June 2015).

[98] X. WU, V. SAXENA, K. ZHU, AND S. BALAGOPAL. A CMOS Spiking

Neuron for BrainInspired Neural Networks With Resistive Synapses and In

Situ Learning. IEEE Transactions on Circuits and Systems II: Express Briefs

62(11), 1088–1092 (Nov 2015).

[99] D. ZAMBRANO, R. NUSSELDER, H. S. SCHOLTE, AND S. M. BOHTÉ.

Sparse Computation in Adaptive Spiking Neural Networks. Frontiers in Neu

roscience 12, 987 (2019).

[100] F. ZENKE, B. POOLE, AND S. GANGULI. Continual learning through

synaptic intelligence. In D. PRECUP AND Y. W. TEH, editors, “Proceed

ings of the 34th International Conference on Machine Learning”, vol. 70 of

“Proceedings of Machine Learning Research”, pp. 3987–3995, International

Convention Centre, Sydney, Australia (06–11 Aug 2017). PMLR.

[101] J. ZYLBERBERG, J. T. MURPHY, AND M. R. DEWEESE. A Sparse Coding

Model with Synaptically Local Plasticity and Spiking Neurons Can Account

for the Diverse Shapes of V1 Simple Cell Receptive Fields (2011).

117

APPENDIX

118

A.1 Effect of lateral inhibition in pooling layers on sub

sequent convolution layers

We studied the effects of lateral inhibition [35][34] in convolution and pooling

layers in terms classification accuracy and features learned. Not having lateral in

hibition in pool 1 layer results in better classification provided overtrain in L4 is

prevented.

A.2 With lateral inhibition in pooling layer

Features learnt in the subsequent layers tend to be more complex looking if

there is lateral inhibition in this layer and less complex looking if lateral inhibition

is not applied. When lateral inhibition is applied, neurons in pooling layers have no

more than one spike per image thereby allowing only the most dominant neuron at a

location () and across all the maps to spike. So, out of all the neurons that could

have spiked, the synapses of the neuron that spiked first (dominant) correlate the

most with the receptive field. Hence the features that are learned in the subsequent

convolution layers are more complex looking.

119

Figure A1: Weights of first 150 maps of L4 that is trained by in coming spikes
with lateral inhibition in L3, STDP competition region in L4 set to R500×3×3 and
with homeostasis signal applied in L4, notice that the reconstructed features are
quite complex and they could well represent a digit or a major section of a digit,
note that all neurons of a map in a layer will have shared weights. In this experiment
number of maps is L4 was set to 500.

A.3 Scarcity of the spikes

With lateral inhibition in pooling layer (L3), number of spikes available at L4 is

reduced drastically. This prevents the build up of the max pooled potentials of the

L4 layer thus it gets harder for a classifier to classify these vectors.

