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ABSTRACT

Spiking neural networks are biologically plausible counterparts of artificial neural
networks. Artificial neural networks are usually trained with stochastic gradient de-
scent (SGD) and spiking neural networks are trained with bio-inspired spike timing
dependent plasticity (STDP). Spiking networks could potentially help in reducing
power usage owing to their binary activations. In this work, we use unsupervised
STDP in the feature extraction layers of a neural network with instantaneous neu-
rons to extract meaningful features. The extracted binary feature vectors are then
classified using classification layers containing neurons with binary activations.
Gradient descent (backpropagation) is used only on the output layer to perform
training for classification. Surrogate gradients are proposed to perform backprop-
agation with binary gradients. The accuracies obtained for MNIST and the bal-
anced EMNIST data set compare favorably with other approaches. The effect of
the stochastic gradient descent (SGD) approximations on learning capabilities of
our network are also explored. We also studied catastrophic forgetting and its effect
on spiking neural networks (SNNs). For the experiments regarding catastrophic
forgetting, in the classification sections of the network we use a modified synaptic
intelligence that we refer to as cost per synapse metric as a regularizer to immunize
the network against catastrophic forgetting in a Single-Incremental-Task scenario
(SIT). In catastrophic forgetting experiments, we use MNIST and EMNIST hand-
written digits datasets that were divided into five and ten incremental sub-tasks
respectively. We also examine behavior of the spiking neural network and empiri-
cally study the effect of various hyper-parameters on its learning capabilities using

the software tool SPYKEFLOW that we developed. We employ MNIST, EMNIST

X



and N-MNIST data sets to produce our results.
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CHAPTER ONE: INTRODUCTION

Deep learning, i.e., the use of deep convolutional neural networks (DCNN ), is
a powerful tool for pattern recognition (image classification) and natural language
(speech) processing [80][66]. Deep convolutional networks use multiple convolu-
tion layers to learn the input data [43] [82] [19]. They have been used to classify
the large data set IMAGENET [40] with an accuracy of 96.6% [8]. In this work deep
spiking networks are considered [72]. This is a new paradigm for implementing ar-
tificial neural networks using mechanisms that incorporate spike-timing dependent
plasticity which is a learning algorithm discovered by neuroscientists [24] [56]. Ad-
vances in deep learning have opened up a multitude of new avenues that once were
limited to science fiction [96]. The promise of spiking networks is that they are less
computationally intensive and much more energy efficient as the spiking algorithms
can be implemented on a neuromorphic chip such as Intel’s LOIHI chip [12] (oper-
ates at low power because it runs asynchronously using spikes). Our work is based
on the work of Masquelier and Thorpe [58] [57], and Kheradpisheh et al. [35] [34].
In particular a study is done of how such networks classify MNIST image data [46]
and N-MNIST spiking data [67]. The networks used in [35] [34] consist of multiple
convolution/pooling layers of spiking neurons trained using spike timing dependent
plasticity (STDP [83]) and a final classification layer done using a support vector
machine (SVM) [29].

1.1 Spike Timing Dependent Plasticity (STDP)

Spike timing dependent plasticity (STDP) [55] has been shown to be able to

detect hidden (in noise) patterns in spiking data [57]. Figure 1-1 shows a simple
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2 layer fully connected network with NV input (pre-synaptic) neurons and 1 output

neuron. The spike signals s;(t) are modelled as being either 0 or 1 in one millisec-
ond increments. That is, 1 msec pulse of unit amplitude represents a spike while
a value of 0 represents no spike present. See the left side of the Figure 1-1. Each
spike signal has a weight (synapse) associated with it which multiplies the signal to
obtain w;s;(t) which is called the post synaptic potential due to the i input neuron.

These potentials are then summed as

V(t) = Zwksk(t).

V (t) is called the membrane potential of the output neuron. At any time ¢ if the

membrane potential V' (¢) is greater than a specified threshold v, i.e., if

> V(t) >,

then the output neuron spikes. 7 is the entire duration of the simulation. By this
we mean that the output neuron produces a 1 msec pulse of unit amplitude. See the

right side of Figure 1-1.

5,.(0) w0 N Input Neurons
sl(f) —bQ Wy Output Neuron
: tmsec : .
‘ —| |- k ‘ [—I sy(2) Wy Vit) :k%IWkSk (62) Ic:tui‘:p(l):;uron spikes

Figure 1-1: The neurons s;,7 = 1, ..., IV are the pre-synaptic neurons and the output
neuron is the post-synaptic neuron.

Denote the input spike pattern s(t) as

S1 (t)

s(t) = 52:@) . (1.1)

SN(t)
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Lett; < ty < t3 < --- be a sequence of times for which the spike pattern in

Equation 1.1 is fixed, that is, sfizeqa = S(t1) = s(t2) = s(t3) = --- while at all
other times the values s;(t) are random (E.g., P(s;(t) = 1) = 0.01 and P(s;(t) =
0) = 0.99). The idea here is that the weights can be updated according to an
unsupervised learning rule that results in the output spiking if and only if the fixed
pattern is present. The learning rule used here is called spike timing dependent
plasticity or STDP. Specifically, we used a simplified STDP model as in given as
[35]

+CL+U)Z'(]_ - wi), if tout - t’m S 0
w; «— w; + Aw;, Aw; =

—a’wi(l — wi), if toue — tin > 0.

Here t¢;,, and t,,; are the spike times of the pre-synaptic (input) and the post-synaptic
(output) neuron, respectively. That is, if the i input neuron spikes before the output
neuron spikes then the weight w; is increased otherwise the weight is decreased.!
Learning refers to the change Aw; in the synaptic weight w; with ™ and o~ denot-
ing the learning rate constants. These rate constants are initialized with low values
(0.004, 0.003) and are typically increased as learning progresses. This STDP rule is
considered simplified because the amount of weight change doesn’t depend on the
time duration between pre-synaptic and post-synaptic spikes.

To summarize, if the pre-synaptic (input) neuron spikes before post-synaptic
(output) neuron, then the synapse is increased. If the pre-synaptic neuron doesn’t
spike before the post-synaptic neuron then it is assumed that the pre-synaptic neuron
will spike later and the synapse is decreased. The membrane potential profile of the
type of output neuron considered here looks as shown in the Figure 1-2. In Figure
1-2 the output neuron is shown to receive a spike at 1 msec, two spikes at 2 msec
and another two spikes at 3 msec. The output neuron spikes at time 3 msec as its

membrane potential exceeded the threshold (v = 4.5).

'The input neuron is assumed to have spiked after the output neuron spiked.
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Figure 1-2: Spike generation by an output neuron.

Figure 1-3 shows a raster plot of an input neuron versus its spike times for the
first 54 msecs. Figure 1-3 shows N = 100 input neurons and at any time ¢ a dot
(x) denotes a spike while an empty space denotes no spike. Red dots in the plot
indicates a spike as part of the fixed pattern of spikes sfjzeq. In Figure 1-3 the
pattern presented to the output neuron is 5 msec long in duration. The blue part of
Figure 1-3 denotes random spikes being produced by the input neurons (noise).

On close observation of Figure 1-3 one can see that fixed spike pattern in red is

presented at time 0, time 13, and time 38.

100] & wx, 5ors 0t o ey TR
801 iy 1 Ler titiegs

601 %,

Input Neurons

40} - Ej:. A8 - B

20! i’

Time (ms)

Figure 1-3: The pattern sy, is red and has a duration of 5 miliseconds. This
pattern is presented recurrently to the network at random times. The random noisy
spikes are represented in blue.

Using only the above STDP learning rule, the output neuron learns to spike only
when the fixed pattern sy;,.4 1s produced by the input neurons. With the weights
w; set randomly from normal distribution, i.e., w; ~ N(0.5,0.05) Figure 1-4 (top

plot) shows the output spiking for the first 50 msecs. However after about 2000
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msec, Figure 1-4 (middle plot) shows the output neuron starts to spike selectively,

though it incorrectly spikes at times when the pattern is not present. Finally, after
about 3000 msec, Figure 1-4 (bottom plot) shows that the output neuron spikes only

when the pattern is present.

* * *

o
*
*
*
*
*
*
*

0 5 10 15 20 25 30 35 40 45

* |k * *  * * *  *

#Output neuron
*
*

20012004 2011 20162019 20262029 2035 20452048

0 * * * *

3001 3011 Time (ms) 3033 3045

Figure 1-4: The grey box indicates the fixed pattern s¢;,.4 1s present in the input
neurons ;.

1.2 Convolution Operation

In this work spiking convolutional neural networks (SCNN) are used for feature
extraction. A short explanation of convolution is now presented. Figure 1-5 shows
a convolution operation on an input image.

Uu—> u—r

«— =
I

(7

|

Input Image Iin(u’v) Output Image Iom(u,v)

Figure 1-5: Convolution operation.

Let
WC(i7j)7 0§Z,]§4
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denote a 5 x5 convolution weight kernel (filter) indicated by the red square Figure 1-

5 above. With the kernel centered on the location (u, v) of the input image I, (u, v)
(0 < u,v < 14) the value I, (u, v) (0 < u, v < 14) of the output image at (u, v) is

given by
Jj=2 i=2

Lut(u,0) = Y > Lin(u+i,0 + ))We(i, j).

j=—2i=—2
Note that the shape of the output image is same as the input image, such convolu-
tions are called same mode convolutions.

Convolution networks are used to detect features in images. To explain, consider
the convolution kernel W4 (4, 7, 1) as shown in Figure 1-6. This kernel is used to
find vertical lines of spikes at any location of the spiking input image. For example,
at the location (u,v) at time 7, the kernel is convolved with the spiking image to
give

2 2
Z Z Sin(u+ 4,0+ 4, T)Wer (i, 7, 1).
j=—2i=—2
If there is a vertical line of spikes in the spiking image that matches up with the
kernel, then this result will be a maximum (maximum correlation of the kernel with
the image). The accumulated membrane potential for the neuron at (u, v) of mapl

of the Convl1 layer is given by

Vin(u,v,t,1) = Z(Z Zsmquvarj, T)We i, j, ))

Jj=—21i=-2

The neuron at (u,v) of map 1 of the Convl layer then spikes at time ¢ if
Vn(ll) (U, v, t) > o1

where ¢ is the threshold. If the neuron at (u, v) in map 1 of Conv1 spikes, then a

vertical line of spikes have been detected in the spiking image centered at (u, v).
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Figure 1-6: Feature detection.

Figure 1-7 shows that map 2 (second feature map) of Convl is used to detect
a line of spikes at 45 degrees. The third feature map (map 3) is used to detect a
line of spikes at 135 degrees and the fourth feature map (map 4) is used to detect a
horizontal line of spikes. A typical SCNN has multiple layers. Each layer will have

multiple feature maps.

M@ WG | W
0lo[1]0[0] [0[0]0]0[1] ¥ v|u
olo[1]olo| [o[oje[1]0 1
0/o[1/0(0| [0[0[1]0/0
olo[1]o]o| [o|1]o]o[o
N
o/oj7/0/o] [1{0/0j0/D
\r\- ~~~~~

. . ST
WCI(I,J,s) WCl(l,j,4) T - e
1]0[0]0]0] [0]0]0]0[0 \
o[1]|olo]o| |o]olo]o[o
oo[1[0/0| [1[11]1]1 —~ @' V.w)
ololo[1]o] [o]o]o]olD] ., ',
oojo[o[1] [o[clojo[o]

convolution window L ”1:4

Figure 1-7: Feature detection.



CHAPTER TWO: LITERATURE SURVEY

In 1951 Hubel and Wiesel [30] showed that a cat’s neurons in the primary visual
cortex are tuned to simple features and the inner regions of the cortex combined
these simple features to represent complex features. The neocognitron model was
proposed in 1980 by Fukushima to explain this behavior [17]. This model didn’t
require a "teacher" (unsupervised) to learn the inherent features in the input, akin
to the brain. The neocognitron model is a forerunner to the spiking convolutional
neural networks considered in this work. These convolutional layers are arranged
in layers to extract features in the input data. The terminology "deep" CNNs refers
to a network with many such layers. However, the deep CNNs used in industry
(Google, Facebook, etc.) are fundamentally different in that they are trained using
supervision (back propagation of a cost function). Here our interest is to return
to the neocognitron model using spiking convolutional layers in which all but the

output layer is trained without supervision.

2.1 Unsupervised Networks

A network equipped with STDP [55] and lateral inhibition was shown to de-
velop orientation selectivity similar to the visual frontal cortex in a cat’s brain [13]
[101]. STDP was shown to facilitate approximate Bayesian computation in the
visual cortex using expectation-maximization [65]. STDP is used for feature ex-
traction in multi-layer spiking CNNs. It has been shown that deeper layers combine
the features learned in the earlier layers in order to represent advanced features, but
at the same time sparsity of the network spiking activity is maintained [15] [35]
[34] [58] [71] [87] [90] [89] [99]. In [14] a fully connected network trained using
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unsupervised STDP and homeostasis achieved a 95.6% classification accuracy on

the MNIST data set.

2.2  Reward Modulated STDP

Mozafari et al. [61] [63] proposed reward modulated STDP (R-STDP) to avoid
using a support vector machine (SVM) as a classifier. It has been shown that the
STDP learning rule can find spiking patterns embedded in noise [57]. That is,
after unsupervised training, the output neuron spikes if the spiking pattern is input
to it. A problem with this unsupervised STDP approach is that as this training
proceeds the output neuron will spike when just the first few milliseconds of the
pattern have been presented. (For example, the pattern in Figure 1-3 is 5 msecs
long and the output starts to spike when only (say) the first 2 msecs of the pattern
have been presented to it though it should only spike after the full 5 msec pattern
has been presented. Mozafari et al. showed in [63] that R-STDP helps to alleviate
this problem.

When unsupervised training methods are used, the features learned in the last
layer are used as input to an SVM classifier [34][35] or a simple two or three layer
back propagation classifier [86]. In contrast, R-STDP uses a reward or punishment
signal (depending upon if the prediction is correct or not) to update the weights
in the final layer of a multi-layer (deep) network. Spiking convolutional networks
are successful in extracting features [63][34][35]. Because R-STDP is a supervised
learning rule, the extracted features (reconstructed weights) more closely resemble
the object they detect and thus can more easily differentiate between a digit “1”
and a digit "7" compared to STDP. That is, reward modulated STDP seems to com-
pensate for the inability of the STDP to differentiate between features that closely
resemble each other [16] [49] [61] [84]. It is also reported in [61] that R-STDP is
more computationally efficient. However, R-STDP is prone to over fitting, which is
alleviated to some degree by scaling the rewards and punishments, e.g., receiving

higher punishment for a false positive and a lower reward for a true positive [61]
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[63]. In more detail, the reward modulated STDP learning rule is:

If a reward signal is generated then the weights are updated according to

Aw;j = _%a;wzj(l —w;;)  ift;—t; > 0.

If a punishment signal is generated then the weights are updated according to

Awij = —N]}\";’t a;wij(l — wij) lft] — tz S 0

Awg; =+t a w;; (1 —wy;) ift; —t; > 0.

Here ¢; and ¢; are the pre- and post-synaptic times, respectively. For every N in-
put images, N,,;ss and Np;; are a number of misclassified and correctly classified
samples respectively. Note that V,,;ss + Npiz = N, if the decision of the network
is based on the maximum potential of the network, if the decision of the network
is based on the early spike N,,;ss + Npiz < N because there might be not be any

spikes for some inputs.

2.3 Spiking Networks with Backpropagation

In [47] a two layer unsupervised spiking CNN was used for feature extraction.
The output of these layers were input to a type of softmax cost function for classi-
fication with the error back propagated through all layers. They were able to obtain
a classification accuracy 99.1% on the MNIST data set. A similar approach with
comparable accuracy was carried by [88]. Other methods such as computing the
weights on conventional (non spiking) CNNs trained using the back propagation
algorithm and then converting them to work on spiking networks have been shown
to achieve an accuracy of 99.4% on MNIST data set and 91.35% on CIFAR10 data
set [78]. An approximate back propagation algorithm for spiking neural networks
was proposed in [3] [48]. In [32] a spiking CNN with 15C5-P2-40C5-P2-300-10

layers using error back propagation through all the layers reported an accuracy of
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99.49% on the MNIST data set. The authors in [32] also classified the N-MNIST

data set using a fully connected three-layer network with 800 neurons in the hidden
layer and reported an accuracy of 98.84%.

Another approach to back propagation in spiking networks is the random back
propagation approach. Firstly, the standard back propagation equations in (non-
spiking) neural networks are now summarized [66]. The gradient of a quadratic

cost C' = Y 7" (y — a’)? gives the error from the last layer as

ac
6L = WU (ZL). (21)

a” is the activation of the neurons in the output layer, o is the activation function and
z is the net input to the output layer. This error on the last layer is back propagated
according to

& = (WHHTe*h o o'(2) (2.2)

where W*! are the weights connecting the /** and (I + 1) layer. The weights and

biases are updated as follows:

oC

— = (2.3)
vt —
80 -1l
—— =a (2.4)
owl, kY

In equation (2.2), the weight matrix W!*! connecting the I"* and (I + 1) layer is
the same as the weight matrix used in forward propagation to calculate the activa-
tions a'*! of (I + 1)™ layer. This is bothersome to the neuroscience community
as it is not biologically plausible [50] [22] [76]. This is referred to as the weight
transport problem. Lillicrap et al. [52] showed that the back propagation algorithm
works well even if W'*! in equation (2.2) is replaced with another fixed random
matrix (W’)!*1, This eliminates the requirement of weight symmetry, i.e., the same
weights for forward and backward propagations. A neuromorphic hardware spe-
cific adaptation of random error back propagation that solves the weight transport

problem was introduced by [64] and was shown to achieve an error rate of 1.96%
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for the MNIST data set. The cost function in [64] is defined as

Ly = 0-52@5’@) — vl(t))? (2.5)

where e;(t) is the error of the i'* output neuron and v” and ' are the firing rates of

the prediction neuron and the label neuron.

0Ly, ovr(t)
o = —;el(t) v (2.6)

07 (1)
oW

In equation (2.6) was approximated as

vr(t) 1, ifs"(t) =1 and buin < L;(t) < bmax

— 7 x (2.7)
oW 0, otherwise.
where [;(t) is the current entering into " post-synaptic neuron and s"() = 1

indicates the presence of a pre-synaptic spike. For more details see [64]. The

weight update for the last layer is then

—e;(t), if sh(t) =1 and b, < Iz t) < bma.x
AWE « (®) /0 (® (2.8)

0, otherwise.

The weight update for hidden layers is

E o C
gixer (T), if s5(¢t) = 1 and by, < [z t) < bma.x

)
0, otherwise.

where e (t) denotes the error term of the k™ neuron in the output layer and gy, is
a fixed random number as suggested by the random back propagation algorithm. In
the work to be reported below, random back propagation was not used. Specifically,

when back propagation is used below, it is only between the penultimate and output
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layer making random back propagation unnecessary.

2.4 Spike Encoding

Spikes are either rate coded or latency coded [21] [38] [75] [6]. Rate coding
refers to the information encoded by the number of spikes per second (more spikes
per time carries more information). In this case the spike rate is determined by the
mean rate of a Poisson process. Latency encoding refers to the information encoded
in the time of arrival of a spike (earlier spikes carry more information). The raster
plot of Figure 1-3 shows that spatiotemporal information is provided by the input
spikes to the output neuron. That is, which input neuron is spiking (spatio) and
the time a neuron spikes (temporal) is received by the output neuron. The spiking
networks use this spatiotemporal information to extract features (e.g., detect the

pattern in Figure 1-3) in the input data [23] [60].

2.5 Realtime Spikes

Image sensors (silicon retinas) such as ATIS [73] and eDVS [10] [51] provide
(latency encoded) spikes as their output. These sensors detect changes in pixel in-
tensities. If the pixel value at location (u, v) increases then an ON-center spike is
produced while if the pixel value decreased an OFF-center spike is produced. Fi-
nally, if the pixel value does not change, no spike is produced. The spike data from
an image sensor is packed using an address event representation (AER [31]) proto-
col and can be accessed using serial communication ports. A recorded version of
spikes from eDVS data set was introduced in [53] and a similar data set of MNIST

images recorded with ATIS data set was introduced in [67].
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CHAPTER THREE: BACKGROUND

3.1 Spiking Images

We have considered the standard 27 x 27 grey-scale MNIST images' [46] and
the spiking N-MNIST data files [67] for our experiments. In the case of the MNIST
images we needed to convert them to spikes. This was done by first using both
an on-center and an off-center Difference of Gaussian (DoG) convolution filter

L'y, .0, (7, ) for edge detection given by

i2+j2 Z'2+j2

1 207 L 7942 . .
. ] - 2 —3<i<3,-3<5<
Kal,m(Zvj) = 27T0’%e 1 27ra§€ for 3 <1< 3, 3 S7) s 3

0 otherwise

where 01 = 1, 09 = 2 for the on-center and o7 = 2, 05 = 1 for the off-center.

ON Center filter

0.90
0.75
0.60
0.45
0.30
0.15
0.00
—-0.15

01 2 3 456

OFF Center filter 0.15

0.00
-0.15
h -0.30
~0.45
| ~0.60
~0.75
~0.90

01 2 3 45 6

D LB W N P O
S U1 W N = O

Figure 3-1: On center filter has higher values in the center whereas the off center
filter has lower values in the center. Color code indicates the filter values.

With the input image I;,(u,v) € R?™27 the output of each of the two DoG

"'We removed the outer most pixels in the data set [46] giving 27 x 27 images.
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filters is computed using the same mode convolution

j=3 =3

Lo (,0) = 3 Y " Lin(u+ 4,0+ ) Ko, 0, (i, j) for 0 <u<26,0<v <26,
j=—3i=—3

Original Image

R%construction of ON DoG

10

20

0 20 0

Figure 3-2: Left: Original grey-scale image. Center: Output of the ON DoG filter.
Right: Accumulation of spikes (white indicates a spike, black indicates no spike).

OFF DoG Reconstruction of OFF DoG

20

Figure 3-3: Left: Original grey-scale image. Center: Output of the OFF DoG filter.
Right: Accumulation of spikes (white indicates a spike, black indicates no spike).

Then these two resulting “images” were then converted to an on and an off
spiking image as follows: At each location (u,v) of the output image I, ,, (u, v)

a unit spike s, is produced if and only if [33]

Loy .00 (1, v) > Ypoc = 50.

The spike signal s, ) (%) is temporally coded (rank order coding [13]) by having
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it delayed “leaving” the Difference of Gaussian image I',, ,, (u, v) by the amount

in milliseconds.

M) =, v)

That is, the more ', ,, (u, v) exceeds the threshold vp.¢ the sooner it leaves

I's, 0, (u,v) or equivalently, the value of I',,, 5, (u, v) is encoded in the value 7).

s, v.1) sGev.t-7)
1 |—| 1- |—|
| 4 |
1 msec ()

Figure 3-4: Spike signal

For all experiments the arrival times of the spikes were sorted in ascending
order and then (approximately) equally divided into 10 bins (10 times in Figure 3-
5). The raster plot shows which neurons (pixels of I';, ,(u, v)) spiked to make up
bin 1 (time 0), bin 2 (time 1), etc. Figure 3-5 shows an example for ON center cell
spikes. In all the experiments each image is encoded into 10 msec (10 bins) and

there is a 2 msec silent period between every image.

600 Raster plot of ON center spikes

w B w
o o o
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o
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Figure 3-5: Rasterplot of spikes for an on center cell. Blue dots in the plot indicates
the presence of a spike for a particular neuron and bin (timestep).
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3.2 Network Description

We have a similar network as in [35][34] as illustrated in Figure 3-6. We let
sr1(t, k, u,v) denote the spike signal at time ¢ emanating from the (u, v) neuron of
spiking image k where £ = 0 (ON center) or £k = 1 (OFF center). The L2 layers
consists of 30 maps with each map having its own convolution kernel (weights) of

the form

Wer(w, k,i,7) € R¥5 for w =0,1,2,...,29.

The “membrane potential” of the (u, v) neuron of map w (w =0, 1,2, ..., 29) of L2

at time ¢ is given by the valid mode convolution

t 1 4 4
Via(t, w, u,v) = Z (ZZZSM(T, k,u-+i,v +j)W01(w,k,i,j)>

=0 \k=0 i=0 i=0

for (0,0) < (u,v) < (22,22)

If at time ¢ the potential

Via(t, w,u,v) >~y =15
then the neuron at (w, u, v) emits a unit spike.

L1 L2
Spiking Image Convi
227x27maps 30 23x23 maps

N

2x5%5
Conv1l Kernel

Figure 3-6: Demonstration of convolution with a 3D kernel.
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3.2.1 Convolution Layers and STDP

At any time ¢, all of the potentials Vi (¢, w, u,v) for (0,0) < (u,v) < (22,22)
and w = 0,1, 2, ..., 29 are computed (in theory this can all be done in parallel) with
the result that neurons in different locations within a map and in different maps
may have spiked. In particular, at the location (u,v) there can be multiple spikes
(up to 30) produced by different maps. The desire is to have different maps learn
different features of an image. To enforce this learning, lateral inhibition and STDP

competition are used [35].

Lateral Inhibition

To explain lateral inhibition suppose at the location (u, v) there were potentials
Via(t, w, u,v) in different maps (w goes from 0 to 29) at time ¢ that exceeded the
threshold «y. Then the neuron in the map with the highest potential V5 (¢, w, u, v) at
(u, v) inhibits the neurons in all the other maps at the location (u, v) from spiking
for the current image (even if the potentials in the other maps exceeded the thresh-
old). Figure 3-7 (left) shows the accumulated spikes (from an MNIST image of
““5”) from all 30 maps of Layer L2 at each location (u, v) without lateral inhibition.
For example, at location (19,14) in Figure 3-7 (left) the color code is yellow indi-
cating in excess of 20 spikes, i.e., more than 20 of the maps produced a spike at that

location.

) before inhibition

Sp(;kes in Convl(L2 Sgikes in Convl(L2) afterinhibition 0)(:[ 3 3 91719],Y:[1019 12 15 4],Z;[16 23 21 19 14]

Spikeos in Conv1(L2) after stdp com etition )

0 5 10 15 20

Figure 3-7: Left: MNIST digit "5" input. Accumulation of spikes from all 30 maps
and 12 time steps in L2 without lateral inhibition. Center: Accumulation of spikes
from all 30 maps and all 12 time steps in L2 with lateral inhibition. Right: Accu-
mulation of spikes across all maps and 12 time steps with both lateral inhibition and
STDP competition imposed for a single image.
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Figure 3-7 (center) shows the accumulation of spikes from all 30 maps, but now

with lateral inhibition imposed. Note that at each location there is at most one spike
indicated by the color code. Also, as explained next, only a few of these spikes will

actually result in the update of any of the 30 kernels (weights) of layer L2.

STDP Competition

After lateral inhibition we consider each of the maps in layer L2 that had one or
more neurons with their potential V' exceeding 7. Let these maps be w1, wia, ..., Wem
where? 0 < k; < ky < -+ < k,, < 29. Then in each map wy,; we locate the neuron

in that map that has the maximum potential value. Let

(Ukl,vkl), (Uk2,Uk2), e (ukmavkm> (3.1)

be the location of these maximum potential neurons in each map. Then the neuron
(ugi, vg; ) inhibits all other neurons in its map wy,; from spiking for the remainder of
the time steps of the current spiking image. Further, these m neurons can inhibit
each other depending on their relative location as we now explain. Suppose the neu-
ron (ug;, vx;) of map wy; has the highest potential of the m neurons in (3.1). Then,
in an 11 x 11 area centered about (uy;, v;), this neuron inhibits all neurons of all
the other maps in the same 11 x 11 area. Next, suppose the neuron (uy;, vy;) of map
wy; has the second highest potential of the remaining m — 1 neurons. If the location
(uk;, vg;) of this neuron was within the 11 x 11 area centered on neuron (uy;, vg;) of
map wy;, then it is inhibited. Otherwise, this neuron at (uy;, v;) inhibits all neurons
of all the other maps ina 11 x 11 area centered on it. This process is continued for
the remaining m — 2 neurons. In summary, there can be no more than one neuron
that spikes in the same 11 x 11 area of all the maps®. The right side of Figure 3-7

shows the spike accumulation after both lateral inhibition and STDP competition

2The other maps did not have any neurons whose membrane potential crossed the threshold and
therefore did not spike.

3The use of the number 11 for the 11 x 11 inhibition area of neurons was suggested by Dr.
Kheradpisheh [33].
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have been imposed. It is also shown that there is at most one spike from all the

maps in any 11 x 11 area. For this particular input image (the number 5), these
five spikes are from maps 14, 16, 19, 21, and 23 at locations (19, 4), (3,10), (17,
15), (9,12) and (3,19), respectively and will result in updates for these 5 map ker-
nels (weights). Lateral Inhibition and STDP inhibition enforce sparse spike activity
and, as a consequence, the network tends to spike sparsely. This lateral inhibition
and STDP competition resulted in an average of only 5.8 spikes per image from the

30 x 22 x 22 neurons in L2 during training with EMNIST and MNIST datasets.

Spike Timing Dependent Plasticity (STDP)

Only those maps that produced a spike (with lateral inhibition and STDP com-
petition imposed) have their weights (convolution kernels) updated using spike tim-
ing dependent plasticity. Let w;; be the weight connecting the ;¥ pre-synaptic
neuron in the L1 layer to i" post-synaptic neuron in the L2 layer. If the i post-
synaptic neuron spikes at time ¢; with the pre-synaptic neuron spiking at time ¢;

then the weight w;; is updated according to the simplified STDP rule [13]

+a+wij(1 — wij) if t; > tj
Wiy < Wy + Awij, where Awij =
—a~w;;(1 —w;;) otherwise.

The parameters a* > 0 and a~ > 0 are referred to as learning rate constants. a* is
initialized to 0.004 and a~ is initialized to 0.003 and are increased by a factor of 2
after every 1000 spiking images. STDP is shown to detect a hidden pattern in the
incoming spike data [57]. In all of our experiments we used the above simplified
STDP model as in [35] (simplified STDP refers to the weight update not depend-
ing on the exact time difference between pre-synaptic and post-synaptic spikes).
If the pre-synaptic neuron spikes before post-synaptic neuron then the synapse is
strengthened, if the pre-synaptic neuron doesn’t spike before post-synaptic neuron
then it is assumed that the pre-synaptic neuron will spike later and the synapse is

weakened.
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Figure 3-8 is a plot of the weights (convolution kernels) for each of the 30

maps. Following [35], each column corresponds to a map and each row presents
the weights after every 500 images. For example, W¢1(29, k, 4, j) for k = 0,1 and
(0,0) < (i,7) < (26,26) are the weights for the ON (green) and OFF (red) filters*
for the 30" map (right-most column of Figure 3-8). It turned out that there were
approximately 17 spikes per image in this layer (L2). At the end of the training

most of the synapses will be saturated either at O or 1.

Evolved Filters for 5000 Images and A_plus=0.004,A_minus=0.003
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Figure 3-8: Plot of the weights of 30 maps of L2. The ON (green) 5 x 5 filter and
the OFF (red) 5 x 5 filter are superimposed on top of each other.

Homeostasis

Homeostasis refers to the convolution kernels (weights) for all maps being up-
dated approximately the same number of times during training. With homeostasis
each kernel gets approximately the same number of opportunities to learn its unique
feature. Some maps tend to update their weights more than others and, if this con-
tinues, these maps can take over the learning. That is, only the features (weights

of the convolution filter) of those maps that get updated often will be of value with

“4That is, the ON (green) and Off (red) weight are superimposed on the same plot.
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the rest of the maps not learning any useful feature (as their weights are not up-

dated). Homeostasis was enforced by simply decreasing the weights of a map by
w;; — w;j —a”w;;(1 —w;;) if it tries to update more than twice for every 5 of input

images.

3.2.2 Pooling Layers

A pooling layer is a way to down sample the spikes from the previous convolu-

tion layer to reduce the computational effort.

Max Pooling

After the synapses (convolution kernels or weights) from L1 to L2 have been
learned (unsupervised STDP learning is over), they are fixed, but lateral inhibition
continues to be enforced in L2. Spikes from the maps of the convolution layer
L2 are now passed on to layer L3 using max pooling. First of all, we ignored the
last row and last column of each of the 23 x 23 maps of L2 so that they may be
considered to be 22 x 22. Next, consider the first map of the convolution layer L2.
This map is divided into non-overlapping 2 x 2 area of neurons. In each of these
2 x 2 sets of neurons, at most one spike is allowed through. If there is more than
one spike coming from the 2 x 2 area, then one compares the membrane potentials
of the spikes and passes the one with the highest membrane potential. Each 2 x 2
set of neurons in the first map is then a single neuron in the first map of the L3 layer.
Thus each map of L3 has 11 x 11 (down sampled) neurons. This process is repeated
for all the maps of L2 to obtain the corresponding maps of L3. Lateral inhibition is
not applied in a pooling layer. There is no learning done in the pooling layer, it is
just a way to decrease the amount of data to reduce the computational effort.

After training the L2 convolution layer, we then passed 60,000 MNIST digits
through the network and recorded the spikes from the L3 pooling layer. This is

shown in Figure 3-9. For example, in the upper left-hand corner of Figure 3-9 is

3 And therefore STDP competition is no longer enforced.
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shown the number of spikes coming out of the first map of the pooling layer L3 for

each of the 10 MNIST digits. It shows that the digit “3” produced over 100,000
spikes when the 60,000 MNIST digits were passed through the network while the
digit “1” produced almost no spikes. That is, the spikes coming from digit “1” do
not correlate with the convolution kernel (see the inset) to produce a spike. On the
other hand, the digit "3" almost certainly causes a spike in the first map of the L3
pooling layer. In the bar graphs of Figure 3-9 the red bars are the five MNIST digits
that produced the most spikes in the L3 pooling layer while the blue bars are the
five MNIST digits that produced the least.

Map27 ,Dominant classes:[5, 8, 2, 3, 0]
0.0
200000 25 -
150000

100000

Map1 ,Dominant classes:(2, 7, 8, 9, 3] Map25 ,Dominant classes:[5, 2, 3, 0, 8]
200000 o0 300000
150000 2.5 . 250000

200000
0.@.5
100000 150000

100000
50000

50000 50000

o
01 2 3 456 7 8 9 0125454873839 01 2 3 4 5 6 7 8 9

Map29 ,Dominant classes:[0, 2, 4, 6, 8] Map16 ,Dominant classes:[7, 0, 9, 4, 1] Map24 ,Dominant classes:[8, 7, 2, 3, 5]
400000 400000

150000
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01 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9 ¢ 1.2 3 4 5 6 7 8 9

Figure 3-9: Spikes per map per digit. Headings for each of the sub-plots indicate
the dominant (most spiking) digit for respective features.

Figure 3-10 shows a convolution kernel between the L3 pooling layer and the
L4 convolution layer. We chose to have 500 maps in L4 which means that for

w=0,1,2,...,499 we have
Wea(w, k,i,7) € R for 0 <k <29 and (0,0) < (4,7) < (4,4).

The spikes from the L3 pooling layer are then used to train the weights (convolu-
tional kernels) W in the same manner as W .
In some of our experiments we simply did a type of global pooling to go to the

output layer L5. Specifically, at each time step, we convolve the spikes from L3 to
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L1 L2 L3 L4 L5
Input Image  Spiking Image Convl Pool 1 Conv? Max Pool
27x27 227x27 maps 30 23x23 maps 30 11x11 maps 500 7x7 maps 500 1x1 maps

2x5x5 2X2 30x5x5 X7

DoG Kernel
Convl Kernel Pooll Kernel  Conv2 Kernel Max Pool Kernel

Figure 3-10: Network showing two convolution layers and a final global pooling
layer.

compute the potential for each of the 500 x 7 x 7 neurons of L4. The maximum
potential for each map in L4 was then found and stored (This is a vector in R?%0),
The potentials in L4 were then reset to 0 and the process repeated for each of the
remaining time steps of the current image. This procedure results in ten R?% vectors
for each image. The sum of these vectors then encodes the current image in L5, i.e.,
as a single vector in R, The motivation to take the maximum potential of each
map at each time step is because all the neurons in a given map of L4 are looking
for the same feature in the current image. Unsupervised STDP training is done in
the convolution layers with both STDP competition and lateral inhibition applied
to the maps of the convolution layer doing training. Once a convolution layer is
trained, its weights are fixed and the spikes are passed through it with only lateral

inhibition imposed.
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CHAPTER FOUR: CLASSIFICATION OF THE MNIST DATA
SET

In the following subsections we considered two different network architectures

along with different classifiers for the MNIST data set.

4.1 Classification with Two Convolution/Pool Layers

In this first experiment the architecture shown in Figure 3-10 was used. Max
pooled "membrane potentials", i.e., the L5 layer of Figure 3-10, was used to trans-
form each 27 x 27 (= 729) training image into a new "image" in R°®, Using
these images along with their labels, a support vector machine [29] was then used
to find the hyperplanes that optimally! separate the training digits into 10 classes.
With W € R%*500 the SVM weights, the quantity \WWZ'W was added to the SVM
Lagrangian for regularization. Both linear and radial basis function (RBF) ker-
nels were used in the SVM. We used 20,000 MNIST images for the (unsupervised)
training of the two convolution/pool layers (Layers L2-L5). Then we used 50,000
images to train the SVM with another 10,000 images used for validation (to de-
termine the choice of \). The SVM gives the hyperplanes that optimally separate
the 10 classes of digits. Table 4.1 shows classification accuracies when 500 maps
were used in L4. The first two rows of Table 4.2 give the test accuracy on 10,000
MNIST test images. In particular, note a 98.01 % accuracy for the RBF SVM and
a 97.8 % accuracy for a Linear SVM. Using a similar network with linear SVM,

Kheradpisheh et al. [35] reported an accuracy of 98.3%.

"It is optimal in the sense that a Lagrangian was minimized.
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Table 4.1: Classification accuracies on MNIST data set with various classifiers
when number of maps in L4 is 500.

Classifier Test Acc | Valid Acc | Training Time A n Epochs
RBF SVM 97.92 % 97.98 % 8 minutes 1/3.6 - -
Linear SVM 97.27 % 97.30 % 4 minutes 1/0.012 - -
2 Layer FCN (backprop) | 96.90 % 97.02 % 15 minutes 1.0 W;% 30
3 layer FCN (backprop) | 97.8 % 97.91 % 50 minutes 6.0 (1_007())% 30

For comparison purposes with SVM, we also considered putting the L5 neurons
(i.e., vectors in R%?) into both a conventional two and three layer fully connected
network (FCN). Using a two layer FCN (see Figure 4-1) with sigmoidal outputs, a
cross-entropy cost function, and a learning rate n = 0.1/(1.001)#£Poh we obtained
97.97 % classification accuracy. Similarly with a three layer FCN (see Figure 4-2)

with the same conditions an accuracy of 98.01 % was obtained.

Input L1 L2 L3 L4 L5 L6
Image Spiking Convl Pool 1 Conv2 Max Pool (Output)
27%27 Image 30 23x23 3011x11 500 7x7 500 1x1

2 27x27 maps maps maps maps

maps

2x5x5 30x5x5
Convl Pooll Conv2 Max Pool 500 neurons 10 neurons
Kernel Kernel Kernel Kernel

Figure 4-1: Network with two fully connected layers as a classifier.

Separability of the MNIST Set

With A = 1,/1000 the 50,000 training and 10,000 validation images converted to
R5% “images” turn out to be completely separable into the 10 digit classes! How-
ever, the accuracy on the 10,000 test images drops to 97.01%. The original 60,000
MNIST (training & validation) images in R™* are not separable by a linear SVM
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Input L1 2 L3 L4 L5 L6 L7
Image Spiking Convl Pool 1 Conv2 Max Pool (Hidden) (Output)
27%x27 Image 30 23x23 30 11x11 500 7x7 500 1x1

2 27x27 maps maps maps maps

maps

2[)7:(7 2X5x5
oG
Kernel Convl Pooll Conv2 Max Pool
Kernel Kernel Kernel Kernel 500 70 10

neurons neurons neurons

Figure 4-2: Network with three fully connected layers as a classifier.

(The SVM code was run for 16 hours with A = 1/1000 without achieving separa-
bility).

Increasing the Number of Output Maps

If the number of maps in the L4 layer are increased to 1000 with the L5 1 x 1
maps correspondingly increased to 1000, then there is a slight increase in test accu-
racy as shown in Table 4.2. With A = 1 the 50,000 training and 10,000 validation

0 <c:

images converted to R!%%° “images™ also turn out to be completely separable into

the 10 digit classes. However, with A = 1 the test accuracy decreases to 97.61.

Table 4.2: Classification accuracies on MNIST data set with various classifiers
when number of maps in L4 is 1000.

Classifier Test Acc | Valid Acc | Training Time A n Epochs
RBF SVM 98.01 % 98.20 % 8 minutes 1/3.6 - -
Linear SVM 97.80 % 98.02 % 4 minutes 1/0.012 - -
2 Layer FCN (backprop) | 97.71 % 98.74 % 15 minutes 1.0 W 30
3 layer FCN (backprop) | 98.01 % 98.10 % 50 minutes 6.0 W 30
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4.2 Classification with a Single Convolution/Pool Layer

The architecture shown in Figure 4-3 has a single convolutional/pooling layer
with 30 x 11 x 11 = 3630 pooled neurons in L3. Further, each neuron in L3 simply
sums the spikes coming into it from the previous layer (L2). The L4 (output) neu-
rons are fully connected (with trainable weights) to L3 neurons. This final layer of
weights are then trained using backprop only on this output layer, i.e., only back-
prop to L3. (See Lee at al. [47] where the error is back propagated through all the
layers and reported an accuracy of 99.3%). Inhibition settings are same as in the

above experiment.

L1 L2 L3 L4
Input Image  Spiking Image Convl Pool 1 (Output)

27x27 227x27 maps 30 23x23 maps 30 11x11 maps O\

/

2xIx7 | 2x5x5 2x2 3630 neurons 10 neurons
DoG Keme Convl Kernel Pooll Kernel

Figure 4-3: Deep spiking convolutional network architecture for classification of
the MNIST data set.

The first row of Table 4.3 shows a 98.4% test accuracy using back propagation
on the output layer (2 Layer FCN). The second and third rows give the classification
accuracy using an SVM trained on the L4 neurons (their spike counts). The feature
extraction that takes place in the L2 layer (and passed through the pooling layer)
results in greater than 98% accuracy with a two layer conventional FCNN output

classifier. A conventional FC two layer NN (i.e., no hidden layer) with the 28 x 28
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images of the MNIST data set as input has only been reported to achieve 88% accu-

racy and 91.6% with preprocessed data [44]. This result strengthens our view that
the unsupervised STDP can transform the MNIST classes into linearly separable
classes. Note that the increase in linear separability was also observed when the
MNIST classes were transformed to a lower dimension (R®*) when compared to
original MNIST dimensions (R"*, see Chapter 4.1). We also counted the spikes
in network with two convolution/pool layers (see Figure 3-10) but found that the
accuracy decreased (see Table 4.2) This decrease may be due to reduced number of

spikes in the output neurons compared to have only one convolution/pool layer.

Table 4.3: Classification accuracies on MNIST data set with various classifiers
when a single convolution/pool layer is used.

Classifier Test Acc | Valid Acc | Training Time A Epochs

n
2 Layer FCN | 98.4% 98.5% 10mins 1/10 | 0.1/(1.007)#Epoch 20

RBF SVM 98.8% 98.87% 150 minutes 1/3.6 - -

Linear SVM | 98.41% 98.31% 100 minutes 1/0.012 - -

In this chapter, we showed that the original MNIST dataset R?%000x784 g not
linearly separable. However when MNIST dataset is transformed to R39000%500 by,
passing it through an unsupervisedly trained SNN we showed that the MNIST data

becomes linearly separable.
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CHAPTER FIVE: REWARD MODULATED STDP

Reward modulated STDP is a way to use the accumulated spikes at the output to
do the final classification (in contrast to SVM and a two layer backprop mentioned
above). Figure 5-1 shows the network architecture where the reward modulated
STDP is carried out between the (flattened) L5 layer and the ten output neurons
of the L6 layer. The weights between the fully connected neurons of Layer 5 and
Layer 6 are then trained as follows: For any input image the spikes through the
network arrive between t = 0 and £ = 11 time steps. The final (f = 11) membrane

potential of the k' output neuron for k = 1,2, ..., 10 is then

11 12000

Vk = Z Z wkst5(t,j).

t=0 j=1

Denote by Ny,;; and N,,,;ss the number of correctly classified and incorrectly classi-
fied images for every N (e.g., N = 100, 500, 1500, etc.) input images sO N,,;ss +
Nt = N. If the k' output potential V}, is maximum (i.e., V}, > Vj for j # k) and
the input image has label k then the weights going into the k% output neuron are

rewarded in the sense that

Wij < Wiy + Awkj, (51)
Nmiss + . . . .
—|—Tar wyj(1 — wy;) if at least one pre-synaptic spike from j to k.
where Awy; = N

N o wy; (1 — wy;) otherwise.

(5.2)
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If V}, is the maximum potential, but the label of the image is j # k, then the weights

going into output neuron k are punished in the sense that

Wiy < Wk + Awkj, (53)
- ]Git aywyj(1 — wy;) if at least one pre-synaptic spike from j to k.
where Awy; =
Nt 1 — wy;) otherwise
+ N % wyj (1 — wg;) 0 )
(5.4)

Note that only the weights of those neurons connected to the output neuron with

the maximum potential are updated. The term “modulated” in reward modulated

STDP refers to the factors N]”\L;SS and ]\]f\’?t which multiply (modulate) the learn-
ing rule. Equation (5.1) refers to the case where the k' output neuron also has
the high membrane potential of the ten outputs. If N,,;ss//V is small then the net-
work accuracy is performing well in terms of accuracy and the change in weights
is small (as the weights are thought to already have learned to correctly classify).
On the other hand, equation (5.3) refers to the case where the k' output has the
highest membrane potential, but the label is j # k. Then, if N,,;ss/N is small, it

follows that Ny;/N is large the weights of the neurons going into the k** neuron

have their values changed by a relatively large amount to (hopefully) correct the

misclassification.
L1 L2 L3 L4 L5 L6 (Output)
InputImage  Spiking Image Convl Pool 1 Conv2 Pool2

27x27 227x27 maps 30 23x23 maps 30 11x11 maps 750 7x7 maps 750 4x4 maps

2XTXT
DoG Kernel

2x5x5 2x2 30x5x5 2x2

12000 neurons 10 neurons
Convl Kemel Pooll Kernel  Conv2 Kernel  Pool2 Kernel

Figure 5-1: Network with 750 maps in L4.
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In this experiment with R-STDP, only 20,000 MNIST digits were used for train-

ing, 10,000 digits for validation (used to choose the number of training epochs), and
the 40,000 remaining digits were used for testing. The R-STDP synaptic weights
between L5 and L6 were initialized using the normal distribution N'(0.8,0.01). Ta-

ble 5.1 shows that a test accuracy of only 90.1% was obtained.

Table 5.1: Classification accuracy on MNIST data set with R-STDP when one
neuron per class is used.

Maps in L4 | Valid acc % | Test Acc % | Epochs
750 91.2 90.1 150

For comparison, we replaced the R-STDP classifier (from L5 to L6) with a
simple 2 layer neural network (from L5 to L6) which used error back propagation.
These weights for back propagation were initialized from the normal distribution
N(0,1/4/12000) as in [66]. Tables 5.2 and 5.3 show difference in performance
between R-STDP and a simple two layer backprop which ran for only 20 epochs.

Table 5.2: Classification accuracy on MNIST data set with single layer backprop.

Classifier | Test Acc | Valid Acc | A n Epochs
2 Layer FCN | 97.5% 97.6% | 1.0 | 0.1/(1.007)#Epoch 20

Mozafari et al. [63][61] got around this poor performance by having 250 neu-
rons in the output layer and assigning 25 output neurons per class. They reported
a 97.2 % test accuracy while training on 60,000 images and testing on 10,000 im-
ages. We also considered multiple neurons per class in the output layer. As Table
5.3 shows, we considered 300 output neurons (30 per class) and also used dropout.
Pyrop = 0.4 means that 0.4(300) = 120 output neurons were prevented from updat-
ing their weights for the particular training image. For each input image a different
set of 120 randomly neurons were chosen to not have their weights updated. Table
5.3 shows that the best performance of 95.91 % test accuracy was obtained with

Pirop = 0.4,
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Table 5.3: Classification accuracy on MNIST data set with R-STDP when more
than one neuron per class is used.

Maps in L4 | #Output Neurons | P, | Valid acc % | Test acc % | Epochs
750 300 0.3 95.81 95.84 400
750 300 0.4 96.01 95.91 400
750 300 0.5 95.76 95.63 400

5.1 R-STDP as a Classification Criteria

We experimented with R-STDP learning rule applied to L5-L6 synapses of the
network in the Figure 5-1 by two different kinds of weight initialization and also

Nmiss Nz
Mt and N.

varying initialization of parameters like N N

5.1.1 Backprop Initialized Weights for R-STDP

As given in Table 5.3 using an R-STDP as a classifier was not able to achieve
an accuracy 97.2% obtained by a two layer FCN. In particular, perhaps the weight
initialization plays a role in that the R-STDP rule can get stuck in a local minimum.
To study this in more detail the network in Figure 5-1 was initialized with a set
of weights that are known to give a high accuracy. To explain, the final weights
used in the 2 Layer FCN reported in Table 5.2 were used as a starting point. As
these weights are both positive and negative, they were shifted to be all positive.
This was done by first finding the minimum value wy,;, (< 0) of these weights
and simply adding —wy,;, > 0 to them so that they are all positive. Then this
new set of weights were re-scaled to be between 0 and 1 by dividing them all by
their maximum value (positive). These shifted and scaled weights were then used
to initialize the weights of the R-STDP classifier. The parameters a,", a,, a,\, a,
were initialized to be 0.004, 0.003, 0.0005, 0.004 respectively. With the network
in Figure 5-1 initialized by these weights, the validation images were fed through
the network and the neuron number with the maximum potential is the predicted
output. The validation accuracy was found to be 97.1%.

With weights of the fully connected layer of Figure 5-1 initialized as just de-
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scribed, the R-STDP rule was used to train the network further for various number

. . N, miss N, )
of epochs and two different ways of updating N and ]Gt :

Nhit
N

Nmiss
Batch Update of N and

miss N 7 .
N and % ratios updated

after every batch of N images for N = 100, 500, 1500, 2500. As the weights of

The first set of experiments were done with the

the fully connected layer of Figure 5-1 with the backprop trained values, we expect

Nmiss . . NZ .
to be a low fraction or equivalently ](Lft to be high. Consequently, they were
miss N ) . T .
initialized as N = 0.1, ]C[t = 0.9. With these initialization, Table 5.4 shows

that accuracy on the validation set did not decrease significantly for N not too large
e.g., N < 2500). In general, using larger values of N (value of N depends on the
initialization of N,,;ss/N and Ny;/N) the accuracy goes down significantly. For
example, for the cases where V,,;ss/N = 0.035 and Ny;;/N = 0.965 the accuracy
didn’t significantly decrease until the batch size was N = 3500. In the case with
Npiss/N = 0.0 and Np;:/N = 1.0 the accuracy didn’t decrease at all. This is
because the best performing weights for validation accuracy were used, but these
same weights also gave 100% accuracy on the training data.

Table 5.5 shows the classification accuracy with "poor" initialization N,,;ss /N =
0.9 and Ny;; /N = 0.1. If the weights had been randomly initialized then the initial-
ization N,,;ss/N = 0.9 and Nj;;/N = 0.1 would be appropriate. However, Table

5.5 shows that R-STDP isn’t able to recover from this poor initialization.

Nmiss N; %
Update of N and ]Gt After Each Image

Next, Npiss/N and Np;;/N were updated after every image using the most
recent N images. Even with N,,;ss/N and Ny;;/N initialized incorrectly, the vali-
dation accuracies in Table 5.6 did not decrease significantly. Though the accuracy
still goes down slightly, the table indicates that updating N,,;ss /N and Ny;;/N after
every image mitigates this problem.

Still updating N,,;ss/N and N;; /N after each image, it was found that R-STDP
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Table 5.4: Demonstration of sensitivity of R-STDP to N value with correct initial-
ization of hit and miss ratios.

N’;\l;ss N]f;t N | Acc. at start | Acc. at end
0.1 0.9 100 97.1% 96.91%
0.1 0.9 500 97.1% 96.96%
0.1 0.9 | 1500 97.1% 96.82%
0.1 0.9 | 2500 97.1% 90.76%

0.035 | 0.965 | 2500 97.1% 96.69%

0.035 | 0.965 | 3000 97.1% 96.58%

0.035 | 0.965 | 3500 97.1% 91.05%

0.035 | 0.965 | 4000 97.1% 90.98%
0.0 1.0 100 97.1% 96.93%
0.0 1.0 500 97.1% 96.93%
0.0 1.0 1500 97.1% 96.94%
0.0 1.0 | 2500 97.1% 96.94%
0.0 1.0 | 3000 97.1% 96.94%
0.0 1.0 | 3500 97.1% 96.94%
0.0 1.0 | 4000 97.1% 96.93%

Table 5.5: Demonstration of sensitivity of R-STDP to N value with incorrect ini-

tialization of hit and miss ratios.

N]";L;ss Nj(;“ N | Acc. at start | Acc. at end
09 0.1 100 97.1% 91.52%
09 0.1 500 97.1% 90.67%
09 0.1 | 1500 97.1% 90.47%
09 0.1 | 2500 97.1% 90.45%

accuracy was very sensitive to the initialized weights. Specifically the L5-L6 R-

STDP weights were initialized using the backprop trained weights (as explained

above) by doing the backprop for just 10 epochs (instead of 20) and A = 10.0 (reg-

ularization parameter) which gave 99.6% training and 96.8% validation accuracies.

Table 5.7 gives the validation accuracies using R-STDP for 100 epochs. Surpris-

ingly, even with a good initialization of the weights and the ratios N,,;ss/N and

Nyt /N, the validation accuracy suffers.

For the same cases as Table 5.7 the R-STDP algorithm was run for 1000 epochs

with the training and validation accuracies versus epoch plotted in Figure 5-2. No-
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Table 5.6: Demonstration of sensitivity of R-STDP.

N"];L;ss NJ(;“ N | Acc. at start | Acc. at end
09 0.1 100 97.1% 96.93%
09 0.1 500 97.1% 96.94%
09 0.1 | 1500 97.1% 96.93%
09 0.1 | 2500 97.1% 96.94%

Table 5.7: Demonstration of sensitivity of R-STDP for weight initialization.

Nmz'ss Nhit
N N N | Acc. at start | Acc. at end
0.0 1.0 100 96.8% 90.75%
0.0 1.0 | 4000 96.8% 90.67%

tice that the validation accuracy drops to ~90%. It seems that R-STDP is not a valid
cost function as far as accuracy is concerned!. Interestingly, as shown next, training
with R-STDP with randomly initialized weights, the validation accuracy only goes

up to ~90% (see Figure 5-3).

Plot of accuracies when trained with backprop initialized weights

Accuracies
[(e]
S

—— Training
—— Validation

10° 10! 102 103
Epochs

Figure 5-2: Plot of accuracies versus epochs when the weights were initialized
with backprop trained weights.

! At least using one output neuron per class.



5.1.2  Randomly Initialized Weights for R-STDP

37

In the set of experiments with R-STDP the weights were randomly initialized

from the normal distribution A/ (0.8, 0.01) and the N,;ss/N, Nyt /N, N parameters

initialized with the values given in Table 5.8. Validation accuracies are shown at

the end of 100 epochs N,,;ss/N and Ny, /N, N were updated after every image.

Table 5.8: Demonstration of sensitivity of R-STDP.

N”AL;SS N]Git N | Acc. at start | Acc. at end
09 0.1 100 10.3 90.22
09 0.1 500 10.1 90.13
09 0.1 | 1500 10.2 90.12
09 0.1 | 2500 10.6 90.16

For these same cases as Table 5.8, the R-STDP algorithm was run for 1000

epochs with the training and validation accuracies versus epochs plotted in Figure

5-3. The validation accuracy only goes up to ~90%.

Plot of accuracies when trained with randomly initialized weights

93

Accuracies
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Figure 5-3: Plot of accuracies versus epochs when the weights were randomly

initialized.

In this chapter we showed that a simple linear neural network (without a hidden

layer) trained with error backpropagation performs better than R-STDP.
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CHAPTER SIX: CLASSIFICATION OF THE N-MNIST DATA

SET
6.1 Transfer Learning
L1
Spiking |
TS camery o2 Ls

Convl Pool 1 L4 (Output)

2 27x27
XefMaPS 30 23x23 maps 30 11x11 maps

2x5x5 2x2 3630 neurons 10 neurons
Convl Kernel Pooll Kernel

Figure 6-1: Network for N-MNIST classification.

In the above experiments, we artificially constructed spiking images using a
DoG filter on the standard MNIST data set as in [35][34]. However the ATIS (sil-
icon retina) camera [73] works by producing spikes. We also considered classifi-
cation directly on recorded output from the ATIS camera given in the N-MNIST
data set [67]. A silicon retina detects change in pixel intensity and thus the MNIST
digits are recorded with camera moving slightly (saccades). Figure 6-2 shows the

raw accumulated spikes of the N-MNIST data set as given in [67].

Figure 6-3 is the same as Figure 6-2, but corrected for saccades (camera mo-

tion) using the algorithm given in [67]. Figure 6-1 shows the network we used for
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Figure 6-2: Left: Accumulated ON and OFF center spikes. Center: Accumulate
ON center spikes. Right: Accumulated OFF center spikes.
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Figure 6-3: Left: Accumulated ON and OFF center spikes. Center: Accumulate
ON center spikes. Right: Accumulated OFF center spikes.

classification of the N-MNIST data. We first hard wired the weights W¢; of the
convolution kernel from L1 to L2 of Figure 6-1 to the values already trained above
in subsection 4.2 (see Figure 4-3). Only the weights from L4 to L5 were trained
for classification by simply back propagating the errors from L5 to L4. This result
in given in the first row of Table 6.1. We also trained an SVM on the L4 neuron
outputs with the results given in row 2 (RBF) and row 3 (linear) of Table 6.1. All
the results in Table 6.1 were done on the raw spiking inputs from [67] (i.e., not
corrected for saccade) with training done on 50,000 (spiking) images, validation &

testing done on 10,000 images each.

Table 6.1: Classification accuracies of N-MNIST data set with one convolu-
tion/pool layers for transfer learning.

Classifier Test Acc | Valid Acc | Training Time A n Epochs
2 Layer FCN | 97.45% | 97.62% 5 minutes = | g 20

RBF SVM | 98.32% | 9840% | 200 minutes | = - -
Linear SVM | 97.64% | 97.71% 100 minutes | 775 -
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6.2 Training with N-MNIST Spikes

In Table 6.2 we show the results for the case where the weights W, of the con-
volution kernel from L1 to L2 of Figure 6-1 were trained (unsupervised) using the
N-MNIST data set. In this instance we used N-MNIST data corrected for saccades
since this gave better result than the uncorrected data. All the results in Table 6.2
were produced by training on 50,000 (spiking) images with validation & testing

done using 10,000 images.

Table 6.2: Classification accuracies of N-MNIST data set with one convolu-
tion/pool layers when trained with N-MNIST spikes.

Classifier Test Acc | Valid Acc | Training Time A n Epochs
1 Layer FCN | 97.21% | 97.46% 5 minutes o5 | Togrer | 20

RBF SVM 98.16% 98.2% 150 minutes 2—16 - -
Linear SVM | 97.38% 97.44% 100 minutes g 312 - -

We also added an extra convolution layer, but found that the classification accu-
racy decreased. Jin et al [32] reported an accuracy of 98.84% by using a modifica-
tion of error back propagation (all layers) algorithm. Stromatias et al. [86] reported
an accuracy of 97.23% accuracy by using artificially generated features for the ker-
nels of the first convolutional layer and training a 3 layer fully connected neural
network classifier on spikes collected at the first pooling layer.

In this chapter we used the N-MNIST dataset to train the SNN. We also per-
formed transfer learning on a network that was trained using synthetically generated

spikes from the MNIST dataset.
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CHAPTER SEVEN: FEATURE RECONSTRUCTION AND OVER
TRAINING

7.1 Feature Reconstruction

L1 L2 L3 L4 L5
Input Image  Spiking Image Convl Pool 1 Conv? Max Pool
27x27 227x27 maps 30 23x23 maps 30 11x11 maps 500 7x7 maps 500 1x1 maps

2x5x5 2X2 30x5x5 X7

DoG Kernel
Convl Kernel Pooll Kernel  Conv2 Kernel Max Pool Kernel

Figure 7-1: Network showing two convolution layers and a final global pooling
layer.

We have already presented in Figure 3-8 a reconstruction of the convolution
kernels (weights) from Layer L1 to Layer 2 into features. Each of the 30 maps
of L2 has a convolution kernel in R?*5*5 associated with it which maps L1 to L2
using convolution. We now want to reconstruct (visualize) the features learned
by the second convolution layer. Each of the 500 maps of L4 (see Figure 7-1)
has a convolutional kernel associated with it which maps L3 to L4, i.e., for w =

0,1,2,...,499. These kernels have the form

Wea(w, k,i,7) € R¥*5%5 for 0 < k <29 and (0,0) < (i,5) < (4,4).
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So Wey € RIVX30X5%5 5 5 x 5 area of pooled layer L3 receives spikes from

10 x 10 area of neurons in L2. Forw = 0,1, 2, ..., 499, the kernels Weo(w, k, 4, j) €

R30%5x%5 are reconstructed to be features
Fpi(w, k,i,7) € R3O0 for 0 < k <29 and (0,0) < (i,5) < (9,9)

connecting L2 to L4, so Fp; € R300x30x10x10 Hawy s this done? Fp; is initialized
with all zeros. Consider the 1! kernel W5 (0, k, i, j) € R39%5*5 and for the k'"
5 x 5 slice of Weo(0, k, 7, j) € R5* the value of the (i, j) element is mapped to the
(2i,27) element of the k™" 10 x 10 slice of Fp (0, k, 4, j) € R?*10. All other values
of the k™ 10 x 10 slice in Fp, are set to zero. This is repeated forall k = 0,1, ..., 29
and for w = 0, 1, ..., 499. Now recall that there are 30 kernels in ;. Specifically,
forz=0,1,2,...,29.

Wei(z, k,i,7) € R#**5 for 0 < k <1 and (0,0) < (4,5) < (4,4).

k = 0 1is for ON center kernels and £ = 1 is for OFF center kernels so W, €
R30x2x5x5 Note that 27x27 neurons in L1 map to 23x23 (27-5+1x27-5+1) neu-
rons in L2 when using a valid mode convolution, conversely a 10x 10 area of neu-
rons in L2 receive spikes from a 14 x 14 area of neurons in L1.So W, kernels map
spikes from 14 x 14 area of neurons in L1 to a 10 x 10 area of layer of L2. Thus the
feature Fipy (0, k, 1, j) € R30*10>10 myst be reconstructed to be a feature in R 14x14

that corresponds to the input layer L1. That is, for w = 0, 1, ..., 499
Fri(w, k,i,j) € R for 0 <k <1 and (0,0) < (i,7) < (14, 14).

So Fp, € RP00x2x14x14 (Each neuron in L4 has a field of view of 2 x 14 x 14
neurons in L1). How is this done?

Let the 5 x 5 matrix on the left-hand side of Figure 7-2 denote an ON cen-
ter kernel We1(2,0,7,7) € R for some z = 0,1,...,29. In particular, let it
be the second kernel so 2 = 1, Wey(1,0,4,5) € R>*5. Now the 1% feature de-
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noted by Fpy (0, k, 1, j) € R30*19x10 can be visualized as being made up of 10 x 10

slices for k = 0,1, ...,29. To go with the second kernel W (1,0,1,7) € R5*5 we
take the second slice (k = 1) of the feature Fp,(0, k, 4, j) € R30*10%10 denoted as
Fp1(0,1,4,7) € R19%19 which we take to be the 10 x 10 matrix on the right-hand
side of Figure 7-2. In practice these slices are sparse and we show the particular
slice in Figure 7-2 to have only two non zero elements, the (1, 1) and the (5, 5) el-

ements. To carry out the reconstruction at L1 we compute wﬁ) X Wei(1,0,4, §) €

10x10

wllololoflo]o|ofo|o]fo
olojo|o|o|lo|lo|lo|o]|o

5x35 olo|oflo|o|o|o|lo|o]oO
0jojojoj1 olojo|o|o|lo|lo|lo|o]|o
ojojoj1jo olojofowdoloflofoalo
ojoj1jojo oloflo|lo|o|o|lo|lo|o]o
oj1jojojo ololo|lo|olo|lo|lo|o]|o
1]ojojojo oloflo]lo|o|o|lo|lo|o]|o
olo|o|ofoflo|lo|lo|o]|o
o|lolo|ofolo|lo|lo|o]|o

Figure 7-2: Left: Second ON 5 x 5 kernel (out of 30 kernels), Weq(1,0,4,5) €
R5%5, Right: Second 10 x 10 slice (out of 30 slices) of 1! feature (out of 500
features) of pool 1 features, Fpi(0, 1,4, 5) € R1Ox10

R5*% and center it on w'}) of Fpy(0,1,7,7) € R a5 indicated in Figure 7-3.
We then repeat this process for all non zero elements of Fpy(0,1,4,5) € R0x10
which in this example is just wé?. Filling in with zeros we end up with the 14 x 14
matrix shown in Figure 7-4. Similarly, to reconstruct the third 14 x 14 matrix
we use the third kernel We1(2,0,4,7) € R>*® (2 = 2) taken to be the 5 x 5
matrix on the left-side of Figure 7-5 and the third slice (k¢ = 2) of the feature
Fp1(0,k,4,7) € R3%10%10 denoted as Fpy(0,2,14,5) € R0 which we take to be
the 10 x 10 matrix on the right-hand side of Figure 7-5. Here the only non zero com-

ponents are wﬁ) and wg)

. We compute w2 x Wei(2,0,4, ) € R¥5 and center
it on wiY of Fip(0,2,4,7) € R1910 g5 indicated in Figure 7-6. We then compute
w? x Wei(2,0,1,5) € R and center it on w2 of Fpi(0,2,,5) € R19%10, In

non zero overlapping elements of the 14 x 14 matrix the components are just added
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Figure 7-3: Reconstruction at Convl (L2). Figure shows 1% feature of 500 feature
maps and 2" slice of 30 slices, F1;(0,1,4,j) € R4x14,

together as shown in Figures 7-6 and 7-7.  Finally, 30 of these 14 x 14 matrices
shown in Figures 7-4 and 7-7 are added up (3 2, Fr1(0, k,i,5) € R™*!4) to re-
construct the 1Y ON center feature of the 500 features learned by neurons of L4,
this procedure is repeated for the OFF center features as well. In other words, a
particular neuron of L4 spikes when it detects its corresponding (2 x 14 x 14) ON
and OFF center feature in the original image. Figure 7-8 shows 150 of the 500
reconstructed features from the 500 convolution kernels of the second convolution
from L3 to L4. Each feature is 14 x 14 neurons (pixels) of the original spiking

image with ON (green) and OFF (red) features superimposed on top of each other.
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Figure 7-4: Reconstruction at Convl (L2), F7;(0,1,4,5) € R¥xM4,
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Figure 7-5: Left: Third ON 5 x 5 kernel (out of 30 kernels), W (2,0, 1, 7) € R5*5.
Right: Third 10 x 10 slice (out of 30 slices) of 1! feature (out of 500 features) of
pool 1 features, Fpi(0,2,14,j) € RI9x10
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Figure 7-6: Reconstruction at Convl (L2), F7,,(0,2,1,5) € R¥4x,
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Figure 7-7: Reconstruction at Convl (L2), F7,;(0,2,1,5) € R*x14,
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Final filters of L4
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Figure 7-8: Weights of 150-300 maps of L4 that is trained by in coming spikes
without lateral inhibition in L3, STDP competition region in L4 set to R5%°*3%3 and
with homeostasis signal applied in L4, notice that the reconstructed features are
quite complex and they could well represent a digit or a major section of a digit,
note that all neurons of a map in a layer will have shared weights. In this experiment
number of maps is L4 was set to 500. Notice that the reconstructed features are not
as complex looking as in Figure A-1
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7.2 Effect of Over Training the Convolution Kernels

The first row of Figure 7-9 shows the reconstruction of the features from the
convolution kernels of the L3 to L4 layer after training with just 20,000 images. In
contrast, the second row of Figure 7-9 shows the reconstruction of the features from
the convolution kernels of the L3 to L4 layer after training with 60,000 MNIST
images for 4 epochs. This shows that more training results in individual kernel
weights (w;;) saturating to 1 or 0 (i.e., the reconstructions in the second row are
sharper), but the features become less complex. Figure 7-9 shows that we need a

Reconstructed features of L4(Conv2)

Row 1, after 13.5k
Row 2, after 240k images

Map308 Map376 Map202
Map308 Map376 Map202

dl EH -

Figure 7-9: Reduction in the complexity of learned features because of over train-
ing. First row of this figure shows reconstruction of L3—L4 synapses after training
for 15.5k images and second row shows the reconstruction of L3—L4 synapses
after training for 240k images (4 epochs)

mechanism to stop training. To this end, we looked at the difference in weights

during training. Consider

WC(’Z) — {w(n)(z,i,j, k})} c R500><30><5><5
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where Wg;) is kernel W after the n'" training is image has passed. The L3L4

(red) plot of Figure 7-10 is a plot of

Z‘Zligo 1220 ?:O Zi:o (w(n*150) (Z, i,j, k) _ w((n+1)*150)(2’ i,j, k.))
375000

for n=0,1,...,130

where 375000 = 500 x 30 x 5 x 5. Similarly the L1L2 (blue) plot was done for
W((ﬁ) = {w™ (2,1, j, k)} € R3OX2x5x5,

For the L3L4 the weights dramatically change between n = 80 and n = 100.
Multiple experiments indicated that over training of W kernels starts after n =
100. If the network was trained further, we found that the final classification ac-

curacy drops by by ~2%. Kheradpisheh et al. [35] proposed a convergence factor

Plot of normalized temporal difference of weights

_ 1.0 r\ —— L1lL2layers
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Sample Number, S.I=150 Imaaes(L1L2), 150 Imaaes(L3L4)

Figure 7-10: Plot shows the difference of successive samples of synapses. If the
difference approaches zero it means that weights are not changing hence features
learnt by a neuron also remain the same. Notice the sudden jump in difference
between 80-100 samples.

given by

S S 300 Yoneo (w0 (2,1, 4, k) (1 — w10 (2,4, j k)))
375000

for n=0,1,...,130.

The convergence plot is shown in Figure 7-11. The training was stopped when the
convergence factor is between 0.01 and 0.02. We found that using this criteria there

was a bit of over training resulting in 1%-2% decrease in testing accuracy.
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0.25 Plot of weight convergence
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Figure 7-11: Plot shows the fashion of convergence for the synapses. Note that the
convergence factor dips sharply between the samples 80-100.

In this chapter, we discussed the over training problem that arises when us-
ing unsupervised STDP. We also showed that over training results in reduction in
complexity of the features learned in deeper layers. We also proposed a heuristic

method to prevent over training.
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CHAPTER EIGHT: SURROGATE GRADIENTS AND STDP

In this chapter we shall discuss how to combine STDP based unsupervised fea-
ture classification with stochastic gradient descent for the classification layers of
an SNN. We planned to use R-STDP as a classification criterion for the extracted
binary spike features, but we decided against it owing to its slow convergence (see
Chapter 5.1). Stochastic gradient descent (SGD) via backpropagation is the pri-
mary choice for state-of-the-art classification, regression, and generative learning
[95]. A cost function is assigned to the last layer of the network and the synapses
are updated to minimize the cost. In our network, backpropagation is used only in
the classification layers (L3-L4-L5) of the network which has a single hidden layer
L4. Let &', a! = o(2'), 6!, W, 2! = w21 + 1’ denote the error vector, the activa-
tion vector, the bias vector, the weights and the net input to the activation function
for the [*" layer, respectively [66]. With o the activation function andC' denotes the
output cost. For convenience we shall re-state the backpropagation equations from
Chapter 2.

6 =V,00d((zh) (8.1)

where 5% denotes the error vector on the last layer and the error vector for the hidden

layers are given recursively by
5l _ ((WZ+I)T51+1) o O'I(Zl) (8.2)

Updates to biases and weights of layer [ are calculated using

aoC
i St (8.3)
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oc (I-1)T
Sy = 0 (8.4)

C' denotes the cost in the final layer. We used a softmax activation with a cross

entropy cost function for the last layer so that equation (8.1) becomes
ot = —(y —a"), (8.5)

where a” and y are softmax activation of the output layer and the one hot label
vector, respectively. For the remainder of the chapter we refer to gradients obtained
using Equations (8.1)-(8.5) as true gradients with o(z) an ReLU activation func-

tion.

8.1 Binary Activations and Surrogate Gradients

2D L L2 L3 L4 L5

Image (Input) (Convl)  (Pool 1) (Hidden) (Output)
27x27 2x27x27  30x23x23 30x11x11 O 1500 47
NN e
e
i O
2X7X7 2x5x5 2x2 O
DoG Convl Pooll 5630
Kernel  Kernel Kernel Neurons

Figure 8-1: Layers L1 — L3 are the feature extraction layers and layer L3 — L5 are
the feature classification layers.

8.1.1 Weight Initialization

The weights of the L2 layer are initialized from the normal distribution N (0.8, 0.04).
The weights of layers L4 & L5 layers are initialized from the normal distribution
N(0,0.01), but truncated to restrict them between +0.02. A softmax activation is
used for the classification layer L5 with its inputs converted to integers using the

floor function. A look-up table containing predefined values of the exponential



53
function e* can be used to calculate softmax activation in a hardware implementa-

tion. The activation functions employed in layer L4 (denoted by o in Figure 8-1)
are discussed below (in Section 8.1).

In order to significantly reduce the number of high precision multiplications
the activation functions of the L4 layer are made binary. That is, if the net input
to a neuron is greater than zero the output is one. Otherwise the output is zero.
Consequentially this activation function is not differentiable (the gradient doesn’t
exist). Here we give two different possible functions that we used to replace the

true gradient, i.e., to be its surrogate [11].

8.1.2 Surrogate Gradient 1

The activation function of a neuron in layer L4 is defined by

0, z2<0
'=o(d) £ 8.6
a=0(2)=qz 0<z<7<1 (8.6)
T, Z2>T.
\

Figure 8-2 is a plot of this activation function which is a ReLU that saturates for

some 0 < 7 < 1.

0.125
__0.100
N0.075

© 0.050 t=0.125
~ 0-025
0.000

-0.05-0.03 0.00 0.03 0.05 O.OIS 0.10 T 0.150.17 0.20
Z

Figure 8-2: Activation function a' = o (2!) for neurons in layer L4.

The activation is required to be binary so its definition is modified to be ([-]
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denotes the ceiling function)

1, 220
(8.7)

For this activation (8.7) we define its surrogate gradient to be

oA 1, 0<z<7<1
a(z') = (8.8)
0, otherwise.

which is the derivative of Equation 8.6 and is shown in Figure 8-3

d /
70(2)

7=0.125

0
-0.05-0.03 0.00 0.03 0.05 0.0/8 0.10 Tt 0.15 0.17 0.20
Z

Figure 8-3: Surrogate gradient of activation function defined in equation (8.6).

Simulations were performed by setting 7 to 0.25,0.125,0.05 and it was found
that 0.125 maximized the validation accuracy. As equation (8.7) is not differentiable

the derivative of o(z) is taken to be equation (8.8). For convenience, we denote an

activation value of 1 as spike and an activation value of 0 as no spike.

8.1.3 Surrogate Gradient 2

We also considered a second activation given by

1, 2>0
(8.9)
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and define its surrogate gradient to be

o'(Z) = (8.10)

Note that 0’(z) = o(z) and is binary so that ¢/(2!) = a! in the hidden layer. Equa-
tion (8.2) then becomes

51 _ ((WZ+I>T5Z+1> @ al (811)

where a' determines if a neuron spikes in the [*" layer. That is, a’ determines if a
neuron in the [*" layer is to receive error information from the [ + 1 layer. Substi-

tuting Equation (8.11) in Equation (8.4) gives

aaMC/l _ ((lerl)T(SlJrl ® al) a(l—l)T (812)

This shows that a neuron in [ — 1 layer gets to update its synapse with a neuron in
I'" layer if both neurons have spiked, i.e., for 9C'/9W], to be a non-zero both a;,

and af;l have to be non-zero.

8.2 MNIST

The MNIST digits were passed through the network in Figure 8-1 and encoded
into spike vectors as described in Chapter 3.2.2. Note that the extracted features
are binary valued. Table 8.1 shows that surrogate gradient 1 yields a test accuracy
0.74% higher or 74 more correct classifications compared to surrogate gradient 2
with 10,000 test images. Figure 8-4 shows the classification accuracy per class
using the surrogate gradient 1. For results reported in Table 8.1 a dropout (50%)
mechanism was used in the hidden layer for regularization, the number of neurons
in layer L4 were set to 900, and mini-batch size was set to 5 and 7 for the actual and

true gradients was set to 0.0125 and 0.01, respectively. These results were obtained
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by averaging over five experiments with the classification layers of the network (in

Figure 8-1) trained for 30 epochs each time. For accuracies reported using the true
gradient a quadratic cost function with a ReLU activation function for layers L4,
L5 was used whereas for accuracies reported using the surrogate gradients a cross-
entropy cost function with softmax approximation (see Section 8.1.1) for layer L5

and binary activation function for layers L3, L4 was used.

Table 8.1: MNIST results. True gradients refers to Equations (8.1)-(8.5).

Gradient Type Mean Test Acc. | Max. Test Acc.
True Gradient 98.58% 98.66%
Surrogate Gradient 1 98.49% 98.54%
Surrogate Gradient 2 97.75% 97.77%
100.0
97.5
o
% - II II
<
92.5
N0 5123456 7 8 9
Classes

Figure 8-4: Classification accuracy per class with surrogate gradient 1.

8.3 Extended MNIST

The EMNIST dataset has 47 classes containing handwritten upper & lower case
letters of the English alphabet in addition to the digits. This dataset is divided into
102, 648 training images, 10,151 validation images, and 18, 800 test images [9].
The mini-batch size was set to 5 and a dropout of 50% was used in the hidden layer
(L4). The number of neurons in layer L4 was 1500. The number of epochs was set

to 35 and all the experiments were averaged over 5 trials.
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8.3.1 Why Use Unsupervised STDP Based Feature Extraction?

In this section binary valued features vectors (i.e., vector with Os and 1s) were
collected in layer L3 as described in Chapter 3.2.2. Classification was performed
using an ANN with binary activation for the hidden layer L4 neurons and an ap-
proximated softmax output explained in Section 8.1.1. The synapses of L2 layer
(Convl) were fixed with random weights and the binary spike features collected
in layer L3 were classified using surrogate gradient 1 resulting in 80.43% maxi-
mum test accuracy. Similarly, binary spike features collected from layer L3 with
unsupervised trained weights in layer L2 (Conv2) were classified using surrogate
gradient 1 and resulted in a maximum test accuracy of 85.6% or &~ 972 more correct
classifications when compared to random weights in L2. Results averaged over five
trials are given in Table 8.2. Figures 8-6 and 8-5 show the confusion matrices for
the network with random synapses in L2 and STDP trained synapses in L2. When
the layer L2 was trained with STDP, Figure 8-5 shows that there is frequent mis-
classification between the classes {f} and {F}, the classes {0} and {O}, the classes
{q} and {9}, the classes {1}, {I} and {L}, the classes{S} and {5}, and the classes
{2} and {Z}. Misclassifications for this case are explainable in the sense that one
might expect humans to make such errors. For example, in 6! element of the 3"
row off Figure 8-7 the network predicted a lower case “f”, while the label was an
upper case “F”. In contrast, when layer L2 was not trained, Figure 8-6 shows that
the network frequently misclassified the classes {H} and {0}, the classes {E} and
{1}, the classes {A} and {1}, the classes {Z} and {7}, and the classes {h} and {L}.

One would not expect humans to make such mistakes.

Table 8.2: EMNIST accuracy with random and trained L2 layer.

Gradient Type Mean Test Acc. | Max Test Acc. | L2 Synapses
Surrogate Gradient 1 80.21% 80.43% Random
Surrogate Gradient 1 85.35% 85.60% STDP trained

We performed experiments to study the classification accuracy in the presence

of noise in the spiking input images (L1). To explain, suppose a particular image
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Figure 8-5: Confusion matrix of predictions with EMNIST dataset when the
synapses in layer L2 were learned in an unsupervised fashion using STDP.

resulted in 100 spikes in L1. Then by 10% noise we mean that 5 of the randomly
chosen neurons that spiked were set to zero, while 5 randomly chosen non-spiking
neurons were forced to spike. Figure 8-8 shows the result of this input noise on the
final classification accuracy. As shown in Figure 8-8, the network can withstand
~ 40% this input noise before the classification accuracy decreases to that of the

case where the L2 layer synapses were set randomly.
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Figure 8-6: Confusion matrix of predictions with EMNIST dataset when the

weights (synapses) in layer L2 were random.

Figure 8-7: Frequently misclassified classes in the EMNIST dataset. P and L

denote predicted class and actual label, respectively.
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Figure 8-8: Effect of input noise on the final classification accuracy.



8.3.2 Effect of Gradient Approximation on Classification
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Table 8.3: EMNIST results. True gradient refers to Equations (8.1)-(8.5).

Gradient Type Mean Test Acc. | Max. Test Acc. | Cond. Max. Test Acc. n Activation

True Gradient 85.47% 85.7% 94.49 % 0.05 ReLU
Surrogate Gradient 1 85.35% 85.60 % 94.1 % 0.02 Binary
Surrogate Gradient 2 84.24 % 84.47 % 93.72 % 0.02 Binary

Table 8.3 shows that the true gradients results in best classification accuracy and

surrogate gradient 1 outperforms gradient surrogate 2 by 1.0% (188 more correct

classifications with 18800 test images).

8.3.3 Conditioning on Upper Case, Lower Case, and Digits
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Figure 8-9: Classification accuracy per class with surrogate gradient 1.

Figure 8-9 shows the accuracy per class when surrogate gradient 1 is used for

classification. With handwritten data even a human classifier may not be able to tell

the difference between, for example, the upper case letter “O” and the digit “0”. To

study this we also ran the classifier conditioned on (given that) the image under test

was an either an upper case letter, a lower case letter, or a digit. No retraining was

done for this section. Table 8.3 shows the dramatic increase in accuracy under this

conditioning. The accuracy per class using this conditioning is given in Figure 8-10.

It is seen that the classes I, L, g, q have the least recognition rate, but still well above

their accuracies given previously in Figure 8-9 where conditioning was not used. In
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Figure 8-10: Classification accuracy per class of EMNIST dataset with surrogate
gradient 1 after conditioning.

more detail we found that about 13% of the letters “q” were misclassified as the let-

n_n [1P4]

ter "g", about 4% of letters “q” were misclassified as the letter “a”, while about 83%
of letters "q" were correctly classified. About 20% of letters “g” were misclassified
as the letter “q” while about 73% of letters “g” were correctly classified. Similarly,
we found that about 27% of letters of upper case “I” (eye) were misclassified as the
upper case letter “L" while 68% of upper case “I” were correctly classified. As a
final observation about 20% of upper case letters “L” were misclassified as an upper

case “I” (eye) while about 78% of upper case letters “L” were correctly classified.

Figure 8-11 shows the confusion matrix for the conditioned case.
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Figure 8-11: Confusion matrix of predictions with EMNIST dataset when the
inputs are conditioned on Upper Case, Lower Case and Digits.

8.3.4 Computational Advantage of Binary Activations

In the feedforward paths L1 through L4 the matrix-vector multiplication op-

erations can all be avoided in a hardware implementation as these layers all have

binary activations. For example, executing the multiplication of a set of (floating

point) weights times a set of spikes (binary activations) is simply.

W11 Wi2 Wiz
Wo1 Woo Wa3

W31 W32 W33

Wn1 Wp2 Wp3

Wi2
W22

W32

Wn2

W13
Wa3

W33

Wn3

(8.13)

That is, multiplication is replaced by addition. This technique avoids the need

for dedicated multiplier hardware and allows the feasibility of in memory com-
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puting [97][98]. Another advantage is found in backpropagation computations.

Specifically, as the surrogate gradient o/(2!) is binary, the error vector §' for the
hidden layer can be obtained without having to do a majority of the row-column

multiplications for example,

1
W11 Wiz Wi3 0 0
x| 2.5 ® =
Wo1 Wa2 Wag 1 Wo1 + 2.5W22 + 3.1W23
N ~ - 3.1 N——
(wiH1)T A o' (1)
§l+1

(8.14)

That is, in equation (8.14) the row-column multiplications of the first row are
avoided as the result will zero due to the element-wise (Hadamard product) vector
multiplication. All the weight updates, 9C'/OW' can be obtained without explicitly
calculating the vector outer product §'a"D7 as the activations of L3 and L4 layers

are binarized. For example,

a 0 a O
b x(o | 0>= 0b o0 |. (8.15)
c al-1T 0 ¢ O

5t
That is, the matrix on the right side of Equation (8.15) is found by simply tran-

scribing ¢! into its columns as specified by a1V

8.3.5 Number of High-Precision Multiplications

Table 8.4: Comparison of multiplications for a DNN and an SNN in Figure 8-1.

Architecture L2 L4 L5 Total
DNN 2.84%x10" 3.92x10" | 5.06x10" | ~4.25x10%
Proposed SNN | 5.22x107 | 1.87x10% 0 ~1.87x 100

The majority of computations in a DNN are high-precision multiplications of

the weights with the activations during both the forward inference as well as the
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backpropagation of the error. Energy consumption of the network is hardware ar-

chitecture dependent, but in order to provide an estimate about the energy savings
in our SNN we compare the number of high precision multiplications between a
DNN and our SNN [77]. It requires m X n X p high precision multiplications in
order to multiply an m X n matrix by an n X p matrix in a fully connected net-
work. Convolution (in valid mode) of an / x [ image with an F' x F' filter requires
(I—F+1)x(I—F+1)x F x F multiplications. As we employ temporally encoded
spikes with binary activations used in the classification layer, the forward path can
be implemented with no multiplications (See Equation (8.13) and Equation (8.15)).
Further, orders of magnitude less multiplications are required for backpropagation
as we explain next. Table 8.4 below compares the number of high precision mul-
tiplications required for a DNN with our approach. In a neuromorphic system the
input spikes are typically provided by a silicon retina (eDVS [10]) so we assume
that the images are available in spike form. We begin by estimating the number of
multiplications in the L4 layer for our SNN. Figure 8-12 shows the average number
of neurons in the L4 layer (1500 total neurons) for each epoch that have a non-zero
activation. The number of multiplications required to calculate the error in layer
L4 according to Equation (8.14) is as follows: In the earliest epochs, the number of

multiplications during the training is approximately 1.45 x 10° computed from

images

x 47 classes x 300 non-zero activations.
m-batch

20500 m-batches x 5

In the latter epochs the number of non-zero activations decreases to 100 making the
number of multiplications approximately 20500 x 5 x 47 x 100 = 4.5 x 10%. Sum-
ming over the 35 epochs results in approximately 1.87 x 10'° multiplications. To
compute the number of multiplications in the L2 layer of our SNN, note that during
the unsupervised training of L2 (Convl), the lateral inhibition and STDP compe-
tition result in sparse neuronal activity in that there are only 5.8 weight updates
(winner spikes) per spiking input image (see Section 3.2.1). L2 was trained (unsu-

pervised) on 6000 spiking input images. The number of multiplications required is



65
approximately 5.22 x 107 computed from

5.8 avg updates x 2 x 5 x 5 x 30 L2 synapses x 6000 images.

Due to the binary activation of L4, layer L5 of our network can be implemented in
a custom hardware without any multiplications. Based on this quantitative analysis
our approach makes a suitable candidate for low power implementations as it uses

approximately 3—4 orders of magnitude less multiplications compared to a standard

DNN.

—— Avg Activity

Avg Activity

0 10 20 30
Epochs

Figure 8-12: Number of neurons with non-zero activations in layer L4 as the train-
ing in classification sections of the network in Figure 8-1 progresses.

8.4 SPYKEFLOW

The PYNN software tool with NEURON [93] [26] was considered as a simula-
tion tool. However these tools are designed for neuroscientists with neuron models
much more complex than needed in our case. The software tool NENGO [5], de-
veloped for bio-inspired machine learning, uses a more complex neuronal model
than required here. Motivated by the simple spiking models in Kheradpisheh et
al.’s work [35], we developed a software tool called SPYKEFLOW. SPYKEFLOW!
primarily uses NUMPY to do the calculations of lateral inhibition, STDP updates,
neuron spike accumulation, etc. However, SPYKEFLOW also uses TENSORFLOW
for computationally intensive calculations such as convolution and pooling. There-

fore, the users will have the ability to use a GPU, if one is available. Detailed

'https://github.com/ruthvik92/SpykeFlow
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instructions to use the software are provided in [94]. Following [35] our package

supports instantaneous (non leaky integrate and fire) neurons, latency encoding,
and inhibition mechanisms to be able to simply extract meaningful features from
the input images. The feature extraction in our SNNs is done unsupervised using
STDP, which requires monitoring the weight updates (synapse changes) in the spik-
ing network. The SPYKEFLOW software provides the capability to monitor spike
activity, weight evolution (updates), feature extraction (spikes per map per label),
and synapse convergence [91] [92]. Similar to SPYKEFLOW, Mozafari et al. re-
leased the software tool SPYKETORCH in [62], which is based on the PYTORCH

deep learning tool.

8.5 Comparison with Other Works

A comparison of our work with recent publications that employ the EMNIST
dataset is provided in Table 8.5. Rate encoded spiking networks require hundreds of
time-steps of simulation for a single input image resulting in very high spike counts.
In contrast, latency encoded inputs to an SNN equipped with first spike based fea-
ture extraction results in very few spikes, in turn this requires fewer synapse updates

implying lower power consumption.
Table 8.5: Comparison of EMNIST classification results.

Learning method Neuron model | Input Encoding | Max. Test Acc.
Supervised DNN [81] ReLU - 90.59 %
Supervised SNN[32] LIF Rate 85.57 %

This work Instantaneous Latency 85.60 %

In this dissertation, neurons are essentially used as coincidence detectors with
latency encoded input spikes and first spike based feature extraction to transform
the inputs to spike feature vectors that contain robust object category information
as observed in biology [56]. These spike features were then classified using the
proposed backpropagation with surrogate gradients to demonstrate up to 85.60%
accuracy with the EMNIST dataset. This was achieved by employing backprop-

agation only in the classification layers of the network which are decoupled from
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the feature extraction layers. The accuracy achieved here is quite comparable to the

85.57% accuracy reported in [32] which used rate encoded (Poisson) input spikes
in a network with one hidden layer comprised of 800 neurons and with backpropa-
gation performed in all the layers. Furthermore, [32] uses complex leaky integrate-
and-fire (LIF) neurons as opposed to our simple instantaneous summation neurons
that act as coincidence detectors. Using a conventional deep convolution network,
Shawon et al. [81] report an accuracy of 90.59% on the balanced EMNIST (see the
survey paper [4]). The deep network in [81] consisted of 6 convolution layers, a
hidden layer with 64 neurons, followed by a classification layer. Though our ac-
curacy is lower than DNNs, we have proposed an energy-efficient solution using
bio-inspired unsupervised techniques. This energy efficiency can be realized by
implementing the proposed architecture using a Neuromorphic ASIC or FPGA. We
also demonstrated an accuracy of 94.49% when the classifier was given the infor-
mation that an input image was either a letter (upper or lower case) or a digit. As
discussed in the above sections, this conditioning was considered due to the indis-
tinguishability of some samples between a few of the classes e.g., betwen {0} and
{O} in Figure 8-7.

In this chapter we introduced binary activations to reduce the number of float-
ing point multiplications. We also showed that the STDP trained network can be

resistent to the presence of stray spikes.
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CHAPTER NINE: CATASTROPHIC FORGETTING

Catastrophic forgetting is a problematic issue in (non spiking) deep convolu-
tional neural networks. In the context of the MNIST data set this refers to training
the network to learn the digits 0,1,2,3,4 and, after this is done, training on the digits
5,6,7,8.9 is carried out. The catastrophic part refers to the problem that the network
is no longer able to classify the first set of digits 0,1,2,3,4.

9.1 Catastrophic Forgetting in Non-Spiking Networks

In this section we shall examine a conventional (non-spiking) convolutional
neural network whose weights were trained using backpropagation algorithm. In
more detail, Figure 9-1 shows a conventional neural network with one convolution

layer & one pool layer followed by a fully connected softmax output.

L1
Input Image
(MNIST)
1 27x27 maps

L2 L3
Convl Pool 1

30 23x23 maps 30 11x11 maps

L4 (Softmax
Output)

AN
' N
| T 5
H £l
) - -
~ e
sL-1"

1x5%5 2x2 3630 neurons 10 neurons
Convl Kernel Pooll Kernel

Figure 9-1: Network architecture for catastrophic forgetting.

This network has 10 outputs, but was first trained only on the digits 0,1,2,3,4



69
back propagating the error (computed from all 10 outputs) to the input (convolution)

layer. This training used approximately 2000 digits per class and was done for
75 epochs. Before training the network on the digits 5,6,7,8,9 we initialized the
weights and biases of the convolution and fully connected layer with the saved
weights of the previous training. For the training with the digits 5,6,7,8,9 we fixed
the weights and biases of the convolution layer with their initial values. The network
was then trained, but only the weights of the fully connected layer were updated.
(I.e., the error was only back propagated from the 10 output neurons to the previous
layer (flattened pooled neurons). This training also used approximately 2000 digits
per class and was done for 75 epochs. While the network was being trained on the
second set of digits, we computed the validation accuracy on all 10 digits at the
end of each epoch. These accuracies are plotted in Figure 9-2. The solid red line
in Figure 9-2 are the accuracies versus epoch on the first set of digits {0,1,2,3,4}
while the solid blue line gives the accuracies on the second set of digits {5,6,7,8,9}
versus epochs. Figure 9-3 is a zoomed in picture of Figure 9-2 for better resolutions
of the accuracies above 90%. These plots also show the validation accuracy results
when the second set of training data is modified to include a fraction of the data
from the first set of training digits {0,1,2,3,4}. For example, the dashed red line
is the validation accuracy on the first set of digits when the network was trained
with 2000 digits per class from {5,6,7,8,9} along with 200 (10%) digits per class
from{0,1,2,3,4}. The blue dashed line is the validation accuracy of the second set
of digits after each epoch. Similarly this was done with 15%, 25%, 27.5%, and
30% of the first set of digits included in the training set of the second set of digits.
The solid red line shows that after training with the second set of digits for a single
epoch the validation accuracy on first set goes down to 10% (random accuracy).
The solid blue line shows a validation accuracy of over 97% on the second set of
digits after the first epoch. Thus the network has now learned the second set of
digits, but has catastrophically forgotten the first set of digits shown by solid red

line.
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Demonstration of catastrophic forgetting in a CNN trained with
backprop.
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Figure 9-2: Catastrophic forgetting in a convolutional network while revising a
fraction of the previously trained classes. Note that epoch -1 indicates that the
network was tested for validation accuracy before training of the classes 5-9 started.
Brackets in the legend shows the fraction of previously trained classes that were
used to revise the weights from the previous classes.
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Figure 9-3: Zoomed upper portion of the Figure 9-2
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9.2 Forgetting in Spiking Networks

For comparison we tested forgetting in our spiking network of Section 4.2 (see
Figure 4-3). The network was first trained only on the digits {0,1,2,3,4} with unsu-
pervised STDP on the convolution layer and back propagating the error (computed
from all 10 outputs) just to the previous (flattened pool) layer. This training used ap-
proximately 2000 digits per class and was done for 75 epochs. Then, before training
the network on the set of digits {5,6,7,8,9}, we initialized the weights of the con-
volution and fully connected layer with the saved weights of the previous training.
For the training with the digits {5,6,7,8,9} we fixed the weights of the convolution
layer with their initial values. The network was then trained, but only the weights
of the fully connected layer were updated. I.e., the error was only back propagated
from the 10 output neurons to the previous flattened layer. This training also used
approximately 2000 digits per class and was done for 75 epochs. While the network
was being trained on the second set of digits, we computed the validation accuracy
on all 10 digits at the end of each epochs. These accuracies are shown in Figure
9-4. The solid red line in Figure 9-4 are the accuracies versus epochs on the first
set of digits {0,1,2,3,4} while the solid blue line gives the accuracies on the second
set of digits {5,6,7,8,9} versus epochs. Figure 9-5 is a zoomed in picture of Figure
9-4 for better resolutions of the accuracies above 90%. These plots also show the
validation accuracy results when the second set of training data modified to include
a fraction of data from the first set of training digits {0,1,2,3,4}. For example, the
dashed red line is the validation accuracy on the first set of digits when the network
was trained with 2000 digits per class of {5,6,7,8,9} along with 200 (10%) digits per
class of {0,1,2,3,4}. The blue dashed line is the validation accuracy of the second
set of digits after each epoch. Similarly this was done with 15%, 25%, 27.5%, and
30% of the first set of digits included in the training set of the second set of digits.
The solid red line shows that after training with the second set of digits for a single
epoch the validation accuracy on first set goes down to 77% (compared to the 10%

accuracy of a non-spiking CNN). The solid blue line shows a validation accuracy
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of about 95% on the second set of digits after the first epoch. Thus the network has

now learned the second set of digits but has not catastrophically forgotten the first

set of digits shown by solid red line.

Demonstration of catastrophic forgetting in a spiking CNN with 1 fully
connected network trained with backprop
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Figure 9-4: Catastrophic forgetting in a spiking convolutional network while re-
vising a fraction of the previously trained classes. Note that epoch -1 indicates that
the network was tested for validation accuracy before training of the classes 5-9
started. Brackets in the legend shows the fraction of previously trained classes that
were used to revise the weights from the previous classes.

Demonstration of catastrophic forgetting in a spiking CNN with 1 fully
connected network trained with backprop
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Figure 9-5: Zoomed upper portion of the Figure 9-4

As another approach we first trained on the set {0,1,2,3,4} exactly as just de-
scribed above. However, we then took a different approach to training on the set

{5,6,7,8,9}. Specifically we trained on 500 random digits chosen from {5,6,7,8,9}
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(approximately 50 from each class) and then computed the validation accuracy on

all ten digits. We repeated this for every additional 250 images with the results
shown in Figure 9-6. Interestingly this shows that if we stop after training on 1000
digits from {5,6,7,8,9} we retain a validation accuracy of 91.1% and 90.71% test

accuracy on all 10 digits.

Demonstration of catastrophic forgetting in a spiking network trained
with STDP and a single fully connected layer with backprop.

96 —— Total validation accuracy for 0-9

0 500 750 1000 1250 1500 1750 2000 2250
Number of training images for classes 5-9

Figure 9-6: Note that as the number of training images for the classes 5-9 increases
the total accuracy drops.

Table 9.1: Demonstration of forgetting in a spiking convolution network.

# images (classes 5-9) | # images (classes 0-4) | Validation Test Epochs
10,000 1000(10%) 95.235% 95.1% 75
10,000 1500(15%) 95.95% 95.9% 75
10,000 2500(25%) 96.83% 96.81% 75
10,000 2750(27.5%) 96.98% 96.92% 75
10,000 3000(30%) 97.1% 97.043% 75

Jason et al. reported an accuracy of 93.88% for completely disjoint data sets[2].

9.3 Continuous Learning in a Single-Incremental-Task
Scenario with Spike Features

Typically, Spiking Neural Networks (SNNs) are trained using an unsupervised
algorithm called Spike Timing Dependent Plasticity (STDP) [35]. Spike features
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extracted from latency encoded convolutional variants of SNNs have been used with

an SVM [35] and a linear neural network classifier [92] to achieve classification ac-
curacies in excess of 98.5%. However, SNNs tend to achieve lower classification
accuracies when compared to Artificial Neural Networks (ANNs) [69]. ANNs are
trained using Stochastic Gradient Descent (SGD). The main assumption of SGD is
that the mini-batches of the training data contain approximately equal number of
data points with the same labels (i.e., the data is uniformly randomly distributed).
This assumption does not hold for many of the machine learning systems that learn
online continuously. Different kinds of continuous learning schemes have been
proposed to mitigate the problem of catastrophic forgetting. Two main scenarios
of continuous learning are the Multi-Task (MT) and the Single-Incremental-Task
(SIT) scenarios [54]. In the MT scenario a neural network with a disjoint set of
output neurons is used to train/test a corresponding set of disjoint tasks. In con-
trast, a neural network for the SIT scenario expands the number of neurons in the
output layer to accommodate new classification tasks. The MT scenario is useful
when training different classification tasks on the same network thereby allowing
resource sharing. The SIT scenario is useful for online continuous learning ap-
plications. That is, the SIT scenario is more suitable for online machine learning
systems and is more difficult compared to the MT scenario. This is because the
SIT network has to not only mitigate catastrophic forgetting, but also learn to dif-
ferentiate classes that are usually not seen together (unless the system has some
kind of short term memory to be replayed later). Self-Organizing Maps (SOM)
with short-term memory were used in [18] [70] to achieve an accuracy of 85% on
the MNIST dataset using a SIT scenario and replaying the complete dataset. Using
STDP based unsupervised learning and plasticity modulation, controlled forgetting
was proposed in [2]. It was shown to achieve a 95% accuracy on MNIST dataset
using the SIT scenario. Unsupervised spiking networks with predictive coding have
been trained with STDP and shown to achieve an accuracy of 76% on the MNIST
dataset using the MT scenario [68]. In our work here, our network classifies the

data according to the AR1 method given in [54]. This uses the SIT scenario which
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was inspired by synaptic intelligence for the MT scenario in [100]. In our previ-

ous work [92] we used the MNIST dataset split into two disjoint tasks to show that
features extracted from a spiking convolutional network (SCN) demonstrated more
immunity to catastrophic forgetting compared to their ANN counterparts. In [92],
using early stopping, the first five output neurons were trained to classify the digits
{0,1,2,3,4} and then the remaining five output neurons were trained to classify
the digits {5,6,7,8,9}. The network was then tested on the complete test dataset
(digits 0-9) and achieved a 93% accuracy on this test data. In the work presented
here we exclusively work with spike features extracted from an SCN and study the
effect of continuous learning using the SIT scenario on the MNIST dataset. For
this study the MNIST dataset was split into the five disjoint classification tasks
{{0,1},4{2,3},{4,5},{6,7},{8,9}}. The feature classification is done unsuper-
vised in the convolution layer (L2) while the classification is done in the latter layers
using error backpropagation. Here we modify the synaptic intelligence regularizer

calculation of [100] in order to reduce the computational load.
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9.4 Network

L1 L2 L3 L4 L5
(Input) (Convl) (Pool 1) (Hidden) (Output)
2x27x27  30x23x23 30x11x11 Q 1500 Expanding
(2-10)
S 0
1‘! - Q
2X7X7 2x5x5 2x2
DoG Convl Pooll 3630
Kernel  Kernel Kernel Neurons

Figure 9-7: Layers L1-L3 and L3-L5 are feature extraction and feature classifica-
tion layers respectively. Shown in the figure is an expanding output layer from 2-10
output neurons to accommodate the five classification tasks for the MNIST dataset.
For the EMNIST dataset the same network has been modified to accommodate the
ten classification tasks. EMNIST dataset with 47 classes has been divided to 10 sub
tasks.

The feature extraction part of the network is same as in [91] [92]. Input images
are encoded into spikes using ON and OFF center DoG filters followed by thresh-
olding [35]. The L2 (convolution) layer consists of 30 maps and the neurons that
emerge as winners after lateral inhibition and STDP competition [94] get to update

their weights according to a simplified STDP [35] which was introduced in Chapter

1.1. For convenience the simplified STDP formula is given below

—a‘wi(l — ’lU,L'), if tout — tzn <0
Awi =
—|—CL+UJ7;<1 - wi)> if tout - tzn 2 0

w; — w; + Aw;

tin and t,,, are the spike times of the pre-synaptic (input) and the post-synaptic

(output) neuron, respectively. If the i*" input neuron spikes before the output neu-
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ron spikes, the weight wj is increased; otherwise the weight is decreased.! Learn-

ing refers to the change Aw; in the (synaptic) weights with ™ and o~ denoting
the learning rate constants. These rate constants are initialized with low values
(0.004, 0.003) and are typically increased for every 1500 input images as learning
progresses [35]. This STDP rule is considered simplified because the amount of
weight change doesn’t depend on the time duration between pre-synaptic and post-
synaptic spikes. In this work, backpropagation is used only in the classification

layers (L3-L4-L5) of the network with a single hidden layer L4.

9.5 Continuous Learning

By continuous learning we mean that the network in Figure 9-7 will start with
two output neurons in L5 and be trained to classify the digits {0, 1}. During this
training the error is backpropagated from layer L5 only as far as L3. After this train-
ing is complete two new neurons will be appended to the L5 layer and then trained
to classify the digits {2,3}. This is continued in the same manner for the three
remaining classes {{4,5}, {6,7},{8,9}}. We proceed in the rest of this section to
give the details of this training by specifying the cost function along with the (cost
per synapse) weight regularizer. The neural network in this work has a softmax
output layer which is the likelihood of the input image belonging to a particular
class. Let X € R3030 denote the (flattened) spike features in L3 and § € R1500%3630
denote the weights from L3 to the hidden layer L4. For task 1 there are two output
neurons and we let C'; denote the cross-entropy cost computed with the softmax
outputs of these two neurons. For task 2 there are now four output neurons and we
let C5 denote the cross-entropy cost computed with the softmax outputs of these
four neurons. The costs C3, Cy, C5 are defined in a similar manner. The L4 and the
L5 weights are updated using SGD on mini-batches. C’l(m) denotes the cost of the
m™ input mini-batch for the task {0,1}. CS™, ..., C™ are similarly defined. Dur-

ing training for task 1 the weights 0§ € R5%0%3630 are yupdated as usual according to

I'The input neuron is assumed to have spiked after the output neuron spiked.
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act™

Al =—n—5

9.1)

After training is completed for task 1, we need to know the importance of each
of the weights 6., forr = 1,...,1500 and s = 1, ...., 3630 in terms of classifying
the images of task 1. This is necessary because when we proceed to train on task
2 these "important" weights should not be allowed to change significantly. That
is the network must be forced to use the other weights for the training of task 2.
Accordingly, we next define a cost per synapse regularizer during the training of
task 2 to help prevent changes to the so called important weights of the task 1. The

change in the cost per each synapse AC™ is defined as

1,rs
L oc™ ac™\”
ACI ,rs = aTAgTS - _77 ag (9'2)
with
AC! (m) & {AC’l rs}r s € [R 15003630 (9.3)
s=1.....3630

For each task there are M mini-batches with P images per mini-batch for a total of

N = M P input images for each task. The average change in cost for 0, is given

by

2
fies & 57 ZAOM =7 MZ( = ) (94)

with
f1 = {frrs r=1,...1500 € RIP00%3630 (9.5)
s=1,..3630

A softmax output layer with a cross-entropy cost function and one-hot encoded
labels is the same as the log-likelihood cost function [66]. The MNIST label
[ with I € {0,1,2,...,9} corresponds to the k(= [ + 1) output neuron with
k € {1,2,...,10}, respectively. Let X" = {(X0™) [,) i = 1,..., P} denote
the images and corresponding labels in the m!* mini-batch. In Equation (9.4) the

average cost C’fm) for mini-batch m is
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P P
1 = im im
m) Z F Z Uk In (Lfo(X( )) — _ﬁ Z lnal +1(X( ))

i=1 k=1 (X(i""),li)GX"’

w |

(9.6)
as yj11 = 1 and y, = 0 for k # [ + 1. Here LS5 indicates the last layer and a®(X)
indicates softmax output activations. Substituting Equation (9.6) in to Equation

(9.4), Equation (9.5) becomes

2
actm™ y
— _nMZ ( > c R1500 3630 (97)

In [37] the authors state that near a minimum of the cost the (7, s) component of

1 m
Equation (9.7) given by ~ <88%1 ) is the same as
m=1 rs

Ai M 8205"0
M =002,

Irs((g)

(9.8)

with some limitations [41] and is the Fisher information [7] for the parameter 6,
I,5(0) is a measure of the “importance” of the weight 6,.;. A large value of I,,(0)
implies that small changes in the value of 0,.; will lead to a large increase in average
cost (classification error). When the network is to train for task 2, those weights 6,.,
with a large I,5(f) computed from task 1 must now be constrained to only small
changes so the network will continue to classify the images of task 1 correctly.
That is, when training on task 2, the network must be forced to (essentially) use
only those weights that had a small value of /,4() from task 1. So, the cost per
synapse for the first task f; (calculated during the last epoch of training for the
first task) gives the relative importance of the weights for the taskl classification
problem. Let Af; € R590%3630 be the change in weights during the last epoch of

task 1. Further §; denotes the value of the weights after training on task 1. The
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second task is trained using the regularized cost function given by

A . .
Cy9 & Cy + TN 0y —01) © FL © (0 — 6y) (9.9)
with
F 2 fi0 (A0, O Al +§) (9.10)

where ® and @ represent the Hadamard product and division, respectively. ¢ is
a small positive number added to each element of the matrix to prevent division
by zero when doing Hadamard division. Similarly, f; is calculated during the last
epoch of training task ¢, A#, denotes the change in the weights during the last
epoch, and finally 6, denotes the weights at the end of training task ¢. Task ¢ is
trained by adding a weight regularizing term to prevent the "important" weights
from the previous tasks being changed significantly. With f, € R1590%3630 3 matrix

of zeros define t—1
F 2 f,0(A0, © Af, +). (9.11)

=0

then we can write the cost function of the ¢ task as

re A N N
i = Ci+ o Z F® (0 —0i-1) © (6, — 0,1), =12345  (9.12)
0,_, are the weights between L3 and L4 layers at the end of (¢ — 1) task and
N = MP is the number of input images. Remark Note that only the weights
connecting L3 to L4 are subject to cost per synapse regularization. The weights

connecting L4 to L5 are trained without regularization and use the AR1 method to

train sequentially [54]. The parameter updates for the cost function are

aC;0  aC, A .
aet = a—et‘f'NB@(gt_et—l) (913)

In [100] the cost per synapse is calculated over all the training epochs (rather

than just the last epoch).
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9.5.1 Results with MNIST Dataset

The parameter A in Equation (9.13) was optimized with validation data. Figure
9-8 shows the effect of A on accuracy. Results for each A were obtained from 10 dif-

ferent weight initializations. In this section the network was not presented with any
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Figure 9-8: Search for \.

of the data from the previous tasks. Figure 9-9 shows the trend of testing accuracy
as the network is trained on disjoint tasks with 10 different weight initializations.

The highest testing accuracy achieved for this disjointly trained tasks was 84.61%
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Figure 9-9: Test accuracy

and \ was set to 2.03 x 107. in Figure 9-9 "Max’ in the legend indicates the weight
initialization that resulted in highest test accuracy and ’Min’ indicates the weight
initialization that resulted in lowest test accuracy. For all of the above reported ex-
periments the hyper-parameter = 1.0 x 1073, the mini-batch size P = 10 and the
value of M was calculated based on the ratio of number of samples per task and the

mini-batch size.
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9.5.2 Results with EMNIST Dataset

The parameter A in Equation (9.13) was optimized with validation data. Figure

9-10 shows the effect of A\ on accuracy. Results for each A\ were averaged from

10 different weight initializations. In this section the network was not presented

Accuracy

Figure 9-10: Search for \.

with any of the data from the previous tasks. Figure 9-11 shows the trend of testing
accuracy as the network is trained on disjoint tasks with 10 different weight initial-

izations. The highest testing accuracy achieved for this disjointly trained tasks was
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Figure 9-11: Trend of test accuracy as the learning progresses in an SIT scenario.

62.26% and \ was set to 1.65 x 107. in Figure 9-9 "Max’ in the legend indicates the
weight initialization that resulted in highest test accuracy and Min’ indicates the
weight initialization that resulted in lowest test accuracy. For all of the above re-
ported experiments the hyper-parameter 7 = 1.0 x 10~3, the mini-batch size P = 10
and the value of M was calculated based on the ratio of number of samples per task

and the mini-batch size.
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In this chapter, we demonstrate that STDP trained CNN is resistant to catastrophic

forgetting when compared to a non-spiking CNN. All the continual learning exper-

iments in this chapter were performed using the MNIST and the EMNIST datasets.
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CHAPTER TEN: MODELLING A CMOS IMAGE SENSOR
USING NEURAL NETWORKS

10.1 Introduction

This chapter presents the internship work done at ON Semiconductor Inc, to
model their image sensor using neural networks. Deep learning has been used in
a plethora of applications like autonomous driving, cancer prediction, low power
object recognition etc. [91] [92] [79]. In particular, neural networks as a regression
tool have been used in applications like, time series learning [27], stock prediction
[74], pose estimation in computer vision [42], cost predictions [85] etc. Tradition-
ally, linear regression with linear or non-linear coefficients has been used for mod-
eling where real valued outputs are required. Neural networks are iterative methods
that minimize a loss function defined on the output layer of neurons. Universal
approximation theorem states that a feed forward neural network with at least one
hidden layer can approximate a continuous function of R" [28]. Neural networks
use error back-propagation with stochastic gradient descent (SGD) [45] to achieve
an acceptable local minima that optimizes the output loss function.

Many industrial sensors require fine tuning of the input settings to attain a de-
sired output. Figure 10-1 shows that the number of experiments to be conducted
grows exponentially with the resolution and number of inputs to a sensor. In this
work, we employ deep learning to model the relationship between inputs and out-
puts of a sensor that were collected at set intervals. Once a satisfactory model is
achieved, it will be used to interpolate the outputs for any input combinations that

are within an allowed range. Using appropriate optimization criteria we show that
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one can arrive at input settings that maximize or minimize required outputs for a

given sensor.
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Figure 10-1: Resolution indicates number of values a particular setting can assume.

10.2 Data Visualization

Throughout the chapter, we shall use the image sensor data obtained from ON
Semiconductor. Given a sensor has seven inputs and three outputs, six of the inputs
are numerical and the seventh input is categorical and it can assume four possible
values. Histograms of all the numerical inputs and outputs are shown in Figure
10-2. Each of the numerical inputs assumes five different values therefore we have
a total of 55(3125) possible combinations. For each of the possible combinations,
Input5 was swept from 0 —49. Categorical variable that assumes four unique values
is not shown in Figure 10-2. Each of the input setting combinations yields a table
(DataFrame) of 50 x 4(= 200) rows. Because there are 3125 possible setting com-
binations the output table contains 3125 % 200(= 625000) rows. Each row in Table
10.1 is applied as a setting combination to the sensor resulting in three outputs con-
sisting of Signal, SNR and Output3. Therefore, the input to the neural network is

€ R25000x10 and the output is € R625000%3,
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Table 10.1: Concerned sensor of this work was presented with all the combinations
of Inputl, Input2, Input3, Input4, Input6 values given in the table. For each of the
combination, Input5 was swept from 0-49 obtaining a single Signal [AU] vs SNR
[dB] curve. Note that the resolution of inputs for which outputs were recorded is
22, 8,25, 200 and 200 respectively for Inputs 1, 2, 3, 4 and 6 respectively.

Inputl | Input2 | Input3 | Input4 | Input6
418 112 400 2850 | 3200
441 120 425 3050 | 3400
464 128 450 3250 | 3600
478 136 475 3450 | 3600
510 144 500 3650 | 4000
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Figure 10-2: Histogram of all the inputs and outputs.

Figure 10-3 shows correlations between numerical inputs and outputs. Since the
data is in higher dimensions ( R'%), we cannot visualize the relationship between
inputs and outputs. However, we can plot the Signal vs SNR plot with at most two
of the input settings varied. Signal [AU] vs SNR [dB] plot with varied Inputl and
Input 2 is plotted in the Figure 10-4.
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Figure 10-3: Correlation between various inputs and outputs.
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Figure 10-4: Plot of Signal [AU] vs SNR [dB] given Inputl and Input2.

10.3 Data Pre-processing

The Signal vs SNR relation of the data from the concerned sensor is approx-
imately piecewise log linear with some non-linearities that are controlled by the
inputs 1-6. This is shown in the Figure 10-4. Signal [AU] column of the dataframe
was log transformed and all the inputs to the neural network were normalized by
dividing the input with the maximum value that the input could assume. So, all the
inputs to the neural network are in between 0 and 1 similarly, outputs were also
normalized. All the data were converted to dataframes using Pandas [59]. Original

and normalized sample sections of the dataframes are shown in Figures 10-5 and
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10-6.
Inputl Input2 Input3 Inputd InputS Inputé Categ Inputl Categ Input2 Categ Input3 Categ Inputd
405584 464 112 475 3050 0 3400 0 0 1 0
B4221 441 144 400 3450 47 3400 0 0 1 0
338759 478 136 450 3450 32 3600 1 0 0 0
120873 510 144 425 2850 40 3200 1 0 0 0
188550 464 136 425 3250 19 3600 0 0 1 0
Figure 10-5: Un-normalized input data.

Inputl Input2  Input3 Inputd InputS Inputé Categ Inputl Categ Inputz Categ Input3 Categ_Inputd

430509 0909804 0777778 095 0.890411 0.693878 0.85 1.0 0.0 0.0 0.0

185603 0937255 0977778 085 0.890411 0.755102 0.90 0.0 0.0 1.0 0.0

58167 0819608 0.944444 080 0.890411 0.346939 0.85 1.0 0.0 0.0 0.0

411725 08937255 0.833333 095 0.835616 0.918367 0.80 0.0 1.0 0.0 0.0

14978 1.000000 1.000000 080 0780822 0.326531 0.80 1.0 0.0 0.0 0.0

Figure 10-6: Normalized input data.

10.4 Neural Network

Layer (type) Output Shape Param #
dense 1 (Dense) (None, 1536) 16896
leaky re lu_ 1 (LeakyRelU) (None, 1536) 0
dense 2 (Dense) (None, 768) 1180416
leaky re lu 2 (LeakyRelU) (None, 768) 0
dense 3 (Dense) (None, 512) 393728
leaky re lu 3 (LeakyRelU) (None, 512) 0
dense 4 (Dense) (None, 3) 1539

Total params: 1,592,579
Trainable params: 1,592,579
Non-trainable params: ©

Figure 10-7: Keras sumary of the final neural network that was used to train the
data.

A neural network with three hidden layers, mean squared error cost function

and a leaky ReLU activation function was chosen. Our network has 10 input and
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3 output neurons which are determined by the dataset. Training was performed

using Keras [8] with Tensorflow [1] back end. Network’s Keras summary is given

in Figure 10-7.

10.4.1 How to Choose Neural Network Parameters ?

Motivated by universal approximation theorem we started with one hidden layer
with sigmoid activations and we found that using two hidden layers results in faster
convergence. One of the most important hyper-parameters for neural networks is
the learning rate («). We started (o) with a value of 0.0005. Mean absolute error
(MAE) was chosen as the cost function and by experimentation we found that MAE
cost function and sigmoid neurons delayed the convergence. Weights were initial-
ized with Glorot or He initialization depending on the activation functions. Glorot
initialization is beneficial for reducing the hidden neuron activation’s variance for
sigmoid neurons [20] and He initialization helps networks with ReLLU activation
functions [25]. In deep neural networks it is desirable to have similar variance for

activations and gradients of the neurons in hidden layers.

Glorot Initialization

Weights between two layers are initialized with a normal distribution with mean,

1 = 0 and standard deviation

2
7= \/fanm + fanout

where fan;, and fan,,; are number of neurons in incoming and outgoing layers.

If a uniform distribution is used then the weights are sampled from

6 6
U(_\/fanm + fanout’ \/fCLTLm + fa'nout>

Note that our network in this work utilizes Glorot initialization with normal distri-

bution
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He Initialization

He initialization is used for ReLU units. If a normal distribution is used then the

weights are sampled from a distribution with mean, ;» = 0 and standard deviation,

2
g =
fanin

If a uniform distribution is used then the weights are sampled from

6 6
U(_\/fanin’ \/fanin)

Usually, a ReLLU activation is used for efficient error back-propagation. How-

ever, care should be taken when using ReLLU activation, if a single “bad” weight
update results in negative activations for majority of the neurons in a layer then the
majority of the gradients will be nullified as ReLU function is zero for negative
inputs. Hence, the network will not be able to backpropagate the error from the
final layer. Equation 8.2 is modified accordingly. If a ReLU activation function is

chosen then

z, ifz>0
o(z) =

0, ow

Its derivative is given by

(

1, ifz>0
o'(z) =

0, ow

5o _ —(y—a*)®o't), ifzl >0

0, if 2l <0
If a component of the vector 2 is negative then the corresponding component of 5~
is zeroed out resulting in no error back-propagation. Gradient vectors were normal-

ized to have a max value of one so that a single gradient update with larger negative
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values doesn’t drive the net inputs of neuron to have a negative value resulting in

a zero activation value. This results in no forward propagation resulting in “dead
neuron phenomenon” and this issue can be mitigated by using Leaky ReLU acti-
vation function. We found that Leaky ReLU with Mean squared Error (MSE) cost
function gives a faster convergence when compared to Sigmoid activations with
MSE or MAE. Leaky ReLU is able to back-propagate both positive and negative

components of the ' it is given by

z, ifz>0
o(z) =

az, o.w

Where o was set to a small value, 0.01. Derivative of Leaky ReLU is given by

1, ifz>0

o(z) =

o, ow

10.4.2 Modeling

Data were split into training (81% ), validation (9% ) and testing (10% ). Our
network was trained for 100 epochs and learning rate was reduced by a factor of two
for every consecutive five epochs if the validation error did not decrease. Figure 10-

8 shows the progress of the network in learning the dataset.

10.4.3 Prediction and Evaluation

Once the modeling was done, training data, testing data and validation data
were passed through the network to obtain the predictions for the required outputs
(SNR[dB], Signal [AU], Output3). Note that the model/network has not “seen” the
testing data directly and validation data was ““seen  indirectly in that it was used to
optimize for the learning rate. Figure 10-9 shows the Actual vs Predicted plot for

SNR[dB] and it is a linear plot indicating that the model was successful in recalling
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Figure 10-8: Epochs vs Loss plot of the neural network.
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Figure 10-9: Actual vs Predicted plot for SNR [dB] in the training dataset. Good-

ness of fit (R?) was found to be 0.991

Figure 10-10 shows that predicted SNR [dB] values were quite close to the

actual SNR [dB] values of the testing set. Figures 10-11, 10-12, 10-13, 10-14 show

Actual vs Predicted plots of Signal [AU], Output3 for training and testing datasets

respectively.
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Figure 10-10: Actual vs Predicted plot for SNR [dB] in the testing dataset. Good-
ness of fit (??) was found to be 0.990

1000000 Training data [Signal [AU]]
800000
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200000
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Figure 10-11: Actual vs Predicted plot for Signal [AU] in the training dataset.
Goodness of fit (R?) was found to be 0.999
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Figure 10-12: Actual vs Predicted plot for Signal [AU] in the testing dataset. Good-
ness of fit (??) was found to be 0.999
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Figure 10-13: Actual vs Predicted plot for Output3 in the training dataset. Good-
ness of fit (R?) was found to be 0.999
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Figure 10-14: Actual vs Predicted plot for Output3 in the testing dataset. Goodness
of fit (R?) was found to be 0.999
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10.5 Optimization

The goal of the optimization process is to obtain a settings combination (of In-
putl, Input2, Input3, Input4 and Input6) that results in a Signal [AU] vs SNR [dB]
curve that is closest to the ideal and minimize the value of Output3. For the sen-
sor under consideration, the ideal SN R[dB] = 10log,,(+/Signal[AU]). Each of
the settings combinations (of Inputl, Input2, Input3, Input4 and Input6) results in a
dataframe of 200 rows because Input6 is swept from 0 — 49 and the categorical vari-
able assumes four different categories and each of these dataframes yields a single
Signal [AU] vs SNR [dB] curve. Note that Signal [AU], SNR [dB] and Output3 are
the outputs of the trained neural network. The trained model was used to predict
Signal [AU] vs SNR [dB] plots for a large number ( ~ 12 x 10°) of interpolated
settings combinations within the domains of all the input settings, to that end we
increased the resolution of the numerical inputs listed in Table 10.1. Similar to the
original dataset, each of the interpolated input settings combinations also yields a
single Signal [AU] vs SNR [dB] curve. Shown in Figure 10-15 is a Signal [AU] vs
SNR [dB] curve for a randomly chosen interpolated input settings, green and blue
colors indicate ideal and predicted Signal [AU] vs SNR [dB] relationships. In this
case, Inputl, Input2, Input3, Input4 and Input6 happened to be 418, 112, 400, 2850
and 3200 respectively and the value of Output3 is 2.9365. The green colored line
indicates the fitted line of Signal [AU] with SNR [dB] for Signal [AU] values that

are less than 2 x 103 .

60 ,/’/
// i
50 o s
L — L —— SNR [dB]

40 /,_/ M“ —— SNR_extrapol [dB]

] I a5l -

Eip 1 —— SNR _ideal [dB]
” \/’V/(_M/_F L\/// )
=
10° 10° 10° 10° 10°

Signal [AU]

Figure 10-15: Plot of Signal [AU] vs SNR [dB].
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Figure 10-16: Plot of Signal [AU] vs SNR [dB] in the interval ~ 3 x 10% — 10* AU
from the sensor for a single settings combination. Recorded prominence (SNR[dB]
drop) value for this settings combination was ~ 5.77 dB. One of the methods of

optimization is to choose the settings combination that produces the least SNR drop
in the interval ~ 3 x 10° — 10* AU.

The blue curve in Figure 10-15 shows a linear relationship until Signal [AU]
reaches ~ 3 x 10% AU. Ideally, we expect this behavior to continue for the rest of
the Signal values. A sudden dip of ~ 5 dB (see Figure 10-16) is noticeable when the
Signal [AU] value is in the range, ~ 3 x 10® — 10* AU. Since it is highly unlikely to
achieve an ideal performance, we set a few criteria (heuristics) to choose a particular
settings combination that could give the smallest prominence in the SNR value at
the interval ~ 3 x 10®> — 10* AU and a Signal [AU] vs SNR [dB] curve that is
closest to the ideal Signal [AU] vs SNR [dB] curve. The best interpolated input
combination was filtered by applying different criterion described below. Lower

values are preferred for all the criteria except for criteria 4 and 5.

e MAE between ideal and predicted (criterion 1): MAE was calculated for
each of the settings combinations and serial numbers of each of the dataframes

(a single settings combination) was ordered in an ascending order of the cal-

culated MAEs.

e Prominence of SNR dip (criterion 2): Serial numbers of each of the dataframes
(a single settings combination) was ordered in an ascending order of the cal-

culated prominence values at ~ 3 x 103 — 10* AU.

e MAE between fitted line and predicted (criterion 3): Serial numbers of
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each of the dataframes (of a single settings combination) was ordered in an

ascending order of the calculated MAE between fitted green line and pre-
dicted blue curve of Figure 10-15. Green line was fitted for Signal [AU] vs
SNR [dB] up to ~ 3 x 103 —10* AU and extrapolated for the rest of the Signal
[AU] values.

e Area under curve (criterion 4): Serial numbers of each of the dataframes
(of a single settings combination) was ordered in an ascending order of the

calculated area under the curve of SNR [dB] vs Signal [AU].

e Minimum SNR value for the second transition (criterion 5): Serial num-
bers of each of the dataframes (a single settings combination) was ordered
in descending order of the calculated minimum SNR [dB] for Signal [AU]
greater than ~ 10* AU.

e Least value for Output3 (criterion 6): Serial numbers of each of the dataframes
(a single settings combination) was ordered in an ascending order of the cal-

culated Output3 value.

The first index among the intersection of all the indices obtained from the above
steps gives the optimal input setting combination with a Signal [DN] vs SNR [dB]
curve that meets all the above criteria. Figure 10-17 shows the optimized curve.

Input2
60 —— 120.0 | SNR_ideal [dB]
i —— 120.0 | SNR_predict [dB]

50

40

20

" ° Signal _prelgict [AU] 10
Figure 10-17: Plot of Signal [AU] vs SNR [dB] for the corresponding input settings
combination that resulted in a Signal [AU] vs SNR [dB curve close to the ideal
Signal [AU] vs SNR [dB]. Inputl, Input2, Input3, Input4, Input6 were found to be
430, 120, 485, 2900, 3525 respectively. Optimization was performed using all the
six criteria mentioned above.
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Table 10.2: Various criteria values when the predictions where optimized for Signal
[AU] vs SNR [dB] curve and Output3.

criterion 1 | criterion 2 | criterion 3 | criterion 5 | criterion 6
1167.50 39 384.73 24.66 2.64

Table 10.2 shows the numerical values of different criteria used in the optimiza-
tion process. If criterion 6 was excluded from the optimization criteria (i.e., Signal
[AU] vs SNR [dB] curve not optimized for Output3) then the Signal [AU] vs SNR
[dB] is shown in Figure 10-18 and corresponding values of criteria are shown in

Table 10.3.

] Input2
& ) —— 112.0 | SNR _ideal [dB]
—— 112.0 | SNR_predict [dB]

50

40

) W
20

10° 10° 10" 10°

Signal_predict [AU]

Figure 10-18: Plot of Signal [AU] vs SNR [dB] for the corresponding input settings
combination that resulted in a Signal [AU] vs SNR [dB] curve close to the ideal
Signal [AU] vs SNR [dB]. Inputl, Input2, Input3, Input4, Input6 were found to be
426,112,495, 3000, 3600 respectively. Optimization was performed using all the
six criteria mentioned above.

Table 10.3: Various criteria values when the predictions where optimized only for
Signal [AU] vs SNR [dB] curve.

criterion 1 | criterion 2 | criterion 3 | criterion 5 | criterion 6
1043.09 3.68 372.75 25.03 2.88

Figure 10-18 was obtained by optimizing for only Signal [AU] vs SNR [dB]
curve. Hence, criterion 6 of Table 10.3 shows higher value than that of crite-
rion 6 of Table 10.2.Many of the data pre-processing steps were parallelized using
python multiprocessing and neural network training and inference was performed
on NVIDIA TITAN GPUs. Eftectively, we were able to cut down the time taken
for characterization from =15 days to ~2 days.

In this chapter, we applied modern deep learning tools and methods to reduce
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the time taken to characterize an image sensor. Specifically, we used a neural net-

work as a function approximator to model the relationship between inputs and out-

puts of an image sensor.
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CHAPTER ELEVEN: CONCLUSION

In this work we employed spiking neural networks (SNNs) as an alternative to
deep neural networks (DNNS5) to study the possibility of energy efficient neural net-
works for classification tasks. We developed the required software tool (SPYKEFLOW)
[94] to facilitate various experiments conducted in this work. We documented the
effect of various hyper-parameters on SNN’s learning abilities and we also explored
the abilities of SNNs in continual learning tasks. We proposed surrogate gradi-
ents to classify the extracted spiking features for energy-efficient neuromorphic/in-
memory devices. In the last chapter, we presented the internship work done at ON

semiconductor for image sensor characterization using modern deep learning tools.

11.1 Summary

11.1.1 Chapter 4

In this chapter, we showed that MNIST training data € R50000%784 transformed

to max-pooled neuron potentials € R50000%500

after passing through an SNN with
two convolution and two pooling layers (2c2p) becomes linearly separable by an
SVM. We also showed that original MNIST training data € R®0000%784 jg not lin-
early separable by an SVM. These experiments were conducted to illustrate that

SNNss aid the separability of the input data.

11.1.2 Chapter 5

In this chapter, we examine Reinforced-STDP (R-STDP) as a classification cri-

teria for spike or membrane voltage feature vectors. We conclude that a simple
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linear neural network (without a hidden layer) trained with error backpropagation

performed better than R-STDP.

11.1.3 Chapter 6

In this chapter, we use spikes obtained directly from a silicon retina (ATIS) to
train an SNN instead of using synthetically generated spikes from MNIST images.
We also show the results for transfer learning experiments conducted with a network

trained on synthetically generated spikes and tested on spikes from ATIS.

11.1.4 Chapter 7

In this chapter, we discuss the over training problem that arises when using
unsupervised-STDP. We show that over training results in reduction in complexity
of the features learned in deeper layers and it can result in loss of classification

accuracy. We also presented a heuristic method to prevent over training.

11.1.5 Chapter 8

In this chapter, we introduce binary activations for the classification sections
of an SNNs. Subsequently, we introduce two different methods to calculate sur-
rogate gradients for neurons with non-differentiable activation functions. We also
showcase that binary activations and surrogate gradients help in significantly re-
ducing the number of high-precision floating point multiplications. For example,
all the calculations in a matrix (floating point)-vector (binary) multiplication can be

performed by simply choosing rows/columns.

11.1.6 Chapter 9

In this chapter, we demonstrate catastrophic forgetting in a DNN with Iclplfcn
structure. We also demonstrate that an SNN with same structure as a DNN is rel-

atively more resistant to catastrophic forgetting. Subsequently, we also introduce
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“importance per synapse’” metric to immunize the classification sections of an SNN

against catastrophic forgetting in a single incremental task (SIT) scenario.

11.1.7 Chapter 10

In this chapter, we applied modern deep learning tools and methods to char-
acterize an image sensor We demonstrate that a neural network can be used as a

function approximator to accelerate the characterization of an industrial sensor.

11.2 Future work

11.2.1 Time Dependent Classifier

In this work we used a binarized non-spiking DNN for classifying spike feature
vectors extracted using a spiking network. This work can be extended further by
having a feature classifier that can preserve the time information. This can poten-
tially increase the classification accuracy. Further, time dependent classifier will
enable the network to use labelled and unlabeled data thereby making this approach

a suitable candidate for semi-supervised learning applications.

11.2.2 Hardware Implementation

Current state of the art DNNs are not hardware friendly and their power con-
sumption rates are not suitable for edge computing. The methods presented here

are a suitable candidate for implementation on hardware.

11.2.3 Learning Spike Times

In this work we used rank order coding and Difference of Gaussian (DoG) to
generate spikes, this approach limits the learnable texture information in the input
images which limits the problem solving ability of the rank order coding based

spiking networks. Methods that can learn the spike times such as BS4NN [36]
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without using DoG can potentially enable spiking neural networks to solve complex

datasets such as ImageNet [40] and CIFAR100 [39]. Combining surrogate gradients
and methods that learn spike times can be promising approach to solve complex

datasets.
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A.1 Effect of lateral inhibition in pooling layers on sub-
sequent convolution layers

We studied the effects of lateral inhibition [35][34] in convolution and pooling
layers in terms classification accuracy and features learned. Not having lateral in-
hibition in pool 1 layer results in better classification provided overtrain in L4 is

prevented.

A.2  With lateral inhibition in pooling layer

Features learnt in the subsequent layers tend to be more complex looking if
there is lateral inhibition in this layer and less complex looking if lateral inhibition
is not applied. When lateral inhibition is applied, neurons in pooling layers have no
more than one spike per image thereby allowing only the most dominant neuron at a
location (u, v) and across all the maps to spike. So, out of all the neurons that could
have spiked, the synapses of the neuron that spiked first (dominant) correlate the
most with the receptive field. Hence the features that are learned in the subsequent

convolution layers are more complex looking.
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Final filters of L4
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Figure A-1: Weights of first 150 maps of L4 that is trained by in coming spikes
with lateral inhibition in L3, STDP competition region in L4 set to R5%0%3%3 and
with homeostasis signal applied in L4, notice that the reconstructed features are
quite complex and they could well represent a digit or a major section of a digit,
note that all neurons of a map in a layer will have shared weights. In this experiment
number of maps is L4 was set to 500.
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A.3 Scarcity of the spikes

With lateral inhibition in pooling layer (L3), number of spikes available at L4 is
reduced drastically. This prevents the build up of the max pooled potentials of the

L4 layer thus it gets harder for a classifier to classify these vectors.



