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ABSTRACT

Modern society has become increasingly reliant on the functioning of critical infras-

tructure. It is considered so vital that its incapacitation or destruction would have

debilitating effects on the global economy, national security, and public health and

safety. The electrical power system is uniquely positioned, as it is essential for all

other sectors of critical infrastructure to operate as intended. However, it is constantly

at risk due to factors such as natural disasters, climate change, aging infrastructure,

and cyber threats. Thus, ensuring the efficient and continuous supply of electricity is

of utmost importance and the topic of this dissertation.

The work in this dissertation covers two main topics; first the identification of a

potential cyber threat to control system, and second, the foundation for a resilience

framework to ensure a continuous supply of electricity in the grid.

Technology advancements have resulted in the integration of digital instrumenta-

tion and computational control through communication networks. This has resulted

in systems which are more responsive, precise, reliable, and efficient. However, they

are integrated into operational technologies without the necessary security defense.

Designing an effective, layered security defense is not possible unless security threats

are identified through a structural analysis of the control system. For that reason,

an attacker’s point of view is given for the reconnaissance effort necessary to gather

details of the system dynamic that are required for the development of sophisticated
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attacks. A reconnaissance approach is presented that uses the system’s input and out-

put data to infer the dynamic model of the system. In this effort, a novel cyber-attack

that targets the controller proportional-integral-derivative gain values in a constant

setpoint control system is proposed. These findings will help researchers design more

secure control systems.

The electrical power grid has been designed to withstand single component fail-

ures based on a set of reliability metrics that have proven acceptable during normal

operating conditions. However, in recent years there has been an increasing frequency

of extreme weather events. Many have resulted in widespread long-term power out-

ages, proving reliability metrics do not provide the adequate energy security that is

needed.

As a result, researchers have focused their efforts on resilience metrics to ensure

efficient operation of power systems during extreme events. A resilient system has

the ability to resist, adapt, and recover from disruptions. Therefore, resilience is a

promising concept for the current challenges facing power distribution systems.

An operational resilience metric for modern power distribution systems is pre-

sented. The metric is based on the aggregation of system assets adaptive capacity in

real and reactive power. The metric indicates the control limits of the assets of the

system. This also relates to the magnitude and duration of a disturbance the system

can withstand. The mathematical details of the metric are covered and consider the

real-time operational outputs of the assets, its ramp rates, latency, and energy lim-

its. The metric is then focused on the resilience contribution of the three types of

hydropower generation and their contribution to the various time scales or “Rs” of

resilience. Further analysis demonstrates using very short-term (seconds) and short-
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term (day-long) solar PV generation forecast with uncertainty. It was demonstrated

that the addition of battery storage to a solar generation asset can be used to maintain

adaptive capacity during times where solar generation is at the negative uncertainty

scenario.
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1

CHAPTER 1:

INTRODUCTION

Modern society has become increasingly reliant on the functioning of Critical Infras-

tructure (CI). It is considered so vital that its incapacitation or destruction would

have debilitating effects on the global economy, national security, and public health

and safety. The electrical power system is uniquely positioned, as it is essential for

all other CI sectors to operate as intended [112]. However, it is constantly at risk due

to factors such as natural disasters, climate change, aging infrastructure, and cyber

threats. Thus, ensuring the efficient and continuous supply of electricity is of upmost

importance and the topic of this dissertation.

1.1 Modernization of the Electrical Power Grid

The electric grid is the largest and most complex machine ever built. Traditionally, it

has been an intricate web of transmission and distribution systems with centralized

generation largely based in fossil fuel and hydroelectric power generation which have

high inertia. However, the electric grid has been going through a dramatic shift in

the way power is generated and transmitted over the last several decades. The grid

modernization includes rapid penetration of renewable energy generation and the

application of sensors, computers, and communication devices which is often referred

to as the “smart” grid.
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Monitoring and controlling the electric system is a difficult task. In the past, it

has been possible to reliably manage the grid by measuring the central power plants

and the high voltage transmission lines. However, with the addition of distributed

generation sources the management of the distribution system is getting attention

as these sources can directly affect the performance of the grid [116, 124]. Unlike

the traditional generation, distributed sources such as solar, are characterized as

decentralized assets which do not consist of rotating masses and therefore do not

contribute to inertia. In the U.S. the growth in renewable generation can largely be

attributed to federal [15] and state [54] policies that incentivize both research and

deployment. The push for renewables is in an effort to curb global carbon emissions,

in light of climate change, and to increase energy independence for national security.

Although the increasing presence of renewable generation on the power system

is being spurred by climate change and security concerns, the dramatic reduction

in investment have made it cost competitive with more traditional resources. From

2011 to 2017 solar generation in the U.S. went form generating 3 to 47 gigawatts of

electricity. From 2010 to 2017 the reduction in cost to install solar generation was

69% for residential, 73% for commercial, and 79% for utility scale. Furthermore,

the Solar Energy Technologies Office set a 2030 goal for a further 50% reduction of

cost. Achieving this goal would make solar one of the cheapest sources of electricity

generation and push further expansion of solar PhotoVoltaic (PV) installation [67].

Figure 1.1 shows the growth in renewable generation in comparison to traditional

sources on the left and the large contribution of solar and wind on the right [2]

The grid is not only seeing an increase in the integration of renewables, it is

also experiencing rapid deployment of digital technologies. This is allowing two-way
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Figure 1.1 U.S. energy generation by type shown in the left plot and 
mix in renewable generation on the right. Image taken from [2]

communication between the utility and customers, as well as additional sensing along 

the power grid allowing for computational control of system resources. The smart 

grid consist of computational control, computers, communication devices, and other 

equipment working together to respond to changes in electrical demand in near real-

time. The smart grid allows the opportunity to move the energy industry into a new 

era of reliability, availability, and efficiency [78]. However, the increase in computing 

and communication on the electric grid which gives so much promise, does not come 

without a cost. It has given cyber attackers an increasing number of vulnerabilities 

to attack the electrical power systems. The cyber and physical threats are covered in 

the next section.

1.2 Emerging Threats to the Electrical Power Grid

The electric power grid has always been under threat from weather related outages. 

However, the addition of computational control and communication to modernize the 

power grid has made it a target for cyber attackers.

Extreme weather events and natural disasters are the major cause of power outages
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in the United States. Of the different components of the power grid, the distribu-

tion system is the most susceptible to adverse weather. Transmission lines are built

to withstand high wind speeds, but distribution systems are much more vulnera-

ble [122, 111, 7]. They are designed to be structurally safe in normal operating con-

dition, but not sever weather. Electrical component failures during extreme weather

in the U.S. between 2003 and 2012 have caused an estimated 679 widespread power

outages affecting at least 50,000 customers [111]. Notable events include Hurricane

Katrina [94], Hurricane Sandy [31], and the wildfires burring across California [37]. A

reason of concern is that the frequency and intensity of these extreme weather events

is increasing [111]. A 2012 study estimates the cost of these weather-related outages

between $25 and $75 billion annually [8]. Moreover, these power outages during ex-

treme weather put the public at risk. Data indicates that the 2003 blackout resulted

in approximately 90 deaths [5].

The number of cyberattacks are on the rise and the energy industry is no exception.

The cyber vulnerability of power systems has become more dangerous than ever. The

smart grid is adding more computational and communication devices which is making

them more vulnerable to a cyberattack [47]. Since the devices are connected to one

another, hacking one device can be enough to gain access to more important parts

of the system. Many of the smart devices are notorious for putting functionality and

ease of use first and security second.

The U.S. Department of Energy reported 150 successful attacks between 2010

and 2014 that targeted systems holding information regarding electricity grids. Mo-

tivation behind cybercrime generally involves monetary gain, however, electric grids

may involve politics and cyber warfare. Cyber warfare on power systems between
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states are attractive because the scale and consequences can be extremely large as

law enforcement, hospitals, and other critical systems depend on power.

Cyberattacks on the electric grid are on the rise. The first documented case

occurred in 2015 and affected several electricity providers in Ukraine. More than

230,000 people were left without power for several hours during the winter [50]. The

attackers were able to gain unauthorized access to the system by obtaining credentials

of workers. Ukraine was again the target in 2016 when hackers left customers in parts

of Kyiv without electricity for an hour after disabling a substation. In 2019 attackers

used firewall vulnerabilities to cause periodic “blind spots” for grid operators in the

western U.S. for about 10 hours [107]. They did not disrupt the flow of electricity

but it does highlight the vulnerabilities of the U.S. power sector [106].

Power outages can be caused by physical damage during storms or cyberattacks.

Today, there is a great need for operators to make resilience informed decisions to

better serve customers. The concept of resilience is covered in the next section.

1.3 Resilience of Electrical Power Systems

Regulation of electrical power systems is largely based on the Energy Policy Act of

2005 [77]. Congress gave the Federal Energy Regulatory Commission authority to

oversee the reliability of the bulk-power system for the purpose of ensuring reliable

power operation. There are two main metrics used to measure reliability; the system

average interruption duration index and the system average interruption frequency

index. However, some jurisdictions consider storm related outages as extreme events,

and thus, do not include them as inputs into the reliability metric [18].

In the wake of many recent natural disasters, such as hurricanes, hardening the

distribution system is a potential method to reduce outages. However, this is imprac-
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tical as it is far too costly and many researchers are now interested in the concept

of resilience [13]. Resilience has been increasingly recognized as a new design and

operation goal for power systems as it is becoming clear that it is not possible to

resist all events at all times. New strategies beyond traditional reliability are needed

to keep the lights on under extreme events.

Resilience and reliability are similar but differ in time and scale. For example,

reliability concentrates on small-scale random faults and components caused by in-

ternal factors. It encompasses the N-1 contingency planning, or a single component

failure. At the basic level, it ensures that no single point of failure would cause

the entire system to stop working. On the other hand, the concept of resilience ac-

knowledges High-Impact Low-Frequency (HILF) or extreme conditions where there

are many more than a single component failure.

The concept of resilience of complex systems was originally introduced by Holling [33]

in the ecology area. Holling defined the resilience of a system as the rate and speed of

returning to normal conditions after an extreme event. Pioneering work in resilience

of engineering systems is presented by Hollnagel, Woods, and Leveson in [34]. Many

definitions have been coined by well respected organizations in engineering litera-

ture [38, 69, 99, 63, 61], policy directives [112], and the academic community [97]. A

general commonality among sources are the ability to anticipate a possible disaster,

adopt effective measures to decrease loss of load and system component failure before

and during the disaster, and restore power quickly through controlled reconfiguration.

Quantification of resilience in power systems is an emerging field. It is an important

open area of research, of great interest to utilities and stakeholders.

There have been several proposed resilience metrics, such as the resilience triangle
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Figure 1.2 The disturbance and impact resilience evaluation curve, 
show-ing the 5R’s of resilience. Image adapted from [96].

and trapezoid. The resilience trapezoid is an extension of the resilience triangle 

proposed in [109] by Tierney and Bruneau. Unlike the triangle which only considers 

the disturbance of a system, the trapezoid assesses the resilience through three phases; 

the disturbance, degradation, and the restorative state. Another approach given 

in [96] is shown by the notional Disturbance and Impact Resilience Evaluation (DIRE) 

curve in Fig. 1.2 which gives a resilience threshold, or the maximum acceptable level 

of degradation to the system.

It can be seen in the DIRE curve that resilience isn’t a short-term or a long-

term property. It considers the continuum of time frames from prior to the impact 

of a disturbance through the return to normalcy. The epochs or time frames can 

be described as the “Rs” of resilience. The reconnaissance phase is a continuous 

process during operation to assess the state and health of the system. The situational
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awareness allows for operation in a way that the system can be biased in a position

to withstand a potential disturbance or threat. The resist phase is of short time

and consists of assets which oppose the disturbance without the need for sensors and

control action. For example, the resistance to frequency drop is provided by the

accumulative spinning mass referred to as inertia of large synchronous generators.

Assets that act based on feedback from sensors but work to react to disturbances

in near real-time are able to respond and further arrest the drop in performance.

The respond phase could be in the time second of milliseconds depending on sensors

and control system response or could be minutes or even hours if a human response

requiring analysis is required. In the recover phase, assets that were not needed or

held in reserve would now be deployed and network reconfiguration can be used to

move the system back towards optimal or a normal mode of operation. The restore

phase generally consists of sending out line crews to repair damaged equipment and

begins after the system has already recovered to the highest point possible given the

resources that have remained available.

Woods describes an aspect of assessing a systems’ resilience is whether the system

is known to be near an operation boundary condition [125]. In the context of power

systems the adaptive capacity in real and reactive power of the assets can be used

to define this boundary. The adaptive capacity of real and reactive power is of

interest because it is used to maintain stability in both frequency and voltage. To

maintain frequency, the balance of real power generation needs to meet demand, and

the balancing of reactive power is needed to maintain voltage. Furthermore, the

temporal consideration of the assets can be utilized and a mapping of the assets’

adaptive capacity can be made to the “Rs” of resilience.
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1.4 Objectives and Contributions of This Work

The main goal of this research is to lay the foundation for an operational resilience

metric framework for modern power distribution systems. The contributions are as

follows:

1. Demonstrate the vulnerability in constant setpoint control systems to a cyber

attack which targets the Proportional-Integral-Derivative (PID) algorithm.

• Attack forces excitation of system variables

• Increased accuracy of system identification.

• Covert to physics-based anomaly detection.

• Attackers can better design future attacks against the system.

2. Formalize the mathematical basis of an operational resilience metric.

• Resilience metric is based on the adaptive capacity in real and reactive

power of assets.

• Adaptive capacity considers the real-time operational state, asset ramp

rate, latency, and energy constraints.

• Aggregation of asset adaptive capacity for resilience measure of distribution

systems

3. Formalization of an operational framework with evaluation of hydropower as-

sets.

• Demonstrate hydropowers contribution to the “Rs” of resilience.



10

– Run-of-river

– Reservoir storage

– Pumped hydro storage

4. Formalize the resilience contribution of solar PV and battery storage.

• Mathematical formalization for uncertainty quantification using solar fore-

cast data.

• Demonstrate solar and battery storage systems can contribute to resilience

during poor solar conditions.

1.5 Dissertation Outline

This dissertation begins by pointing out a potential weakness in control systems

to cyber attackers in Chapter 2. This is demonstrated with a covert attack on an

Industrial Control System (ICS) by targeting the PID control algorithm. This attack

will force excitation of system variables, leading to a more accurate representation of

the dynamic model of the system through system identification. This work highlights

a cyber threat that could potentially be used by an attacker to learn about the power

system and develop and carry out sophisticated cyber attacks.

Next, the focus is on the development of an operational resilience metric for power

distribution systems. Chapter 3 presents the mathematical formalization of a re-

silience metric which is based on the adaptive capacity of real and reactive power

that can be aggregated over assets on the power grid. Chapter 4 provides a detailed

framework for resilience and the contribution of different types of hydroelectric genera-

tion. Chapter 5 focuses on the resilience contribution of solar generation and battery
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storage assets and introduces an uncertainty quantification to the metric. Chap-

ter 6 summarizes the work covered in this dissertation, gives concluding remarks, and

presents the future work.
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CHAPTER 2:

A COVERT SYSTEM IDENTIFICATION

ATTACK ON CONSTANT SETPOINT

CONTROL SYSTEMS1

2.1 Introduction

Technology advancements and investments in smart manufacturing have resulted in

the integration of digital instrumentation and computational control through com-

munication networks. Smart manufacturing not only results in processes which are

more responsive, precise, reliable, and efficient, they also provide better operational

and management capabilities through factory and supply chain visibility [21]. Al-

though, this transformation has many advantages, it has resulted in systems that

are traditionally configured to operate in an air gap environment (i.e. a server clus-

ter without access to the internet) to be exposed to new threats that originate in

the cyber domain [71, 76, 105, 121, 93]. The perceived threat of a large impact

cyber-attack on control systems proved to be a reality in 2010 with the launch of the

Stuxnet worm [48], prompting plant owners, engineers, technicians, and researchers

1© 2019 IEEE. Reprinted, with permission from, T. Phillips, H. Mehrpouyan, J. Gardner, S.
Reese, “A Covert System Identification Attack on Constant Setpoint Control Systems,” 2019 Seventh
International Symposium on Computing and Networking Workshops (CANDARW), 2019
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to feel the need to design and develop algorithms, tools, and techniques to protect

the security of control systems. There are core features that separate the security

of control systems from that of the traditional Information Technology (IT) domain.

The fact that Operational Technologies (OT) and process control systems comprise

proprietary hardware, software, and communication protocols, presents a new set of

opportunities that require detection and protection techniques beyond what IT secu-

rity can offer. Security technologies in the IT domain aim at protection of data and

software by not allowing access from unauthorized users. The integration of IT secu-

rity in control systems has lead to a false sense of security, as no amount of perimeter

hardening can guarantee restriction of access by an attacker [79, 110, 49]. To address

this issue, researchers have put forth efforts in physics-based detection methods to

identify irregularities in the physics of the system [28].

In order to design and develop appropriate detection and protection techniques,

researchers first turned their focus on constructing attack models [3, 102, 101, 108, 62,

64]. However, there is a lack of research on how the attackers are able to gain specific

system knowledge that is required to carry out a successful attack. In most research

studies, it is assumed that the reconnaissance efforts have been already carried out

and the dynamics of the systems are known to the attackers. While attacks on Cyber-

Physical System (CPS) and ICS can have devastating impacts on human lives and the

environment, it is not easy for attackers to inflict their desired effects on a targeted

system. Krotofil and Larsen [46] outline five questions that an attacker should be able

to answer to successfully complete the stages of an ICS kill chain2: (I) Access : How

to utilize traditional IT network hacking, (II) Discovery : How to discover the system

2https://www.sans.org/reading-room/whitepapers/ICS/industrial-control-system-cyber-kill-
chain-36297
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configuration and dynamics, (III) Control : What system parameters can be modified

and in what degree these changes can be implemented so they are not detected, (IV)

Damage: How can the attack scenario cause the greatest damage, (V) Cleanup: How

to stay undetected after the attack is completed.

This chapter provides a perspective from an attacker’s point of view on the re-

connaissance effort necessary to gather details of the system dynamics - which are re-

quired for the development of sophisticated attacks. Our findings will help researchers

to design a more secure control system. We present a reconnaissance approach which

is based on a data-driven technique using the system’s Input/Output (I/O) data to

infer the dynamic model of the system. This process is known as system identifica-

tion. We propose a novel cyber-attack that targets the controller PID gain values

in a constant setpoint control system. Accurately identifying the dynamic model of

constant setpoint control systems is challenging, because there is little excitation of

the system variables, i.e. the signal-to-noise ratio of the dynamic characteristics of

the system are too low. Thus, the intent of our PID attack is to initiate excitation in

the data so the dynamic characteristics of the system are present in the data, leading

to more accurate system models. Additionally, we demonstrate the covertness of our

attack in regards to physics-based detection algorithms.

The rest of this chapter is organized as follows: Section 2.2 introduces related

works and gives necessary background information. In Section 2.3, we present our

proposed system identification attack and analyze the accuracy and covertness of the

attack. Finally, conclusions and possible directions of future work are covered in

Section 2.4.
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2.2 Background and Related Work

Numerous research studies have investigated security issues of control systems; how-

ever, research communities (i.e. control engineers and cybersecurity experts) often

work independent of one another in the areas of “cyber” and “physical” and do not

consider the overlap of the two domains. A good example of this is when in the con-

trol area mathematical models are constructed from the observed data to discover the

dynamic models of the system. This process is known as system identification [51],

which could be utilized by an attacker to learn about the system dynamics, and as

a result, carry out more targeted attacks. However, not all system identification

approaches used by the control community, such as an impulse-response, could be

used by attackers for the discovery of the system dynamics, because it might raise an

alarm by physics-based detection algorithms. In order to provide more details on the

proposed approach, we first study control systems and the specific architecture that

is the focus of this chapter.

A control system is composed of four general components; the plant or physi-

cal system, sensors that measure the physical state of the plant, the controller that

calculates control commands to send the actuators, and the actuators that make

the physical changes to the plant. A continuous feedback-loop design, depicted in

Figure 2.1, is the general landscape used for continuous control of a system. Here,

controlled variables such as pressure, temperature, or flow rate are measured using

sensors, y(t), and new control commands, u(t), are sent to actuators based on the

calculated error, e(t), from their desired setpoint. In this work, we consider constant

setpoint systems, i.e. the desired setpoint does not change in time. New control

commands are calculated using the error between the setpoint and sensor measure-
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ments using the PID algorithm. The PID is the most commonly applied algorithm in

practice today [118]. It calculates the control command sent to plant actuators using

three terms; proportion, integral, and derivative, hence the name. Mathematically

this is given as

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(2.1)

here, Kp, Ki, and Kd are the gain values of the proportional, integral, and deriva-

tive terms, respectively. In practice on a controller such as a programmable logic

controller, a discrete form of the PID is used, given as

uk = Kpek +Ki

k∑
n=1

en +Kd [ek − ek−1] (2.2)

Discrete PID control is usually implemented using the so-called velocity form

uk = uk−1 +Kp[ek − ek−1] +Kiek +Kd[ek − 2ek−1 + ek−2] (2.3)

which is obtained by subtracting uk−1 from uk. The obvious advantage of the velocity

form is that there is no need to keep track of the sum of the errors.

In these types of controllers, it is possible to target and alter the PID gain values

on the controller. This attack can influence the I/O data and result in a more accurate

dynamic model of the physical system.

2.2.1 System Models and System Identification

System models are a representation of real-world phenomena where the essential

aspects of a system are described by mathematical equations [80]. Historically, system

modeling has been based on physical laws to derive the system model. For example,
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Figure 2.1 Block diagram of a feedback-loop industrial control system. 
The controller calculates control commands using the setpoint and feed-

back data from the sensor measurements to control actuators.

mechanical systems follow Newton’s and Hooke’s laws, electrical systems follow Ohm’s 

and Kirchoff’s laws, and thermodynamics follow the ideal gas law and entropy.

As complexity of systems has increased, the models that describe their dynamics 

have become extremely complex as well. Researchers could rely on abstraction or 

simplification of the model, however, this could result in loss of information about 

physical phenomena that might be crucial for system discovery and analysis. In 

these cases, control engineers generally rely on system identification methods which 

construct the mathematical models using the system’s I/O data. One of these mathe-

matical models is the transfer function, which is the ratio of the output of a system to 

the input in the Laplace domain. The mathematical formula for the transfer function 

H is given as

H(s) =
N(s)

D(s)
(2.4)

Here, N and D are polynomials with unknown parameters in the frequency domain,

(s).

To estimate the polynomial coefficients of the transfer function we apply the MAT-

LAB [57] discrete-time transfer function estimation algorithm, tfest. This algorithm
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applies an estimated output-error polynomial model represented as

y(t) =
B(q)

F (q)
u(t− nk) + e(t) (2.5)

where y(t) is the output, u(t) is the input, nk is the system delay, and e(t) is the

error. B(q) and F (q) are polynomials with respect to the backward shift operator,

q−1, and defined as follows

B(q) = b1 + b2q
−1 + · · ·+ bnbq

−nb+1 (2.6)

and

F (q) = 1 + f1q
−1 + · · ·+ fnfq

−nf (2.7)

In this algorithm, the polynomial coefficients are initialized using ARX, followed by

nonlinear least squares search-based updates to minimize a weighted prediction error

norm.

The objective for control engineers and attackers is to estimate the unknown

parameters of the system model as accurately as possible. Based on this accuracy,

control engineers can optimize system performance, whereas attackers can better

design attacks that are more likely to remain covert and reach their goals.

2.2.2 Attack Scenarios for Control Systems

In order to compromise the control system, an attacker could affect its forward and

feedback streams by attacking any of its components (i.e. controller, sensor, and ac-

tuator) or its communication system. Long et al. [52] and Farooqui et al. [26] provide

examples of such attack models. In [52], the communication network of the control
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system is arbitrarily flooded, causing jitter and packet loss in the communication

links. Whereas [26] uses false signals that are randomly generated and transmitted to

the controller and actuator to impact the overall system. In these tactics, the system

may become unstable leading to unpredictable behavior which is easier to identify

using physics-based detection.

To this point, Teixeira et al. [108] investigated the attack models demonstrated

in [3, 102, 19] and concluded that the design of a successful covert attack requires a

high level of knowledge about the dynamics of the system. For example, the design

and development of the man-in-the-middle attacks carried out in [102, 101] was based

on the assumption that the dynamics of the control systems are known to the attack

model. Based on that, the proper values were computed and injected into the feedback

stream to remain covert. Hence, these attacks require an inside knowledge of the

dynamics of the system and is limited to, and dependent on, inside attackers.

To overcome this limitation, de Sá et al. [19, 20] designed and developed cyber-

attack techniques known as cyber-physical intelligence attacks to acquire the system

knowledge necessary to model covert and controlled attacks. In their earlier work,

de Sá et al. [19] carried out a passive system identification attack and eavesdropped

on the forward and feedback data streams to estimate the system model’s transfer

function. However, since the effectiveness of the passive attack depends on the oc-

currence of events or excitation of the system variables, the authors introduced an

active system identification attack [20]. In the second attempt, they tailor signals to

insert into the communication channel and observe the resulting response. While, the

active system identification resulted in a faster discovery of system dynamics, there

is a higher probability of getting detected by an anomaly detection algorithm.



20

In this chapter, we further investigate an active system identification attack by

altering the control command PID gain calculation. We will demonstrate that while

the attack is still effective, it is much more difficult to detect our proposed approach.

In order to prove the covertness of the proposed attack, we need to be able to pass the

Intrusion Detection System (IDS) used by these type of control systems. In the next

section, we will discuss the different types of attacks that occur in control systems

and the IDS approaches that are utilized to detect these attacks.

2.2.3 Physics-Based Anomaly Detection

The types of attacks that occur in a control system are depicted in Figure 2.2 and

summarized as follows:

1. When an actuator or forward stream is compromised, the actuation, vk, to the

plant is different than the intended action by the controller, vk 6= uk. This false

actuation will in turn affect the measured variables of the plant.

2. When a sensor or feedback stream is compromised, the controller logic will

accept incorrect input that is different than the real state of the plant, yk 6= zk.

3. When the controller is compromised, it will generate a control command that

does not satisfy the intended logic of the controller, uk 6= K(yk), where K is

the control logic and a function of the sensor measurements, yk.

In order to detect the above attacks, hardware- and/or software-based intrusion

detection systems are designed and developed to monitor network and system activ-

ities to detect malicious acts [41]. An attack’s ability to elude detection by the IDS

determines its covertness. Covertness can be analyzed in the traditional IT domain

as well as the physical domain; in this work we are interested in the latter.
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Figure 2.2 General block diagram of an ICS continuous feedback-loop 
indicating where cyber-attacks can target and compromise the system:
(1) actuators, (2) sensors, or (3) controller. Here, altered data from the 
attack is highlighted in red which the physics-based detection intends to 

detect.

Physics-based detection focuses on the problem of using real-time measurements to 

detect attacks. Two popular methods are anomaly-based and safety limit detec-

tion. Anomaly-based detection relies on the fact that physical processes must follow

immutable laws of physics. In general, detection is done through the use of math-

ematical models of the system to predict the expected measurement, ŷk, using the

current control commands, uk, and previous sensor measurement, yk−1.

The anomaly detection test itself uses a time series of residual values, rk. The 

residual is the difference between the measured and predicted values, given as

rk = |yk − ŷk| (2.8)

The residuals are then used in either a stateless or stateful anomaly test. A stateless

test raises an alarm every time a residual value reaches a threshold value, rk ≥ τ ,

shown by Figure 2.3. In a stateful test the historical changes of the residual are kept as

an additional statistic denoted as Sk, to generate an alert if Sk ≥ τ . There are many
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Figure 2.3 Physics-based detection where the residual between the mea-
sured value, yk, and model prediction, ŷk, is used for an alarm if exceeding a 

given threshold, τ .

ways to keep track of the residual for a stateful test, such as taking an average over

a time-window, an exponential weighted moving average, or using change detection

statistics such as the non-parametric cumulative sum statistic.

On the other hand, safety limit detection is based on the normal operating range

of the system variables. In this case an alarm is raised if the sensor measurement, yk, 

exceeds lower or upper limits, given as

yk < ykmin
(2.9)

and

yk > ykmax (2.10)

From the standpoint of a cyber-attacker the measure of covertness in regards to

physics-based detection is important. Remaining covert is often necessary in order to

be successful in reaching their attack goals.
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Figure 2.4 Schematic showing the forces acting on an inverted 
pendulum attached to a cart. Image adapted from Messner and Tilbury 

[66].

2.3 Proposed System Identification Attack

In this section, we present the proposed covert active system identification attack 

approach along with the running example of an inverted pendulum. We begin by de-

riving the transfer function of the inverted pendulum, which mathematically describes 

the behavior of the system. The transfer function is then used to perform simulations 

that model the behavior of the system under normal and attack scenarios. We then 

analyze the effectiveness and covertness of attacks that alter the derivative gain value.

2.3.1 Inverted Pendulum as a Target System

In this example, the control system objective is to keep the pendulum at the vertical 

position, i.e. a constant setpoint. To accomplish this objective, a PID controller is 

used to apply an input force to the cart on which the inverted pendulum is mounted. 

The input and system forces are shown in Figure 2.4. Using the system forces,



24

the transfer function can be derived. We present a partial derivation, for the full

derivation the reader is referred to Messner and Tilbury [66]. First, the horizontal

forces acting on the cart lead to the following

Mẍ+ bẋ+N = F (2.11)

and summing the forces on the pendulum results in

N = mẍ+mlθ̈ cos θ −mlθ̇2 sin θ (2.12)

From here, substitution gives the first governing equation

(M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ = F (2.13)

We get the second governing equation by summing the forces perpendicular to the

pendulum at the axis, giving

(I +ml2)θ̈ +mgl sin θ = −mlẍ cos θ (2.14)

where I is the moment of inertia of the pendulum. To linearize the governing equa-

tions we assume that the pendulum only has small deviations from the vertical posi-

tion and use the small angle approximation. This lead to a set of linearized governing

equations

(I +ml2)φ̈−mglφ = mlẍ (2.15)
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and

(M +m)ẍ+ bẋ−mlφ̈ = F (2.16)

To obtain the transfer function of the linearized governing equations, we first take

the Laplace transform and assume zero initial conditions. The resulting Laplace

transforms are given as

(I +ml2)Φ(s)s2 −mglΦ(s) = mlX(s)s2 (2.17)

and

(M +m)X(s)s2 + bX(s)s−mlΦ(s)s2 = U(s) (2.18)

In this study, we are concerned with the output of the angle, Φ(s), and its relation to

the force input, U(s). We eliminate X(s) from (2.17) and (2.18) by solving for X(s)

and then using substitution. The transfer function of the pendulum angle becomes

Ppend(s) =

ml
q
s2

s3 + b(I+ml2)
q

s2 − (M+m)mgl
q

s− bmgl
q

(2.19)

where

q = [(M +m)(I +ml2)− (ml)2] (2.20)

The linearized transfer function of the inverted pendulum is used for the simulations

carried out in this work.

2.3.2 Active System Identification Attack

The goal of a system identification attack is to increase the accuracy of the transfer

function estimation - which represents the dynamics of the system. The accuracy
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Figure 2.5 Block diagram of a continuous feedback-loop control system 
showing where our system identification attack targets the Proportional-

integral-derivative (PID) gain calculation.

of system identification algorithms increases for data types that have high signal-to-

noise ratios for the dynamic characteristics of the system, i.e. variable excitation. 

Thus, in order to force the excitation in the system, we employ a novel attack which 

briefly targets the PID gain values, Kp, Ki, and Kd, as depicted by Figure 2.5.

The performance of the attack is evaluated through a set of simulations performed 

in Simulink [58]. Simulink is a graphical programming environment for modeling, 

simulating, and analyzing multi-domain dynamic systems. We utilize its environment 

to compute the control command, uk, using the angle measurement, yk, in a simulated 

environment, shown in Figure 2.6.

In this experiment, we ran 100 trial simulations under normal and different attack 

scenarios. The normal operation is based on “tuned” PID gain values of 162, 124, 

and 5, respectively. The different attack scenarios in this work reduces the derivative
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Figure 2.6 Simulink block diagram of an inverted pendulum transfer 
func-tion controlled using a discrete PID controller.

gain in intervals of 20%, i.e. the derivative gain value is 5, 4, 3.2, 2.56, etc. In order to 

emulate a real-world control system, we apply a discrete PID controller running at 200 

Hertz, add white noise to the sensor measurements, and run the simulation for 4 

seconds of real-time. The resulting angle measurements under different derivative 

values is shown in Figure 2.7. Hence, it is clear that the derivative gain attack can 

force excitation of the system variable, forcing the pendulum to oscillate about its 

setpoint.

To evaluate the accuracy of the estimated transfer functions we calculate the 

Normalized Root Mean Square Error (NRMSE) measure of the goodness of the fit. 

The NRMSE is a fitness value indicator of how well an estimated model matches 

validation data, given mathematically as

NRMSE = 100

(
1− ‖ y − ŷ ‖
‖ y −mean(y) ‖

)
(2.21)

where y is the validation data and ŷ is the estimation model. The validation data

used in this analysis is generated using an impulse response simulation using the lin-

earized transfer function given in (2.19). To make a direct comparison, the sensor

noise is removed from these simulations. It can be seen in Figure 2.8 that the esti-
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Figure 2.7 Results of the inverted pendulum angle under different deriva-

tive attack scenarios. From top to bottom the derivative gain is 5 (no 
attack), 3.2, 1.05, 0.67, and 0.27, respectively.
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Figure 2.8 Normalized root mean square error of an estimated transfer 
function. Here the derivative of the attack estimation has been reduced 

from 5 (no attack) to 1.05.

mated transfer function has an increased NRMSE when we employ our attack and the 

derivative term is decreased. The NRMSE mean value under the different attack

scenarios is presented in Figure 2.9. It is demonstrated that the transfer function 

estimation in general increases as the derivative term is reduced and excitation of the

angle measurement is increased. However, we must also consider the covertness of 

these attacks, which is analyzed in the next section.
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2.3.3 Covertness to Physics-based Detection

The measure of covertness in regards to physics-based detection is analyzed in both

anomaly and limits detection. In an anomaly detection test the time-series residual

values are calculated based on control commands that are sent to the actuator and

the resulting angle measurement based on the previous measurement (Figure 2.3).

In our attack, we do not inject false data into the control loop, i.e. the actuator

and anomaly detection algorithm receive the same control command. Therefore, the

residual values are calculated to be the sensor noise when system disturbances are

not present. Thus, we argue that our attack is covert to anomaly based detection

statistics.

On the other hand, the attack affects the angle measurements and limit based

detection can potentially identify the attack. Therefore, the covertness depends on

the amount of excitation we force during the attack and the allowable limits that

are set. To determine the limits in this study, we assume the angle data follows a

Gaussian or normal distribution and select a limit that would give a false positive

alarm once per year. This is calculated using the approximate expected frequency

equation where the frequency of occurrence is 1 in

1

1− erf
(
kσ√

2

) (2.22)

Here, erf is the error function and k is the number of standard deviations, σ. Using

the frequency of our controller we get k ∼ 6.4. Since the angle mean is 0 and our
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Figure 2.10 Absolute maximum deviation of the angle measurement from 
the setpoint under normal (Derivative = 5) and different derivative attack 
scenarios. Here the horizontal line represents the maximum value of once a 

year deviation under normal operation.

limits are symmetric, the detection limit for an alarm is calculated as

|yk| > 0.022 (2.23)

Therefore, we infer the covertness of the attack with a comparison of the absolute

maximum deviation from the setpoint under each derivative attack scenario. It can

be seen in Figure 2.10 that the absolute maximum deviation from the setpoint slowly

increases until the derivative is reduced to below a value of ∼ 0.6, where the system

becomes unstable. We argue that the attack would likely remain covert until the

unstable region is reached.
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2.4 Conclusion

At present time, we propose an attack which targets the PID gain values of a con-

troller. The intent of the attack is to force excitation in system parameters in order

to increase the accuracy of data-driven system identification in constant setpoint con-

trol systems. The effectiveness of the attack is analyzed with the use of simulations,

and we demonstrate that the estimated system model’s accuracy increases as we re-

duce the derivative gain value. Additionally, the PID attack is covert in regards to

physics-based anomaly detection by virtue of not injecting false data into the sys-

tem. However, physics-based limits detection can potentially detect our attack if the

altered PID gains force too much excitation into the system.

Currently, we manually change the derivative gain and check the results of the

estimated model. Since the actual system model is unknown from an attackers stand-

point, our future work includes the implementation of an algorithm that watches the

parameter deviations from the setpoint and alters the PID gains in order to maximize

excitation while staying covert to limits detection. Additionally, we plan to investi-

gate the effectiveness of our PID attack in a real-world simulated environment such

as the Tennessee Eastman Process. However, we encourage the development of new

identification techniques in order to identify attacks of this nature.

The electrical power system has always been at a constant threat to physical dam-

age from storms. However, cyber attacks such as the PID attack are now presenting

researchers with new challenges for energy security. The next three chapters will

describe an operational resilience metric for Modern Distribution Systems (MDS) to

better ensure energy security in the future.
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CHAPTER 3:

AN OPERATIONAL RESILIENCE METRIC

FOR MODERN POWER DISTRIBUTION

SYSTEMS1

3.1 Introduction

Today’s modern society has become increasingly dependent on the safety and effi-

ciency of modern control systems. At the foundation of our social and economic way

of life, you will find the electrical power system. It constitutes the most vital com-

ponent of the nation’s interdependent critical infrastructure systems. To ensure a

constant supply of electrical power, utilities and researchers have designed and oper-

ated the power system under the consideration of a set of reliability metrics. These

metrics account for normal weather conditions and component failure but do not

consider extreme events [39] as it is generally not cost effective [59].

In the early stages of power system construction, relatively little attention was

given to the distribution networks when compared with generation and transmission.

Generation and transmission outages are large impact events, whereas distribution

1© 2020 IEEE. Reprinted, with permission from, T. Phillips, T. McJunkin, C. Rieger, J. Gardner,
and H. Mehrpouyan, “An Operational Resilience Metric for Modern Power Distribution Systems,”
2020 IEEE International Conference on Software Quality, Reliability, and Security (QRS-C), Macau,
China, 2020
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outages have smaller localized effects. However, analysis of practical utility failure

registers and fault statistics reveals that distribution networks contribute the most to

customer interruptions and failure events [122]. The data shows that 90% of power

outages occur in the distribution system alone [111].

Complete disaster-resistant protection of the distribution system is highly imprac-

tical, requiring far too much investment [13]. Therefore, researchers have begun to

focus their efforts on resilience, not reliability, metrics. The concept of reliability

and resilience are similar but have distinct differences in both scale and duration.

Reliability research concentrates on small-scale random faults of power system com-

ponents caused by internal factors [65]. For example, reliability encompass the N-1

contingency planning or a single component failure. At the basic level, it ensures

that no single point of failure would cause the entire system to stop working. In

contrast, resilience considers extreme conditions, or N-k failures, where k may extend

well beyond a single failure point. Resilience anticipates that during extreme events

a certain amount of degradation to the system is unavoidable. Thus, it can be said

that resilience is characterized by a systems ability to resist, respond, and recover

from a disturbance or attack in order to maintain core operations [87].

Electrical component failures during extreme weather events such as hurricanes,

winter storms, flooding, wildfires, etc., push well beyond the limitations of the cur-

rent distribution system which has been designed to meet reliability metrics. In the

United States, between 2003 and 2012, extreme weather events caused an estimated

679 widespread power outages, affecting at least 50,000 customers [111]. Notable

events include Hurricane Katrina [94], Hurricane Sandy [31], and the wildfires across

California [37] which forced the utility company to de-energize power lines in an effort
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to mitigate the risk of starting new fires, resulting in widespread blackouts. Making

matters worse, our energy infrastructure is aging [123] and climate change is expected

to continually increase the frequency and intensity of extreme weather[111]. A 2012

study [8] estimates the cost of weather-related outages to the tune of $25 to $70 billion

annually. Moreover, these prolonged power outages can put the public at a significant

risk, having the potential for loss of life. Data indicates that the 2003 blackout in

New York resulted in approximately 90 deaths [5]. In light of these factors, it is of

upmost importance for researchers to address the growing concern of electrical power

supply during extreme weather events. New methodologies which enable utilities to

effectively manage power systems must be developed.

In this work, we present a novel real-time operational resilience metric that utilizes

the controllable assets in modern distribution systems. The metric is an operational

aggregation of assets adaptive capacity in real and reactive power. It indicates the

magnitude and duration of a disturbance a system is capable of withstanding, and

maintain load demand and stability in voltage and frequency.

The rest of this chapter is organized as follows: Section 3.2 gives an introduction

to resilience and a literature review. The modern distribution system (MDS) and

background on power stability is discussed in Section 3.3. We introduce our resilience

metric and give the mathematical details in Section 3.4. Finally, the conclusion and

future work are covered in Section 3.6.

3.2 Resilience in Power Systems

Pioneering work in resilience of engineering systems is presented by Hollnagel, Woods,

and Leveson in [34]. Many definitions have been coined by well respected organiza-

tions in engineering literature [38, 69, 99, 63, 61], policy directives [112], and the
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academic community [97]. A general commonality among sources are the ability to

anticipate a possible disaster, adopt effective measures to decrease loss of load and

system component failure before and during the disaster, and restore power quickly

through controlled reconfiguration. Quantification of resilience in power systems is an

emerging field. It is an important open area of research, of great interest to utilities

and stakeholders.

To date, power systems are regulated based upon reliability metrics. This dates

back to the Energy Policy Act of 2005 [77], where Congress gave the Federal En-

ergy Regulatory Commission authority to oversee the reliability of the bulk-power

systems. The purpose was to ensure the reliable operation where an instability, un-

controlled separation, or cascading failures would not occur as a result of a sudden

disturbance. There are two main metrics used to measure the reliability; the system

average interruption duration index and the system average interruption frequency

index. However, some jurisdictions consider storm related outages as extreme events,

and thus, do not include them as inputs into the reliability metrics [18].

There have been several proposed resilience metrics, such as the resilience triangle

and trapezoid. The resilience trapezoid is an extension of the resilience triangle

proposed in [109] by Tierney and Bruneau. Unlike the triangle which only considers

the disturbance of a system, the trapezoid assesses the resilience through three phases;

the disturbance, degradation, and the restorative state. The resilience trapezoid has

been applied to a power system framework as proposed by Panteli et. al [86], which

extends the works in [98, 82, 32, 81].

Another proposed resilience approach is introduced by Rieger [96]. In this work he

takes a controls systems perspective but doesn’t apply the metric directly to power
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Figure 3.1 The disturbance and impact resilience evaluation curve, 
show-ing the 5R’s of resilience. Image adapted from [96].

systems. System resilience is shown by the notional DIRE curve in Fig. 3.1. The novel 

concept introduced is the idea of a resilience threshold, or the maximum ac-ceptable 

level of degradation to the system. This degradation level may be defined by a 

percentage of loss load in the system, ability to retain critical loads, etc. The 

performance level from optimal operation to the resilience threshold is defined by the 

systems adaptive capacity. The adaptive capacity can be defined as the ability of 

the system to adapt or transform from an impact event. An adaptive insufficiency 

can be considered the inability of the system to adapt or transform from an impact, 

indicating an unacceptable performance loss due to the given disturbance.

In [125], Woods describes an aspect of assessing a systems resilience is whether 

the system is known to be near an operation boundary condition. This provides 

information about how well the system can stretch in response to a future disturbance. 

In the context of power systems, McJunkin and Rieger expand this concept and
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introduce a resilience metric to evaluate the design of MDS [60]. Their approach is

based on the adaptive capacity of a system, defined by an asset or aggregation of

assets. In this work, they demonstrate the temporal adaptive capacity, or amount of

flexibility or stretch, in the real and reactive power of the controllable assets while

also considering energy limitations. The resulting metric can by represented by a

three dimensional surface, referred to as a manifold, that represents the maximum

adaptive capacity in real and reactive power over time. The metric can be thought of

as a mapping to the DIRE curve, indicating the maximum disturbance in amplitude

and duration due to cyber or physical disturbances that can be withstood.

The most recent contributions of the resilience metric proposed in [60] have been

developed as a design tool for MDS. The metric uses a neutral bias assumption to

describe the adaptive capacity of the assets which limits the ability to accurately

model many assets. In addition, the metric does not lend itself well for use as a real-

time operational metric. Therefore, the goal of this paper is to develop the metric

to have a more accurate representation of the asset adaptive capacity. In addition,

we will bring the metric to a state where it is suitable to be used as a real-time

operational tool. Therefore, it can be utilized by control operators to make resilience

based decisions before, during, and after disturbances. The details of the extension

of the metric are covered in Section 3.4. First, a background on MDS is covered in

the following section.

3.3 Power Distribution System

In this section, a brief introduction to the modernization of the power grid is given.

Then the concepts of power stability in voltage and frequency necessary for the de-

velopment of the metric proposed in this paper are covered in sufficient detail.
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3.3.1 Grid Modernization

The current modernization of the electrical power system has presented a dramatic

shift in the way power is generated and transmitted. It is moving from the traditional

centralized generation to a more distributed power generation architecture. The MDS

integrates information and operational technologies which can monitor, communicate,

and control assets in real-time. It is predicted that these systems will include a high

penetration of controllable distributed assets in generation and storage, as well as

controllable loads. Control of these assets have many purposes, including support

of the voltage and frequency across the distribution network, economic benefits, and

reliable utilization of interconnections such as power lines, transformers, and switches.

This evolving landscape has added a new layer of complexity to distribution sys-

tems. It presents many new technical challenges and opportunities for researchers. For

example, what metric best describes the systems resilience and how should these met-

rics be utilized to make control decisions during normal operation or before, during,

and after extreme events? The modernization of the grid has a tremendous potential

for increasing resilience but much work is still needed in how to accomplish it. In this

context, researchers have suggested numerous resilience based improvements in areas

including microgrids [14, 12], circuit reconfiguration [22, 126, 74, 44, 120, 127, 35, 75],

improved dispatch and scheduling of resources [17, 36, 43], and flexible local resources,

such as generation, load, and energy storage [70].

3.3.2 Power and Stability

Stability of the distribution system is defined in terms of voltage and frequency.

Frequency stability requires balancing of the generation of real power, P , and the load

demand. On the other hand, voltage stability requires the balancing of reactive power,
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Q, across the network due to different types of loading on the system. Therefore, a

resilience metric must address both the real and reactive power to be extensible

in distribution systems. The real and reactive power components define a systems

apparent power, S in the complex S-plane where

S(θ) =
√
P 2 +Q2 (3.1)

where the real power in relation to the apparent power is

P (θ) = S cos(θ) (3.2)

and the reactive power is

Q(θ) = S sin(θ) (3.3)

here θ is the angle measured from horizontal. In power systems this angle is often

referred to as the power factor angle, given as

θ = arctan

(
Q

P

)
(3.4)

In this paper, the angle θ is the measurement from 0 to 2π. Here, the left hand plane,

π/2 < θ < 3π/4, is where an asset acts as a sink absorbing power from the system.

The normalized maximum apparent power at power factor angle θ is depicted in

the S-plane in Fig. 3.2. Here, only quadrant I is shown, where real and reactive power

are positive. The highlighted region is the domain or reachable output in real and

reactive power. In the following section we use these principles to define the domain

of assets power output used in our operational adaptive capacity metric.
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Figure 3.2 Normalized apparent power, S, in quadrant I of the complex 
S-plane. The highlighted region represents the domain or reachable 

output in real and reactive power.
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3.4 Adaptive Capacity Methodology

This section describes the mathematical background to calculate the operational

adaptive capacity resilience metric herein proposed. The metric is based on the

adaptive capacity of the assets, which is a measure of their control ability to move

from the current operating point in both real and reactive power over time. Assets

must be described by a set of operational characteristics which include the nameplate

rated capacity, energy capacity, latency, and rate of change limitations. Using these

characteristics, the general process to calculate the adaptive capacity is as follows:

determine the control domain of the real and reactive power, determine the flexibil-

ity from the current operating point, then account for latency and ramp rates, then

impose energy constraints.

3.4.1 Real and Reactive Power Domain

The real and reactive power domain, or capability of the asset, is denoted P∈ and Q∈,

respectively. The assets nameplate capacity defines the real power maximum, Pmax,

and minimum, Pmin, as well as the reactive power maximum, Qmax, and minimum,

Qmin. Thus, the first limit placed on the domain of the real power is

Pmin ≤ P ≤ Pmax (3.5)

and the reactive power is

Qmin ≤ Q ≤ Qmax (3.6)
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here, the maximum is assumed to be in the positive plane and the minimum in the

negative plane, given mathematically for the real power

Pmin ≤ 0 ≤ Pmax (3.7)

and for the reactive power

Qmin ≤ 0 ≤ Qmax (3.8)

These values are then used to determine the bounding constraints of the asset in the

complex S-plane, given as

S(θ) ≤
√
P 2 +Q2 (3.9)

here, the real and reactive power is a function of the power factor angle and dependant

on the maximum power in each quadrant of the S-plane. The calculation for the

apparent power constraint for quadrant I to quadrant IV is then given respectively

as

S(θ)
0≤θ≤π

2

≤
(
P 2

max cos(θ) +Q2
max sin(θ)

) 1
2 (3.10)

S(θ)
π
2
≤θ≤π

≤
(
P 2

min cos(θ) +Q2
max sin(θ)

) 1
2 (3.11)

S(θ)
π≤θ≤ 3π

2

≤
(
P 2

min cos(θ) +Q2
min sin(θ)

) 1
2 (3.12)

S(θ)
3π
2
≤θ≤2π

≤
(
P 2

max cos(θ) +Q2
min sin(θ)

) 1
2 (3.13)

Using the rated power and limits in the S-plane, the asset capability in the real

and reactive power can be calculated. In the positive plane the minimum of the

two constraints will define the boundary of the domain. In the negative plane, the
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absolute minimum of the two constraints defines the domain boundary. Therefore,

the real power domain for quadrants I and IV, where the real power is positive, is

given by

P (θ)
3π
2
≤θ≤π

2

≤ min
[
S cos(θ), Pmax

]
(3.14)

and the domain for quadrants II and III, where the real power is negative is

P (θ)
π
2
≤θ≤ 3π

2

≥ −min
[
|S cos(θ)|, |Pmin|

]
(3.15)

Similarly, the domain of reactive power in quadrants I and II is given by

Q(θ)
0≤θ≤π

≤ min
[
S sin(θ), Qmax

]
(3.16)

and in quadrants III and IV are

Q(θ)
π≤θ≤2π

≥ −min
[
|S sin(θ)|, |Qmin|

]
(3.17)

Using the real and reactive power domain in the positive and negative quadrants, the

union of the two gives the overall domain. For the real power this is given as

P∈(θ) =
{
P
∣∣3π

2
≤ θ ≤ π

2

}
∪
{
P
∣∣π
2
≤ θ ≤ 3π

2

}
(3.18)

and similar for the reactive power

Q∈(θ) =
{
Q
∣∣0 ≤ θ ≤ π

}
∪
{
Q
∣∣π ≤ θ ≤ 2π

}
(3.19)



46

Figure 3.3 The shaded region represents an assets real and reactive 
power domain based on its rated nameplate power capacity. The 

negative real power represents an asset absorbing power from the grid, 
such as battery storage when charging.

The domain of the asset real and reactive power capability is depicted by the 

shaded region in Fig. 3.3. It should be noted that some assets, such as solar, wind, 

and hydro, should not be considered to have constant rated limits and the domain 

may need to be updated. For example, solar generation is dependant on real-time 

solar irradiation and therefore should be updated as solar conditions change. Next, 

we will discuss how the power flexibility is calculated using the operational power

output.

3.4.2 Real and Reactive Flexibility

The amount of flexibility the asset has in the real and reactive power from the oper-

ating point is denoted as, P∆ and Q∆, respectively. This flexibility is calculated using 

the real and reactive power domain of the asset and the current operation point of
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the asset, P0 and Q0. Thus, it is a transformation of the power domain around the

operating point, given as

P∆(θ) = P∈ − P0 (3.20)

and the flexibility of the reactive power is the same transformation using the reactive

power domain and the current operating point

Q∆(θ) = Q∈ −Q0 (3.21)

Here, and in further adaptive capacity derivation, θ is the angle measured from the

operating point. The resulting flexibility is depicted in the top plot of Fig. 3.4. How-

ever, the temporal characteristics of the asset, shown in the bottom plot of Fig. 3.4,

need to be accounted for and are developed in the following section.

3.4.3 Latency and Ramp Rate

The latency of an asset is the time delay before changes to the power output can be

made. It may consist of multiple factors including starting latency or a control latency.

Starting latency is a property of the asset, for example, a diesel generator can’t supply

power right when turned on. Control latency is the time required between data being

received, adjustments made to the output power, computationally or by an operator,

to the time the control command is received by the asset. For the purpose of this

paper, we consider all latencies to be aggregated into a single latency variable, λ.

The ramp rate defines how quick an asset can ramp up or down, after the latency,

from the current operating position over time, t. The real power output when ramping
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up is given as

P (t)+ =


0, if t ≤ λ

dP+

dt
(t− λ) if t > λ

(3.22)

and when ramping down is

P (t)− =


0, if t ≤ λ

dP−

dt
(t− λ) if t > λ

(3.23)

Similarly, the reactive power is given as

Q(t)+ =


0, if t ≤ λ

dQ+

dt
(t− λ) if t > λ

(3.24)

when ramping up, and

Q(t)− =


0, if t ≤ λ

dQ−

dt
(t− λ) if t > λ

(3.25)

when ramping down. The latency and ramp rate constraints are depicted by the

temporal flexibility in real power shown in the bottom plot in Fig. 3.4. Here, the

shaded region represents the real power domain and the bounds are defined by the

latency and ramp rates from the operation point, the maximum flexibility, and energy

constraints. The following section describes the energy constraint of the asset.
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3.4.4 Energy Constraints

It is possible that assets are constrained with energy limitations in the amount of real

power when acting as a source providing power, or as a sink absorbing power. In the

case of battery storage, it is constrained on both ends where it has an initial energy

of E0, and can only be charged (sink) to 100%, or Emax, and it can only output power

(source) until it is fully drained at 0%, or Emin. The energy of the system changes as

E(t) = E0 +

∫ t

t=0

P (t) ∗ dt (3.26)

where P (t) is the operating real power over time. When an asset runs out of energy

or the ability to absorb energy, the real power must go to zero. The necessary math-

ematical details have been covered to give the adaptive capacity equations covered in

the next section.

3.4.5 Adaptive Capacity and Aggregation of Assets

The adaptive capacity of the asset is the bounded region between the flexibility and

the temporal constraints in the positive and negative planes with respect to the

operating point. The real power in the positive plane is given as

PAC(θ, t)
3π
2
≤θ≤π

2

= min
[
P (t)+, P∆(θ)

]
(3.27)

and the negative plane

PAC(θ, t)
π
2
≤θ≤ 3π

2

= −min
[
|P (t)−|, |P∆(θ)|

]
(3.28)
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Figure 3.4 Top plot shows an assets real and reactive power flexibility 
from its current operating point. The bottom plot shows the temporal 

flexibility from the operating point which considers latency, ramp rates, and 
energy limits.
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The reactive power it is given as

QAC(θ, t)
0≤θ≤π

= min
[
Q(t)+, Q∆(θ)

]
(3.29)

in the positive plane, and

QAC(θ, t)
π≤θ≤2π

= −min
[
|Q(t)−|, |Q∆(θ)|

]
(3.30)

for the negative plane. The resulting adaptive capacity using the ongoing example in

this section is depicted by the manifold in Fig. 3.5. The manifold surface represents

the maximum change the asset can make in real and reactive power, from the current

operating point, over time. Recall that the x/y axis represent the adaptive capacity

from the operating power. Therefore, when the energy limit has been reached the

output power goes to zero which is indicated by the dashed line separating where the

asset transitions between a sink and a source.

It is expected that the MDS will comprise a collection of distributed assets. The

adaptive capacity may be an aggregation of local assets, such as a microgrid. The

aggregation of assets determines the adaptive capacity of the controllable assets in

the microgrid including the network connection. The aggregation in terms of real

power is

PAC(θ, t) =
n∑
k=1

PACk (3.31)

and the reactive power is given by

QAC(θ, t) =
n∑
k=1

QACk (3.32)
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Figure 3.5 Asset’s adaptive capacity manifold which represents the 
max-imum change in real and reactive power, from current operation, 

over time.

where n represents the total number of assets. The following section will demonstrate 

how this metric can be utilized as an operational metric.

3.4.6 Real-Time Operational Metric

Power distribution is a real-time system, therefore it’s imperative that a resilience

metric has the ability to reflect the real-time operation and conditions on the system.

In this context, our algorithm updates the adaptive capacity using threshold triggers

in power outputs, energy changes, and environmental conditions which we denote
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C. Relevant environmental conditions depend on the assets in the system but may

include factors such as solar irradiation, wind velocity, head pressure, etc... The

operational metric is outlined by Algorithm 1.

Algorithm 1: Real-Time Adaptive Capacity Algorithm

Input : System assets, Real-time system data
Output: Assets adaptive capacity

1 begin
2 Initialize: P∈, Q∈
3 while system running
4 Pδ = |P0n−1 − P0n|
5 Qδ = |Q0n−1 −Q0n|
6 Eδ = |E0n−1 − E0n|
7 Cδ = |C0n−1 − C0n|
8 if any δ > threshold
9 Update P∈, Q∈

10 Update P∆, Q∆

11 for time = 0 to tend

12 Update P (t), Q(t)
13 Update E(t)
14 for θ = 0 to 2π
15 Solve PAC(θ, t)
16 Solve QAC(θ, t)

17 end

18 end

19 end
20 for k=1 to n
21

∑
PACk(θ, t)

22
∑
QACk(θ, t)

23 end

24 end

25 end
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Table 3.1: Assets power parameters.

Limits Case I Case II

Asset Pmax Pmin Qmax Qmin P0 Q0 P0 Q0

Network 1,050 -1,050 1,050 -1,050 930 450 0 0
Tie-line 500 -500 500 -500 0 0 450 217
Solar PV 315 0 315 -315 315 0 283 137
Battery 315 -315 315 -315 -315 0 197 96

3.5 Case Study

In this section, we demonstrate the adaptive capacity resilience metric proposed using

the modified Institute of Electrical and Electronics Engineers (IEEE) 33-bus distribu-

tion system. We first introduce the modified IEEE 33-bus system and use a selected

portion, or microgrid, to demonstrate in a case study the resilience of the system

under two different scenarios. The first case represents the system under normal op-

eration and the second represents a scenario where the network line experiences an

outage.

3.5.1 IEEE 33-bus Model

The original IEEE model was designed as a radial network configuration. However,

many studies have adapted the model to include tie-lines, thus, resembling a MDS

meshed network, shown in Fig. 3.6. Here, the section used for this study has been

highlighted and additional solar and battery storage assets have been added. The

capacity limitations on the power line conductor for the network is given as 1, 050

kW and 1, 050 kVAR, and the tie-line limits are 500 kW and 500 kVAR for real and

reactive power, respectively. Loading on buses 23-25 for the real power is 90, 420,

and 420 kW, and the reactive power is 50, 200, and 200 kVAR, respectively.
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Figure 3.6 IEEE 33-bus distribution system model. Image adapted 
from [95].

To resemble a MDS solar generation and battery storage asset have been added 

to the model. Their limits are based on a high penetration of Distributed Energy 

Resources (DER). The maximum power is 30% of the maximum load which can be 

supplied by the network conductor, 315 kW. The battery storage is assumed to have 

a total capacity of 1,260 kWh, i.e. under its max output (315 kW) it would go from 

fully charged to empty in four hours. The asset operational characteristics are given 

in Table 3.1.

3.5.2 Simulation and Results

Two scenarios are considered to demonstrate the difference in adaptive capacity of the 

system assets acting as a microgrid. The first case is under what can be considered 

normal operation and the second case is when network connection has been lost, such 

as a storm outage or potentially a cyberattack, where the attacker forces a breaker 

open. For these cases, the loading conditions on the system are assumed to be constant
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and the assets operational power output for both cases is given in Table 3.1.

Under normal operation the load is fully supplied by the network and the solar

generation is therefore being used to charge the battery storage asset which is cur-

rently assumed to be at 75% of capacity. The adaptive capacity is calculated for each

of the assets and their manifolds are shown in the top two rows of Fig. 3.7, and the

aggregation of the assets is shown by the large manifold at the bottom. The temporal

flexibility of the assets real and reactive power in the positive and negative direction

is shown in the top of Fig. 3.9.

The second case which considered a loss of the network connection with recon-

figuration where the tie-line is being used to supply power. However, based on its

limiting characteristics, it cannot fully support the high loading conditions. In this

situation, the solar asset is supplying power at its full capacity and the battery stor-

age is able to supply the remaining load. In this case, we assume that the battery

has 197 kWh of stored energy, and therefore can maintain its output of 197 kW for

one hour. The aggregation of the assets adaptive capacity is shown in Fig. 3.8. The

temporal flexibility in real and reactive power is shown in the bottom of Fig. 3.9.

3.5.3 Discussion

Results of the case study bring to light a few important concepts in reliability and

resilience of power systems. It can be stated that even when the network was lost

the system is reliable, as no load needed to be shed. However, when evaluating the

systems using the proposed adaptive capacity metric there is a quantifiable impact to

the resilience of the system. This is visible by examining the difference in manifolds

and easy to distinguish by inspection of Fig. 3.9. The top plot shows that there

is adaptive capacity in the real and reactive power in all directions, but is most
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Figure 3.7 Resulting adaptive capacity of the assets under normal 
condi-tions: a) network connection, b) tie-line connection, c) solar 

generation, d) battery storage, and e) aggregation of the assets.
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Figure 3.8 Resulting adaptive capacity of the assets when network con-
nection lost: a) tie-line connection, b) solar generation, c) battery storage, 

and d) aggregation of the assets.
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Figure 3.9 Flexibility at power factor angles in the direction of real 
(kW) and reactive (kVAR) power. The top plot is under normal 

operation and the bottom is when network connection is lost.
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“constrained” by the real (1,149 kW) and reactive (627 kVAR) power in the positive

direction. In the case of losing network connection this constrain becomes 113 kW

and 171 kVAR. Therefore, the ability to adapt to a future disturbance has been

dramatically reduced. In fact, the system will lose capability to supply the real power

necessary in one hour when the battery storage runs out of energy. This will result

in a loss of the ability to maintain the frequency of the system if loads are not shed.

3.6 Conclusion and Future Work

In this paper, we present a resilience metric based on adaptive capacity for modern

distribution systems that have a high penetration of distributed resources. The pro-

posed metric provides insight to the ability to control aggregated assets in terms of

real and reactive power over time. The metric is used to analyze a microgrid under

different scenarios, such as a loss of network connection. The metric is demonstrated

indicating the distributed resources can maintain the loads when the connection is

lost, however, the systems adaptive capacity is greatly reduced, having very little

capability to support stability of voltage and frequency if further disruptions occur.

Future work with respect to improvements to the adaptive capacity metric include

replacing the linear ramp rates with non-linear rates. Similarly, the real and reactive

bounds in certain assets which are not constant, should be replaced by a function

or table to provide better accuracy in the metric. For example, the ramp rate of a

hydro generator is not constant but dependant on the head pressure. Additionally,

the maximum power is also dependant on the pressure and should be reflected in the

metric.

In the next chapter, the resilience contribution of hydropower generation is stud-

ied. The resilience of the three different classes of hydropower generation units are
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presented and their time scales of resilience are mapped to the “Rs” of resilience.

This analysis lays the foundation for a framework to evaluate hydropowers resilience

contribution to the grid.



62

CHAPTER 4:

A METRIC FRAMEWORK FOR EVALUATING

THE RESILIENCE CONTRIBUTION OF

HYDROPOWER TO THE GRID1

4.1 Introduction

The electric power grid is undergoing dramatic shifts in sources of power and in-

creasing infrastructure stresses. The desire to improve the ability of the grid to ride

through or recover from large events with natural or man-made causes have increased

interest in the area of resilience for the electricity grid. The need arises to understand

the resilience contribution from bulk power and distributed energy resources. Provid-

ing a quantifiable measure of resilience of all types of components in power systems to

add resilience to the electric grid is needed. Creating a framework for characterizing

the resilience of hydropower satisfies one of those needs and is the subject of this

paper.

To arrive at a framework to measure resilience, relevant prior work is in engineering

systems [34], national institutions [69, 89], and the resilient controls community [97].

1© 2020 IEEE. Reprinted, with permission from, T. Phillips, V. Chalishazar, T. McJunkin,
M. Maharjan, SMS Alum, T. Mosier, and A. Somani, “A Metric Framework for Evaluating the
Resilience Contribution of Hydropower to the Grid,” 2020 Resilience Week (RWS), Salt Lake City,
UT, USA, 2020
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This paper considers asset level and system level metrics in addition to metrics from

[89]. Both asset and system metrics connect to the notional construction of the system

performance compared to the performance objective in the DIRE curve [96] shown

in Fig. 4.1. Important time frames in the evolution of the effects of a disturbance on

the system are mapped to the time frame of the DIRE curve as the “R”s of resilience:

Reconnaissance, Resistance, Response, Recovery, and Restoration. Woods introduces

the term adaptive capacity to assess a system’s resilience based on the proximity

of the operation point to a boundary constraint [125]. When operation is near a

boundary, adaptive capacity to respond to disturbances is limited. A system operator

that prudently anticipates disturbances will seek to keep adequate adaptive capacity.

The resist epoch gives the system more time to respond. For power systems the

determining resist factors are the voltage margin and the inertia in the system. In the

response epoch, the magnitude and duration of a disturbance the system can absorb

and maintain minimum operational normalcy is determined by the adaptive capacity

of the system. In [60], McJunkin and Rieger constructed a method to efficiently

capture and aggregate the response adaptive capacity of power system assets, which

was extended to an asymmetric operational metric in [90].

The main contribution of this work is the formalization of an operational frame-

work that allows evaluation of the contributions to resilience by three types of hy-

dropower assets. From the framework, we show hydropower’s contributions to the

“R”s of resilience. The rest of the chapter is organized as follows: Section 4.2 gives an

overview of resilience and hydropower’s contribution to the grid. Section 4.3 summa-

rizes and adapts the mathematical background given in [90] for hydropower plants.

Section 4.4 introduces the proposed framework and applies the metric to different
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Figure 4.1 A simplified version of the Disturbance and Impact Resilience 
Curve [96, 97].

types of hydropower assets. Concluding remarks are given in Section 4.5 and future 

work is discussed in Section 4.6.

4.2 Adaptive Capacity Contribution of Hydropower

4.2.1 System Level

The conceptual DIRE curve, Fig. 4.1, describes the performance level of the system 

as a whole, during and after a major disturbance or HILP event. Most of the resilience 

studies use some form of the DIRE curve to develop and evaluate resilience metrics to 

know the system health and its ability to absorb, adapt and recover rapidly after an 

HILP event. Even though there are several resilience metrics already proposed it is 

still difficult to accurately quantify and represent resilience. Resilience is a complex 

multidimensional dynamic concept [83]. Numerous different metrics exist and some
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of the most relevant and commonly used metrics are:

• Demand/energy not served [40],

• The “FLEP” resilience metric system (Φ, Λ, E , Π), where Φ is how fast and

Λ is how low the resilience level drops, E is for how extensive the post-event

degraded state and Π is how promptly the network recovers to its pre-event

resilient state. [84, 85],

• Time to recovery, cost of recovery, load recovery factor and lost revenue [9, 10],

• Vulnerability index, degradation index, restoration efficiency index and micro-

grid resilience index [4], and

• Maximum number of customers out of service [42]

All of these metrics do a relatively good job at describing power systems re-

silience to an external disturbance, however, they are not very useful in describing

the contribution of any particular power generation asset (for example the Grand

Coulee hydropower plant) or family of generation assets (for example hydropower

as a whole) towards achieving that level of resilience. To address this problem for

the power transmission system, prior work has used augmentation of a traditional

bus-branch model into a node-breaker model so that the fragility and vulnerability of

each substation asset (such as the transformers and circuit breakers) can be included

in the evaluation of resilience levels [11].

Each family of assets contributes in its own way towards resilience and it is impor-

tant to understand how to utilize these assets to their fullest potential. To that end,

the asset level metrics for hydroelectric generation is discussed in the next sub-section

to quantify its contribution towards resilience.
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4.2.2 Asset Level

Hydropower generation has numerous qualities that contribute towards overall grid

resilience. Hydro is also the preferred generation and is prioritized for tripping in case

of over generation scenarios because of an extreme event. This is primarily because

of the following reasons: 1) hydropower leads to least cost when compared to other

generation trips, 2) pumped storage efficiency helps in restoring the hydro resource

back by pumping spilled water and 3) it is easier to bring hydropower back online.

Hydro is also the preferred generation for wind compensation [16] because it provides

a major part of the total required governor response and also hydro can provide, if

needed, more output than its nameplate capacity but at a lower efficiency. All of these

qualities and capabilities make hydro’s contribution to grid resilience significant and

the proposed asset level metrics are a step in the direction to be able to accurately

represent the said contribution.

A generic example of real power output generation of a hydropower plant going

through a major grid scale disturbance event is shown in Fig. 4.2. Here, different asset

level metrics are shown for different time periods before and after an event. These

proposed metrics, their contributing capabilities and their constraints/dependencies

are further discussed in Table 4.1.

These metrics capture hydro asset’s flexibility and its multifaceted contribution

towards overall grid resilience and system stability which enables rapid recovery of

the system following an extreme event. In this paper, we focus on the response epoch

for hydropower resilience and describe the adaptive capacity fundamentals in the next

section.
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Table 4.1 Asset level metrics, their capabilities and their dependencies

Metrics Epoch Dependencies/constraints

Number of online units,
Inertia Resist Seasonal Constraints,

Planned maintenance, etc.

Number of online units,
Ramp-up rate Respond Environmental constraints,

Flow rate Constraints, etc.

Sustained generation at
maximum output

Recover & Restore
Resource availability,
Environmental constraints,
Energy limits, etc.

Flow rate constraints,
Ramp-down rate Respond Environmental constraints,

Grid requirements, etc.

Lost capacity Restore & Recon

Initial capacity,
Impact of extreme event,
Amount of sustained
generation at
maximum output, etc.
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Figure 4.2 Asset level metrics from a hydropower plant perspective.

4.3 Hydropower Response Capacity

The calculation of the adaptive capacity of hydropower plants is based on the real 

and reactive power generation capability, the current operating output, latency, ramp 

rate, and energy constraints. The first constraint on the operational power output of 

the asset in real power, P , and reactive power, Q, is defined by the complex S-plane. 

At any given power factor angle, θ, the apparent power is bounded by

S(θ) ≤
√
P 2 +Q2, 0 ≤ θ < 2π (4.1)

In the context of hydropower generators and pumped storage hydropower (PSH), the

apparent power is not the only constraint on the power output. The real power is
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also constrained, given mathematically as

P (θ) =


min

[
S cos(θ), Pmax

]
, 0 ≤ θ < π

2

min
[
S cos(θ), Pmax

]
, 3π

2
< θ < 2π

−min
[
|S cos(θ)|, |Pmin|

]
, π

2
≤ θ ≤ 3π

2

(4.2)

here, the generator only operates in the positive plane so Pmin = 0. Additionally, the

maximum real power, Pmax, may not be the nameplate capacity due to a decrease in

the reservoir head height. On the other hand, PSH can also operate in the negative

plane (pump mode) and positive plane (generation mode).

The flexibility of the asset is defined as the amount of change it can make from

the current operating point to the bounding limits. Thus, it is the translation from

P = 0, Q = 0, to the operating point, P0 and Q0. The limits on the operating power

S, Pmax and Pmin then take the form S ′, P ′max, and P ′min after the translation, given

mathematically as

P∆(θ) =


min

[
S ′ cos(θ), P ′max

]
, 0 ≤ θ ≤ π

2

min
[
S ′ cos(θ), P ′max

]
, 3π

2
≤ θ < 2π

−min
[
|S ′ cos(θ)|, |P ′min|

]
, π

2
< θ < 3π

2

(4.3)

for the real power. The reactive power is given as

Q∆ = S ′ sin(θ) (4.4)

The flexibility of a hydropower generator is shown in Fig. 4.3. This example
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depicts a 10 MW generator that is currently being operated at 6 MW and 2 MVAR.

The shaded region in the top plot represent the flexibility when the asset is limited

by P ′max due to a reduced reservoir head height. The apparent power limits shown

here are a simplification of the general constraints of a generator like the capability

curve shown in [25, 113]. The flexibility does not consider the temporal constraints

of the asset which define how quick it can change from its current operating output

to the flexibility limits.

Temporal constraints of the asset are captured by the latency and ramp rate.

Latency is the time lag before the asset can begin changing its output. It may

consist of multiple factors, such as grid synchronization and decisions which can be

done computationally or by an operator. In this work, we consider all latency to be

contained in a single variable, λ.

The ramp rate defines the rate of change in real or reactive power after the latency.

Again, hydropower assets have several considerations such as Automatic Generation

Control (AGC) and environmental regulations. In this work, we consider these to be

contained in a single variable for the ramp rate in real power, dP/dt, and reactive

power, dQ/dt. Thus, the temporal real power constraint, relative to the current real

power output, is given as

P (t) =


0 if t ≤ λ

dP
dt

(t− λ) if t > λ

(4.5)



71

and the reactive power is

Q(t) =


0 if t ≤ λ

dQ
dt

(t− λ) if t > λ

(4.6)

where t is the future time from current operation. In addition, the ramp rates may

be direction dependent and non-linear, i.e. the asset may ramp down quicker than it

can ramp up. We denote the the real power constraint as P (t)+ when ramping up

and as P (t)− when ramping down. The same is done for the reactive power. The

temporal constraints in real power are shown in the bottom plot in Fig. 4.3.

The adaptive capacity is then calculated as the minimum between the temporal

constraint and the flexibility of the asset. The adaptive capacity in real power is given

as

PAC(θ, t) =


min

[
P∆, P (t)+

]
, 0 ≤ θ < π

2

min
[
P∆, P (t)+

]
, 3π

2
< θ < 2π

−min
[
|P∆|, |P (t)−|

]
, π

2
≤ θ ≤ 3π

2

(4.7)

and the adaptive capacity in reactive power is given as

QAC(θ, t) =


min

[
Q∆, Q(t)+

]
, 0 ≤ θ ≤ π

−min
[
|Q∆|, |Q(t)−|

]
, π < θ < 2π

(4.8)

The adaptive capacity in real power where θ = 0 and π over 12 minutes is depicted

in the bottom plot of Fig. 4.3. It can be seen that the adaptive capacity is initially

limited by the temporal constraints, but after ramping, the flexibility constraints are

reached and constrain the adaptive capacity of the asset.
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Figure 4.3 The top plot depicts the flexibility of a 10 MW hydropower 
generator operated at 6 MW and 2 MVAR using the transformation from S 

to S ′. The highlighted region represents the flexibility when there is a
reduced reservoir head height limiting the real power at P ′max. The bottom 

plot illustrates the temporal and flexibility constraints on the adaptive 
capacity calculation in real power at θ = 0 and π over 12 minutes.
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Furthermore, the adaptive capacity of assets can be aggregated in real and reactive

power where the angle measurement is consistent from the operation point. The

aggregation of real power is given as

PAC(θ, t) =
n∑
k=1

PACk (4.9)

and the reactive power is given as

QAC(θ, t) =
n∑
k=1

QACk (4.10)

where n represents the total number of aggregated assets. PACk and QACk repre-

sent the adaptive real and reactive power capacity of the kth asset, respectively. For

a detailed mathematical background, the reader is referred to [90]. In the follow-

ing section, we carry out a series of case studies to demonstrate the difference in

adaptive capacity between three types of hydropower assets: 1) Run-Of-River (ROR)

hydropower, 2) Hydropower With Reservoir (HWR), and 3) Pumped Storage Hy-

dropower (PSH).

4.4 Framework

This section provides a description of the framework for incorporating the factors that

influence hydropower’s available response for different types of hydropower resources

in terms of operational flexibility and technical constraints. We illustrate the adaptive

capacity resilience metric. The study includes a case for each of the three different

types of hydropower assets. Input parameters were selected to convey the adaptive

capacity concept and display their ability to support stability of the power grid.
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Figure 4.4 Hydropower framework connecting the constraints on the 
ca-pability to aid the resilience of the power systems.
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Fig. 4.4 presents a hydropower framework that identifies contributions of hy-

dropower assets in different epochs of the DIRE curve. There are numerous fac-

tors to consider while assessing a hydropower asset’s contribution to grid resilience.

These factors, like storage flexibility, plant level constraints, adaptive capacity and

regulatory policies differ with the type of hydropower resource and alters the hydro’s

resilience response. In this chapter, we focus on the adaptive capacity as it plays a

key role in managing infrastructure integrity and service reliability [30].

Major operational constraints like maximum and minimum amount of power that

can be generated, operation and maintenance requirements, ramping rates conditions,

and elevation levels [117] are considered in all three types of hydropower. Water

quantity, water head height, and reservoir level are the raw data that determines the

amount of power generated by the hydropower asset. The plant level constraints,

such as the operational capabilities of the generators, optimal operating range of the

turbines, and the turbine efficiency also affects the reaction of the hydropower. Like-

wise, regulatory and environmental constraints, such as minimum water discharge,

reservoir level restrictions, flow rate requirements, downstream impacts and power

purchase contracts and agreements, also limit the functional capabilities of these

hydropower plants [104]. The framework indicates that the strength and health of

electricity delivery network is a key factor in the effectiveness of any asset’s resilience

contribution. The effectiveness of real and reactive power capabilities is tied to the

plants’ location and the type of transmission or distribution network connected to

the plant. Some of the unique attributes of these hydropower are discussed below.
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4.4.1 Run-of-River Hydropower

ROR utilizes the natural flow of water from a river through a canal or penstock and the

elevation gradient between the diversion and the powerhouse, usually with no or little

reservoir [103]. ROR, generally, provides baseload with some variability in operation

(typically for hourly or daily water availability fluctuations), but is unable to provide

ancillary services to the grid due to inflexibility in generation. Runoff patterns can

vary significantly seasonally and are driven by local or upstream hydrologic conditions.

Because a plant may not be designed to utlilize less than the seasonal maximum flows

for power production, during high inflow seasons, ROR plants may spill a significant

portion of the water without generating electricity [29]. ROR hydropower plants are

typically designed to optimize financial performance with increasing capacity leading

to a more expensive plant but a smaller capacity leading to lower revenues [23].

Although less variable, ROR is similar to solar or wind power, in that it is most often

used as a maximum energy production. To achieve flexibility, a trade off between

flexibility in power production versus maximum energy conversion must be made.

ROR projects cause less environmental concerns as no major construction of reser-

voir to raise the head height is needed and minimal amount of storage is involved [53].

However, restrictions on minimum amount and temperature of water discharge, and

ramping rates apply for conservation of aquatic species and their habitat [73].

Case Study

We consider a ROR hydropower asset with a nameplate capacity at the current river

flow of 10 MW real power and ±10 MVAR reactive power. No presence of upstream

or downstream dams or reservoirs is assumed for this asset. The current operating
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output of the turbine generator is 6 MW of real power and 2 MVAR reactive power.

As the head height of an ROR asset remains constant, the maximum real power

which the asset can produce is dependent only on river flow rate over time. For this

reason, the flexibility of power remains constant. It can be ramped up 4 MW to its

nameplate capacity of 10 MW or it can be ramped down to 0 MW. At first glance,

it would be easy to assume that the asset can also provide ±10 MVAR of reactive

power. However, if the real power remains constant at 6 MW the reactive power is

limited to ±8 MVAR due to the apparent power constraint. Next, we consider the

temporal constraints of the adaptive capacity.

When the generator is providing power, it is synchronized with the grid and the

latency to make output adjustments comes from the AGC. Therefore, the latency in

this study is set at 1 s, which is a conservative assumption for resolving a frequency

measurement that is an input to AGC. The ramp up and down rate for real power is

assumed to be linear at 1 MW/min and the rate for reactive power is assumed to be

1.5 MVAR/min. The resulting adaptive capacity from the current operating point is

shown by the left plot in Fig. 4.5. The surface represents the maximum change in

real and reactive power the asset can have over time. Next, we consider a hydropower

asset with reservoir.
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4.4.2 Hydropower with Reservoir

This type is characterized by the use of dam to store water in a reservoir, which

facilitates the alteration of the water flow according to the system demand. It pro-

vides base load as well as the ability to shut down and start up quickly during peak

load. It also provides the storage capacity to operate independently, without con-

tinually adjusting power generated to the flow of the river. The design, type and

size of reservoir depends on landscape and nature of the plant site and economics of

reservoir construction [23]. HWR have the ability to impound the inflows and then

release when necessary for low-cost integration of variable renewables into the grid.

However, this flexibility also contributes to increased financial risks, and operations

and maintenance costs [56] and potential reduction of generation and reliability of

plant components.

These reservoirs are often tied to regulations to serve environmental, recreation

and irrigation purposes. Therefore, the release of water from the reservoir is limited

to maintain consistent reservoir level for recreation, to prevent flooding, and support

the habitat of the aquatic life. The thermal stratification of water and gas dissolution

during water spillage also adds to the limitations of reservoir water release. The sed-

iment, accumulated over time, within the reservoir also reduces the available storage

capacity, which affects the amount of energy produced by the hydropower asset.

Case Study

In general, HWR has a larger nameplate power capacity than a ROR asset due to

increased head height. However, to compare different hydropower assets we consider

the same 10 MW, ±10 MVAR generator with the same latency and ramping rates.
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Therefore, the difference between the ROR and HWR is the potential for fluctuating

reservoir depth, i.e. changing head height. As a result, the real power generation

capability of the asset may not stay constant at the nameplate capacity of 10 MW.

To demonstrate how the head height effects the adaptive capacity we use a fore-

casted head height and apply a linear reduction to the maximum real power. Again,

we assume the current operating point of the generator is 6 MW and 2 MVAR. The

corresponding adaptive capacity is shown by the center plot in Fig. 4.5. It can be seen

that the adaptive capacity in real power is reduced when the head height is decreas-

ing. It should be noted that the reduction in head height here is for demonstration

purposes and unlikely that a reservoir would change depth this rapidly. In addition,

the head height would be expected to remain constant if the power generating flow

and spill were equal to the reservoir inflow and evaporation. When these are not

equal changing volume tied to a function of volume versus head height would drive

the change in the maximum real power available.

4.4.3 Pumped Storage Hydropower

PSH pumps water to an upper reservoir during low power demand using surplus en-

ergy from the system, later releasing it to support peak demand. PSH compliments

the intermittent power resources like solar and wind, as it replicates the behavior

of a battery to store excess electricity generated and also backs up the sources dur-

ing low/no production. The amount of electric energy stored depends on the water

storage capacity and differential height between the reservoirs [45]. Due to these char-

acteristics, PSH has been an important asset on utility-scale storage, grid reliability,

resiliency and many other ancillary services like regulation, operating reserves, etc.

Furthermore, adjustable speed PSH can deliver fast ramping and frequency regula-
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tion in both the generation and pump modes. This technology also allows turbines to

operate in peak efficiency under all head conditions, resulting increased energy gener-

ation [55]. Similarly, advanced PSH technology called ternary units, offer additional

operational flexibility, increased efficiency and faster transition time between generat-

ing and pumping modes [115]. It also operates in hydraulic short circuit (HSC) mode

which aids adjustable pump load [72]. Consequently, PSH with advanced design can

provide a faster switching from pump to generation utilizing the HSC mode [24].

Conventionally, PSH were integrated on-stream (also known as open loop), assist-

ing the ROR for water storage and rarely used in pumped storage mode to meet peak

demand. Open loop PSH is subjected to all the reservoir related constraints. The

PSH independent of natural water body, referred as closed loop, has the advantage

of no to minimal impact on existing river systems [55]. The water inflow pattern in

closed loop PSH is only affected by evaporation or seepage losses. PSH is confined

to reservoir-based constraints similar to HWR, but is more flexible and efficient than

the latter.

Case Study

We consider the scenario of excess generation and place a closed loop ternary 10 MW

PSH in the pumping state at 3 MW and −4 MVAR. We use the same 10 MW

machine as previous case studies and assume the pump has the same latency and

ramp rate characteristics as the generator. The adaptive capacity of the ternary PSH

is calculated as an aggregation of the adaptive capacity of the pump and generator.

However, the pump and generator assets must consider their coupled relationship

and transition states. Therefore, the calculated adaptive capacity of the pump and
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Figure 4.6 The left plot shows the adaptive capacity of the 10 MW 
pump operating at 3 MW and -4 MVAR. The right plot shows the 

adaptive capacity of the 10 MW generator at idle with a 90 second 
latency.

generator are from their current operating point and state of the system. With this 

consideration, the latency for the pump is 1 second and the latency for the generator 

is 90 seconds because of the transition state from pumping to generation [24].

Results of the adaptive capacity of the pump and generator are shown in Fig. 4.6, 

and the aggregation of the assets is shown by the right plot in Fig. 4.5. It can be seen 

that under current operation and forecasting, the maximum potential of the generator 

is increasing as the reservoir fills. As a result, the ternary PSH will need to change 

states to HSC where both the pump and generator are running, or water will need to be 

passed over the spillway.

4.4.4 Discussion

The following are general observations and comparisons of the three types of hy-

dropower discussed in this paper. The ROR asset operates with constant head with
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little to no flexibility in generation and have limited ramping capability. This is

reflected through fixed maximum real power capacity in Fig. 4.5(A). Furthermore,

bidirectional variation in reactive power capacity exists but is constrained through

the ROR asset’s apparent power. In general, the reservoir based hydropower offers

higher generation and ramping capability with reduced dependence on flow rate of wa-

ter. However, as shown in Fig. 4.5(B), head uncertainty affects the adaptive capacity

with higher variability as compared to ROR hydropower.

PSH with advanced design, for example, the ternary PSH can avoid spillage

of excess water in pump mode while reaching the maximum head by operating in

HSC mode shown in Fig. 4.5(C). Such spillage is unavoidable for ROR and reservoir

based hydropower to maintain water flow rate (ROR) and reservoir capacity (reservoir

based).

Overall, PSH offers the highest adaptive capacity through the variable storage and

pump-generation switching capability. ROR hydropower offers the least due to the

absence of a reservoir while a reservoir based hydropower performs better than ROR.

It should be noted that, the current study considers only the effects of generation

capacity, ramp rate and storage, while the ageing effects as well as environmental and

regulatory constraints will be explored in future works.

Although this paper is focused on the response epoch of resilience, hydropower

has other attributes that support the other Rs. Table 4.2 provides a qualitative sum-

mary of the resilience capabilities of the three types of hydropower assets. Recon

epoch will determine the bias of the hydropower plants and determine the amount

of flexibility the system has. The state of storage and power set points provide the

starting point for the response to any disturbance. For example, the current state of
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the PSH systems, i.e., pumping or generating, will have a definitive affect on the re-

sponse latency and ramping ability. Resist capabilities reside in the amount of inertia

the plants have in their prime movers. Synchronous generators of ROR, HWR, and

in instances where PSH is comprised of synchronous machines have these capabili-

ties. Adjustable speed PSH utilizing converter-fed synchronous machines do not have

this attribute. All types of hydropower have response capabilities, through governor,

AGC, and other real and reactive control. The recover epoch is supported through

longer term allocation of the response phase resources but also include dispatch de-

cisions. While not covered in this paper, the authors anticipate that connecting the

response capabilities of resources to production cost modeling would support dispatch

decision. This would ensure optimal use of the resources to return the system towards

the normal operating state. Finally, restore attributes of all hydropower include the

use of the plants as the starting point of the black start cranking paths, because

they require low initial power to start up, have fast ramping characteristics and large

capacities [91, 1], as well as sustained generation for longer time frame after a major

event. Restoration must consider the impacts to the hydropower assets during these

events that may cause greater maintenance and repair needs of the plants.
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Table 4.2 Summary of resilience capabilities of the three types of 
hy-dropower assets by epochs of resilience.

Epoch ROR HWR PSH

Recon
power/spill storage power storage power
bias bias bias

Resist inertia (H) inertia (H)
depends on
type

real & real & reactive real & reactive
Respond reactive spinning & non- ramp dependent

spinning spinning reserve on direction

Recover N/A
dispatch/ dispatch/
response response

Restore

black black black
start & start & start &
sustained sustained sustained
generation generation generation

4.5 Conclusion

This chapter has provided a framework for considering the resilience contribution

of three classes of hydropower generation plants. The foundations of resilience def-

initions and measures are considered. The contribution of hydropower systems to

resilience is considered in two tiers, system and asset level resilience. System level

resilience means the rate at which the operations of the electric grid are brought

back to normal after an HILP. The contribution of a class of assets to the return to

normal process should be valued in comparison to all supporting assets in the grid.

Although the framework for asset level resilience seeks to encompass all the epochs of

resilience, the initial focus is on the response epoch adaptive capacity for each type

of hydropower asset. The comparison discussed is more about making utilities and
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stakeholders aware of the resilient capabilities held by these plants than to say one is

preferable to another. The value is always in the context of the location of the plants

and their role juxtaposed to the capabilities of all of the power system assets.

This work provides a framework for hydropower that could be adapted to the con-

straints of other energy assets on the grid. The specific capability captured through

the adaptive capacity of hydropower assets was needed to allow resiliency analysis

of portions of the electric grid and the grid as a whole. The paper focused on the

response capacity of the three types of hydropower systems. With this framework and

metrics tool, the ability for hydropower-specific assets can be compared or combined

with other contributors to resilience: bus level adaptive capacity in transmission[114],

distributed energy resources[60] including solar[90] to assess the magnitude and dura-

tion of disturbances the system could withstand without further anticipated failures.

One of the most striking attributes of hydropower in general is the ability to support

all of the time frames considered in the DIRE curve. Of course, there are trade-offs

between the use in the response epoch, reserving capabilities for recover and restore,

and maximum energy production; however, with an understanding of the capabilities

and trade-offs, stakeholders can make informed decisions on prioritization of resource

usage.

4.6 Future Work

Several aspects of the framework require additional attention. Firstly, the adaptive ca-

pacity needs to incorporate synchronous generators’ capability curves [25]. Secondly,

there is a need to connect asset level metrics to the predicted outcomes contained in

the system level metrics given the scale of HILP. Thirdly, the mechanics to connect

the asset contribution to the needed location and the contribution of inertia need
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development. Finally, the inputs to the framework require coordination with analysis

tools that provide more detailed treatment of the limits from environmental, storage

and operational constraints.

The adaptive capacity in real power was demonstrated mathematically. It was

shown that the maximum limit in real power is dependant on the head height of

the asset. At current state, there is no uncertainty considered with the forecasted

head height. In general, the head height estimate of a reservoir will be well known,

resulting in a small uncertainty. However, in the case of solar PV the uncertainty in

generation can be large and therefore is the topic of the following chapter.
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CHAPTER 5:

A FRAMEWORK FOR EVALUATING THE

RESILIENCE CONTRIBUTION OF SOLAR PV

AND BATTERY STORAGE ON THE GRID1

5.1 Introduction

In order to curb climate change, global action has been taken to reduce the amount of

carbon emissions. In power generation, this has resulted in an increasing penetration

of renewable sources like solar PV and wind power generation. Unlike the traditional

generation resources, they provide intermitten and uncertain amounts of generation

throughout the day. This has presented utilities and researchers with new challenges.

Power system operators have to accommodate for variability in system load and solar

PV generation through reserve power that can adjust output levels in dispatchable

plants, however, this is not cost effective.

The increasing presence of renewable generation on the power system may have

been spurred by climate change concerns. However, the dramatic reduction in in-

vestment have made it cost competitive with traditional resources. In early 2011,

1© 2020 IEEE. Reprinted, with permission from, T. Phillips, T. McJunkin, C. Rieger, J. Gardner,
and H. Mehrpouyan, “A Framework for Evaluating the Resilience Contribution of Solar PV and
Battery Storage on the Grid,” 2020 Resilience Week (RWS), Salt Lake City, UT, USA, 2020
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solar generation comprised less than 0.1% of the U.S. generation supply at just 3 gi-

gawatts, by 2017 this number had grown to over 47 gigawatts. From 2010 to 2017, the

adjusted cost for solar PV installed kilowatt-hour dropped from $0.52 to $0.16 for res-

idential, from $0.40 to $0.11 for commercial, and from $0.28 to $0.06 for utility scale

generation. The Solar Energy Technologies Office set a 2030 goal for a further 50%

reduction to $0.03. Achieving this goal would make solar one of the cheapest sources

of electricity generation and push further expansion of solar PV installation [67].

In this work, we present a metric based on the adaptive capacity to evaluate the

resilience contribution that solar PV generation and battery storage add to the grid.

The novelty of this chapter is capturing the uncertainty of solar PV assets and its

effect on the contribution it provides to the adaptive capacity of the grid. The rest of

the paper is organized as follows; Section 5.2 introduces solar generation forecast and

its uncertainty. Section 5.3 provides the details of our resilience metric framework.

We then carry out a case study in Section 5.4 and give concluding remarks and future

work in Section 5.5.

5.2 Solar PV Generation

The output of solar PV generation is variable due to the sun changing position

throughout the day and seasons. This regularly leads to a 10% change in generation

over 15 minutes. However, meteorological phenomena such as moving cloud cover,

contribute to uncertainty in the generation and can cause rapid changes in power

output. The size of the PV system, cloud speed, cloud height, and other factors influ-

ence the rate of change in power generation output. There is a rich body of literature

on forecasting solar irradiance and PV generation. They can be broadly classified

into four approaches; statistical based on historical measured data [6], artificial in-
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telligence or machine learning such as neural networks [100], physics based numerical

weather prediction models or satellite images [88, 27], and hybrid models [68].

The practical use of solar forecasting can be characterized at different time hori-

zons. From the perspective of power system operation, very short-term (seconds to

minutes) and short-term (up to 48-72 hours) forecasts are particularly useful for ac-

tivities like real-time unit scheduling, storage control, automatic generation control,

and electricity trading [119]. Medium-term forecasts consider week long forecasts and

can be used for maintenance scheduling, and long-term forecasts are months or years

and useful for solar PV plant planning. In this study, we consider very short-term

and short-term time horizons which correlate to the respond and recover of the “R’s”

of resilience.

There are various evaluation indices to apply to forecasting accuracy. The com-

monly used indices include mean bias error, mean absolute error, mean square error,

and root mean square error. These are all statistical formulas to measure the differ-

ence between the predicted forecast and measured data. The purpose of this work

is not to cover the accuracy of solar forecast generation, but demonstrate how the

uncertainty correlates to resilience of solar PV assets. In the following section, we

cover the details of the purposed resilience framework.

5.3 Framework

In this section, we introduce the mathematical background for the resilience metric

proposed for solar and battery storage assets. The metric is based on assets adaptive

capacity and the following steps are taken for their calculation: determine the po-

tential real and reactive power contribution, the flexibility from the operating point,

consider temporal constraints, and then calculate the adaptive capacity.
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5.3.1 Adaptive Capacity Calculation with Uncertainty

We begin by defining the potential contribution in real and reactive power an asset

has on the grid. The power output of an asset is constrained by the apparent power

in the complex S-plane and the limiting power output in the positive and negative

plane. The apparent power in the S-plane is given as

S(θ) =
√
P 2 +Q2 (5.1)

where P and Q are the nameplate capacity in real and reactive power, respectively.

Here the nameplate capacity is dependent on the real power plane. In the positive

plane it is the nameplate capacity when the asset is a source. In the negative plane

it is the nameplate capacity as a sink, i.e. a battery at max charging. The real and

reactive power components of the apparent power are given as

P (θ) = S cos(θ) (5.2)

and

Q(θ) = S sin(θ) (5.3)

respectively. The power contribution of assets are limited by the apparent power and

the limit of real power, therefore, the contribution limit of the asset is given as

P (θ) =


min

[
P (θ), Pmax

]
, 0 ≤ θ ≤ π

2

min
[
P (θ), Pmax

]
, 3π

2
≤ θ < 2π

−min
[
|P (θ)|, |Pmin|

]
, π

2
< θ < 3π

2

(5.4)
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where Pmax and Pmin are the maximum output as a source in the positive plane and

the maximum output as a sink in the negative plane, respectively.

In the context of solar assets, which only contribute to the grid as a power source,

the real power in the negative plane is zero, Pmin= 0. Additionally, solar assets

don’t have a constant real power contribution due to changes in solar intensity. This

results in an uncertainty, u, in the maximum real power generation. Therefore, the

contribution of real power from solar assets is limited by

P (θ)Solar =


min

[
P (θ), Pmax ± u

]
, 0 ≤ θ ≤ π

2

min
[
P (θ), Pmax ± u

]
, 3π

2
≤ θ < 2π

0, π
2
< θ < 3π

2

(5.5)

The resulting output bounds of a solar asset is shown notionally by the normalized

output in the top plot in Fig. 5.1. Here, the bounding constraints on the output S(θ),

Pmin, and Pmax ± u can be seen. The green region represents the upper uncertainty,

the red is the lower uncertainty, and the line between them is the maximum real

power output, which is considered the forecasted output in this work.

On the other hand, battery storage assets may operate in both the positive and

negative plane as a source and a sink. However, their nameplate capacity in real

power in the positive and negative plane may not be the same. Therefore, the power

in the negative plane in Equation 5.4 is not zero. The resulting contribution in real

and reactive power of a battery storage asset is shown notionally by the normalized

output in the bottom plot in Fig. 5.1. Here, it is shown that the battery asset can

only operate at half the real power as a sink as when a source.
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Figure 5.1 Normalized power capability of a solar asset (top) and a 
battery asset (bottom). The positive uncertainty of the solar asset is 

shaded green and the negative in red.
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Next, we determine the flexibility of the asset which is a measure from the current

operating point to the operating capability limits. Thus, the flexibility is a translation

from P= 0, Q= 0 to the operating point P0, Q0. The limits of the operating power S,

Pmax and Pmin take the form S ′, P ′max, and P ′min after the translation for the flexibility.

The flexibility in real power is given mathematically as

P∆(θ) =


min

[
S ′ cos(θ), P ′max ± u

]
, 0 ≤ θ ≤ π

2

min
[
S ′ cos(θ), P ′max ± u

]
, 3π

2
≤ θ ≤ 2π

−min
[
|S ′ cos(θ)|, |P ′min|

]
, π

2
< θ < 3π

2

(5.6)

here, battery assets have an uncertainty of zero. The flexibility in reactive power for

both types of assets is given as

Q∆(θ) = S ′ sin(θ) (5.7)

The flexibility of a solar asset with uncertainty is shown in Fig. 5.2, the current

operation point is P = 0.25 and Q = -0.25.

Next, we consider the temporal limitations of the asset over the flexibility region.

Temporal constraints include latency, ramp rates, and energy limitations. The la-

tency, λ, is the time before a control action can make changes to the power output of

the system. The ramp rate is how quick the asset can adjust the power output from

the current operating point after the latency. The temporal constraint in real power
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Figure 5.2 Flexibility in real power (P∆) and reactive power (Q∆) of a 
normalized solar asset at current operation of P0= 0.25 and Q0= -0.25. The 

flexibility is a translation from P = 0, Q = 0 to the operation point.
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is given as

P (t) =


0, t ≤ λ

dP
dt

(t− λ), t > λ

(5.8)

and the reactive power is

Q(t) =


0, t ≤ λ

dQ
dt

(t− λ), t > λ

(5.9)

where t is the future time from current operation. Ramp rates may be dependent

on direction and non-linear, i.e. the asset may ramp down quicker than it can ramp

up. We denote the the temporal real power ramping up as P (t)+ and as P (t)− when

ramping down. The same is done for the reactive power.

With the flexibility and temporal constraints, we can calculate the adaptive ca-

pacity at all power factor angles. The adaptive capacity in real power is given as

PAC(θ, t) =


min

[
P∆, P (t)+

]
, 0 ≤ θ ≤ π

2

min
[
P∆, P (t)+

]
, 3π

2
≤ θ ≤ 2π

−min
[
|P∆|, |P (t)−|

]
, π

2
< θ < 3π

2

(5.10)

and the adaptive capacity in reactive power is given as

QAC(θ, t) =


min

[
Q∆, Q(t)+

]
, 0 ≤ θ ≤ π

−min
[
|Q∆|, |Q(t)−|

]
, π < θ < 2π

(5.11)

The adaptive capacity in real power at a power factor angle of 0 and π is depicted in
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Fig. 5.3. In the top plot, it can be seen that the flexibility of the asset is constrained

by the maximum and minimum power at these power factor angles. The bottom

plot indicates the temporal constraints of the asset. The manifold shows the three

dimensional view of these calculations at all power factor angles.

The adaptive capacity of assets can be aggregated together to give the adaptive

capacity of a group of asset. The aggregation of real power is given as

PAC(θ, t) =
n∑
k=1

PACk (5.12)

and the reactive power is given as

QAC(θ, t) =
n∑
k=1

QACk (5.13)

where n is the number of assets. The aggregation of a solar and battery asset is shown

in Fig. 5.4. It can be seen that the aggregated adaptive capacity is the sum of the

individual assets at any given power factor angle.

5.4 Case Studies

In this section we demonstrate the resilience metric purposed in a case study using

very short-term and short-term solar PV forecast data. First, we introduce the data

set used in this study.

5.4.1 Solar Generation and Forecast Data Set

National Renewable Energy Laboratory provides synthetic year long data for approx-

imately 6,000 simulated PV plants2. The forecast data consist of 60-minute intervals

2https://www.nrel.gov/grid/solar-power-data.html
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Figure 5.3 Top plot shows the flexibility of a normalized solar asset and 
indicates the flexibility in real power at power factor angles of 0 and π. 

Bottom plot shows the real power flexibility from the operation point with 
latency and ramp rate constraints.
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Figure 5.4 Normalized adaptive capacity of solar and battery storage 
asset with operating point indicated by the data marker. Aggregation is 

shown and indicates the adaptive capacity of the system assets with 
uncertainty. Note, that temporal constraints are not considered here.
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Figure 5.5 Day-ahead solar forecast data. Yellow line represents the 
forecast (Pmax) and the green and red regions are the upper and lower 

uncertainty, respectively.

for both day-ahead and 4 hour-ahead predictions. The data was generated using the 

3TIER based on numerical weather predication simulations. In this work, solar data 

from Saturday, August 19th, 2006, in Arizona at location 33.45, -112.95 (latitude, 

longitude) was selected. The forecast data does not provide uncertainty, therefore,

we generate uncertainty similar to that in [92]. We point out that the accuracy of 

uncertainty is not the focus of this work, but the effect it has on the adaptive capacity

of solar PV generation. The forecast data and uncertainty used in the case studies is 

shown in Fig. 5.5. We begin with the very short-term forecast.
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5.4.2 Very Short-term Power Forecast

Very short-term solar generation forecast are on the order of seconds or minutes. At

this time scale the latency and ramp rate constraints are highly important for the

assets’ adaptive capacity. To demonstrate the very short-term adaptive capacity of

a solar PV asset we use the forecast data in Fig. 5.5 at noon. We apply a current

power generation output of 50 MW, use a 1 second latency, and assume ramp rates

for the real power in the positive and negative direction to be 10 MW/s and the

reactive in both directions is 10 MVAR/s. The resulting adaptive capacity of the

asset using the forecasted power data is shown by the yellow plot in the top plot

of Fig. 5.6. In this figure, the red middle plot represents the negative uncertainty,

and the green bottom plot represents the positive uncertainty. The plots have been

zoomed in near the operating point to show the difference in the adaptive capacity

in the positive real direction (all plots in the negative real direction are identical). It

can be seen that when when solar generation is in the negative uncertainty direction

the adaptive capacity in real power is very small. On the other hand, when it is in the

positive uncertainty direction there is additional adaptive capacity in real power. In

the following section, we will look at the short-term forecast using day-long forecast

data.

5.4.3 Short-term Power Forecast

In this scenario, we consider the short-term power forecast to be day-ahead forecast

power generation over a day, i.e. the full data shown in Fig. 5.5. We assume that the

forecasted generation will be the operating point of the asset over the day. The results

of the adaptive capacity, again near the origin to highlight the real power adaptive

capacity differences, are shown in Fig. 5.7. Here, the top plot represents the asset
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Figure 5.6 Very short-term adaptive capacity at 12:00 noon assuming 
power output of 50 MW. Top plot represents forecast data, middle repre-

sents negative uncertainty, and the bottom is positive uncertainty.
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adaptive capacity at the solar forecast, the middle represents the adaptive capacity

for the negative uncertainty, and the lower plot represent the adaptive capacity for the

positive uncertainty. It can be seen that when the forecast generation is correct the

adaptive capacity in the positive real power direction is zero. When the generation

is at the positive uncertainty the solar PV asset contributes to additional real power

adaptive capacity, therefore adding to the resilience of the overall grid. On the other

hand, when the generation is at the negative uncertainty the real power adaptive

capacity is negative and the asset may be considered a disturbance on the power

system. In this case, reserve power must be used in order to maintain the desired

frequency of the grid. For this reason, we next consider the addition of battery storage

to this scenario.

The additional battery storage asset is assumed to have a maximum power output

of 20 MW as a source and -10 MW as a sink with ±20 MVAR reactive capability.

The operating point is assumed to be idle, where P0 = 0 and Q0 = 0. The results of

the aggregation of the solar adaptive capacity at negative uncertainty and the battery

storage asset is shown in Fig. 5.8. It can be seen that the addition of the battery

asset contributes to the adaptive capacity in the positive real power. Therefore, the

system has the capability to respond to a disturbances in this direction, i.e. there is

reserve power for an operator to maintain frequency stability of the system.

5.5 Conclusion and Future Work

This paper has provided a framework for considering the resilience contribution of

solar and battery storage assets to the grid. The novel contribution is addition of

uncertainty in adaptive capacity for solar generation assets. We demonstrated the

metric in a case study using very short-term (seconds) and short-term (day-long) solar
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forecast with uncertainty and provided the resilience that both the solar and battery

assets contribute to the grid. It was demonstrated that when solar generation is above

the forecast it provides additional adaptive capacity in the positive direction of real

power. However, when it is below the forecasted generation, the adaptive capacity in

the positive real power direction is negative, and may be considered a disturbance to

the system. The addition of battery storage in this case demonstrated the ability to

aggregate assets and provide the needed adaptive capacity in real power.

Future work includes implementation of the metric in a simulated environment

such as Simulink or OPAL-RT. It is envisioned that the resilience metric will be

used to influence the control decisions and result in a lower loss of power served to

consumers during physical degradation and cyber attack scenarios.
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Figure 5.7 Day-long adaptive capacity of the solar asset at forecast 
gener-ation (top), negative uncertainty (middle), and positive 

uncertainty (bot-tom). Here the operation point is assumed to be the 
forecast output in each plot.
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Figure 5.8 Aggregation of day-long adaptive capacity of a solar asset at 
negative uncertainty (middle plot in Fig. 5.7) and battery storage asset at 

idle.
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CHAPTER 6:

CONCLUSION AND FUTURE WORK

The work in this dissertation covered two main topics; first the identification of a

potential cyber threat to control system, and second to lay the foundation for a

resilience framework to better ensure a continuous supply of electricity in the grid.

The work in Chapter 2 provided a proof-of-concept which indicates a potential

vulnerability to constant setpoint control systems. It was demonstrated that a covert

cyberattack which targets a controllers PID algorithm can force excitation in sys-

tem parameters, giving a more accurate dynamic model of the system through data

drive system identification. This attack is shown on a series of simulations and the

covertness to physics-based anomaly detection is made. The more accurate dynamic

model of the system will allow a cyberattacker to design more sophisticated attacks

with a higher likelihood of them being carried out successfully. Therefore, future

work includes the development of a machine learning physics-based anomaly detec-

tion scheme which can identify the PID attack. Furthermore, it is desired to use a

model which better represents critical infrastructure, such as the Tennessee Eastman

Process.

The work in Chapter 3 presents an operational resilience metric based on the

adaptive capacity in real and reactive power. The mathematical details of the adap-

tive capacity is covered and considers the real-time operational output of the asset,
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its ramp rates, latency, and energy limitations. The metric is applied to different

assets and the results are aggregated to indicate the amplitude and duration of a dis-

turbance that a set of assets can withstand. It was demonstrated that the resulting

adaptive capacity of a microgrid under different scenarios can be used by operators

to make resilience informed decisions. Future work includes improving the metric by

the use of higher fidelity models of assets by using more accurate real and reactive

power capabilities, non-linear ramp rates, latency, and energy constraints.

The work in Chapter 4 takes a deep dive into the resilience contribution of hy-

dropower assets and provides a framework that could be adapted for other energy

assets on the grid. The capability of different types of hydropower assets is captured

through the adaptive capacity giving a resilience analysis applied to the grid. At

current state the focus is on the response epoch. However, the framework seeks to

encompass all the epochs of resilience as hydropower in general has the ability to

support all the time frames or “Rs” of resilience. This type of analysis will help

operators make informed decisions when considering the trade-offs between the use

of hydropower in the response epoch, reserving capabilities for recover and restore,

and maximum energy production. Future work includes increasing the fidelity of the

modeled assets, including the use of generator capability curves and AGC ramping

limitations, and application of the inertia of the generator. Additionally, there is a

need to connect the assets contribution to the needed location through the connection

of the network through transmission or distribution lines.

The work in Chapter 5 focuses on the resilience contribution of solar PV and

battery storage on the grid. The novel contribution is the addition of uncertainty in

the adaptive capacity of assets. It was demonstrated using very short-term (seconds)



109

and short-term (day-long) solar PV generation forecast with uncertainty. It was

demonstrated that addition of battery storage to a solar generation asset can be used

to maintain adaptive capacity during times where solar generation is at the negative

uncertainty scenario. Future work includes the implementation of the metric in a

simulated real-time environment such as OPAL-RT and the resulting metric can be

used to inform decisions to better serve power to customers and critical loads.
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[21] A. Oliveira de Sá, L. F. R. da Costa Carmo, and R. Machado. A controller de-

sign for mitigation of passive system identification attacks in networked control

systems. Journal of Internet Services and Applications, 9:1–19, 2017.

[22] P. Dehghanian, S. Aslan, and P. Dehghanian. Quantifying power system re-

siliency improvement using network reconfiguration. In 2017 IEEE 60th In-

ternational Midwest Symposium on Circuits and Systems (MWSCAS), pages

1364–1367, Aug 2017.

[23] G Dielen. Renewable energy technologies-cost analysis series: Hydropower.

International Renewable Energy Agency, 2012.

[24] Z. Dong, J. Tan, E. Muljadi, R. Nelms, and M. Jacobson. Impacts of ternary-

pumped storage hydropower on U.S. Western Interconnection with extremely

high renewable penetrations. In 2019 IEEE Power Energy Society General

Meeting (PESGM), pages 1–5, 2019.

[25] D. Esmaeil Moghadam, A. Shiri, S. Sadr, and D. A. Khaburi. A practical

method for calculation of over-excited region in the synchronous generator ca-

pability curves. In 2014 IEEE 23rd International Symposium on Industrial

Electronics (ISIE), pages 727–732, 2014.

[26] A. A. Farooqui, S. S. H. Zaidi, A. Y. Memon, and S. Qazi. Cyber security



114

backdrop: A SCADA testbed. In 2014 IEEE Computers, Communications and

IT Applications Conference, pages 98–103, Oct 2014.

[27] E. Geraldi, F. Romano, and E. Ricciardelli. An advanced model for the esti-

mation of the surface solar irradiance under all atmospheric conditions using

MSG/SEVIRI data. IEEE Transactions on Geoscience and Remote Sensing,

50(8):2934–2953, 2012.

[28] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. Tippen-

hauer, H. Sandberg, and R. Candell. A survey of physics-based attack detection

in cyber-physical systems. ACM Comput. Surv., 51(4):76:1–76:36, July 2018.

[29] J. Hanania, K. Stenhouse, E. Cey, L. Goodfellow, B. Afework, and J. Donev.

Energy education-run-of-the-river hydroelectricity, 2018.

[30] M. Hellmuth, P. Cookson, and J. Potter. Addressing climate vulnerability for

power system resilience and energy security: A focus on hydropower resources.

RALI Series: Promoting Solutions for Low Emission Development, May 2017.

USAID Report.

[31] D. Henry and J. Ramirez-Marquez. On the impacts of power outages during

Hurricane Sandy - a resilience-based analysis. Systems Engineering, 19(1):59–

75, 2016.

[32] D. Henry and J. Emmanuel Ramirez-Marquez. Generic metrics and quantitative

approaches for system resilience as a function of time. Reliability Engineering

& System Safety, 99:114 – 122, 2012.



115

[33] C. Holling. Resilience and stability of ecological systems. Annual Review of

Ecology and Systematics, 4(1):1–23, 1973.

[34] E. Hollnagel, D. Woods, and N. Leveson. Resilience Engineering: Concepts and

precepts. Ashgate Publishing, 2006.

[35] M. M. Hosseini, A. Umunnakwe, and M. Parvania. Automated switching oper-

ation for resilience enhancement of distribution systems. In 2019 IEEE Power

Energy Society General Meeting (PESGM), pages 1–5, 2019.

[36] G. Huang, J. Wang, C. Chen, J. Qi, and C. Guo. Integration of preventive and

emergency responses for power grid resilience enhancement. IEEE Transactions

on Power Systems, 32(6):4451–4463, Nov 2017.

[37] A. Imteaj, M. Hadi Amini, and J. Mohammadi. Leveraging decentralized arti-

ficial intelligence to enhance resilience of energy networks, 2019.

[38] Electric Power Research Institute. Grid resiliency. https://www.epri.com/#/

grid_resiliency. Accessed: 1/30/2020.

[39] Institute of Electrical and Electronics Engineers. IEEE guide for electric power

distribution reliability indices. IEEE Std 1366-2012 (Revision of IEEE Std

1366-2003), pages 1–43, May 2012.

[40] B. Johnson, V. Chalishazar, E. Cotilla-Sanchez, and T. Brekken. A Monte Carlo

methodology for earthquake impact analysis on the electrical grid. Electric

Power Systems Research, 184:106332, 2020.

https://www.epri.com/#/grid_resiliency
https://www.epri.com/#/grid_resiliency


116

[41] Shijoe Jose, D. Malathi, Bharath Reddy, and Dorathi Jayaseeli. A survey on

anomaly based host intrusion detection system. Journal of Physics: Conference

Series, 1000:012049, apr 2018.

[42] M. Kazama and T. Noda. Damage statistics: Summary of the 2011 off the

Pacific Coast of Tohoku Earthquake damage. Soils and Foundation, 2012.

[43] H. Khaloie, A. Abdollahi, M. Rashidinejad, and P. Siano. Risk-

based probabilistic-possibilistic self-scheduling considering high-impact low-

probability events uncertainty. International Journal of Electrical Power &

Energy Systems, 110:598 – 612, 2019.

[44] M. Khomami, K. Jalilpoor, M. Kenari, and M. Sepasian. Bi-level network

reconfiguration model to improve the resilience of distribution systems against

extreme weather events. IET Generation Transmission & Distribution, 05 2019.

[45] V. Koritarov, T. Veselka, J. Gasper, B. Bethke, A. Botterud, J. Wang, M. Ma-

halik, Z. Zhou, C. Milostan, J. Feltes, Y. Kazachkov, T. Guo, G. Liu, B. Trouille,

P. Donalek, K. King, E. Ela, B. Kirby, I. Krad, and V. Gevorgian. Modeling

and analysis of value of advanced pumped storage hydropower in the united

states. Technical report, Argonne National Lab. (ANL), Argonne, IL, 2014.

[46] M. Krotofil and J. Larsen. Rocking the pocket book: Hacking chemical plants

for competition and extortion. Report P-41, DEFCON, 2015.

[47] Idaho National Laboratory. Cyber threat and vulnerability analysis of the U.S.

electric sector. Technical report, 2016.



117

[48] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security and

Privacy, 9(3):49–51, May 2011.

[49] L. Lerner. Trustworthy Embedded Computing for Cyber-Physical Control. PhD

thesis, Virginia Tech, 2015.

[50] G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong. The 2015 Ukraine

blackout: Implications for false data injection attacks. IEEE Transactions on

Power Systems, 32(4):3317–3318, 2017.

[51] L. Ljung. System identification. Wiley Encyclopedia of Electrical and Electron-

ics Engineering, 2001.

[52] M. Long, Chwan-Hwa Wu, and J. Y. Hung. Denial of service attacks on network-

based control systems: impact and mitigation. IEEE Transactions on Industrial

Informatics, 1(2):85–96, May 2005.

[53] Y. Luo, M. Mohanpurkar, R. Hovsapian, V. Gevorgian, E. Muljadi, and V. Ko-

ritarov. Enhancing the flexibility of generation of run-of-the-river hydro power

plants. Technical report, Idaho National Lab.(INL), Idaho Falls, ID, 2018.

[54] A. Magali and M. Montes-Sancho. U.S. state policies for renewable energy:

Context and effectiveness. Energy Policy, 39(5):2273 – 2288, 2011.

[55] M. Manwaring, D. Mursch, and K. Tilford. Challenges and opportunities for

new pumped storage development. A White Paper Developed by NHAs Pumped

Storage Development Council. NHAPumped Storage Development Council,

USA, 2012.



118

[56] P. March. Flexible operation of hydropower plants. Technical report, Electric

Power Research Institute (EPRI), Palo Alto, CA, 2017.

[57] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.5 (R2018b),

2018.

[58] The Mathworks, Inc., Natick, Massachusetts. Simulink version 9.2 (R2018b),

2018.

[59] M. McGranaghan, M. Olearczykm, and C. Gellings. Enhancing distribution

resiliency: Opportunities for applying innovative technologies. Technical Report

1026889, Electric Power Research Institute, 2013.

[60] T. R. McJunkin and C. G. Rieger. Electricity distribution system resilient

control system metrics. In 2017 Resilience Week (RWS), pages 103–112, Sep.

2017.

[61] H. Mehrpouyan, D. Giannakopoulou, G. Brat, I. Tumer, and C. Hoyle. Complex

engineered systems design verification based on assume-guarantee reasoning.

Systems Engineering, 19(6):461–476, 2016.

[62] H. Mehrpouyan, D. Giannakopoulou, I. Tumer, C. Hoyle, and G. Brat. Combi-

nation of compositional verification and model checking for safety assessment of

complex engineered systems. In ASME 2014 International Design Engineering

Technical Conferences and Computers and Information in Engineering Confer-

ence. American Society of Mechanical Engineers Digital Collection, 2015.

[63] H. Mehrpouyan, B. Haley, A. Dong, I. Tumer, and C. Hoyle. Resiliency analysis

for complex engineered system design. AI EDAM, 29(1):93–108, 2015.



119

[64] H. Mehrpouyan, I. Tumer, C. Hoyle, D. Giannakopoulou, and G. Brat. For-

mal verification of complex systems based on sysml functional requirements.

Technical report, Columbus State University Columbus United States, 2014.

[65] F. Mengfei, Z. Zhiguo, Z. Enrico, R. Kang, and Y. Chen. A stochastic hybrid

systems model of common-cause failures of degrading components. Reliability

Engineering & System Safety, 172:159 – 170, 2018.

[66] B. Messner and D. Tilbury. Control Tutorials for MATLAB and Simulink

(CTMS): Inverted Pendulum System Modeling. http://ctms.engin.umich.

edu/CTMS/index.php?aux=Home.

[67] C. Murphy, Y. Sun, W. Cole, G. Maclaurin, M. Mehos, and C. Turchi. The

potential role of concentrating solar power within the context of DOE’s 2030

solar cost targets, 1 2019.

[68] S. Nanou, A. Papakonstantinou, and S. Papathanassiou. A generic model of

two-stage grid-connected PV systems with primary frequency response and in-

ertia emulation. Electric Power Systems Research, 127:186 – 196, 2015.

[69] National Acedemies of Sciences, Engineering, and Medicine. Enhancing the re-

silience of the nation’s electricity system. https://doi.org/10.17226/24836,

2017.

[70] H. Nguyen, J. Muhs, and M. Parvania. Assessing impacts of energy storage on

resilience of distribution systems against hurricanes. Journal of Modern Power

Systems and Clean Energy, 07 2019.

http://ctms.engin.umich.edu/CTMS/index.php?aux=Home
http://ctms.engin.umich.edu/CTMS/index.php?aux=Home
https://doi.org/10.17226/24836


120

[71] N. Nicolaou, D. G. Eliades, C. Panayiotou, and M. M. Polycarpou. Reducing

vulnerability to cyber-physical attacks in water distribution networks. In 2018

International Workshop on Cyber-physical Systems for Smart Water Networks

(CySWater), pages 16–19, April 2018.

[72] C. Nicolet, A. Beguin, B. Kawkabani, Y. Pannatier, A. Schwery, and F. Avel-

lan. Variable speed and ternary units to mitigate wind and solar intermittent

production. Hydro Vision, 2014.

[73] S. Niu and M. Insley. On the economics of ramping rate restrictions at hydro

power plants: Balancing profitability and environmental costs. Energy Eco-

nomics, 39:39–52, 2013.

[74] M. Oboudi, M. Mohammadi, and M. Rastegar. Resilience-oriented intentional

islanding of reconfigurable distribution power systems. Journal of Modern

Power Systems and Clean Energy, 7(4):741–752, Jul 2019.

[75] M. Hosseini Oboudi and M. Parvania. Quantifying impacts of automation on

resilience of distribution systems. IET Smart Grid, 02 2020.

[76] L. Obregon. Secure Architecture for Industrial Control Systems. Technical

report, SANS Institute, 2015.

[77] Energy Policy Act of 2005. Public Law No. 109-58, 119 Stat. 594, 2005.

[78] U.S. Department of Energy. The smart grid, 2020. https://www.eia.gov/

todayinenergy/detail.php?id=42655https://www.smartgrid.gov/the_

smart_grid/smart_grid.html.

https://www.eia.gov/todayinenergy/detail.php?id=42655https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://www.eia.gov/todayinenergy/detail.php?id=42655https://www.smartgrid.gov/the_smart_grid/smart_grid.html
https://www.eia.gov/todayinenergy/detail.php?id=42655https://www.smartgrid.gov/the_smart_grid/smart_grid.html


121

[79] US Department of Homeland Security. Recommended practice: Improving in-

dustrial control system cybersecurity with defense-in-depth strategies: Indus-

trial control systems. Technical report, Homeland Security Cyber Emergency

Response Team, 2016.

[80] B. Ogunnaike and W. H. Ray. Process Dynamics, Modeling, and Control. Ox-

ford University Press, New York, 1994.

[81] M. Ouyang. A three-stage resilience analysis framework for urban infrastructure

systems. Structural Safety, 36-37:23–31, 03 2012.

[82] M. Ouyang and L. Duenas-Osorio. Time-dependent resilience assessment

and improvement of urban infrastructure systems. Chaos (Woodbury, N.Y.),

22:033122, 09 2012.

[83] M. Panteli and P. Mancarella. The grid: Stronger, bigger, smarter?: Presenting

a conceptual framework of power system resilience. IEEE Power and Energy

Magazine, 13(3):58–66, 2015.

[84] M. Panteli, P. Mancarella, D. Trakas, E. Kyriakides, and N. Hatziargyriou.

Metrics and quantification of operational and infrastructure resilience in power

systems. IEEE Transactions on Power Systems, 32(6):4732–4742, Nov 2017.

[85] M. Panteli, D. N. Trakas, P. Mancarella, and N. Hatziargyriou. Power systems

resilience assessment: Hardening and smart operational enhancement strategies.

Proceedings of the IEEE, 105(5):1202–1213, 2017.

[86] M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou. Power



122

systems resilience assessment: Hardening and smart operational enhancement

strategies. Proceedings of the IEEE, 105(7):1202–1213, July 2017.

[87] W. Parker, B. K. Johnson, C. Rieger, and T. McJunkin. Identifying critical

resiliency of modern distribution systems with open source modeling. In 2017

Resilience Week (RWS), pages 113–118, Sep. 2017.

[88] R. Perez, E. Lorenz, S. Pelland, M. Beauharnois, G. Van Knowe, K. Hemker,

D. Heinemann, J. Remund, S. C. Mller, W. Traunmller, G. Steinmauer, D. Pozo,

J. A. Ruiz-Arias, V. Lara-Fanego, L. Ramirez-Santigosa, M. Gaston-Romero,

and L. M. Pomares. Comparison of numerical weather prediction solar irra-

diance forecasts in the US, Canada and Europe. Solar Energy, 94:305 – 326,

2013.

[89] F. Petit and V. Vargas. Grid modernization: Metrics analysis (GMLC1.1)

resilience, 2020.

[90] T. Phillips, T. McJunkin, C. Rieger, John G., and H. Mehrpouyan. An opera-

tional resilience metric for modern power distribution systems. In 2020 IEEE

International Conference on Software Quality, Reliability and Security Com-

panion (QRS-C), Requirements, 2020.

[91] F. Qiu and P. Li. An integrated approach for power system restoration planning.

Proceedings of the IEEE, 105(7):1234–1252, 2017.

[92] S. Rafique, Z. Jian-hua, R. Rafique, J. Guo, and I. Jamil. Renewable genera-

tion (wind/solar) and load modeling through modified fuzzy prediction interval.

International Journal of Photoenergy, 2018:1–14, 2018.



123

[93] F. Rasapour and H. Mehrpouyan. Misusing sensory channel to attack industrial

control systems. In Proceedings of the Eighth ACM Conference on Data and

Application Security and Privacy, pages 158–160. ACM, 2018.

[94] D. Reed, M. Powell, and J. Westerman. Energy supply system performance for

Hurricane Katrina. Journal of Energy Engineering, 136(4):95–102, 2010.

[95] M. Rezaeimozafar, M. Amini, and M. Moradi. Innovative appraisement of smart

grid operation considering large-scale integration of electric vehicles enabling

V2G and G2V systems. Electric Power Systems Research, 154:245–256, 01

2018.

[96] C. G. Rieger. Resilient control systems practical metrics basis for defining

mission impact. In 2014 7th International Symposium on Resilient Control

Systems (ISRCS), pages 1–10, Aug 2014.

[97] C. G. Rieger, D. I. Gertman, and M. A. McQueen. Resilient control systems:

Next generation design research. In 2009 2nd Conference on Human System

Interactions, pages 632–636, May 2009.

[98] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly. Identifying, understanding,

and analyzing critical infrastructure interdependencies. IEEE Control Systems

Magazine, 21(6):11–25, Dec 2001.

[99] Sandia National Lab. Energy: Grid resilience. https://energy.sandia.gov/

programs/electric-grid/resilient-electric-infrastructures/.

[100] A. Sfetsos and A.H. Coonick. Univariate and multivariate forecasting of hourly

https://energy.sandia.gov/programs/electric-grid/resilient-electric-infrastructures/
https://energy.sandia.gov/programs/electric-grid/resilient-electric-infrastructures/


124

solar radiation with artificial intelligence techniques. Solar Energy, 68(2):169 –

178, 2000.

[101] R. Smith. A decoupled feedback structure for covertly appropriating networked

control systems. IFAC Proceedings Volumes, 44(1):90 – 95, 2011. 18th IFAC

World Congress.

[102] R. S. Smith. Covert misappropriation of networked control systems: Presenting

a feedback structure. IEEE Control Systems Magazine, 35(1):82–92, Feb 2015.

[103] M. Solomon, B. Tew, C. Gerhman, and C. Lehner. Analysis of reservoir-based

hydroelectric versus run-of-river hydroelectric energy production. Technical

report, LRES Capstone, Montana State University., 2015.

[104] B. Stoll, J. Andrade, S. Cohen, G. Brinkman, and C Martinez-Anido. Hy-

dropower modeling challenges. Technical report, National Renewable Energy

Lab.(NREL), Golden, CO (United States), 2017.

[105] L. Sturm, C. Williams, J. Camelio, J. White, and R. Parker. Cyber-physical

vulnerabilities in additive manufacturing systems: A case study attack on the

.stl file with human subjects. Journal of Manufacturing Systems, 44:154 – 164,

2017.

[106] J. Sullivan and D. Kamensky. How cyber-attacks in Ukraine show the vulner-

ability of the U.S. power grid. The Electricity Journal, 30(3):30 – 35, 2017.

[107] B. Sussman. Revealed: Details of ’first of its kind’ disruptive power grid attack.

Secureworld, 2019.



125

[108] A. Teixeira, I. Shames, H. Sandberg, and K. Johansson. A secure control

framework for resource-limited adversaries. Automatica, 51(C):135–148, Jan-

uary 2015.

[109] K. Tierney and M. Bruneau. Conceptualizing and measuring resilience: A key

to disaster loss reduction. TR News, 250:14–17, 05 2007.

[110] U.S. Department of Energy. 21 steps to improve cyber SCADA security. Tech-

nical report, DOE, 2005.

[111] U.S. Department of Energy Office of Electricity Delivery and Energy Reliabil-

ity. Economic benefits of increasing electric grid resilience to weather outages.

Technical report, Executive Office of the President, 2013.

[112] U.S. Department of Homeland Security. Presidential policy directive 21 imple-

mentation: An interagency security committee white paper, 2015.
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