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ABSTRACT 

Concentrating solar power is an emerging renewable energy source. The 

technology can collect and store thermal energy from the sun over long durations, 

generating electricity as needed at a later time. Current CSP systems are limited to a 

maximum operational temperature due to constraints of the working fluid, which limits 

the maximum possible efficiency of the system. One proposed pathway forward is to 

utilize a gas phase for the working fluid in the system such as supercritical carbon 

dioxide. 

A composite gas phase modular receiver is being developed by researchers at 

Boise State University and the University of Tulsa. The receiver uses supercritical carbon 

dioxide as the working fluid, which can operate at temperatures greater than 1000 ˚C. The 

unique carbon-carbon composite material has high thermal conductivity and is 

structurally durable at extreme temperatures. 

A model has been developed in this work to simulate the thermal and hydraulic 

performance of a composite receiver unit cell. The model is built as a thermal resistance 

network that solves more quickly than traditional computational fluid dynamics 

simulations. The thermal and hydraulic models are compared with CFD simulations and 

show close agreement over a wide range of inlet velocities and path architectures.  

A genetic algorithm has been developed to optimize the design of the receiver. 

The algorithm optimizes the fluid channel diameter, inlet velocity, and the path 

architecture design of a unit cell. The optimization scheme weighs the thermal 
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performance of the receiver with the hydraulic performance, maximizing the thermal 

efficiency and minimizing the pressure drop. The nominal strain is also calculated and 

constrained. The algorithm produces an optimal design from a constrained set of 

architectures.  The optimal design is a simple three-channel parallel path with an 

acceptable pressure drop, less than 17 kPa. The thermal efficiency of the design is 75.6% 

with a 1,000,000 W/m2 solar flux and the nominal strain is an allowable 0.03%. Future 

work will be done to expand the path design space and remove arbitrary constraints from 

the optimization process. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

The Earth’s climate crisis is driving researchers to develop and optimize 

alternative forms of energy. Renewable energy sources, which do not include nuclear, 

account for only 17.6% of the United States’ electricity supply. Fossil fuels, in contrast, 

directly contribute to climate change and account for 62.6% of the electricity generated 

[1]. The National Renewable Energy Laboratory (NREL) predicted that 80% of the 

United States’ electricity demand could be supplied by renewable sources by 2050 with 

current technologies [2]. 

Concentrating solar power (CSP) is a form of renewable energy that harnesses 

thermal energy from the sun and converts it into electricity. The main benefit of CSP, as 

compared to photovoltaic cells, is its ability to cheaply and efficiently store energy 

collected from the sun thermally. Thermal energy can be stored in a working fluid more 

cost effectively than electrical energy and does not need to be immediately converted to 

electricity. This is especially beneficial for solar energy because energy can be collected 

during the day and utilized at night.  

CSP is an emerging technology with expected increased use in the US and around 

the world. In 2019, CSP accounted for only 0.1% of the electricity generation in the US 

[1]. The Department of Energy’s Solar Energy Technologies Office aims to make CSP 

cost competitive with other dispatchable systems by 2030, with a target cost of $0.05-

$0.10 per kWh [3].   
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There are multiple forms of concentrating solar power. Parabolic Trough and 

Linear Fresnel collectors are low power (100 suns) collectors that focus solar energy on a 

“line” receiver. The main benefit of these designs is the relative low cost and 

maintainability. Stirling dish collectors focus energy on a single point with high 

efficiency but are not integrated with thermal energy storage and have low relative power 

output [4]. 

Solar power towers are the focus of this work. Figure 1.1 shows an image of a 

solar power tower. A central receiver is surrounded by heliostats - mirrors that direct the 

sun’s energy to a single point. Power towers operate at high temperatures that can be 

achieved by the working fluid given the high solar flux created by the heliostats. The 

higher temperatures result in a higher Carnot efficiency, increasing the maximum 

possible efficiency of the system.  

 
Figure 1.1 Power Tower from [4] 

In a 2018 review by Islam et al. [5], the total gross capacity of installed solar 

power tower systems was over 618 MW worldwide, with 6 plants under construction. 
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The focus of future research for solar power towers is making the systems more efficient 

and therefore, more cost effective. This work focuses on improving the design of the 

central receiver unit.  

The central receiver in a concentrating solar power system is a source of 

improvement for efficiency and cost. Receivers transfer the solar energy directed by 

heliostats to a working fluid as thermal energy. The efficiency of the receiver describes 

the amount of energy the working fluid absorbs, relative to the amount of energy directed 

to the receiver surface. Receivers with higher efficiency, therefore, will result in more 

energy absorbed by the fluid and eventually converted to electricity. Along with the 

thermal efficiency, receivers can be improved by decreasing the material cost and cost of 

operation. Operation costs include the cost of pumping the working fluid, which is 

affected by the fluid pressure drop.  

The current state-of-the-art power towers use molten salt external tubular 

receivers [6]. The fluid flows through tubes on the exterior of the receiver and is 

indirectly heated by the heliostat field. A schematic of a molten salt external tubular 

receiver design from [7] is shown in Figure 1.2. Molten salts are beneficial because they 

can be used as the thermal storage medium as well as the working fluid but are currently 

limited to a maximum operational temperature near 600 ˚C [8]. In addition, molten salts 

are corrosive, requiring special receiver material selection.  



4 
 

 
 

 
Figure 1.2 Schematic of Tubular External Receiver from [7] 

Supercritical carbon dioxide (sCO2) is a promising working fluid alternative to 

molten salts. The fluid can operate at temperatures above 1000 ˚C, increasing the 

maximum possible efficiency of the system. The system components for sCO2 can also 

be more compact and less costly, given the relatively low density of the fluid [9]. High 

pressures are necessary, however, to maintain the supercritical phase, which requires 

special mechanical considerations for the receiver. Tubular external receivers are possible 

with sCO2 but would require small diameters to maintain structural integrity, which 

would increase the overall pressure drop [8]. 

Several receiver concepts have been developed to utilize sCO2’s unique properties 

and strengths as a working fluid [6]. Brayton Energy used a plate-fin heat exchanger style 

to form a receiver capable of withstanding the high operating pressure and temperatures 

of sCO2. The plate-fin indirectly heats the flowing sCO2, which absorbs sufficient energy 

to limit the maximum temperature on the receiver surface. The total receiver is a 

collection of modular units connected in parallel, as shown in Figure 1.3. 
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Figure 1.3 Brayton Energy Plate-Fin sCO2 Receiver Design from [16] 

NREL developed a cellular cavity receiver that aimed to reduce reflective losses 

by directing solar energy into cavities [6]. Rays that are initially reflected are directed 

deeper into the cavity and eventually absorbed. This causes a decrease in the peak solar 

flux on any receiver surface location as the energy is spread through the receiver. Similar 

to Brayton Energy’s design, the receiver is composed of unit cells connected in parallel. 

Certain mechanical issues arose from this design; headers in direct irradiation needed to 

be protected with an actively cooled reflector and certain tubes buckled under their own 

weight. Also, the ideal receiver material would have a unique balance of absorptivity and 

reflectivity properties which required a special coating.  

Researchers at Oregon State University [10] developed a modular central receiver 

that uses supercritical carbon dioxide as the working fluid. The high pressure required to 

maintain the supercritical phase is possible given the unit cell-based design of the 

receiver. The receiver is a collection of small pin-fin metallic unit cells that are connected 

in parallel in a numbering up approach. A schematic of the design from [10] is shown in 
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Figure 1.4. The receiver design supported sCO2 as the working fluid, but the 

machinability of the material limited the design space of the working fluid path and 

limited the maximum possible temperature of the receiver.  

 
Figure 1.4 Numbering Up Central Receiver from [10] 

1.2 Modular sCO2 Receiver Modeling 

Oregon State modeled the receiver design with a two-dimensional thermal 

resistance network and validated it with experimental testing. A thermal resistance 

network breaks down the receiver design into temperature nodes that are connected with 

resistors. The resistors control the flow of energy between nodes and vary based on the 

connection and material properties. The diagram in Figure 1.5 from [10] shows the two-

dimensional resistance network. 
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Figure 1.5 Two-Dimensional Thermal Resistance Network from [10] 

The diagram shows how the external heat flux, convection, and radiation (left) 

interact with the receiver surface and pass energy to the sCO2 working fluid (right). 

Thermal resistance networks are a simplified alternative to more complex computational 

fluid dynamics simulations, saving time and computational resources. Oregon State’s 

thermal model was compared with experimental results and an uncertainty analysis 

predicted a maximum thermal efficiency uncertainty of 0.285% near the design 

conditions. The corresponding hydraulic model was not validated with experimental data 

and the average pressure drop uncertainty was 23.1% [11].  

Besarati et al. [12] used a similar three-dimensional thermal resistance model of a 

metallic microchannel receiver. The resistance network from [12] is shown in Figure 1.6. 
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Besarati’s model simulated sCO2 heated with a solar flux of 500 kW/m2 rising from 530 

˚C to 700 ˚C while limiting the surface temperature to below the allowed material 

constraint.  

 
Figure 1.6 Three-Dimensional Resistance Network from [12] 
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The resistance network used by Besarati et al. was developed by Lei [13] for 

small channel multilayer heat sinks. The uncertainty of the thermal resistance model and 

pressure drop model were determined to be less than 8% and 6% respectively, when 

compared with CFD simulations. Experimental tests showed close agreement with the 

thermal and pressure models. The thermal model consistently underestimated the surface 

temperature but with a max error of only 5 ˚C. The pressure model was similarly 

accurate, with a maximum reported error of less than 12%, which correlates to a pressure 

difference of 157 Pa. 

1.3 Receiver Design Optimization 

Past research has been done on optimizing the design of heat transfer devices, 

such as receivers and heat exchangers, and microvascular flow networks. Tan et al. [14] 

optimized the thermal and hydraulic performance of a microvascular composite battery 

packaging design. A combination of computational fluid dynamics (CFD) and finite 

element models (FEM) were used to analyze the temperatures on the surface of the 

composites and the pressure drop throughout the microchannels. A gradient-based 

optimization scheme was used to limit the surface temperatures and drive towards 

temperature uniformity on the surface. The optimization started with a set of simple 

reference designs that were significantly modified to form the optimal solutions. Figure 

1.7 shows the initial and optimal designs of a six-channel parallel network from [14]. 
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a)  b)  c)  d)  
Figure 1.7 Branching Flow Design Optimization from [14] a) Reference Design 

b) Optimal Design c) Initial Temperature Contour d) Optimal Temperature 
Contour 

Micro heat exchangers were studied by Abdoli and Dulikravich [15] with the 

purpose of optimizing their design with a multi-objective genetic algorithm. The design 

was a branching four floor counterflow exchanger. The algorithm maximized the heat 

removal capacity and minimized the needed pumping power for the coolant and the 

temperature gradient on the surface. The optimal design resulted in a 13% better heat 

removal percentage than a non-optimal design.  

Aragón et al. [16] studied self-healing microvascular flow networks. A multi-

objective genetic algorithm was used to optimize the networks for flow efficiency and 

void volume fraction, and to ensure flow in every microchannel. In addition, the 

network’s self-healing design required full coverage and channel redundancy. The results 

found optimal designs increase the channel diameter between the source and target 

locations, with smaller diameters elsewhere to maintain coverage.  

A 3D printed liquid cooled heat sink was studied by Dokken and Fronk [17]. The 

heat sink was discretized into an array of bits that represented the additive manufacturing 

process. CFD was used to calculate the thermal and hydraulic performance of the designs 

and the two metrics were unified by calculating the entropy generation. A micro-genetic 

algorithm which reduced the number of necessary CFD simulations was used to minimize 
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the entropy generation of the heat sink. The algorithm reduced the entropy generation by 

up to 26.4% compared to non-optimized designs.  

1.4 Research Goal and Objective 

A novel carbon-carbon composite receiver with sCO2 working fluid is being 

developed by researchers at the University of Tulsa and Boise State University that aims 

to increase the thermal efficiency and reduce the overall cost of current CSP receivers. 

The unique structure of the composite allows for complex architectures not machinable in 

traditional materials, i.e. metals. This expanded design space allows for microvascular 

receiver designs that maximize thermal efficiency and minimize pressure drop.  

The full composite receiver will consist of an array of small unit cells, the specific 

size of which is still being determined, but will likely be in the range of square 

centimeters. Each unit cell will have a microvascular pathway for supercritical carbon 

dioxide to pass through and absorb thermal energy. These unit cells will be attached in 

parallel, in a numbering up approach, similar to the work of Oregon State [10]. 

Carbon-carbon composites have unique properties that make them promising 

materials for solar receivers. They are currently used in the aerospace and aeronautics 

industry as brakes, nose tips, and nozzles because of their low density and ability to 

operate in extreme temperatures [18]. The composites are thermally resistant, with low 

thermal expansion that maintains mechanical strength at high temperatures. The 

composites also conduct heat well, with high thermal conductivity that is ideally suited 

for heat exchangers and thermal receivers [19]. Additive manufacturing techniques, such 

as 3D printing, allow the material to be constructed with high precision, making complex 
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microvascular designs possible. This complex design space will allow for better receiver 

designs, and better overall performance. 

A three-dimensional thermal resistance model has been developed to dynamically 

model the thermal and hydraulic performance of the composite receiver with any 

microvascular path architecture. Model parameters, such as solar flux and receiver 

dimensions, can also be altered and studied. The thermal resistance model is discussed in 

detail in Chapter 2 and the hydraulic model is detailed in Chapter 3. 

The dynamic nature of the thermal and hydraulic models allows the receiver to be 

optimized with an automated process that designs the internal microvascular network. 

The purpose of the optimization is to maximize the efficiency of the receiver and limit 

the pressure drop. The nominal strain of the receiver is also calculated and constrained. A 

single objective genetic algorithm has been developed to optimize the design of the 

receiver. The genetic algorithm and resulting optimal designs are discussed in Chapter 4.
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CHAPTER TWO: THERMAL MODEL 

The thermal model was developed with C# to simulate the heat transfer of a 

receiver with any path architecture. Also, a wide variety of model parameters are 

included as inputs, such as inlet velocity, inlet temperature, and solar flux. The purpose 

was to calculate the overall thermal efficiency more quickly than with CFD and to 

provide information about how the heat is distributed in the system.  

The receiver has two main boundaries, the surface and the fluid. The surface 

interacts with the environment via radiation and convection and passes heat to the fluid. 

The fluid absorbs heat via convection and transfers it out of the receiver. The thermal 

model simulates this process at steady state. 

Section 2.1 describes the thermal model, which is a resistance network. Section 

2.2 discusses how this model has been validated. 

2.1 Thermal Model Methodology 

2.1.1 Resistance Network 

The receiver’s thermal model is built as a resistance network, with the receiver 

divided into nodes that are connected by thermal resistance values. Each node represents 

the temperature at a certain point in the receiver and the resistance value connecting them 

dictates how energy passes between them.  Figure 2.1 shows a simplified top down view 

of the receiver broken into temperature nodes.  
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Figure 2.1 Top Down View of the Resistance Network 

Internal nodes are connected to each neighboring node and boundary nodes have 

special conditions. Eq. (2.1) shows the relationship between energy transfer and 

temperature difference between nodes. 

𝑞𝑞 =
∆𝑇𝑇
𝑅𝑅

(2.1) 

where q is the energy passing from one node to the next, R is the resistance value 

connecting them, and ∆T is the difference in temperature.  

Conduction resistances connect internal nodes and are dependent on the material 

thermal conductivity, as shown in Eq. (2.2). 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐿𝐿

𝑘𝑘 ∗ 𝐴𝐴
(2.2) 

where L is the distance between nodes, A is the cross-section area between nodes, and k is 

the thermal conductivity of the receiver. Internal nodes are only dependent on 

neighboring nodes via conduction. 

2.1.2 Surface Boundary 

The receiver surface receives and dissipates energy through multiple methods. 

There is radiation with the surroundings, convection with the environment, and the solar 
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heat flux from the heliostat field. The three heat transfer forms are shown in Figure 2.2 

and Eq. (2.3) describes the energy balance at a receiver surface node. 

 
Figure 2.2 Receiver Surface Resistance Diagram 

0 = 𝜎𝜎𝜎𝜎𝐴𝐴𝑠𝑠𝑇𝑇𝑠𝑠4 − 𝜎𝜎𝜎𝜎𝐴𝐴𝑠𝑠𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
4 + ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝑠𝑠(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) − 𝛼𝛼𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑖𝑖𝑖𝑖 (2.3) 

where Qin is the energy entering the surface, σ is the Stefan-Boltzmann constant, ε is 

emissivity, As is the surface area the node represents, Ts is the node temperature, Tamb is 

the ambient temperature, hext is the external convection coefficient, α is the surface 

absorptivity, and Gsolar is the solar flux on the receiver. 

To solve the resistance network efficiently, each node was made to be linearly 

dependent on its surrounding nodes. This is the case for every resistance value except for 

the radiation exchanged with the surroundings, which involves exponential temperature 

terms. To account for this, the radiation exchange at the boundary is linearized with Eq. 

(2.4). 

𝜎𝜎𝜎𝜎𝐴𝐴𝑠𝑠𝑇𝑇𝑠𝑠4 − 𝜎𝜎𝜎𝜎𝐴𝐴𝑠𝑠𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
4 =

�𝑇𝑇𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎��𝑇𝑇𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
2 + 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

2�(𝜎𝜎𝜎𝜎𝐴𝐴𝑠𝑠𝑇𝑇𝑠𝑠 − 𝜎𝜎𝛼𝛼𝛼𝛼𝑠𝑠𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) (2.4)
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where Ts,assume is the assumed final temperature for each surface node. The model is 

solved iteratively until the assumed final temperature is within a certain tolerance of the 

outputted final temperature for every surface node. 

2.1.3 Fluid Boundary 

The fluid passing through the receiver is modeled as temperature nodes, 

connected to the receiver via convection resistances. This is shown in Figure 2.3. 

 
Figure 2.3 Fluid Boundary Resistance Diagram 

 The convection resistances that connect the fluid nodes to the receiver are 

dependent on the convection heat transfer coefficient. This relationship is shown in Eq. 

(2.5). 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1

ℎ ∗ 𝐴𝐴𝑓𝑓
(2.5) 

where h is the convection heat transfer coefficient and Af is the surface area of the fluid 

channel represented by each node. The convection heat transfer coefficient is determined, 

in part, by the Nusselt number, Nu, as described in Eq. (2.6). 

𝑁𝑁𝑁𝑁 =
ℎ𝐷𝐷
𝑘𝑘

(2.6) 
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where D is the diameter of the fluid pathway and k is the thermal conductivity. 

The Nusselt number for internal flow is dependent on whether the flow is laminar 

or turbulent and whether the flow is developing or fully developed. Therefore, four 

correlations were used to calculate the Nusselt number for a fluid node depending on the 

flow state. 

To determine if the flow is laminar or turbulent, the Reynolds number, Re, is 

calculated, as shown in Eq. (2.7). 

𝑅𝑅𝑅𝑅 =
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

(2.7) 

where ρ is the fluid density, V is the fluid velocity, and μ is the fluid dynamic viscosity. 

This work assumes that flow with a Reynolds number greater than 2,100 is turbulent, and 

all other flow is laminar. 

A fluid node is developing or fully developed based on its distance from a 

disturbance (such as a bend or branch) and the fluid entry region length. The fluid entry 

length calculation is unique for laminar and turbulent flows. The laminar entry region 

length correlation is shown in Eq (2.8) and the turbulent entry region length correlation is 

shown in Eq (2.9) [20]. 

𝐿𝐿ℎ,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.06 ∗ 𝑅𝑅𝑅𝑅 ∗ 𝐷𝐷 (2.8) 

𝐿𝐿ℎ,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 404 ∗ 𝐷𝐷 ∗ 𝑅𝑅𝑅𝑅1/6 (2.9) 

To determine if a node is developing or fully developed, the distance from a 

disturbance is calculated and compared with the entry region length. If the distance is 

within the entry region length, the flow is developing, else it is fully developed. 

Laminar, fully developed flow has a constant Nusselt number, shown in Eq. 

(2.10) [21]. The resistance network is constructed to assume a constant heat flux into 
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each fluid region that is represented by a node. Therefore, internal flow correlations were 

selected that assume a constant wall heat flux. 

𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4.364 (2.10) 

Laminar, developing flow uses the Prandtl (Pr) and Graetz (Gz) numbers to 

calculate the Nusselt number. The Prandtl and Graetz equations are shown in Eq. (2.11) 

and (2.12), respectively. 

𝑃𝑃𝑃𝑃 =
𝑐𝑐𝑝𝑝𝜇𝜇
𝑘𝑘

(2.11) 

where cp is the specific heat of the fluid. 

𝐺𝐺𝐺𝐺 =
𝐷𝐷
𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (2.12) 

where Ldist is the distance from a disturbance. 

The Nusselt number correlation for laminar, developing flow by Jacimovic et al. 

[21] is shown in Eq. (2.13). 

𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 4.364 +
0.055 ∗ 𝐺𝐺𝐺𝐺1.709

1 + 0.046 ∗ 𝑃𝑃𝑃𝑃0.078 ∗ 𝐺𝐺𝐺𝐺1.277 (2.13) 

Turbulent, fully developed flow uses a correlation by Gnielinski [22] to calculate 

the Nusselt number. This correlation uses the friction factor, f, that is discussed in more 

detail in Chapter 3. The correlation is shown in Eq. (2.14). 

𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
�𝑓𝑓8� (𝑅𝑅𝑅𝑅 − 1000)𝑃𝑃𝑃𝑃

1 + 12.7 �𝑓𝑓8�
1
2
�𝑃𝑃𝑃𝑃

2
3 − 1�

(2.14) 

Turbulent, developing flow uses a correlation by Kakaç et al. [23] shown in Eq. 

(2.15). 
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𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑓𝑓 �1 +
0.9756

�𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷 �
0.76� (2.15) 

where Nuf  is the fully developed Nusselt number, calculated with Eq. (2.14). 

Each fluid node represents a volume of fluid that has an inlet and an outlet 

depending on the path configuration. Certain branch nodes have multiple inlets or outlets. 

The outlet temperature of a fluid volume is the inlet temperature of the next 

corresponding volume. The change in temperature across a fluid volume is dependent on 

the heat entering the node, as shown in Eq. (2.16). 

𝑞𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚̇𝑚𝑐𝑐𝑝𝑝(𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) (2.16) 

where qfluid is the rate of energy entering the fluid node, 𝑚̇𝑚 is the mass flow rate of the 

fluid, and cp is the specific heat of the fluid. Because the path architecture is broken down 

into many small zones, the temperature profile from a zone’s inlet to outlet is assumed to 

be linear, and the heat flux is constant. Therefore, the fluid node’s temperature value is 

set to be the average of the inlet and outlet, as shown in Eq. (2.17). 

𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2
(2.17) 

Combining Eq. (2.16) and (2.17) allows each fluid node’s temperature to be a 

function of the energy entering the node and the temperature at the inlet of the node’s 

zone. The boundary condition at the receiver inlet is given as an input to the model. By 

making each fluid node dependent on their surrounding nodes, the fluid nodes can be 

organized as a set of linear equations that can be solved at the same time as the other 

receiver nodes.  
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2.1.4 System of Equations 

The thermal resistance network is set up as a system of linear equations, shown in 

Eq. (2.18). N is the total number of nodes in the system. 

𝑹𝑹𝑹𝑹 = 𝒃𝒃 (2.18) 

where R is the N x N resistance matrix, t is the temperature vector of size N, and b is the 

energy vector of size N. 

To form the system of equations, each node is given an index that represents their 

position in the resistance matrix as well as in the temperature and energy vectors. Next, 

each node fills out their resistance matrix row by assigning resistance values to the nodes 

they interact with, represented by their column position. Boundary conditions, such as 

external solar flux, are added to appropriate nodes via the energy vector, b. This results in 

each nodes’ energy balance being represented in matrix form in Eq. (2.18). 

3.1.5 Solving the System of Equations 

The resistance network is organized as a system of linear equations in order to 

solve the system efficiently. Several methods were investigated to solve the system, 

including both CPU and GPU based approaches. A CPU QR decomposition function by 

Math.NET [24] was initially used by the model. This method, however, was not 

optimized for sparse matrices and was inefficient. A GPU QR decomposition function in 

the cuSOLVER [25] toolkit drastically improved performance, but QR decomposition is 

memory intensive and requires large GPU memory resources. Both the GPU and CPU 

QR decomposition methods were direct solvers, that solved the equations without error. 

For this model, which is based on experimental correlations and meant as a design tool, 

exact solutions are not necessary.  
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A biconjugate gradient stabilized (BiCGStab) method [26] was developed to solve 

the system of equations iteratively. The CPU and GPU methods were created in C# and 

CUDA, respectively. The BiCGStab solve method has several advantages compared to 

the QR decomposition methods. The solve method is iterative, meaning it does not solve 

the equations directly, and therefore can save time, depending on the convergence 

tolerance. The method also can be helped by supplying final temperature guesses. As the 

overall system is solved iteratively (for the surface temperature), the BiCGStab 

temperature guesses become increasingly accurate. Therefore, each iteration solves more 

quickly than the previous one. This greatly increases the performance compared to the 

QR decomposition solvers, which were not benefited by previous solutions. Finally, the 

BiCGStab method is not as memory intensive, and therefore can handle larger 

simulations than the QR decomposition method.  

The solution times for an arbitrary receiver model with a varying number of total 

nodes is shown in Figure 2.4. The times for the CPU-based QR solver are not shown 

because the system could not be solved in a reasonable amount of time. 

 
Figure 2.4 Simulation Method Solve Time Comparison 
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As is seen in Figure 2.4, the quickest solve method was the CPU-based BiCGStab 

method. The advantage of the CPU over the GPU method is most likely the reduction of 

costly, time intensive copies from the GPU to the CPU and vice versa. Very large models 

may benefit from the GPU method, but these would likely require more GPU memory 

than what is accessible on typical GPUs. Ultimately, the CPU-based BiCGStab method is 

used in the optimization routines because it utilizes a single CPU core, instead of an 

entire GPU. As CPU cores are cheaper and more easily accessible, more simulations 

could be run in parallel during the optimization, saving time. 

2.2 Thermal Model Comparison with CFD 

The thermal model was compared with computational fluid dynamics (CFD) 

simulations to ensure that the model is accurate. Experimental testing will validate the 

model in the future, but as the composite receiver is still in development, testing has not 

yet begun. CFD provides the most comprehensive analysis available at this time and its 

results are considered the “true” behavior of the receiver for the purposes of this work.  

Section 2.2.1 discusses the CFD model and Section 2.2.2 compares the CFD 

results with the thermal model results. The CFD pressure results are discussed in Chapter 

3. 

2.2.1 CFD Model 

ANSYS Fluent was used to simulate the composite receiver in CFD. Three path 

architectures were modeled: straight, serial, and parallel. These path designs were first 

created in the resistance model, as shown in Figure 2.5. The designs in the resistance 

model are set on a discretized grid and represent the elbows as sharp, 90 degree turns, 

while in reality they are modeled as curved bends. 
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a)  b)  c)  
Figure 2.5 Path Types a) Straight b) Serial and c) Parallel 

The thermal resistance model designs were replicated in CFD. The process of 

generating the geometry, meshing the bodies, and running the simulation in Fluent is time 

intensive and is why only three path architectures were considered. These three designs 

were chosen to represent simplified straight channels, complex winding channels, and 

splitting, parallel channels that can exist in the microvascular pathway.  

The three-dimensional bodies were modeled and meshed in ANSYS. The 

meshing for each path architecture included an inflation layer to capture the near wall 

behavior of the fluid, and the fluid body was sized more finely than the receiver. The 

mesh sizing was set to ensure that the models converged sufficiently. The serial and 

parallel designs required finer meshes than the straight design, because the flow 

encountered more disturbances leading to higher turbulence. The mesh sizing for the 

fluid body and receiver body for each geometry are shown in Table 2.1. A section view 

of the mesh for each path design is shown in Figure 2.6. 

Table 2.1 Mesh Sizing  

Path Type Receiver Body Sizing (m) Fluid Body Sizing (m) 

Straight 1e-3 5e-5 

Serial 5e-4 7e-5 

Parallel 5e-4 7e-5 
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a)  b)   

c)  
Figure 2.6 Mesh Section View a) Straight b) Serial and c) Parallel 

The sCO2 material properties were considered constant to limit the complexity of 

the CFD model. The resistance network model supports temperature-dependent 

properties, but CFD would not converge in any reasonable amount of time with the added 

complexity of temperature-based properties. The CFD comparison remains valid because 

both models used the same constant properties, which assume a constant temperature and 

pressure of 873 K and 20 MPa, respectively. A full discussion of temperature-dependent 

sCO2 properties is found in Appendix A. 

The boundary conditions for the CFD model are the same as the resistance 

network model. The fluid enters the receiver at a uniform velocity and temperature. The 

outlet is considered a pressure outlet. The receiver’s receiving surface interacts with the 

environment with the same heat transfer mechanisms: constant solar flux from the 

heliostats, radiation exchange with the environment, and convection with the 

environment. All other receiver walls are considered adiabatic. 
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The heat flux on the surface boundary is not possible in Fluent without a custom 

user defined function (UDF). A UDF was created that exchanged heat in the same 

manner discussed in Section 2.1.2, with solar flux, radiation, and convection. The 

inclusion of the UDF, and specifically the reliance on a surface temperature to the fourth 

power term, increased the complexity of the model and required a very fine mesh. 

Fluent solved the fluid flow with a k-epsilon model that performed well over a 

wide variety of flow states (laminar, transitioning, and turbulent). The energy was also 

solved to model the temperatures throughout the receiver and fluid. The residual 

convergence criteria were set to 1e-3, except for the energy residual, which was set to 1e-

6.  

2.2.2 CFD Results Comparison 

The three path architectures shown in Figure 2.5 were simulated in CFD. A wide 

variety of inlet velocities were modeled, from 1 m/s to 100 m/s. This correlates to a 

Reynolds number from 572 to 57,244, which represents flow states from laminar to 

turbulent.  

The receiver was modeled with estimated real-life parameters. These model 

parameters are shown in Table 2.2.  
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Table 2.2 Model Parameters  

Parameter Value 

Solar Flux (W/m2) 1,000,000 

Receiver Dimensions (L x W x H) 
(m) 

0.02 x 0.02 x 0.01 

Turn Radius (m) 0.001 

Inlet Temperature (K) 873 

Inlet Pressure (MPa) 20 

Channel Diameter (m) 0.001 

Emissivity 0.88 

Absorptivity 0.94 

Receiver Thermal Conductivity 
(W / m2 K) 

27.5 

External Convective Heat 
Transfer Coefficient (W / m2 K) 

8 

 

Certain model parameters, such as receiver thermal conductivity, are not known 

and are only estimates. The CFD model is still valid for the purposes of comparing results 

with the thermal resistance model because both models use the same values. 

The models were simulated with the stated parameters and Figure 2.7 compares 

the fluid outlet temperature for each path design, showing the CFD and thermal model 

results as a function of the inlet Reynolds number. 
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c)  
Figure 2.7 Outlet Temperature CFD Comparison for a) Straight b) Serial and c) 

Parallel Designs 

As is shown in Figure 2.7, there is a strong correlation between the CFD and 

resistance model outlet temperature curves for each path type. To further quantify the 

results, the difference between the CFD and resistance model outlet temperatures is 

plotted in Figure 2.8. The CFD temperatures are considered the “real” result, thus error is 

calculated as the resistance temperature minus the CFD temperature. 
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c)  
Figure 2.8 Outlet Temperature CFD Error for a) Straight b) Serial and c) 

Parallel Designs 

 For each path design, the error between the CFD and resistance model decreases 

as the velocity increases. This could be due to the flow becoming increasingly turbulent 

and less transitional. The thermal resistance model considers flow to either be laminar or 

turbulent and does not account for effects of transitional flow. Another reason the error 

decreases is that the rise in temperature from inlet to outlet decreases as the velocity 

increases. The percent error is calculated by comparing the rise in temperature for the 

CFD and resistance model as shown in Eq. (2.19). 

%𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶

∆𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶
∗ 100 (2.19) 

where ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the rise in temperature from inlet to outlet from the resistance model, 

and ∆𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 is the rise in temperature from the CFD model. Figure 2.9 shows the percent 

error for each path design.  
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c)  
Figure 2.9 Outlet Temperature CFD Percent Error for a) Straight b) Serial and 

c) Parallel Designs 

The straight path has the largest error, with a maximum percent error value of -

40%. The straight path is likely less accurate than the serial or parallel paths because of 

the short path length. Although the thermal model accounts for developing flow, the 

straight path is likely so short that larger developing effects increase the heat flow to the 

fluid that are not represented in the model. 

The serial path has the lowest error of the three path designs, with a maximum 

percent error of -12%. This error is at the final data point, a velocity of 100 m/s, where 

the rise in temperature across the receiver is decreasing. This causes the percent error to 

increase even while the temperature difference between CFD and the resistance model is 

decreasing.  

The parallel path performs in a similar manner to the serial path. The largest 

percent error is -23%. Again, the percent error magnitude increases as the velocity 

increases even though the temperature difference decreases.  
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For each design, the effect of the flow state is clear. The error has a local peak in 

the laminar region before becoming smoother as the flow becomes fully turbulent. As 

mentioned previously, the thermal correlations assume the flow is either laminar or 

turbulent. Because of this, it is expected that the highest error would be near this region. 

As is shown in Chapter 4, the optimal receiver design has turbulent flow, as will most 

designs considered in any real-world applications, which is the most accurate flow 

region.
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CHAPTER THREE: PRESSURE MODEL 

The carbon composite receiver’s pressure drop is modeled by calculating the 

major and minor pressure loss in each fluid segment and summing over the course of the 

fluid pathway. The purpose of modeling the pressure drop is to compare different path 

architectures, not necessarily to simulate the pressure drop with the precision of CFD. 

Therefore, certain values, such as minor loss coefficients, were chosen based on CFD 

simulations and are not based on experimental results. Also, unlike the thermal model, all 

flow is considered to be fully developed when calculating the pressure drop to simplify 

the model and reduce the number of unknown coefficients. 

The pressure model is broken into two major pieces: major and minor losses. 

Major losses are the pressure drop in a straight path, and minor losses occur in bends or 

crosses. Major and minor losses are discussed in Section 3.1.1 and 3.1.2, respectively.  

Paths with parallel channels do not have a constant mass flow rate. To calculate 

the mass flow rate in any channel, the Hardy Cross method is implemented. This method 

ensures that the mass flow is distributed according to pressure drop along each path. This 

is discussed in detail in Section 3.1.3. 

3.1 Pressure Model Methodology 

3.1.1 Major Losses 

Major loss occurs in straight paths and is calculated with the Darcy-Weisbach 

equation, which is dependent on a friction factor, as shown in Eq. (3.1). 
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∆𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓
𝐿𝐿𝐿𝐿𝑉𝑉2

2𝐷𝐷 (3.1) 

where L is the length of the segment, ρ is fluid density, V is fluid velocity, and D is the 

channel diameter. 

The friction factor, f, is calculated with Eq. (3.2) by Cheng [27]. 

1
𝑓𝑓 = �

𝑅𝑅𝑅𝑅
64�

∝

�1.8 log
𝑅𝑅𝑅𝑅
6.8�

2(1−∝)𝛽𝛽

�2 log
3.7𝐷𝐷
𝑘𝑘𝑠𝑠

�
2(1−𝛼𝛼)(1−𝛽𝛽)

(3.2) 

where 𝑘𝑘𝑠𝑠 is the channel roughness.  ∝ and 𝛽𝛽 are defined in Eq. (3.3) and (3.4), 

respectively.  

∝ =
1

1 + � 𝑅𝑅𝑅𝑅
2720�

9 (3.3) 

𝛽𝛽 =
1

1 + (𝑅𝑅𝑅𝑅/(320𝑟𝑟/𝑘𝑘𝑠𝑠))2 (3.4) 

The Cheng correlation is valid over all Reynolds numbers, meaning the same 

equation is used to calculate major loss in laminar, transitioning, and turbulent flow. 

Multiple correlations exist that are intended to be valid over a wide flow range; Cheng 

was selected for its agreement with CFD modeling, as discussed in Section 3.2. 

3.1.2 Minor Losses 

Minor losses compose all other pressure losses in the path architecture. There are 

three forms of minor loss considered in the model: elbows, tees, and crosses. The loss for 

each case is dependent on a minor loss coefficient, as detailed in Eq. (3.5). 

∆𝑝𝑝𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑘𝑘
𝜌𝜌𝑉𝑉2

2 (3.5) 

where k is the minor loss coefficient. The forms of minor loss are differentiated by the k 

calculation. 
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3.1.2.1 Elbows 

Elbows, or bends, are 90˚ turns that occur in the path. The minor loss coefficient 

related to elbows varies in literature [20] and has a reported range of 0.2 to 1.5, 

depending on the connection properties, which are largely unknown at this time. For this 

work, CFD was used to determine the appropriate minor loss coefficient value that most 

closely matched the results. This value is shown in Eq. (3.5). 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.2 (3.5) 

3.1.2.2 Tees 

Tees occur when one path splits into two, or two paths combine into a single path. 

For the purpose of this work, a tee was assumed to simply perform as an elbow at each 

outlet. Eq. (3.4) was used to calculate the pressure drop for each outlet, with an elbow’s 

minor loss coefficient, at each outlet’s velocity.  

3.1.2.3 Crosses 

Crosses occur at four-way intersections. These intersections can have 1-3 inlets 

and 1-3 outlets. Calculating the minor loss coefficient for these situations has not been 

extensively studied in literature, outside of the work by Sharp et al. [28]. Sharp classified 

crosses as having dividing flow, combining flow, perpendicular flow, or colliding flow 

depending on the location and number of inlets and outlets.   

Sharp produced experimental data of minor loss coefficients for crosses of equal 

diameter for each type of intersection. The coefficients were reported as contour 

diagrams for each type of flow. In order to process the information, the diagrams were 

converted to data points, which were fitted with 2D splines. These splines returned an 

interpolated minor loss coefficient value for each cross configuration. 
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This method of calculating the minor loss coefficients for crosses was 

implemented, but significantly overestimated the pressure loss when compared with CFD 

results. These results are discussed in Section 3.2, along with alternative approaches, 

which are treating crosses in the same manner as tees, or assuming no pressure loss 

across the connection altogether.  

Nikfetrat et al. [29] applied the work of Sharp in a similar manner by fitting 

bicubic splines to the experimental data and calculating the minor loss coefficient. It was 

discovered that the model could produce error up to 100% and even incorrectly estimate 

the flow direction. The researchers recommended applying the model if extensive data is 

available, which is not the case for the carbon composite receiver.  

3.1.3 Mass Flow Distribution 

The thermal and hydraulic model can support path architectures with branching 

and dividing paths. This is accomplished by calculating the mass flow rate in each path, 

which is not simply the mass flow rate divided by the number of parallel channels. The 

mass flow rate is determined by the pressure drop in each path; specifically, the head loss 

along each “loop” in a path design must sum to zero and the mass going in a cross or tee 

must equal the mass leaving the cross or tee.  

To solve for the correct mass flow in every channel, the Hardy Cross method [30] 

was implemented. The method starts by assuming mass flow in each channel. This was 

done by assuming the mass flow was distributed equally at each branch outlet. Next 

“loops” were formed that travelled along pathways until reaching back to the starting 

node. An example of loops is shown in Figure 3.1. 
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Figure 3.1 Path Architecture Loop Example 

The head loss for each loop is calculated and summed. The head loss is related to 

pressure drop, as shown in Eq. (3.6).  

∆𝐻𝐻 =
∆𝑃𝑃
𝜌𝜌𝜌𝜌

(3.6) 

where g is the gravitational constant. Only major losses were considered when 

calculating the head loss in a loop. This was done because the minor loss at a cross or a 

tee is not calculated specifically for a single outlet, but rather for the entire cross or tee. 

Therefore, only major losses are considered. 

If the head loss about a loop is not equal to zero, a correction factor is added to 

the mass flow rate in that loop, as shown in Eq. (3.7). The correction factor formula is 

shown in Eq. (3.8).  

𝑚̇𝑚 = 𝑚̇𝑚0 + ∆𝑚̇𝑚 (3.7) 

where 𝑚̇𝑚 is the new mass flow rate, 𝑚̇𝑚0 is the current mass flow rate, and ∆𝑚̇𝑚 is the 

correction factor. 

∆𝑚̇𝑚 =
−1
2

∑∆𝐻𝐻

∑�∆𝐻𝐻𝑚̇𝑚 �
(3.8) 

where ∑∆𝐻𝐻 is the sum of the head loss around the loop.  
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This process of summing the head losses around each loop and applying the 

correction factor is repeated until ∆𝑚̇𝑚 is sufficiently converged to zero. 

3.2 Pressure Model Comparison with CFD 

The pressure model was validated in the same manner as the thermal model – 

with CFD. The CFD model is described in detail in Section 2.2 and the same cases were 

used for the pressure model validation. These cases consist of three path architectures, 

straight, serial, and parallel, with a variety of inlet velocities from 1 m/s to 100 m/s.  

The straight path architecture focuses on major pressure losses, as it does not have 

any minor losses in the design. The serial path is a series of bends that is used to refine 

the minor elbow loss coefficient. The parallel path is used to analyze crosses. 

3.2.1 CFD Results Comparison 

The CFD results are considered the “real” performance of the receiver, as 

experimental testing has not yet begun. The results in this section assume no pressure loss 

in crosses. Section 3.2.2 compares the different approaches for modeling the pressure 

drop in crosses. Figure 3.2 shows the pressure drop of each receiver design as a function 

of Reynolds number for CFD and the pressure model. 
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c)  
Figure 3.2 Pressure Drop CFD Comparison for a) Straight b) Serial and c) 

Parallel Designs 

 The performance of the pressure model is highly dependent on the path 

architecture. The straight path pressure model has a similar shape as the CFD results, but 

the pressure model curve is steeper than that of the CFD. This is likely due to the 

developing flow effects that are not accounted for in the pressure model. The serial path 

has strong agreement between the pressure and CFD models with a slightly steeper curve. 

The parallel pressure model has a similar curve but produces lower pressure drops than 

the CFD model and is discussed in more detail in Section 3.2.2.  

As with the thermal results, error is calculated as the model pressure drop minus 

the CFD pressure drop. The error results are shown in Figure 3.3. 
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c)  
Figure 3.3 Pressure Drop CFD Error for a) Straight b) Serial and c) Parallel 

Designs 

With each path design, the error magnitude increases as the velocity increases. 

For every case, the overall pressure drop increases with velocity as well. To better 

understand the error, the percent error was calculated using Eq. (3.9). 

%𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
∆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶

∆𝑃𝑃𝐶𝐶𝐹𝐹𝐷𝐷
∗ 100 (3.9) 

where ∆𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the pressure model’s pressure drop and ∆𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 is the CFD model’s 

pressure drop. Figure 3.4 shows the percent error for each path. 
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c)  
Figure 3.4 Pressure Drop CFD Percent Error for a) Straight b) Serial and c) 

Parallel Designs 

The percent error plots show the difference in accuracy between each path type. 

The straight path begins by underestimating the pressure drop, reaching a peak at -70%, 

before rising and eventually overestimating the loss. The serial path also starts by 

underestimating the loss, peaking at -56%, before asymptotically rising to an error near 

14%. Similarly, the parallel path reaches a peak of -52% at lower velocities before slowly 

improving, ending at -6%. 

Inverse to the behavior of the outlet temperature, low velocity cases result in 

lower pressure drops, which can cause the percent error to rise in magnitude, even if the 

actual drop difference is lower. For instance, the peak -70% percent error at 1 m/s for the 

straight path is only a difference of 94 Pa, whereas the 3% error at 20 m/s is a difference 

of 697 Pa.  

As was mentioned previously, the increasing error as a function of inlet velocity 

for the straight path could be due to the relatively short path length. The developing flow 
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effects are not considered in the pressure model and likely decrease the overall pressure 

drop in highly turbulent flow. The serial path, which essentially is a longer straight path 

with added minor loss elbows, becomes more accurate as the velocity increases.  

The pressure loss error for the parallel path is due to the assumption that crosses 

do not have a pressure drop. This is discussed in more detail in Section 3.2.2, which 

compares different modeling techniques for crosses with the CFD results. 

3.2.2 Cross Analysis 

The inconsistencies between the pressure model and the CFD results for the 

parallel path are due to the pressure drop calculation at the two crosses. This is proven by 

varying the pressure drop calculation at the crosses. Three modeling techniques were 

explored for calculating the pressure drop at a cross and these techniques were compared 

to the CFD results.  

Figure 3.5 compares the pressure drop for each modeling method with the CFD 

results as a function of the Reynolds number. The three methods are: Sharp spline 

interpolation, treating outlets as elbows, and removing cross pressure drop entirely.  

  
Figure 3.5 Cross Pressure Drop Comparison 
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From the results in Figure 3.5, the pressure drop overestimation from the Sharp 

interpolation and from treating the outlets as elbows clearly comes from the two crosses. 

This is evident because the pressure drop results are closer to CFD if the crosses’ 

pressure loss is assumed to be zero. From Sharp and Nikfetrat’s work, it is known that 

modeling a cross with a minor loss coefficient may not be suitable and does not capture 

the full behavior at the cross. Although treating each outlet as an elbow provides closer 

results, the model still produces pressure drops nearly twice as large as the CFD.  

Although assuming the pressure drop at crosses is zero does not make physical 

sense, it matches the CFD results most accurately. In Sharp’s work, certain cross 

configurations can result in zero or even negative pressure drops meaning that in some 

specific cases, assuming no pressure loss across a cross could be realistic. However, the 

likely reason the loss is most accurate with the zero pressure drop assumption is due to 

the relative insignificance of the drop compared to the rest of the path.  

At the highest velocity, the no cross pressure drop assumption’s pressure drop is 

6% less than the CFD results. If the pressure calculation for every part of the path except 

for the crosses is assumed to be accurate, the two crosses would account for 3% of the 

total pressure drop each. While 6% is significant, it is considerably less than the error 

produced by any other modeling method.
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CHAPTER FOUR: OPTIMIZATION 

The composite receiver’s thermal and hydraulic model were developed, in part, to 

optimize the design of a receiver unit cell. An optimal receiver design would maximize 

the net energy gain from the unit cell, while operating within a certain strain constraint. 

The net energy gain is dependent on the thermal efficiency calculated in the thermal 

model and the pressure drop calculated with the hydraulic model. Energy absorbed by the 

receiver’s working fluid is considered positive, and the energy it takes to run a pump over 

the pressure loss is negative. This cost relationship is discussed in more detail in Section 

4.1.4. 

A genetic algorithm, developed by Holland in 1975 [31], was chosen to optimize 

the receiver design because it can optimize continuous and discrete variables. For this 

work, channel diameter and fluid velocity are examples of continuous variables. The 

channel architecture of the microvascular pathway is parameterized by two discrete 

variables: path type and path value. Path type describes one of three path configurations: 

serial, parallel, or bifurcating. Path value sizes the path according to the path type. For 

example, for serial paths, path value determines the number of turns and for parallel 

paths, path value determines the number of parallel paths. Path value was constructed in 

such a way to generally make path types with the same path value have similar channel 

surface areas. This is discussed in more detail in Section 4.1.2. 

The genetic algorithm was run multiple times with special conditions to ensure 

the algorithm was converging to a global optimum, rather than local. The initial 
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population seeding was varied from uniform to random, as described in Section 4.1.3. 

Activation functions manipulated the fitness value to limit premature convergence. These 

functions are discussed in Section 4.1.5. 

Section 4.2 discusses the optimization algorithm’s results, showing strong 

convergence between every test case and generating an optimal design with a better “fit” 

than alternatives. 

4.1 Genetic Algorithm Methodology 

A genetic algorithm involves a population of individuals that evolve to generate 

an optimal design. An individual is a collection of properties that describes a specific 

design case. For this work, an individual consists of four properties: diameter, velocity, 

path type, and path value. The population evolves each iteration of the algorithm via 

crossover and mutation. Crossover is the act of two individuals combining to form a new 

“child” and mutation randomly changes certain individuals’ properties.  

The evolution process proceeds for a set number of iterations before terminating. 

This is done because generally the best individual takes steps towards optimal fitness, 

rather than converging to a certain value. Validating that the algorithm has truly found 

the optimal design is accomplished by varying seeding and activation functions. The 

entire process, from seeding to validation, is described in the following subsections. 

4.1.1 Design Variables 

There are four design variables that are optimized with the genetic algorithm. 

They are: channel diameter, fluid inlet velocity, path type, and path value. The channel 

diameter is uniform across the receiver, regardless of path architecture. The velocity 
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profile is constant at the inlet and varies with mass flow rate throughout the architecture, 

as described in Chapter 3. 

Path type and path value, both briefly described previously, parameterize the path 

architecture. Path type is composed of three designs: serial, parallel, and bifurcating. An 

example of each path type is shown in Figure 4.1. 

a)  b)  c)  
Figure 4.1 Path Types a) Serial b) Parallel and c) Bifurcating 

The serial path type consists of a series of turns that direct the fluid back and forth 

to each side on the way to the outlet. The turns are spaced so that the distance between 

each horizontal segment is equal. The parallel path type consists of straight parallel 

channels. The horizontal spacing between each channel is equal. Finally, the bifurcating 

path type is a series of splitting channels that result in an equal division of mass flow rate 

in every parallel segment. The horizontal distance between each internal parallel path is 

equal.  

Each path type is a function of path value, which determines the complexity of the 

architecture. For serial paths, path value determines the number of horizontal segments 

that are connected with bends. If npath is the number of horizontal segments, it is related 

to path value with Eq. (4.1). 

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝ℎ = 2𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉−1 + 1 (4. 1) 
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The same method of determining the number of horizontal segments in the serial 

path type is true for determining the number of parallel channels in the parallel path type. 

The number of parallel channels in a parallel path type is related to path value with Eq. 

(4.1) as well. 

The purpose of relating path value with npath in this way is based on the 

relationship path value has with the bifurcating path type. For bifurcating paths, path 

value determines the number of splits. Specifically, the number of splits is one less than 

path value. The path value is related to the number of internal parallel paths, ninternal, in 

the bifurcating path type with Eq. (4.2). 

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 2𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑉𝑉𝑉𝑉𝑉𝑉−1 (4. 2) 

To demonstrate the similarity in path length for path types with the same path 

value, a path value of 5 results in 17 horizontal segments for the serial path type, 17 

parallel channels for the parallel path type, and 16 internal parallel channels for the 

bifurcating path type. Each example path type is shown in Figure 4.2. As is shown, path 

value was constructed in such a way to generally result in similar path lengths for path 

types with the same path value. 

a)  b)  c)  
Figure 4.2 Path Length Similarity for a) Serial b) Parallel and c) Bifurcating 

 

 



52 
 

 
 

4.1.2 Seeding 

The genetic algorithm begins by creating a population of individuals, each with a 

set of properties that describe a specific receiver design. Generating this initial population 

is called population seeding. For genetic algorithms with a large design space, seeding is 

used to place individuals in optimal positions, to converge the algorithm more quickly 

[32]. For this application, the seeding method is varied to test the algorithm, and ensure 

that global optimums have been reached. This work implements three simple seeding 

techniques: random, max, and min. 

Random seeding involves giving each individual a random set of properties. 

Diameter and velocity are randomly chosen between a maximum and minimum value. 

Path type is randomly selected from serial, parallel, and bifurcating path types. Path value 

is randomly selected from 1 to the max value that can fit within the grid size that 

represents the path design space. For random seeding, individuals do not have the same 

properties; they are varied randomly.  

Max seeding gives every individual the maximum value for each property. 

Diameter and velocity are set to the maximum value determined as an input to the 

algorithm. Path type is randomly selected from serial, parallel, and bifurcating. Path value 

is set to the max value that can fit in the discretized design space. Min seeding uses the 

same process as max seeding, except with the minimum possible values. 

As is shown in Section 4.2, each seeding type varies the initial performance of the 

designs, but every case converges to the same global optimums, regardless of seeding 

type. 
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4.1.3 Fitness Function 

Each individual is simulated with the thermal and hydraulic models. This results 

in a known thermal efficiency and pressure drop across the pathway. In addition, the 

nominal strain is calculated, as discussed in Section 4.1.5. The genetic algorithm requires 

a single cost function that describes the fit for each individual. An ideal receiver 

maximizes thermal efficiency and minimizes pressure drop, and these two values need to 

be related to each other in the cost function. The cost function used in this genetic 

algorithm is shown in Eq. (4.3). 

𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴𝑠𝑠𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛥𝛥𝛥𝛥
𝑚̇𝑚

𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜌𝜌
(4.3) 

where  𝜂𝜂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the efficiency of the turbine used to convert heat to electricity, 

𝜂𝜂𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the receiver thermal efficiency, 𝐴𝐴𝑠𝑠 is the receiver top surface area, 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is 

the heat flux from the heliostat field, 𝛥𝛥𝛥𝛥 is the pressure drop, 𝑚̇𝑚 is the mass flow rate of 

the fluid in the receiver, 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the efficiency of the pump used to flow the fluid 

through the receiver, and 𝜌𝜌 is the density of the fluid. 

The cost function relates the energy the receiver cell produces with the amount of 

energy the pump requires to overcome the pressure drop along the fluid path. This 

relationship combines the thermal efficiency and pressure drop into one equation that is 

not arbitrarily based on weighting coefficients. From the way the equation is constructed, 

fitness values can be positive or negative, with positive values being better. 

4.1.4 Activation Functions 

Another way to ensure global optimums are not local is to apply activation 

functions to the fitness values. Activation functions are commonly used with neural 

networks [33] and for this application they manipulate how different individuals relate to 
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each other, either by artificially increasing or decreasing the difference in fitness values. 

This can prevent parameters from converging too quickly by encouraging a more 

thorough exploration of the design space. Alternatively, activation functions can also 

guide individuals to converge to more optimal designs, even if the improvement is small.  

Four activation functions were considered in this work. Each function is a simple 

method that modifies the relationship between individuals. The first, linear activation, is 

simply the fitness function with no modifications. This is considered the base case. The 

square activation function squares the fitness value while maintaining its sign. This is 

shown in Eq. (4.4). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓𝑓𝑓𝑓𝑓) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑓𝑓𝑓𝑓) ∗ 𝑓𝑓𝑓𝑓𝑓𝑓2 (4.4) 

Square activation inflates the differences between cases, which should favor cases 

with higher fitness values. While it is beneficial to favor better cases, the solution could 

converge too quickly, resulting in a local optimum.  

The third activation function studied is a sigmoid activation, also found in [33]. 

This function converts the fitness to a value between 0 and 1 and is centered at a fitness 

of 0. The sigmoid activation function is shown in Eq. (4.5) and plotted in Figure 4.3. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓𝑓𝑓𝑓𝑓) =
1

1 + 𝑒𝑒−𝑓𝑓𝑓𝑓𝑓𝑓
(4.5) 

  
Figure 4.3 Sigmoid Activation Function 
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As is seen in the sigmoid plot, differences in fitness values are inflated near 0 and 

decreased otherwise. This should result in distinction between similarly performing cases 

near 0 while not heavily favoring better performing cases. The issue with this function is 

it focuses on fitness values near zero. To account for this, the variable sigmoid activation 

function was developed.  

The variable sigmoid function, VarSig, was developed for this work to shift the 

sigmoid function depending on the fitness results. The first iteration of the algorithm 

starts with the sigmoid function centered at zero. Every following iteration centers the 

sigmoid function at the best case’s fitness value. This is shown in Eq. (4.6). 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑓𝑓𝑓𝑓𝑓𝑓) =
1

1 + 𝑒𝑒−(𝑓𝑓𝑓𝑓𝑓𝑓−𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (4.6) 

where 𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is the best fitness value from the previous iteration of the algorithm. 

The purpose of shifting the sigmoid function is to maximize the differences in 

fitness values for cases near the best case. Cases with slightly better fitness values than 

the current optimal will be heavily favored over cases with slightly worse fitness values. 

This will increase the likelihood that top cases will get selected to be parents, resulting in 

more high potential children. The parent selection process is discussed in Section 4.1.6. 

4.1.5 Strain Constraint 

The nominal strain in each receiver design is considered in the genetic algorithm. 

Unlike thermal efficiency and pressure drop, which are related to each other in the fitness 

function, the nominal strain is a hard constraint, meaning any cases with a strain higher 

than a certain value are removed from the population immediately. This was done to 

prevent any cases that are not mechanically feasible from being considered. 
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The nominal strain is calculated from the nominal stress and the modulus of 

elasticity of the receiver [34].  The nominal stress calculation is shown in Eq. (4.7). 

𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑃𝑃

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐴𝐴𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

− 1
(4.7) 

where 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the nominal stress, P is the fluid pressure, 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the cross-sectional 

area of the receiver into the receiving surface, and 𝐴𝐴𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the projected area of the 

fluid channel. For this calculation, the pressure is considered to be the inlet pressure and 

does not account for the pressure loss over the fluid pathway, which is insignificant 

relative to the overall pressure. 

Nominal strain is related to the nominal stress with Eq. (4.8). 

𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐸𝐸
(4.8) 

where 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the nominal strain and E is the modulus of elasticity of the receiver.  

More research is being conducted to calculate principle and thermal strains in the 

receiver design; only nominal strain is considered in this work. 

4.1.6 Parent Selection 

The genetic algorithm evolves by selecting parent individuals that combine to 

form children. The number of parents is the crossover parameter multiplied by the 

population size. Generally, parents should be high performing individuals so that their 

children have the potential to perform even better. However, the parent selection needs to 

maintain diversity to allow the entire design space to be explored. Therefore, randomness 

is key in selecting the parents. 

To select parents, a roulette wheel of fit is formed. The roulette wheel is 

composed of every individuals’ fitness value “stacked” to form a list. A random value 



57 
 

 
 

between 0 and the sum of fitness values is generated. This value corresponds to a location 

on the wheel, and therefore, an individual from the population. This individual is selected 

as a parent and the process repeats until a sufficient number of parents have been 

selected. 

The roulette wheel of fit favors individuals with higher fitness values while still 

maintaining diversity. Because the selection is random, it is possible for the poor designs 

to be selected as a parents, but this is less likely. The activation functions adjust the wheel 

by manipulating the fitness values.  

4.1.7 Crossover 

The process of combining parents to form a child is called crossover. This 

combination should evolve the population towards more fit individuals. The children’s 

properties are a combination of the parents’ properties; the specific relationship is 

dependent on the property type. 

For continuous variables, the combination of parent properties is done by 

randomly selecting a value between the parents’ values. This is shown in Eq. (4.7). 

𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚� + 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 (4.7) 

where p is a random value between 0 and 1, 𝑋𝑋𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖  is the child’s property value, 

𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 is the greater of the two parents’ property values, and 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚 is the 

lesser of the two parents’ property values. This combination of parent properties ensures 

that the child is similar to its parents but maintains its ability to improve the fitness. 

The process of combining parents’ path values is similar to that of the continuous 

variables. A random path value is selected within the range of the parents’ values. The 
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only difference between the path value crossover and the continuous variable crossover is 

that the path value is a discrete integer value.  

Path type crossover is different from the other properties because it cannot be 

represented numerically. If both parents have the same path type, that path type is passed 

to the child. Otherwise, the child is given a new random path type. 

The crossover implementation is highly dependent on the specific genetic 

algorithm that is being developed. Other crossover functions were considered, such as 

allowing children to have larger or smaller values than parents or fitting normal 

distributions to the parents’ values, but this simple implementation consistently produced 

strong results that converged to the same values, regardless of seeding or activation 

functions. The validity of the crossover method is shown in Section 4.2. 

4.1.8 Mutation 

The final step in each iteration of the genetic algorithm is mutation. Mutation is 

the process of randomly changing certain individuals’ property values in order to 

maintain diversity in the population. The number of individuals to mutate is determined 

by the mutation parameter, which is usually small. The algorithm loops through each 

individual and checks if a random number is less than the mutation parameter to see if 

that individual should be mutated. The best performing individual is excluded from this 

process to prevent a decrease in best fit.  

If an individual is selected for mutation, one of their four properties are randomly 

chosen to be mutated. Mutating a property is simply assigning it a new random value. For 

velocity, diameter, and path value, this is selecting a random value between the maximum 

and minimum. For path type, this is selecting a new random path type.  
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As is discussed in Section 4.2, a mutation parameter of 0.1 encouraged a full 

exploration of the design space while still converging in a reasonable amount of time. As 

with crossover, the implementation of the mutation step is highly dependent on the 

genetic algorithm. Section 4.2 proves that this method maintains diversity and helps the 

population evolve to the optimal design.  

4.1.9 Termination 

The genetic algorithm repeats the process of fitness evaluation, crossover, and 

mutation for a set number of iterations before terminating. During these iterations, the 

population evolves to better designs before reaching a limit and converging to the same 

case. The best design generally takes steps in rising fitness and does not converge to the 

optimal solution gradually. The average fitness of the population, however, converges to 

the best case gradually over the course of the algorithm. Because there is no way to know 

if the best case is truly optimal during the process, the algorithm runs for a set number of 

iterations, determined beforehand as an input.  

To validate that the final best case is truly optimal, two indicators are considered. 

First, the trend of the average fitness is compared with the best fitness over the course of 

the algorithm. The average fitness should asymptotically reach the best fitness to prove 

that all individuals are converging to the same case. Second, the algorithm is run with 

multiple seeding types and activation functions, as discussed in Sections 4.1.2 and 4.1.4, 

respectively. The average fitness and best fitness are again analyzed, to ensure that every 

case reaches the same final value for each design variable.   
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The results of this optimization algorithm are discussed in Section 4.2, including a 

discussion on the validity of the crossover and mutation implementations, as well as the 

termination criteria. 

4.2 Optimization Results 

The genetic algorithm was run in parallel on a 28 core Linux computing cluster. 

Multiple optimizations were run, with varying properties to ensure that the performance 

was consistent and reliable. The average algorithm took 3 hours to complete, given the 

parameters described in this chapter. The sCO2 was modeled with temperature-dependent 

properties, unlike the models used to compare with CFD. A full discussion of sCO2 

material properties is found in Appendix A.  

4.2.1 Design Space 

Every optimization was run with the same model parameters as the CFD 

validation models. These parameters are described in detail in Chapter 2 and are included 

here in Table 4.1.  
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Table 4.1 Optimization Model Parameters  

Parameter Value 

Solar Flux (W/m2) 1,000,000 

Receiver Dimensions (L x W x H) 
(m) 

0.02 x 0.02 x 0.01 

Turn Radius (m) 0.001 

Inlet Temperature (K) 873 

Inlet Pressure (MPa) 20 

Emissivity 0.88 

Absorptivity 0.94 

Receiver Thermal Conductivity 
(W / m2 K) 

27.5 

External Convective Heat 
Transfer Coefficient (W / m2 K) 

8 

 

The parameters not included in Table 4.1 (diameter, inlet velocity, path 

architecture) are the design variables optimized by the algorithm. 

4.2.2 Design Variable Bounds 

The genetic algorithm optimizes the design variables within preset bounds. These 

bounds are either arbitrarily set or are a product of the discretized path design space. The 

path architecture is composed of a grid of discrete points, the size of which is constant 

and determined prior to the algorithm start. All of the results discussed in this section 

used a grid size of 31 x 31 cells, which is similar in size to the models replicated in CFD.  

The diameter is constrained to ensure that parallel channels do not overlap, and 

that all automated designs can exist physically. To ensure this, the diameter is limited to 

1.75x the size of a grid cell, which translates to a max diameter of 1.129 mm. The 
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velocity is arbitrarily constrained to be within 1 to 80 m/s. As is shown from the 

optimization results, the optimal velocity falls within this range.  

The path value is constrained by the size of the grid. For this case, the max 

possible path value is 3, due to the size limitations of the bifurcating path type. As with 

velocity, the optimal case falls within this range. The design variable constraints are 

listed in Table 4.2. 

Table 4.2 Design Variable Bounds  

Variable Minimum Value Maximum Value 

Diameter (m) 0.0003 0.001129 

Inlet Velocity (m/s) 1 80 

Path Value 1 3 

 

4.2.3 Algorithm Parameters 

There are multiple parameters that control the genetic algorithm. These are the 

number of iterations, population size, crossover parameter, and mutation parameter. The 

value for each of these parameters is highly dependent on the specific genetic algorithm 

and are usually found through trial and error.  

For this implementation, the number of iterations was set to 150, which is 

sufficient to converge any case, regardless of seeding or activation function. The 

population size was set to 50, which also converged quickly while still exploring the 

design space. The crossover parameter used was 0.4 and the mutation parameter was 0.1. 

Each of the parameter values were chosen through trial and error from a 

collection of optimization runs. The agreement between every case, with any seeding and 

activation function, prove that the parameters are valid. 
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4.2.4 Seeding Analysis 

The population seeding was varied as discussed in Section 4.1.2. The purpose of 

manipulating the initial population seeding is to prove that the algorithm is converging to 

global optimums, and to ensure that the algorithm parameters were correctly chosen. The 

algorithm was run with the three different seeding types (random, max, and min) and the 

results are shown in Figure 4.4.  
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b)  

c)  
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d)  

e)  
Figure 4.4 Fitness and Design Variable Evolution for Various Seeding Types 

Figure 4.4 shows how the average value of each design variable and the fitness 

evolves over the course of the algorithm for each seeding type. The purpose of showing 

the average value, rather than the best value, is to compare how the different cases 

explore the design space and to check if they converge to the same values. As is shown, 
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although each case starts at different averages, every case converges to the same values 

over the course of the algorithm. This is evidence that the algorithm is reaching global 

optimums and that 150 generations is sufficient for convergence. 

4.2.5 Activation Function Analysis 

Similar to the initial population seeding, multiple activation functions were 

studied to confirm the validity of the algorithm. The functions are discussed in detail in 

Section 4.1.4. The activation functions manipulate the fitness value to prevent premature 

convergence and encourage full exploration of the design space. The four activation 

functions considered are: base (no activation function), square, sigmoid, and variable 

sigmoid. The algorithm was run with each of these activation functions and the results are 

shown in Figure 4.5. 
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b)  

c)  
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d)  

e)  
Figure 4.5 Fitness and Design Variable Evolution for Various Activation 

Functions 

Figure 4.5 shows a strong agreement between each of the four activation 

functions. The average value for each design variable converges to the same value for 

each activation function case. As with the seeding analysis, the activation functions prove 

that the algorithm is reaching a global optimum during the 150 iterations.  
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4.2.6 Optimal Design 

 The seeding and activation function analyses prove that the genetic algorithm is 

operating correctly for the given design variables and constraints. The results in this 

section are from the base case, which is random seeding and no activation function. As 

was shown in the previous sections, the base case performs in the same manner as a case 

with any other seeding or activation function.  

Figure 4.6 shows how each design variable evolves over the course of the genetic 

algorithm, showing the best performing individual and the average of every individual. 
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b)  
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d)  
Figure 4.6 Optimal Case Design Variable Evolution of a) Velocity b) Path Type 

c) Path Value and d) Diameter 

Figure 4.7 shows how key model outputs progress during the algorithm. 
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b)  

c)  
Figure 4.7 Model Performance Evolution for the Optimal Case 

The algorithm progression shows that the design variables evolve to maximize 

thermal efficiency and minimize the pressure drop. As outlined in Chapter 2, the fluid 

velocity is linearly related to the Nusselt number for turbulent flow, which increases with 

the velocity. Larger Nusselt numbers result in better heat transfer to the fluid, which 
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increases the thermal efficiency of the receiver. This explains why the average velocity 

rises during the min seeding case. The velocity does not reach its maximum bound, 

however, due to its relationship with pressure drop. From Chapter 3, major and minor 

losses are quadratically dependent on the velocity. As the velocity rises, eventually the 

gain in thermal efficiency is outweighed by the rising pressure drop.  

Diameter is maximized by the optimization. This occurs because the thermal 

efficiency and pressure drop improve with larger diameters, relative to the mass flow 

rate.  Similar to velocity, and as detailed in Chapter 2, the Nusselt number increases with 

diameter. This causes the thermal efficiency to rise as the diameter increases. Unlike 

velocity, however, the pressure drop is inversely related to diameter, causing the relative 

pressure drop to decrease as the diameter increases. For these reasons, the diameter is 

maximized by both the thermal efficiency and the pressure drop. 

The thermal efficiency improves as the total channel surface area increases. This 

is supported by the diameter being maximized in the optimization. The increase in 

thermal efficiency, however, is offset by a resulting increase in pressure drop. For this 

reason, the optimal design does not maximize path value, or result in the design with the 

maximum possible channel surface area. The path type and path value variables quickly 

converge to a parallel path with a path value of 2. This translates to the design shown in 

Figure 4.8. 
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Figure 4.8 Optimal Case Pathway Design 

This simple parallel path has a low pressure drop and a high relative thermal 

efficiency. The full case design variables are shown in Table 4.3 and the outputs are 

shown in Table 4.4. 
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Table 4.3 Optimal Case Design Variables  

Parameter Value 

Velocity (m/s) 31.48 

Path Type Parallel 

Path Value 2 

Diameter (m) 0.0011 

 

Table 4.4 Optimal Case Results  

Output Value 

Fitness 4.651 

Thermal Efficiency (%) 75.55 

Pressure Drop (Pa) 16,457 

Nominal Strain (%) 0.029 

 

The thermal efficiency quickly reaches an asymptote near 76%. To better 

understand the relationship between the cost function (fitness) and the thermal efficiency, 

an algorithm was run that optimized for only the thermal efficiency. The purpose of 

removing the pressure drop consideration was to find the maximum possible thermal 

efficiency for the given constraints. The bifurcating path type placed limitations on the 

maximum path value, so it was removed for this run. The maximum path value without 

the bifurcating path type is 4, instead of 3. Table 4.5 shows the resulting optimal design 

variables from this run, and Table 4.6 shows how the optimal design performs.  
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Table 4.5 Optimal Thermal Efficiency Case Design Variables  

Parameter Value 

Velocity (m/s) 74.0 

Path Type Parallel 

Path Value 2 

Diameter (m) 0.0011 

 

Table 4.6 Optimal Thermal Efficiency Case Results  

Output Value 

Fitness 4.56 

Thermal Efficiency (%) 75.79 

Pressure Drop (Pa) 90,428 

Nominal Strain (%) 0.028 

 

Optimizing for thermal efficiency performed as expected; thermal efficiency 

increased but the resulting pressure drop was significantly larger causing the fitness value 

to decrease. This shows that the algorithm is weighing the efficiency with the pressure 

drop, and appropriately choosing designs that optimize for both. 

The genetic algorithm is constrained to a limited number of path types and path 

values. To better understand these constraints, a design was generated and tested that was 

not in the design space of the optimization scheme. This design is shown in Figure 4.9 

and is a serial path with 15 horizontal segments.  
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Figure 4.9 Custom High Efficiency Path Design 

The path was modeled with the same parameters as the optimal thermal efficiency 

design detailed in Table 4.3. The results of this custom design are shown in Table 4.7. 

Table 4.7 Custom High Efficiency Case Results  

Output Value 

Fitness -0.199 

Thermal Efficiency (%) 76.48 

Pressure Drop (Pa) 3,873,800 

Nominal Strain (%) 0.338 

 

The custom design produces a higher thermal efficiency than any design possible 

in the genetic algorithm. This shows the limits of the optimization scheme, although the 

design is far from optimal as the large pressure drop results in a negative fitness value. 

The existence of higher efficiency designs, however, is indicative of more optimal 

designs existing outside of the algorithm’s design space. The limitations of the algorithm 

and possible solutions are discussed in Section 4.2.8. 
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To better understand the performance of the three designs discussed in this 

section, the surface temperature contours are plotted in Figure 4.9. 

a)  b)  c)   
Figure 4.10 Surface Temperatures for a) Optimal Design b) Optimal Thermal 

Efficiency Design and c) Custom High Efficiency Design 

As seen in Figure 4.10, the design with the highest thermal efficiency, Figure 

4.10c, results in the lowest temperatures on the receiver surface and the smallest 

difference in temperatures on the surface. The decreased surface temperatures are due to 

the working fluid absorbing more energy than the other designs and the decreased 

difference in temperatures shows that the heat is better spread out through the receiver. 

Future work on the thermal stress calculations and constraints could use the temperature 

difference on the surface as a part of the optimization objective function, as larger 

differences in temperatures on the surface could be mechanically less optimal.   

4.2.7 Strain and Pressure Constraints 

The composite receiver can physically withstand a certain amount of strain. This 

limit is being researched currently, with a focus on thermal strains and the strain due to 

the pressurized working fluid. The nominal strain is the first step in analyzing the 

mechanical durability of the receiver and this calculation is discussed Section 4.1.5. An 

algorithm was run that limited the nominal strain to 0.05%, which is a conservative 

maximum allowable value. 



79 
 

 
 

The run with the strain constraint resulted in nearly the same optimal values as the 

base case discussed in Section 4.2.6. This is not surprising because the optimal case from 

the previous section had a nominal strain of only 0.029%. With the strain constraint, the 

optimal velocity was 32.26 m/s, the diameter was 0.0011 m, and the path architecture was 

the same. 

Another optional constraint for the algorithm is the pressure constraint. The 

fitness function already weighs the pressure drop but it could be possible that any 

pressure drop over a certain value makes the design immediately infeasible. A hard 

constraint was placed on the designs so any case that passed this value was removed from 

the population. The maximum allowable pressure drop was set to 34 kPa, which was a 

limit chosen at the outset of the project.  

The optimal base case without the pressure constraint had a pressure drop of less 

than 17 kPa. Similar to the strain constraint, the optimization with the pressure constraint 

performed in the same manner as the base case with no constraint. The optimal case with 

the pressure constraint had a velocity of 28.1 m/s, a diameter of 0.0011 m, and the same 

path architecture.  

The strain and pressure constraints show that the current optimal design is well 

within the design requirements. The genetic algorithm successfully constrained the 

designs, and future work could add new constraints, such as maximum thermal strain or 

surface temperature gradients.  

4.2.8 Optimization Results Discussion 

The genetic algorithm performed as expected given the constraints on the model. 

Each design variable showed consistent behavior, regardless of seeding or activation 
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function implementations. The fitness function also performed as expected, favoring the 

thermal efficiency but preventing the pressure drop loss from outweighing the thermal 

efficiency gains.  

The low relative thermal efficiency of the optimal design can be attributed to the 

thermal model constraints and the limitations of the genetic algorithm. The thermal 

model is built on a grid of points. Each point can be connected only to neighboring 

points, but not in the diagonal direction. This means that the resistance network can only 

model paths with 90˚ turns or connections. The work by Tan et al. [14], mentioned in 

Chapter 1, showed that optimal designs do not have paths structured on this form of grid. 

The optimal designs, shown again here in Figure 4.11, have diagonal parallel paths. This 

path type cannot be replicated currently with the thermal and hydraulic models.  

a)  b)  c)  d)  
Figure 4.11 Branching Flow Design Optimization from [14] a) Reference Design 

b) Optimal Design c) Initial Temperature Contour d) Optimal Temperature 
Contour 

The grid-based structure of the thermal model also limits the design space the 

genetic algorithm explores. The CFD comparison designs were modeled on a 19 x 21 

sized grid. For this reason, the genetic algorithm operated on a similarly sized 31 x 31 

grid. This grid size limited the maximum path value to only 3. Larger grid sizes would 

allow the genetic algorithm to explore designs with more parallel paths, for instance, but 
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these designs have not been validated against CFD. This conservative approach to the 

optimization space likely contributed to poor performing designs. 

Finally, the parameterization of the path architecture limited the scope of the 

optimization scheme. The path architecture is parameterized to two variables, which 

greatly limits the design space. Allowing the genetic algorithm full control of the path 

architecture, similar to the work by Dokken and Fronk [17], is not possible with the 

current implementation of the thermal model. The restraints imposed by the thermal 

model require significant oversight in the design of the path architectures, limiting the 

genetic algorithm’s ability to find optimal designs.  

Future work that allows the algorithm more design freedom is discussed in 

Chapter 5. The algorithm successfully optimizes within the constraints, even if the 

constraints limit the overall success of the optimal design.
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CHAPTER FIVE: CONCLUSION 

5.1 Conclusion 

A novel carbon-carbon composite gas-phase solar receiver has been modeled in 

this work. The receiver uses sCO2 as the working fluid, increasing the operational 

temperature of traditional CSP receivers. The carbon composite is mechanically durable 

at high temperatures and able to support the high pressures of sCO2 due to the unit cell 

numbering up approach. The receiver is composed of a collection of small unit cells 

connected in parallel. 

A thermal and hydraulic model have been developed to simulate the performance 

of a receiver unit cell. The thermal model is built as a thermal resistance network that 

quickly solves the temperatures in the fluid and receiver body at steady state. The 

pressure model calculates the major and minor pressure losses along the fluid path to 

estimate the pressure drop over the unit cell. Both models are dynamically formed to 

simulate any path architecture.  

The thermal and hydraulic models have been compared with extensive CFD 

simulations for validation as experimental testing data is not yet available. Three path 

architectures were considered to capture the scope of the design space: straight, serial, 

and parallel. A wide range of inlet velocities from 1 m/s to 100 m/s were simulated. The 

thermal model shows a strong agreement with CFD when comparing the outlet 

temperatures, with the error magnitude decreasing as the velocity increases. The pressure 

model also performs well when comparing the pressure losses.  
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The unit cell has been optimized with a genetic algorithm that considered four 

design variables: inlet velocity, channel diameter, path type, and path value. Path type 

and path value parameterize the path architecture into two variables. The algorithm was 

run with multiple seeding types and activation functions to ensure that the global 

optimum was found. The algorithm consistently produced the same design, a parallel path 

with three channels, that maximized the diameter and chose a velocity that limited the 

pressure drop while maintaining a high relative thermal efficiency. The strain and 

pressure drop were both constrained and the optimal design fit within these requirements.  

5.2 Future Work and Recommendations 

The thermal and hydraulic models can be improved with further CFD analysis and 

experimental testing. The pressure drop calculation for crosses can be improved, either 

with correlations from CFD results or with special experimental testing. An area that 

needs to be validated is the material properties of sCO2 and the carbon composite. As 

discussed in Chapter 2, the CFD models assumed constant sCO2 properties to limit the 

complexity of the model and allow it to be solvable. The model developed in this work is 

capable of handling temperature-dependent properties, but this has not been validated. 

The temperature-dependent properties are discussed in more detail in Appendix A. 

Expanding the design capabilities of the thermal and hydraulic models is also 

recommended. Currently, the thermal resistance network can only support path 

architectures with a constant diameter. Optimal designs, particularly designs with 

branching flow, would likely benefit from a large inlet header and smaller branching 

channels. The thermal resistance network is capable of handling varying diameters, but 

the pressure calculations for changing diameters have not been implemented. 
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Along with support for varying diameters, the model would benefit from allowing 

diagonal channels, rather than requiring channels to stay on a grid with 90˚ connections. 

The potential benefit of diagonal channels is discussed in Section 4.2.8, which relates the 

discussion to the work of Tan et al. [14]. Similarly, curved paths would further expand 

the design space. 

The genetic algorithm performed as expected but can be improved by reducing 

the number of constraints. The biggest constraint on the algorithm was the path 

parameterization. By reducing the path architecture to two variables, the capabilities of 

the algorithm to optimize were greatly reduced. Using more variables to describe the path 

could expand the design space of the optimization, which would result in better 

performing designs.  

Finally, an assumption of this work was each unit cell would have a single inlet 

and a single outlet. Introducing multiple inlets and outlets could prove to be beneficial 

and would give the genetic algorithm more freedom. Alternating flow directions could 

reduce the temperature difference on the receiver surface and more adequately transfer 

energy to the working fluid. 
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APPENDIX A 

sCO2 Material Properties 
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The thermal and hydraulic models rely on four sCO2 material properties: specific 

heat, density, thermal conductivity, and viscosity. Each of these properties is dependent 

on the temperature and pressure of the fluid. The model was developed to assume a 

constant pressure, because the pressure drop in the receiver unit cell is insignificant 

relative to the overall pressure of the fluid. The temperature of the fluid, however, 

significantly changes as the fluid passes through the receiver.  

To accurately model the sCO2 properties, the thermal and hydraulic models are 

solved iteratively, with increasingly accurate temperature assumptions at each fluid node. 

First, the temperatures at each fluid node are assumed to be the inlet temperature. Next, 

the pressure is calculated, and the mass flow rate division is solved with the Hardy Cross 

method. The temperature network is then solved, and the resulting temperature values are 

compared with the assumed values. A new temperature assumption is made for every 

fluid node and the material properties are recalculated. The process repeats until the 

temperature assumptions converge. The property values are interpolated from data from 

the National Institute of Standards and Technology [35]. 

Ideally, the CFD models would operate in a similar manner, using temperature 

dependent properties. It is possible to define a material property with a polynomial in 

Fluent, but this caused the complexity of the model to increase to the point of making the 

model unsolvable in a realistic amount of time. Different approaches to the CFD 

modeling have been investigated, such as reducing the order of the fitted polynomials or 

using user defined functions. Unfortunately, a solution has not been found. 
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To compare the CFD simulations with the thermal and hydraulic model, constant 

properties were used. Because the average temperature of the fluid changes depending on 

the receiver parameters, such as diameter and inlet velocity, property values were 

selected at the inlet condition, 873 K and 20 MPa. These values are listed in Table A.1. 

Table A.1 sCO2 Properties at 873 K and 20 MPa  

Property Value 

Specific Heat (J / kg K) 1249.63 

Density (kg / m3) 116.76 

Thermal Conductivity (W / m K) 0.065854 

Viscosity (kg / m s) 3.89e-5 

 

The CFD models serve to validate the heat transfer and pressure calculations. 

These validation efforts are still valid with constant properties because they are consistent 

between the model and CFD. The optimization process used dynamic properties to 

simulate the true performance of the receiver.  
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