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ABSTRACT

This work aims to inform the formulation and processing of polymer mixtures

through the use of models that have minimally sufficient complexity. Models with

minimal complexity are easier to develop, understand, explain, and extend, all of

which underpin model validation, verification, and reproducibility.

We develop simplified models for two different material systems, semiconducting

polymers and thermosets. With the relatively low cost of predicting morphologies

enabled by these models, we investigate structure-property-processing relationships

in record system sizes and combinatorial parameter spaces. The insight from these

models lays the foundation for improving the efficiency of organic solar cells and air

travel.

The morphology of the active layer of an organic solar cell determines its efficiency,

but is also the most difficult aspect to control during manufacturing. Morphology

can in principle be controlled through the thermodynamic self-assembly of active

layer components. We develop models of two semiconducting polymers. We find our

predictions are validated by morphological and charge transport measurements from

experiments and we provide guidance for optimizing conditions for self-assembly.

Thermoset polymers present a unique modeling challenge because their properties

are sensitive to processing kinetics that are at odds with thermodynamic modeling

frameworks. The primary source of this difficulty is bridging time (1× 10−12 s) and

length scales (1× 10−10 m) of reaction dynamics with the time (1× 102 s) and length

scales (1× 10−6 m) of morphology evolution. We implement a coarse-grained model
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of toughened thermosets where each amine, epoxy, and toughener mer is treated

as a single simulation element. This simplification allows us to reach the time and

length scales necessary to model the epoxy amine reaction and observe curing-driven

morphology evolution. We simulate curing of (100 nm)3, million-particle volumes,

which allows observation of experimentally-relevant volume evolution.

To practice behaviors necessary for computational research to be usable and repro-

duced by others, we make available all the models, initial configurations, submission

scripts, analysis scripts, and simulation data associated with this work with an open

source, permissive license. We describe software development practices and design

choices that make this possible and discuss opportunities for improvement in future

computational materials research.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Global climate change is an existential threat to our species survival [1]. It is likely that

we will experience a 1.5C increase in global mean surface temperature between 2030

and 2052 [2]. Even if global emissions reach net zero by 2040, we will experience this

temperature increase. While we must accept irreversible damage to our planet has

already occurred, we must also act and reduce greenhouse gas emissions to mitigate

even more damage.

Transportation and electrical power generation account for 28% and 27% of total

U.S. greenhouse gas emissions, respectively [3]. Approximately 63% of the power

generated in U.S. is from burning fossil fuels. Only 11% of power in the U.S. is

generated from renewable sources [4], and of those sources, 43% of that power is from

burning biomass. We need to expand the share of the non-carbon emitting energy

sources in the U.S. power generation portfolio if we are to reduce greenhouse gas

emissions. Solar power is a source of renewable and clean energy, which accounts for

1.8% of electricity produced in the United States. Current limitations to wide spread

silicon based solar power include the weight of the panels [5], which limits installation

options, and their expense, which is driven by manufacturing costs. These limitations

are a materials problem, monocrystalline silicon is expensive to refine, purify, and is a
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heavy metalloid. We can overcome the limitations associated with traditional silicon

based solar cells by using different materials.

Instead of silicon, organic based materials can be used to generate power. Or-

ganic photovoltaic (OPV) solar cells can overcome the limitations associated with

silicon based solar. This is a result of how OPV devices are manufactured. OPVs

use solution-based manufacturing processes, which are generally performed at lower

temperatures than inorganic material purification, at atmospheric pressure, and of-

ten without specialist machinery [6,7]. Solution-based manufacturing enables easy,

inexpensive batch-production of the photoactive materials, by utilizing large-scale

commercial roll-to-roll manufacturing [6,7]. OPVs are lightweight, flexible, and can be

incorporated into common building materials such as concrete and asphalt tiles [5].

These benefits will help to facilitate the adoption of OPV devices once the efficiency

of these devices is improved.

It is estimated that once OPV devices have a power conversion efficiency (PCE) of

15%, it will be commercially viable to use OPVs for on-grid power generation and have

energy payback time of a day [8–12]. There are OPV devices that have been created

in a laboratory, [13,14] but these are “hero” experiments that when mass manufactured

will have a PCE ∼5% of devices made in a lab [15]. The largest barrier to improving

device efficiency is improving synthetic control of the active layer morphology [5]. By

improving our understanding of how the active layer self-assembles, we can 1) improve

the efficiency of OPVs and 2) ensure the self-assembly process is robust to reduce the

PCE decrease that arises from mass manufacturing.

Understanding how the active layer self-assembles requires atomistic resolution,

the exploration of different processing conditions, and the exploration of different

OPV chemistries. Computer simulations provide atomistic insight and can explore
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the vast combination of different processing conditions and chemistries.

We need a diverse greenhouse gas reduction strategy to fight climate change. In

addition to reducing greenhouse gas emissions from power generation, we need to

reduce greenhouse gas emissions from other industrial sectors. Commercial air travel

accounted for 6.9% of the United States total greenhouse gas production [3]. One way

to improve the efficiency of air travel and reduce emissions is to replace metal parts on

aircraft with composite material [16]. Technological advancements to improve efficiency

when paired with with regulatory (taxes) efforts can reduce resource consumption [17].

Difficulty in reliably manufacturing composite materials for aircraft, which is the

primary driver for their high cost, is one of the limiting factors in their widespread

adoption. Improving our understanding of how to control the nanostructure of the

thermoset matrix during curing will improve manufacturing reliability and decrease

time and energy costs [18–20]. The material properties and morphology of the ther-

moset matrix change as the thermoset cures, further compounding the difficulty in

understanding how to control the nanostructure. Computer simulations can help to

elucidate the relationship between morphology, properties, and processing.

Beyond improving the efficiency of OPV devices and aircraft, we must also improve

the efficiency of scientific research. This will have a force multiplying effect, the easier

it is to train scientists and build computational research capacity, the quicker we can

discover solutions to mitigate the effects of climate change. We can reduce the time

it takes to train scientists to perform computational research by intentionally consid-

ering pedagogy related to on-boarding new researchers [21]. Creating simple models

that are easy to extend to other systems reduces duplicated effort. Coarse-grained

TRUE (transferable, reusable, usable and extensible) models are self-consistent, they

are computationally and teaching efficient.



4

Understanding polymer self-assembly in material systems is important since the

morphology that forms when polymers self-assemble determine the properties of the

material system. Our current understanding of how polymers self-assemble is limited

by our ability to observe self-assembly in situ and sufficiently explore the different

processing conditions that effect self-assembly. This dissertation will use molecular

dynamics to improve our understanding of polymer self-assembly. We will develop

and use simplified models and generalized methodologies to study thermoset and OPV

material systems at experimentally relevant length and time scales. We will character-

ize the morphologies that form through self-assembly to develop processing-structure

relationships. By establishing the relationship between processing and morphology,

we can engineer better materials to combat global climate change.

1.2 Outline

This dissertation is structured as follows: In Chapter 2 we review molecular dynamics,

coarse graining, thermoset physics, and current scientific software best practices. In

Chapter 3, we present our model of BDT-TPD where we looked at two different

coarse-grain models comparing their structural predictions as well as their compu-

tational efficiency. In Chapter 4, we overcome some of the limitations of our first

generation model (Ref. [22]) and demonstrate our models validity with experimental

data and demonstrate our model’s sensitivity to cure path. In Chapter 5 I outline

my contributions to other papers and software. Lastly, in Chapter 6 we conclude and

provide direction for figure work.
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Eva Bundgaard, Suren A. Gevorgyan, Roar R. Søndergaard, Mikkel Jørgensen,
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erik C. Krebs. Overcoming the Scaling Lag for Polymer Solar Cells. Joule,

1(2):274–289, 2017.

[16] Royal Aeronautical Society: Greener by Design Science and Technology Sub-

Group. Air Travel – Greener by Design Mitigating the environmental impact of

aviation: Opportunities and priorities. The Aeronautical Journal, 109(1099):361–

416, sep 2005.

[17] Mathis Wackernagel and William E. Rees. Perceptual and structural barriers to

investing in natural capital: Economics from an ecological footprint perspective.

Ecological Economics, 20(1):3–24, jan 1997.

[18] J. Zhang, Y. C. Xu, and P. Huang. Effect of cure cycle on curing process and

hardness for epoxy resin. Express Polymer Letters, 3(9):534–541, 2009.



7

[19] J W Sinclair. Effects of Cure Temperature on Epoxy Resin Properties. The

Journal of Adhesion, 38(3-4):219–234, jul 1992.

[20] Fabrice Lapique and Keith Redford. Curing effects on viscosity and mechanical

properties of a commercial epoxy resin adhesive. International Journal of

Adhesion and Adhesives, 22(4):337–346, jan 2002.

[21] Eric Jankowski, Neale Ellyson, Jenny W Fothergill, Michael M Henry, Mitchell H

Leibowitz, Evan D Miller, Mone’t Alberts, Samantha Chesser, Jaime D Guevara,

Chris D. Jones, Mia Klopfenstein, Kendra K Noneman, Rachel Singleton, Ra-

mon A Uriarte-Mendoza, Stephen Thomas, Carla E Estridge, and Matthew L

Jones. Perspective on Coarse-Graining , Cognitive Load , and Materials Simu-

lation. Computational Materials Science, 169(109129):109129, jan 2020.

[22] Stephen Thomas, Monet Alberts, Michael M Henry, Carla E Estridge, and Eric

Jankowski. Routine million-particle simulations of epoxy curing with dissipa-

tive particle dynamics. Journal of Theoretical and Computational Chemistry,

17(03):1840005, may 2018.



8

CHAPTER 2

BACKGROUND

First we will discuss techniques and concepts that are used throughout this work

(molecular dynamics in Section 2.1 and coarse graining in Section 2.2). Then we

discuss relevant thermoset (Section 2.3) physics. We then end with background

information on current scientific software engineering best practices (Section 2.4).

2.1 Molecular Dynamics

Molecular Dynamics (MD) simulations are in many ways like experiments performed

in an experimental laboratory [1]. First, some material is prepared for study, then

some property of the material is measured. When we perform a MD simulation,

we first configure our initial configuration, then use Newton’s equation of motion

to update the particles locations until we reach equilibration, then we perform our

measurement.

The first MD study was performed in 1957 by Alder and Wainbright (Ref. [2]) to

calculate the phase transition for hard spheres. The largest system studied by Alder

and Wainbright had 108 spheres and these simulations were performed on an IBM-704

which could perform 12,000 floating point additions per second [3]. The first MD study

performed on a real material was performed by A. Rahman (Ref. [4]) in 1964. He

simulated 864 argon atoms on a CDC 3600 computer that cost 1.2 million dollars
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and had 1.536 megabytes of memory and could perform seven hundred thousand

instructions per second at a CPU frequency of 714 kHz. In this work the largest

systems we examine have 4 million particles and the GPUs that we used in our work

are capable of 3.5× 1012 floating point operations a second, which is 100 million times

faster than the IBM-704 used in the first MD simulation.

Molecular dynamics allows us to study molecular motion. This motion, while

discretized, represents a physical trajectory that a molecule would experience in a

physical experiment. This is important for our self-assembly studies because we are

interested in both the thermodynamically stable structure and the pathway to that

structure. First we will start with an example simulating argon using a Lennard-Jones

pair potential (Equation 2.1).

VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(2.1)

Where σ represents the size of the particle and ε is the depth of the potential well (see

Figure 2.1. Since we are simulating only a single particle species, we can choose σ and

ε to be one, and then scale by the parameters for argon when performing analysis later.

Before moving onto a description of the steps in a molecular dynamic simulation, we

have a simulation detail to consider, how do we treat our simulation volume? To

reduce finite size effects, we treat our simulation volume as periodic, which means

that particles that would venture past the edge of the simulation volume are wrapped

back into the volume on the other side. The basic molecular dynamic steps are

1. Calculate potential energy between every simulation element

2. Calculate forces between every simulation element using the relation F = −∇U
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Figure 2.1 Plot of Lennard-Jones (Equation 2.1) potential energy (U) as a function 
of distance, r with σ = 1 and ε = 1.

3. Use Newton’s second law (a = F
m

) to calculate the acceleration for each element

4. Use acceleration to calculate velocity for each element

5. Displace particles r with r = vδt and advance simulation time t = t+ δt

This process is repeated as long as needed, typically until the simulation reaches

thermodynamic equilibrium and enough statistically independent samples are col-

lected. This basic outline of molecular dynamics is sufficient to understand what

molecular dynamics is and a more thorough description of the current state-of-the

art in molecular dynamics techniques is outside the scope of this brief background

section. See Appendix F “Saving CPU Time” in Ref. [1] (Frenkel and Smit) for

discussion on how modern molecular dynamics software accelerates computation. Our

argon example was convenient since we had only a single potential to evaluate. When

simulating more complex molecules, additional terms are needed to represent the

interatomic forces. These are divided into pairs, triplets, and quadruplets of bonded

atoms or bonds, angles, and dihedrals (see Figure 2.2). In molecular mechanics, it is
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Figure 2.2 Illustration of bond distance r, bond angle θ, and dihedral angle φ.

common to use a harmonic oscillator to represent bonds with the form:

Ubond(r) =
1

2
k(r − r0)2, (2.2)

where r is the distance between a pair of bonded atoms, k is the spring constant, and

r0 is the equilibrium bond length [5]. Angles are also often harmonic and in the form:

Uangle(θ) =
1

2
k(θ − θ0)2, (2.3)

where θ is the angle between the triplet of atoms, k the spring potential constant, and

θ0 the equilibrium angle [5]. Dihedral functional forms tend to vary more in literature

than bond and angle terms. Two different dihedral forms are used in this work. In

Chapter 3, dihedrals are in the “OPLS style” and have the form:
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V (r) =
1

2
k1 (1 + cos (φ))+

1

2
k2 (1− cos (2φ))+

1

2
k3 (1 + cos (3φ))+

1

2
k4 (1− cos (4φ)) ,

(2.4)

where φ is the angle between both sides of the dihedral and k1, k2, k3, k4 are the force

coefficients. In Ref. [6], dihedrals are in the form of a multi-harmonic series [7]:

Udihedral(ϕ) =
4∑

n=0

kn cosn ϕ, (2.5)

where φ is the angle between both sides of the dihedral and kn are the force coefficients.

In principle, any function can be used to describe the inter- and intra- atomic forces,

but smooth, continuous, and differentiable functional forms help to ensure numerical

stability.

2.2 Coarse Graining

In order to simulate longer time and length scales we have a few options. We could

buy faster hardware, improve our algorithms, or combine some simulation elements

together. By combining simulation elements together into a single simulation element,

we reduce the number of elements that we need to keep track of, which results in faster

simulations. This method is called “coarse-graining”. One method of coarse-graining

is to create a particle at the center of mass of the simulation elements being combined

and removing the elements that are now represented by a single particle. For a more

thorough description of coarse-grain modeling, see Chapter 17 of [1], and review

articles by Ingolfsson et al. [8] and Saunders and Voth [9]. With coarse-graning, we are

sacrificing atomistic positional fidelity for computational efficiency.

In this work, we use two different combination strategies. In Chapter 3 and Ref. [6],
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we combine carbon atoms and all bonded hydrogens into a single “united-atom”

(UA) site [10,11]. UA models are effective when the position and explicit electrostatic

treatment of hydrogen does significantly affect the properties or process being mod-

eled. Even more coarse-grained models are possible (see Figure 2.3). With each

Figure 2.3 Illustration of successively coarser coarse-graining schemes. Scheme a) is 
an “all-atom” or “fine grain” representation of an alkane chain, where each atomic 

species is represented by a simulation element. Scheme b) is an “united-atom” model, 
where hydrogen is implicitly modeled by modifying the forcefield parameters of their 
constituent atoms. Scheme c) is a coarse-grain model, where each simulation element 

corresponds to multiple atoms. With each successive scheme, the number of simulation 
elements required to represent the alkane chain are reduced.

successively more coarse model in Figure 2.3, we trade-off explicit treatment of the

degrees of freedom present in our molecule for an approximation of the underlying

fine-grain elements position. Backmapping techniques [12] can be used to “recover”

the probable location of the fine-grain elements if need to calculate some property

that is unable to be accurately calculated with a coarse-grain model. In Ref. [13] 

and Chapter 4, we use a scheme where entire molecules are coarse-grain into a single

simulation element. Coarse-grained models are necessary to study experimentally

relevant systems of thermosets because the length scale associated with thermoset
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microstructure is in the nanometer to micrometer regime, which is inaccessible with

all atom molecular dynamics (AAMD). One of the largest AAMD simulations with

crosslinking had 230,000 atoms and a box edge length of 13.6 nm [14]. This simulation

did not have a non-reacting toughener component and coarse grain models will be

required to study cure induced phase separation of toughening agents in thermosets.

2.3 Thermoset

Polymers are macromolecules formed by repeat units, called monomers, that are co-

valently bonded. When polymers are heated above their glass transition temperature,

they flow like a liquid. Below their glass transition temperature, they can either form a

semi-crystalline solid or an amorphous glass (which has some short-range order but no

long range order). Polymers are a category of material that has many sub-categories,

in this section we will focus on thermosetting polymers (for a more general overview

of polymers, see Chapter 14 and 15 of Ref [15]).

Thermosetting polymers form 3-dimensional networks when their monomers chem-

ically react when heated [16]. This chemical reaction is irreversible and forms covalent

bonds, which is the difference between thermosets and thermoplastics (which with

temperature or solvents can be reshaped). Thermosets used for aerospace applica-

tions start with low-molecular weight monomers (frequently only dozens of atoms),

which when reacted form dense, stiff, strong, and highly connected networks. These

thermosets are lightweight and are commonly used as the matrix for fiber composites.

As the thermosets react and form bonds, their molecular weight increases which

affects their material properties. This makes them difficult to process as glass tran-

sition temperature and viscosity vary as a function of degree of cure, α. In addition
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to the fact that material properties change as the thermoset cures, the reaction is

exothermic [17], which results in autocatalytic [18] behavior. This makes it difficult to

precisely control the temperature, which is necessary for both controlling the rate

of the reaction, and also ensuring the prescribed cure cycle from the manufacture

is followed. Controlling the temperature of the reaction is more difficult with more

reacting material, preventing large scale parts from being reliably formed.

One material property of interest for thermosetting polymers is the gel point. In

1941 Flory [19] demonstrated, with a few assumptions, that the point of gelation is

solely a function of the number of functional groups in the reacting species. This the-

ory was further refined by Stockmayer in 1944 [20] and is know as the Flory-Stockmayer

theory of gelation. One central assumption is that steric affects are negligible, which

causes the theory to underpredict the degree of cure at gelation [21]. We can measure

the gel point in our simulations by observing when the molecular mass of the largest

and second-largest network diverge, as seen in Figure 2.4.

Figure 2.4 Example gel-point calculation. When the largest (blue) and second-
largest (orange) molecular mass diverge, a thermoset is considered to have “gelled”, 

here calculated at α = 60%.
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The gel point is an important material property as the viscosity of the thermoset

increases rapidly past the point of gelation, which can cause significant issues when

processing a thermoset. Depending on the glass transition temperature at a given

degree of cure, gelation can have the effect of locking in a phase separated toughener

nanostructure, which depending on the properties of interested, may or may not

be desirable. Above the glass transition temperature, the thermoset morphology

may still evolve, but once the thermoset is below the glass transition temperature,

vitrification occurs and thermoset becomes a glassy state. Being able to predict

properties like point of gelation and the glass transition temperature as a function of

degree of cure is key to improving the reliability of composite manufacture. For more

background information on the molecular modeling of thermosets, see the excellent

review article by Li et al. [16].

2.4 Current Software Engineering Best Practices

Reproducible results are one of the major tenets of the scientific method. However,

there is a reproducibly crisis affecting many different scientific fields [22]. It is em-

barrassing that computational sciences have reproducibility issues when it should be

“easy” to replicate simulation results since we (in principle) are able to control the

environment where we conduct our experiments (in silico) precisely. While we do

have full control over our software environment, we often fail to fully document our

software environment.

Using open source code is essential to produce reproducible results. For more

than a decade, the results of a simulation of super cooled water were disputed and

the dispute was solved within two weeks of the code being made public [23]. Once the
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code was public, people were able to find an issue that was an implementation detail

that was left ambiguous when the algorithm was described in the paper. Hence, it

is not enough to publish the pseudo code of an algorithm, the source code of the

implementation used to generate the results must also be provided. While releasing

the source code does not magically fix bugs, having many eyes looking at the code

can identify issues with the code. Providing input files and analysis scripts does not

only enable reviewers to spot potential issues with the work, but also enables future

work to easily build off of previous work.

It is frustrating to find a paper that does an impressive analysis or utilizes some

novel initialization strategy, but because code and input files are not shared, in order

to use the new method, one would have to re-implement everything from a terse

algorithm description, which slows down scientific progress and creates duplicate

work. Providing the raw data generated from the simulation also helps to improve

reproducibility as then others can run the same analysis on the data. Here we have

a unique opportunity. It would not be possible for an experimental group to share

some new novel material sample with the entire scientific community. There is a finite

amount of material, it may be too dangerous to ship or expensive to share with more

than a few research groups. With simulations, we can share our outputs and raw

data with the entire world.

It is difficult to faithfully reproduce a software environment. While a paper

may mention the software used in the research, without knowing the version of

the software, it may be impossible to reproduce as the authors may be relying

on the behavior of some bug in an old version of code. Even with the software

version, things like complier version, compile time options, dependency versions, and

even operating system can have an effect. A python script used to calculate NMR
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shifts yields different results depending on the operating system due to assumptions

made on how files were sorted when listed [24]. Software “Containers” can help solve

these issues. Containers are similar to a virtual machines but have less overhead

as they do not vitalize hardware. With a container, the software environment is

defined in a declarative way and allows people to reproduce the same container on

a different machine. Reproducible software environments are key for reproducible

simulations and analysis. Containers can also reduce cognitive load when working

with a heterogeneous computing environment as the same software stack can be

replicated to multiple clusters.

Using public version control repositories for software development has benefits

beyond just tracking changes to code. Version control enables an unambiguous way

to “point” to a version of code used in research. Version control also tracks who

makes what change which makes it easier to ensure that all code authors receive

credit for their work. With services like Zenodo, one can obtain a DOI number for

a code repository. There are two benefits to this practice. One, the code repository

is easy to cite, making it easier to get “credit” for scientific software development.

Two, the DOI links to a specific version of the code, meaning that future researchers

know exactly what version of the code was used in the research. This is important

for research reproducibility as some software bug or implementation detail can affect

results.

Continuous integration (CI) is another practice for writing scientific software and

could prevent some of the bugs previously discussed [24]. CI is a development practice

where code is frequently committed to a shared repository and tested automatically

in an isolated environment. By running tests in an isolated environment (instead of

locally on the developers workstation) bugs related to different software environments
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are easily detected. Most developers use a single operating system to develop code,

but with CI, tests can be conducted on a matrix of different operating systems

and software versions. CI also enables software metrics to be tracked, such as test

coverage, helping to identify parts of the code base that could benefit from additional

testing. See these papers [25–27] for more discussion regarding current best practices,

and Ref. [28].
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CHAPTER 3

SIMPLIFIED MODELS FOR ACCELERATED

STRUCTURAL PREDICTION OF CONJUGATED

SEMICONDUCTING POLYMERS1

3.1 Introduction

Organic semiconducting polymers are promising components of next-generation elec-

tronics, as they can be used to create lightweight, flexible, and inexpensive devices

such as organic thin film transistors (OTFTs), light emitting diodes (OLEDs), and

photovoltaics (OPVs) [1]. These benefits arise from inexpensive, scalable, solution-

based manufacturing processes, generally performed at lower temperatures than in-

organic material purification, at atmospheric pressure, and often without special-

ist machinery [2,3]. Additionally, synthetic chemists can functionalize components

of these molecules, chemically tuning the energetics to obtain enhanced electronic

performance [4]. Organic semiconductors are of particular interest in the photovoltaics

community, where opportunities exist for scalable manufacturing of inexpensive solar

technologies [5]. Understanding how these molecules can be organized into structures

1This chapter has been published in J. Phys. Chem. C and is referenced as “Henry, M.
M., Jones, M. L., Oosterhout, S. D., Braunecker, W. A., Kemper, T. W., Larsen, R. E.,
. . . Jankowski, E. (2017). Simplified Models for Accelerated Structural Prediction of Conju-
gated Semiconducting Polymers. The Journal of Physical Chemistry C, 121(47), 26528–26538.
https://doi.org/10.1021/acs.jpcc.7b09701”
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that optimize conversion of light into electricity is a significant current challenge

in the field [6]. The nanostructure of OPV active layers is critically important to

the charge-carrier mobility – a property that strongly affects the resulting device

performance – and depends on thermodynamic and kinetic factors that govern the

self-assembly of its constituent molecules [7,8]. In particular, the spacing between

polymer backbones, the sizes of these ordered domains, and their interconnectivity –

all morphological characteristics – have a significant impact on OPV performance [9,10].

In order to rationally design organic electronics, we require improved understanding

of how to select components optimized to assemble into the desired nanostructures.

Current understanding of how OPV active layer morphologies depend on their

components and processing has been developed through both wet lab experimentation

and computer simulation [11–15]. In the laboratory, active layer films are made by

mixing organic semiconductors with a compatible solvent that is later evaporated

through spin coating, drop casting, printing, or other deposition techniques onto

a substrate [16,17]. The nanostructure of these films can be probed using grazing-

incidence X-ray scattering (GIXS), which reveals ordering of the film components [18].

In computer simulations, molecular dynamics (MD) or Monte Carlo (MC) methods

are used to sample equilibrium ensembles of configurations of the same molecules,

and GIXS analysis can be extracted by transforming the atomic positions that result

from these models [15]. The focus of this work is to enhance the complementarity of

these techniques by improving the predictive capabilities of computer models.

The challenge in the lab is that determining the relationships between active layer

morphology and device performance is hindered by the difficulty in reliably controlling

the morphology of organic thin films. One barrier in predicting the structures that

self-assemble in organic semiconducting polymers is the impact small changes in ma-
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terials choice or processing have on molecular packing [19]. For instance, the molecular

weight [20] and regioregularities [21,22] of poly(3-hexylthiophene) (P3HT) influences the

conformation of backbone chains, structural feature sizes, and charge mobility of

the deposited films. Furthermore, modifications to the casting solvent [23], annealing

conditions [21,24], or the addition of organic dyes [25] can result in an active layer with

drastically different structures and subsequent device performance. Another barrier

to understanding active layer morphology is the difficulty of characterizing structure

in relatively disordered layers with low scattering contrast [18]. Scanning microscopy

techniques can provide useful insight into the surface features, but often miss the

important structure of the bulk. Other techniques can provide additional information,

but at the cost of destructively sampling the films [26].

The challenge with molecular simulations lies in faithfully representing experi-

ments with models that are computationally tractable [15]. Increasing the number of

simulation elements either with more detail or larger systems increases the number

of calculations to perform and therefore the computation time required to obtain

the final result of the simulation. The time needed to perform a simulation –its

computational cost– depends on: (1) the cost of advancing from one configuration to

the next, which scales worse than linearly with the number of simulation elements

(atoms), and (2) the fact that systems with more simulation elements require more

configurations to be sampled before relaxing to a steady-state.. In the case of organic

semiconducting polymers, we can understand the scale of the problem by considering

that coherence lengths of the order 3 to 30 nm are commonly observed in GIXS

experiments. It stands to reason that, if a 30 nm coherence length is to be observed in

a simulation, length scales of at least 30 nm must be represented. This is accomplished

in MD simulations with a periodic unit cell, and filling it with carbons, hydrogens,
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oxygens, sulfurs, and nitrogens in representative ratios at realistic densities of the

order 1 g/cm3, which corresponds to between 0.7 million and 1.5 million atoms.

Million-atom simulations are now routine on supercomputers, especially those with

graphics processing units (GPUs), but are typically limited to accessing time scales of

hundreds of nanoseconds at most [27]. Performing a million-atom simulation of organic

oligomers on supercomputers that accesses the hundreds or thousands of nanoseconds

required to equilibrate can take several months of computation time for a single state

point. In the polymer limit of chain length (over hundreds of monomers), neither

experiments nor simulations can be run long enough to equilibrate, with observed

morphologies representing entangled, kinetically arrested configurations. Rather than

month-long computation times accessing equilibrium, the ability to perform hundreds

of simulations per month that predict thermodynamically-driven yet possibly-arrested

assembly, is required to determine phase diagrams or to find optimal conditions for

assembling target structures.

To lower the computational cost of a model (assuming recent GPU supercomputers

are being used), approximations must be invoked to lower the number of simulation

elements represented. This is the basis behind coarse-graining strategies, where

typically spherical simulation elements are used to represent collections of neighboring

atoms and their associated bonds. Such models have been used to overcome the

atomistic simulation time/length barrier, providing insight into photoactive polymers,

lipid bilayers, and macromolecular structures [13,14,28,29]. Another modeling approx-

imation is to ignore the fast modes of fluctuations about relatively rigid bonded

constraints. Recent work studying the self-assembly of aromatic molecules perylene

and perylothiophene showed that using rigid bodies to model conjugated systems

improved sampling by a factor of two or better, without affecting the observed phase
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behavior or self-assembled morphology [30]. The improvement was attributed to the

combination of more timesteps accessible per CPU second, and shortened structural

decorrelation times when a rigid body approximation was employed. Because conju-

gated systems are prevalent in organic electronics, coarse-grained models with rigid

body approximations have potential to enable screening studies of organic electronic

ingredients for those that robustly self-assemble into desirable nanostructures.

The success of computational screening studies depends on the accuracy and

transferability of coarse-grained models. In this work we measure whether and to

what degree rigid body approximations, combined with a united atom model, may

be used to enhance the sampling efficiency of statepoints for a system that has

characterized experimentally. We use MD simulations to investigate the self-assembly

of poly(benzodithiophene-thienopyrrolodione) (BDT-TPD) pentamers, which are ex-

pected to be representative of donor-acceptor alternating copolymers. This class

of molecules has demonstrated promise as a component of high power conversion

efficiency photovoltaic devices, due to desirable optical and electrical properties [31,32].

We examine the evolution of the simulated morphologies after slow or fast cooling,

and for cases when the conjugated moeities are described by rigid bodies or more

expensive flexible bond, angle, and dihedral terms. Two different cooling schedules

are used: an instantaneous “quench” from infinite temperature, and a more gradual

“annealed” cooling schedule, where the temperature is decremented over a longer

period of time. For all models, we evaluate the degree to which the simulations

reproduce experimentally characterized film structures with simulated GIXS data,

and quantify the computational efficiencies of each model. We aim to find the most

efficient set of approximations to include in the modeling of an amorphous polymer

that still faithfully predicts the morphologies observed in experiments. We determine
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that simulating BDT-TPD using rigid bodies results in a significant reduction to

computational cost and reproduces experimentally-observed structure. We find that

“annealing” results in structures that better match experiments than “quenching”, as

expected, but with minor measurable differences in precise scattering peak locations.

We also observe small measurable differences between the predictions of rigid and

flexible models, though both accurately predict primary experimental features, and

the disorder-to-order (glass) transition temperature.

In the Methods section we define the rigid and flexible models used in this inves-

tigation as well as the analysis techniques used to quantify structure and determine

when a simulation has sampled sufficiently many configurations. In the Results

section we detail the key simulation results and explain comparisons against exper-

imental studies. We conclude with a discussion of the applicability of the present

work and suggestions for future directions. The major modeling assumptions and

investigation aims can be summarized in this question: To what degree do oligomers

of BDT-TPD in implicit solvent and with implicit charges, modeled with OPLS-UA

parameters unoptimized for BDT-TPD, faithfully represent self-assembly observed

in experiments? We establish a minimum requirement for performing sufficiently

accurate screening of thermodynamic state points, in order that promising structures

can be quickly identified and submitted to further, more detailed, analysis using more

expensive and rigorous methods. The enhanced sampling of time scales and length

scales presented here enables the best to-date prediction of complex OPV oligomer

self-assembly.
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3.2 Methods

The chemical structure of BDT-TPD (3.1a) is described by a united atom model

(3.1b), where hydrogen atoms are abstracted away into a “united” site that represents

the carbon atom and all of its bonded hydrogens [33,34]. This technique reduces

the number of simulation elements, improving computational efficiency while still

maintaining good agreement with both atomistic models and experiment for a va-

riety of systems. This technique has been shown to provide an improvement in

computational efficiency, while still maintaining good agreement with both atomistic

models and experiment for a variety of systems [30,35–39]. We employ the OPLS-UA

(Optimized Potential for Liquid Simulations-United Atom) forcefield to model the

non-bonded and bonded interactions [33]. The OPLS-UA forcefield includes constraints

(bonds, angles, and dihedrals between pairs, triplets and quadruplets of simulation

elements respectively) to model intramolecular structure, and describes non-bonded

pair-wise interactions with Lennard-Jones potentials [33]. Reference units taken from

the OPLS-UA force field are: length σ = 3.55 Å, energy ε = 1.74×10−21 J, and mass

M = 32.06 amu. The values of σ and ε correspond to the van der Waals radius and

Lennard-Jones well depth of OPLS sulfur atoms, andM is the atomic mass of sulfur.

The forcefield coefficients used in this investigation are described completely in the

SI Section 1.

We consider two versions of the OPLS-UA model of BDT-TPD. The first ver-

sion, termed “flexible”, is a standard implementation of the OPLS-UA force field

as described above. The second version, termed “rigid”, represents each of the

benzodithiophene and thienopyrrolodione moieties as rigid bodies (3.1c). [40]. Within

each rigid body the constituent atoms are locked into place relative to each other,
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(a) (b)

(c)

Figure 3.1 (a) Molecular structure of a BDT-TPD monomer. (b) United-
atom topology of BDT-TPD, with implicitly modeled hydrogens. Blue spheres 

represent carbon atoms, red oxygen, yellow sulfur, and the green nitrogen. (c) An 
example BDT-TPD pentamer, colored by individual rigid bodies.

and a quaternion is used to encode the orientation of the individual benzodithiophene 

and thienopyrrolodione units. In both the rigid and flexible models, the oligomer

sidechains are treated as flexible. Utilizing a rigid representation for these conjugated 

systems reduces the number of bond, angle, and dihedral degrees of freedom by

135, 200, and 290 respectively per pentamer, resulting in 53% fewer intramolecular 

constraints than in the flexible model. This reduction in the integrated degrees of

freedom results in an increased quantity of simulated timesteps per CPU second.
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The current work focuses on whether this improved computational efficiency results

in compromised sampling times or the structural prediction capabilities of the model.

We study oligomers with five repeat units of isotactic, regioregular BDT-TPD

(3.1), each with molecular weight of 3.542 kDa in implicit solvent. These molecular

weights permit the simulation of sufficient material to access experimentally relevant

length scales, while avoiding the longer relaxation times associated with longer poly-

mers [13,14,41]. The implicit solvent quality is determined by a multiplicative scaling

parameter es that modulates the Lennard-Jones well depths as implemented by Shin

et al [42]. Experimentally, es < 1.0 corresponds to a solvent within which a solute can

be dissolved easily, and es > 1.0 describes a solvent that is more difficult to dissolve

in. At the number densities studied here, the implicit solvent represents 18.2% of

the simulation volume, and is meant to capture the mobility-enhancing effect of the

solvent before it is evaporated from the active layer. This method allows us to capture

the effects of a solvent, without the added computational cost of directly simulating

the solvent molecules. In this investigation, we use es = 0.5 throughout to investigate

the structure of BDT-TPD in a relatively good solvent. Here we also assume long-

range electrostatics play a negligible role in self-assembly, due to combined effects

of charge screening by the implicit solvent and charge delocalization known to occur

within conjugated systems. A performance benefit of the negligible charge assumption

is that computationally expensive long-range electrostatic interactions need not be

computed.

The reduced units of energy, distance, and mass determine derived units of time

and temperature. The calculated units of time are therefore τ =
√
Mσ2

ε
= 1.97×10−12

s. A unit of dimensionless temperature T corresponds to ε
kB

= 126 K, and di-

mensionless temperatures between 0.5 T (63 K) and 9.0 T (1134 K) are used as
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thermostat setpoints in this work. We use the symbol T without units to refer to

dimensionless temperature and specify units of Kelvin otherwise. Molecular dynamics

simulations are performed using HOOMD-Blue [40,43] on the Maverick and Kestrel high

performance computing clusters outfitted with K20-architecture NVIDIA graphics

processing units (GPUs). Simulations are performed in the canonical (constant

number N , volume V , and temperature T ) ensemble, regulated with the Nosé-Hoover

thermostat [44] using the MTK equations [45,46]. Particle positions are updated via the

velocity-Verlet integration of Newton’s equations of motion, after every dimensionless

timestep, dt = 0.001 = 1.97 fs [47]. We perform simulations across a range of temper-

atures, T , and unless otherwise specified the fiducial simulation parameters are listed

in 3.1.

L 30.017σ 10.7 nm
Tmix 9.5 1198 K
dt 0.001 1.97 ×10−15 s
Nmol 197 197
es 0.5 good solvent

 Initial configurations are generated through random chain placement, mixing, 

and shrinking to the target density described below. X-Ray reflectivity measurements 

of poly(BDT-TPD) report 1.17 g/cm3 [48], and here we initialize volumes of BDT-TPD 

oligomers with a small amount (18.2% by volume) of implicit solvent. First, the 197 

pentamers are randomly initialized in volume large enough to easily place them 

without overlap. Second, NVT simulations are run at Tmix = 9.5 (1198 K) for 1.0×105 

timesteps (0.197 ns), allowing the pentamers to mix at high temperature and low 

density. Finally, an additional 1 × 105 timesteps (0.197 ns) of this simulation

Table 3.1 Fiducial simulation parameters: Periodic box length L, number of 
molecules Nmol, mixing temperature Tmix, solvent quality es, and timestep size dt.
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are performed while the periodic box axes are linearly scaled down to 30.017σ.

This initialization protocol efficiently generates unique, randomized configurations

of oligomers at T = 9.5 (1198 K) that are then annealed or quenched to lower

temperatures. When cooled below the glass transition temperature, the oligomers

phase separate from the implicit solvent so we expect the resulting structures to be

comparable to neat BDT-TPD films after solvent evaporation.

The “annealed” simulations model gradual cooling of BDT-TPD films. Annealing

is modeled here with a sequence of MD simulations performed at successively lower

temperatures. The dimensionless temperatures in these simulations are decremented

instantaneously by δT = 0.5 (63 K), every 1.2 ×107 timesteps (∼ 24 ns) resulting in a

cooling rate of 2.62 Kelvin per nanosecond. Though this annealing rate is extremely

fast compared to those achievable in experiments, for the relatively small volumes

simulated here it makes the difference between allowing volumes to relax towards

thermodynamic equilibrium versus ensuring kinetic arrest. Nineteen simulations are

performed for each annealing run, beginning at T = 9.5 (1198 K) and ending at

T = 0.5 (63 K). The “quenched” simulations model cooling schedules that kinetically

arrest the structure of BDT-TPD films before they are able to sample the thermody-

namically stable configurations that drive self-assembly. Polymer films that have been

drop-cast or spin-coated in experiments are assumed to be quenched, as subsequent

annealing results in significant ordering [20,49–52] Here, we implement quenched cooling

schedules by instantaneously changing the temperature of an initial T = 9.5 (1198 K)

configuration to the desired set point. We quench to the same nineteen temperatures

as sampled during the annealing schedule. This permits the differences in structure

between cooling schedules to be observed at each of the 19 state points.

Quenched simulations can be performed in parallel if multiple processors or GPUs



35

are available, whereas annealed simulations must be performed in series. Therefore,

if all other factors are equal, it is computationally advantageous to be able to per-

form quenched simulations. All other factors are usually not equal when comparing

equilibrated to non-equilibrium structures (initial conditions matter, integrators can

matter, etc), so we expect the utility of quenching models to be limited to the specific

case of modeling polymer films that are kinetically arrested.

Simulations are determined to be in thermodynamic equilibrium by comparing

the fluctuations in potential energy of a simulation, run for at least twenty times the

expected relaxation time from preliminary investigations. First, the evolution of the

Lennard-Jones pair potential energy, ELJ , is considered for each simulation, and split

into 10 bins. For each bin, the standard deviation in ELJ is calculated. Starting

from the final bin and working backwards through simulation time, bins are added

to the “equilibrated region” if the standard deviation of the bin’s potential energy is

no more than twice that of the previous bin in the region.

Once the equilibrated region is determined, its autocorrelation time is calculated to

obtain the number of timesteps between statistically independent trajectory frames.

An example is shown in figure 3.2, where data after 1×10−7 s are considered to be

within the equilibrated window. The autocorrelation time measured by the first zero

of the self-correlations of the equilibrated windows (SI Section 2) averages 1.08×106

timesteps (2.12 ns) for the four combinations of model flexibility and cooling sched-

ule. The slowest autocorrelation time measured was 2.11×107 timesteps (41.6 ns).

Simulation configurations are saved every 1 × 106 timesteps in accordance with the

average autocorrelation times.
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Figure 3.2 A representative non-bonded potential energy trajectory ELJ . These 
data correspond to the flexible annealed simulation at T = 2.0 (252 K). The blue 

squares describe the equilibrated region of the system, where the standard deviation of 
energies within each bin (represented by the vertical, black dashes) is no more than 

twice that of the region to the right of it. Red circles describe the region of the 
simulation trajectory where the potential energy has not yet relaxed to equilibrium. 

The Python plotting library Matplotlib is used to generate the plots within this 
work [53].

3.2.1 Determining structure

The morphological structure of each cooled system is examined through a combination 

of cluster analysis and simulated X-ray diffraction. Here, neighboring oligomers are

considered to be part of the same cluster if the centers-of-mass of at least two adjacent

monomers on each chain are located within 1.6σ of each other. Ensuring that TPD

moieties on each chain are within the defined center-of-mass cut-off suggests that there

will be sufficient molecular orbital overlap between the regions of the molecule that a

charge carrier is likely to be delocalized along, resulting in favorable charge transport. 

Defining clusters in this manner has the effect of identifying the aggregates within

the morphology that would be expected to have good inter-chain electronic charge

transport - an important characteristic for efficient photovoltaic devices [54,55]. 3.3
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shows an example of two clusters. The chains within each cluster satisfy the clustering

criterion, however the criterion is not satisfied between the two clusters because only

a single monomer of each change lies within the 1.6σ cut-off. Distinguishing clusters

of BDT-TPD by color gives a visual representation of structure, in which significant

ordering is apparent as BDT-TPD is cooled, as seen in the Visual Molecular Dynamics

visualizations (3.4) [56].

Figure 3.3 An example of two independent clusters (green and white) that do not 
satisfy our clustering criterion, due to an insufficient number of adjacent backbone 
moeities within the center-of-mass cut-off for the most external molecules. Only a 

single green monomer is within 1.6σ of a white monomer (see insert).

Quantification of the coherence length scales in each simulation snapshot is per-

formed by a simulated grazing incidence X-Ray scattering technique. The full details

of the simulation methodology, including the mathematical implementations of sample 

orientation and structure factor calculation, can be found in Ref. [15]. In order to

automate the extraction of any coherence length scales and to quantify the degree

to which they appear in a simulation snapshot, we perform ensemble averages of
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(a) T = 9.5 (b) T = 0.5

Figure 3.4 An example image of the clusters generated using our specified criteria 
within the flexible BDT-TPD morphology, taken at (a) the T = 1198 K, and (b) after 
gradual annealing down to T = 63 K. For clarity, only the chain backbone moieties are 

depicted, and like colorings indicate simulation elements that belong to the same 
cluster. Cluster domains are a few nanometres in size and the simulation volume is 

cubic.

scattering features over spherically-distributed orientations of the simulation snap-

shot. These coherence length scales represent averages over 100 orientations of the 

simulation volume, uniformly distributed about a sphere using the generalized spiral 

approximation [57]. Each individual scattering pattern captures any anisotropic struc-

tural features associated with its scattering orientation and the spherical averaging 

facilitates the extraction of the most significant structural periodicities. The chain 

packing is described by the arrangement of the polymer backbone moieties within 

the sample. As our simulations contain fewer, shorter chains and smaller simulation 

volumes than are available in experiment, we remove the aliphatic side-chains in order

to amplify the signal associated with this backbone structure. To facilitate automated 

feature detection from the 2D GIXS patterns, we compute structure factors from the

radial (qr) average of diffraction intensities. An example of the structure factor plot 

at T = 315 K for all four models can be seen in 3.5. The location and amplitude

of the various peaks in 3.5 are dependent on the combination of the pair interaction

potentials, the choice of es, the final temperature of the simulation, and whether it
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was quenched or annealed.

Figure 3.5 The logarithm of the intensity in the scattering pattern as a function 
of radially-averaged structure factors (qr) for each model at T = 315 K.

We compare the calculated diffraction pattern with experimental GIXS data to 

validate our models. This practice is particularly useful when there is a match 

between experimental and simulated scattering patterns, because it gives insight into 

possible atomistic arrangements that occur in the experimental systems. Matching 

scattering patterns do not guarantee that the simulated structures are present in 

experimental films [58], yet represent the most detailed insight into possible structures 

without developing more sophisticated experimental characterization methods.

3.3 Results

MD simulations of the “rigid” and “flexible” models of BDT-TPD oligomers are 

equilibrated using the “annealed” and “quenched” cooling schedules at nineteen 

temperatures for each of the four combinations of model and cooling schedule (flexible-

annealed, flexible-quenched, rigid-annealed, and rigid-quenched cases). Ensemble
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average properties are calculated from statistically independent configurations once

the simulation has relaxed as described in the Methods section. On average it took

5× 106 timesteps (9.85 ns) to reach a steady-state after which the average potential

energy autocorrelation times for each state point were 1.08 × 106 timesteps (2.12

ns). We evaluate the computational performance of each model and cooling schedule

combination. Additionally, we compute three ensemble properties to characterize

each trajectory, (1) the non-bonded potential energy ELJ , (2) the proportion of chains

belonging to a cluster ζ, and (3) simulated scattering patterns.

3.3.1 Performance

The computational performance of the four cases are compared by evaluating timesteps

per second (TPS), relaxation time, and autocorrelation time at each temperature.

3.6 shows the rigid model has roughly 14% higher TPS compared to the flexible

model at the same temperature, and that there is little difference in TPS between

quenching and annealing schedules, as expected. Prior work employing rigid models

for perylene and perylothiophene showed the rigid model could have significantly

different relaxation times and autocorrelation times [30]. Here we find the flexible and

rigid models have identical autocorrelation and relaxation times, which means that

TPS is an accurate metric for comparing computational efficiency. A more thorough

and complete discussion of our simulations’ relaxation and autocorrelation times is

included in SI Section 2.

3.3.2 Potential Energy

Using ELJ as a proxy for structure we find the annealed and quenched simulations

generate identical potential energies when T ≥ 504 K (3.7a). For cooler temperatures
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Figure 3.6 The TPS of the simulations explored in this investigation as a function 
of temperature. The black vertical line indicates the disorder-order transition 

tempera-ture TDO = 410 K.

(T < 504 K) we find the annealed runs achieve lower potential energies than their 

quenched counterparts, as expected. In each case, ELJ is averaged over statistically 

independent samples. In all four cases, we observe a change in slope of the potential 

energy below 504 K, which is consistent with a structural phase transition. We observe 

the largest structural changes to occur between 441 K and 378 K, so we use the average 

as the disorder-order transition temperature TDO = 410 K. This corresponds well with 

the glass transition temperature (411 K) measured in experiments [59], although we 

note the presence of significant (8%) uncertainties both here and in experiments. The 

non-bonded potential energies are more positive in the rigid case because pairwise 

interactions between components of a rigid body (which would typically be negative) 

are omitted. The differences in non-bonded potential energy between the rigid and 

flexible cases are not constant, which suggests that these models may give rise to 

different molecular arrangements.(3.7b). However, since differences in ELJ are merely 

a proxy for structure, a more direct measurement of structure is warranted.
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Figure 3.7: (a) Non-bonded potential energy ELJ per atom as a function of tem-
perature, T . (b) Energy difference per atom between the rigid and flexible models. 
Error bars indicate standard error. Black vertical lines indicate the locations of the 

disorder-order transition temperature TDO = 410 K.

3.3.3 Clustering

To provide more detailed structural information about morphologies around the

transition temperature TDO, we analyze and visualize clusters of oligomer backbones

as described in the Methods section. 3.4 shows flexible-annealed morphologies above
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and below TDO, with backbones colored according to the cluster that they belong

to. The ordering of backbones within clusters can be seen in 3.4b. Details of a

single cluster are shown in 3.8, where two orientations of the cluster describe the

stacks of backbones that form “ribbons”. This backbone aggregation corresponds to

π-stacking observed experimentally, and we observe an average separation of around

4 Å. Such stacking is beneficial for charge transport, as closely stacked chains lead to

increased orbital overlap and faster inter-molecular carrier hops, which can be critical

in obtaining the high device efficiencies in organic thin-films. [54,55]. We find that

the average spacing between ribbons, similar to the lamellar length scale observed

experimentally, is around 21 Å for all four model/cooling combinations.

Figure 3.8 A detailed view of a single cluster, viewed from two orientations, taken 
from a T = 315 K flexible-annealed simulation snapshot. The red, green, and blue 

arrows represent the x, y, and z axis respectively. a) When the cluster is viewed along 
the y-axis, the aggregation of backbones through pi-stacking can be observed. b) When 
the cluster is viewed along the x-axis, the stack of backbones are seen to be mostly in-

register. We refer to these clusters as “ribbons”.

Analyzing the proportion of clustered backbones, ζ, as a function of temperature

for the four cases (3.9) gives additional insight into their structural differences. As

expected, both the quenching and annealing models give the same ζ when T > TDO.
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However, the rigid models are more likely to have clustered chains when T > TDO

than the flexible models. Near TDO, all four cases demonstrated sharp increases

in ζ. For low temperatures T < TDO, the quenched cases demonstrated a relative

decrease in ζ, which is consistent with the prior results indicating that they lack

the thermal energy to rearrange into thermodynamically stable configurations. The

annealed cases both show increased clustering as temperature is lowered, though

the flexible-annealed case ordered more than the rigid-annealed case. These results

reinforce the observations that a structural transition occurs around 410 K and that

modeling conjugated systems with rigid bodies has a measurable impact on the π-π

structural features that emerge.

0 200 400 600 800 1000 1200
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0. 2

0. 4
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Rigid Quench

Figure 3.9 The proportion of chains that belong to a cluster containing two or more 
molecules(ζ), averaged over all statistically independent frames for each state point, 
cooling schedule and molecular model investigated. The black vertical line indicates 

the disorder-order transition temperature TDO = 410 K.
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Figure 3.10 Comparison of a single a) experimental, and b) simulated GIXS 
scattering pattern of a BDT-TPD morphology. The simulated system contains 
oligomers described by rigid bodies, that were annealed to a temperature of 315 
K, and the snapshot was taken from the sample orientation that most clearly showed 

perpendicular features.

3.3.4 Scattering

For each of the four combinations of flexibility and cooling schedule, we find simulated 

diffraction patterns that closely match experimental scattering patterns. Below the

disorder-order transition temperature TDO = 410 K, GIXS patterns for all four 

combinations have the same twofold rotational symmetry with orthogonal scattering

peaks around 0.30 Å−1 and 1.77 Å−1. Figure 3.10a presents the experimental X-ray

scattering data obtained for BDT-TPD (synthesis described in SI Section 3 and

Ref [60]), in which prominent peaks are observed at qr = 0.30 Å−1 (rlamellar = 20.9 Å) 

and 1.77 Å−1 (rπ−π = 3.5 Å). Figure 3.10b presents a representative simulated

scattering pattern taken from a T = 2.5 (315 K) rigid annealed simulation. The
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simulated diffraction peaks are measured at 0.30 Å−1 and 1.71 Å−1, echoing the

length scales observed during our clustering analysis, and in excellent agreement with

experiment.

We compare the average peak locations at T = 2.5 (315 K), where all four combi-

nations of model and cooling schedule demonstrate significant clustering. Averaging

over all independent frames and all scattering orientations at T = 315 K showed that

the rigid annealed system most closely matched the experimental scattering patterns,

with only a 3.34% error in lamellar spacing, and a 10.57% error in π-π-spacing.

However, the π-stacking lengths across all four models lie within 15.71% (0.55 Å),

and lamellar spacing within 6.70% (1.4 Å) of the experimental values, suggesting

only minor structural differences between the models. In all four model and cooling

schedule combinations, the π-stacking length scales (3.87 < rπ−π < 4.05 Å) are

predicted to be larger than those observed in experiments (rπ−π = 3.5 Å), as seen in

table 3.2. This corresponds to a 12.41% over-estimation of the physical π-stacking

distance on average, which would be expected due the equilibrium distance between

OPLS-UA sulfurs: The minimum of the Lennard-Jones potential is at 21/6σ, or

1.12σ, which for sulfur is 3.98 Å. The OPLS-UA forcefield was not optimized for

conjugated systems, and this observation suggests that new atom types with smaller

diameters to represent conjugated carbons and sulfurs may be a small addition to

OPLS-UA that will offer improved structural predictions for conjugated molecules.

The periodicity of the long-ranged lamellar length scales (around rlamellar = 20.9 Å)

is in better experimental agreement, as all four of our models predict length scales

19.5 < rlamellar < 22.2 Å, within 6.70% of experimental GIXS data. The OPLS-UA

forcefield is well parameterized for alkyl sidechains, which are expected to mediate the

long length scales in our system, accounting for the good agreement with experiment.
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Long-range (rlamellar) Short-range (rπ−π)

Model
rsim rsim − rexpt |rsim−rexpt|

rexpt
%

rsim rsim − rexpt |rsim−rexpt|
rexpt

%
(Å) (Å) (Å) (Å)

Flex Anneal 22.25 ± 0.06 +1.35 6.46 3.937 ± 0.008 +0.437 12.49
Flex Quench 20.9 ± 0.4 +0.0 0.00 4.05 ± 0.03 +0.55 15.71
Rigid Anneal 20.2 ± 0.2 −0.7 3.34 3.87 ± 0.04 +0.37 10.57
Rigid Quench 19.5 ± 0.2 −1.4 6.70 3.88 ± 0.04 +0.38 10.86

Table 3.2 Comparison of the lamellar (rlamellar) and π-stacking (rπ−π) structural 
features and their deviation from the experimental values (rexpt, π−π = 3.5 Å, rexpt, 
lamellar = 20.9 Å) at T = 2.5. The subscript ‘sim’ corresponds to simulated peak 
locations.

Figure 3.11 The logarithm of the scattering intensity as a function of radially-
averaged structure factors (qr) over each statistically independent frame for a rep-

resentative flexible-annealed system at simulation temperatures above and below TDO 
= 410K. Only one model is shown for clarity as all four combinations of cooling 

schedules and models demonstrated the same trend.

Emergence of increased ordering via simulated scattering analysis supports the

observations from our non-bonded potential energy measurements and clustering

data that TDO = 410K. In 3.11, we consider the scattering peak intensities aver-

aged over statistically independent frames at four temperatures for representative
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rigid-quenched simulations. As the temperature is lowered, the intensity of the low

qr ∼ 0.3 Å−1 peak increases and shifts downwards, corresponding to longer length

scales. This indicates that there is more and longer-range structural ordering present

in the morphology at lower temperatures, in analogy to lamellar and liquid crys-

tal formation observed in neat poly(3-hexylthiophene)-b-poly-(90,90-dioctylfluorene)

(P3HT-b-PF) thin films [61]. At high qr ∼ 1.6 Å−1, there is a local peak intensity

maximum corresponding to increased π-stacking order in the system when cooled

below TDO, but this feature is not observed when T > TDO. The presence of the

π-stacking peak at T < 410 K reinforces that a structural change is occuring in the

system when cooling from above TDO to below it.

3.4 Conclusions

The OPLS-UA model used in this investigation captures the phase behavior of BDT-

TPD, with both rigid and flexible models showing a glass transition temperature

around 410 ± 32 K, in agreement with the glass transition temperature (411 K)

measured in experiments [59]. Utilizing rigid bodies to model conjugated systems in

BDT-TPD results in 14% faster simulations that faithfully reproduce the structural

characteristics observed in experiments. Cooling BDT-TPD oligomers below 441

K gives rise to increasingly ordered stacks of polymer backbones (“ribbons”), with

π-stacking within the ribbons and the “lamellar” spacing between the ribbons for both

rigid and flexible models, whether they are annealed or quenched. All four combina-

tions of model and cooling schedule overpredict the π-stacking length (by 0.37 Å to

0.55 Å), which is not surprising considering the OPLS-UA forcefield is not optimized

for these conjugated backbones. All of the model and cooling combinations predict
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the lamellar spacing within 1.35 Å of the experimental value, with the flexible-quench

matching best. Overall, the rigid-annealed simulations best match experiments with

the closest prediction of π-stacking and only 3.34% error in lamellar spacing, and the

rigid-quenched simulations provide the most structural insight for the least compu-

tation. In short, we find the phase behavior and morphology of BDT-TPD to be

accurately predicted by GPU-accelerated simulations of short oligomers in implicit

solvent using the OPLS-UA force-field without explicit long-range electrostatics.

The accurate structural predictions observed here support the modeling assump-

tions that the partial charges of BDT-TPD, the solvent degrees of freedom, and

the flexibility of each conjugated monomer unit play negligible roles in determining

self-assembled structure. We interpret these results to indicate that these modeling

assumptions are justified for accelerating the prediction of organic photovoltaic mor-

phologies. This is an important result in the context of high-throughput simulations

needed to screen thousands of candidate chemicals for those most likely to result in

high-efficiency organic photovoltaics because it shows that “off-the-shelf” force fields

that have not been optimized for a particular chemistry have high predictive utility.

The computational efficiency of quenching compared to annealing is significant, as

here a single 12-hour quench gives as experimentally-relevant results as over 144 hours

of annealing. We recommended using computationally efficient techniques (rigid

bodies, instantaneous quenching) for estimating phase transitions and identifying

candidate phases, followed by more detailed explorations where appropriate. As one

example relevant to organic photovoltaics, we show in other work how back-mapping

atomistic detail for calculating properties such as charge mobility is essential [15]. Of

course, there are certainly moeties for which charge, flexibility, and solvent assump-

tions made here will break down, so chemical intuition or first-principles calculations
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should be used before blindly applying them.

Using a simplified united atom model to predict BTD-TPD oligomer structure

opens related questions that extend from this work. Firstly, to what degree can

BDT-TPD and related organic semiconductors be further coarse-grained before the in-

creases in sampling efficiency are outweighed by inaccuracies in structural predictions?

Secondly, are there fundamental limits to using coarse-graining and back-mapping

as a form of thermodynamic integration to more rigorously calculate free energy

differences between materials? Thirdly, how generally applicable is the rigid-body

assumption for conjugated systems? Answering these questions and further validating

our modeling assumptions by predicting the morphologies of as yet unsynthesized

organic semiconductors is the focus of future work.
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Aı̈ch, Ye Tao, and Mario Leclerc. A Thieno[3, 4-c]pyrrole-4, 6-dione-Based

Copolymer for Efficient Solar Cells. Journal of the American Chemical Society,

132(15):5330–5331, 2010.

[60] Wade A Braunecker, Zbyslaw R Owczarczyk, Andres Garcia, Nikos Kopidakis,

Ross E Larsen, Scott R Hammond, David S Ginley, and Dana C Olson.



58

Benzodithiophene and Imide-Based Copolymers for Photovoltaic Applications.

Chemistry of Materials, 24(7):1346–1356, apr 2012.

[61] Yen-Hao Lin, Kevin G. Yager, Bridget Stewart, and Rafael Verduzco. Lamellar

and liquid crystal ordering in solvent-annealed all-conjugated block copolymers.

Soft Matter, 10(21):3817–3825, 2014.



59

CHAPTER 4

GENERAL-PURPOSE COARSE-GRAINED TOUGHENED

THERMOSET MODEL FOR 44DDS/DGEBA/PES1

4.1 Introduction

Lightweight composites are increasingly used as alternatives to metal components of

aircraft, especially over the last decades. Initially reserved for the most demanding

aerospace applications, such as fighter aircraft, composite components are now preva-

lent in commercial aircraft, including 50% of the weight of the Boeing 787 [1]. This

proliferation is enabled by improvements in composite formulations and processing,

yet there exist significant opportunities to improve the reliable manufacturing of

composite aerospace parts. Specifically, control of the thermoset matrix nanostructure

(morphology) during the curing is currently underdeveloped and improvements could

drastically increase the reliability and reduce the time and energy costs of part

fabrication [2–4]. The challenge lies in understanding how morphology depends on

the conditions experienced by the part during curing, and which morphologies have

sufficient material properties for specific applications. Improved ability to predict

properties from morphologies and morphologies from processing will enable:

1This chapter has been published to Polymers and is referneced as “Henry, M. M., Thomas, S.,
Alberts, M., Estridge, C. E., Farmer, B., McNair, O., & Jankowski, E. (2020). General-Purpose
Coarse-Grained Toughened Thermoset Model for 44DDS/DGEBA/PES. Polymers, 12(11), 2547.
https://doi.org/10.3390/polym12112547.”
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1. Predicting how deviations from process specifications impact performance.

2. Composite formulations optimized for manufacturing requirements.

3. Temperature schedules (termed cure profiles) optimized for speed and repro-

ducibility.

Embedding fibers in a matrix of polymers serves to support the fibers and transfers

loads between them, providing the attractive bulk mechanical properties of fiber-based

composites. The main chemical components of a thermoset are an epoxy species,

an amine species, and sometimes a toughening agent. Here we focus on the epoxy

bisphenol A diglycidyl ether (DGEBA), amine 4,4’-diaminodiphenyl Sulfone (44DDS)

mixed with toughener Poly(oxy-1,4-phenylsulfonyl-1,4-phenyl) (PES), a toughened

thermoset found in aerospace applications (Figure 4.1). Thermoset manufacturers

recommended cure profiles for matrix formulations based on cure requirements of the

crosslinked polymer. Recommended cure profiles are empirically determined and are

not necessarily the most efficient paths to sufficiently cured parts.

Figure 4.1 Coarse-grained representations of 44DDS (A), DGEBA (B), and 
PES (C) repeat units. The amines (A) can bond to up to four epoxies (B), which 

can each bond to up to two amines. All toughener molecules are linear 10-mers of 
(C).

During curing, the crosslinking of DGEBA and 44DDS lowers the miscibility of

PES, and this reaction-induced phase separation (RIPS) results in toughener-rich
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domain formation [5–9]. Early work by Sultan and McGarry (Reference [10]) used

rubber additives to improve fracture toughness in exchange for lower thermal stability

at high temperatures [6]. Since then, control over the toughener domains has been

shown to increase fracture toughness without sacrificing other desirable mechanical

properties [7,8,11–17]. The toughener domains improve mechanical properties though a

variety of mechanisms, including crack tip blunting, voiding at the interface between

thermoset and toughener, and shear yielding [18,19]. Smaller domain sizes are argued

to improve mechanical properties, as it results in higher surface area between the

thermoplastic and thermoset domains [7]. Block copolymers have also been deployed to

control toughener morphology and composite mechanical properties [20–22]. Regardless

of mechanism, understanding and controlling the morphology of tougheners whose

phase-separation is induced by the crosslinking is central to controlling the mechanical

properties of the matrix.

Temperature deviations away from a desired cure profile increase the probability

that the morphology and material properties of a part are compromised, and these

parts must undergo material review to confirm whether this is the case. Material

review involves the creation of a sample volume cured with the same temperature

deviation as the original part, which then undergoes mechanical testing. Throwing

away the deviant part and curing a new one usually costs less time and effort than

replicating the deviation and validating the sample volume, which is wasteful in the

cases of sufficiently strong deviants. Avoiding this waste would be possible if the

sensitivity of mechanical properties to cure profile deviations were more fully under-

stood.

Computer simulations are needed for making sense of cure profile sensitivity

because the parameter space combinatorics prohibit experimental enumeration, com-
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pounded by the impracticality of obtaining atomic-level detail of each cured mor-

phology. Formulating a thermoset includes choosing the chemistry and proportions

of epoxy, crosslinker, toughener, and additives compounds, resulting in combinatorial

explosion of candidate formulations. Further, each formulation can result in a wide

range of morphologies that depend upon cure profile, the number of which adds

another factor to the intractability of enumeration. Models for thermoset curing

implemented in computer simulations provide a proxy for part fabrication that are

faster and less expensive to perform, and can provide insight into how atomic-level

structure evolves and impacts properties. Further, modern GPU (graphics processing

unit) hardware enables sensitivity analysis and optimizing cure profiles for desired

morphologies because screenings of independent formulations and cure profiles can

be performed in parallel.

Computationally predicting morphology requires models that faithfully capture

the thermodynamics and kinetics of the crosslinking reaction between amine and

epoxy molecules, and resulting phase separation of any tougheners present. Doing

so is challenging because reactions dynamics occur at fast (1× 10−12 s) and small

(1× 10−10 m) scales, while morphology evolution occurs at slow (1× 102 s) and large

(1× 10−6 m) scales. Accurately simulating the cross-linking of the epoxy and amine

species is crucial when modeling these systems as the bonding network influences

the properties of the thermoset [23,24], in particular the relationship between the glass

transition temperature Tg and cure fraction α described by the DiBenedetto equa-

tion [23,25–31]. Atomistic molecular dynamics (MD) simulations with temperature-

independent bonding models have been successfully deployed to generate crosslinked

nanostructures and glass transition temperatures Tg, but are limited to simulation

volumes around (13 nm3) [32–36]. The work of Li, Strachan and coworkers [32,33] demon-



63

strates atomistic simulations of DGEBA reacted with 44DDS, 33DDS, and other

crosslinkers to predict mechanical properties including Tg, density, modulus, and ex-

pansion coefficients. In the case of Tg for 44DDS/DGEBA, the atomistic simulations

performed overpredict Tg,sim = 525 K compared to DSC experiments Tg,exp = 450

K at 92% cure, though no empirical fitting is performed and cooling-rate-dependent

corrections help explain the discrepancy [32,33]. Khare and Phelan investigate similar,

untoughened DGEBA (2-mers) and 44DDS and predict 489 K≤ Tg,sim(α = 100%) ≤

556 K, depending on cooling rate [36].

Coarse-grained (CG) approaches demonstrate the ability to access substantially

larger simulation volumes and time scales than atomistic approaches, and mapping

atomistic degrees of freedom into crosslinked networks enables calculation of material

properties [37–40]. In both References [38] and [40], one-site dissipative particle dynam-

ics (DPD) models are used to represent reacting monomers of 44DDS/DGEBA and

DGEBA/DETA (Diethylenetriamine) , respectively. In both cases, experimentally

reasonable Tg are calculated after backmapping, and the case is made for large system

sizes for observing toughener microstructure [38] and sufficient structural relaxation [40].

Langeloth et al. develop a coarse-grained model of intermediate resolution to study

toughened DGEBA/DETA and show significant discrepancies in Tg(α)CG < Tg(α)AA.

Earlier this year Pervaje et al. develop another intermediate-resolution coarse-grained

model of reacting thermosets parameterized by SAFT-γ Mie calculations, which

includes temperature-dependent reactions and a novel bonding algorithm [41]. Applied

to polyester-polyol resins, Tg predictions from the coarse model are in agreement with

experiments [41]. While the exact details and experimental validations depend on the

themoset formulation and the force fields used, multiscale approaches that use coarse

models to access long times, large volumes, and high cure fractions 0.9 < α < 0.95
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and atomistic simulations for mechanical property calculations have begun spanning

the ≈ 12 orders of magnitude between reaction dynamics and phase separation.

However, to predict how thermoset microstructure depends on cure profiles, temperature-

dependent reaction models are necessary. In our prior work developing epoxpy [42] ,

we implemented such a reaction model with DPD coarse-grained simulations. Here,

we extend epoxpy and focus on simulation workflows for parameterizing, validating,

and exploring materials behaviors of reacting thermosets with 44DDS/DGEBA tough-

ened with PES as a case study. While prior studies [32,33,36,38–41,43,44] have included or

implemented (1) Reaction rates calibrated against experimentally observed reaction

models, (2) Microphase separation of toughener, or (3) Tg(α) validated against ex-

periments, this work is distinguished by the inclusion of all three simultaneously,

and crucially (4) We demonstrate for the first time structural sensitivity to cure pro-

file.

4.2 Model

Spherical simulation elements (“beads”) are used to represent monomers of amine

44DDS (A), epoxy DGEBA (B), and each repeat unit of PES (C) 10-mers (Figure 4.1).

Non-bonded interactions are modeled with the 12-6 Lennard-Jones (LJ) potential

VLJ(r) =4ε

[(σ
r

)12
−
(σ
r

)6]
r < rcut

=0 r ≥ rcut,

where the parameters σ represent “size” of simulation elements and ε sets the magni-

tude of the potential energy minimum between two simulation elements. Throughout

this work σ is used as the dimensionless length scale and σA = σB = σC = σ = 1
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nm. We note that the relatively hard-core repulsion of the LJ potential prevents chain

crossing that is commonplace in DPD simulations, with impacts on network structure

and Tg calculations. Energy scales ε calculated from cohesive energy calculations de-

scribed in Section 4.4.1 and are summarized in Table 4.1. Interactions between dissim-

ilar simulation elements (“cross” interactions) are obtained using Lorentz-Berthelot

(LB) mixing rules applied in prior DGEBA studies [45–47], where

εAB =
√
εAεB (4.1)

and

σAB =
σA + σB

2
. (4.2)

Harmonic potentials are used to model bond stretching between pairs of bonded 

simulations elements. Harmonic angle potentials are used to model bending among 

triplets of bonded PES (type C) simulation elements, but no angle potentials are used 

for epoxy-amine triplets. No dihedral or improper constraints are implemented here.

Table 4.1 Interaction strengths (εij ) determined by cohesive energy calculations.

(A) 44DDS (B) DGEBA (C) PES

(A) 44DDS 0.9216 0.9600 0.9026

(B) DGEBA 1.0000 0.9402

(C) PES 0.8840

Bond formation between amine and epoxy simulation elements is modeled through

the stochastic creation of harmonic bonds between A and B beads that are sufficiently

close by an activated process with probability of bond formation
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p = e
−EaΥ

kBT , (4.3)

where Ea is activation energy and bond-order factor Υ = 1.0 if the bond being

proposed is the first bond to form for either bead and Υ = 1.2 otherwise.

By design, the energy scale for modeling pairwise interactions is distinct from

the energy scale for modeling bond formation, which are both distinct from the

energy scale for modeling vitrification. This modeling choice facilitates the empirical

bridging of timescales that is the focus of the present work through exploitation of

temperature-time superposition [24]. We report dimensionless simulation temperatures

T = kBT
K

ε
throughout this work, where kB is Boltzmann’s constant, TK is temper-

ature in Kelvin, and ε is an energy unit for either pairwise interactions, bonding

reactions, or vitrification. These energy scales span about three orders of magnitude,

with εpair = ε = 2.1× 10−22 J, εrxn = 1.78× 10−19 J, and εvit = 6.63× 10−21 J. The

pairwise energy scale is derived from cohesive energy described in Section 4.4.1, the re-

action energy scale is set from experimental measurements of activation energy [48],

and the vitrification energy scale is set by equating the dimensionless T simg (α = 1) to

an experimental measurement of T expg (α = 1) = 480 K [5].

4.3 Methods

Simulations of curing epoxy thermosets (with and without toughener) are imple-

mented with the open source dynamic bonding plugin “dybond” [49] written for the

HOOMD-blue [50] molecular dynamics engine. Data storage, retrieval, and job sub-

mission is done with the signac [51,52] framework. System initialization is performed

with mBuild [53]. Plots are created using matplotlib [54] and all scripts used for job
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submission and data analysis are available at this repository [55]. We use the bonding

algorithm as outlined in our previous work [42]. Briefly, every τB molecular dynamics

steps we attempt to form nB possible bonds where center-to-center distance between

an epoxy and amine simulation element is r ≤ 1.0σ and with probability as in

Equation (4.3). Here, nB = 0.005nT , where nT is the total number of bonds that can

be formed, equal to four times the number of A beads for the stoichiometric mixtures

of A and B. Simulation element positions and velocities are integrated forward in time

according to Langevin equations of motion with drag coefficient γ = 4.5 and step size

δt = 0.01. Random initial configurations are used for each independent simulation

run. We calculate the toughener (PES-PES, C-C) structure factor S(q) for simulation

snapshots using the “diffract” utility described in Reference [56], enabling identifi-

cation of any periodic domain features that could indicate phase separation. Unless

otherwise noted, simulation parameters summarized in Table 4.2 are used throughout.
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Table 4.2 Fiducial simulation parameters. Note that in the present CG 
model, monomer% and volume% are equivalent but are not identical to 
corresponding experimental fractions.

Parameter Value

Bond equilibrium (A-B,C-C) (ro) 1.0 σ

Bond force constant (A-B,C-C) (k) 100
εpair
σ2

Angle equilibrium (C-C-C) (θ0) 109.5◦

Angle force constant (C-C-C) (kangle) 25
εpair
σ2

Non-bonded interaction cutoff rcut 2.5 σ

Number density (ρn = N/V ) 1.0

Activation Energy (EA) 3.0 εrxn

Bonding distance maximum 1.0 σ

Secondary bond weight (Υ) 1.2

Enthalpy of Reaction (∆Trxn) 0.0

Bond Period (τB) 1.0

Maximum attempted bonds (nb) 0.005 nT

Langevin drag (γ) 4.5

%monomers 44DDS:DGEBA:PES 20:40:40

Cure temperature (T ) 3.0

Step size (δt) 0.01

Glass transition temperatures are calculated directly from coarse-grained simu-

lation volumes as described in Section 4.3.3 of Reference [57]. Briefly, snapshots

of simulations that have reached a specified degree of cure α are used to initialize

new simulations that are instantaneously quenched across a range of temperatures to
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identify Tg, below which the self-diffusion coefficient D vanishes (Figure 4.2).

Diffusion coefficients D = dMSD
6dt

are measured directly from quenched trajectories,

where MSD is the mean-squared displacement averaged over “B” (DGEBA) simula-

tion elements. We employ piecewise regression to identify the discontinuity in D(T ).

Calculations of Tg(α) are validated against theory by measuring the R-squared fit of

the DiBenedetto equation [58] modifed by Pascault and Williams [31]

Tg(α) =
λα(Tg1 − Tg0)
1− α(1− λ)

+ Tg0, (4.4)

where λ is chemistry specific and represents the non-linear relationship between Tg

and degree of cure and varies from 0 to 1 [31], Tg0 is the glass transition temperature at

zero percent cure, and Tg1 is the glass transition temperature at one hundred percent

cure (α = 1). We set λ = 0.5 for its quality of fit here, and note it is larger than λ

from prior work on 44DDS/DGEBA (0.34 [59]—0.38 [60]).

Figure 4.2 Tg prediction workflow: Snapshots at specified α are copied from a curing 
simulation to initialize instantaneous quenches across candidate low temperatures to 

identify where the self-diffusion coefficient D vanishes.
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4.4 Results

The 7849 independent MD simulations performed in this work fall into three cate-

gories:

1. Setup

2. Validation

3. Exploration

In total, approximately 15,000 GPU-hours of simulation time are performed over

about three months. Descriptions of analysis and simulation methods specific to each

type of simulation are included in the appropriate subsections that follow.

4.4.1 Setup Simulations

We perform 33 all-atom simulations to determine coarse-grained forcefield parame-

ters, 4480 coarse-grained simulations to calibrate reaction kinetics, and 1448 coarse-

grained simulations check for finite size effects before peforming validation and ex-

ploration studies.

Forcefield Parameterization

We perform 33 all-atom MD simulations to calculate cohesive energies ecoh of amine

44DDS (A), epoxide DGEBA (B), and toughener PES (C) moieties to parameterize

their non-bonded interactions of their coarse-grained simulation elements εi. In
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liquids, ecoh represents the energy required to separate molecules from the liquid

state into isolated molecules in the vapor phase

ecoh = Ebulk − Eisolated (4.5)

and is calculated from the difference in average molar potential energies E between

bulk and isolated molecules [42,61]. Cohesive energies have been used to estimate

macroscopic miscibility [62] and parameterize coarse LJ models [61] and we do the same

in the present work. We use the OPLS-2005 force field and NPT simulations at

P = 1 atm, and simulate 11 temperatures equally spaced over T ∈ [273, 600] K.

Each simulation volume is initialized with 500 molecules (monomers of DGEBA and

44DDS, 10-mers of PES) at a density of 1 g/cm3. After equilibration, densities in

agreement with experiments of 0.8–1.14 g/cm3 (DGEBA), 1.3–1.1 g/cm3 (44DDS),

and 1.3–1.2 g/cm3 (PES) are observed. Averaging over temperatures, we calculate

ecoh for DGEBA, 44DDS and PES monomers as 30.36 kcal/mol, 27.98 kcal/mol

and 26.84 kcal/mol respectively. We de-demensionalizes pairwise interactions in the

coarse-grained models by normalizing by the DGEBA cohesive energy, resulting in

the interaction potentials of Table 4.1.

Reaction Kinetics Calibration

Two parameters are tuned to calibrate reaction kinetics: The maximum number of

bonds attempted per bonding step nB and the number of time steps between bonding

steps τB. Reaction calibration is important for two primary reasons: First, the higher

the ratio of nB/τB, the faster simulations can cure to higher α, which saves time.

Therefore, the largest nB/τB that replicates experimental reaction dynamics optimizes
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computational throughput. Second, validating first-order reaction dynamics lays the

foundation for exploratory simulations with self-accelerated reactions. We perform

20 independent coarse-grained simulations of 44DDS/DGEBA/PES at each of 224

combinations of (nB, τB, T ) to identify the combinations that best fit a first-order

reaction model from experimental data [48]. Each simulation has N = 50000 (10000

A, 20000 B, and 2000 10-mer chains of C) coarse simulation elements and is cured

isothermally at T ∈ {0.2, 0.5, 1.0, 2, 3, 4, 5, 6}. Reaction parameters are sampled over

the sets nB ∈ {2.5× 10−5, 5× 10−5, 1× 10−4, 1× 10−2} × nT (where nT is the total

number of bonds that can be formed, 40,000 here) and τB ∈ {1, 2, 10, 20, 40, 80, 100}.

We find nB = 2.5× 10−5nT = 1.0 and τB = 1.0 here, and use nB = 2.5× 10−5nT for

other system sizes.

Finite Size Effects

Here we investigate the effect of small system sizes on the prediction of glass transition

temperatures and morphology.

Glass Transition—Small Systems

We perform curing simulations and Tg(α) calculations of small N = 500 volumes and

find deviations relative to N = 50, 000 predictions of Tg(α). For each N = 500 and

N = 50, 000, DGEBA/44DD/PES blends are cured isothermally at T = 3. Simulation

snapshots at intervals α ∈ {0, 0.3, 0.5, 0.7} are used to initialize new trajectories that

are quenched to T = {0.05, 0.15 . . . , 2.95, 3.0}. Three independent quenches are

performed for each of the 60 quench temperatures. Tg calculated from the quenches

and the DiBenedetto fits are presented in Figure 4.3.
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Figure 4.3 Tg(α) calculations and DiBenedetto fits for N = 500 (orange) and N = 
50, 000 volumes of coarse-grained 44DDS/DGEBA/PES show the smaller system sizes 

result in noiser Tg predictions.

While the smaller systems are noisier, the qualitative trend in Tg(α) is not without 

value, as these predictions can be used for estimates bounds of Tg that will lower the 

computaitonal cost of measuring the glass transition in larger systems.

Morphology—Small Systems

We next apply our model to study the domain sizes of PES toughener that evolve over 

the course of curing. We use the PES-PES structure factor to quantify the domain 

size of the PES toughener. We expect sufficiently large system sizes to demonstrate 

PES domain sizes independent of simulation volume, but to find volumes below which 

microphase separation cannot be resolved. Throughout this work we use microphase 

separation and macrophase separation to distinguish characteristic length scales of the 

tougheners: In the case of microphase separation, we measure charasteristic spacings 

of toughener (with a local peak in the structure factor S(q) that are smaller than 

half the smallest periodic simulation axis Lmin/2) whether or not they or ordered or
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disordered. In the case of macrophase separation, divergence of S(q) for q < 4π/Lmin

indicates toughener has aggregated into a domain large enough where microphase

separation can no longer be resolved.

Three replicates of system sizes withN ∈ {5× 104, 8× 104, 1× 105, 2× 105, 4× 105, 6× 105, 8× 105, 1× 106}

are cured isothermally to 90% with fiducial parameters shown in Table 4.2 and simu-

lations were run for 1× 107 ∆t. The resulting structure factors S(q) are summarized

in Figure 4.4 and local maxima in S(q) (red dots) indicate PES domains with a

characteristic spacing of 26± 2 nm emerge in N ≥ 2× 105 systems.

q

Figure 4.4 PES-PES structure factor in α = 0.9 simulations shows emergence of a 
0.236 ± 0.019 nm−1 (26 ± 2 nm) feature (dashed green line), too large to resolve in 

simulations where N ≤ 2 × 105. The color bar indicate system size (N). The blue star 
indicate half of the box length.

Importantly, cubic simulation volumes below N = 2 × 105 are too small to resolve

these 26 nm PES features, as the half-box-length (blue stars) for these volumes are

smaller than 26 nm (recall conversion factor l = 2π between lengths l and wavenum-

bers q). Note that in the too-small volumes, no local maxima (red dots) are observed,
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and S(q) appears to diverge at low q. Therefore, for studies of microphase separation

in 44DDS/DGEBA/PES, system sizes of at least N = 2× 105 are necessary. More

broadly, microphase separation on length scales larger than half the periodic box

length manifest as macrophase separation because local maxima in S(q) cannot be

resolved for q < π
L

for box length L.

4.4.2 Validation Simulations

Validation simulations comprise 1785 coarse-grained MD simulations for calculating

gel points, glass transition temperatures, and morphology of toughened 44DDS/DGE-

BA/PES and untoughened 44DDS/DGEBA blends.

Gel-Point Validation

Isothermal curing simulations of the fiducial N = 50, 000 toughened 44DDS/DGE-

BA/PES volumes are performed to predict gelation. The gel-point is dependent on

the underlying bonding network that forms as the amine and epoxy react, and is

therefore a useful metric for validation in addition to Tg and S(q). We calculate the

gel-point by examining at what degree of cure α the molecular weight of the largest

and second largest chain diverge. We use the NetworkX [63] python package to measure

the size of molecules as curing proceeds.

We sample 26 independent isothermally cured (T = 3), toughened volumes span-

ning cure fractions from α = 0% to α = 92.4% and find the gel-point measured

by molecular mass at αgel = 60% (Figure 4.5, in good agreement with theory and

experiments. Flory-Stockmayer theory of gelation [64,65] predicts that gelation of

44DDS/DGEBA (a bifunctional monomer and a tetrafunctional monomer) at αgel =

58% [66]. Flory-Stockmayer theory is known to underpredict the cure fraction at gela-
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tion, as steric hindrance prevents functional groups reacting with equal probability [67].

Experiments of 44DDS/DGEBA curing measure αgel > 50% [68] and αgel = 60% [69].

Figure 4.5 Divergence of the largest (blue) and second-largest (orange) molecular 
mass indicates gelation, here calculated at α = 60%, in agreement with theory (58%) 

and experiments (60%). Error bars denote standard deviations of 3 independent 
samples, except the 90% cure case, which have 2 samples.

Glass Transition Validation

A total of 1770 coarse-grained MD simulations are performed to validate predicted

Tg(α) against experimental data and theoretical fit to the DiBenedetto equation. 

First, three independent isothermal curing simulations are performed for N = 50, 000 

systems at the fiducial simulation paramaters. Independent snapshots from α = 0 to

α = 0.9 at intervals of dα = 0.1 are taken from each curing simulation to initialize 

independent quenches (Figure 4.2). These 30 independent snapshots representing the

full range of cure fractions are each quenched in independent simulations to each 

of the 40 dimensionless temperatures from 0.05 to 2.0 at intervals of dT = 0.05,

plus each of the 15 temperatures from 2.1 to 3.5 in intervals of dT = 0.1, plus 

T ∈ {3.6, 4.0, 4.5, 5.0}. From these simulations we focus on α ∈ {0, 0.3, 0.5, 0.7} for
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determining fits to the DiBenedetto equation, and temperatures 0.1 < Tquench < 2.5

for identifying glass transition temperatures.

We use piecewise regression to identify Tg from diffusivity measurements from

each of the aforementioned simulations (Figure 4.6a), and fit with the DiBenedetto

equation (Figure 4.6b).

(a) (b)

Figure 4.6 (a) Diffusivities measured from quenches of 44DDS/DGEBA/PES as a 
function of cure fraction and temperature. Green lines indicate linear fits of mid-T 

diffusivities used to calculate Tg, which are indicated by stars. (b) Tg(α) (blue symbols) 
and the DiBenedetto fit (blue curve) from (a). The simulated Tg at low and high cure 

fractions shows close agreement with Tg values measured from an experimental 
44DDS/DGEBA system [70] (open black diamonds) and 44DDS/DGE-BA/PES [5] (open 

cyan diamonds).

We validate against experiments of 44DDS/DGEBA by setting the extrapolated

dimensionless value of Tg(α = 1) = 1.32 equal the experimental measurement 480

K and then checking intermediate α = 0.4 predictions. Here, our predicted Tg(α =

0.4) = 320 K is 6.7% higher than the experimental interpolation of 300 K for PES-

toughened 44DDS/DGEBA [5], and 6.5% higher than the experimental interpolation

of 310 K for the untoughened system [70] (Figure 4.6b). Several other untoughened
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epoxy systems which have a similar epoxy/amine chemistry also shows a similar

trend in the DiBenedetto equation where the Tg(α = 0.4) ≈ 300 K [66,70,71]. It is also

known from experiments that the uncured 44DDS/DGEBA/PES system is completely

miscible and flows at room temperature. Both conditions (Tg(α = 0) < 293 K,

and Tg(α = 0.4) ≈ 300 K) are satisfied by the current model.

Morphology Validation

To validate predictions of microphase separated morphology we first perform 3 inde-

pendent curing simulations at T = 3 of the fiducial simulations (Table 4.2) at each

of 5 system sizes (N = {4× 105, 6× 105, 8× 105, 1× 106}). These sizes are chosen

because N = 4× 105 corresponds to cubic simulation volumes with side length L = 74

nm, far larger than needed to measure 26 nm periodic features with Fourier-based

S(q) analysis (see Section 4.4.1). As in the simulations for understanding minimum

simulation sizes, we measure the structure factor S(q)–specifically the wave number

of any local maxima—to quantify microphase separation and when systems reach

steady states. A representative time evolution of S(q) is shown in Figure 4.7A for an

N = 1× 106 system, which reaches steady state after 7× 106 steps.
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Figure 4.7 (A) Structure factor evolution of PES correlations for N = 1 × 106 

is used to quantify equilibration. Red symbols indicate the wavenumber qmax of a 
local maximum in S(q). (B) representative N = 1 × 106 morphology after achieving 

steady state.

Figure 4.7B shows a representative N = 1 × 106 morphology after achieving steady 

state. The average PES-PES S(q) measured for fiducial systems with N ≥ 4 × 105

has a local maximum at qmax = 0.235±0.020 nm−1, corresponding to feature spacings 

of 26.6 ± 2.5 nm.

In experiments by Rosetti et al. [7], chemically similar DGEBF/44DDS toughened 

with PES is observed to undergo increasing reaction-induced phase separation that

increases with increasing cure temperature. Nonfunctional PES, most similar to the 

system studied here, remains mixed at a cure temperature of 363 K, phease separates

into 250 nm domains when cured at 403 K, and 400 nm domains when cured at 

423 K. The length scales of nonfunctional PES phase separation we predict here are

smaller than those reported in Reference [7], but we observe the same qualitative trend
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of larger domain sizes with higher cure temperatures in the cure-path-dependent

simulations forthcoming in Section 4.4.3. Phenoxy-functionalized PES, which can

participate in crosslinking, is observed by Rosetti et al. that smaller PES nodu-

lar domains phase separate (40 nm at 4033 K and 150 nm at 423 K). Smaller

PES-rich domains are observed in experiments with a tri-functional epoxy, 44DDS,

and functionalized PES, around 20 nm [6]. To fully resolve phase separation of 250

nm domains, (500 nm)3 simulation volumes are needed, a factor of 5 larger than the

largest volumes cured here. In summary, the simulations presented here demonstrate

toughener phase separation on length scales smaller than similar-but-not-equivalent

experiments, and N = 1× 106 systems corresponding to (100 nm)3 volumes can

routinely be cured to α = 0.9 in one week.

4.4.3 Exploration Simulations

Exploration simulations are performed to measure the effect of including reaction

enthalpy (80 simulations) and the dependence of cure profile on final morphologies

(23 simulations).

Enthalpy Experiment

With temperature-dependent reaction rates in the present model, we perform non-

isothermal reaction simulations of otherwise fiducial systems to investigate what

models of reaction enthalpy are sufficient for modeling self-accelerated first-order

reaction kinetics. In the present case we assume the change in energy associated with

the crosslinking reaction is instantaneously distributed among all simulation degrees

of freedom, corresponding to an increase in temperature where ∆Hrxn = Cv∆Trxn for

heat capacity Cv in the NVT ensembles studied here. We perform simulations with
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per-bond ∆Trxn = 0.0, 1× 10−6, 1× 10−5, 1× 10−4 in addition to the same nB and

τB ranges described in Section 4.4.3.

Results summarized in Figure 4.8 validate first-order reaction kinetics are ac-

curately modeled when ∆T ≤ 1× 10−6, and that ∆T = 1× 10−4 is sufficiently

large for self-accelerated first-order kinetics to always beat first-order kinetic fits to

concentration profiles. Unlike the isothermal simulation cases where ∆T = 0 and

reaction kinetics become more accurate as A is decreased, in the self-accelerated

first-order kinetic models there exist optimal A ≈ 1.

τB

Figure 4.8 Quality of fit for first-order (FO) and self-accelerated first-order (SAFO) 
reaction models as a function of ∆Trxn and A = nB validate FO kinetics are most

accurate for ∆T = 0, and that SAFO kinetics best fit the concentration profiles when 
∆T = 1e − 4. Error bars show standard error in R2 value averaged across cure 

temperatures T = 0.5, 1.0, 2.0, 4.0, 6.0 kT

In sum, the present model permits straightforward modeling of self-accelerated 

reactions through the inclusion of a per-bond change in temperature that is validated 

against kinetic models.

Sensitivity to Cure Profile

The final studies in this work investigatethe dependence on structure of nonisothermal 

cure profiles meant to be representative of industrial temperature schedules. We first
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perform 17 simulations of otherwise fiducial N = 5× 104 volumes that step up from

T = 2.0 to T = 3.5 instantaneously at time t1 ranging between 1.5× 104 steps and

4× 106 steps. We next perform 3 replicate simulations of N = 4× 105 volumes

that each experience two changes in temperature: From T1 = 1.0 up to T2 = 2.0 at

t1 = 1× 105 steps, followed by a quench down to T3 = 1.2 at either t2 = 2× 106 steps

or t2 = 9.5× 106 steps. Except for the instantaneous temperature changes described

above, the simulations performed in this section are all isothermal. We calculate the

time of gelation and S(q) to quantify structure.

Results from the temperature steps from T = 2 to T = 3.5 are summarized in

Figure 4.9, and demonstrate that gelation before 1e6 steps have elapsed is independent

of initial time when t1 < 2× 105. Inset in Figure 4.9b are the cure profiles on

semilog axes with open squares indicating gelation times, which are summarized in

the main plot.

The delay in gelation with longer times at low T is expected because the more

time spent at higher temperature, the faster curing occurs, and the faster gelation

will occur. Bicontinuous microphase separated morphologies are observed for all

simulations here, but no measurable differences in periodic length scales are observed.

These results demonstrate that modifying the cure profile enables control over how

quickly systems gel.
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(a) (b)

Figure 4.9 (a) Temperature profiles where the initial ramp up time (t1) is varied.(b) 
Time to gelation is not affected by t1 < 2 × 105 ∆t. t1 time denotes the time at which 
the cure temperature is ramped up and held constant. Inset in (b are the cure profiles 

on semilog axes with open squares indicating gelation times.

The final 6 simulations of N = 4 × 105 volumes are cured isothermally at T1 = 1

for 1 × 105 steps before being instantaneously heated to T2 = 2. Three simulations 

are quenched to T3 = 1.2 before gelation at t2 = 2 × 106 steps, and held there until 

a total of 3 × 107 steps have elapsed. The other three simulations are quenched to

T3 = 1.2 after gelation at t2 = 9.5 × 106 steps, and held there until a total of 1 × 107

steps have elapsed. Note that Tg(α = 0.87) = 1.2, so systems with α < 0.87 will 

be above the glass transition temperature at all points during these cure profiles. 

Temperature schedules, gel points, and cure profiles for these pre- and post-gelation

quenches are summarized in Figure 4.10.
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(a) (b)

Figure 4.10 Temperatures profiles (a) and curing profiles (b) for t2 < tgel (t2 = 2 × 106 

∆t) and t2 > tgel (t2 = 9.5 × 106 ∆t). The hollow squares show gel point. T2 is chosen to 
be higher than and T3 is chosen to be slightly lower than the Tg of the fully cured 

system (Tg(α = 1.0) = 480 K).

The temperature set points correspond to T1 = 365 K, T2 = 730 K, and T3 =

438 K. T2 is chosen such that it is much higher than Tg(α = 1.0) = 480 K, facilitating

diffusion especially before gelation. We analyze morphologies with final cure fraction

α = 0.855 for both pre-gelation (blue data) and post-gelation (orange) quenches,

neither of which is ever below its glass transition temperature.

Average S(q) for the pre- and post-gelation cures are shown in Figure 4.11.
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Figure 4.11 PES-PES structure factor shows difference in morphology as a result of 
varying t2 of the “Step” curing profile. Both simulation volumes are cured to α = 0.855. 

Error bars represent standard error from the three replicate simulations. The length 
scales of microphase separation are much smaller in the pre-gelation quench (blue), 
whereas S(q) diverges around qL/2 = 0.17 nm−1, indicating a higher degree of phase 
separation that is apparent in the more distinct clumping of the inset visualizations.

Two features of the S(q) stand out—first, the length-scales of phase separation are 

smaller for the pre-gelation quench. Second, there is higher variance in the measured 

S(q) in the pre-gelation quenches.

The observations of increased phase separation in the post-gelation quench are 

consistent with experiments demonstrating increased phase separation with higher 

cure temperatures [5,70]. These observations are also consistent with two different

mechanistic explanations: (1) Higher temperatures increases curing rates, which 

increase reaction-induced phase separation, and (2) Quenching pre-gelation keeps the

morphology from being kinetically arrested, and so the tougheners can more easily mix 

and distribute in the unvitrified volume if thermodynamically favorable. These

results demonstrate that thermoset volumes with identical cure fractions can have

significant cure-path-dependent microstructures.
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4.5 Conclusions and Outlook

We demonstrate a coarse-grained model of toughened epoxy thermosets that

1. Offers straightforward forcefield parameterization.

2. Can capture first-order and self-accelerated first order reaction dynamics.

3. Is validated against experimental gel points, glass transition temperatures, and mor-

phology for 44DDS/DGEBA/PES blends.

4. Does not require backmapping for Tg calculation.

5. Can cure million-particle volumes (corresponding to 31-million atoms and (100

nm)3 periodic boxes) to α = 0.9 in under one week.

6. Demonstrates for the first time sensitivity of morphology to cure profile.

To summarize, the present work represents progress towards efficient prediction of

the morphology and properties of realistic toughened thermosets and provides tem-

plate workflows for calibrating models to specific formulations and cure profiles. These

functionalities offer opportunity to develop a deeper understanding of aerospace-grade

thermosets and more reliable manufacturing processes. As an example, datasets

generated here lay the foundation to answer questions about how the degree of phase

separation contribute to changes of Tg and gelation, which should find applicability

beyond the single formulation studied here.

The main shortcomings of this work are the degree of validation against experimen-

tal Tg and morphology. While the low and high cure fractions matched experimental

glass transition temperatures for 44DDS/DGEBA, the curvature of our DiBenedetto

fit was smaller than observed in experiments. We expect subsequent work in improved
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Tg detection from diffusivity data, calculation of Tg from back-mapped morphologies

to provide better predictions of Tg across the full spectrum of cure fractions. While

we recognize experiments characterizing toughener phase separation on the 10 nm–50

nm length scales are challenging, additional work in this area would provide key

datasets to validate against. Alternatively, applying the workflows presented here

to thermoset formulations with small-scale phase separation characterized would be

a information-rich extension of this work. Finally, this work sets the stage for in-

vestigations that simultaneously calibrate the energy scales of monomer interactions,

reaction kinetics, vitrification to experimental curing profiles that measure the degree

to which hour-long curing profiles can accurately be predicted by a few billion steps

of a coarse-grained model.
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[18] Lorena Ruiz-Pérez, Gareth J. Royston, J. Patrick A. Fairclough, and Anthony J.

Ryan. Toughening by nanostructure. Polymer, 49(21):4475–4488, oct 2008.

[19] Jia (Daniel) Liu, Zachary J. Thompson, Hung-Jue Sue, Frank S. Bates, Marc A.

Hillmyer, Marv Dettloff, George Jacob, Nikhil Verghese, and Ha Pham. Tough-

ening of Epoxies with Block Copolymer Micelles of Wormlike Morphology.

Macromolecules, 43(17):7238–7243, sep 2010.



90
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CHAPTER 5

CONTRIBUTIONS TO PAPERS

In this appendix I describe my contributions to papers where I am listed as a co-author

using CRediT Contributor Roles Taxonomy [1].

In Chapter 3 “Simplified models for accelerated structural prediction of conjugated

semiconducting polymers” I contributed to the conceptualization, methodology, soft-

ware, validation, formal analysis, investigation, data curation, manuscript original

draft, manuscript review and editing, and visualization. I conducted all of the

simulations and analysis. This included updating our laboratories software from

python 2 to python 3, as well updating our software to work with the major API

changes from hoomd version 1.x to hoomd version 2.x.

In Chapter 4 “General-purpose coarse-grained toughened thermoset model for

44DDS/DGEBA/PES” I contributed to the conceptualization, methodology, soft-

ware, validation, formal analysis, investigation, data curation, manuscript original

draft, manuscript review and editing, and visualization. I reprocessed the raw simu-

lation data and analyzed simulations performed by another graduate student, as well

as performed additional simulations.

In Ref. [2], “Optimization and Validation of Efficient Models for Predicting Poly-

thiophene Self-Assembly” I contributed to the data curation, investigation, software,

visualization, and manuscript review and editing. A key aspect of this paper was the
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development of an efficient computational model for P3HT. In order to benchmark

the performance of this model, I created a software image to ensure the same software

stack was used on three different HPC clusters. In Figure 2c, I did the benchmarking

on different clusters and then collated the results.

In Ref. [3], “Machine learning predictions of electronic couplings for charge trans-

port calculations of P3HT”, I contributed to software, validation, and manuscript

review and editing. I helped to develop the code and API that extracted features from

simulation data. I also helped to test and refine the model on a different chemical

system.

In Ref. [4], “Routine million-particle simulations of epoxy curing with dissipative

particle dynamics” I contributed to methodology, software, validation, visualization,

and manuscript review and editing. I developed the coarse-grained model and devel-

oped the algorithm and wrote the pure python implementation of the dybond plugin.

I added functionality to mbuild software package used to support million particle

packing which was critical to this work.

In Ref. [5], “Application of artificial neural networks to identify equilibration in

computer simulations” I contributed to software and manuscript review and editing.

I contributed to the autocorrelation code that is in the paper, helped to prepare

manuscript for submission.

In Ref. [6], “Perspective on coarse-graining, cognitive load, and materials simu-

lation” I contributed to methodology, software, investigation, data curation, visual-

ization, manuscript original draft, and manuscript review and editing. I contributed

mostly to section three “Best (sic) practices and cognitive load”. This section is

a comprehensive literature review of the current best practices utilized in scientific

software engineering. These practices are given additional context though the lens of
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reducing cognitive load. Additionally, figure 4 is taken from my diffraction analysis I

did for my BDT-TPD paper (Chapter 3). Figures 7 and 8 are taken from my work on

demonstrating the affect of different curing profiles have on thermoset morphology.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE

WORK

6.1 Conclusions

We have studied the self-assembly of organic polymers and toughened thermosets

using molecular dynamics and coarse-grained models. We found that using coarse-

grained models we were able to perform some of the largest and most structurally

accurate simulations for these systems. We developed an united atom coarse-grained

model of a BDT-TPD, a promising donor/acceptor polymer, using a forcefield from

literature and rigid bodies on conjugated elements. We also developed a general pur-

pose methodology for modeling toughened thermosets which includes using a single

simulation element for each amine, epoxy, and toughener-mer, and an open-source

dynamic bonding plugin for HOOMD-Blue to model the crosslinking reaction between

the amine and epoxy.

With both P3HT (Ref. [1]) and BDT-TPD (Chapter 3), we were able to predict

self-assembled structures while simplifying our model by:

1. Modeling hydrogen implicitly

2. Modeling electrostatics implicitly

3. Modeling solvent implicitly
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4. Utilizing rigid bodies on conjugated elements

5. Instantaneous quenches to different state points to establish phase boundaries

We demonstrate that even when treating some of those items explicitly, the increased

accuracy is not enough to offset the advantages of our simplifications, computational

speedups, ease of implementation, and lower cognitive load. However, when we do

identify a limitation of our model, we add complexity. We do this in two cases, 1)

when exploring phase space in finer detail, simulated solvent evaporation is required

to accelerate equilibration and avoid kinetic arrest and 2) we add hydrogens back

into our model when performing charge transport calculations as full atomic resolu-

tion is required when calculating properties that depend on electron orbitals. Our

simulations of semiconducting polymers are some of the largest and most structurally

accurate performed. We conclude that coarse-grained models of organic photovoltaic

polymers are able to faithfully capture the morphology of a self-assembled bulk

heterojunction and coarse-grained models with rigid bodies are required to overcome

the long relaxation times associated with polymers.

We developed (Ref. [2]) and refined (Chapter 4) a generalizable coarse-grained

model for toughened thermosets. Each amine, epoxy, and toughener mer is repre-

sented by a single spherical simulation element (see Figure 6.1).
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Figure 6.1 Coarse-grained representations of 44DDS (A), DGEBA (B), and PES 
(C) repeat units. The amines (A) can bond to up to four epoxies (B), which can 
each bond to up to two amines. All toughener molecules are linear 10-mers of C.

This simplification reduces the amount of work required to parametrize our coarse-

grained model. We have only 3 non-bonded parameters, and 3 interatomic param-

eters (A-B bond, C-C bond, and C-C-C angle) that require parametrization. Our 

model is further simplified by using a radius of 1 nm and a mass of 1 mass unit 

for each simulation element. Despite what may appear as an over simplification, 

our model is validated against experimental gel-point, glass transition temperature, 

phase behavior, and morphology. The computational speedup associated with these 

simplifications enable simulations of (100 nm)3 million-particle volumes that can reach 

a 90% degree of cure in ≈ 1 week. We also demonstrate, for the first time in literature, 

sensitivity to cure profile. We conclude that we are able to capture important 

thermodynamic properties and processes (gel-point, glass transition temperature, and 

reaction induced phase separation) and morphology using a single site coarse-grain 

model and a dynamic bonding algorithm. We now have the tools to answer the 

question: “How do changes in cure profile affect structure and properties in toughened 

thermosets”.

We make our models as usable as possible. All of our models, initial configurations, 

submission scripts, analysis scripts, and simulation data associated with this work
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with an open source, permissive license. We also follow current scientific software

best practices when developing code:

1. Continuous integration

2. Unit testing

3. Code review

4. Automatic code formatting

5. Distributed version control

6. Open source licensing

While employing these practices, we have found that continuous integration, unit

testing, code review, and automatic code formatting help to verify and ensure that the

code is correct. We conclude that using distributed version control, code review, and

open source licensing facilitates open collaboration between research groups. Open

collaboration helps to accelerate scientific discovery.

Given the challenges and threat to our species survival from climate change, we

need to maximize scientific discovery to develop the next-generation of materials that

will enable greater efficiency in organic solar cells and reduce the emissions from

air travel. We have outlined the simplified models and the scientific software engi-

neering practices used to create, publish, and distribute these models for utilization

by the greater scientific community. We can use these models now to further our

understanding of polymer self-assembly and create more efficient solar devices and

air travel, reducing greenhouse gas emissions and combating global climate change.
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6.2 Suggestions for Future Work

We now have the tools, protocols, and methodology to study the self-assembly of

polymers and reacting toughened thermosets. We validated our approach on novel and

well studied material systems. All of the input scripts, simulation code, analysis code,

and notebooks used to produce figures used in this work have been made available

under a permissive open-source license.

The next step for screening candidate OPV morphologies is to continue devel-

opment of an automated pipeline that will enable high-throughput screening. The

methodology and analysis used in the Chapter 3 and Ref. [1] is generally applicable,

but the software infrastructure is not amenable to high throughput screening. For

example, the code and methodology used to identify clusters in Chapter 3 was

written with only the BDT-TPD chemistry in mind and the order parameter ψ

used in Ref. [1] was developed to only work with P3HT. A set of non-chemistry

specific order parameters (in addition to standard g(r) and S(q) measurements)

will be required to facilitate high-throughput screening and identify interesting OPV

morphologies. Our new Python software package Planckton [3] has been designed with

high throughput screening as the primary objective. Planckton employs the current

software engineering best practices outlined in Ref. [4] and automates atom typing,

which was a significant bottleneck to exploring new compounds using the “opv cg”

software package that was used in Chapter 3 and Ref. [1]. Using Planckton, it would

be interesting to explore how coarse grain of a model could be used that still faithfully

replicates experimental morphology.

The weakest aspect of our toughened thermoset work in Ref. [2] and 4 is the glass

transition analysis. Our current method for Tg calculation is labor intensive, as we
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define by hand the vitrified regime and rubbery regime in the plot of the diffusivity

as a function of temperature for each cure fraction that we are examining. We are

capable of generating more data than we are capable of analyzing. Automating the

glass transition calculation is an immediate next step in this research. Another area

of exploration would be to compare experimental species concentration as a function

of degree of cure. Using the species concentration will enable direct comparison

to experimental kinetic measurements and allow direct comparison to experimental

timescales and simulation timescales. This approach will require some work with

experimental collaborators to generate datasets that are comparable to chemistries

that we have simulated. The analysis code for species determination has been written

and is a part of the epoxpy analysis suite.
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APPENDIX A

SIMPLIFIED MODELS FOR ACCELERATED

STRUCTURAL PREDICTION OF CONJUGATED

SEMICONDUCTING POLYMERS — SUPPORTING

INFORMATION1

1This appendix has been published as supporting information for a paper published in J. Phys.
Chem. C and the paper is referenced as “Henry, M. M., Jones, M. L., Oosterhout, S. D., Braunecker,
W. A., Kemper, T. W., Larsen, R. E., . . . Jankowski, E. (2017). Simplified Models for Accelerated
Structural Prediction of Conjugated Semiconducting Polymers. The Journal of Physical Chemistry
C, 121(47), 26528–26538. https://doi.org/10.1021/acs.jpcc.7b09701”
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A.1 Simulation Code

The xml representation of the BDT-TPD oligomers, forcefield parameters, simu-

lation scripts, and source code for generating scattering patterns are available in

bitbucket code repositories: https://bitbucket.org/cmelab/opv\_cg and https:

//bitbucket.org/cmelab/cme\_utils. The model file with the force field param-

eters used in this work is located at mlibs/models/mike ua/model.xml, with the

model name ua e in commit 8d19157 in the opv cg repository. The rigid model

and flexible model topology files are located in the same folder as the force field

parameters and are labeled rbdt-5-scaled.xml and bdt.xml respectively. The

diffraction methods are located in cme utils/analyze/diffractometer.py of the

cme utils repository.

A.2 Determining Equilibrium

To determine which configurations belong to the equilibrium distribution for each

simulation, the following method was used:

First, the time evolution of the non-bonded Lennard-Jones potential (ELJ) was

considered for each simulation, and split into 10 bins. For each bin, the standard

deviation in ELJ was calculated. Starting from the final bin and working backwards

through simulation time, bins were added to the “equilibrated region” if the standard

deviation of the bin’s potential energy was no more than twice that of the previous

bin in the region. Relaxation time is the time it takes for our simulation to reach

equilibrium.

Once the equilibrated region was determined, the autocorrelation time was calcu-

lated to obtain the number of time steps between statistically independent frames.
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The autocorrelation RELJ
was calculated as:

RELJ
=

IFT [FT [ELJ ] FT∗ [ELJ ]]

NELJ
σ2
ELJ

, (A.1)

where FT and IFT are the Fourier transform and its inverse respectively, FT∗[ELJ ]

denotes the complex conjugate of the Fourier transform of ELJ , NELJ
is the number

of elements in ELJ , and σ2
ELJ

is the variance of ELJ . We used the time at which

the self-correlation time crossed zero as our autocorrelation criterion. The slowest

autocorrelation time was calculated to be 4.16×10−8 seconds for all of the simulations

studied in this investigation and the fastest autocorrelation time was calculated to

be around 1.97×10−10 seconds. An example is shown in Figure 2 in our paper, where

the blue data points are considered to be taken from within the equilibrated window.

Figure A.1 Autocorrelation time for each state point. At higher temperatures the 
autocorrelation time is generally lower. The minimum autocorrelation time reflects the 
frequency at which we write the log file. The black vertical line indicates the disorder-

order transition temperature TDO = 410 K.
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A.1 shows some dependence of the autocorrelation time on temperature. At higher

temperatures the autocorrelation time is lower which means that our system becomes

decorrelated faster, suggesting more independent samples for the same number of

timesteps. Note that the minimum possible autocorrelation time is 1×105 time steps

(0.197 ns) since the ELJ is only recorded in the log file every 1×105 time steps.

There is no apparent trend in autocorrelation time between flexible or rigid systems,

nor between annealing and quenched cooling mechanisms. We record the system’s

trajectory information every 1×106 time steps (1.97 ns). For quantities that require

trajectory information (diffraction and clustering) we can use every trajectory frame

(after the relaxation time) when the system’s autocorrelation time is less than or

equal to 1×106 time steps. For systems with an autocorrelation time greater than

our trajectory recording time, several consecutive trajectory frames are skipped in

order to ensure that multiple independent samples are considered.

Figure A.2 Relaxation time for each state point. The black vertical line 
indicates the disorder-order transition temperature TDO = 410 K.
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In A.2 we do not see any clear trend between relaxation time and state point.

We found that most systems relaxed after 5 ns. This is about an order of magnitude

greater than our autocorrelation time.

A.3 BDT-TPD Synthesis

The polymers used here are identical to those synthesized in Ref. [1]: “Polymer

molecular weight was determined with the following process: The BDT-TPD polymer

was dissolved in HPLC grade chloroform (∼1 mg/mL), stirred and heated at 50◦C for

several hours under nitrogen, stirred overnight at r.t., and then filtered through a 0.45

µm PVDF filter. Size exclusion chromatography was then performed on a PL-Gel

300 × 7.5 mm (5 µm) mixed D column using an Agilent 1200 series autosampler,

inline degasser, and refractometer. The column and detector temperatures were 35

◦C. HPLC grade chloroform was used as eluent (1 mL/min). Linear polystyrene

standards were used for calibration. The number average molecular weight of the

polymer used in this work was determined to be 37 kg/mol, with a polydispersity

index of 2.5.”

A.4 Hardware

Access to Maverick, located at the Texas Advanced Computing Center (TACC) was

provided through the NSF-supported XSEDE gateway [2]. Maverick has NVIDIA

Tesla K40 “Atlas” GPUs with 12 GB of RAM and two Intel Xeon E5-2680 v2 “Ivy

Bridge” CPUs per node. Kestrel has 2 NVIDIA Tesla K20 “Kepler” GPUs with 5GB

of RAM and 2 Intel Xeon E5-2600 processors per node.
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APPENDIX B

ANALYSIS CODE
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In Section B.1, the notebooks and python scripts used to generate the figures in

Chapter 3 are included. In Section B.2, the notebooks and python scripts used to

generate the figures in Chapter 4 are included.

B.1 Code for Chapter 3



1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10 data = np.genfromtxt(log_file)
11 return data
12     except (ValueError, IOError):
13 print("Problem with this log file")
14 print(log_file)
15 print("\n")
16 return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21 data = np.genfromtxt(log_file, comments="@", names=True)
22 return data
23     except (ValueError, IOError):
24 print("Problem with this log file")
25 print(log_file)
26 print("\n")
27 return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’r’, ’g’, ’b’, ’k’]
36

Page 1/3scatter.py

1/39./data/clust/scatter.py
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37 # Rigid dashed and open
38 # annealed circles quenched squares
39

40 for i, log in enumerate(list_of_logs):
41     log_data = get_data(log)
42     y = log_data[:, 1]
43     y_err = log_data[:, 2]
44     x = log_data[:, 0]*125.867 # Temp conversion
45     if i > 1:
46 if i % 2 ≡ 0:
47 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
48 markeredgewidth=1, markersize=8,
49 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
50 else:
51 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
52 markeredgewidth=1, markerfacecolor="white" ,markersize=8,
53 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
54

55     else:
56 if i % 2 ≡ 0:
57 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
58 markeredgewidth=1, markersize=8, markerfacecolor="white", 
59 color=colors[i], markeredgecolor=colors[i])
60 else:
61 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
62 markeredgewidth=1, markersize=8,
63 color=colors[i], markeredgecolor=colors[i])
64

65 plt.rcParams.update({’mathtext.default’:  ’regular’ })
66 plt.xlabel(r"Temperature (K)")
67 plt.ylabel(r"$\zeta$")
68 ax.set_ylim([0,1])
69 ax.set_xlim([0,1250])
70 ax.yaxis.major.formatter._useMathText = True
71 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5)
72 plt.axvline(x=410, color=’k’, linestyle=’:’)

Page 2/3scatter.py

2/39./data/clust/scatter.py
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73 plt.savefig("clust.pdf")
74 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 from matplotlib.ticker import FormatStrFormatter
5 import matplotlib.ticker as ticker
6 import matplotlib.pyplot as plt
7 import glob
8 import re
9 from sys import argv

10

11 from matplotlib.ticker import FormatStrFormatter
12 import matplotlib.ticker as ticker
13 legend = ["Flex−Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
14

15 system = "Flex−Anneal"
16 cold = ’/Users/mikehenry/Projects/data/jan/paper−data/links/’ + system + ’/*T3.0/diffract/*/asq.txt’
17 hot =  ’/Users/mikehenry/Projects/data/jan/paper−data/links/’ + system + ’/*T3.5/diffract/*/asq.txt’
18 colder = ’/Users/mikehenry/Projects/data/jan/paper−data/links/’ + system + ’/*T2.5/diffract/*/asq.txt’
19 hoter =  ’/Users/mikehenry/Projects/data/jan/paper−data/links/’ + system + ’/*T4.0/diffract/*/asq.txt’
20

21 dirs_list = [glob.glob(colder), glob.glob(cold), glob.glob(hot), glob.glob(hoter
)]

22

23 colors = [’darkblue’, ’blue’, ’darkred’, ’red’]
24 #legend = ["378 K","441 K","315 K","504 K"]
25 legend = ["315 K","378 K","441 K","504 K"]
26 bin_size = 0.013400650261999991
27 fig1, ax1 = plt.subplots()
28 scale = (1/1.6090103219409952)*1.7699113541350948
29 for i, dirs in enumerate(dirs_list):
30     temps= []
31     err = []
32     for d in dirs:
33 if True:
34 data = np.genfromtxt(d)
35 if len(data.shape) ≡ 1:
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36 pass
37 else:
38 try:
39 x = float((re.search("T(\d\.\d)", d).groups()[0]))
40 except (AttributeError):
41 x = float((re.search("T(\d\d\.\d)", d).groups()[0]))
42 if True:#x == 2.0 or x == 5.0:
43 frame_num = (d.split("/")[11:12][0])
44 if frame_num ≡ "difout" ∨ frame_num ≡ "newdiff" ∨ frame_num ≡ ’n

ewdifout’:
45 pass
46 else:
47 frame = int(frame_num)
48 window = np.genfromtxt("/".join(d.split("/")[:10])+"/LJ_window.

txt", delimiter=" ")
49 skip = (int(np.ceil(window[0]/10)))
50 if frame ≥ skip:
51 temps.append(x)
52 err.append(data)
53 else:
54 pass
55     #print(err)
56     ax1.errorbar(data[:,0] * scale,
57 np.mean(err, axis=0)[:,1],
58 yerr=np.std(err, axis=0)[:,1],
59 label=legend[i],
60 marker = ’.’,
61 markeredgewidth=1,
62 markersize=8,
63 markerfacecolor="white",
64 color=colors[i],
65 markeredgecolor=colors[i],
66 linestyle="−−")
67     #plt.rcParams.update({’mathtext.default’:  ’regular’ })
68     #plt.xlabel(r"$q_r$ [$\AA^{−1}$]")
69     #plt.ylabel(r"$\log(Intensity)$ [Arb]")
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70     #ax1.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, bo
rderaxespad = 0)

71

72     #ax1.yaxis.set_major_formatter(FormatStrFormatter(’%.1f’))
73     #ax1.set_xlim([.17,1.9])
74     #ax1.set_ylim([−5,−3.4])
75     #ax1.set_xlim([1.5,1.8])
76     #ax1.set_ylim([−5,−4.6])
77

78 plt.rcParams.update({’mathtext.default’:  ’regular’ })
79 plt.xlabel(r"$q_r$ [$\AA^{−1}$]")
80 plt.ylabel(r"$\log(Intensity)$ [Arb]")
81 #ax.set_ylim([0,−5])
82 #ax.yaxis.major.formatter._useMathText = True
83 ax1.xaxis.set_major_locator(ticker.MultipleLocator(.3))
84 ax1.yaxis.set_major_formatter(FormatStrFormatter(’%.1f’))
85 ax1.set_xlim([.17,1.9])
86 ax1.set_ylim([−5,−3.4])
87 ax1.xaxis.set_major_locator(ticker.MultipleLocator(.3))
88 #plt.yscale("log")
89 legend = ax1.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, 

borderaxespad = 0)
90 #plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0), useMathText=True)
91 plt.savefig("doasq.png", transparent=True)
92 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 print(matplotlib.matplotlib_fname())
9

10 def get_data(log_file):
11     try:
12 data = np.genfromtxt(log_file)
13 return data
14     except (ValueError, IOError):
15 print("Problem with this log file")
16 print(log_file)
17 print("\n")
18 return None
19

20

21 def get_data_with_headers(log_file):
22     try:
23 data = np.genfromtxt(log_file, comments="@", names=True)
24 return data
25     except (ValueError, IOError):
26 print("Problem with this log file")
27 print(log_file)
28 print("\n")
29 return None
30

31

32

33 fig, ax = plt.subplots()
34 list_of_logs = [vals for vals in argv[1:]]
35

36 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
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37 colors = [’r’, ’g’, ’b’, ’k’]
38

39 # Rigid dashed and open
40 # annealed circles quenched squares
41

42 for i, log in enumerate(list_of_logs):
43     log_data = get_data(log)
44     y = log_data[:, 1]/47280*1.74e−21#*4184*(0.25)
45     y_err = log_data[:, 2]/47280*1.74e−21#*4184*(0.25)
46     x = log_data[:, 0]*125.867 # Temp conversion
47     if i > 1:
48 if i % 2 ≡ 0:
49 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
50 markeredgewidth=1, markersize=8,
51 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
52 else:
53 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
54 markeredgewidth=1, markerfacecolor="white" ,markersize=8,
55 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
56

57     else:
58 if i % 2 ≡ 0:
59 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
60 markeredgewidth=1, markersize=8, markerfacecolor="white", 
61 color=colors[i], markeredgecolor=colors[i])
62 else:
63 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
64 markeredgewidth=1, markersize=8,
65 color=colors[i], markeredgecolor=colors[i])
66

67

68 plt.rcParams.update({’mathtext.default’:  ’regular’ })
69 plt.xlabel(r"Temperature (K)")
70 plt.ylabel(r"E$_{LJ} (J)$")
71 #ax.set_ylim([0,1])
72 ax.set_xlim([0,1250])
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73 ax.yaxis.major.formatter._useMathText = True
74 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, b

orderaxespad = 0)
75 plt.axvline(x=410, color=’k’, linestyle=’:’)
76 plt.savefig("energy.png")
77 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10         data = np.genfromtxt(log_file)
11         return data
12     except (ValueError, IOError):
13         print("Problem with this log file")
14         print(log_file)
15         print("\n")
16         return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21         data = np.genfromtxt(log_file, comments="@", names=True)
22         return data
23     except (ValueError, IOError):
24         print("Problem with this log file")
25         print(log_file)
26         print("\n")
27         return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Anneal","Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’m’, ’c’, ’b’, ’k’]
36
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37 # Rigid dashed and open
38 # annealed circles quenched squares
39

40 for i, log in enumerate(list_of_logs):
41     log_data = get_data(log)
42     y = log_data[:, 1]/47280*1.74e−21#*4184*(0.25)
43     y_err = log_data[:, 2]/47280*1.74e−21#*4184*(0.25)
44     x = log_data[:, 0]*125.867 # Temp conversion
45     if i % 2 ≡ 0:
46         ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
47                 markeredgewidth=1, markersize=8,
48                 color=colors[i], markeredgecolor=colors[i])
49     else:
50         ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
51                 markeredgewidth=1, markersize=8,
52                 color=colors[i], markeredgecolor=colors[i])
53

54

55 plt.rcParams.update({’mathtext.default’:  ’regular’ })
56 plt.xlabel(r"Temperature (K)")
57 plt.ylabel(r"$\Delta$E$_{LJ} (J)$")
58 #ax.set_ylim([0,1])
59 ax.set_xlim([0,1250])
60 ax.yaxis.major.formatter._useMathText = True
61 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, b

orderaxespad = 0)
62 plt.axvline(x=410, color=’k’, linestyle=’:’)
63 plt.savefig("energydiff.png")
64 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’) 
4 from matplotlib.ticker import FormatStrFormatter
5 import matplotlib.ticker as ticker
6 import matplotlib.pyplot as plt
7 import re
8 from sys import argv
9

10 def get_data(log_file):
11     try:
12         data = np.genfromtxt(log_file)
13         return data
14     except (ValueError, IOError):
15         print("Problem with this log file")
16         print(log_file)
17         print("\n")
18         return None
19

20

21 def get_data_with_headers(log_file):
22     try:
23         data = np.genfromtxt(log_file, comments="@", names=True)
24         return data
25     except (ValueError, IOError):
26         print("Problem with this log file")
27         print(log_file)
28         print("\n")
29         return None
30

31

32

33 fig, ax = plt.subplots()
34 list_of_logs = [vals for vals in argv[1:]]
35

36
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37 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
38 colors = [’r’, ’g’, ’b’, ’k’]
39

40

41 #legend = ["Rigid Quench"]
42 #colors = [’k’]
43

44 # Rigid dashed and open
45 # annealed circles quenched squares
46 local_y_max = []
47 local_y_min = []
48

49 ’’’
50 for i, log in enumerate(list_of_logs):
51     log_data = get_data(log)
52     y = log_data[:, 1]
53     local_y_max.append(np.max(y))
54     local_y_min.append(np.min(y))
55

56 y_max = np.max(local_y_max)
57 y_maxi = np.argmax(local_y_max)
58

59 y_min = np.min(local_y_min)
60 y_mini = np.argmin(local_y_min)
61

62

63 for i, log in enumerate(list_of_logs):
64     if i == y_mini:
65         log_data = get_data(log)
66         y = log_data[:, 1]
67         yi = np.argmin(y)
68 #        alpha_1 = log_data[:, 2][yi]
69

70 for i, log in enumerate(list_of_logs):
71     if i == y_maxi:
72         log_data = get_data(log)

Page 2/3fancy_asq.py

13/39./data/fancyasq/fancy_asq.py

127



73         y = log_data[:, 1]
74         yim = np.argmin(y)
75 #        alpha_1_max = log_data[:, 2][yim]
76 ’’’
77

78 scale = (1/1.6090103219409952)*1.7699113541350948 # gets us to 3.55 sigma
79

80

81 for i, log in enumerate(list_of_logs):
82     log_data = get_data(log)
83     y = log_data[:, 1][13:]
84     y_err = 0#log_data[:, 2]*4184*(0.25)
85     x = log_data[:, 0][13:]*scale#*(1/0.87)# 
86     ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
87 markeredgewidth=1, markersize=8, markerfacecolor="white",
88 color=colors[i], markeredgecolor=colors[i], linestyle="−−")
89

90

91 plt.rcParams.update({’mathtext.default’:  ’regular’ })
92 plt.xlabel(r"$q_r$ [$\AA^{−1}$]")
93 plt.ylabel(r"$\log(Intensity)$ [Arb]")
94 #ax.set_ylim([0,−5])
95 #ax.yaxis.major.formatter._useMathText = True
96 ax.yaxis.set_major_formatter(FormatStrFormatter(’%.1f’))
97 ax.set_xlim([.17,1.9])
98 ax.set_ylim([−5,−3.4])
99 ax.xaxis.set_major_locator(ticker.MultipleLocator(.3))

100 #plt.yscale("log")
101 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, b

orderaxespad = 0)
102 #plt.ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0), useMathText=True)
103 plt.savefig("mt.png")
104 #plt.show()
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1 import os
2 import glob
3 import numpy as np
4 import re
5 import matplotlib
6 matplotlib.use(’AGG’)
7

8 import matplotlib.pyplot as plt
9 from matplotlib.ticker import FormatStrFormatter

10 import matplotlib.ticker as ticker
11 dirs_list = [glob.glob(’/Users/mikehenry/Projects/data/jan/paper−data/links/Flex−Anneal/*/diffract/*/asq.t

xt’),
12              glob.glob(’/Users/mikehenry/Projects/data/jan/paper−data/links/Flex−Quench/*/diffract/*/asq.

txt’),
13              glob.glob(’/Users/mikehenry/Projects/data/jan/paper−data/links/Rigid−Anneal/*/diffract/*/asq.

txt’),
14              glob.glob(’/Users/mikehenry/Projects/data/jan/paper−data/links/Rigid−Quench/*/diffract/*/asq

.txt’)]
15 colors = [’r’, ’g’, ’b’, ’k’]
16 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
17 bin_size = 0.013400650261999991
18 fig1, ax1 = plt.subplots()
19 scale = (1/1.6090103219409952)*1.7699113541350948
20 for i, dirs in enumerate(dirs_list):
21     temps= []
22     err = []
23     for d in dirs:
24         if True:
25             data = np.genfromtxt(d)
26             if len(data.shape) ≡ 1:
27                 pass
28             else:
29                 try:
30                     x = float((re.search("T(\d\.\d)", d).groups()[0]))
31                 except (AttributeError):
32                     x = float((re.search("T(\d\d\.\d)", d).groups()[0]))
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33                 if x ≡ 2.0 :
34                     frame_num = (d.split("/")[11:12][0])
35                     if frame_num ≡ "difout" ∨ frame_num ≡ "newdiff" ∨ frame_num ≡ ’n

ewdifout’:
36                         pass
37                     else:
38                         frame = int(frame_num)
39                     window = np.genfromtxt("/".join(d.split("/")[:10])+"/LJ_window.

txt", delimiter=" ")
40                     skip = (int(np.ceil(window[0]/10)))
41                     if frame ≥ skip:
42                         temps.append(x)
43                         err.append(data)
44                     else:
45                         pass
46     ax1.errorbar(data[:,0]*scale,np.mean(err, axis=0)[:,1],yerr=np.std(err, axis

=0)[:,1],label=legend[i], marker = ’s’,
47                     markeredgewidth=1, markersize=8, markerfacecolor="white",
48                     color=colors[i], markeredgecolor=colors[i], linestyle="−−")
49     plt.rcParams.update({’mathtext.default’:  ’regular’ })
50     plt.xlabel(r"$q_r$ [$\AA^{−1}$]")
51     plt.ylabel(r"$\log(Intensity)$ [Arb]")
52     ax1.set_xlim([2.5,3.5])
53     ax1.set_ylim([0.26,0.36])
54     ax1.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, borde

raxespad = 0)
55

56     ax1.yaxis.set_major_formatter(FormatStrFormatter(’%.1f’))
57     ax1.set_xlim([.17,1.9])
58     ax1.set_ylim([−5,−3.4])
59     ax1.xaxis.set_major_locator(ticker.MultipleLocator(.3))
60 plt.savefig("new.png")
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10         data = np.genfromtxt(log_file)
11         return data
12     except (ValueError, IOError):
13         print("Problem with this log file")
14         print(log_file)
15         print("\n")
16         return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21         data = np.genfromtxt(log_file, comments="@", names=True)
22         return data
23     except (ValueError, IOError):
24         print("Problem with this log file")
25         print(log_file)
26         print("\n")
27         return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’r’, ’g’, ’b’, ’k’]
36

Page 1/4scatter.py

17/39./data/peak_long/scatter.py

131



37 # Rigid dashed and open
38 # annealed circles quenched squares
39

40 #For the addition (shift) you add in quadrature (sqrt(alpha_{1}^{2} + alpha_{2}^
{2}))

41 #Then for the multiplication (scaling) you add the fractional uncertainties in q
uadrature

42 #sqrt( (alpha_{1}/val_{1})^{2} + (alpha_{2}/val_{2})^{2} )
43

44

45

46 local_y_max = []
47 local_y_min = []
48

49 for i, log in enumerate(list_of_logs):
50     log_data = get_data(log)
51     y = log_data[:, 1]
52     local_y_max.append(np.max(y))
53     local_y_min.append(np.min(y))
54

55 y_max = np.max(local_y_max)
56 y_maxi = np.argmax(local_y_max)
57

58 y_min = np.min(local_y_min)
59 y_mini = np.argmin(local_y_min)
60

61

62 for i, log in enumerate(list_of_logs):
63     if i ≡ y_mini:
64         log_data = get_data(log)
65         y = log_data[:, 1]
66         yi = np.argmin(y)
67         alpha_1 = log_data[:, 2][yi]
68

69 for i, log in enumerate(list_of_logs):
70     if i ≡ y_maxi:
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71 log_data = get_data(log)
72 y = log_data[:, 1]
73 yim = np.argmin(y)
74 alpha_1_max = log_data[:, 2][yim]
75

76 for i, log in enumerate(list_of_logs):
77     log_data = get_data(log)
78     y = (log_data[:, 1]+abs(y_min))/(abs(y_min)+y_max)
79     y_err = log_data[:, 2]
80     y_err = np.sqrt(alpha_1**2 + y_err**2) + np.sqrt(alpha_1**2 + alpha_1_max**2

) #+ np.sqrt((alpha_1/y_min)**2+(y_err/y)**2)
81     x = log_data[:, 0]*125.867 # Temp conversion
82     if i > 1:
83 if i % 2 ≡ 0:
84 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
85 markeredgewidth=1, markersize=8,
86 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
87 else:
88 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
89 markeredgewidth=1, markerfacecolor="white" ,markersize=8,
90 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
91

92     else:
93 if i % 2 ≡ 0:
94 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
95 markeredgewidth=1, markersize=8, markerfacecolor="white",
96 color=colors[i], markeredgecolor=colors[i])
97 else:
98 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
99 markeredgewidth=1, markersize=8,

100 color=colors[i], markeredgecolor=colors[i])
101

102 plt.rcParams.update({’mathtext.default’:  ’regular’ })
103 plt.xlabel(r"Temperature (K)")
104 plt.ylabel(r"|$\mathcal{I}$(T)|")
105 ax.set_ylim([0,1])
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106 ax.set_xlim([0,1100])
107 ax.yaxis.major.formatter._useMathText = True
108 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, borderaxespad = 0, 

handlelength=1.5)
109 #ax.yaxis.labelpad = 10
110 plt.savefig("longrange.png")
111 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10         data = np.genfromtxt(log_file)
11         return data
12     except (ValueError, IOError):
13         print("Problem with this log file")
14         print(log_file)
15         print("\n")
16         return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21         data = np.genfromtxt(log_file, comments="@", names=True)
22         return data
23     except (ValueError, IOError):
24         print("Problem with this log file")
25         print(log_file)
26         print("\n")
27         return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’r’, ’g’, ’b’, ’k’]
36

Page 1/4short_peak.py

21/39./data/peak_short/short_peak.py

135



37 # Rigid dashed and open
38 # annealed circles quenched squares
39 #For the addition (shift) you add in quadrature (sqrt(alpha_{1}^{2} + alpha_{2}^

{2}))
40 #Then for the multiplication (scaling) you add the fractional uncertainties in q

uadrature
41 #sqrt( (alpha_{1}/val_{1})^{2} + (alpha_{2}/val_{2})^{2} )
42

43

44

45 local_y_max = []
46 local_y_min = []
47

48 for i, log in enumerate(list_of_logs):
49     log_data = get_data(log)
50     y = log_data[:, 3]
51     local_y_max.append(np.max(y))
52     local_y_min.append(np.min(y))
53

54 y_max = np.max(local_y_max)
55 y_maxi = np.argmax(local_y_max)
56

57 y_min = np.min(local_y_min)
58 y_mini = np.argmin(local_y_min)
59

60

61 for i, log in enumerate(list_of_logs):
62     if i ≡ y_mini:
63         log_data = get_data(log)
64         y = log_data[:, 3]
65         yi = np.argmin(y)
66         alpha_1 = log_data[:, 4][yi]
67

68 for i, log in enumerate(list_of_logs):
69     if i ≡ y_maxi:
70         log_data = get_data(log)

Page 2/4short_peak.py

22/39./data/peak_short/short_peak.py

136



71 y = log_data[:, 3]
72 yim = np.argmin(y)
73 alpha_1_max = log_data[:, 4][yim]
74

75 for i, log in enumerate(list_of_logs):
76     log_data = get_data(log)
77     y = (log_data[:, 3]+abs(y_min))/(abs(y_min)+y_max)
78     y_err = log_data[:, 4]
79     y_err = np.sqrt(alpha_1**2 + y_err**2) + np.sqrt(alpha_1**2 + alpha_1_max**2

) #+ np.sqrt((alpha_1/y_min)**2+(y_err/y)**2)
80     x = log_data[:, 0]*125.867 # Temp conversion
81     if i > 1:
82 if i % 2 ≡ 0:
83 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
84 markeredgewidth=1, markersize=8,
85 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
86 else:
87 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
88 markeredgewidth=1, markerfacecolor="white" ,markersize=8,
89 linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
90

91     else:
92 if i % 2 ≡ 0:
93 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
94 markeredgewidth=1, markersize=8, markerfacecolor="white",
95 color=colors[i], markeredgecolor=colors[i])
96 else:
97 ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
98 markeredgewidth=1, markersize=8,
99 color=colors[i], markeredgecolor=colors[i])

100

101 plt.rcParams.update({’mathtext.default’:  ’regular’ })
102 plt.xlabel(r"Temperature (K)")
103 plt.ylabel(r"|$\mathcal{I}$(T)|")
104 ax.set_ylim([0,1])
105 ax.set_xlim([0,1100])
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106 ax.yaxis.major.formatter._useMathText = True
107 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, b

orderaxespad = 0)
108 plt.savefig("short_peak.png")
109 #plt.show()

Page 4/4short_peak.py

24/39./data/peak_short/short_peak.py

138



1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’) 
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10         data = np.genfromtxt(log_file)
11         return data
12     except (ValueError, IOError):
13         print("Problem with this log file")
14         print(log_file)
15         print("\n")
16         return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21         data = np.genfromtxt(log_file, comments="@", names=True)
22         return data
23     except (ValueError, IOError):
24         print("Problem with this log file")
25         print(log_file)
26         print("\n")
27         return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’r’, ’g’, ’b’, ’k’]
36
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37 # Rigid dashed and open
38 # annealed circles quenched squares
39

40 for i, log in enumerate(list_of_logs):
41     log_data = get_data(log)
42     y = log_data[:, −1]*1.97e−15#*2.16e−15
43     y_err = 0#log_data[:, 2]*4184*(0.25)
44     x = log_data[:, 0]*125.867 # Temp conversion
45     if i > 1:
46         if i % 2 ≡ 0:
47             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
48                     markeredgewidth=1, markersize=8,
49                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
50         else:
51             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
52                     markeredgewidth=1, markerfacecolor="white" ,markersize=8,
53                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
54

55     else:
56         if i % 2 ≡ 0:
57             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
58                     markeredgewidth=1, markersize=8, markerfacecolor="white", 
59                     color=colors[i], markeredgecolor=colors[i])
60         else:
61             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
62                     markeredgewidth=1, markersize=8,
63                     color=colors[i], markeredgecolor=colors[i])
64

65 plt.rcParams.update({’mathtext.default’:  ’regular’ })
66 plt.xlabel(r"Temperature (K)")
67 plt.ylabel(r"Autocorrelation Time (s)")
68 #ax.set_ylim([0,1])
69 ax.set_xlim([0,1250])
70 plt.yscale("log")
71 ax.yaxis.major.formatter._useMathText = True
72 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, b
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orderaxespad = 0)
73 plt.axvline(x=410, color=’k’, linestyle=’:’)
74 plt.savefig("autocorrtime.png", transparent=True)
75 #plt.show()

Page 3/3act.py

27/39./data/si/autocorr_time/act.py

141



1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10 data = np.genfromtxt(log_file)
11 return data
12     except (ValueError, IOError):
13 print("Problem with this log file")
14 print(log_file)
15 print("\n")
16 return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21 data = np.genfromtxt(log_file, comments="@", names=True)
22 return data
23     except (ValueError, IOError):
24 print("Problem with this log file")
25 print(log_file)
26 print("\n")
27 return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’r’, ’g’, ’b’, ’k’]
36
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37 # Rigid dashed and open
38 # annealed circles quenched squares
39

40 for i, log in enumerate(list_of_logs):
41     log_data = get_data(log)
42     y = log_data[:, 1]*1e5*1.97e−15#2.16e−15#*1e6
43     y_err = 0#log_data[:, 2]*4184*(0.25)
44     x = log_data[:, 0]*125.867 # Temp conversion
45     if i > 1:
46         if i % 2 ≡ 0:
47             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
48                     markeredgewidth=1, markersize=8,
49                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
50         else:
51             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
52                     markeredgewidth=1, markerfacecolor="white" ,markersize=8,
53                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
54

55     else:
56         if i % 2 ≡ 0:
57             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
58                     markeredgewidth=1, markersize=8, markerfacecolor="white", 
59                     color=colors[i], markeredgecolor=colors[i])
60         else:
61             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
62                     markeredgewidth=1, markersize=8,
63                     color=colors[i], markeredgecolor=colors[i])
64

65 plt.rcParams.update({’mathtext.default’:  ’regular’ })
66 plt.xlabel(r"Temperature (K)")
67 plt.ylabel(r"Relaxation Time (s)")
68 #ax.set_ylim([0,1])
69 ax.set_xlim([0,1250])
70 #plt.yscale("log")
71 ax.yaxis.major.formatter._useMathText = True
72 legend = ax.legend(loc=’upper right’, shadow=False, prop={’size’:20}, handlelength=1.
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5, borderaxespad = 1)
73 plt.axvline(x=410, color=’k’, linestyle=’:’)
74 plt.savefig("relaxtime.png", transparent = True)
75 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10         data = np.genfromtxt(log_file)
11         return data
12     except (ValueError, IOError):
13         print("Problem with this log file")
14         print(log_file)
15         print("\n")
16         return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21         data = np.genfromtxt(log_file, comments="@", names=True)
22         return data
23     except (ValueError, IOError):
24         print("Problem with this log file")
25         print(log_file)
26         print("\n")
27         return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’r’, ’g’, ’b’, ’k’]
36
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37 # Rigid dashed and open
38 # annealed circles quenched squares
39

40 for i, log in enumerate(list_of_logs):
41     log_data = get_data(log)
42     y = log_data[:, 1]
43     y_err = 0#log_data[:, 2]*4184*(0.25)
44     x = log_data[:, 0]*125.867 # Temp conversion
45     if i > 1:
46         if i % 2 ≡ 0:
47             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
48                     markeredgewidth=1, markersize=8,
49                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
50         else:
51             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
52                     markeredgewidth=1, markerfacecolor="white" ,markersize=8,
53                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
54

55     else:
56         if i % 2 ≡ 0:
57             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
58                     markeredgewidth=1, markersize=8, markerfacecolor="white",
59                     color=colors[i], markeredgecolor=colors[i])
60         else:
61             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
62                     markeredgewidth=1, markersize=8,
63                     color=colors[i], markeredgecolor=colors[i])
64

65 plt.rcParams.update({’mathtext.default’:  ’regular’ })
66 plt.xlabel(r"Temperature (K)")
67 plt.ylabel(r"Scale Factor")
68 #ax.set_ylim([0,1])
69 ax.set_xlim([0,1250])
70 #plt.yscale("log")
71 ax.yaxis.major.formatter._useMathText = True
72 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, b
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orderaxespad = 0)
73 plt.savefig("scalefactor.png")
74 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7

8 def get_data(log_file):
9     try:

10         data = np.genfromtxt(log_file)
11         return data
12     except (ValueError, IOError):
13         print("Problem with this log file")
14         print(log_file)
15         print("\n")
16         return None
17

18

19 def get_data_with_headers(log_file):
20     try:
21         data = np.genfromtxt(log_file, comments="@", names=True)
22         return data
23     except (ValueError, IOError):
24         print("Problem with this log file")
25         print(log_file)
26         print("\n")
27         return None
28

29

30

31 fig, ax = plt.subplots()
32 list_of_logs = [vals for vals in argv[1:]]
33

34 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
35 colors = [’r’, ’g’, ’b’, ’k’]
36
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37 # Rigid dashed and open
38 # annealed circles quenched squares
39

40 for i, log in enumerate(list_of_logs):
41     log_data = get_data(log)
42     y = log_data[:, 1]
43     y_err = 0#log_data[:, 2]*4184*(0.25)
44     x = log_data[:, 0]*125.867 # Temp conversion
45     if i > 1:
46         if i % 2 ≡ 0:
47             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
48                     markeredgewidth=1, markersize=8,
49                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
50         else:
51             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
52                     markeredgewidth=1, markerfacecolor="white" ,markersize=8,
53                     linestyle=’−−’, color=colors[i], markeredgecolor=colors[i])
54

55     else:
56         if i % 2 ≡ 0:
57             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’o’,
58                     markeredgewidth=1, markersize=8, markerfacecolor="white", 
59                     color=colors[i], markeredgecolor=colors[i])
60         else:
61             ax.errorbar(x,y,yerr=y_err,label=legend[i], marker = ’s’,
62                     markeredgewidth=1, markersize=8,
63                     color=colors[i], markeredgecolor=colors[i])
64     print(np.mean(y))
65

66 plt.rcParams.update({’mathtext.default’:  ’regular’ })
67 plt.xlabel(r"Temperature (K)")
68 plt.ylabel(r"TPS")
69 #ax.set_ylim([0,1])
70 ax.set_xlim([0,1250])
71 ax.yaxis.major.formatter._useMathText = True
72 legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5, b
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orderaxespad = 0)
73 plt.axvline(x=410, color=’k’, linestyle=’:’)
74 plt.savefig("TPS.png", transparent=True)
75 #plt.show()
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1 import numpy as np
2 import matplotlib
3 matplotlib.use(’AGG’)
4 import matplotlib.pyplot as plt
5 import re
6 from sys import argv
7 from matplotlib.ticker import FormatStrFormatter
8

9

10 def get_data(log_file):
11     try:
12         data = np.genfromtxt(log_file)
13         return data
14     except (ValueError, IOError):
15         print("Problem with this log file")
16         print(log_file)
17         print("\n")
18         return None
19

20

21 def get_data_with_headers(log_file):
22     try:
23         data = np.genfromtxt(log_file, comments="@", names=True)
24         return data
25     except (ValueError, IOError):
26         print("Problem with this log file")
27         print(log_file)
28         print("\n")
29         return None
30

31

32

33 fig, ax = plt.subplots()
34 list_of_logs = [vals for vals in argv[1:]]
35

36 legend = ["Flex Anneal","Flex Quench","Rigid Anneal","Rigid Quench"]
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37 colors = [’r’, ’g’, ’b’, ’k’]
38

39 # Rigid dashed and open
40 # annealed circles quenched squares
41 # % * Change the blue datapoints to be square (makes it clearer for black−and−wh

ite representations of figures and it is generally good practice)
42 # % * Change the vertical dotted lines to be black to make them more distinct
43 # 10 bins#
44 SLICE = 410
45 for i, log in enumerate(list_of_logs):
46     log_data = get_data(log)
47     y = log_data[:, 6]*4184*(0.25)
48     y = y[10:]
49     y_err = 0#log_data[:, 2]*4184*(0.25)
50     x = log_data[:, 0]*2.16e−15 #:Time conversion
51     x = x[10:]
52     ax.scatter(x[:SLICE], y[:SLICE],label=legend[i], marker = ’o’,
53                     color=colors[i])
54

55     ax.scatter(x[SLICE:], y[SLICE:],label=legend[i], marker = ’s’,
56                     color=’b’)
57

58

59

60 #print(len(x))
61

62 vslice = x[::int(len(x)/10)]
63 #print(vslice)
64 vslice = vslice[1:−1]
65 for line in vslice:
66     plt.axvline(line, ls =’−−’, color = ’k’)
67 plt.rcParams.update({’mathtext.default’:  ’regular’ })
68 plt.xlabel(r"Time (s)")
69 plt.ylabel(r"E$_{LJ}$ (J/mol)")
70 #ax.set_ylim([0,1])
71 plt.xticks(np.array([0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0])*1e−7)
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72 ax.set_xlim([0.0,3.0e−7])
73 ax.yaxis.major.formatter._useMathText = True
74 ax.xaxis.major.formatter._useMathText = True
75 plt.ticklabel_format(style=’sci’, axis=’x’, scilimits=(0,0), useMathText=True)
76 #legend = ax.legend(loc=’best’, shadow=False, prop={’size’:20}, handlelength=1.5

, borderaxespad = 0)
77 plt.savefig("window.png")
78 #plt.show()
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B.2 Code for Chapter 4



In [1]: import os
os.environ['MATPLOTLIBRC'] = "../matplotlibrc"

import matplotlib.pyplot as plt

BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"
%matplotlib inline

In [2]: fig, ax = plt.subplots(dpi=600, figsize=(7, 6))

main_style = {"linestyle": "--", "color": "k"}

# vline x, ymin, ymax
# hline y, xmin, xmax

eye_guide_style = {"linestyle": "--", "color": "grey"}

# t1 study
#t1_style = {"linestyle": "--", "color": BSU_BLUE}

#b_t1 = ax.vlines(0.2, 0.2, 0.8, **t1_style)
#c_t1 = ax.hlines(0.8, 0.2, 1, **t1_style)
t1_shade = ax.axvspan(

0.2,
0.4,
ymin=0.2,
ymax=0.8,
facecolor=BSU_BLUE,
hatch="",
edgecolor="k",
label=r"t$_1$ Study",

)

# t2 study
#t2_style = {"linestyle": "--", "color": BSU_ORANGE}

#c_t2 = ax.hlines(0.8, 0.6, 0.8, **t2_style)
#d_t2 = ax.vlines(0.8, 0.4, 0.8, **t2_style)

# e_t2 = ax.hlines(.4, .75, 1, **t2_style)

t2_shade = ax.axvspan(
0.6,
0.8,
ymin=0.4,
ymax=0.8,
facecolor=BSU_ORANGE,
hatch="",
edgecolor="k",
label=r"t$_2$ Study",

)

# main lines
a = ax.hlines(0.2, 0, 0.4, **main_style)
b = ax.vlines(0.4, 0.2, 0.8, **main_style)
c = ax.hlines(0.8, 0.4, 0.6, **main_style)
d = ax.vlines(0.6, 0.4, 0.8, **main_style)
e = ax.hlines(0.4, 0.6, 1, **main_style)

# t1 eye guide
ax.vlines(0.2, 0.0, 0.2, **eye_guide_style)
ax.vlines(0.4, 0.0, 0.2, **eye_guide_style)
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# t2 eye guide
ax.vlines(0.8, 0.0, 0.4, **eye_guide_style)
ax.vlines(0.6, 0.0, 0.4, **eye_guide_style)

ax.set_xlim(0, 1)
ax.set_ylim(0, 1)

ax.set_ylabel("Temperature")
ax.set_xlabel("Time Step")

# ax.set_yticklabels([])
# ax.set_xticklabels(["test"])
x_labels = [item.get_text() for item in ax.get_xticklabels()]
x_labels[1] = "t$_1$ \nmin"
x_labels[2] = "t$_1$ \nmax"
x_labels[3] = "t$_2$ \nmin"
x_labels[4] = "t$_2$ \nmax"
x_labels[5] = "t$_3$"
ax.set_xticklabels(x_labels)

y_labels = [item.get_text() for item in ax.get_yticklabels()]
y_labels[1] = "T1"

ax.set_yticklabels(y_labels)

ax1 = ax.twinx()
y_labels = [item.get_text() for item in ax1.get_yticklabels()]
y_labels[2] = "T3"
y_labels[4] = "T2"
ax1.set_yticklabels(y_labels)

#plt.text(0.2, 0.15, "T1", horizontalalignment="center")
#plt.text(0.5, 0.85, "T2", horizontalalignment="center")
#plt.text(0.8, 0.35, "T3", horizontalalignment="center")

arrow_x = 0.2
arrow_y = 0.6
arrow_dx = 0.2
ax.annotate(

text="",
xy=(arrow_x, arrow_y),
xytext=(arrow_x + arrow_dx, arrow_y),
arrowprops=dict(arrowstyle="<->",lw=2,color="white"),

)
ax.annotate(

text=r"Range of t$_1$",
xy=((arrow_x + arrow_dx / 2), arrow_y + 0.04),
size=8,
color="white",
ha="center",
va="center",

)

arrow_x = 0.25 + 0.35
arrow_y = 0.6
arrow_dx = 0.2
ax.annotate(

text="",
xy=(arrow_x, arrow_y),
xytext=(arrow_x + arrow_dx, arrow_y),
arrowprops=dict(arrowstyle="<->",lw=2, color="white"),

)
ax.annotate(

text=r"Range of t$_2$",
xy=((arrow_x + arrow_dx / 2), arrow_y + 0.04),
size=8,
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color="white",
ha="center",
va="center",

)

for axis in ['top','bottom','left','right']:
ax.spines[axis].set_linewidth(2)

ax.tick_params(width=1.5)

ax.legend()

plt.savefig("new_step_cartoon.png", transparent=True)

<ipython-input-2-330cee01a3e4>:78: UserWarning: FixedFormatter should only be used
together with FixedLocator

ax.set_xticklabels(x_labels)
<ipython-input-2-330cee01a3e4>:84: UserWarning: FixedFormatter should only be used
together with FixedLocator

ax.set_yticklabels(y_labels)
<ipython-input-2-330cee01a3e4>:90: UserWarning: FixedFormatter should only be used
together with FixedLocator

ax1.set_yticklabels(y_labels)
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In [5]: import os
os.environ['MATPLOTLIBRC'] = "../matplotlibrc"
BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"

data_path = '/home/sthomas/projects/LB_mixing'

from common import getDiffusivities, line_intersect, fit_Tg_to_DiBenedetto, DiBenedetto,
Fit_Diffusivity1

import signac
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib

from piecewise.regressor import piecewise
#https://www.datadoghq.com/blog/engineering/piecewise-regression/
from piecewise.plotter import plot_data_with_regression
from scipy.signal import argrelextrema as argex
import matplotlib.cm as cm
import itertools

%matplotlib inline
names={'iso':'Isothermal','lin_ramp':'Linear Ramp','step':'Step'}
colors={'iso':'C0','lin_ramp':'C1','step':'C2'}
markers={'iso':'s','lin_ramp':'P','step':'>'}
linestyles={'iso':'-','lin_ramp':'--','step':'-.'}

project = signac.get_project(data_path)
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(['_id'])
statepoints = {doc['_id']: doc['statepoint'] for doc in project.index()}
df = pd.DataFrame(statepoints).T.join(df_index)
df = df.sort_values('T')
def get_custom_ranges(cooling_method):

if cooling_method=='quench':
custom_ranges_l1={00.0:[0.1,0.8],

30.0:[0.1,0.8],
50.0:[0.1,0.8],
70.0:[0.1,0.8]}

custom_ranges_l2={00.0:[0.7,1.2],
30.0:[0.85,1.4],
50.0:[1.0,1.8],
70.0:[1.15,2.5]}

elif cooling_method=='anneal':
custom_ranges_l1={00.0:[0.1,0.8],

30.0:[0.1,0.8],
50.0:[0.1,0.8],
70.0:[0.1,0.8]}

custom_ranges_l2={00.0:[0.7,1.2],
30.0:[0.85,1.4],
50.0:[1.0,1.8],
70.0:[1.15,2.5]}

else:
raise ValueError(cooling_method+'is unknown')

return custom_ranges_l1, custom_ranges_l2

PROP_NAME
='bparticles'#'volume'#'pair_lj_energy','bond_harmonic_energy'#'potential_energy'
filter_saps=[0.0,30.,50.,70.]#,100.]#,100.]#[0.0,50.0,100.0]#,30,50,70]#,90]
colors = plt.cm.plasma(np.linspace(0,0.75,len(filter_saps)))
Tgs=[]
Tgs_tangent=[]
cure_percents = []
Cure_Ts=[]
markers=['+','.']
markersize=[10,10]
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cooling_method='quench'
fig, ax1 = plt.subplots(dpi=600, figsize=(7,6))

df_filtered=df[(df.quench_T<=3.0)&
(df.quench_T>=0.1)&
(df.CC_bond_angle!=109.5)&

(df.cooling_method==cooling_method)]#(df.quench_T<=3.0)&(df.quench_T>=0.05)&
for i,sap in enumerate(filter_saps):

cooling_colors = plt.cm.plasma(np.linspace(0,0.75,2))
for j,(cooling_method,df_grp) in enumerate(df_filtered.groupby('cooling_method')):

df_curing = df_grp[(df_grp.bond==False)&
(df_grp.calibrationT==305)&
(df_grp.cooling_method==cooling_method)&
(df_grp.stop_after_percent==sap)]

cure_percent = df_curing.cure_percent.mean()
cure_percents.append(cure_percent)
Ts,Ds=getDiffusivities(project,df_curing,name=PROP_NAME)
Cure_Ts.append(Ts)

mul_fact=1000000
Ds_scaled=Ds*mul_fact
custom_ranges_l1, custom_ranges_l2 = get_custom_ranges(cooling_method)
print(custom_ranges_l1[sap])
Tg,Tg_prop,line_vals = Fit_Diffusivity1(Ts,

Ds_scaled,
method='use_viscous_region',
min_D=0,
ver=4,
viscous_line_index=0,
l1_T_bounds=custom_ranges_l1[sap],
l2_T_bounds=custom_ranges_l2[sap])

xs = Ts#np.linspace(0.1,4)
plt.plot(Tg,

Tg_prop/mul_fact,
marker='*',
color=colors[i],
markersize=15)#,

plt.plot(Ts,
Ds,
marker='.',
color=colors[i],#cooling_colors[j],
linewidth=0.0,
label='$\\alpha$ : {:.1f}'.format(sap/100))

l_colors=['r','g']
for li,line_val in enumerate(line_vals):

xs=line_val[0]
ys=line_val[1]/mul_fact
plt.plot(xs,

ys,
color=l_colors[li],
zorder=0,
linewidth=1)

Tgs.append(Tg)
#break

plt.legend(fontsize=15)
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
Tgs = np.asarray(Tgs)
cure_percents = np.asarray(cure_percents)
data=[cure_percents,Tgs]

plt.xlabel('Temperature ($T^*$)',fontsize=15)
plt.ylabel('Diffusivity ($\\frac{\\sigma^2}{\\tau}$)',fontsize=15)

plt.savefig("some_alpha.png", transparent=True)
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cure_percents = np.asarray(cure_percents)
fig, ax1 = plt.subplots(dpi=600, figsize=(7,6))
ax2=ax1.twinx()
Tgs = np.asarray(Tgs)
Tgs_tangent = np.asarray(Tgs_tangent)
print(Tgs)
Tg_data = np.asarray([cure_percents/100.,Tgs])
cure_percents_ss = cure_percents#[:-1]
Tgs_ss = Tgs#[:-1]
print(cure_percents_ss)
print(Tgs_ss)
R2,fit_Tgs,T1,inter_parm,T0 = fit_Tg_to_DiBenedetto(cure_percents_ss/100.,

Tgs_ss,
T1=None,
T0=None)

print('T1',T1,'lambda',inter_parm)
alphas = np.linspace(0,1)
fit_ydata = DiBenedetto(alphas,T1,T0=T0,inter_param=inter_parm)
ax1.plot(alphas,fit_ydata,label='DiBenedetto Fit $R^2$:{}'.format(round(R2,3)),
color=BSU_BLUE)
ax1.scatter(cure_percents/100.,

Tgs,
color=BSU_BLUE)

Tg_sim = T1
Tg_exp = 480
roomT_exp = 300
Tex_toTsim = Tg_exp/Tg_sim
roomT_sim = Tg_sim*roomT_exp/Tg_exp
Tg0_exp = Tg_exp*T0/Tg_sim
print('300 K in T*:',roomT_sim)
ax2.scatter(1.00,Tg_exp,marker='*',color=BSU_ORANGE,s=200,label='Experimental Tg
($\\alpha=1.0$)')
ax2.set_ylabel('Tg (K)')

sim_low_lim = 0.4
ex_low_lim = sim_low_lim*Tex_toTsim
sim_up_lim = 1.8
ex_up_lim = sim_up_lim*Tex_toTsim
ax2.set_ylim(ex_low_lim,ex_up_lim)
ax1.set_ylim(sim_low_lim,sim_up_lim)
show_roomT=False
if show_roomT:

ax1.axhline(y=roomT_sim,linewidth=1.1,linestyle='--',label='simulated 300 K')
ax1.set_xlabel('Cure Fraction ($\\alpha$)',fontsize=15)
ax1.set_ylabel('Tg ($T^*$)',fontsize=15)
ax1.legend(fontsize=15,loc='upper left')
ax2.legend(fontsize=15,loc='lower right')
plt.ticklabel_format(axis='y',style='plain')
plt.savefig("DB_fit.png", transparent=True)

[0.1, 0.8]
in common, indices: (array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)

00 1
[0.1, 0.8]
in common, indices: (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)

00 0
[0.1, 0.8]
in common, indices: (array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
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15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)

00 1
[0.1, 0.8]
in common, indices: (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)

00 0
[0.75670876 0.82950327 0.9256867 1.06374355]
[2.49999994e-03 3.00000000e+01 5.00000000e+01 7.00000000e+01]
[0.75670876 0.82950327 0.9256867 1.06374355]
T1 1.318812860773745 lambda 0.5
300 K in T*: 0.8242580379835907
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In [ ]: data_path = "/home/sthomas/projects/LB_mixing"
import os
os.environ['MATPLOTLIBRC'] = "../matplotlibrc"
BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"

In [2]: import signac
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib
%matplotlib inline
from scipy.signal import argrelextrema as argex
import matplotlib.cm as cm
import itertools

names={'iso':'Isothermal','lin_ramp':'Linear Ramp','step':'Step'}
colors={'iso':'C0','lin_ramp':'C1','step':'C2'}
markers={'iso':'s','lin_ramp':'P','step':'>'}
linestyles={'iso':'-','lin_ramp':'--','step':'-.'}

project = signac.get_project(data_path)
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(['_id'])
statepoints = {doc['_id']: doc['statepoint'] for doc in project.index()}
df = pd.DataFrame(statepoints).T.join(df_index)
df = df.sort_values('T')

In [3]: df_filtered = df[(df.bond==True)]
df_sorted = df_filtered.sort_values('cure_percent')
df_100 = df_filtered[df_filtered.stop_after_percent>80]

plt.axvline(x=df_100['curing_at_gel_point'][0],
color='r',
linestyle='--',

label='$X_{gel}$')
plt.plot(df_sorted['cure_percent'],

df_sorted['largest_network'],
marker='*',
label='Largest Molecular Mass',

color=BSU_BLUE)
plt.plot(df_sorted['cure_percent'],

df_sorted['second_largest_network'],
marker='*',
label='Second Largest Molecular Mass',

color=BSU_ORANGE)
plt.yscale('log')
plt.xlabel('Cure Percent')
plt.ylabel('Mass')
plt.legend(fontsize=10)
plt.savefig("gel_point.png", transparent=True)
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In [1]: import matplotlib.pyplot as plt
import matplotlib as cm
import matplotlib.lines as mlines

import numpy as np
from collections import OrderedDict

A = [0.2, 0.4, 0.8, 1.0, 2.0]
deltaT= [0, 1e-06, 1e-05, 0.0001]
FO_0_mean = [0.994388, 0.987342, 0.970278, 0.961052, 0.898360]
FO_0_sem = [0.0011599593740658951, 0.0024308681875413827, 0.009510626980093839,
0.01311594231997513, 0.03607616595453638]

FO_1e06_mean =[0.9942860750595337, 0.9880332636504043, 0.9715727286807505,
0.9617348596652091, 0.895853274381769]
FO_1e06_sem = [0.0011950288033497475, 0.0027625968946956327, 0.010346970623441662,
0.013708840275554593, 0.03664748969973626]

FO_1e05_mean = [0.9891900062751051, 0.9830138183585232, 0.9647697478186913,
0.954392840081353, 0.8836898304889049]
FO_1e05_sem = [0.001522794529324003, 0.001954618710525918, 0.007076488011568168,
0.009890860112780323, 0.029829038695698272]

FO_0001_mean = [0.9765340308833451, 0.9679304230504282, 0.9427140731911086,
0.9261284736630658, 0.8170891346516121]
FO_0001_sem =[0.0041862994458542425, 0.003888607082289215, 0.0030449517296994824,
0.0017131920455586425, 0.008133915592155674]

SAFO_0_mean = [0.945619103017723, 0.9502542889066092, 0.9598076788566482,
0.9607301037624483, 0.9289951020475868]
SAFO_0_sem = [0.006392732210594329, 0.0124956825095459, 0.019040485607138728,
0.01716467117011829, 0.015309757691479006]

SAFO_1e06_mean = [0.9485914887891203, 0.9560205476716985, 0.9650941367218115,
0.9662292362702924, 0.931752284665132]
SAFO_1e06_sem = [0.005625036624910599, 0.00948104936120714, 0.014276453108781461,
0.012399245208401697, 0.015227730575043147]

SAFO_1e05_mean = [0.9681606710891607, 0.9774884845930968, 0.984524089818837,
0.9834009700698025, 0.942708220784915]
SAFO_1e05_sem = [0.0025019918928122736, 0.0023519309457531038, 0.0014005409206292304,
0.0013345367141796671, 0.01939687875342732]

SAFO_0001_mean = [0.9794764769613135, 0.9867889115270978, 0.9886633811268632,
0.9840540474306009, 0.9091319649266506]
SAFO_0001_sem = [0.0022878305443372587, 0.0013229661902640793, 0.0012035959203720908,
0.0020346156964257483, 0.011740217875926318]

class Data():
A = A

FO_0 = Data()
FO_0.mean = FO_0_mean
FO_0.sem = FO_0_sem
FO_0.kT = 0
FO_0.name = "First Order"

FO_1e06 = Data()
FO_1e06.mean = FO_1e06_mean
FO_1e06.sem = FO_1e06_sem
FO_1e06.kT = 1e-06
FO_1e06.name = "First Order"
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FO_1e05 = Data()
FO_1e05.mean = FO_1e05_mean
FO_1e05.sem = FO_1e05_sem
FO_1e05.kT = 1e-05
FO_1e05.name = "First Order"

FO_0001 = Data()
FO_0001.mean = FO_0001_mean
FO_0001.sem = FO_0001_sem
FO_0001.kT = 1e-4
FO_0001.name = "First Order"

SAFO_0 = Data()
SAFO_0.mean = SAFO_0_mean
SAFO_0.sem = SAFO_0_sem
SAFO_0.kT = 0
SAFO_0.name = "First Order Self-Accelerated"

SAFO_1e06 = Data()
SAFO_1e06.mean = SAFO_1e06_mean
SAFO_1e06.sem = SAFO_1e06_sem
SAFO_1e06.kT = 1e-06
SAFO_1e06.name = "First Order Self-Accelerated"

SAFO_1e05 = Data()
SAFO_1e05.mean = SAFO_1e05_mean
SAFO_1e05.sem = SAFO_1e05_sem
SAFO_1e05.kT = 1e-05
SAFO_1e05.name = "First Order Self-Accelerated"

SAFO_0001 = Data()
SAFO_0001.mean = SAFO_0001_mean
SAFO_0001.sem = SAFO_0001_sem
SAFO_0001.kT = 1e-4
SAFO_0001.name = "First Order Self-Accelerated"

data_points = [FO_0,FO_1e06,FO_1e05,FO_0001]
data_points += [SAFO_0,SAFO_1e06,SAFO_1e05,SAFO_0001]

deltaT= [0, 1e-06, 1e-05, 0.0001]

COLOR_MAP = "viridis"

FO_MARKER = "o"
FO_LS = "--"

SAFO_MARKER = "s"
SAFO_LS = "-"

norm = cm.colors.SymLogNorm(linthresh=1e-6, vmax=max(deltaT), vmin=min(deltaT),
clip=False)

cmap = cm.cm.get_cmap(COLOR_MAP)
plt.set_cmap(COLOR_MAP)

for dp in data_points:
if dp.name == "First Order":

marker = FO_MARKER
linestyle = FO_LS

else:
marker = SAFO_MARKER
linestyle = SAFO_LS
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plt.errorbar(dp.A, dp.mean, yerr= dp.sem, marker=None, c=cmap(norm(dp.kT)),
linewidth=1, linestyle=linestyle)

plt.scatter(dp.A, dp.mean, c=[dp.kT]*len(dp.A), norm=norm, marker=marker,
label=dp.name, edgecolors="black", linewidths=1)

cbar = plt.colorbar()

first_order = mlines.Line2D([], [], color='grey', linestyle=FO_LS, marker=FO_MARKER,
label="First Order")
first_order_SA = mlines.Line2D([], [], color='grey', linestyle=SAFO_LS,
marker=SAFO_MARKER, label="First Order Self-Accelerated")

handles, labels = plt.gca().get_legend_handles_labels()
by_label = OrderedDict(zip(labels, handles))
plt.legend(handles=[first_order, first_order_SA], prop={'size': 12})

plt.xlabel("A")
plt.ylabel("$R^2$")
cbar.set_label("$\Delta T$")
cbar.set_ticks([0,0.0001])
plt.savefig("draft_A_deltaT.png", transparent=True, dpi=300)

<ipython-input-1-e447fb990a95>:106: MatplotlibDeprecationWarning: default base will
change from np.e to 10 in 3.4. To suppress this warning specify the base keyword
argument.

norm = cm.colors.SymLogNorm(linthresh=1e-6, vmax=max(deltaT), vmin=min(deltaT),
clip=False)

In [ ]:
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In [1]: import os
os.environ['MATPLOTLIBRC'] = "../matplotlibrc"
BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"
from common import *
data_path = "/home/mikehenry/epoxy-stuff/tuningrxn"

In [2]: import signac
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib
%matplotlib inline
from scipy.signal import argrelextrema as argex
import matplotlib.cm as cm
import itertools

names={'iso':'Isothermal','lin_ramp':'Linear Ramp','step':'Step'}
colors={'iso':'C0','lin_ramp':'C1','step':'C2'}
markers={'iso':'s','lin_ramp':'P','step':'>'}
linestyles={'iso':'-','lin_ramp':'--','step':'-.'}

def init_project():
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(['_id'])
statepoints = {doc['_id']: doc['statepoint'] for doc in project.index()}
#print(statepoints)
df = pd.DataFrame(statepoints).T.join(df_index)
df = df.sort_values('T')
return df

project = signac.get_project(data_path)
df = init_project()

In [3]: #ADDING A VALUE TO DATA FRAME
df['A']=df.num_a*df.n_mul*4*df.percent_bonds_per_step/100/df.bond_period

#IGNORING NEGATIVE R^2 VALUES SINCE THE MODEL DOES NOT FIT THE DATA AT ALL
df.loc[df['FO_model_R2']<0, 'FO_model_R2'] = None
df.loc[df['SAFO_model_R2']<0, 'SAFO_model_R2'] = None
df.loc[df['SO_model_R2']<0, 'SO_model_R2'] = None
df.loc[df['SASO_model_R2']<0, 'SASO_model_R2'] = None

In [4]: df_filtered=df[(df.n_particles==50000)&
(df.trial==0)&
#(df.kT==0.5)&
(df.sec_bond_weight==2.0)&
(df.t_Final==6000000.0)]

N = len(df_filtered.index)
for i,jobid in enumerate(df_filtered.index):

print('\r{}/{}'.format(i,N),end='', flush=True)
job=project.open_job(id=jobid)
#print(job)
if job.isfile('out.log'):

success,r_squared,C,H, ts,X, first_index,last_index =
fit_curing_profile_with_model(job,'FO')

if success:
df.at[jobid,'FO_model_R2']=r_squared
df.at[jobid,'FO_model_C']=None
df.at[jobid,'FO_model_H']=H

else:
df.at[jobid,'FO_model_R2']=None
df.at[jobid,'FO_model_C']=None
df.at[jobid,'FO_model_H']=None

success,r_squared,C,H, ts,X, first_index,last_index =
fit_curing_profile_with_model(job,'SO')

if success:
df.at[jobid,'SO_model_R2']=r_squared

169



df.at[jobid,'SO_model_C']=None
df.at[jobid,'SO_model_H']=H

else:
df.at[jobid,'SO_model_R2']=None
df.at[jobid,'SO_model_C']=None
df.at[jobid,'SO_model_H']=None

success,r_squared,C,H, ts,X, first_index,last_index =
fit_curing_profile_with_model(job,'SAFO')

if success:
df.at[jobid,'SAFO_model_R2']=r_squared
df.at[jobid,'SAFO_model_C']=C
df.at[jobid,'SAFO_model_H']=H

else:
df.at[jobid,'SAFO_model_R2']=None
df.at[jobid,'SAFO_model_C']=None
df.at[jobid,'SAFO_model_H']=None

success,r_squared,C,H, ts,X, first_index,last_index =
fit_curing_profile_with_model(job,'SASO')

if success:
df.at[jobid,'SASO_model_R2']=r_squared
df.at[jobid,'SASO_model_C']=C
df.at[jobid,'SASO_model_H']=H

else:
df.at[jobid,'SASO_model_R2']=None
df.at[jobid,'SASO_model_C']=None
df.at[jobid,'SASO_model_H']=None

559/560

In [6]: from scipy import stats
fig, axs = plt.subplots(1,4,sharey=True, dpi=600, figsize=(10,5))
#axs = axs.ravel()
df_filtered = df[(df.n_particles==50000)&

(df.trial==0)&
#(df.kT==0.5)&
((df.kT==0.5)|(df.kT==1.0)|(df.kT==2.0)|(df.kT==4.0)|(df.kT==6.0))&
#(df.deltaT==1e-05)&
#(df.deltaT==0.0)&
(df.sec_bond_weight==2.0)&
(df.t_Final==6000000.0)&
(df.A<=2)&
(df.A>0.1)]

df_sorted = df_filtered.sort_values('A')
models = ['SAFO','SASO']#['FO','SAFO','SO','SASO']
for i,(deltaT,df_deltaT) in enumerate(df_sorted.groupby('deltaT')):

group_agg_mean = df_deltaT.groupby(['A']).aggregate(['mean','sem'])

colors = itertools.cycle(["royalblue", "g", "orange", "r"])
markers = itertools.cycle(["s", "P", "D", "H"])

color = next(colors)
marker = next(markers)
if color is 'royalblue':

facecolor='royalblue'
else:

facecolor='white'
if True:

#print("dt", deltaT)
#print("mean", group_agg_mean.FO_model_R2['mean'].values.tolist())
#print("sem", group_agg_mean.FO_model_R2['sem'].values.tolist())
axs[i].errorbar(group_agg_mean.index,

group_agg_mean.FO_model_R2['mean'],
group_agg_mean.FO_model_R2['sem'],
color=BSU_BLUE,
marker=marker,
markeredgewidth=1,
markerfacecolor="white",
markersize=8,
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#linestyle='--',
markeredgecolor=BSU_BLUE,
label='FO')

color = next(colors)
marker = next(markers)
if color is 'royalblue':

facecolor='royalblue'
else:

facecolor='white'
if True:

print("dt", deltaT)
print(group_agg_mean.SAFO_model_R2['mean'])
print("mean", group_agg_mean.SAFO_model_R2['mean'].values.tolist())
print("sem", group_agg_mean.SAFO_model_R2['sem'].values.tolist())
axs[i].errorbar(group_agg_mean.index,

group_agg_mean.SAFO_model_R2['mean'],
group_agg_mean.SAFO_model_R2['sem'],
color=BSU_ORANGE,
marker=marker,
markeredgewidth=1,
markerfacecolor="white",
markersize=8,
#linestyle='--',
markeredgecolor=BSU_ORANGE,
label='SAFO')

color = next(colors)
marker = next(markers)
if color is 'royalblue':

facecolor='royalblue'
else:

facecolor='white'
if False:

axs[i].errorbar(group_agg_mean.index,
group_agg_mean.SO_model_R2['mean'],
group_agg_mean.SO_model_R2['sem'],
color=color,
marker=marker,
markeredgewidth=1,
markerfacecolor=facecolor,
markersize=8,
#linestyle='--',
markeredgecolor=color,
label='SO')

color = next(colors)
marker = next(markers)
if color is 'royalblue':

facecolor='royalblue'
else:

facecolor='white'
if False:

axs[i].errorbar(group_agg_mean.index,
group_agg_mean.SASO_model_R2['mean'],
group_agg_mean.SASO_model_R2['sem'],
color=color,
marker=marker,
markeredgewidth=1,
markerfacecolor=facecolor,
markersize=8,
#linestyle='--',
markeredgecolor=color,
label='SASO')

if deltaT==0:
axs[i].set_title('$\Delta T$: {} kT'.format(deltaT),fontsize=15)

else:
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axs[i].set_title('$\Delta T$: {:.0e} kT'.format(deltaT),fontsize=15)
axs[i].legend(fontsize=15, loc="lower left")
axs[i].set_xlabel('A')

#plt.yscale('log')
#plt.ylim(0.3,1.1)
axs[i].set_xlim(0.1,2.1)

axs[0].set_ylabel('$R^2$')
plt.tight_layout()
plt.savefig("all_delta.png", transparent=True, dpi=300)
plt.show()

<>:24: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:46: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:69: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:88: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:24: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:46: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:69: SyntaxWarning: "is" with a literal. Did you mean "=="?
<>:88: SyntaxWarning: "is" with a literal. Did you mean "=="?
<ipython-input-6-11672b461b57>:24: SyntaxWarning: "is" with a literal. Did you mean
"=="?

if color is 'royalblue':
<ipython-input-6-11672b461b57>:46: SyntaxWarning: "is" with a literal. Did you mean
"=="?

if color is 'royalblue':
<ipython-input-6-11672b461b57>:69: SyntaxWarning: "is" with a literal. Did you mean
"=="?

if color is 'royalblue':
<ipython-input-6-11672b461b57>:88: SyntaxWarning: "is" with a literal. Did you mean
"=="?

if color is 'royalblue':

dt 0.0
A
0.2 0.945619
0.4 0.950254
0.8 0.959808
1.0 0.960730
2.0 0.928995
Name: mean, dtype: float64
mean [0.9456191030177226, 0.950254288906609, 0.9598076788566487, 0.9607301037624485,
0.9289951020475877]
sem [0.006392732210594506, 0.012495682509545891, 0.019040485607138315,
0.017164671170118294, 0.015309757691478826]
dt 1e-06
A
0.2 0.948591
0.4 0.956021
0.8 0.965094
1.0 0.966229
2.0 0.931752
Name: mean, dtype: float64
mean [0.9485914887891203, 0.956020547671699, 0.9650941367218113, 0.9662292362702919,
0.9317522846651322]
sem [0.005625036624910592, 0.009481049361207005, 0.014276453108781284,
0.012399245208402227, 0.015227730575042836]
dt 1e-05
A
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0.2 0.968161
0.4 0.977488
0.8 0.984524
1.0 0.983401
2.0 0.942708
Name: mean, dtype: float64
mean [0.9681606710891606, 0.9774884845930968, 0.9845240898188369, 0.9834009700698028,
0.942708220784915]
sem [0.002501991892812254, 0.0023519309457531094, 0.0014005409206293497,
0.0013345367141796738, 0.01939687875342723]
dt 0.0001
A
0.2 0.979476
0.4 0.986789
0.8 0.988663
1.0 0.984054
2.0 0.909132
Name: mean, dtype: float64
mean [0.9794764769613133, 0.9867889115270978, 0.9886633811268632, 0.9840540474306009,
0.9091319649266504]
sem [0.002287830544337261, 0.0013229661902640715, 0.001203595920372104,
0.002034615696425728, 0.011740217875926431]

In [ ]:
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In [7]: data_path = '/home/sthomas/projects/sensitivity_analysis'
BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"

In [2]: import os
os.environ['MATPLOTLIBRC'] = "../../matplotlibrc"
import signac
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib
%matplotlib inline
from scipy.signal import argrelextrema as argex
import matplotlib.cm as cm
import itertools
from common import *

names={'iso':'Isothermal','lin_ramp':'Linear Ramp','step':'Step'}
colors={'iso':'C0','lin_ramp':'C1','step':'C2'}
markers={'iso':'s','lin_ramp':'P','step':'>'}
linestyles={'iso':'-','lin_ramp':'--','step':'-.'}

def init_project():
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(['_id'])
statepoints = {doc['_id']: doc['statepoint'] for doc in project.index()}
#print(statepoints)
df = pd.DataFrame(statepoints).T.join(df_index)
df = df.sort_values('T')
return df

project = signac.get_project(data_path)
df = init_project()

In [3]: df_filtered = df[(df.activation_energy==3.0)&
(df.stop_after_percent==100.0)&

(df.profile=='ramp_up_and_down')]
df['t1'] = df_filtered['temp_prof'].str[1].str[0]
df['t2'] = df_filtered['temp_prof'].str[3].str[0]

In [4]: df_filtered = df[(df.activation_energy==3.0)&
(df.stop_after_percent==100.0)&

(df.profile=='step_SA')]
df['t1'] = df_filtered['temp_prof'].str[1].str[0]
df_sorted = df.sort_values('t1')

In [5]: fig = plt.figure(dpi=600, figsize=(7, 6))
ax1 = fig.add_subplot(111)
lines=[]
time_conversion = 1.05e-11 #s
distance_conversion = 1.06 #nm
TemperatureConversion = 365.01 #K
df_filtered = df[(df.activation_energy==3.0)&

(df.stop_after_percent==100.0)&
(df.profile=='step_SA')]

colors = plt.cm.plasma(np.linspace(0,0.75,len(df_filtered.groupby('t1'))))
for i,(key,dfgrp) in enumerate(df_filtered.groupby('t1')):

for jobid in dfgrp.index:
job=project.open_job(id=jobid)
data = np.genfromtxt(job.fn('out.log'),names=True)
ax1.plot(data['timestep'],

data['temperature'],#*TemperatureConversion,
linewidth=2.0,

color=colors[i])
ax1.set_xlabel('Time Steps')
ax1.set_ylabel('T (K)')
plt.xscale('log')
plt.savefig("temperature_profiles.png", transparent=True)
plt.show()
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In [10]: fig = plt.figure(dpi=600, figsize=(7, 6))
ax1 = fig.add_subplot(111)
gel_points=[]
ramp_up_times=[]
# These are in unitless percentages of the figure size. (0,0 is bottom left)

df_filtered = df[(df.activation_energy==3.0)&
(df.stop_after_percent==100.0)&
(df.profile=='step_SA')]

colors = plt.cm.plasma(np.linspace(0,0.75,len(df_filtered.groupby('t1'))))
for i,(key,dfgrp) in enumerate(df_filtered.groupby('t1')):

for jobid in dfgrp.index:
job=project.open_job(id=jobid)
x=job.document['gel_point']
gel_points.append(x)
ramp_up_times.append(key)
print(key,job.document['gel_point'])
ax1.scatter(key,

job.document['gel_point'],
marker='s',
facecolor='w',
linewidth=1.0,
color=colors[i],

zorder=1)
ax1.plot(ramp_up_times,
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gel_points,
color=BSU_BLUE,
linewidth=2.0,

label='Gel Point',
zorder=0)

#print(ramp_up_times)
ax1.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
ax1.set_xlabel('t1 (Time Step)')
ax1.set_ylabel('Gel Point (Time Step)')
ax1.set_xscale('log')
ax1.set_xlim(5e3,6e6)

left, bottom, width, height = [0.32, 0.45, 0.39, 0.39]
ax2 = fig.add_axes([left, bottom, width, height])
colors = plt.cm.plasma(np.linspace(0,0.75,len(df_filtered.groupby('t1'))))
for i,(key,dfgrp) in enumerate(df_filtered.groupby('t1')):

for jobid in dfgrp.index:
job=project.open_job(id=jobid)
data = np.genfromtxt(job.fn('out.log'),names=True)
ax2.plot(data['timestep'],

data['bond_percentAB']/100,
label='t1: {:.1e}'.format(key),
color=colors[i],
linewidth=1.0,

zorder=0)
ax2.scatter(job.document['gel_point'],

job.document['curing_at_gel_point']/100,
marker='s',
facecolor='w',
linewidth=0.7,
s=20,
color=colors[i],

zorder=1)
ax2.tick_params(axis = 'both', which = 'major', labelsize = 15)
ax2.set_ylim(-0.1,1)
ax2.set_xlim(1e3,7e6)
ax2.set_xlabel('Time Steps',fontsize=12.0)
ax2.set_ylabel('Cure Fraction',fontsize=12.0)
ax2.set_xscale('log')
plt.savefig("gel_points.png", transparent=True)
plt.show()

15000.0 940000.0
20000.0 940000.0
25000.0 940000.0
35000.0 940000.0
45000.0 940000.0
55000.0 940000.0
65000.0 940000.0
75000.0 940000.0
85000.0 940000.0
95000.0 940000.0
105000.0 940000.0
205000.0 940000.0
405000.0 1260000.0
605000.0 1260000.0
805000.0 1560000.0
1005000.0 1560000.0
4005000.0 2840000.0

<ipython-input-10-c6f62127bb6b>:65: UserWarning: This figure includes Axes that are
not compatible with tight_layout, so results might be incorrect.

plt.savefig("gel_points.png", transparent=True)
/home/mikehenry/miniconda3/envs/tg-plots/lib/python3.8/site-
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packages/IPython/core/pylabtools.py:132: UserWarning: This figure includes Axes that
are not compatible with tight_layout, so results might be incorrect.

fig.canvas.print_figure(bytes_io, **kw)

In [ ]:
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In [11]: data_path = '/home/sthomas/projects/sensitivity_analysis'
BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"

In [2]: import os
os.environ['MATPLOTLIBRC'] = "../../matplotlibrc"
import signac
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib
%matplotlib inline
from scipy.signal import argrelextrema as argex
import matplotlib.cm as cm
import itertools
from common import *

names={'iso':'Isothermal','lin_ramp':'Linear Ramp','step':'Step'}
colors={'iso':'C0','lin_ramp':'C1','step':'C2'}
markers={'iso':'s','lin_ramp':'P','step':'>'}
linestyles={'iso':'-','lin_ramp':'--','step':'-.'}

def init_project():
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(['_id'])
statepoints = {doc['_id']: doc['statepoint'] for doc in project.index()}
#print(statepoints)
df = pd.DataFrame(statepoints).T.join(df_index)
df = df.sort_values('T')
return df

project = signac.get_project(data_path)
df = init_project()

In [3]: df_filtered = df[(df.activation_energy==3.0)&
(df.stop_after_percent==100.0)&

(df.profile=='step_SA')]
df['t1'] = df_filtered['temp_prof'].str[1].str[0]

In [4]: df_filtered = df[(df.stop_after_percent==100.0)&
(df.profile=='ramp_up_and_down')]

df['t1'] = df_filtered['temp_prof'].str[1].str[0]
df['t2'] = df_filtered['temp_prof'].str[3].str[0]
df['T2'] = df_filtered['temp_prof'].str[4].str[1]
df['t_SetT'] = df['t2']

In [21]: import matplotlib.patheffects as pe
fig = plt.figure(dpi=600, figsize=(7, 6))
ax1 = fig.add_subplot(111)
lines=[]
time_conversion = 1.05e-11 #s
distance_conversion = 1.06 #nm
TemperatureConversion = 365.01 #K
df_filtered = df[(df.activation_energy==3.0)&

(df.stop_after_percent==100.0)&
(df.t1==1.05e5)&
(df.E_factor==1.0)&
(df.T2==1.2)&
(((df.t2==2005001)&(df.t_Final==3e7))|
((df.t2==9505001)&(df.t_Final==1.0e7)))&

(df.n_particles==4e5)&
(df.profile=='ramp_up_and_down')]

df_sorted = df_filtered.sort_values('t2')
colors = [BSU_BLUE,BSU_ORANGE]
#plt.cm.plasma(np.linspace(0,0.75,len(df_sorted.groupby('t2'))))
for i,(key,dfgrp) in enumerate(df_sorted.groupby('t2')):

for jobid in dfgrp.index:
job=project.open_job(id=jobid)
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if job.isfile('out.log') and ('gel_point' in job.document) :
#print(job,key)
data = np.genfromtxt(job.fn('out.log'),names=True)
timesteps = data['timestep']
temperature = data['temperature']
pops=[]
pops = [ temp_i+1 for temp_i, (x, y) in

enumerate(zip(timesteps,timesteps[1:])) if x>=y]
if len(pops)>0:

#print(len(pops),pops)
timesteps = np.asarray([x for i,x in enumerate(timesteps) if i not in

pops])
temperature = np.asarray([x for i,x in enumerate(temperature) if i not

in pops])
temperature = temperature#*TemperatureConversion
gel_point = job.document['gel_point']
T_at_gel = temperature[np.isclose(timesteps,gel_point)]
#print(T_at_gel)
if job.sp.trial==1:

if key<gel_point:
label='T (t2'+'$< t_{gel}$)'

else:
label='T (t2'+'$> t_{gel}$)'

print(i)
ax1.plot(timesteps,

temperature,
linewidth=2.0,

color=colors[i],
label=label)

#label='T (t2 : {:.1e})'.format(key))

if False:
ax1.axvline(x=job.document['gel_point'],

color=colors[i],
linestyle='--',
linewidth=1.0,
label='Gel Point')

if True:
if key<gel_point:

label='Gel Point (t2'+'$< t_{gel}$)'
else:

label='Gel Point (t2'+'$> t_{gel}$)'
ax1.errorbar(x=dfgrp.gel_point.mean(),

y=T_at_gel,#400,
xerr=dfgrp.gel_point.std(),
label=label,#'$t_{gel}$'+' (t2 : {:.1e})'.format(key),
color=colors[i],#'r',
fmt='s',
markerfacecolor='w',
lw=3,
ms=8,
capthick=2,
elinewidth=2,
capsize=5,

zorder=2)
if False:

ax1.axvline(x=df_filtered.gel_point.mean(),
color='r',
linestyle='--',
linewidth=4.0,
path_effects=[pe.Stroke(linewidth=5, foreground='k'), pe.Normal()])

ax1.errorbar(x=df_filtered.gel_point.mean(),
y=300,
xerr=df_filtered.gel_point.std(),
label='Gel Point',
color='r',
fmt='o',
markerfacecolor='w',
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markeredgecolor='r',
lw=3,
ms=8,
capthick=2,
elinewidth=3,
capsize=5,

zorder=2)

ax1.set_xlabel('Time Steps')
ax1.set_ylabel('T (K)')
ax1.set_ylim(0.75,2.1)
#ax1.set_xlim(0.0,2.2)

#ax1.set_ylim(200,800)
#ax1.set_xlim(5e4,7e6)
plt.legend(fontsize=15,loc='lower right',ncol=2)
plt.xscale('log')
plt.savefig("temperature_profiles.png", transparent=True)
plt.show()

0
1

180



In [22]: fig = plt.figure(dpi=600, figsize=(7, 6))
ax1 = fig.add_subplot(111)
lines=[]
df_filtered = df[(df.activation_energy==3.0)&

(df.stop_after_percent==100.0)&
(df.t1==1.05e5)&
(df.E_factor==1.0)&
(df.T2==1.2)&
(((df.t2==2005001)&(df.t_Final==3e7))|
((df.t2==9505001)&(df.t_Final==1.0e7)))&

(df.n_particles==4e5)&
(df.profile=='ramp_up_and_down')]

df_sorted = df_filtered.sort_values('t2')
colors = colors = [BSU_BLUE,BSU_ORANGE] #
plt.cm.plasma(np.linspace(0,0.75,len(df_sorted.groupby('t2'))))
for i,(key,dfgrp) in enumerate(df_sorted.groupby('t2')):

times=[]
cure_fractions=[]
gel_points=[]
cure_at_gel=[]
#print(dfgrp.t_Final)
for jobid in dfgrp.index:

job=project.open_job(id=jobid)
if job.isfile('out.log') and ('gel_point' in job.document) :

data = np.genfromtxt(job.fn('out.log'),names=True)
timesteps = data['timestep']
cure_fraction = data['bond_percentAB']/100
pops = [ i for i, (x, y) in enumerate(zip(timesteps[:-1],timesteps[1:])) if

x>=y]
if len(pops)>0:

popi=pops[0]+1
timesteps = np.asarray([x for i,x in enumerate(timesteps) if i!=popi])
cure_fraction = np.asarray([x for i,x in enumerate(cure_fraction) if

i!=popi])

times.append(timesteps)
cure_fractions.append(cure_fraction)
gel_points.append(job.document['gel_point'])
cure_at_gel.append(job.document['curing_at_gel_point']/100)

if key<gel_point:
label='T (t2'+'$< t_{gel}$)'

else:
label='T (t2'+'$> t_{gel}$)'

ax1.errorbar(np.mean(times,axis=0),
np.mean(cure_fractions,axis=0),
np.std(cure_fractions,axis=0),
label=label,#'t2: {:.1e}'.format(key),
color=colors[i],
linewidth=2.0,
zorder=0)

if key<gel_point:
label='Gel Point (t2'+'$< t_{gel}$)'

else:
label='Gel Point (t2'+'$> t_{gel}$)'

ax1.scatter(np.mean(gel_points),
np.mean(cure_at_gel),
marker='s',
facecolor='w',
linewidth=1.0,
color=colors[i],

zorder=1,
label=label)#'Gel Point({:.1e})'.format(key))

ax1.set_xlabel('Time Steps')
ax1.set_ylabel('Cure Fraction')
plt.legend(fontsize=15)
plt.xscale('log')
plt.savefig("cure_profiles.png", transparent=True)
plt.show()
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In [23]: from scipy import stats
from scipy import interpolate
fig = plt.figure(dpi=200)
ax1 = fig.add_subplot(111)
left, bottom, width, height = [0.34, 0.26, 0.3, 0.3]#[0.6, 0.57, 0.3, 0.3]#max t2
ax2 = fig.add_axes([left, bottom, width, height])
ax2.axis('off')
left, bottom, width, height = [0.61, 0.59, 0.3, 0.3]#[0.23, 0.27, 0.3, 0.3]#min t2
ax3 = fig.add_axes([left, bottom, width, height])
ax3.axis('off')
df_filtered = df[(df.activation_energy==3.0)&

(df.stop_after_percent==100.0)&
(df.t1==1.05e5)&
(df.E_factor==1.0)&
(df.T2==1.2)&
(((df.t2==2005001)&(df.t_Final==3e7))|
((df.t2==9505001)&(df.t_Final==1.0e7)))&

(df.n_particles==4e5)&
(df.profile=='ramp_up_and_down')]

#print(df_filtered.profile)
df_sorted = df_filtered.sort_values('t2')
print(df_sorted.t2.values)
print('min t2',df_sorted.t2[3])#.min())
print('max t2',df_sorted.t2.max())
t2_min = 2005001#df_sorted.t2[3]#.min()
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t2_max = 9505001#df_sorted.t2.max()#df_sorted.t2.max()
colors = colors = [BSU_BLUE,BSU_ORANGE]
#plt.cm.plasma(np.linspace(0,0.75,len(df_sorted.groupby('t2'))))

df_gp = df_sorted.groupby('t2')
for i,(key,df_grp) in enumerate(df_gp):

qs_all_trials = []
Is_all_trials = []
box_len = df_grp.Lx.mean()
cure_percent = df_grp.cure_percent.mean()
#print('cure_percent',cure_percent)
if key ==t2_max or key==t2_min:

#print('key',key)
for jobid in df_grp.index:

job=project.open_job(id=jobid)
if job.isfile('out.log') and ('gel_point' in job.document) :

#print(job,key)
gel_point = job.document['gel_point']

A=job.sp.num_a*job.sp.n_mul*4*job.sp.percent_bonds_per_step/100/job.sp.bond_period
if job.isfile('diffract_type_2/asq.txt'):

data = np.genfromtxt(job.fn('diffract_type_2/asq.txt'))
qs=data[:,0]
Is=data[:,1]
qs_all_trials.append(qs)
Is_all_trials.append(Is)
if job.isfile('final_snapshot.png'):

im = plt.imread(job.fn('final_snapshot.png'))
if key ==t2_max:

#ax2.set_title('t2 : {:.1e} $\\Delta$
t'.format(key),fontsize=15)

ax2.imshow(im)
if key ==t2_min:

#ax3.set_title('t2 : {:.1e} $\\Delta$
t'.format(key),fontsize=15)

ax3.imshow(im)
#print('Is',Is)

else:
raise FileNotFoundError('Cannot find diffract_type_2/asq.txt

for'+job)
else:

print(job,' not completed!')
if len(Is_all_trials)>0:

mean_qs = np.mean(qs_all_trials,axis=0)
mean_Is = np.mean(Is_all_trials,axis=0)
if key<gel_point:

label='t2'+'$< t_{gel}$'
else:

label='t2'+'$> t_{gel}$'
ax1.errorbar(mean_qs,

mean_Is,
yerr=stats.sem(Is_all_trials,axis=0),
linewidth=2.0,
zorder=1,
color=colors[i],

label=label)#'t2 : {:.1e} $\\Delta$ t'.format(key,
#

cure_percent/100))
if True:

qms=[]
Ims=[]
for qs_t,Is_t in zip(qs_all_trials,Is_all_trials):

first_peak_q,first_peak_i = get_highest_maxima(box_len,qs_t,Is_t)
qms.append(first_peak_q)
Ims.append(first_peak_i)

#print(qms)
fn = interpolate.interp1d(mean_qs,mean_Is,kind='cubic')
first_peak_q=np.mean(qms)
first_peak_i=fn(first_peak_q)
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else:
first_peak_q,first_peak_i = get_highest_maxima(box_len,

mean_qs,
nmean_Is)

print(first_peak_q,first_peak_i)
if first_peak_q is None:

#print(q_half_length)
fn = interpolate.interp1d(qs,Is,kind='cubic')
first_peak_q=q_half_length
first_peak_i=fn(first_peak_q)

if first_peak_q >0.8:
fn = interpolate.interp1d(qs,Is,kind='cubic')
first_peak_q=q_half_length
first_peak_i=0#fn(first_peak_q)

ax1.scatter(first_peak_q,
first_peak_i,
color=colors[i],
zorder=0,

s=100,
facecolor='w',

marker='o')

ax1.set_xlabel(r"$q$ [$nm^{-1}$]")
ax1.set_ylabel("log(Intensity) [Arb]")
ax1.set_xlim(0.11,0.5)
ax1.set_ylim(-4.65,-2.8)
ax1.legend(fontsize=15,loc='upper left')
ax1.annotate('', xy=(0.25, -3.6), xytext=(0.27, -4.0),arrowprops=dict(facecolor='black',
shrink=0.05))
ax1.annotate('', xy=(0.25, -3.55), xytext=(0.37, -3.),arrowprops=dict(facecolor='black',
shrink=0.05))
plt.savefig("sf_vertical.png", transparent=True)

[2005001. 2005001. 2005001. 9505001. 9505001. 9505001.]
min t2 9505001.0
max t2 9505001.0
a52a2aacf366f4bfdb526c3c90a6e553 not completed!
0.23446066894915651 -3.5471132590244476
0.20248875954699877 -3.5527970868063505

<ipython-input-23-30ae73c22877>:118: UserWarning: This figure includes Axes that are
not compatible with tight_layout, so results might be incorrect.

plt.savefig("sf_vertical.png", transparent=True)
/home/mikehenry/miniconda3/envs/tg-plots/lib/python3.8/site-
packages/IPython/core/pylabtools.py:132: UserWarning: This figure includes Axes that
are not compatible with tight_layout, so results might be incorrect.

fig.canvas.print_figure(bytes_io, **kw)
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In [1]: import os
os.environ['MATPLOTLIBRC'] = "../matplotlibrc"
BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"
from common import *

In [2]: data_path = "/home/sthomas/projects/LJ_System_Size"
import signac
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import matplotlib
%matplotlib inline
from scipy.signal import argrelextrema as argex
import matplotlib.cm as cm
import itertools
import os
#import structure_factor as sf
import math
from scipy import interpolate
import gsd
import gsd.fl
import gsd.hoomd

from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D

names={'iso':'Isothermal','lin_ramp':'Linear Ramp','step':'Step'}
colors={'iso':'C0','lin_ramp':'C1','step':'C2'}
markers={'iso':'s','lin_ramp':'P','step':'>'}
linestyles={'iso':'-','lin_ramp':'--','step':'-.'}

project = signac.get_project(data_path)
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(['_id'])
statepoints = {doc['_id']: doc['statepoint'] for doc in project.index()}
df = pd.DataFrame(statepoints).T.join(df_index)
df = df.sort_values('T')
#df.head()

In [3]: typeId=2
n_views=40
grid_size=512
gammas = [4.5]#,18,36,72]#[4.5,9,18,36,45,52,72]
colors = itertools.cycle(cm.rainbow(np.linspace(0, 1, len(gammas))))
for gamma in gammas:

df_filtered = df[(df.n_particles==1000000)&
(df.t_Final==1e7)&

(df.trial==0)]
# (df.t_Final==6e6)]

#print(df_filtered)
#grpedByGamma = df_filtered.groupby('profile')#.apply(lambda x: x.sort_values('T'))
times_for_all_trials=[]
qs_for_all_trials=[]
Is_for_all_trials=[]

qms_all=[] #qmax
Is_all=[]
Qs_all=[]
times_all=[]
cure_all=[]
color=next(colors)
for signac_id in df_filtered['signac_id']:

job = project.open_job(id=signac_id)
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if 'Lx' in job.document:
half_box_length = job.document['Lx']/2

else:
print('Lx not found in',job)

q_half_length = 2*math.pi/(half_box_length/1.06)
diffract_dir_pattern

='diffract_type_{}_n_views_{}_grid_size_{}_frame'.format(typeId,
n_views,
grid_size)

directories = os.listdir(job.workspace())
directories = [d for d in os.listdir(job.workspace()) if

d.startswith(diffract_dir_pattern)]
directories.sort(key = lambda x: int(x.split('_')[-1]))
#print(len(directories))
#print(directories)
num_frames = len(directories)

qs_for_all_times=[]
Is_for_all_times=[]
times_for_all_times=[]
qs_list = []
times_list = []
Is_list = []
Qs_list=[]
for i,diffract_dir in enumerate(directories):

print("Progress {:2.1%}".format(i / num_frames), end="\r")
if diffract_dir.startswith(diffract_dir_pattern):

frame = int(diffract_dir.split('_')[-1])
if frame%1==0 and frame >0e6/job.sp.dcd_write:#==119 or frame==123:#%100

== 0:#num_frames/30:
if job.isfile('{}/asq.txt'.format(diffract_dir)):

#print(job.fn('{}/asq.txt'.format(diffract_dir)))
data=np.genfromtxt(job.fn('{}/asq.txt'.format(diffract_dir)))
time = round(frame*job.sp.dcd_write)
legend = '{} $\\Delta t(\Gamma:{})$'.format(time,job.sp.gamma)
qs = data[:,0]
Is = data[:,1]
#print(qs.shape)
qs_for_all_times.append(qs)
Is_for_all_times.append(Is)
times_for_all_times.append(time)

dq=qs[1]-qs[0]
Is_exp = np.exp(Is)
q_sq = qs**2
Q = np.sum(Is_exp*qs*dq)
Qs_list.append(Q)
first_peak_q,first_peak_i =

get_highest_maxima(job.document['Lx'],qs,Is)
#print(first_peak_q,first_peak_i)
if first_peak_q is None:

#print(q_half_length)
fn = interpolate.interp1d(qs,Is,kind='cubic')
first_peak_q=q_half_length
first_peak_i=fn(first_peak_q)

if first_peak_q >0.8:# and time > 2.0e5:
fn = interpolate.interp1d(qs,Is,kind='cubic')
first_peak_q=q_half_length
first_peak_i=0#fn(first_peak_q)

qs_list.append(first_peak_q)
times_list.append(time)
Is_list.append(first_peak_i)

else:
print(job,'did not contain diffraction data in ',diffract_dir)

qs_for_all_trials.append(qs_for_all_times)#this is to plot the S(q)
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Is_for_all_trials.append(Is_for_all_times)
times_for_all_trials.append(times_for_all_times)

qms_all.append(np.asarray(qs_list)) #this is to plot q_max
Is_all.append(np.asarray(Is_list))
Qs_all.append(np.asarray(Qs_list))
log_data = np.genfromtxt(job.fn('out.log'))
times = log_data[:,0]#/(job.sp.dt*job.sp.dcd_write)
cure = log_data[:,9]
times_all.append(times)
cure_all.append(cure)

#print(qs_all)
qs_for_all_trials=np.asarray(qs_for_all_trials)
Is_for_all_trials=np.asarray(Is_for_all_trials)
times_for_all_trials=np.asarray(times_for_all_trials)
q_mean = np.mean(qs_for_all_trials,axis=0)
I_mean = np.mean(Is_for_all_trials,axis=0)
time_mean= np.mean(times_for_all_trials,axis=0)

qms_all = np.asarray(qms_all)
Is_all = np.asarray(Is_all)
Qs_all = np.asarray(Qs_all)
times_all = np.asarray(times_all)
cure_all = np.asarray(cure_all)
Qs_av = np.mean(Qs_all,axis=0)
Qs_std = np.std(Qs_all,axis=0)
#print(Is_all)
qs_av = np.mean(qms_all,axis=0)
qs_std = np.std(qms_all,axis=0)
Is_av = np.mean(Is_all,axis=0)
times_av = np.mean(times_all,axis=0)
cure_av = np.mean(cure_all,axis=0)
cure_std = np.std(cure_all,axis=0)
#print(len(times_list),len(qs_av))

t_colors = colors = plt.cm.plasma(np.linspace(0,0.75,len(q_mean)))

Progress 96.7%

In [4]: from matplotlib import rcParams
rcParams["xtick.minor.visible"] = False
rcParams["ytick.minor.visible"] = False

fig = plt.figure(dpi=300)
ax = fig.add_subplot(111, projection='3d')
#ax.set_title('z-axis left side')
#ax = fig.add_axes(MyAxes3D(ax, 'l'))
left, bottom, width, height = [0.88, 0.2, 0.6, 0.6]#max t2
ax2 = fig.add_axes([left, bottom, width, height])
ax2.axis('off')
qlim_max=35
qlim_min=6
Ilim=20
q = q_mean[0][qlim_min:qlim_max]
I=I_mean[:,qlim_min:qlim_max]
#print(q)
#print(I)
#X,Y = np.meshgrid(q_mean[0],time_mean)
X,Y = np.meshgrid(q,time_mean)

Z=I
#matplotlib.rcParams['xtick.labelsize'] = 15
#matplotlib.rcParams['ytick.labelsize'] = 15
#matplotlib.rcParams['xtick.major.pad'] = 2
#matplotlib.rcParams['ytick.major.pad'] = 2
#matplotlib.rcParams['ztick.major.pad'] = 1
#surf = ax.plot_surface(X, Y, Z, cmap=cm.plasma,)#,rstride=1, cstride=1,linewidth=1,
antialiased=True)
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surf = ax.plot_wireframe(X, Y, Z, linewidth=1.0,zorder=0.2,rstride=1, cstride=0,
antialiased=True, color=BSU_BLUE)
view_1 = (0, 180)#back
view_2 = (25, -70)#angled
view_3 = (25, 0)#front from top
view_4 = (-5, 90)#right
view_5 = (10, -90)#angled
init_view = view_2
ax.view_init(*init_view)
ax.set_xlabel(r"$q [nm^{-1}]$", fontsize=15,rotation=150)
ax.set_ylabel(r"$Time[\tau]$",fontsize=15, rotation=150)
ax.set_zlabel("log(I) [Arb]", fontsize=15,rotation=90, labelpad=10)
#ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0),
useMathText=True,rotation=0,labelsize=1)
ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0), useMathText=True)
#ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0), useMathText=True)
ax.yaxis.offsetText.set_fontsize(5)
ax.tick_params(axis = 'both',labelsize=12,pad=3)
#print(q_half_length,Is_av[:101])
ax.scatter3D(qs_av, time_mean,
Is_av,color=BSU_ORANGE,zorder=0.5,marker='o',antialiased=True,s=20)
if job.isfile('final_snapshot.png'):

im = plt.imread(job.fn('final_snapshot.png'))
#ax2.set_title('job:{}'.format(job),fontsize=8)
ax2.imshow(im,zorder=1)

plt.savefig('morphology_evolution_1e6.png',transparent=True, bbox_inches='tight')
plt.show()

<ipython-input-4-e9c9f644d038>:51: UserWarning: This figure includes Axes that are not
compatible with tight_layout, so results might be incorrect.

plt.savefig('morphology_evolution_1e6.png',transparent=True, bbox_inches='tight')
/home/mikehenry/miniconda3/envs/tg-plots/lib/python3.8/site-
packages/IPython/core/pylabtools.py:132: UserWarning: This figure includes Axes that
are not compatible with tight_layout, so results might be incorrect.

fig.canvas.print_figure(bytes_io, **kw)

In [ ]:

189



In [1]: import os
os.environ['MATPLOTLIBRC'] = "../matplotlibrc"
from common import *
from common import MyAxes3D
import signac
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.gridspec as gridspec
import pandas as pd
import matplotlib
import numpy as np
%matplotlib inline

In [2]: data_path = "/home/sthomas/projects/LJ_System_Size"

names={'iso':'Isothermal','lin_ramp':'Linear Ramp','step':'Step'}
colors={'iso':'C0','lin_ramp':'C1','step':'C2'}
markers={'iso':'s','lin_ramp':'P','step':'>'}
linestyles={'iso':'-','lin_ramp':'--','step':'-.'}

project = signac.get_project(data_path)
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(['_id'])
statepoints = {doc['_id']: doc['statepoint'] for doc in project.index()}
df = pd.DataFrame(statepoints).T.join(df_index)
#df.head()

In [3]: from matplotlib import cm
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from scipy import interpolate

import os
import math
import gsd
import gsd.fl
import gsd.hoomd

df_filtered = df[(df.t_Final==1e7)&
((df.n_particles>=1e5)|
(df.n_particles==5e4)|
(df.n_particles==8e4))]

df_sorted=df_filtered.sort_values('n_particles')
#Ns=df_sorted.n_particles.unique()
#print(Ns)
Ns=[]
mean_qs_for_Ns = []
mean_Is_for_Ns = []
mean_times_for_Ns = []
std_qs_for_Ns = []
std_Is_for_Ns = []
q_hbls=[]
USE_INDE_FRAMES=False
for N,df_grp in df_sorted.groupby('n_particles'):

times_for_all_trials=[]
qs_for_all_trials=[]
Is_for_all_trials=[]

qms_all=[] #qmax
Is_all=[]
Qs_all=[]
times_all=[]
cure_all=[]
mean_qs=[]
mean_Is=[]
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std_qs=[]
std_Is=[]
mean_qms=[]
mean_Is_of_qm=[]

for signac_id in df_grp.index:
job = project.open_job(id=signac_id)
#print(job)
if 'Lx' in job.document:#checking if the job completed

#print(job)
if USE_INDE_FRAMES:

mqfif,stdqfif,mifif,stdifif =
get_mean_sf_from_independent_frames(job,equilibrated_percent=90)

#print(N,mqfif)
mean_qs.append(mqfif)
std_qs.append(stdqfif)
mean_Is.append(mifif)
std_Is.append(stdifif)

else:
diffract_dir ='diffract_type_2'
n_particles=job.sp.n_particles
if job.isfile('{}/asq.txt'.format(diffract_dir)):

data=np.genfromtxt(job.fn('{}/asq.txt'.format(diffract_dir)))
#print(np.shape(data[:,0]))
q=data[:,0]
I=data[:,1]
mean_qs.append(q)
#std_qs.append(stdqfif)
mean_Is.append(I)
#std_Is.append(stdifif)

else:
print(job)
print('Final frame is not diffracted')

else:
print('Lx not found for',job)

if len(mean_qs)>0:
print('q calculated from',len(mean_qs),'trials for N=',N)
mean_q_for_N = np.mean(mean_qs,axis=0)
mean_qs_for_Ns.append(mean_q_for_N)
std_q_for_N = stats.sem(mean_qs,axis=0)
std_qs_for_Ns.append(std_q_for_N)
mean_I_for_N = np.mean(mean_Is,axis=0)
mean_Is_for_Ns.append(mean_I_for_N)
std_I_for_N = stats.sem(mean_Is,axis=0)
std_Is_for_Ns.append(std_I_for_N)
Ns.append(N)

#print((mean_qs_for_Ns))
#print(std_Is_for_Ns)
#print(Ns)

q calculated from 3 trials for N= 50000.0
q calculated from 3 trials for N= 80000.0
q calculated from 3 trials for N= 100000.0
q calculated from 3 trials for N= 200000.0
q calculated from 3 trials for N= 400000.0
q calculated from 3 trials for N= 600000.0
q calculated from 3 trials for N= 800000.0
q calculated from 3 trials for N= 1000000.0
Lx not found for b0bc66fa9ae800b457ccbc67f8debeaa
Lx not found for d02d14b7995d6a2866ba7a2c4c9597f6
Lx not found for b2aea2daba3d84311a6e664fbb4ad3f1

In [7]: fig = plt.figure(dpi=600,figsize=(7, 6))
ax = fig.gca()
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ax1 = fig.add_axes([ 1, 0.10,0.03, 0.85])

#ax1 = fig.add_axes([ 0.95, 0.10,0.03, 0.85])

ticks=Ns

cmap = mpl.cm.plasma
norm = mpl.colors.Normalize(vmin=np.min(Ns), vmax=np.max(Ns))
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=cmap,

norm=norm,
ticks=ticks,
format = "%.1e",
spacing='uniform',
orientation='vertical',)

cb1.ax.minorticks_off()

for l in ax1.yaxis.get_ticklabels():
#l.set_weight("bold")
l.set_fontsize(10)

print(Ns)
cmap_indices = []
maxN = np.max(Ns)
minN = np.min(Ns)
for N in Ns:

cmap_i = (N-minN)/(maxN-minN)
cmap_indices.append(cmap_i)

#cmap = [plt.cm.plasma(i) for i in np.linspace(0, 1, len(Ns))]
cmap = [plt.cm.plasma(i) for i in cmap_indices]
ax.set_prop_cycle(color=cmap)
offsets = np.linspace(0,4,num=len(Ns))
first_peak_qs=[]
for i,N in enumerate(Ns):

#print('N',N)
#i=l-i_temp-1
q=mean_qs_for_Ns[i]
I=mean_Is_for_Ns[i]
I_std=std_Is_for_Ns[i]
#print('I_std',I_std)
#print(len(I))

offset = 0#offsets[i]
#time=time_mean[i]
legend='{:.1e}'.format(N)
fn = interpolate.interp1d(q,I,kind='cubic')
ax.errorbar(q,

I+offset,
I_std,
#marker='.',
markersize=5,
linewidth=2,
capsize=1,
label=legend,
zorder=1)

#df_filtered= df[(df.t_Final==6e6)&
# (df.n_particles==N)]
df_filt = df_filtered[df_filtered.n_particles==N]
sids = df_filt.signac_id
job = project.open_job(id=sids[0])
if 'Lx' not in job.document:

print(job,'does not contain Lx')
continue

first_peak_q,first_peak_i = get_highest_maxima(job.document['Lx'],q,I)
#print(first_peak_q,first_peak_i)
if first_peak_q is not None:

if first_peak_q <0.8:
first_peak_qs.append(first_peak_q)
ax.scatter(first_peak_q,

first_peak_i+offset,
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color='r',s=50,zorder=2)
half_box_length = job.document['Lx']/2
q_hbl = 2*math.pi/(half_box_length*1.06)
ax.scatter(q_hbl,

fn(q_hbl)+offset,
marker='*',
s=50,
color='b',
zorder=2)#,s=10)

print(first_peak_qs)
mean_q=np.mean(first_peak_qs)
print('mean first peak',mean_q)
ax.axvline(x=mean_q,linestyle='--',color='g',zorder=0)#,label='$\\langle
q_{max}\\rangle$')

ax.set_xlabel(r"$q [nm^{-1}]$")
ax.set_ylabel("log(Intensity) [Arb]")
#ax.legend(fontsize=10)
ax.set_xlim(0.05,1.0)
ax.set_ylim(-5.5,-2.0)
plt.savefig("lj_finite_size_effect.png", transparent=True, bbox_inches='tight')

[50000.0, 80000.0, 100000.0, 200000.0, 400000.0, 600000.0, 800000.0, 1000000.0]
[0.2706786474320498, 0.2148377725895124, 0.2344606689491565, 0.2234402894435762,
0.21992640103854047, 0.25127578526617805]
mean first peak 0.2357699274531689

<ipython-input-7-ce00a7b2306d>:91: UserWarning: This figure includes Axes that are not
compatible with tight_layout, so results might be incorrect.

plt.savefig("lj_finite_size_effect.png", transparent=True, bbox_inches='tight')
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In [1]: import os
os.environ['MATPLOTLIBRC'] = "../matplotlibrc"
import sys
from tg_analysis import get_tg_data
import signac
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

In [2]: BSU_BLUE = "#0033A0"
BSU_ORANGE = "#D64309"

data_path_small = '/home/mikehenry/small_tg_test/epoxpy-flow'
data_path_large = '/home/sthomas/projects/LB_mixing/'

print("building small df")
project = signac.get_project(data_path_small)
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(["_id"])
statepoints = {doc["_id"]: doc["statepoint"] for doc in project.index()}
df_S = pd.DataFrame(statepoints).T.join(df_index)
df_S = df_S.sort_values("T")
print("done")
print("building large df")
project = signac.get_project(data_path_large)
df_index = pd.DataFrame(project.index())
df_index = df_index.set_index(["_id"])
statepoints = {doc["_id"]: doc["statepoint"] for doc in project.index()}
df_L = pd.DataFrame(statepoints).T.join(df_index)
df_L = df_L.sort_values("T")
print("done")

building small df
done
building large df
done

In [3]: alphas_S, fit_ydata_S, R2_S, cure_percents_S, Tgs_S = get_tg_data(data_path_small, df_S)
alphas_L, fit_ydata_L, R2_L, cure_percents_L, Tgs_L = get_tg_data(data_path_large, df_L)
print("done")

in common, indices: (array([ 0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28]),)
00 0
in common, indices: (array([ 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]),)
00 0
in common, indices: (array([ 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28]),)
00 0
in common, indices: (array([ 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28]),)
00 1
in common, indices: (array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)
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00 1
in common, indices: (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)

00 0
in common, indices: (array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)

00 1
in common, indices: (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]),)

00 0
done

In [8]: fig, ax1 = plt.subplots(dpi=600, figsize=(7, 6))
ax2=ax1.twinx()

#ax1.scatter(cure_percents_S/100., Tgs_S, color='r')
ax1.scatter(cure_percents_L/100., Tgs_L, color=BSU_BLUE)
#ax1.plot(alphas_S,fit_ydata_S,label='N=500 $R^2$:{}'.format(round(R2_S,3)), color="r")
ax1.plot(alphas_L,fit_ydata_L,label='N=50,000 $R^2$:{}'.format(round(R2_L,3)),
color=BSU_BLUE)

exp1_data = np.genfromtxt('Min1993.txt',delimiter=',')

ax2.scatter(exp1_data[:,0],
exp1_data[:,1],
marker='d',
facecolor='w',
linewidth=2,
edgecolor='k',
s=60,
#label='$E_a$:{}'.format(activation_energy),
color='k',

zorder=1,
label='DGEBA/DDS $T_g$ (Ref. XX)')

exp2_data = np.genfromtxt('Jenninger2000.txt',delimiter=',')
ax2.scatter(exp2_data[:,0],

exp2_data[:,1],
marker='d',
facecolor='w',
linewidth=2,
edgecolor='c',
s=60,
#label='$E_a$:{}'.format(activation_energy),
color='c',

zorder=1,
label='DGEBA/DDS/PES $T_g$ (Ref. XX)')

#ax2.scatter(1.00,Tg_exp,marker='*',color='r',s=200,label='Experimental Tg
($\\alpha=1.0$)')

h1, l1 = ax1.get_legend_handles_labels()
h2, l2 = ax2.get_legend_handles_labels()
ax1.legend(h1+h2, l1+l2, loc=2)
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ax1.set_xlabel('Cure Fraction ($\\alpha$)')
ax1.set_ylabel('Tg ($T^*$)')
ax2.set_ylabel('Tg (K)')
plt.savefig("Tg_N_exp.png", transparent=True)
#ax1.legend(fontsize=10,loc='best')
#ax2.legend(fontsize=10,loc='center left')

In [7]: #plt.style.use('matplotlibrc')
fig, ax1 = plt.subplots(dpi=600, figsize=(7, 6))

ax1.scatter(cure_percents_S/100., Tgs_S, color=BSU_ORANGE)
ax1.scatter(cure_percents_L/100., Tgs_L, color=BSU_BLUE)
ax1.plot(alphas_S,fit_ydata_S,label='N=500 $R^2$:{}'.format(round(R2_S,3)),
color=BSU_ORANGE)
ax1.plot(alphas_L,fit_ydata_L,label='N=50,000 $R^2$:{}'.format(round(R2_L,3)),
color=BSU_BLUE)

#ax2.scatter(1.00,Tg_exp,marker='*',color='r',s=200,label='Experimental Tg
($\\alpha=1.0$)')

ax1.legend()
ax1.set_xlabel('Cure Fraction ($\\alpha$)')
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ax1.set_ylabel('Tg ($T^*$)')
plt.savefig("Tg_N_sim.png", transparent=True)
#ax1.legend(fontsize=10,loc='best')
#ax2.legend(fontsize=10,loc='center left')

In [ ]:
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1 import cme_utils
2 from cme_utils.analyze import autocorr
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6

7 def get_split_quench_job_msd(job,prop_name):
8     times = []
9     prop_vals = []

10     qTs=[]
11     if job.isfile(’msd.log’):
12         log_path = job.fn(’msd.log’)
13         data = np.genfromtxt(log_path, names=True)
14         PROP_NAME =prop_name
15         prop_values = data[PROP_NAME]#’pair_lj_energy’]
16         time_steps = data[’timestep’]
17         len_prof = len(job.sp.quench_temp_prof)
18         for i in range(0,len_prof,2):
19             current_point = job.sp.quench_temp_prof[i]
20             next_point = job.sp.quench_temp_prof[i+1]
21             start_time = current_point[0]
22             end_time = next_point[0]
23             if current_point[1]≠next_point[1]:
24                 print(’WARNING! Detected a non isothermal step’)
25             target_T = current_point[1]
26             #print(time_steps)
27             #print(start_time,end_time)
28             indices = np.where((time_steps≥start_time)&(time_steps≤end_time))
29             start_index = indices[0][0]
30             end_index = indices[0][−1]
31             sliced_ts = time_steps[start_index:end_index+1]
32             sliced_prop_vals = prop_values[start_index:end_index+1]
33             #sliced_pe = pe[start_index:end_index+1]
34             #mean,std = get_mean_and_std(job,sliced_ts,sliced_prop_vals,sliced_p

e)
35             #means.append(mean)
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36             #stds.append(std)
37             times.append(sliced_ts)
38             prop_vals.append(sliced_prop_vals)
39             qTs.append(target_T)
40     return times,prop_vals,qTs
41

42 def _get_decorrelation_time(prop_values,
43                              time_steps):
44     t = time_steps − time_steps[0]
45     dt = t[1] − t[0]
46     acorr = autocorr.autocorr1D(prop_values)
47     for acorr_i in range(len(acorr)):
48         if acorr[acorr_i]<0:
49             break
50     lags = [i*dt for i in range(len(acorr))]
51

52     decorrelation_time = int(lags[acorr_i])
53     if decorrelation_time ≡ 0:
54         decorrelation_time = 1
55     decorrelation_stride = int(decorrelation_time/dt)
56     nsamples = (int(t[−1])−t[0])/decorrelation_time
57     temps = "There are %.5e steps, (" % t[−1]
58     temps = temps + "%d" % int(t[−1])
59     temps = temps + " frames)\n"
60     temps = temps + "You can start sampling at t=%.5e" % t[0]
61     temps = temps + " (frame %d)" % int(t[0] )
62     temps = temps + " for %d samples\n" % nsamples
63     temps = temps + "Because the autocorrelation time is %.5e" % lags[acorr_i]
64     temps = temps + " (%d frames)\n" % int(lags[acorr_i])
65     #print(temps)
66     return decorrelation_time, decorrelation_stride
67

68 def get_mean_and_std_from_time_step(job, time_steps, prop_values,start_t):
69     start_i = np.where(time_steps ≥ start_t)[0]
70     if len(start_i) >0:
71         start_i=start_i[0]
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72     else:
73         start_i = 0
74         
75     if start_i < len(time_steps):
76         independent_vals_i = np.arange(start_i, len(prop_values)−1, 1)
77         independent_vals = prop_values[independent_vals_i]
78         #print(independent_vals)
79         mean=np.mean(independent_vals)
80         std=np.std(independent_vals)
81     else:
82         print(’the {} values given have not reached equilibrium.’.format(prop))
83         mean = None
84         std = None
85     return mean, std
86

87 def get_mean_and_std(job, time_steps, prop_values,pe,mean_from_second_half=False
):

88     if mean_from_second_half:
89         start_i = int(len(time_steps)*0.75)
90         start_t = time_steps[start_i]
91     else:
92         start_i, start_t = autocorr.find_equilibrated_window(time_steps, pe)
93             
94     if start_i < len(time_steps):
95         decorrelation_time, decorrelation_stride = _get_decorrelation_time(prop_

values[start_i:], time_steps[start_i:])
96         #print(’decorrelation_time:’,decorrelation_time)
97         independent_vals_i = np.arange(start_i, len(prop_values)−1, decorrelatio

n_stride)
98         independent_vals = prop_values[independent_vals_i]
99         #print(independent_vals)

100         mean=np.mean(independent_vals)
101         std=np.std(independent_vals)
102     else:
103         print(’the {} values for {} given have not reached equilibrium.’.format(job,prop))
104         mean = None
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105         std = None
106     return mean, std
107

108

109         
110 def get_mean_and_std_from_log(job, prop):
111     if job.isfile(’out.log’):
112         log_path = job.fn(’out.log’)
113         data = np.genfromtxt(log_path, names=True)
114         prop_values = data[prop]
115         time_steps = data[’timestep’]
116         start_i, start_t = autocorr.find_equilibrated_window(time_steps, prop_va

lues)
117         if start_i < len(time_steps):
118             decorrelation_time, decorrelation_stride = _get_decorrelation_time(p

rop_values[start_i:], time_steps[start_i:])
119             independent_vals_i = np.arange(start_i, len(prop_values)−1, decorrel

ation_stride)
120             independent_vals = prop_values[independent_vals_i]
121             #print(independent_vals)
122             mean=np.mean(independent_vals)
123             std=np.std(independent_vals)
124         else:
125             print(’the {} values given have not reached equilibrium.’.format(prop))
126             mean = None
127             std = None
128     else:
129         print(’could not find log file for {}’.format(job))
130         mean=None
131         std=None
132     #print(mean)
133     return mean, std
134

135

136 def plot_equilibriation(df_filtered,
137                         project,
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138                         prop_name,
139                         draw_decorrelated_samples=False,
140                         draw_equilibrium_window=True,
141                         mean_from_second_half=False):
142     df_sorted = df_filtered.sort_values(by=[’quench_T’])
143     df_grouped = df_sorted.groupby(’quench_T’)
144

145

146     quenchTs=[]
147     mean_vols=[]
148     vol_stds=[]
149     colors = plt.cm.plasma(np.linspace(0,1,len(df_grouped)))
150     i=0
151     for name,group in df_grouped:
152         time_steps_temp = []
153         mean_vals_temp = []
154         val_stds_temp = []
155         for job_id in group.index:
156     #for i,job_id in enumerate(df_sorted.index):
157             job = project.open_job(id=job_id)
158             #print(job)
159             if job.isfile(’out.log’):
160                 log_path = job.fn(’out.log’)
161                 data = np.genfromtxt(log_path, names=True)
162                 PROP_NAME =prop_name
163                 prop_values = data[PROP_NAME]#’pair_lj_energy’]
164                 time_steps = data[’timestep’]
165                 if mean_from_second_half:
166                     start_i = int(len(time_steps)*.75)
167                     #print(job,’start_i’,start_i,len(time_steps),time_steps)
168                     start_t = time_steps[start_i]
169                 else:
170                     start_i, start_t = autocorr.find_equilibrated_window(time_st

eps, data[’potential_energy’])
171                 decorrelation_time, decorrelation_stride = _get_decorrelation_ti

me(data[’potential_energy’][start_i:], time_steps[start_i:])
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172                 #print(’decorrelation_time:’,decorrelation_time)
173                 independent_vals_i = np.arange(start_i, len(prop_values)−1, deco

rrelation_stride)
174                 independent_vals = time_steps[independent_vals_i]
175                 #starttime_steps.index(start_t)
176

177                 if ’quench_T’ in job.sp:
178                     label = ’q_T:{},cure:{}’.format(job.sp.quench_T,job.sp.stop_aft

er_percent)
179                     #label = ’tau:{}, tauP:{}’.format(job.sp.tau,job.sp.tauP)
180                 else:
181                     label = ’kT:{},cure:{}’.format(job.sp.kT,job.sp.stop_after_perc

ent)
182                 time_steps_temp.append(time_steps)
183                 mean_vals_temp.append(prop_values)
184             else:
185                 print(’did not find out.log for’,job)
186         mean_time_steps = np.mean(time_steps_temp,axis=0)
187         mean_prop_values = np.mean(mean_vals_temp,axis=0)
188         plt.plot(mean_time_steps,mean_prop_values,label=label,color=colors[i],li

newidth=1.0)
189         i+=1
190         if draw_decorrelated_samples:
191             for xval in independent_vals:
192                 plt.axvline(x=xval,linestyle=’−−’,linewidth=0.2)
193         if draw_equilibrium_window:
194             plt.plot(mean_time_steps[start_i],
195                      mean_prop_values[start_i],
196                      marker=’*’,
197                      color=’r’,
198                      markersize=10)
199             #print(time_steps)
200             #decorr_i = np.where(time_steps >= decor_time)[0][0]
201             #print(decorr_
202             
203
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204

205 def get_values_for_quenchTs(df_filtered,project, prop,mean_from_second_half=Fals
e):

206     df_sorted = df_filtered.sort_values(by=[’quench_T’])
207     df_grouped = df_sorted.groupby(’quench_T’)
208     quenchTs=[]
209     mean_vals=[]
210     val_stds=[]
211     for name,group in df_grouped:
212         quench_Ts_temp = []
213         mean_vals_temp = []
214         val_stds_temp = []
215         
216         for job_id in group.index:
217             #job_id = group.signac_id
218             #print(name,job_id)
219             job = project.open_job(id=job_id)
220             #print(job)
221             if job.isfile(’out.log’):
222                 log_path = job.fn(’out.log’)
223                 data = np.genfromtxt(log_path, names=True)
224                 prop_value = data[prop]
225                 time_steps = data[’timestep’]
226                 pe = data[’potential_energy’]
227                 #print(job)
228                 mean,std = get_mean_and_std(job,time_steps,prop_value,pe,mean_fr

om_second_half)
229                 if mean is ¬ None:
230                     quench_Ts_temp.append(job.sp.quench_T)
231                     mean_vals_temp.append(mean)
232                     val_stds_temp.append(std)
233

234         quenchTs.append(np.mean(quench_Ts_temp))
235         mean_vals.append(np.mean(mean_vals_temp))
236         val_stds.append(np.mean(val_stds_temp))
237     return quenchTs,mean_vals,val_stds     
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238

239

240 def line_intersect(m1, b1, m2, b2):
241     if m1 ≡ m2:
242         print ("These lines are parallel!!!")
243         return None
244     # y = mx + b
245     # Set both lines equal to find the intersection point in the x direction
246     # m1 * x + b1 = m2 * x + b2
247     # m1 * x − m2 * x = b2 − b1
248     # x * (m1 − m2) = b2 − b1
249     # x = (b2 − b1) / (m1 − m2)
250     x = (b2 − b1) / (m1 − m2)
251     # Now solve for y −− use either line, because they are equal here
252     # y = mx + b
253     y = m1 * x + b1
254     return x,y
255

256 from scipy.optimize import curve_fit
257 from scipy.interpolate import InterpolatedUnivariateSpline
258 from piecewise.regressor import piecewise #https://www.datadoghq.com/blog/engine

ering/piecewise−regression/
259 from piecewise.plotter import plot_data_with_regression
260

261 def DiBenedetto(alphas,T1,T0,inter_param):
262     Tgs = []
263     for alpha in alphas:
264         Tg = inter_param*alpha*(T1−T0)/(1−(alpha*(1−inter_param))) +T0
265         Tgs.append(Tg)
266     return Tgs
267

268 def fit_Tg_to_DiBenedetto(alphas,Tgs,T1,T0=None):
269     import warnings
270     np.seterr(all=’raise’)
271     plot_fit_fails=True
272     inter_parm=0.5
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273     try:
274 if T1≡None ∧ T0≡None:
275 smallestTg=Tgs[0]
276 largestTg=Tgs[−1]
277 popt, pcov = curve_fit(lambda Xs,T1,T0: DiBenedetto(Xs,T1,T0,inter_p

arm),
278 alphas,Tgs,
279 #p0=[0,0],
280 p0=[largestTg,smallestTg],
281 #bounds=([−np.infty,−np.infty],[np.infty,np.infty

])
282 bounds=([0,0],[largestTg*1.5,smallestTg*1.2]))#,m

axfev=200000)
283 elif T1≡None ∧ T0≠None:
284 popt, pcov = curve_fit(lambda Xs,T1: DiBenedetto(Xs,T1,T0,inter_parm

),
285 alphas,Tgs,
286 #p0=[0,0],
287 p0=[1],
288 #bounds=([−np.infty,−np.infty],[np.infty,np.infty

])
289 bounds=([0],[np.infty]))#,maxfev=200000)
290 else:
291 popt, pcov = curve_fit(lambda Xs,T0: DiBenedetto(Xs,T1,T0,inter_parm

),
292 alphas,Tgs,
293 #p0=[0,0],
294 p0=[0],
295 #bounds=([−np.infty,−np.infty],[np.infty,np.i

nfty])
296 bounds=([−np.infty],[np.infty]))#,maxfev=2000

00)
297 #print(’found fit’)
298     except FloatingPointError:
299 print(’Curve fitting failed(FloatingPointError)’)
300     except RuntimeError:
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301         print(’Curve fitting failed(RuntimeError)’)
302     except TypeError:
303         print(’Curve fitting failed(TypeError)’)
304     except ValueError:
305         print(’Curve fitting failed(ValueError)’)
306

307     ydata = np.asarray(Tgs)
308     if T1≡None ∧ T0≡None:
309         fit_ydata = DiBenedetto(alphas,*popt,inter_parm)
310     elif T1≡None ∧ T0≠None:
311         fit_ydata = DiBenedetto(alphas,*popt,T0,inter_parm)
312     else:
313         fit_ydata = DiBenedetto(alphas,T1,*popt,inter_parm)
314     residuals = ydata − fit_ydata
315     ss_res = np.sum(residuals**2)
316     ss_tot = np.sum((ydata−np.mean(ydata))**2)
317     #print(’ss_res’,ss_res,’ss_tot’,ss_tot)
318     if ss_tot ≡ 0:
319         #print(’found ss_tot: 0’)
320         r_squared = 0
321     else:
322         r_squared = 1 − (ss_res / ss_tot)
323     if T1≡None ∧ T0≡None:
324         return r_squared,fit_ydata,popt[0],inter_parm,popt[1]
325     else:
326         return r_squared,fit_ydata,popt[0],inter_parm#,popt[1]
327

328 def find_Tg(quenchTs, mean_vals,sap):
329     print(sap)
330     if True:#sap<=50.:
331         use_first_deviation = False
332         if use_first_deviation:
333             model = piecewise(quenchTs, mean_vals)
334             if len(model.segments) ≡ 2:
335                 lines = []
336                 l1 = model.segments[0]
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337 m1 = l1.coeffs[1]
338 b1 = l1.coeffs[0]
339 l2 = model.segments[1]
340 m2 = l2.coeffs[1]
341 b2 = l2.coeffs[0]
342 f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
343 dxdT = f.derivative(n=1)
344 dx_dTs = dxdT(quenchTs)
345 dev_index = np.where(np.abs(dx_dTs)>m1)[0][0]
346 x=quenchTs[dev_index]
347 y=mean_vals[dev_index]
348 else:
349 print(’using derivatives’)
350 f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
351 dxdT = f.derivative(n=1)
352 d2xdT = f.derivative(n=2)
353 dx_dTs = dxdT(quenchTs)
354 d2x_dT2s = d2xdT(quenchTs)
355 max_dx2 = np.max(d2x_dT2s)
356 min_dx2 = np.min(d2x_dT2s)
357 max_i = np.where(d2x_dT2s≡max_dx2)[0][0]
358 min_i = np.where(d2x_dT2s≡min_dx2)[0][0]
359 x = (quenchTs[min_i]+quenchTs[max_i])/2
360 y = (mean_vals[min_i]+mean_vals[max_i])/2
361     else:
362 print(’using line iftting’)
363 #plot_data_with_regression(quenchTs, mean_vals)
364 model = piecewise(quenchTs, mean_vals)
365 #print(model) 
366 if len(model.segments) ≡ 2:
367 lines = []
368 l1 = model.segments[0]
369 m1 = l1.coeffs[1]
370 b1 = l1.coeffs[0]
371 l2 = model.segments[1]
372 m2 = l2.coeffs[1]
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373             b2 = l2.coeffs[0]
374             x,y = line_intersect(m1,b1,m2,b2)
375             
376         else:
377             print(’WARNING: found more or less than 2 line segments in regression!’)
378     return x,y
379

380 def plot_this(job,time_steps,prop_values,pe,color,label=None,normalize_by_mean=F
alse,mean_from_second_half=True):

381     if mean_from_second_half:
382         start_i = int(len(time_steps)*.75)
383         start_t = time_steps[start_i]
384     else:
385         start_i, start_t = autocorr.find_equilibrated_window(time_steps, pe)
386     decorrelation_time, decorrelation_stride = _get_decorrelation_time(prop_valu

es[start_i:], time_steps[start_i:])
387     #print(’decorrelation_time:’,decorrelation_time)
388     independent_vals_i = np.arange(start_i, len(prop_values)−1, decorrelation_st

ride)
389     independent_vals = time_steps[independent_vals_i]
390     #starttime_steps.index(start_t)
391     #for xval in independent_vals_i:
392     #    plt.axvline(x=xval,linestyle=’−−’,linewidth=0.2)
393     indices = list(range(0,len(prop_values)))
394     if len(indices) ≠ len(prop_values):
395         print(’Check the length of arrays’)
396     #print(indices)
397     #print(prop_values)
398     if normalize_by_mean:
399         mean,std = get_mean_and_std(job,time_steps,prop_values,pe)
400         prop_values = prop_values/mean
401         plt.axhline(y=1.0,linewidth=1.0,linestyle=’−−’)
402     plt.plot(indices,prop_values,label=label,linewidth=1,color=color)
403     plt.plot(start_i,prop_values[start_i],marker=’*’,color=’r’, markersize=10)
404                 
405 def get_split_quench_job_property_mean_std(job,prop_name):
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406     means = []
407     stds = []
408     times = []
409     temps = []
410     if job.isfile(’out.log’):
411         log_path = job.fn(’out.log’)
412         data = np.genfromtxt(log_path, names=True)
413         PROP_NAME =prop_name
414         prop_values = data[PROP_NAME]#’pair_lj_energy’]
415         time_steps = data[’timestep’]
416         pe = data[’potential_energy’]
417         print(job)
418         len_prof = len(job.sp.quench_temp_prof)
419         for i in range(0,len_prof,2):
420             current_point = job.sp.quench_temp_prof[i]
421             next_point = job.sp.quench_temp_prof[i+1]
422             start_time = current_point[0]
423             end_time = next_point[0]
424             if current_point[1]≠next_point[1]:
425                 print(’WARNING! Detected a non isothermal step’)
426             target_T = current_point[1]
427             #print(time_steps)
428             #print(start_time,end_time)
429             indices = np.where((time_steps≥start_time)&(time_steps≤end_time))
430             start_index = indices[0][0]
431             end_index = indices[0][−1]
432             sliced_ts = time_steps[start_index:end_index+1]
433             sliced_prop_vals = prop_values[start_index:end_index+1]
434             sliced_pe = pe[start_index:end_index+1]
435             mean,std = get_mean_and_std(job,sliced_ts,sliced_prop_vals,sliced_pe

)
436             means.append(mean)
437             stds.append(std)
438             times.append((start_time,end_time))
439             temps.append(target_T)
440     return means,stds,times,temps
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441             
442 def split_log(df_filtered,project,prop_name,filter_temp,rtol=0.1,show_all=True,n

ormalize_by_mean=False):
443     df_sorted = df_filtered.sort_values(by=[’quench_T’])
444     
445     
446     for job_id in df_sorted.index:
447         job = project.open_job(id=job_id)
448         #print(job)
449         if job.isfile(’out.log’):
450             log_path = job.fn(’out.log’)
451             data = np.genfromtxt(log_path, names=True)
452             PROP_NAME =prop_name
453             prop_values = data[PROP_NAME]#’pair_lj_energy’]
454             time_steps = data[’timestep’]
455             pe = data[’potential_energy’]
456             print(job)
457             len_prof = len(job.sp.quench_temp_prof)
458             colors = plt.cm.plasma(np.linspace(1,0,len_prof/2))
459             for i in range(0,len_prof,2):
460                 current_point = job.sp.quench_temp_prof[i]
461                 next_point = job.sp.quench_temp_prof[i+1]
462                 start_time = current_point[0]
463                 end_time = next_point[0]
464                 if current_point[1]≠next_point[1]:
465                     print(’WARNING! Detected a non isothermal step’)
466                 target_T = current_point[1]
467                 #print(start_time,end_time)
468                 #print(time_steps)
469                 if np.isclose(target_T,filter_temp,rtol=rtol) ∨ show_all: 
470                     #print(time_steps)
471                     #print(start_time,end_time)
472                     indices = np.where((time_steps≥start_time)&(time_steps≤end_t

ime))
473                     #print(indices)
474                     start_index = indices[0][0]
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475                     end_index = indices[0][−1]
476                     #print(’start_index’,start_index,’end_index’,end_index)
477                     #print(’start_index’,start_index,’end_index’,end_index)
478                     sliced_ts = time_steps[start_index:end_index+1]
479                     sliced_prop_vals = prop_values[start_index:end_index+1]
480                     sliced_pe = pe[start_index:end_index+1]
481                     #print(sliced_ts)
482                     #print(sliced_prop_vals)
483                     label = ’T:{}’.format(target_T)
484                     #print(i/2)
485                     plot_this(job,
486                               sliced_ts,
487                               sliced_prop_vals,
488                               sliced_pe,
489                               colors[int(i/2)],
490                               label,
491                               normalize_by_mean=normalize_by_mean)
492

493                     
494 def line_intersect(m1, b1, m2, b2):
495     if m1 ≡ m2:
496         print ("These lines are parallel!!!")
497         return None
498     # y = mx + b
499     # Set both lines equal to find the intersection point in the x direction
500     # m1 * x + b1 = m2 * x + b2
501     # m1 * x − m2 * x = b2 − b1
502     # x * (m1 − m2) = b2 − b1
503     # x = (b2 − b1) / (m1 − m2)
504     x = (b2 − b1) / (m1 − m2)
505     # Now solve for y −− use either line, because they are equal here
506     # y = mx + b
507     y = m1 * x + b1
508     return x,y   
509

510 def find_Tg(quenchTs, mean_vals):
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511     if False:#sap<=50.:
512         use_first_deviation = True
513         if use_first_deviation:
514             model = piecewise(quenchTs, mean_vals)
515             if len(model.segments) ≡ 2:
516                 lines = []
517                 l1 = model.segments[0]
518                 m1 = l1.coeffs[1]
519                 b1 = l1.coeffs[0]
520                 l2 = model.segments[1]
521                 m2 = l2.coeffs[1]
522                 b2 = l2.coeffs[0]
523             f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
524             dxdT = f.derivative(n=1)
525             dx_dTs = dxdT(quenchTs)
526             dev_index = np.where(np.abs(dx_dTs)>m1)[0][0]
527             x=quenchTs[dev_index]
528             y=mean_vals[dev_index]
529         else:
530             print(’using derivatives’)
531             f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
532             dxdT = f.derivative(n=1)
533             d2xdT = f.derivative(n=2)
534             dx_dTs = dxdT(quenchTs)
535             d2x_dT2s = d2xdT(quenchTs)
536             max_dx2 = np.max(d2x_dT2s)
537             min_dx2 = np.min(d2x_dT2s)
538             max_i = np.where(d2x_dT2s≡max_dx2)[0][0]
539             min_i = np.where(d2x_dT2s≡min_dx2)[0][0]
540             x = (quenchTs[min_i]+quenchTs[max_i])/2
541             y = (mean_vals[min_i]+mean_vals[max_i])/2
542     else:
543         print(’using line iftting’)
544         #plot_data_with_regression(quenchTs, mean_vals)
545         model = piecewise(quenchTs, mean_vals)
546         #print(model) 
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547         if len(model.segments) ≡ 2:
548             lines = []
549             l1 = model.segments[0]
550             m1 = l1.coeffs[1]
551             b1 = l1.coeffs[0]
552             l2 = model.segments[1]
553             m2 = l2.coeffs[1]
554             b2 = l2.coeffs[0]
555             x,y = line_intersect(m1,b1,m2,b2)
556             
557         else:
558             print(’WARNING: found {} line segments in regression!Expecting 2’.format(len(model.

segments)))
559     return x,y
560

561 def Fit_Diffusivity1(Ts,
562                     Ds,
563                     method=’use_viscous_region’,
564                     min_D=1e−8,
565                     ver=1,
566                     viscous_line_index=1,
567                     l1_T_bounds=[0,1],
568                     l2_T_bounds=[0,1]):
569     indices = np.where(Ds>min_D)#0.00000095)
570     print("in common, indices:",indices)
571     print("00", indices[0][0])
572     start_index = indices[0][0]
573     D_As=Ds[start_index:]
574     quenchTs=Ts[start_index:]
575     #print(’quenchTs’,quenchTs)
576     model = piecewise(quenchTs, D_As)
577     #print(ver)
578     if ver≡4:
579         #print(’ver 4’)
580         line_vals=[]
581         Ts_low_i = np.where(Ts≥l1_T_bounds[0])[0]
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582         if len(Ts_low_i)≡0:
583             raise ValueError(’lower bound for T fitting of line 1 too low. Use a higher T’)
584         l1_low_i = Ts_low_i[0]
585         Ts_low_i = np.where(Ts≥l2_T_bounds[0])[0]
586         if len(Ts_low_i)≡0:
587             raise ValueError(’lower bound for T fitting of line 2 too low. Use a higher T’)
588         l2_low_i = Ts_low_i[0]
589         
590         Ts_high_i = np.where(Ts≤l1_T_bounds[1])[0]
591         if len(Ts_high_i)≡0:
592             raise ValueError(’upper bound for T fitting of line 1 too high. Use a lower T’)
593         l1_high_i = Ts_high_i[−1]
594         Ts_high_i = np.where(Ts≤l2_T_bounds[1])[0]
595         if len(Ts_high_i)≡0:
596             raise ValueError(’upper bound for T fitting of line 2 too high. Use a lower T’)
597         l2_high_i = Ts_high_i[−1]
598         #print(’Ts_high_i’,Ts_high_i)
599         l1Ts=Ts[l1_low_i:l1_high_i+1]
600         l1Ds=Ds[l1_low_i:l1_high_i+1]
601         #print(l1_low_i,l1_high_i,l1Ts)
602         l2Ts=Ts[l2_low_i:l2_high_i+1]
603         l2Ds=Ds[l2_low_i:l2_high_i+1]
604         #print(l2_low_i,l2_high_i,l2Ts,’Ts’,Ts)
605         par = np.polyfit(l1Ts, l1Ds, 1, full=True)
606         m1 = par[0][0]#0−slope, 1−intercept
607         b1 = par[0][1]
608         xs = np.linspace(l1Ts[0],l1Ts[−1])
609         ys = m1*xs+b1
610         line_vals.append((xs,ys))
611         
612         par = np.polyfit(l2Ts, l2Ds, 1, full=True)
613         m2 = par[0][0]#0−slope, 1−intercept
614         b2 = par[0][1]
615         xs = np.linspace(l2Ts[0],l2Ts[−1])
616         ys = m2*xs+b2
617         line_vals.append((xs,ys))
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618

619 x,y = line_intersect(m1,b1,m2,b2)
620 Tg=x
621 Tg_prop = y
622

623 return Tg,Tg_prop,line_vals
624     elif ver≡3:
625 line_vals=[]
626 Ts_low_i = np.where(Ts≥l1_T_bounds[0])[0]
627 if len(Ts_low_i)≡0:
628 raise ValueError(’lower bound for T fitting of line 1 too low. Use a higher T’)
629 l1_low_i = Ts_low_i[0]
630 Ts_low_i = np.where(Ts≥l2_T_bounds[0])[0]
631 if len(Ts_low_i)≡0:
632 raise ValueError(’lower bound for T fitting of line 2 too low. Use a higher T’)
633 l2_low_i = Ts_low_i[0]
634

635 Ts_high_i = np.where(Ts≤l1_T_bounds[1])[0]
636 if len(Ts_high_i)≡0:
637 raise ValueError(’upper bound for T fitting of line 1 too high. Use a lower T’)
638 l1_high_i = Ts_high_i[−1]
639 Ts_high_i = np.where(Ts≤l2_T_bounds[1])[0]
640 if len(Ts_high_i)≡0:
641 raise ValueError(’upper bound for T fitting of line 2 too high. Use a lower T’)
642 print(’Ts_high_i’,Ts_high_i)
643 l2_high_i = Ts_high_i[−1]
644

645 l1Ts=Ts[l1_low_i:l1_high_i]
646 l1Ds=Ds[l1_low_i:l1_high_i]
647 print(l1_low_i,l1_high_i,l1Ts)
648 l2Ts=Ts[l2_low_i:l2_high_i]
649 l2Ds=Ds[l2_low_i:l2_high_i]
650 print(l2_low_i,l2_high_i,l2Ts)
651 par = np.polyfit(l1Ts, l1Ds, 1, full=True)
652 m1 = par[0][0]#0−slope, 1−intercept
653 b1 = par[0][1]
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654         xs = np.linspace(l1Ts[0],l1Ts[−1])
655         ys = m1*xs+b1
656         line_vals.append((xs,ys))
657         
658         par = np.polyfit(l2Ts, l2Ds, 1, full=True)
659         m2 = par[0][0]#0−slope, 1−intercept
660         b2 = par[0][1]
661         xs = np.linspace(l2Ts[0],l2Ts[−1])
662         ys = m2*xs+b2
663         line_vals.append((xs,ys))
664         if viscous_line_index≡0:
665             Tg = −b1/m1
666             Tg_prop = 0.
667         elif viscous_line_index≡1:
668             Tg = −b2/m2
669             Tg_prop = 0.
670         else:
671             x,y = line_intersect(m1,b1,m2,b2)
672             Tg=x
673             Tg_prop = y
674

675         return Tg,Tg_prop,line_vals
676     elif ver≡2:
677         n_lines=len(model.segments)
678         if n_lines ≡ 0:
679             raise ValueError(’Found zero lines in piecewise fitting’)
680         lines=[]
681         line_vals=[]
682         for i in range(n_lines):
683             line = model.segments[i]
684             lines.append(line)
685             xs = np.linspace(line.start_t,line.end_t)
686             ys = line.coeffs[1]*xs+line.coeffs[0]
687             line_vals.append((xs,ys))
688          
689         if method≡’use_viscous_region’:
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690             if n_lines>1:
691                 l2=lines[viscous_line_index]
692             else:
693                 l2=lines[0]
694             m2 = l2.coeffs[1]
695             b2 = l2.coeffs[0]
696             Tg = −b2/m2
697             Tg_prop = 0.
698         else:
699             Tg,Tg_prop=find_Tg(mean_vals=Ds,quenchTs=Ts)
700         return Tg,Tg_prop,line_vals
701     elif ver≡1:
702         if len(model.segments) ≡ 2:
703             l1 = model.segments[0]
704             m1 = l1.coeffs[1]
705             b1 = l1.coeffs[0]
706             l2 = model.segments[1]
707             m2 = l2.coeffs[1]
708             b2 = l2.coeffs[0]
709             x,y = line_intersect(m1,b1,m2,b2)
710             xs1 = np.linspace(l1.start_t,l1.end_t)#np.linspace(l1.start_t,(x+(l1

.end_t−l1.start_t)*0.2))
711             ys1 = l1.coeffs[1]*xs1+l1.coeffs[0]
712             xs2 = np.linspace(l2.start_t,l2.end_t)#np.linspace((x−(l2.end_t−l2.s

tart_t)*0.2),l2.end_t)
713             ys2 = l2.coeffs[1]*xs2+l2.coeffs[0]
714             
715             if method≡’use_viscous_region’:
716                 Tg = −b2/m2
717                 Tg_prop = 0.
718             elif method ≡ ’intersection’:
719                 Tg=x
720                 Tg_prop=y
721         else:
722             print(’WARNING: found {} line segments in regression!’.format(len(model.segments

)))
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723         
724         return Tg,Tg_prop,xs1,ys1,xs2,ys2
725         
726         
727 def Calc_Diffusivity(eq_time,
728                      eq_msd,
729                      fit_method=’curve_fit’):
730     #fit_method=’curve_fit’#’power_law’,’poly_fit’
731     if fit_method≡’curve_fit’:
732         norm_eq_time = (eq_time−eq_time[0])
733         #print(norm_eq_time,eq_msd)
734         popt, pcov = curve_fit(lambda t,m,b: m*t+b ,
735                                        eq_time,
736                                        eq_msd,
737                                        p0=[1.,0.0],
738                                        bounds=([−1,0.0],[np.infty,np.infty]))
739         drdt_A = popt[0]
740         m=popt[0]
741         b=popt[1]
742     elif fit_method≡’poly_fit’:
743         par = np.polyfit(time, msd, 1, full=True)
744         drdt_A = par[0][0]#0−slope, 1−intercept
745         m=par[0][0]
746         b=par[0][1]
747     elif fit_method≡’power_law’:
748         popt, pcov = curve_fit(lambda t,w,x1: (w*t)**x1 ,
749                            time,
750                            msd,
751                            p0=[0.2,1.0],
752                            #p0=[1.0],
753                            #bounds=([−np.infty,−np.infty],[np.infty,np.infty])
754                            #bounds=([0],[4.0]))
755                            maxfev=2000000,
756                            bounds=([0.0,0.0],[1.0,4.0]))
757         raise NotImplementedError(’Diffusivity not determined’)
758
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759     #calculate the diffusion coefficient
760     dimensions=3
761     D = drdt_A/(2*dimensions)
762     return D,m,b
763

764 def getDiffusivities(project,df_curing,sortby=’quench_T’,name=’bparticles’,quench_ti
me=1e7,use_first_trial=True):

765     """
766     returns diffusivity in units of D^2/tau where D and tau are distance and time units.
767     Note that time is not in time steps.
768     """
769     Ts=[]
770     Ds=[]
771     for key,df_grp in df_curing.groupby(’cooling_method’):
772         if key≡’quench’ ∧ quench_time is ¬ None:
773             df_filt = df_grp[(df_grp.quench_time≡quench_time)]
774         else:
775             df_filt = df_grp
776         df_sorted=df_filt.sort_values(sortby)
777         for q_T,q_T_grp in df_sorted.groupby(’quench_T’):
778             for job_id in q_T_grp.index:
779                 job = project.open_job(id=job_id)
780                 if job.isfile(’msd.log’):
781                     log_path = job.fn(’msd.log’)
782                     data = np.genfromtxt(log_path, names=True)
783                     prop_values = data[name]#’pair_lj_energy’]
784                     equilibriated_ts_percentage = 0.5
785                     if key≡’anneal’:
786                         times,msds,qTs = get_split_quench_job_msd(job,name)
787                         for j,msd in enumerate(msds):
788                             start_index = int(len(times[j])*equilibriated_ts_per

centage)
789                             time=times[j]*job.sp.md_dt
790                             quench_T = qTs[j]
791                             eq_msd = msd[start_index:]
792                             eq_time = time[start_index:]
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793                             D_A,m,b = Calc_Diffusivity(eq_time,eq_msd,’curve_fit’)
794                             Ts.append(quench_T)
795                             Ds.append(D_A)
796                     else:
797                         all_time_steps = data[’timestep’]
798                         start_index = int(len(all_time_steps)*equilibriated_ts_p

ercentage)
799                         time=all_time_steps*job.sp.md_dt
800                         quench_T = job.sp.quench_T
801                         eq_msd = prop_values[start_index:]
802                         eq_time = time[start_index:]
803                         #print(job)
804                         D_A,m,b = Calc_Diffusivity(eq_time,eq_msd,’curve_fit’)
805                         Ts.append(quench_T)
806                         Ds.append(D_A)
807                     if use_first_trial:
808                         break#just using the first data point in this quench_T i

nstead of mean
809     Ts=np.asarray(Ts)
810     Ds=np.asarray(Ds)
811     return Ts,Ds
812

813 def savefig(plt,nbname,figname,transparent=True):
814     import os
815     if ¬ os.path.exists(nbname):
816         os.makedirs(nbname)
817     plt.savefig(os.path.join(nbname,figname),transparent=transparent)
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1 import numpy as np
2 import math
3 from scipy.optimize import curve_fit
4 import sys,traceback
5

6 def f_t(times,C,H,Ea,kT,a_start,a_inf,breakAt_a=None,model=’FO’):
7     alphas = []
8     the_times = []
9     alpha=a_start

10     #print(H)
11     #a_inf = 0.96
12     try:
13         for t in times:
14             k = H*math.exp(−Ea/(kT))
15             if model ≡ ’SAFO’:
16                 dadt = k*(a_inf−alpha)*(1+C*alpha)
17             elif model ≡ ’FO’:
18                 dadt = k*(a_inf−alpha)
19             elif model ≡ ’SO’:
20                 dadt = k*(a_inf−alpha)**2
21             elif model ≡ ’SASO’:
22                 dadt = k*(1−alpha)*(a_inf−alpha)*(1+C*alpha)
23             alpha += dadt
24             alphas.append(alpha)
25             the_times.append(t)
26

27             if (breakAt_a is ¬ None) ∧ (alpha ≥ breakAt_a):
28                 t_minutes = t/60
29                 print(’{} reached @ {} minutes according to the model’.format(alpha,t_minutes

))
30                 return alphas,minutes,t_minutes
31                 #    print(’done at’,t)
32                 #    break
33     except Exception as e:
34         print(’math.exp(−Ea/(kT))’,math.exp(−Ea/(kT)))
35         print(’H’,H)

Page 1/5common.py

25/75./rxn−fits−fo−safo/common.py

223



36         plt.plot(the_times,alphas,marker=’+’)
37         print(the_times,alphas)
38         raise e
39     return alphas
40     
41 def fit_curing_profile_with_model(job,model,print_error=False):
42     #print(’fitting job’,job)
43     bond_percent_index = 9
44     #C=8.12 #Temperature independent acceleration constant. Aldridge, M., Winema

n, A., Waas, A. & Kieffer, J.  (2014).
45     suggested_C = 8.12#1e−10#0.0
46     C_tolerance=1e−5
47     data = np.genfromtxt(job.fn(’out.log’),names=True)
48     bond_percents = data[’bond_percentAB’]
49     time_steps = data[’timestep’]
50     alpha_inf = job.sp.stop_after_percent
51     
52     truncated_cure_fractions = []
53     truncated_time_steps = []
54  
55     # We cut off the cure profile after stop_after_percent because we want the c

ure profile to be realistic. 
56     # After we stop bonding the cure profile is just flat and not realistic.
57     last_index = next((i for i, v in enumerate(bond_percents) if v ≥alpha_inf), 

−1)
58     first_index = next((i for i, v in enumerate(bond_percents) if v >0), −1)
59     if last_index≤0:#maybe the system did not cure till the desired cure percent

. So just take the last cure of the profile
60         last_index=len(bond_percents)
61     if last_index > 0 ∧ first_index ≥ 0 ∧ (last_index−first_index)>1:
62         truncated_time_steps.extend(time_steps[first_index:last_index]*job.sp.md

_dt)#/0.01)
63         truncated_cure_fractions.extend(bond_percents[first_index:last_index]/10

0.)
64         Ea=job.sp.activation_energy#1.0
65         a_inf = truncated_cure_fractions[−1]#0.96
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66 import warnings
67 np.seterr(all=’raise’)
68 plot_fit_fails=True
69 label=’Successfully fit the curing curve’
70 success=False
71 try:
72 #print(’math.exp(−Ea/(kT))’,math.exp(−Ea/(kT)))
73 popt, pcov = curve_fit(lambda times, H: f_t(times, 
74 suggested_C, 
75 H,
76 Ea,
77 job.sp.kT,
78 truncated_cure_fractio

ns[0],
79 a_inf,model=model),
80 truncated_time_steps,truncated_cure_fractions,
81 p0=[1e−4],
82 maxfev=20000,
83 bounds=([0.0],
84 [np.infty]))
85 #[np.infty,np.infty]))
86 #p0=[1e−4,1e−10],
87 #bounds=([0,1e−10],#[0,1e−10],#[suggested_C,1e−4]

,
88 # [np.infty,np.infty]))
89 success=True
90

91 except Exception as e:
92 if print_error:
93 print(e)
94 traceback.print_exc(file=sys.stdout)
95 #if print_error:
96 #    print(error)
97 if success:
98 ydata = np.asarray(truncated_cure_fractions)
99 #fit_ydata = f_t(truncated_time_steps,C,*popt,Ea,job.sp.kT,truncated
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_cure_fractions[0],a_inf,model=model)
100 fit_ydata = f_t(truncated_time_steps,suggested_C,*popt,Ea,job.sp.kT,

truncated_cure_fractions[0],a_inf,model=model)
101

102 residuals = ydata − fit_ydata
103 ss_res = np.sum(residuals**2)
104 ss_tot = np.sum((ydata−np.mean(ydata))**2)
105 #print(’ss_res’,ss_res,’ss_tot’,ss_tot)
106 if ss_tot ≡ 0:
107 r_squared = 0
108 else:
109 r_squared = 1 − (ss_res / ss_tot)
110 C = suggested_C
111 H = popt[0]
112 else:
113 r_squared=0.0
114 C=suggested_C
115 H=0.0
116 truncated_cure_fractions=None
117 fit_ydata=None
118     else:
119 success=False
120 r_squared=0.0
121 C=suggested_C
122 H=0.0
123 truncated_cure_fractions=None
124 fit_ydata=None
125 #print(’Did not try to fit curing curves. last_index:’,last_index,’first

_index’,first_index)
126     return success,r_squared,C,H, truncated_time_steps,fit_ydata,first_index,las

t_index
127

128 def savefig(plt,nbname,figname,transparent=True):
129     import os
130     if ¬ os.path.exists(nbname):
131 os.makedirs(nbname)
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132     plt.savefig(os.path.join(nbname,figname),transparent=transparent)
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1 ## import os
2

3 import math
4

5 import gsd
6 import gsd.fl
7 import gsd.hoomd
8 from scipy.signal import argrelextrema as argex
9 from cme_utils.analyze import autocorr

10 import numpy as np
11 import os
12

13 def get_all_maximas(lx,q,intensities):
14     half_box_length = lx*0.6
15     q_half_length = 2*math.pi/(half_box_length)
16     peaks_q = []
17     peaks_I = []
18  #   print(q)
19     maxima_i = argex(intensities,np.greater)[0]
20     for i in maxima_i:
21         if q[i] > q_half_length:
22   #          print(i)
23             peaks_q.append(q[i])
24             peaks_I.append(intensities[i])
25     #if len(peaks_I)==0:
26     #    print(job)
27     #    print(q_half_length,maxima_i)
28     return peaks_q,peaks_I
29

30 def get_highest_maxima(lx,q,intensities):
31     peaks_q,peaks_I = get_all_maximas(lx,q,intensities)
32     if len(peaks_I) > 0:
33         largest_peak_I = np.max(peaks_I)
34         index_largest_I = peaks_I.index(largest_peak_I)
35         largest_peak_q = peaks_q[index_largest_I]
36     else:
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37         largest_peak_q=None
38         largest_peak_I=None
39     return largest_peak_q,largest_peak_I
40

41

42 def get_nth_maxima(job,q,intensities,n=1):
43     ’’’
44     Use ’n’=1 for first maxima and ’n’=2 for second maxima etc..
45     ’’’
46     peaks_q,peaks_I = get_all_maximas(job,q,intensities)
47     sorted_peaks_I = np.sort(peaks_I)
48     #print(peaks_q,peaks_I,sorted_peaks_I)
49     nth_largest_peak_I = sorted_peaks_I[n*−1]
50     index_nth_largest_I = peaks_I.index(nth_largest_peak_I)
51     nth_largest_peak_q = peaks_q[index_nth_largest_I]
52     return nth_largest_peak_q,nth_largest_peak_I
53

54 def savefig(plt,nbname,figname,transparent=True):
55     import os
56     if ¬ os.path.exists(nbname):
57         os.makedirs(nbname)
58     plt.savefig(os.path.join(nbname,figname),bbox_inches=’tight’,transparent=tran

sparent)
59     
60 from mpl_toolkits.mplot3d import axes3d
61

62 class MyAxes3D(axes3d.Axes3D):
63

64     def __init__(self, baseObject, sides_to_draw):
65         self.__class__ = type(baseObject.__class__.__name__,
66                               (self.__class__, baseObject.__class__),
67                               {})
68         self.__dict__ = baseObject.__dict__
69         self.sides_to_draw = list(sides_to_draw)
70         self.mouse_init()
71
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72     def set_some_features_visibility(self, visible):
73         for t in self.w_zaxis.get_ticklines() + self.w_zaxis.get_ticklabels():
74             t.set_visible(visible)
75         self.w_zaxis.line.set_visible(visible)
76         self.w_zaxis.pane.set_visible(visible)
77         self.w_zaxis.label.set_visible(visible)
78

79     def draw(self, renderer):
80         # set visibility of some features False 
81         self.set_some_features_visibility(False)
82         # draw the axes
83         super(MyAxes3D, self).draw(renderer)
84         # set visibility of some features True. 
85         # This could be adapted to set your features to desired visibility, 
86         # e.g. storing the previous values and restoring the values
87         self.set_some_features_visibility(True)
88

89         zaxis = self.zaxis
90         draw_grid_old = zaxis.axes._draw_grid
91         # disable draw grid
92         zaxis.axes._draw_grid = False
93

94         tmp_planes = zaxis._PLANES
95

96         if ’l’ in self.sides_to_draw :
97             # draw zaxis on the left side
98             zaxis._PLANES = (tmp_planes[2], tmp_planes[3],
99                              tmp_planes[0], tmp_planes[1],

100                              tmp_planes[4], tmp_planes[5])
101             zaxis.draw(renderer)
102         if ’r’ in self.sides_to_draw :
103             # draw zaxis on the right side
104             zaxis._PLANES = (tmp_planes[3], tmp_planes[2], 
105                              tmp_planes[1], tmp_planes[0], 
106                              tmp_planes[4], tmp_planes[5])
107             zaxis.draw(renderer)
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108

109         zaxis._PLANES = tmp_planes
110

111         # disable draw grid
112         zaxis.axes._draw_grid = draw_grid_old
113         
114 import gsd
115 import gsd.fl
116 import gsd.hoomd
117 from scipy.signal import argrelextrema as argex
118 from cme_utils.analyze import autocorr
119 import numpy as np
120 import os
121 import math
122

123 def get_all_maximas(box_length,q,intensities):
124     half_box_length = box_length*0.6
125     q_half_length = 2*math.pi/(half_box_length)
126     peaks_q = []
127     peaks_I = []
128  #   print(q)
129     maxima_i = argex(intensities,np.greater)[0]
130     for i in maxima_i:
131         if q[i] > q_half_length:
132   #          print(i)
133             peaks_q.append(q[i])
134             peaks_I.append(intensities[i])
135     #if len(peaks_I)==0:
136     #    print(job)
137     #    print(q_half_length,maxima_i)
138     return peaks_q,peaks_I
139

140 def get_highest_maxima(box_length,q,intensities):
141     peaks_q,peaks_I = get_all_maximas(box_length,q,intensities)
142     if len(peaks_I) > 0:
143         largest_peak_I = np.max(peaks_I)
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144 index_largest_I = peaks_I.index(largest_peak_I)
145 largest_peak_q = peaks_q[index_largest_I]
146     else:
147 largest_peak_q=None
148 largest_peak_I=None
149     return largest_peak_q,largest_peak_I
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1 ## import os
2

3 import math
4

5 import gsd
6 import gsd.fl
7 import gsd.hoomd
8 from scipy.signal import argrelextrema as argex
9 from cme_utils.analyze import autocorr

10 import numpy as np
11 import os
12

13 def get_all_maximas(lx,q,intensities):
14     half_box_length = lx*0.6
15     q_half_length = 2*math.pi/(half_box_length)
16     peaks_q = []
17     peaks_I = []
18  #   print(q)
19     maxima_i = argex(intensities,np.greater)[0]
20     for i in maxima_i:
21 if q[i] > q_half_length:
22   #          print(i)
23 peaks_q.append(q[i])
24 peaks_I.append(intensities[i])
25     #if len(peaks_I)==0:
26     #    print(job)
27     #    print(q_half_length,maxima_i)
28     return peaks_q,peaks_I
29

30 def get_highest_maxima(lx,q,intensities):
31     peaks_q,peaks_I = get_all_maximas(lx,q,intensities)
32     if len(peaks_I) > 0:
33 largest_peak_I = np.max(peaks_I)
34 index_largest_I = peaks_I.index(largest_peak_I)
35 largest_peak_q = peaks_q[index_largest_I]
36     else:
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37         largest_peak_q=None
38         largest_peak_I=None
39     return largest_peak_q,largest_peak_I
40

41

42 def get_nth_maxima(job,q,intensities,n=1):
43     ’’’
44     Use ’n’=1 for first maxima and ’n’=2 for second maxima etc..
45     ’’’
46     peaks_q,peaks_I = get_all_maximas(job,q,intensities)
47     sorted_peaks_I = np.sort(peaks_I)
48     #print(peaks_q,peaks_I,sorted_peaks_I)
49     nth_largest_peak_I = sorted_peaks_I[n*−1]
50     index_nth_largest_I = peaks_I.index(nth_largest_peak_I)
51     nth_largest_peak_q = peaks_q[index_nth_largest_I]
52     return nth_largest_peak_q,nth_largest_peak_I
53

54 def savefig(plt,nbname,figname,transparent=True):
55     import os
56     if ¬ os.path.exists(nbname):
57         os.makedirs(nbname)
58     plt.savefig(os.path.join(nbname,figname),bbox_inches=’tight’,transparent=tran

sparent)
59     
60 from mpl_toolkits.mplot3d import axes3d
61

62 class MyAxes3D(axes3d.Axes3D):
63

64     def __init__(self, baseObject, sides_to_draw):
65         self.__class__ = type(baseObject.__class__.__name__,
66                               (self.__class__, baseObject.__class__),
67                               {})
68         self.__dict__ = baseObject.__dict__
69         self.sides_to_draw = list(sides_to_draw)
70         self.mouse_init()
71
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72     def set_some_features_visibility(self, visible):
73         for t in self.w_zaxis.get_ticklines() + self.w_zaxis.get_ticklabels():
74             t.set_visible(visible)
75         self.w_zaxis.line.set_visible(visible)
76         self.w_zaxis.pane.set_visible(visible)
77         self.w_zaxis.label.set_visible(visible)
78

79     def draw(self, renderer):
80         # set visibility of some features False 
81         self.set_some_features_visibility(False)
82         # draw the axes
83         super(MyAxes3D, self).draw(renderer)
84         # set visibility of some features True. 
85         # This could be adapted to set your features to desired visibility, 
86         # e.g. storing the previous values and restoring the values
87         self.set_some_features_visibility(True)
88

89         zaxis = self.zaxis
90         draw_grid_old = zaxis.axes._draw_grid
91         # disable draw grid
92         zaxis.axes._draw_grid = False
93

94         tmp_planes = zaxis._PLANES
95

96         if ’l’ in self.sides_to_draw :
97             # draw zaxis on the left side
98             zaxis._PLANES = (tmp_planes[2], tmp_planes[3],
99                              tmp_planes[0], tmp_planes[1],

100                              tmp_planes[4], tmp_planes[5])
101             zaxis.draw(renderer)
102         if ’r’ in self.sides_to_draw :
103             # draw zaxis on the right side
104             zaxis._PLANES = (tmp_planes[3], tmp_planes[2], 
105                              tmp_planes[1], tmp_planes[0], 
106                              tmp_planes[4], tmp_planes[5])
107             zaxis.draw(renderer)
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108

109         zaxis._PLANES = tmp_planes
110

111         # disable draw grid
112         zaxis.axes._draw_grid = draw_grid_old
113         
114 import gsd
115 import gsd.fl
116 import gsd.hoomd
117 from scipy.signal import argrelextrema as argex
118 from cme_utils.analyze import autocorr
119 import numpy as np
120 import os
121 import math
122

123 def get_all_maximas(box_length,q,intensities):
124     half_box_length = box_length*0.6
125     q_half_length = 2*math.pi/(half_box_length)
126     peaks_q = []
127     peaks_I = []
128  #   print(q)
129     maxima_i = argex(intensities,np.greater)[0]
130     for i in maxima_i:
131         if q[i] > q_half_length:
132   #          print(i)
133             peaks_q.append(q[i])
134             peaks_I.append(intensities[i])
135     #if len(peaks_I)==0:
136     #    print(job)
137     #    print(q_half_length,maxima_i)
138     return peaks_q,peaks_I
139

140 def get_highest_maxima(box_length,q,intensities):
141     peaks_q,peaks_I = get_all_maximas(box_length,q,intensities)
142     if len(peaks_I) > 0:
143         largest_peak_I = np.max(peaks_I)
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144         index_largest_I = peaks_I.index(largest_peak_I)
145         largest_peak_q = peaks_q[index_largest_I]
146     else:
147         largest_peak_q=None
148         largest_peak_I=None
149     return largest_peak_q,largest_peak_I
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1 ## import os
2

3 import math
4

5 import gsd
6 import gsd.fl
7 import gsd.hoomd
8 from scipy.signal import argrelextrema as argex
9 from cme_utils.analyze import autocorr

10 import numpy as np
11 import os
12

13 def get_all_maximas(lx,q,intensities):
14     half_box_length = lx*0.6
15     q_half_length = 2*math.pi/(half_box_length)
16     peaks_q = []
17     peaks_I = []
18  #   print(q)
19     maxima_i = argex(intensities,np.greater)[0]
20     for i in maxima_i:
21         if q[i] > q_half_length:
22   #          print(i)
23             peaks_q.append(q[i])
24             peaks_I.append(intensities[i])
25     #if len(peaks_I)==0:
26     #    print(job)
27     #    print(q_half_length,maxima_i)
28     return peaks_q,peaks_I
29

30 def get_highest_maxima(lx,q,intensities):
31     peaks_q,peaks_I = get_all_maximas(lx,q,intensities)
32     if len(peaks_I) > 0:
33         largest_peak_I = np.max(peaks_I)
34         index_largest_I = peaks_I.index(largest_peak_I)
35         largest_peak_q = peaks_q[index_largest_I]
36     else:

Page 1/7common.py

40/75./system−size−dependence/common.py

238



37         largest_peak_q=None
38         largest_peak_I=None
39     return largest_peak_q,largest_peak_I
40

41

42 def get_nth_maxima(job,q,intensities,n=1):
43     ’’’
44     Use ’n’=1 for first maxima and ’n’=2 for second maxima etc..
45     ’’’
46     peaks_q,peaks_I = get_all_maximas(job,q,intensities)
47     sorted_peaks_I = np.sort(peaks_I)
48     #print(peaks_q,peaks_I,sorted_peaks_I)
49     nth_largest_peak_I = sorted_peaks_I[n*−1]
50     index_nth_largest_I = peaks_I.index(nth_largest_peak_I)
51     nth_largest_peak_q = peaks_q[index_nth_largest_I]
52     return nth_largest_peak_q,nth_largest_peak_I
53

54 def save_frame(job,frame):
55     with gsd.hoomd.open(’Frame{}.gsd’.format(frame), ’wb’) as t_new:
56         f = gsd.fl.GSDFile(job.fn(’data.gsd’), ’rb’)
57         t = gsd.hoomd.HOOMDTrajectory(f)
58         snap = t[frame]
59         t_new.append(snap)
60     #hoomd.deprecated.dump.xml(group=hoomd.group.all(), filename=job.fn(’Frame{}

.hoomdxml’.format(frame)), position=True)
61

62 from mpl_toolkits.mplot3d import axes3d
63

64 class MyAxes3D(axes3d.Axes3D):
65

66     def __init__(self, baseObject, sides_to_draw):
67         self.__class__ = type(baseObject.__class__.__name__,
68                               (self.__class__, baseObject.__class__),
69                               {})
70         self.__dict__ = baseObject.__dict__
71         self.sides_to_draw = list(sides_to_draw)
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72         self.mouse_init()
73

74     def set_some_features_visibility(self, visible):
75         for t in self.w_zaxis.get_ticklines() + self.w_zaxis.get_ticklabels():
76             t.set_visible(visible)
77         self.w_zaxis.line.set_visible(visible)
78         self.w_zaxis.pane.set_visible(visible)
79         self.w_zaxis.label.set_visible(visible)
80

81     def draw(self, renderer):
82         # set visibility of some features False 
83         self.set_some_features_visibility(False)
84         # draw the axes
85         super(MyAxes3D, self).draw(renderer)
86         # set visibility of some features True. 
87         # This could be adapted to set your features to desired visibility, 
88         # e.g. storing the previous values and restoring the values
89         self.set_some_features_visibility(True)
90

91         zaxis = self.zaxis
92         draw_grid_old = zaxis.axes._draw_grid
93         # disable draw grid
94         zaxis.axes._draw_grid = False
95

96         tmp_planes = zaxis._PLANES
97

98         if ’l’ in self.sides_to_draw :
99             # draw zaxis on the left side

100             zaxis._PLANES = (tmp_planes[2], tmp_planes[3],
101                              tmp_planes[0], tmp_planes[1],
102                              tmp_planes[4], tmp_planes[5])
103             zaxis.draw(renderer)
104         if ’r’ in self.sides_to_draw :
105             # draw zaxis on the right side
106             zaxis._PLANES = (tmp_planes[3], tmp_planes[2], 
107                              tmp_planes[1], tmp_planes[0], 

Page 3/7common.py

42/75./system−size−dependence/common.py

240



108                              tmp_planes[4], tmp_planes[5])
109             zaxis.draw(renderer)
110

111         zaxis._PLANES = tmp_planes
112

113         # disable draw grid
114         zaxis.axes._draw_grid = draw_grid_old
115         
116 def _get_decorrelation_time(prop_values,
117                              time_steps):
118     t = time_steps − time_steps[0]
119     dt = t[1] − t[0]
120     acorr = autocorr.autocorr1D(prop_values)
121     for acorr_i in range(len(acorr)):
122         if acorr[acorr_i]<0:
123             break
124     lags = [i*dt for i in range(len(acorr))]
125

126     decorrelation_time = int(lags[acorr_i])
127     if decorrelation_time ≡ 0:
128         decorrelation_time = 1
129     decorrelation_stride = int(decorrelation_time/dt)
130     nsamples = (int(t[−1])−t[0])/decorrelation_time
131     temps = "There are %.5e steps, (" % t[−1]
132     temps = temps + "%d" % int(t[−1])
133     temps = temps + " frames)\n"
134     temps = temps + "You can start sampling at t=%.5e" % t[0]
135     temps = temps + " (frame %d)" % int(t[0] )
136     temps = temps + " for %d samples\n" % nsamples
137     temps = temps + "Because the autocorrelation time is %.5e" % lags[acorr_i]
138     temps = temps + " (%d frames)\n" % int(lags[acorr_i])
139     #print(temps)
140     return decorrelation_time, decorrelation_stride
141

142 from scipy import stats
143
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144 def get_mean_sf_from_independent_frames(job,equilibrated_percent=None):
145     typeId=2
146     n_views=40
147     grid_size=512
148     diffract_dir_pattern =’diffract_type_{}_n_views_{}_grid_size_{}_frame’.format(typeId,
149                                                                                 

 n_views,
150                                                                                 

  grid_size)
151     directories = os.listdir(job.workspace())
152     directories = [d for d in os.listdir(job.workspace()) if d.startswith(diffra

ct_dir_pattern)]
153     directories.sort(key = lambda x: int(x.split(’_’)[−1]))
154     #print(len(directories))
155     #print(directories)
156     num_frames = len(directories)
157     log_path = job.fn(’out.log’)
158     data = np.genfromtxt(log_path, names=True)
159     time_steps = data[’timestep’]
160     #print(’time steps’,time_steps)
161     if equilibrated_percent≡None:
162         start_i, start_t = autocorr.find_equilibrated_window(time_steps, data[’p

otential_energy’])
163     else:
164         start_i=int(len(time_steps)*equilibrated_percent/100)
165         start_t=time_steps[start_i]
166     decorrelation_time, decorrelation_stride = _get_decorrelation_time(data[’pote

ntial_energy’][start_i:], time_steps[start_i:])
167     #print(’decorrelation_stride:’,decorrelation_stride)
168     #print(’decorrelation_time:’,decorrelation_time)
169     #print(’start_i:’,start_i)
170     #print(’start_t:’,start_t)        
171     if num_frames > 0:
172         qs_for_all_times=[]
173         Is_for_all_times=[]
174         times_for_all_times=[]
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175         qs_list = []
176         times_list = []
177         Is_list = []  
178         Qs_list=[]
179

180         for i,diffract_dir in enumerate(directories):
181             #print("Progress {:2.1%}".format(i / num_frames), end="\r")
182

183             #print(diffract_dir)
184

185             if diffract_dir.startswith(diffract_dir_pattern):
186                 frame = int(diffract_dir.split(’_’)[−1])
187

188                 decorrelated_frame_stride = int(decorrelation_time/job.sp.dcd_wr
ite)

189                 decorrelated_frame_stride = max(decorrelated_frame_stride,1)
190                 time = round(frame*job.sp.dcd_write)
191                 #print(’decorrelated frame stride is:’,decorrelated_frame_stride

)
192                 #print(’Equilibriated after time:’,start_t)
193                 #print(’time:{}, {}%{}={}’.format(time,frame,decorrelated_frame_

stride,frame%decorrelated_frame_stride))
194                 if time ≥ start_t:# and frame%decorrelated_frame_stride==0:# and

 frame <3e6/job.sp.dcd_write:#==119 or frame==123:#%100 == 0:#num_frames/30:
195                     if job.isfile(’{}/asq.txt’.format(diffract_dir)):
196                         data=np.genfromtxt(job.fn(’{}/asq.txt’.format(diffract_dir)

))
197

198                         legend = ’{} $\\Delta t(\Gamma:{})$’.format(time,job.sp.gamma)
199                         qs = data[:,0]
200                         Is = data[:,1] 
201                         qs_for_all_times.append(qs)
202                         Is_for_all_times.append(Is)
203                         times_for_all_times.append(time)
204

205                         dq=qs[1]−qs[0]
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206                         Is_exp = np.exp(Is)
207                         q_sq = qs**2
208                         Q = np.sum(Is_exp*qs*dq)
209                         Qs_list.append(Q)
210                         #first_peak_q,first_peak_i = get_highest_maxima(job,qs,I

s)
211                         #if first_peak_q >0.8 and time > 2.0e5:
212                         #    first_peak_q=q_half_length
213

214                         #qs_list.append(first_peak_q)
215                         #times_list.append(time)
216                         #Is_list.append(first_peak_i)
217                     else:
218                         print(job,’did not contain diffraction data in ’,diffract_dir)
219                 #else:
220                 #    print(job,’directory {} is not as expected:{}’.format(diffr

act_dir,diffract_dir_pattern))
221     else:
222         print(job,’did not contain diffraction data for time evolution’)
223     print(’Number of independent frames for average:’,len(qs_for_all_times))
224     m_q = np.mean(qs_for_all_times,axis=0)
225     std_q = stats.sem(qs_for_all_times,axis=0)
226     m_I = np.mean(Is_for_all_times,axis=0)
227     std_I = stats.sem(Is_for_all_times,axis=0)
228     return m_q,std_q,m_I,std_I
229

230 def savefig(plt,nbname,figname,transparent=True):
231     import os
232     if ¬ os.path.exists(nbname):
233         os.makedirs(nbname)
234     plt.savefig(os.path.join(nbname,figname),bbox_inches=’tight’,transparent=tran

sparent)
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1 import cme_utils
2 from cme_utils.analyze import autocorr
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6

7 def get_split_quench_job_msd(job,prop_name):
8     times = []
9     prop_vals = []

10     qTs=[]
11     if job.isfile(’msd.log’):
12         log_path = job.fn(’msd.log’)
13         data = np.genfromtxt(log_path, names=True)
14         PROP_NAME =prop_name
15         prop_values = data[PROP_NAME]#’pair_lj_energy’]
16         time_steps = data[’timestep’]
17         len_prof = len(job.sp.quench_temp_prof)
18         for i in range(0,len_prof,2):
19             current_point = job.sp.quench_temp_prof[i]
20             next_point = job.sp.quench_temp_prof[i+1]
21             start_time = current_point[0]
22             end_time = next_point[0]
23             if current_point[1]≠next_point[1]:
24                 print(’WARNING! Detected a non isothermal step’)
25             target_T = current_point[1]
26             #print(time_steps)
27             #print(start_time,end_time)
28             indices = np.where((time_steps≥start_time)&(time_steps≤end_time))
29             start_index = indices[0][0]
30             end_index = indices[0][−1]
31             sliced_ts = time_steps[start_index:end_index+1]
32             sliced_prop_vals = prop_values[start_index:end_index+1]
33             #sliced_pe = pe[start_index:end_index+1]
34             #mean,std = get_mean_and_std(job,sliced_ts,sliced_prop_vals,sliced_p

e)
35             #means.append(mean)
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36             #stds.append(std)
37             times.append(sliced_ts)
38             prop_vals.append(sliced_prop_vals)
39             qTs.append(target_T)
40     return times,prop_vals,qTs
41

42 def _get_decorrelation_time(prop_values,
43                              time_steps):
44     t = time_steps − time_steps[0]
45     dt = t[1] − t[0]
46     acorr = autocorr.autocorr1D(prop_values)
47     for acorr_i in range(len(acorr)):
48         if acorr[acorr_i]<0:
49             break
50     lags = [i*dt for i in range(len(acorr))]
51

52     decorrelation_time = int(lags[acorr_i])
53     if decorrelation_time ≡ 0:
54         decorrelation_time = 1
55     decorrelation_stride = int(decorrelation_time/dt)
56     nsamples = (int(t[−1])−t[0])/decorrelation_time
57     temps = "There are %.5e steps, (" % t[−1]
58     temps = temps + "%d" % int(t[−1])
59     temps = temps + " frames)\n"
60     temps = temps + "You can start sampling at t=%.5e" % t[0]
61     temps = temps + " (frame %d)" % int(t[0] )
62     temps = temps + " for %d samples\n" % nsamples
63     temps = temps + "Because the autocorrelation time is %.5e" % lags[acorr_i]
64     temps = temps + " (%d frames)\n" % int(lags[acorr_i])
65     #print(temps)
66     return decorrelation_time, decorrelation_stride
67

68 def get_mean_and_std_from_time_step(job, time_steps, prop_values,start_t):
69     start_i = np.where(time_steps ≥ start_t)[0]
70     if len(start_i) >0:
71         start_i=start_i[0]

Page 2/24common.py

48/75./tg−compare/common.py

246



72     else:
73         start_i = 0
74         
75     if start_i < len(time_steps):
76         independent_vals_i = np.arange(start_i, len(prop_values)−1, 1)
77         independent_vals = prop_values[independent_vals_i]
78         #print(independent_vals)
79         mean=np.mean(independent_vals)
80         std=np.std(independent_vals)
81     else:
82         print(’the {} values given have not reached equilibrium.’.format(prop))
83         mean = None
84         std = None
85     return mean, std
86

87 def get_mean_and_std(job, time_steps, prop_values,pe,mean_from_second_half=False
):

88     if mean_from_second_half:
89         start_i = int(len(time_steps)*0.75)
90         start_t = time_steps[start_i]
91     else:
92         start_i, start_t = autocorr.find_equilibrated_window(time_steps, pe)
93             
94     if start_i < len(time_steps):
95         decorrelation_time, decorrelation_stride = _get_decorrelation_time(prop_

values[start_i:], time_steps[start_i:])
96         #print(’decorrelation_time:’,decorrelation_time)
97         independent_vals_i = np.arange(start_i, len(prop_values)−1, decorrelatio

n_stride)
98         independent_vals = prop_values[independent_vals_i]
99         #print(independent_vals)

100         mean=np.mean(independent_vals)
101         std=np.std(independent_vals)
102     else:
103         print(’the {} values for {} given have not reached equilibrium.’.format(job,prop))
104         mean = None
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105         std = None
106     return mean, std
107

108

109         
110 def get_mean_and_std_from_log(job, prop):
111     if job.isfile(’out.log’):
112         log_path = job.fn(’out.log’)
113         data = np.genfromtxt(log_path, names=True)
114         prop_values = data[prop]
115         time_steps = data[’timestep’]
116         start_i, start_t = autocorr.find_equilibrated_window(time_steps, prop_va

lues)
117         if start_i < len(time_steps):
118             decorrelation_time, decorrelation_stride = _get_decorrelation_time(p

rop_values[start_i:], time_steps[start_i:])
119             independent_vals_i = np.arange(start_i, len(prop_values)−1, decorrel

ation_stride)
120             independent_vals = prop_values[independent_vals_i]
121             #print(independent_vals)
122             mean=np.mean(independent_vals)
123             std=np.std(independent_vals)
124         else:
125             print(’the {} values given have not reached equilibrium.’.format(prop))
126             mean = None
127             std = None
128     else:
129         print(’could not find log file for {}’.format(job))
130         mean=None
131         std=None
132     #print(mean)
133     return mean, std
134

135

136 def plot_equilibriation(df_filtered,
137                         project,
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138                         prop_name,
139                         draw_decorrelated_samples=False,
140                         draw_equilibrium_window=True,
141                         mean_from_second_half=False):
142     df_sorted = df_filtered.sort_values(by=[’quench_T’])
143     df_grouped = df_sorted.groupby(’quench_T’)
144

145

146     quenchTs=[]
147     mean_vols=[]
148     vol_stds=[]
149     colors = plt.cm.plasma(np.linspace(0,1,len(df_grouped)))
150     i=0
151     for name,group in df_grouped:
152         time_steps_temp = []
153         mean_vals_temp = []
154         val_stds_temp = []
155         for job_id in group.index:
156     #for i,job_id in enumerate(df_sorted.index):
157             job = project.open_job(id=job_id)
158             #print(job)
159             if job.isfile(’out.log’):
160                 log_path = job.fn(’out.log’)
161                 data = np.genfromtxt(log_path, names=True)
162                 PROP_NAME =prop_name
163                 prop_values = data[PROP_NAME]#’pair_lj_energy’]
164                 time_steps = data[’timestep’]
165                 if mean_from_second_half:
166                     start_i = int(len(time_steps)*.75)
167                     #print(job,’start_i’,start_i,len(time_steps),time_steps)
168                     start_t = time_steps[start_i]
169                 else:
170                     start_i, start_t = autocorr.find_equilibrated_window(time_st

eps, data[’potential_energy’])
171                 decorrelation_time, decorrelation_stride = _get_decorrelation_ti

me(data[’potential_energy’][start_i:], time_steps[start_i:])
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172                 #print(’decorrelation_time:’,decorrelation_time)
173                 independent_vals_i = np.arange(start_i, len(prop_values)−1, deco

rrelation_stride)
174                 independent_vals = time_steps[independent_vals_i]
175                 #starttime_steps.index(start_t)
176

177                 if ’quench_T’ in job.sp:
178                     label = ’q_T:{},cure:{}’.format(job.sp.quench_T,job.sp.stop_aft

er_percent)
179                     #label = ’tau:{}, tauP:{}’.format(job.sp.tau,job.sp.tauP)
180                 else:
181                     label = ’kT:{},cure:{}’.format(job.sp.kT,job.sp.stop_after_perc

ent)
182                 time_steps_temp.append(time_steps)
183                 mean_vals_temp.append(prop_values)
184             else:
185                 print(’did not find out.log for’,job)
186         mean_time_steps = np.mean(time_steps_temp,axis=0)
187         mean_prop_values = np.mean(mean_vals_temp,axis=0)
188         plt.plot(mean_time_steps,mean_prop_values,label=label,color=colors[i],li

newidth=1.0)
189         i+=1
190         if draw_decorrelated_samples:
191             for xval in independent_vals:
192                 plt.axvline(x=xval,linestyle=’−−’,linewidth=0.2)
193         if draw_equilibrium_window:
194             plt.plot(mean_time_steps[start_i],
195                      mean_prop_values[start_i],
196                      marker=’*’,
197                      color=’r’,
198                      markersize=10)
199             #print(time_steps)
200             #decorr_i = np.where(time_steps >= decor_time)[0][0]
201             #print(decorr_
202             
203
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204

205 def get_values_for_quenchTs(df_filtered,project, prop,mean_from_second_half=Fals
e):

206     df_sorted = df_filtered.sort_values(by=[’quench_T’])
207     df_grouped = df_sorted.groupby(’quench_T’)
208     quenchTs=[]
209     mean_vals=[]
210     val_stds=[]
211     for name,group in df_grouped:
212         quench_Ts_temp = []
213         mean_vals_temp = []
214         val_stds_temp = []
215         
216         for job_id in group.index:
217             #job_id = group.signac_id
218             #print(name,job_id)
219             job = project.open_job(id=job_id)
220             #print(job)
221             if job.isfile(’out.log’):
222                 log_path = job.fn(’out.log’)
223                 data = np.genfromtxt(log_path, names=True)
224                 prop_value = data[prop]
225                 time_steps = data[’timestep’]
226                 pe = data[’potential_energy’]
227                 #print(job)
228                 mean,std = get_mean_and_std(job,time_steps,prop_value,pe,mean_fr

om_second_half)
229                 if mean is ¬ None:
230                     quench_Ts_temp.append(job.sp.quench_T)
231                     mean_vals_temp.append(mean)
232                     val_stds_temp.append(std)
233

234         quenchTs.append(np.mean(quench_Ts_temp))
235         mean_vals.append(np.mean(mean_vals_temp))
236         val_stds.append(np.mean(val_stds_temp))
237     return quenchTs,mean_vals,val_stds     
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238

239

240 def line_intersect(m1, b1, m2, b2):
241     if m1 ≡ m2:
242 print ("These lines are parallel!!!")
243 return None
244     # y = mx + b
245     # Set both lines equal to find the intersection point in the x direction
246     # m1 * x + b1 = m2 * x + b2
247     # m1 * x − m2 * x = b2 − b1
248     # x * (m1 − m2) = b2 − b1
249     # x = (b2 − b1) / (m1 − m2)
250     x = (b2 − b1) / (m1 − m2)
251     # Now solve for y −− use either line, because they are equal here
252     # y = mx + b
253     y = m1 * x + b1
254     return x,y
255

256 from scipy.optimize import curve_fit
257 from scipy.interpolate import InterpolatedUnivariateSpline
258 from piecewise.regressor import piecewise #https://www.datadoghq.com/blog/engine

ering/piecewise−regression/
259 from piecewise.plotter import plot_data_with_regression
260

261 def DiBenedetto(alphas,T1,T0,inter_param):
262     Tgs = []
263     for alpha in alphas:
264 Tg = inter_param*alpha*(T1−T0)/(1−(alpha*(1−inter_param))) +T0
265 Tgs.append(Tg)
266     return Tgs
267

268 def fit_Tg_to_DiBenedetto(alphas,Tgs,T1,T0=None):
269     import warnings
270     np.seterr(all=’raise’)
271     plot_fit_fails=True
272     inter_parm=0.5
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273     try:
274         if T1≡None ∧ T0≡None:
275             smallestTg=Tgs[0]
276             largestTg=Tgs[−1]
277             popt, pcov = curve_fit(lambda Xs,T1,T0: DiBenedetto(Xs,T1,T0,inter_p

arm),
278                                alphas,Tgs,
279                                #p0=[0,0],
280                                p0=[largestTg,smallestTg],
281                                #bounds=([−np.infty,−np.infty],[np.infty,np.infty

])
282                                bounds=([0,0],[largestTg*1.5,smallestTg*1.2]))#,m

axfev=200000)
283         elif T1≡None ∧ T0≠None:
284             popt, pcov = curve_fit(lambda Xs,T1: DiBenedetto(Xs,T1,T0,inter_parm

),
285                                alphas,Tgs,
286                                #p0=[0,0],
287                                p0=[1],
288                                #bounds=([−np.infty,−np.infty],[np.infty,np.infty

])
289                                bounds=([0],[np.infty]))#,maxfev=200000)
290         else:
291             popt, pcov = curve_fit(lambda Xs,T0: DiBenedetto(Xs,T1,T0,inter_parm

),
292                                    alphas,Tgs,
293                                    #p0=[0,0],
294                                    p0=[0],
295                                    #bounds=([−np.infty,−np.infty],[np.infty,np.i

nfty])
296                                    bounds=([−np.infty],[np.infty]))#,maxfev=2000

00)
297         #print(’found fit’)
298     except FloatingPointError:
299         print(’Curve fitting failed(FloatingPointError)’)
300     except RuntimeError:
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301         print(’Curve fitting failed(RuntimeError)’)
302     except TypeError:
303         print(’Curve fitting failed(TypeError)’)
304     except ValueError:
305         print(’Curve fitting failed(ValueError)’)
306

307     ydata = np.asarray(Tgs)
308     if T1≡None ∧ T0≡None:
309         fit_ydata = DiBenedetto(alphas,*popt,inter_parm)
310     elif T1≡None ∧ T0≠None:
311         fit_ydata = DiBenedetto(alphas,*popt,T0,inter_parm)
312     else:
313         fit_ydata = DiBenedetto(alphas,T1,*popt,inter_parm)
314     residuals = ydata − fit_ydata
315     ss_res = np.sum(residuals**2)
316     ss_tot = np.sum((ydata−np.mean(ydata))**2)
317     #print(’ss_res’,ss_res,’ss_tot’,ss_tot)
318     if ss_tot ≡ 0:
319         #print(’found ss_tot: 0’)
320         r_squared = 0
321     else:
322         r_squared = 1 − (ss_res / ss_tot)
323     if T1≡None ∧ T0≡None:
324         return r_squared,fit_ydata,popt[0],inter_parm,popt[1]
325     else:
326         return r_squared,fit_ydata,popt[0],inter_parm#,popt[1]
327

328 def find_Tg(quenchTs, mean_vals,sap):
329     print(sap)
330     if True:#sap<=50.:
331         use_first_deviation = False
332         if use_first_deviation:
333             model = piecewise(quenchTs, mean_vals)
334             if len(model.segments) ≡ 2:
335                 lines = []
336                 l1 = model.segments[0]
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337                 m1 = l1.coeffs[1]
338                 b1 = l1.coeffs[0]
339                 l2 = model.segments[1]
340                 m2 = l2.coeffs[1]
341                 b2 = l2.coeffs[0]
342             f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
343             dxdT = f.derivative(n=1)
344             dx_dTs = dxdT(quenchTs)
345             dev_index = np.where(np.abs(dx_dTs)>m1)[0][0]
346             x=quenchTs[dev_index]
347             y=mean_vals[dev_index]
348         else:
349             print(’using derivatives’)
350             f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
351             dxdT = f.derivative(n=1)
352             d2xdT = f.derivative(n=2)
353             dx_dTs = dxdT(quenchTs)
354             d2x_dT2s = d2xdT(quenchTs)
355             max_dx2 = np.max(d2x_dT2s)
356             min_dx2 = np.min(d2x_dT2s)
357             max_i = np.where(d2x_dT2s≡max_dx2)[0][0]
358             min_i = np.where(d2x_dT2s≡min_dx2)[0][0]
359             x = (quenchTs[min_i]+quenchTs[max_i])/2
360             y = (mean_vals[min_i]+mean_vals[max_i])/2
361     else:
362         print(’using line iftting’)
363         #plot_data_with_regression(quenchTs, mean_vals)
364         model = piecewise(quenchTs, mean_vals)
365         #print(model) 
366         if len(model.segments) ≡ 2:
367             lines = []
368             l1 = model.segments[0]
369             m1 = l1.coeffs[1]
370             b1 = l1.coeffs[0]
371             l2 = model.segments[1]
372             m2 = l2.coeffs[1]

Page 11/24common.py

57/75./tg−compare/common.py

255



373             b2 = l2.coeffs[0]
374             x,y = line_intersect(m1,b1,m2,b2)
375             
376         else:
377             print(’WARNING: found more or less than 2 line segments in regression!’)
378     return x,y
379

380 def plot_this(job,time_steps,prop_values,pe,color,label=None,normalize_by_mean=F
alse,mean_from_second_half=True):

381     if mean_from_second_half:
382         start_i = int(len(time_steps)*.75)
383         start_t = time_steps[start_i]
384     else:
385         start_i, start_t = autocorr.find_equilibrated_window(time_steps, pe)
386     decorrelation_time, decorrelation_stride = _get_decorrelation_time(prop_valu

es[start_i:], time_steps[start_i:])
387     #print(’decorrelation_time:’,decorrelation_time)
388     independent_vals_i = np.arange(start_i, len(prop_values)−1, decorrelation_st

ride)
389     independent_vals = time_steps[independent_vals_i]
390     #starttime_steps.index(start_t)
391     #for xval in independent_vals_i:
392     #    plt.axvline(x=xval,linestyle=’−−’,linewidth=0.2)
393     indices = list(range(0,len(prop_values)))
394     if len(indices) ≠ len(prop_values):
395         print(’Check the length of arrays’)
396     #print(indices)
397     #print(prop_values)
398     if normalize_by_mean:
399         mean,std = get_mean_and_std(job,time_steps,prop_values,pe)
400         prop_values = prop_values/mean
401         plt.axhline(y=1.0,linewidth=1.0,linestyle=’−−’)
402     plt.plot(indices,prop_values,label=label,linewidth=1,color=color)
403     plt.plot(start_i,prop_values[start_i],marker=’*’,color=’r’, markersize=10)
404                 
405 def get_split_quench_job_property_mean_std(job,prop_name):
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406     means = []
407     stds = []
408     times = []
409     temps = []
410     if job.isfile(’out.log’):
411         log_path = job.fn(’out.log’)
412         data = np.genfromtxt(log_path, names=True)
413         PROP_NAME =prop_name
414         prop_values = data[PROP_NAME]#’pair_lj_energy’]
415         time_steps = data[’timestep’]
416         pe = data[’potential_energy’]
417         print(job)
418         len_prof = len(job.sp.quench_temp_prof)
419         for i in range(0,len_prof,2):
420             current_point = job.sp.quench_temp_prof[i]
421             next_point = job.sp.quench_temp_prof[i+1]
422             start_time = current_point[0]
423             end_time = next_point[0]
424             if current_point[1]≠next_point[1]:
425                 print(’WARNING! Detected a non isothermal step’)
426             target_T = current_point[1]
427             #print(time_steps)
428             #print(start_time,end_time)
429             indices = np.where((time_steps≥start_time)&(time_steps≤end_time))
430             start_index = indices[0][0]
431             end_index = indices[0][−1]
432             sliced_ts = time_steps[start_index:end_index+1]
433             sliced_prop_vals = prop_values[start_index:end_index+1]
434             sliced_pe = pe[start_index:end_index+1]
435             mean,std = get_mean_and_std(job,sliced_ts,sliced_prop_vals,sliced_pe

)
436             means.append(mean)
437             stds.append(std)
438             times.append((start_time,end_time))
439             temps.append(target_T)
440     return means,stds,times,temps

Page 13/24common.py

59/75./tg−compare/common.py

257



441             
442 def split_log(df_filtered,project,prop_name,filter_temp,rtol=0.1,show_all=True,n

ormalize_by_mean=False):
443     df_sorted = df_filtered.sort_values(by=[’quench_T’])
444     
445     
446     for job_id in df_sorted.index:
447         job = project.open_job(id=job_id)
448         #print(job)
449         if job.isfile(’out.log’):
450             log_path = job.fn(’out.log’)
451             data = np.genfromtxt(log_path, names=True)
452             PROP_NAME =prop_name
453             prop_values = data[PROP_NAME]#’pair_lj_energy’]
454             time_steps = data[’timestep’]
455             pe = data[’potential_energy’]
456             print(job)
457             len_prof = len(job.sp.quench_temp_prof)
458             colors = plt.cm.plasma(np.linspace(1,0,len_prof/2))
459             for i in range(0,len_prof,2):
460                 current_point = job.sp.quench_temp_prof[i]
461                 next_point = job.sp.quench_temp_prof[i+1]
462                 start_time = current_point[0]
463                 end_time = next_point[0]
464                 if current_point[1]≠next_point[1]:
465                     print(’WARNING! Detected a non isothermal step’)
466                 target_T = current_point[1]
467                 #print(start_time,end_time)
468                 #print(time_steps)
469                 if np.isclose(target_T,filter_temp,rtol=rtol) ∨ show_all: 
470                     #print(time_steps)
471                     #print(start_time,end_time)
472                     indices = np.where((time_steps≥start_time)&(time_steps≤end_t

ime))
473                     #print(indices)
474                     start_index = indices[0][0]

Page 14/24common.py

60/75./tg−compare/common.py

258



475 end_index = indices[0][−1]
476 #print(’start_index’,start_index,’end_index’,end_index)
477 #print(’start_index’,start_index,’end_index’,end_index)
478 sliced_ts = time_steps[start_index:end_index+1]
479 sliced_prop_vals = prop_values[start_index:end_index+1]
480 sliced_pe = pe[start_index:end_index+1]
481 #print(sliced_ts)
482 #print(sliced_prop_vals)
483 label = ’T:{}’.format(target_T)
484 #print(i/2)
485 plot_this(job,
486 sliced_ts,
487 sliced_prop_vals,
488 sliced_pe,
489 colors[int(i/2)],
490 label,
491 normalize_by_mean=normalize_by_mean)
492

493

494 def line_intersect(m1, b1, m2, b2):
495     if m1 ≡ m2:
496 print ("These lines are parallel!!!")
497 return None
498     # y = mx + b
499     # Set both lines equal to find the intersection point in the x direction
500     # m1 * x + b1 = m2 * x + b2
501     # m1 * x − m2 * x = b2 − b1
502     # x * (m1 − m2) = b2 − b1
503     # x = (b2 − b1) / (m1 − m2)
504     x = (b2 − b1) / (m1 − m2)
505     # Now solve for y −− use either line, because they are equal here
506     # y = mx + b
507     y = m1 * x + b1
508     return x,y   
509

510 def find_Tg(quenchTs, mean_vals):
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511     if False:#sap<=50.:
512         use_first_deviation = True
513         if use_first_deviation:
514             model = piecewise(quenchTs, mean_vals)
515             if len(model.segments) ≡ 2:
516                 lines = []
517                 l1 = model.segments[0]
518                 m1 = l1.coeffs[1]
519                 b1 = l1.coeffs[0]
520                 l2 = model.segments[1]
521                 m2 = l2.coeffs[1]
522                 b2 = l2.coeffs[0]
523             f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
524             dxdT = f.derivative(n=1)
525             dx_dTs = dxdT(quenchTs)
526             dev_index = np.where(np.abs(dx_dTs)>m1)[0][0]
527             x=quenchTs[dev_index]
528             y=mean_vals[dev_index]
529         else:
530             print(’using derivatives’)
531             f = InterpolatedUnivariateSpline(quenchTs, mean_vals, k=2)
532             dxdT = f.derivative(n=1)
533             d2xdT = f.derivative(n=2)
534             dx_dTs = dxdT(quenchTs)
535             d2x_dT2s = d2xdT(quenchTs)
536             max_dx2 = np.max(d2x_dT2s)
537             min_dx2 = np.min(d2x_dT2s)
538             max_i = np.where(d2x_dT2s≡max_dx2)[0][0]
539             min_i = np.where(d2x_dT2s≡min_dx2)[0][0]
540             x = (quenchTs[min_i]+quenchTs[max_i])/2
541             y = (mean_vals[min_i]+mean_vals[max_i])/2
542     else:
543         print(’using line iftting’)
544         #plot_data_with_regression(quenchTs, mean_vals)
545         model = piecewise(quenchTs, mean_vals)
546         #print(model) 
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547         if len(model.segments) ≡ 2:
548             lines = []
549             l1 = model.segments[0]
550             m1 = l1.coeffs[1]
551             b1 = l1.coeffs[0]
552             l2 = model.segments[1]
553             m2 = l2.coeffs[1]
554             b2 = l2.coeffs[0]
555             x,y = line_intersect(m1,b1,m2,b2)
556             
557         else:
558             print(’WARNING: found {} line segments in regression!Expecting 2’.format(len(model.

segments)))
559     return x,y
560

561 def Fit_Diffusivity1(Ts,
562                     Ds,
563                     method=’use_viscous_region’,
564                     min_D=1e−8,
565                     ver=1,
566                     viscous_line_index=1,
567                     l1_T_bounds=[0,1],
568                     l2_T_bounds=[0,1]):
569     indices = np.where(Ds>min_D)#0.00000095)
570     print("in common, indices:",indices)
571     print("00", indices[0][0])
572     start_index = indices[0][0]
573     D_As=Ds[start_index:]
574     quenchTs=Ts[start_index:]
575     #print(’quenchTs’,quenchTs)
576     model = piecewise(quenchTs, D_As)
577     #print(ver)
578     if ver≡4:
579         #print(’ver 4’)
580         line_vals=[]
581         Ts_low_i = np.where(Ts≥l1_T_bounds[0])[0]
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582         if len(Ts_low_i)≡0:
583             raise ValueError(’lower bound for T fitting of line 1 too low. Use a higher T’)
584         l1_low_i = Ts_low_i[0]
585         Ts_low_i = np.where(Ts≥l2_T_bounds[0])[0]
586         if len(Ts_low_i)≡0:
587             raise ValueError(’lower bound for T fitting of line 2 too low. Use a higher T’)
588         l2_low_i = Ts_low_i[0]
589         
590         Ts_high_i = np.where(Ts≤l1_T_bounds[1])[0]
591         if len(Ts_high_i)≡0:
592             raise ValueError(’upper bound for T fitting of line 1 too high. Use a lower T’)
593         l1_high_i = Ts_high_i[−1]
594         Ts_high_i = np.where(Ts≤l2_T_bounds[1])[0]
595         if len(Ts_high_i)≡0:
596             raise ValueError(’upper bound for T fitting of line 2 too high. Use a lower T’)
597         l2_high_i = Ts_high_i[−1]
598         #print(’Ts_high_i’,Ts_high_i)
599         l1Ts=Ts[l1_low_i:l1_high_i+1]
600         l1Ds=Ds[l1_low_i:l1_high_i+1]
601         #print(l1_low_i,l1_high_i,l1Ts)
602         l2Ts=Ts[l2_low_i:l2_high_i+1]
603         l2Ds=Ds[l2_low_i:l2_high_i+1]
604         #print(l2_low_i,l2_high_i,l2Ts,’Ts’,Ts)
605         par = np.polyfit(l1Ts, l1Ds, 1, full=True)
606         m1 = par[0][0]#0−slope, 1−intercept
607         b1 = par[0][1]
608         xs = np.linspace(l1Ts[0],l1Ts[−1])
609         ys = m1*xs+b1
610         line_vals.append((xs,ys))
611         
612         par = np.polyfit(l2Ts, l2Ds, 1, full=True)
613         m2 = par[0][0]#0−slope, 1−intercept
614         b2 = par[0][1]
615         xs = np.linspace(l2Ts[0],l2Ts[−1])
616         ys = m2*xs+b2
617         line_vals.append((xs,ys))
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618         
619         x,y = line_intersect(m1,b1,m2,b2)
620         Tg=x
621         Tg_prop = y
622         
623         return Tg,Tg_prop,line_vals
624     elif ver≡3:
625         line_vals=[]
626         Ts_low_i = np.where(Ts≥l1_T_bounds[0])[0]
627         if len(Ts_low_i)≡0:
628             raise ValueError(’lower bound for T fitting of line 1 too low. Use a higher T’)
629         l1_low_i = Ts_low_i[0]
630         Ts_low_i = np.where(Ts≥l2_T_bounds[0])[0]
631         if len(Ts_low_i)≡0:
632             raise ValueError(’lower bound for T fitting of line 2 too low. Use a higher T’)
633         l2_low_i = Ts_low_i[0]
634         
635         Ts_high_i = np.where(Ts≤l1_T_bounds[1])[0]
636         if len(Ts_high_i)≡0:
637             raise ValueError(’upper bound for T fitting of line 1 too high. Use a lower T’)
638         l1_high_i = Ts_high_i[−1]
639         Ts_high_i = np.where(Ts≤l2_T_bounds[1])[0]
640         if len(Ts_high_i)≡0:
641             raise ValueError(’upper bound for T fitting of line 2 too high. Use a lower T’)
642         print(’Ts_high_i’,Ts_high_i)
643         l2_high_i = Ts_high_i[−1]
644         
645         l1Ts=Ts[l1_low_i:l1_high_i]
646         l1Ds=Ds[l1_low_i:l1_high_i]
647         print(l1_low_i,l1_high_i,l1Ts)
648         l2Ts=Ts[l2_low_i:l2_high_i]
649         l2Ds=Ds[l2_low_i:l2_high_i]
650         print(l2_low_i,l2_high_i,l2Ts)
651         par = np.polyfit(l1Ts, l1Ds, 1, full=True)
652         m1 = par[0][0]#0−slope, 1−intercept
653         b1 = par[0][1]
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654         xs = np.linspace(l1Ts[0],l1Ts[−1])
655         ys = m1*xs+b1
656         line_vals.append((xs,ys))
657         
658         par = np.polyfit(l2Ts, l2Ds, 1, full=True)
659         m2 = par[0][0]#0−slope, 1−intercept
660         b2 = par[0][1]
661         xs = np.linspace(l2Ts[0],l2Ts[−1])
662         ys = m2*xs+b2
663         line_vals.append((xs,ys))
664         if viscous_line_index≡0:
665             Tg = −b1/m1
666             Tg_prop = 0.
667         elif viscous_line_index≡1:
668             Tg = −b2/m2
669             Tg_prop = 0.
670         else:
671             x,y = line_intersect(m1,b1,m2,b2)
672             Tg=x
673             Tg_prop = y
674

675         return Tg,Tg_prop,line_vals
676     elif ver≡2:
677         n_lines=len(model.segments)
678         if n_lines ≡ 0:
679             raise ValueError(’Found zero lines in piecewise fitting’)
680         lines=[]
681         line_vals=[]
682         for i in range(n_lines):
683             line = model.segments[i]
684             lines.append(line)
685             xs = np.linspace(line.start_t,line.end_t)
686             ys = line.coeffs[1]*xs+line.coeffs[0]
687             line_vals.append((xs,ys))
688          
689         if method≡’use_viscous_region’:
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690             if n_lines>1:
691                 l2=lines[viscous_line_index]
692             else:
693                 l2=lines[0]
694             m2 = l2.coeffs[1]
695             b2 = l2.coeffs[0]
696             Tg = −b2/m2
697             Tg_prop = 0.
698         else:
699             Tg,Tg_prop=find_Tg(mean_vals=Ds,quenchTs=Ts)
700         return Tg,Tg_prop,line_vals
701     elif ver≡1:
702         if len(model.segments) ≡ 2:
703             l1 = model.segments[0]
704             m1 = l1.coeffs[1]
705             b1 = l1.coeffs[0]
706             l2 = model.segments[1]
707             m2 = l2.coeffs[1]
708             b2 = l2.coeffs[0]
709             x,y = line_intersect(m1,b1,m2,b2)
710             xs1 = np.linspace(l1.start_t,l1.end_t)#np.linspace(l1.start_t,(x+(l1

.end_t−l1.start_t)*0.2))
711             ys1 = l1.coeffs[1]*xs1+l1.coeffs[0]
712             xs2 = np.linspace(l2.start_t,l2.end_t)#np.linspace((x−(l2.end_t−l2.s

tart_t)*0.2),l2.end_t)
713             ys2 = l2.coeffs[1]*xs2+l2.coeffs[0]
714             
715             if method≡’use_viscous_region’:
716                 Tg = −b2/m2
717                 Tg_prop = 0.
718             elif method ≡ ’intersection’:
719                 Tg=x
720                 Tg_prop=y
721         else:
722             print(’WARNING: found {} line segments in regression!’.format(len(model.segments

)))
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723

724 return Tg,Tg_prop,xs1,ys1,xs2,ys2
725

726

727 def Calc_Diffusivity(eq_time,
728 eq_msd,
729 fit_method=’curve_fit’):
730     #fit_method=’curve_fit’#’power_law’,’poly_fit’
731     if fit_method≡’curve_fit’:
732 norm_eq_time = (eq_time−eq_time[0])
733 #print(norm_eq_time,eq_msd)
734 popt, pcov = curve_fit(lambda t,m,b: m*t+b ,
735 eq_time,
736 eq_msd,
737 p0=[1.,0.0],
738 bounds=([−1,0.0],[np.infty,np.infty]))
739 drdt_A = popt[0]
740 m=popt[0]
741 b=popt[1]
742     elif fit_method≡’poly_fit’:
743 par = np.polyfit(time, msd, 1, full=True)
744 drdt_A = par[0][0]#0−slope, 1−intercept
745 m=par[0][0]
746 b=par[0][1]
747     elif fit_method≡’power_law’:
748 popt, pcov = curve_fit(lambda t,w,x1: (w*t)**x1 ,
749 time,
750 msd,
751 p0=[0.2,1.0],
752 #p0=[1.0],
753 #bounds=([−np.infty,−np.infty],[np.infty,np.infty])
754 #bounds=([0],[4.0]))
755 maxfev=2000000,
756 bounds=([0.0,0.0],[1.0,4.0]))
757 raise NotImplementedError(’Diffusivity not determined’)
758
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759     #calculate the diffusion coefficient
760     dimensions=3
761     D = drdt_A/(2*dimensions)
762     return D,m,b
763

764 def getDiffusivities(project,df_curing,sortby=’quench_T’,name=’bparticles’,quench_ti
me=1e7,use_first_trial=True):

765     """
766     returns diffusivity in units of D^2/tau where D and tau are distance and time units.
767     Note that time is not in time steps.
768     """
769     Ts=[]
770     Ds=[]
771     for key,df_grp in df_curing.groupby(’cooling_method’):
772         if key≡’quench’ ∧ quench_time is ¬ None:
773             df_filt = df_grp[(df_grp.quench_time≡quench_time)]
774         else:
775             df_filt = df_grp
776         df_sorted=df_filt.sort_values(sortby)
777         for q_T,q_T_grp in df_sorted.groupby(’quench_T’):
778             for job_id in q_T_grp.index:
779                 job = project.open_job(id=job_id)
780                 if job.isfile(’msd.log’):
781                     log_path = job.fn(’msd.log’)
782                     data = np.genfromtxt(log_path, names=True)
783                     prop_values = data[name]#’pair_lj_energy’]
784                     equilibriated_ts_percentage = 0.5
785                     if key≡’anneal’:
786                         times,msds,qTs = get_split_quench_job_msd(job,name)
787                         for j,msd in enumerate(msds):
788                             start_index = int(len(times[j])*equilibriated_ts_per

centage)
789                             time=times[j]*job.sp.md_dt
790                             quench_T = qTs[j]
791                             eq_msd = msd[start_index:]
792                             eq_time = time[start_index:]
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793                             D_A,m,b = Calc_Diffusivity(eq_time,eq_msd,’curve_fit’)
794                             Ts.append(quench_T)
795                             Ds.append(D_A)
796                     else:
797                         all_time_steps = data[’timestep’]
798                         start_index = int(len(all_time_steps)*equilibriated_ts_p

ercentage)
799                         time=all_time_steps*job.sp.md_dt
800                         quench_T = job.sp.quench_T
801                         eq_msd = prop_values[start_index:]
802                         eq_time = time[start_index:]
803                         #print(job)
804                         D_A,m,b = Calc_Diffusivity(eq_time,eq_msd,’curve_fit’)
805                         Ts.append(quench_T)
806                         Ds.append(D_A)
807                     if use_first_trial:
808                         break#just using the first data point in this quench_T i

nstead of mean
809     Ts=np.asarray(Ts)
810     Ds=np.asarray(Ds)
811     return Ts,Ds
812

813 def savefig(plt,nbname,figname,transparent=True):
814     import os
815     if ¬ os.path.exists(nbname):
816         os.makedirs(nbname)
817     plt.savefig(os.path.join(nbname,figname),transparent=transparent)
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1 import signac
2 import numpy as np
3 import pandas as pd
4

5 import sys
6

7 from common import (
8     getDiffusivities,
9     fit_Tg_to_DiBenedetto,

10     DiBenedetto,
11     Fit_Diffusivity1,
12 )
13

14

15

16

17 def get_custom_ranges(cooling_method):
18     if cooling_method ≡ "quench":
19         custom_ranges_l1 = {
20             00.0: [0.1, 0.8],
21             30.0: [0.1, 0.8],
22             50.0: [0.1, 0.8],
23             70.0: [0.1, 0.8],
24         }
25         custom_ranges_l2 = {
26             00.0: [0.7, 1.2],
27             30.0: [0.85, 1.4],
28             50.0: [1.0, 1.8],
29             70.0: [1.15, 2.5],
30         }
31     elif cooling_method ≡ "anneal":
32         custom_ranges_l1 = {
33             00.0: [0.1, 0.8],
34             30.0: [0.1, 0.8],
35             50.0: [0.1, 0.8],
36             70.0: [0.1, 0.8],
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37         }
38         custom_ranges_l2 = {
39             00.0: [0.7, 1.2],
40             30.0: [0.85, 1.4],
41             50.0: [1.0, 1.8],
42             70.0: [1.15, 2.5],
43         }
44     else:
45         raise ValueError(cooling_method + "is unknown")
46     return custom_ranges_l1, custom_ranges_l2
47

48

49 def get_tg_data(data_path, df):
50     project = signac.get_project(data_path)
51

52     PROP_NAME = "bparticles"
53     filter_saps = [0.0, 30.0, 50.0, 70.0]
54     Tgs = []
55     Tgs_tangent = []
56     cure_percents = []
57     Cure_Ts = []
58     cooling_method = "quench"
59

60     df_filtered = df[
61         (df.quench_T ≤ 3.0)
62         & (df.quench_T ≥ 0.1)
63         & (df.CC_bond_angle ≠ 109.5)
64         & (df.cooling_method ≡ cooling_method)
65     ]
66     for i, sap in enumerate(filter_saps):
67         for j, (cooling_method, df_grp) in enumerate(df_filtered.groupby("cooling_

method")):
68             df_curing = df_grp[
69                 (df_grp.bond ≡ False)
70                 & (df_grp.calibrationT ≡ 305)
71                 & (df_grp.cooling_method ≡ cooling_method)
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72                 & (df_grp.stop_after_percent ≡ sap)
73             ]
74             cure_percent = df_curing.cure_percent.mean()
75             cure_percents.append(cure_percent)
76             Ts, Ds = getDiffusivities(project, df_curing, name=PROP_NAME)
77             Cure_Ts.append(Ts)
78             # Pretty sure this helps with the fits
79             mul_fact = 1000000
80             Ds_scaled = Ds * mul_fact
81             custom_ranges_l1, custom_ranges_l2 = get_custom_ranges(cooling_metho

d)
82             Tg, Tg_prop, line_vals = Fit_Diffusivity1(
83                 Ts,
84                 Ds_scaled,
85                 method="use_viscous_region",
86                 min_D=0,
87                 ver=4,
88                 viscous_line_index=0,
89                 l1_T_bounds=custom_ranges_l1[sap],
90                 l2_T_bounds=custom_ranges_l2[sap],
91             )
92             Tgs.append(Tg)
93     Tgs = np.asarray(Tgs)
94     cure_percents = np.asarray(cure_percents)
95

96     cure_percents = np.asarray(cure_percents)
97     Tgs = np.asarray(Tgs)
98     Tgs_tangent = np.asarray(Tgs_tangent)
99     cure_percents_ss = cure_percents

100     Tgs_ss = Tgs
101     R2, fit_Tgs, T1, inter_parm, T0 = fit_Tg_to_DiBenedetto(
102         cure_percents_ss / 100.0, Tgs_ss, T1=None, T0=None
103     )
104     alphas = np.linspace(0, 1)
105     fit_ydata = DiBenedetto(alphas, T1, T0=T0, inter_param=inter_parm)
106     cure_percents = np.asarray(cure_percents)
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107     Tgs = np.asarray(Tgs)
108     Tgs_tangent = np.asarray(Tgs_tangent)
109     cure_percents_ss = cure_percents
110     Tgs_ss = Tgs
111     R2, fit_Tgs, T1, inter_parm, T0 = fit_Tg_to_DiBenedetto(
112         cure_percents_ss / 100.0, Tgs_ss, T1=None, T0=None
113     )
114     alphas = np.linspace(0, 1)
115     fit_ydata = DiBenedetto(alphas, T1, T0=T0, inter_param=inter_parm)
116

117     return alphas, fit_ydata, R2, cure_percents, Tgs
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1 c = get_config()
2

3 c.NbConvertApp.export_format = ’pdf’
4 c.Exporter.template_file = ’./better_article’
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