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ABSTRACT

This dissertation addresses problems that arise in a diverse group of fields includ-

ing cosmology, electromagnetism, and graphic design. While these topics may seem

disparate, they share a commonality in their need for fast and accurate algorithms

which can handle large datasets collected on irregular domains. An important issue in

cosmology is the calculation of the angular power spectrum of the cosmic microwave

background (CMB) radiation. CMB photons offer a direct insight into the early stages

of the universe’s development and give the strongest evidence for the Big Bang theory

to date. The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) grid is used

by cosmologists to collect CMB data and store it as points on the sphere. HEALPix

also refers to the software package that analyzes CMB maps and calculates their an-

gular power spectrums. Refined analysis of the CMB angular power spectrum can

lead to revolutionary developments in understanding the curvature of the universe,

dark matter density, and the nature of dark energy. In the first paper, we present a

new method for performing spherical harmonic analysis for HEALPix data, which is

a vital component for computing the CMB angular power spectrum. Using numerical

experiments, we demonstrate that the new method provides better accuracy and a

higher convergence rate when compared to the current methods on synthetic data.

This paper is presented in Chapter 2.

The problem of constructing smooth approximants to divergence-free (div-free)
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and curl-free vector fields and/or their potentials based only on discrete samples

arises in science applications like fluid dynamics and electromagnetism. It is often

necessary that the vector approximants preserve the div-free or curl-free properties

of the field. Div/curl-free radial basis functions (RBFs) have traditionally been uti-

lized for constructing these vector approximants, but their global nature can make

them computationally expensive and impractical. In the second paper, we develop a

technique for bypassing this issue that combines div/curl-free RBFs in a partition of

unity (PUM) framework, where one solves for local approximants over subsets of the

global samples and then blends them together to form a div-free or curl-free global

approximant. This method can be used to approximate vector fields and their scalar

potentials on the sphere and in irregular domains in R2 and R3. We present error

estimates and demonstrate the effectiveness of the method on several test problems.

This paper is presented in Chapter 3.

The issue of reconstructing implicit surfaces from oriented point clouds has appli-

cations in computer aided design, medical imaging, and remote sensing. Utilizing the

technique from the second paper, we introduce a novel approach to this problem by

exploiting a fundamental result from vector calculus. In our method, deemed CFPU,

we interpolate the normal vectors of the point cloud with a curl-free RBF-PUM inter-

polant and extract a potential of the reconstructed vector field. The zero-level surface

of this potential approximates the implicit surface of the point cloud. Benefits of this

method include its ability to represent local sharp features, handle noise in the nor-

mal vectors, and even exactly interpolate a point cloud. We demonstrate in the third

paper that our method converges for known surfaces and also show how it performs

on various surfaces found in the literature. This paper is presented in Chapter 4.
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1

CHAPTER 1:

INTRODUCTION

This dissertation develops a collection of fast and accurate algorithms for analyz-

ing large datasets collected on the sphere as well as other irregular domains. It is

composed of three papers. The first paper [9] is inspired by the Cosmic Microwave

Background (CMB) radiation and describes a new technique for spherical harmonic

analysis of data collected on the HEALPix grid. The second paper [7] introduces

a method for approximating divergence-free and curl-free vector fields on irregular

domains in R2, the sphere, and R3 using radial basis functions and the partition of

unity method. The third paper [8] utilizes the technique from [7] for curl-free fields

in a novel approach for surface reconstruction from oriented point cloud data. In

this introduction, I provide a motivation for each of these papers as well as relevant

background information.

1.1 Cosmic Microwave Background Radiation

Angular Power Spectrum

The Cosmic Microwave Background (CMB) radiation represents the first light to

travel during the early stages of the universe’s development and gives the strongest

evidence for the Big Bang theory to date. Refined analysis of the CMB angular

power spectrum can lead to revolutionary developments in understanding the nature
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of dark matter and dark energy. CMB data is collected on the Hierarchical Equal Area

isoLatitude Pixelation (HEALPix) grid, which has associated software for calculating

its angular power spectrum. In this section, we offer pertinent motivational and

background information to our paper, which is given in Chapter 2.

1.1.1 Motivation

Light from the CMB is nearly as old as the universe itself. This relic radiation allows

us to look into the past and see the universe as it was in its infancy, only 379,000 years

after the Big Bang. In fact, the existence of the CMB provides the strongest evidence

for the theory of the Big Bang [3]. According to the Big Bang theory, the universe

began as a dense plasma of matter, too hot for even light to travel. As the universe

expanded, however, this “particle soup” gradually cooled until finally the temperature

dropped below 3000K. This is the temperature threshold at which atomic hydrogen

formed for the first time (deemed the Epoch of Recombination), allowing photons to

travel freely. These photons make up the CMB we see today and appear to come from

a spherical surface all around us, now averaging a temperature of 2.7K. While the

CMB has been deemed “the most perfect black body ever measured in nature” [37],

there are minute temperature differences on the level of 1 part in 100, 000. Usually

the CMB is presented as a sphere composed of various colors which represent these

temperature anisotropies, as shown in Figure 1.1.

When the CMB was discovered in 1965, it was detected accidentally using a radio

telescope [27]. Since then, ground-based telescopes, balloons, and satellites have all

been used to measure the CMB temperature fluctuations at increasingly small angular

scales of the sky (Figure 1.2). These temperature anisotropies are important because

they are actually imprints of conditions in the early universe. It is theorized that the
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Figure 1.1 A CMB temperature anisotropy map [28].

tiny density fluctuations in the primordial plasma grew into the large-scale structures 

of stars, galaxies, and even clusters of galaxies that we see today. Cosmologists can 

ascertain the curvature as well as the content of matter and energy in the universe 

using the angular power spectrum of CMB temperature maps [3, 14].

(a) (b) (c)

Figure 1.2 A portion of the CMB as measured by (a) COBE in 1992 
[30],(b) WMAP in 2003 [3], and (c) Planck in 2013 [28].

1.1.2 Background

Once a CMB temperature map is composed, it can then be analyzed by its angular

power spectrum (Figure 1.4). This power spectrum can be viewed as a measurement
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of the temperature fluctuations against an angular wavenumber, more commonly

referred to as the multipole `. The multipole is related to the inverse of the angular

scale of the sky and is derived from a spherical harmonic decomposition of the sky.

Spherical harmonic coefficients am` of the CMB map are used to calculate the angular

power spectrum:

C` =
1

2`+ 1

∑
m

|am` |2. (1.1)

The peaks of the CMB temperature power spectrum at higher multipoles (i.e. smaller

angular scales) are what hold the key to the infant universe.

Before the Epoch of Recombination, the majority of the matter in the universe

was a plasma of electrons, protons, and CMB photons. We refer to this as the photon-

baryon plasma or fluid, where baryon is a general term for ordinary matter that has

mass. Quantum fluctuations in the early universe created gravitational “potential

wells,” which attracted the matter around them. As matter collected in these wells,

the photon-baryon fluid was compressed, increasing the pressure and temperature

of the plasma. This pressure built until the compression was reversed, creating an

oscillating sequence of compression and rarefaction. One can visualize this process as

a mass on a spring falling under gravity, where the radiation pressure is the spring,

and the energy density of the fluid is the mass (see Figure 1.3). Note that dark matter

only interacts with gravity, not light or pressure, so only the photon-baryon plasma

was oscillating. Analogous to traveling compressional waves in the air being perceived

as sound, these oscillations in the photon-baryon fluid are called acoustic oscillations.

At the time of recombination, the photon-baryon fluid stopped oscillating, making

it so that the pattern of the sound waves are imprinted on the temperature of the
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Figure 1.3 Illustration of a region of higher density falling into a 
gravita-tional potential well using the system of a mass on a spring [15].

CMB. Extrema in the oscillations become the peaks in the CMB power spectrum, 

where odd peaks correspond to plasma compression and the even peaks correspond to 

plasma rarefaction, as shown in Figure 1.4. Because of this connection, the tempera-

ture power spectrum is sensitive to fundamental cosmological parameters, specifically 

in regard to the density of dark matter in the universe. Cosmologists can make 

theoretical calculations of the CMB power spectrum based on the values of these pa-

rameters and compare it to the observed angular power spectrum [37]. The location 

of the first peak provides insight to the curvature of the universe, the amplitude of 

the second peak will tell us about the baryon density, and the amplitude of the third 

peak will tell us about the density of dark matter [16]. Note from Figure 1.4 that 

these peaks occur at high `.

The challenge to computing the CMB angular power spectrum is to use a method 

for calculating the spherical harmonic coefficients from the CMB data that is as 

accurate as possible. It is especially important for the technique used to be sensitive 

to data at high multipoles. Our paper [9] address precisely this issue by introducing a 

novel method for calculating the CMB angular power spectrum which demonstrates
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better accuracy across all multipoles on test data.

Figure 1.4 Peaks in the angular power spectrum of CMB temperature 
anisotropies ∆T and how they correspond to the compression and rarefac-

tion of the baryon-photon fluid in the early universe [15].

1.2 Scalar Radial Basis Function Interpolation

A common problem that arises in many disciplines is that of approximating vector 

fields, or scalar potentials for the fields, based only on scattered samples. The method

developed in [7] is the first to implement divergence-free (div-free) and curl-free vector-

valued RBF approximation with a partition of unity. An added benefit of the method

is that it produces an approximant for the scalar potential of the underlying sampled 

field as well. This section offers pertinent motivational and background information

to our paper, which is given in Chapter 3.
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1.2.1 Motivation

Approximating vector fields from scattered samples is a problem that arises in many

scientific applications, including, for example, fluid dynamics, meteorology, mag-

netohydrodynamics, electromagnetics, gravitational lensing, imaging, and computer

graphics. These vector fields often have the additional property of being either div-

free or curl-free. For example, div-free vector fields represent incompressible fluid

flows and (static) magnetic fields, while curl-free vector fields represent gravity fields

and (static) electric fields. When developing a method for approximating vectors

fields, it is important to ensure that the approximant preserves the div-free/curl-free

nature of the field or problems can arise. For instance, in incompressible flow simu-

lations using the immersed boundary method, excessive volume loss can occur if the

approximated velocity field of the fluid is not div-free [2]. To enforce these differential

invariants on the approximant, one can not approximate the individual components

of the field separately, but must combine them in a particular way. Div/curl-free

radial basis functions (RBFs) are a particularly good choice for this application as

they are meshfree and the vector approximants analytically satisfy the div-free or

curl-free property. A negative aspect of this approach, however, is that the method

is computationally expensive due to its global nature. One of the ways to overcome

this issue is to combine vector RBF approximation with a local technique like the

partition of unity method.

1.2.2 Background

Interpolating scattered data is a problem that emerges in multiple scientific disci-

plines and applications, such as meteorology, electronic imaging, computer graphics,

medicine, and the Earth sciences [11, 1, 19, 31, 25]. RBF interpolation was introduced
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by R.L. Hardy in 1968 to solve a common problem in cartography of finding a contin-

uous function that accurately represents a surface given sparse measurements [12, 13]

(see Figure 1.5 for an example). Geometrically, the RBF method can be viewed as

(a) (b)

Figure 1.5 A reconstruction of a drainage surface using RBF 
interpolation on scattered points.

interpolating data with a linear combination of translates of a single basis function, 

φ(r), that is radially symmetric about its center. This process can be seen graphically 

in Figure 1.6. Mathematically, the interpolation process is defined as follows. Given

(a) (b) (c)

Figure 1.6 The process of using RBFs to interpolate a set of scattered 
data in 2D: (a) a target function f sampled at some set of distinct nodes, 

(b) a set of radial basis functions interpolating the data, and (c) a 
reconstructed surface resulting from the interpolation
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a distinct set of scattered nodes Y = {yj}Nj=1 ⊂ Rd and some scalar-valued target

function f sampled at Y , the scalar-valued RBF interpolant of f |Y is given by

s(x) =
N∑
j=1

cjφ
(
||x− yj||

)
, (1.2)

where x ∈ Rd, ||·|| is the d-dimensional Euclidean norm, and φ(r) is some radial kernel.

The expansion coefficients cj can be determined by solving the symmetric linear

system formed by enforcing the interpolation conditions s(yj) = fj, j = 1, . . . , N :



φ(||y1 − y1||) φ(||y1 − y2||) · · · φ(||y1 − yN ||)

φ(||y2 − y1||) φ(||y2 − y2||) · · · φ(||y2 − yN ||)
...

...
. . .

...

φ(||yN − y1||) φ(||yN − y2||) · · · φ(||yN − yN ||)


︸ ︷︷ ︸

AY



c1

c2

...

cN


︸ ︷︷ ︸
c

=



f1

f2

...

fN


.

︸ ︷︷ ︸
f

(1.3)

Several options for the radial kernel φ(r) have been developed that ensure the inter-

polation matrix AY will be unconditionally nonsingular, i.e., that the linear system

in (1.3) will be uniquely solvable [22]. Table 1.1 lists some of the most commonly

used ones of these radial kernels, and Figure 1.7 shows plots of these kernels.

Since its introduction, RBF interpolation has become increasingly popular in ap-

plications such as computer animation, medical imaging, and fluid dynamics. Unfor-

tunately, due to its global nature, the computational cost of solving for the interpola-

tion coefficients can be prohibitive for large N . One of the techniques that has been

used to overcome this issue is the partition of unity method (PUM). In RBF-PUM,

one only needs to solve for local approximants over small subsets of the global data set
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Radial Kernel φ(r)

Gaussian (GA) e−(εr)2

Inverse quadratic (IQ)
1

1 + (εr)2

Inverse multiquadric (IMQ)
1√

1 + (εr)2

Multiquadric (MQ)
√

1 + (εr)2

Table 1.1 Commonly used radial kernels, where the first three are 
positive definite, r = ‖x − y‖, and ε is the shape parameter.

0  0.5 1  

0  

0.5

1  

0  0.5 1  

0  

0.5

1  

(a) (b)

0  0.5 1  

0.5

1  

0  0.5 1  

1  

1.5

2  

(c) (d)

Figure 1.7 (a)The Gaussian (ε = 2), (b) inverse quadric (ε = 3.5), (c) inverse 
multiquadric (ε = 6), and (d) multiquadric radial kernels (ε = 2) from Table 

1.1.

and then blend them together to form a smooth global approximant [18, 35, 10, 6, 17].

In general, a partition of unity is defined as a collection of weight functions {w`}M`=1
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subordinate to the open cover of a domain Ω, i.e. Ω ⊆ ∪M`=1Ω`, such that

M∑
`=1

w`(x) ≡ 1, x ∈ Ω.

A global interpolant s to f over the whole domain Ω is calculated by“blending” local

RBF interpolants s` of the form (1.2) with the partition of unity weight functions:

s =
M∑
`=1

w`s`. (1.4)

The localized approach of RBF-PUM allows for all of the benefits of RBF interpolation

without the drawback of computational bottleneck. While this method works well

for interpolating scalar-valued functions, it has not been extended for div-free/curl-

free vector fields. Our paper [7] introduces the first vector-valued RBF-PUM for

approximating div-free and curl-free vector fields.

1.3 Implicit Surface Reconstruction from

Oriented Point Clouds

The final topic addressed in this dissertation is that of surface reconstruction from

a set of unorganized points. This process has applications in a variety of domains,

including computer graphics, computer-aided design, medical imaging, image pro-

cessing, and manufacturing. Many common methods developed to address this prob-

lem require Hermite data or “oriented” point clouds, which involve the unstructured

points as well as their corresponding normal vectors. In [8] we present a novel method

for reconstructing surfaces from Hermite data titled Curl-free Radial Basis Function

Partition of Unity (CFPU). This section offers background information to our paper,
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which is given in Chapter 4.

1.3.1 Motivation

A point cloud is a set of unorganized points, usually in 3D space. Often a collec-

tion of points is produced by a scanner measuring an object or surface. Analyzing,

processing, and characterizing point clouds arises in the areas of computer vision,

medical imaging, and engineering. It is desirable to have an implicit surface repre-

sentation of point clouds because it allows for a mathematical description which can

then be rendered at any resolution as well as allow for informative calculus operations

to be performed. Additionally, while point clouds are not watertight, regular implicit

surface are watertight, which is vital in many applications.

Reconstructing implicit surfaces from oriented point clouds has been extensively

studied in literature since the 90s, with many approaches based on RBFs [23, 24,

26, 29, 32, 34, 20, 21, 4, 33, 36, 5]. Due to the global nature of RBF methods, they

suffer from an inability to reconstruct finer details of a surface as well as being too

slow for larger point cloud datasets. To bypass this issue, we combine curl-free RBF

approximation with the partition of unity method. This allows for recovery of a global

zero-level implicit surface to the point cloud from computations performed on local

patches. An added benefit of this approach is that it is better equipped to recover

sharp features, which many global methods lack. Additionally, the method can be

adapted to enforce exact interpolation of the surface and can be regularized to handle

noisy data. Finally, we develop a version of the method that is free of shape or scaling

parameters, which are common to other RBF methods and for which good values are

computationally expensive to determine automatically. The method presented in this

paper is an extension of the algorithm in paper 2, and as such, all of the pertinent
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background information is covered in Section 2.

1.4 Overview of the Dissertation

The remainder of the dissertation is as follows. Author contributions for papers 1, 2,

and 3 are provided in chapters 2, 3, and 4, respectively. Chapter 5 offers concluding

remarks and future directions for research on the topics of the dissertation. The

appendices contain the papers that make up the bulk of the discoveries and advances

of the thesis.
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CHAPTER 2:

A FAST AND ACCURATE ALGORITHM FOR

SPHERICAL HARMONIC ANALYSIS ON

HEALPIX GRIDS WITH APPLICATIONS TO

THE COSMIC MICROWAVE BACKGROUND

RADIATION

Kathryn P. Drake1 and Grady B. Wright

Journal of Computational Physics, 416:109544, 2020.

Abstract

The Hierarchical Equal Area isoLatitude Pixelation (HEALPix) scheme is used

extensively in astrophysics for data collection and analysis on the sphere. The

scheme was originally designed for studying the Cosmic Microwave Background

(CMB) radiation, which represents the first light to travel during the early

stages of the universe’s development and gives the strongest evidence for the Big

Bang theory to date. Refined analysis of the CMB angular power spectrum can

lead to revolutionary developments in understanding the nature of dark mat-

1Corresponding author.
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ter and dark energy. In this paper, we present a new method for performing

spherical harmonic analysis for HEALPix data, which is a central component

to computing and analyzing the angular power spectrum of the massive CMB

data sets. The method uses a novel combination of a non-uniform fast Fourier

transform, the double Fourier sphere method, and Slevinsky’s fast spherical

harmonic transform [38]. For a HEALPix grid with N pixels (points), the com-

putational complexity of the method is O(N log2N), with an initial set-up cost

of O(N3/2 logN). This compares favorably with O(N3/2) runtime complexity

of the current methods available in the HEALPix software when multiple maps

need to be analyzed at the same time. Using numerical experiments, we demon-

strate that the new method also appears to provide better accuracy over the

entire angular power spectrum of synthetic data when compared to the current

methods, with a convergence rate at least two times higher.

2.1 Introduction

About 379,000 years after the universe began, the dense plasma of matter cooled

enough for neutral hydrogen to form. During this epoch of recombination, the universe

was becoming increasingly transparent to photons, which eventually began to move

freely through space. Now faintly glowing at the edge of the observable universe,

these photons form the Cosmic Microwave Background (CMB) radiation, which has

become the strongest evidence for the Big Bang Theory to date [3]. While the CMB

has been deemed “the most perfect black body ever measured in nature” [42], there

are temperature and polarization fluctuations that give insight into the primordial

universe [28]. These anisotropies are consequences of the initial density distribution
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of matter, and analyzing them can provide a better understanding of the geometry

and composition of the universe [3, 15].

(a)

(b)

Figure 2.1 CMB component map from the Planck mission [30] (a) and 
corresponding (scaled) angular power spectrum (b).

Using ground-based telescopes, balloons, and satellites which probe the sky in the 

microwave and infra-red frequencies, scientists have measured the CMB temperature 

differences at small angular scales. These measurements are quantized and stored as 

a high resolution sky map of the CMB using the Hierarchical Equal Area isoLatitude 

Pixelation (HEALPix) scheme [11] for the sphere; see Figure 2.1a) for an example 

sky map. Once a sky map is composed, it can then be analyzed by its angular 

power spectrum. This quantity measures the amplitude of the CMB temperature 

fluctuations as a function of angular scale and is used to estimate parameters of 

the cosmological model for the universe [42]. For example, the confirmation of the 

first peak in the temperature angular power spectrum affirmed that the universe 

is spatially flat [17]. The values of the temperature angular spectrum at higher 

frequencies are crucial to many aspects of modern cosmology, including the density of 

dark matter and dark energy in the universe. The CMB power spectrum (Figure 2.1b)
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is calculated from the spherical harmonic coefficients, am` , of the sky map as follows:

C` =
1

2`+ 1

∑
m

|am` |2. (2.1)

The spherical harmonic conventions used in this work are detailed in Appendix A.

The HEALPix scheme [11] and the associated eponymous software [10] have a

number of desirable properties for data collection on the sphere. First, each pixel

has the same surface area and the pixel centers (points) are quasi-uniformly dis-

tributed over the sphere. This is important since any white noise produced by the

microwave receivers is exactly integrated into white noise in the pixel area. Second,

the pixels produced by the scheme are based on a hierarchical subdivision of the

sphere, which allows for data locality in computer memory and fast search proce-

dures. Finally, the pixel centers are isolatitudinal, allowing for a significant reduction

in the computational cost of performing discrete spherical harmonic transforms—a

central component to computing and analyzing the angular power spectrum of the

CMB data sets, which from the Planck mission consist of millions of pixels [30].

These properties have made the HEALPix scheme popular for other applications in

astrophysics/astronomy [35, 21, 29], and to several other disciplines, including geo-

physics [41], planetary science [25], nuclear engineering [32], and computer vision [16].

In this paper, we focus on an aspect of the HEALPix scheme that has received

very little attention in the literature: accuracy and computational complexity im-

provements of the discrete spherical harmonic transform. We first review the cur-

rent techniques used in the HEALPix software [10], which are based on equal-weight

quadrature, ring-weight quadrature, and pixel-weight quadrature. We then intro-

duce a new algorithm for computing spherical harmonic coefficients for data collected
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on HEALPix grids. The main motivation for the method is Slevinsky’s recently

developed fast spherical harmonic transform (FSHT) [38], which converts bivariate

Fourier coefficients for data on the sphere to spherical harmonic coefficients of the

data with near optimal complexity. By combining the nonuniform fast Fourier trans-

form (NUFFT) [33] and the double Fourier sphere (DFS) [40] methods, we give a

fast and accurate method for obtaining the bivariate Fourier coefficients for func-

tions sampled on the HEALPix grid, which we then use with the FSHT to obtain

the spherical harmonic coefficients. For a HEALPix grid with N pixels (points), the

computational complexity of the method is O(N log2N), with an initial set-up cost

of O(N3/2 logN), which compares favorably with the complexity of the current meth-

ods available in the HEALPix software when multiple maps need to be analyzed at

the same time. Using numerical experiments, we demonstrate that the new method

also appears to be more accurate than the current methods for synthetic data over

the whole spectrum, with a convergence rate at least two times higher. We believe

this new scheme will be useful not only for CMB analysis, but also for the many

applications of the HEALPix scheme given above that require a spherical harmonic

analysis. Additionally, the algorithm presented here has natural generalizations for

other “equal-area” isolatitudinal sampling strategies for sphere that do not have a

natural way to do fast and accurate spherical harmonic transforms [34, 6, 20, 22].

The remainder of the paper is structured in the following manner. In section 2.2,

we offer supporting information on the HEALPix grid as well as details and analysis

of the current methods used in the HEALPix software for computing the spherical

harmonic coefficients of CMB maps. We present the new algorithm for fast spherical

harmonic analysis of data collected on the HEALPix grid in section 2.3. Numerical
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results comparing the presented method with that of the methods in the HEALPix

software for calculating the angular power spectrum of functions on the sphere are

given in section 2.4. Finally, in section 2.5, we give some brief conclusions and re-

marks on future directions of the work.

2.2 Background and Current Approach

2.2.1 HEALPix Scheme

The HEALPix scheme2 was created to discretize functions on the sphere at high res-

olutions. In addition to creating an equal area pixelization of the sphere, one of the

primary motivations behind the scheme was to allow for more computationally effi-

cient spherical harmonic transforms on increasingly large CMB datasets [11]. While

there are many options for discretizing the sphere, there is no known deterministic

method that gives a set of quasiuniform points and allows for exact spherical harmonic

decompositions of band-limited functions using equal-weight quadrature. While the

HEALPix scheme does not offer optimal complexity for spherical harmonic analyses,

it does achieve some efficiency gains over existing schemes for discretizing the sphere.

This improvement is accomplished primarily by the isolatitudinal distribution of pix-

els.

The HEALPix grid resolution is defined using the parameter Nside = 2t, t ∈ N,

which creates N2
side equal area divisions of each base pixel. Figure 2.2 illustrates the

base resolution grid, t = 0, and the increasing levels of refinement t = 1, 2, 3, where

2The HEALPix scheme produces a grid consisting of a collection of pixels of different shapes but
the same area. However, for our method we do not exploit this fact and simply treat the center of
each pixel as a point with the given value of the pixel.
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side

Figure 2.2 HEALPix grid with resolutions, from left to right, Nside = 
1, 2, 4, 8. The lines indicate the pixel boundaries and the solid dots represent 

the pixel centers or points.

each base pixel is subdivided further into four equal area pixels. A HEALPix map

therefore has N = 12N2 equal area (but differently shaped) pixels, with the centers

placed on 4Nside − 1 rings of constant latitude. For any Nside, the HEALPix centers,

which we henceforth call the HEALPix points, are defined algebraically using three

regions of the sphere, two polar (N and S) and one equatorial (E) [19]. In spherical

coordinates, the points in these regions are given as

N :=

{(
arccos

(
1− j2

3N2
side

)
,
π
(
k + 1

2

)
2j

)
:

j = 1, . . . , Nside − 1, k = 0, . . . , 4j − 1

}

E :=

{(
arccos

(
2(2Nside − j)

3Nside

)
,
π
(
k + (j+1) mod 2

2

)
2Nside

)
:

j = Nside, . . . , 3Nside, k = 0, . . . , 4Nside − 1

}

S :=

{(
arccos

(
−
(

1− j2

3N2
side

))
,
π
(
k + 1

2

)
2j

)
:

j = 1, . . . , Nside − 1, k = 0, . . . , 4j − 1

}
.

(2.2)
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The final HEALPix point set is X = N
⋃
E
⋃
S. The number of points on each ring

varies in the polar regions, with only four points on the rings closest to the north and

south poles of the sphere, whereas the rings in the equatorial region have the same

number of points. This point distribution is illustrated more clearly in Figure 2.3,

where the HEALPix points are displayed to a latitude-longitude grid.

The biggest computational advantage for spherical harmonic analysis in the HEALPix

scheme lies in the equally-spaced points on each ring of constant latitude. While this

aides computation in the longitude direction with FFTs, the misaligned and unequally

spaced points in latitude make fast bivariate Fourier analysis impossible without mod-

ification. We address this in the new algorithm presented in section 2.3.

Figure 2.3 HEALPix grid on [0, 2π] × [0, π], where θ is latitude, and λ is 
longitude. The point sets in the northern (N ), equatorial (E), and southern 

(S) regions are shown in blue, red, and yellow, respectively.

2.2.2 HEALPix Software Spherical Harmonic Analysis

The standard method in the HEALPix software [10] for estimating the angular power

spectrum (2.1) of data at the HEALPix points approximates the exact spherical har-

monic coefficients (ã`m) of the data as
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am` =
4π

N

N∑
i=1

Y m
` (λi, θi)f(λi, θi), 0 ≤ ` ≤ `max,−` ≤ m ≤ `, (2.3)

where (λi, θi) are HEALPix points in longitude-latitude, f is the data, and Y m
` is a

spherical harmonic of degree ` and order m (see Appendix A for a discussion of the

spherical harmonic conventions used in this paper). While the user can input any

band limit `max for this approximation, the software default is `max = 3Nside − 1.

Due to the isolatitudinal nature of the HEALPix points, this computation is done

with O(N3/2) complexity as opposed to O(N2) [11]. Note that N = O(`2
max), so

the complexity of the am` computation is equivalent to O(`3
max). The expression (2.3)

is a low-order approximation to the continuous inner product (2.23) which defines

the coefficients, since it uses a simple equal weight quadrature. To improve this

approximation, the software employs an iterative procedure, which is referred to as a

“Jacobi iteration” [11]. In order to illustrate how the iterative method converges, we

explain it below in the language of linear algebra.

The analysis operation, defined in (2.3), produces an approximation to the spher-

ical harmonic coefficients from the data f on the sphere, whereas the synthesis oper-

ation reconstructs the data given the spherical harmonic coefficients:

f̂(λi, θi) =
`max∑
`=0

∑̀
m=−`

am` Y
m
` (λi, θi), i = 1, . . . , N (2.4)

Note that we use a hat on f to indicate that computing the spherical harmonic

coefficients according to (2.3) and using them in (2.4) gives different function values
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in general. In matrix-vector notation, we denote (2.3) and (2.4) as

Analysis: a = Af

Synthesis: f̂ = Sa,

where a is the vector of spherical harmonic coefficients and f and f̂ are the vectors of

data values at the HEALPix points. Using this notation, the iterative procedure in

the HEALPix software can be written as

r(k+1) = f − Sa(k),

a(k+1) = a(k) + Ar(k+1),

(2.5)

where r is the residual vector and a(0) = Af . Substituting the first equation of (2.5)

into the last and using the fact that the analysis matrix satisfies A = 4π
N

S∗, gives the

iteration

a(k+1) = a(k) +
4π

N
S∗(f − Sa(k)) =

4π

N
S∗f +

(
I− 4π

N
S∗S

)
a(k). (2.6)

This is just stationary Richardson iteration (or Gradient Decent) with relaxation

parameter 4π
N

applied to the normal equations S∗Sa = S∗f [4, pp. 44–45]. Thus,

the iterative procedure converges to the least squares solution to (2.3), provided the

spectral radius of I − 4π
N

S∗S is less than one. The spectral radius also determines

the convergence rate. Since the HEALPIx points are equidistributed, we know that

(2.3) converges to the integral (2.23) as N →∞ (in exact arithmetic) [14]. Thus, the

spectral radius of I − 4π
N

S∗S converges to 0 as N → ∞ and we expect the iteration
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(2.6) to converge more rapidly as N increases. Table 2.1 gives evidence of this result

by displaying the spectral radius of I− 4π
N

S∗S for increasing values of N .

Nside N ρ
(
I− 4π

N
S∗S

)
2 48 0.1986
4 192 0.0932
8 768 0.0600
16 3072 0.0475
32 12288 0.0421

 The default option in the HEALPix software sets the number of iterations of 

(2.6) to 3. While this does improve the accuracy of computing the spherical harmonic 

coefficients, it adds to the cost, as each iteration requires doing an analysis and 

synthesis ((2.3) and (2.4)) at a cost of O(`3
max) operations each. Since the solution 

converges to the least squares solution, one could improve the convergence of the 

Richardson iteration method by using algorithms like LSQR or conjugate gradient on 

the normal equations [27].

Pixel Weights and Ring Weights

As an alternative to the iterative scheme, the HEALPix software also has the option of 

using quadrature weights to improve the accuracy of the computation of the spherical 

harmonic coefficients. In this case, the equal weight quadrature approximation (2.3) is 

generalized to

am` =
N∑
i=1

wiY
m
` (λi, θi)f(λi, θi), 0 ≤ ` ≤ `max,−` ≤ m ≤ `, (2.7)

Table 2.1 Spectral radius of the Richardson iteration matrix from (2.6) for different 
values of N.
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where wi are the quadrature weights. There are two options for using quadrature

weights. The first is “pixel weights”, which uses different weights for each HEALPix

point. These weights are computed using the positive quadrature weight algorithm

from [19], which consists of solving a system involving a Gram matrix containing the

spherical harmonics whose size is proportional to N [31]. For large N , the weights

are computed once and stored. The second option is to use “ring weights”, which

use different weights for each ring of the HEALPix point sets. The computation of

the ring weights is done using similar ideas to the pixel weights, but a much smaller

system has to be solved [31]. The new method introduced in this paper does not use

quadrature weights directly, but instead computes the bivariate Fourier coefficients of

the HEALPix data and then uses these to obtain the spherical harmonic coefficients.

2.3 HP2SPH

The algorithm presented here, named HP2SPH, introduces a new way to calculate

the spherical harmonic coefficients of data sampled at the HEALPix points (2.2). The

outline for the algorithm is given in Algorithm 1, and each of the pieces are described

below.

2.3.1 Step 1: Transform the data to a tensor product latitude-

longitude grid

As described in Section 2.2.1, the HEALPix grid has an unequal number of points

on the rings in the northern (N ) and southern (S) sets (2.2), and the points on the

rings in the equatorial (E) set are shifted on every other ring. This structure leads

to the pixels being misaligned in latitude. By upsampling the data on the northern

and southern points in longitude so that there are an equivalent samples of the data
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Algorithm 1 HP2SPH

Input: Data sampled at the HEALPix point set of size N , {fj}, j = 1, . . . , N .
Output: Approximate spherical harmonic coefficients, {am` }, 0 ≤ ` ≤ `max, −` ≤
m ≤ `

1. Transform the data to a tensor product latitude-longitude grid:
(i) Upsample the data in longitude from the northern (N ) and southern (S)

point sets using FFT
(ii) Shift (interpolate) the data from the equatorial (E) point set so it is longi-

tudinally aligned
2. Compute the bivariate Fourier coefficients:

(i) Apply the DFS method
(ii) Apply the inverse NUFFT-II in latitude
(iii) Apply the inverse FFT in longitude

3. Obtain the spherical harmonic coefficients via the FSHT

on each ring and shifting the data at equatorial points in longitude, we can use

fast algorithms to obtain the bivariate Fourier coefficients of the data as discussed

in the next section. On the two polar point sets, we upsample the data using the

trigonometric interpolant of the data on each ring of these sets to the non-shifted

equally spaced longitude points on the equatorial rings, i.e.,

λk =
k

2Nside

π, k = 0, . . . , 4Nside − 1. (2.8)

We also interpolate the data on the rings in the equatorial point set with shifted

longitude points, to these λ values. Figure 2.4(b) illustrates the upsampling procedure

leading to a tensor product latitude-longitude grid of data of size (4Nside−1)×4Nside.

We describe the interpolation procedure here for the data in the northern point set

N . Consider the latitude values for the northern rings, θj = arccos
(

1− j2

3N2
side

)
, j =
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(a) (b)

Figure 2.4 (a) HEALPix points with Nside = 16 displayed in latitude and 
longitude and (b) the corresponding upsampled points.

1, . . . , Nside. We approximate the data in each ring using a trigonometric expansion 

of the form

f(λ, θj) =:fj(λ) =

2j∑
n=−2j

c(j)
n einλ, (2.9)

The coefficients in the expansion are determined by enforcing interpolation of the

given data values

f

(
k + 1

2

2j
π, θj

)
, k = 0, . . . , 4j − 1.

With the minor algebraic manipulation of (2.9),

fj

(
k + 1

2

2j
π

)
=

2j−1∑
n=−2j

c(j)
n ein

k+1
2

2j
π

=

2j−1∑
n=−2j

c(j)
n ein π

4j ein k
2j
π

=

2j−1∑
n=−2j

c̃(j)
n ein k

2j
π, k = 0, . . . , 4j − 1,
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we see the interpolation conditions yield the system

2j−1∑
n=−2j

c̃(j)
n ein k

2j
π = f

(
k + 1

2

2j
π, θj

)
, k = 0, . . . , 4j − 1, (2.10)

which can be computed using the inverse FFT. We can then obtain the Fourier coef-

ficients c
(j)
n in (2.9) for the data at the non-shifted values through simple multiplica-

tion3. Finally, we pad the vector containing the coefficients c
(j)
n with the appropriate

number of zeros to get to a total of 4Nside, so that the expansion in longitude in each

ring has the same number of Fourier coefficients. The values of the interpolant on

each ring can then be obtained at the upsampled values (2.8) by applying the FFT

on these padded vectors. A similar procedure can be applied to the data on the rings

in the southern point set S.

On the rings in the equatorial set E where the longitude values are shifted by

π(k + 1
2
)/(2Nside), we compute the Fourier coefficients of the data using (2.10) with

j = Nside. We then obtain the coefficients in (2.9) at the non-shifted points from

which the values can be computed using the FFT. No padding or upsampling is

needed in this case.

2.3.2 Step 2: Compute Bivariate Fourier Coefficients

Bivariate Fourier analysis for data on the sphere requires the application of the DFS

method to obtain periodicity of the data in latitude and to retain spherical symmetry.

When we apply this method to the upsampled HEALPix data, there is an issue that

the points in latitude are not equally-spaced, making the standard FFT unsuitable.

3Horner’s rule (and Estrin’s scheme for higher accuracy at small angles [7]) could also be used
to implement the shift, avoiding loss of accuracy due to evaluation of high frequency complex expo-
nentials.
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To bypass this issue we use an NUFFT. Both the DFS technique and NUFFT method

we use are discussed below for completeness.

Double Fourier Sphere (DFS) Method

A natural approach to representing a function on the sphere is to use a latitude-

longitude coordinate transform, defined by

x(λ, θ) = cosλ sin θ, y(λ, θ) = sinλ sin θ z(λ, θ) = cos θ, (λ, θ) ∈ [0, 2π]×[0, π],

(2.11)

which maps the sphere to a rectangular domain. While this transformation allows

for performing computations with the function f(λ, θ) = f(x(λ, θ), y(λ, θ), z(λ, θ)),

it also introduces artificial boundaries at the north and south poles. In addition,

the change of variables does not maintain the symmetry of functions on the sphere.

Specifically, the transform described in (2.11) does not preserve the periodicity in the

latitude direction, which is necessary for bivariate Fourier analysis to be applicable

and for results to make physical sense. These problems are solved by the DFS method.

Originally introduced by Merilees in [23] (see also [40]) the DFS method transforms

a function on the sphere to a rectangular grid while maintaining bi-periodicity. This

can be thought of as “doubling up” the function f(λ, θ) to form a new function that

preserves periodicity in both the latitude and longitude directions. Algebraically, this
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Figure 2.5 Illustration of the DFS method: (a) The surface of earth, (b) 
the surface mapped onto a latitude-longitude grid, and (c) the surface 

after applying the DFS method. [40]

new function, f̃(λ, θ), is defined on [0, 2π] × [0, 2π] as follows [40]

f̃(λ, θ) =



g(λ, θ), (λ, θ) ∈ [0, π]× [0, π],

h(λ− π, θ), (λ, θ) ∈ [π, 2π]× [0, π],

h(λ, 2π − θ), (λ, θ) ∈ [0, π]× [π, 2π],

g(λ− π, 2π − θ), (λ, θ) ∈ [π, 2π]× [π, 2π],

(2.12)

where g(λ, θ) = f(λ, θ) and h(λ, θ) = f(λ+ π, θ) for (λ, θ) ∈ [0, π]× [0, π]. Figure 2.5

illustrates the DFS method applied to the surface of the Earth, which shows the

preservation of bi-periodicity in (c). We note that the DFS method can also be easily

applied to discrete data sampled at a tensor product latitude-longitude grid using

(2.12), which is what we do for the upsampled HEALPix data. In this case, (2.12)
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corresponds to flipping and shifting the data matrix appropriately.

Once the DFS method is applied to a function on the sphere, it can be approxi-

mated using a 2D bivariate Fourier expansion:

f̃(λ, θ) ≈
dm

2
e−1∑

j=−bm
2
c

dn
2
e−1∑

k=−bn
2
c

Cjke
ijθeikλ, (2.13)

where m and n represent the number of frequencies in (doubled-up) latitude and

longitude, respectively.

Note that the HEALPix grid does not include points at the north and south poles.

When applying the DFS to the upsampled data from Step 1, this leads to a relatively

large gap in the points in latitude over the poles compared to the other points, which

can lead to issues with the inverse NUFFT (see below). To bypass this issue, we

construct values at the two poles by using a weighted quadratic least squares fit [8]

that combines the data from the three rings closest to each pole.

Remark. The Fourier coefficients of the upsampled data in longitude are computed in

Step 1. These can be used directly in the DFS procedure by applying (2.12) in Fourier

space in the λ variable, which amounts to appending the (padded) coefficient matrix

from Step 1 with a flipped version of itself with all odd wave numbers multiplied by

−1. It then only remains to compute the Fourier coefficients in latitude θ to obtain

the full bivariate Fourier coefficients. This is the focus of the next step.

Nonuniform Fast Fourier Transform (NUFFT)

The use of the nonuniform discrete Fourier transform (NUDFT) in many domain

sciences has led to the development of algorithms for computing it efficiently. If
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these algorithms are quasi-optimal requiring O(n log n), then they are referred to as

a nonuniform fast Fourier transform (NUFFT). Given a vector c ∈ Cn, the one-

dimensional NUDFT computes the vector f ∈ Cn defined by

fj =
n−1∑
k=0

cke
−2πixjωk , 0 ≤ j ≤ n− 1, (2.14)

where xj ∈ [0, 1] are the samples and ωk ∈ [0, n] are the frequencies. If the samples are

equispaced (xj = j/n) and the frequencies are integer (ωk = k), then the the transform

is a uniform DFT, which can be computed by the FFT in O(n log n) operations [5].

When either the samples are nonequispaced or the frequencies are noninteger, the

FFT does not directly apply without some careful manipulation [2].

Ruiz and Townsend [33] contributed to the collection of NUFFT algorithms by

utilizing low rank matrix approximations to relate the NUDFT to the uniform DFT.

There are three types of NUDFTs and inverse NUDFTs that they account for in

their algorithm: NUDFT-I, which has uniform samples but noninteger frequencies;

NUDFT-II, which has nonuniform samples and integer frequencies; NUDFT-III, which

has both nonuniform samples and nonuniform frequencies [12]. Since our HP2SPH

method only uses the one-dimensional inverse NUFFT of the second type, we discuss

the NUFFT-II algorithm [33].

Given Fourier coefficients, c ∈ Cn×1, the NUFFT-II attempts to approximate the

vector

f = F̂2c, (2.15)

to machine precision in quasi-optimal complexity. Here (F̂2)jk = e−2πixjk, xj are

nonuniform samples (restricted to be in [0, 1]), and k are integer frequencies for 0 ≤
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j, k ≤ n−1. Notice that the DFT matrix for uniform samples and integer frequencies

is similarly Fjk = e−2πijk/n. The key to the NUFFT-II algorithm described in [33] is

that if the samples are nearly equispaced, then F̂2 can be related to the Hadamard

product of F and a low rank matrix. This means that given a rank K approximation

which relates F̂2 and F , the NUFFT-II can then be computed using K FFTs with

O(Kn log n) cost. In practice, machine (double) precision can be achieved with K =

14 [33].

In the case of the inverse NUFFT-II, Ruiz and Townsend advocate for the use of

the conjugate gradient (CG) method in order to solve the linear system F̂2c = f for

c. Since F̂2 is not hermitian, the CG method is applied to the normal equations:

F̂ ∗2 F̂2c = F̂ ∗2 f , (2.16)

where F̂ ∗2 F̂2 is simply a Toeplitz matrix. Therefore, the inverse NUFFT-II can be cal-

culated using the CG method and a fast Toeplitz multiplication [9] in O(RCGn log n)

operations, where RCG is the number of CG iterations. The following suggestion is

placed on the nonuniform function samples to avoid ill-conditioning in the system

(2.16) [33]: ∣∣∣∣xj − j

n

∣∣∣∣ ≤ γ

n
, 0 ≤ j ≤ n− 1, (2.17)

where 0 ≤ γ < 1/4. When this condition is satisfied, it has been experimentally

observed that RCG ≤ 10 for a large range of n.

For the method proposed in this paper, we apply the inverse NUFFT-II in latitude

to the DFS upsampled HEALPix data from Step 2. Unfortunately, the HEALPix

points in latitude direction do not meet the condition (2.17). To bypass this issue, we
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instead use a least squares solution to compute fewer coefficients at the higher wave

numbers than what the given data may support. We describe this procedure below

since it not discussed in [33].

The inverse NUFFT-II method computes first column of the symmetric Toeplitz

matrix F̂ ∗2 F̂2 in (2.16) in the following manner:

F̂ ∗2 F̂2e1 = F̂ ∗2 1 = (1T F̂2)∗ = (F̂ T
2 1)∗.

The last expression above can be computed efficiently by the NUFFT-I algorithm,

since the NUDFT-I matrix is simply the transpose of the NUDFT-II matrix [33]. To

compute a least squares solution to (2.15) with fewer coefficients, we simply truncate

the first column obtained from the above method to m < n terms and form the

resulting m × m Toeplitz matrix F̂ ∗2 F̂2. The right hand side for the least squares

solution is obtained by similarly computing F̂ ∗2 f and truncating this to m terms.

For the DFS upsampled HEALPix data from Step 2, there are 8Nside coefficients

in latitude, but only 4Nside coefficients in longitude. To keep the number of Fourier

modes in both directions (nearly) the same, we choosem = 4Nside+1 as the truncation

parameter for the least squares solution for computing the Fourier coefficients in

latitude. This is also a convenient choice since the method in step three for converting

bivariate Fourier coefficients of data on the sphere to spherical harmonic coefficients

requires the number of coefficients in each direction is the same and an odd number

(we explain how to convert the coefficients in longitude to m = 4Nside + 1 in the next

section).

Remark. For problems where the data may contain noise (e.g., for the CMB ap-
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plication), there could be an issue with this noise being amplified in steps 1 and 2.

For step 1, we should not expect any additional noise to be introduced, since we are

simply computing the Fourier coefficients on each ring using the original data and

then shifting the coefficients and padding them with zeros. Step 2 has two areas where

there could be an issue with noisy data. The first is in constructing values at the poles

and the second is in the application of the NUFFT in latitude. However, both of these

steps apply a least squares procedure, which provides some smoothing. In our tests

on CMB data, we did not observe any amplification of noise that was present in the

data. The HP2SPH method has a further benefit of using a backward stable algorithm

for computing the spherical harmonic coefficients (as discussed next), which ensures

that the resulting uncertainty in the spherical harmonic coefficients has only a low

algebraic growth with respect to degree and is always proportional to the norm of the

noise in the data.

2.3.3 Step 3: Obtain the spherical harmonic coefficients via

the fast spherical harmonic transform (FSHT)

In [38], Slevinsky derives a fast, backward stable method for the transformation be-

tween spherical harmonic expansions and their bivariate Fourier series (given in (2.13))

by viewing it as a change of basis. This relation is defined as a connection problem,

and the matrices that arise in the present case are well-conditioned, making them

ideal for fast computations. Slevinsky describes the change of basis in two steps: con-

verting expansions in normalized associated Legendre functions to those of only order

zero and one, and then re-expressing these in trigonometric form. In other words, it

uses spherical harmonic expansions of order zero and one as intermediate expressions

between higher-order spherical harmonics and their corresponding bivariate Fourier
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coefficients.

The first step of the algorithm takes advantage of the fact that the matrix of

connection coefficients between the associated Legendre functions of all orders and

those of order zero and one can be represented by a product of Givens rotation

matrices. This enables the use of the butterfly algorithm, which can be thought of

as an abstraction of the algebraic properties of fast Fourier transforms. The term

butterfly was introduced in [24], where it was used for analyzing scattering from

electrically large surfaces, and then further developed in [26] for use in special function

transforms. Slevinsky uses the butterfly algorithm to perform a factorization of the

well-conditioned matrices of connection coefficients.

The second step of this method exploits the hierarchical decompositions of the

connection coefficient matrices between the associated Legendre functions of order

zero and one to the Chebyshev polynomials of the first and second kind, respectively.

This step quickly computes the fast orthogonal polynomial transforms using an adap-

tation of the Fast Multipole Method [13] and low-rank matrix approximations. The

total pre-computation time for both steps is O(`3
max log `max), and execution time is

asymptotically optimal withO(`2
max log2 `max) operations. This FSHT is implemented

in Julia with the package FastTransforms [37] (as are the NUFFT methods from [33]

used in Step 2).

The FSHT in FastTransforms assumes the input function has a bivariate Fourier

expansion of the form

f̃(λ, θ) =

p∑
j=0

p∑
k=−p

gkj
eikλ

√
2π

 cos jθ, k even

sin(j + 1)θ, k odd

 . (2.18)
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Any function on the sphere is required to have these even/odd conditions on its

bivariate Fourier coefficients [23]. At the end of step 2 we have obtained the bivariate

Fourier expansion of the data of the form

f̃(λ, θ) =

p∑
j=−p

p−1∑
k=−p

Cjke
ijθeikλ, (2.19)

where p = Nside/2. Since we are dealing with real-valued data, we can expand Fourier

coefficients array in λ to an odd number of points. The expanded array is defined by

Xj,k =


Cj,k if −p+ 1 ≤ k ≤ p− 1

1
2
Cj,−p if k = ±p

, −p ≤ j, k ≤ p.

Using the array X, we can write (2.19) as

f̃(λ, θ) =

p∑
k=−p

eikλ

p∑
j=0

((Xjk +X−jk) cos(jθ)) +
1

i
(Xjk −X−jk) sin(jθ))

=

p∑
j=0

p∑
k=−p

eikλ

 ((Xjk +X−jk) cos(jθ), k even

((Xjk −X−jk) sin(jθ), k odd

 ,

from which we can obtain the coefficients gkj in (2.18).

The FSHT software takes bivariate Fourier coefficients gkj as input in an array
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organized as follows:



g0
0 g−1

0 g1
0 · · · g−p0 gp0

g0
1 g−1

1 g1
1 · · · g−p1 gp1

...
...

...
. . .

...
...

g0
p−1 g−1

p−1 g1
p−1 · · · g−pp−1 gpp−1

g0
p 0 0 · · · g−pp gpp


.

The output of the software is the approximate spherical harmonic coefficients of the

data arranged in an array of the form



a0
0 a−1

1 a1
1 a−2

2 a2
2 · · · a−pp app

a0
1 a−1

2 a1
2 a−2

3 a2
3 · · · 0 0

...
...

...
...

...
. . .

...
...

a0
p−2 a−1

p−1 a1
p−1 a−2

p a2
p

...
...

a0
p−1 a−1

p a1
p 0 0 · · · 0 0

a0
p 0 0 0 0 · · · 0 0


.

The angular power spectrum (2.1) can then be computed from this array.

2.4 Numerical Results

In this section we present a few numerical tests comparing the spherical harmonics

and angular power spectrum (2.1) computed by our new method HP2SPH to the

values computed by the HEALPix software employing the iterative scheme (2.6),

pixel weights, and ring weights (2.7). The first test compares the rate at which the

two methods converge to the spherical harmonic coefficients by applying them to
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deterministic (i.e. non-noisy) functions sampled at the HEALPix points with known

coefficients. The second test compares the accuracy of the methods using determin-

istic functions, which have a known power spectrum. In the third test, we compare

the methods after calculating the angular power spectrum for a real CMB data map,

which contains noise.

2.4.1 Convergence of Spherical Harmonic Coefficients

We choose the test function

f(λ, θ) =
3∑
j=1

cj(2− 2x(λ, θ) · x(λj, θj))
3/2, (2.20)

where x(λ, θ) = [x(λ, θ) y(λ, θ) z(λ, θ)] from (2.11) and the parameters, which we

picked randomly, are given by

{c1, c2, c3} = {5,−3, 8},

{λ1, λ2, λ3} = {0.891498158152027, 2.650004294134628, 5.753735997130328},

{θ1, θ2, θ3} = {1.232217523107963, 2.059244524372349, 0.537798840821172}.

The function (2 − 2x(λ, θ) · x(λc, θc))
3/2 is a called a potential spline of order 3/2

centered at x(λc, θc) and its exact spherical harmonic coefficients are given by [18]

ãm` =
18π

(`+ 5/2)(`+ 3/2)(`+ 1/2)(`− 1/2)(`− 3/2)
Y m
` (λc, θc). (2.21)

These values are used to compare the convergence rates of the methods to the ex-

act spherical harmonic coefficients of f . We do this by plotting in Figure 2.6 the

maximum absolute errors of the coefficients against the parameter t, which is used
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to determine the grid resolution parameter (Nside = 2t). Note that the spherical har-

monic coefficients of the CMB decay at a rate between O(`−2) and O(`−3) [39], which

is slower than the decay rate of the coefficients of the test function (2.20) (since, for

all −` ≤ m ≤ `, |Y m
` (λc, θc)| ≤

√
(2`+ 1)/4π, and the remaining terms in (2.21)

decay at a rate of O(`−5)). This means that the test function has more smoothness

than an actual CMB data set.

(a) (b)

Figure 2.6 Maximum absolute errors as a function of t for the computed 
spherical harmonic coefficients of (2.20) using HP2SPH and (a) HEALPix (3 
iterative refinement steps), pixel weights, ring weights and (b) HEALPix 

with increasing iterative steps. The lines in the figure are the lines of best fit 
to the data and the convergence rates are determined from the slope of this 

line (as displayed in the plot legends).

Figure 2.6(a) compares the four methods and shows that the HP2SPH method

converges to the spherical harmonic coefficients of (2.20) at a rate at least twice as fast

as any of the HEALPix methods. Although the consecutive iterative refinement steps

used in the HEALPix method produce progressively better errors, Figure 2.6(b) illus-

trates that this does not improve the convergence rate (as discussed in Section 2.2.2).

It is also important to note that after 8 iterative steps, there are no further improve-
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ments in the accuracy, indicating the algorithm has nearly converged to the least

squares solution to (2.3). The results the HEALPix method with pixel weights look

pretty erratic with convergence achieved to 8-10 digits around t = 7, but no further

reductions. This could be because of potential errors in the computed quadrature

weights.

Next, we test how the convergence rates of the methods are affected by high

frequencies. To do this we add 15 spherical harmonics to (2.20) with the following

randomly chosen degrees and orders: The results from this test are displayed in

` 176 190 191 230 248 283 292 303 326 366 388 404 421 446 448

m 56 81 124 40 155 274 27 145 55 343 200 78 420 284 234

Figure 2.7 Maximum absolute errors as a function of t for the computed 
spherical harmonic coefficients of (2.20) augmented with spherical har-

monics using HP2SPH, HEALPix with 3 iterative refinement steps, pixel 
weights, and ring weights.

Figure 2.7. We note that in order to ensure the calculation of asymptotic convergence

rates for all methods, we excluded the errors for t = 8 in the lines of best fit. This test
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shows that the convergence rates of the new method as well as the iterative HEALPix

scheme and the HEALPix method with ring weights are not affected by the addition

of high degree spherical harmonic terms to (2.20). The HEALPix method with pixel

weights shows a similar erratic behavior to Figure 2.6(a), with no steady reductions

in the errors after t = 9. The new HP2SPH method has the lowest errors of all the

methods.

2.4.2 Errors in the Angular Power Spectrum

In this test, we first explore the accuracy of all the methods for computing the angular

power spectrum of (2.20). These results are compared to the exact spectrum, which

is calculated using the exact spherical harmonic coefficients (2.21) in (2.1). The

(a) (b)

Figure 2.8 (a) Scaled angular power spectrum of (2.20) as a function of 
degree ` computed by the HEALPix software with 3 iterative refinement 

steps, the HP2SPH method, the HEALPix method with ring weights, and 
the HEALPix method with pixel weights. The exact power spectrum is 

given by the black ◦’s. Here Nside = 210, which is N = 12, 582, 912 total points. 
(b) Absolute errors in the (scaled) angular power spectrum of the results 

from (a) as a function of degree `.

angular power spectrum of the four methods are displayed in Figure 2.8(a). We see
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that the algorithms produce similar results for lower degrees `, but the HEALPix

method with the iterative refinement scheme (2.6) diverges for degrees greater than

approximately ` = 100, whereas the ring weight and pixel weight quadrature (2.7)

results diverge for degrees greater than ` = 200. To compare the methods more

directly, Figure 2.8(b) plots the absolute errors in the angular power spectrum for

each degree `. While the HEALPix method with ring weights performs the best out

of all of the HEALPix methods for ` ≤ 50, the errors increase rapidly for higher `.

Conversely, the HEALPix method with pixel weights does not perform as well for

smaller `, yet it performs better than the other HEALPix methods for larger `. The

HP2SPH method offers comparable results for low ` as the pixel weights method while

still maintaining accuracy for high `.

Similar to Test 1, we test the accuracy of the methods when computing the power

spectrum of data with high frequencies, as occur in real CMB data maps. As before,

we add several spherical harmonic functions of high degree to the function (2.20).

The new test function appends the following degrees and orders:

` 589 633 636 766 829 943 974 1009 1085 1219 1294 1346 1404 1485 1493

m 188 269 414 134 517 912 93 483 183 1143 667 259 1400 946 779

The power spectrum of this function is the same as (2.20), but with the value at each

degree ` of appended spherical harmonics increased by 1
2`+1

.

Figure 2.9(a) displays the errors in the angular power spectrum of this new func-

tion for all the methods over all `, while Figure 2.9(b) displays the errors only over

the range of ` that were appended to the base function. We again see that the ring

weights provide the highest accuracy for low `, but then the errors increase rapidly,

while the HEALPix iterative method has the largest errors for low `, but some of the
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(a) (b)

Figure 2.9 Absolute errors in the (scaled) angular power spectrum of (2.20) 
augmented with high-degree spherical harmonics computed by the 

HEALPix software with 3 iterative refinement steps, the HP2SPH method, 
the HEALPix method with ring weights, and the HEALPix method with 

pixel weights as a function of degree `. (a) Displays the errors for degrees` = 
1, . . . , 2000, while (b) displays the errors only for ` = 450, . . . , 1500 to better 

show the how good the methods are at recovering the spectrum at the 
degrees of the appended spherical harmonics. Here Nside = 210, which is N = 

12, 582, 912 total points.

smallest errors for the ` corresponding to the appended spherical harmonics. In con-

trast, the new HP2SPH method provides small errors over the entire angular power

spectrum, clearly showing its benefits over the HEALPix methods for determining

the angular power spectrum of deterministic functions on the sphere.

2.4.3 Application to Real CMB Map

Our final numerical test compares the methods on the real CMB map shown in Fig-

ure 2.1. Figure 2.10 (a) shows the angular power spectrum for this map computed

with the methods, while (b) shows the errors in the three HEALPix methods com-

pared to the new HP2SPH method. We see from the figure that the new method

(in blue) produces visually the same results as the HEALPix methods (red, magenta,
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and cyan), indicating that the new method is not anymore susceptible to noise than

the HEALPix methods.

(a) (b)

Figure 2.10 (Scaled) angular power spectrum of the CMB data map dis-
played in Figure 2.1 (a) with Nside = 211 for the four methods discussed in 
the paper (left), and the relative errors of the HEALPix software methods 

against the HP2SPH method (right).

2.5 Conclusions and Remarks

We have presented a new method, HP2SPH, for performing discrete spherical har-

monic analysis on data collected using the HEALPix scheme. The method utilizes the 

FFT, NUFFT, and the FSHT to compute the spherical harmonic transform in near 

optimal computational complexity (O(N log2 N) complexity for N total HEALPix

points). Several numerical tests were presented to demonstrate the improved conver-

gence and accuracy of the new method relative to the various HEALPix approaches

for problems involving synthetic data with no noise, except that introduced by round-

off errors. In the case of a real CMB map with additional types of noise, the power

spectra computed by the methods show good agreement. The new HP2SPH benefits 

further from the backward stability of the FSHT, which ensures that the resulting
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uncertainty in the spherical harmonic coefficients has only a low algebraic growth

with respect to degree and is always proportional to the norm of the noise in the

data. We anticipate the new method will be applicable to the many other areas

where the HEALPIx scheme is used and is naturally generalizable to other equal-area

isolatitudinal sampling schemes for the sphere.

For our next steps, we will work to optimize the implementation of the method,

which is currently in Julia, to improve its actual run-time. This will include transcrib-

ing our code into a lower-level language like C; efforts in this direction are already

underway for the FSHT [36]. In addition to this, we will include the ability to perform

Fourier synthesis on a CMB map, i.e. given an angular power spectrum, we will re-

turn the corresponding CMB map values. For this purpose, our method has another

advantage over HEALPix in that we will have the bivariate Fourier coefficients, which

will simply make the synthesis an application of the FFT and NUFFT. Finally, we

plan to add functionality for analyzing the polarization of CMB maps.
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Appendix A: Spherical Harmonic Conventions

We denote a scalar spherical harmonic of degree ` ≥ 0 and order −` ≤ m ≤ ` as

Y m
` (λ, θ), where λ is the azimuth angle and θ is the zenith angle. We define these

functions as

Y m
` (λ, θ) =

√
2`+ 1

4π

√
(`−m)!

(`+m)!
Pm
` (cos θ)eimλ, m = 0, 1, . . . , `, (2.22)

where Y m
` = (−1)mY

|m|
` for m < 0 and Pm

` (cos θ) are the associate Legendre func-

tions. As eigenfunctions of the Laplace-Beltrami operator, spherical harmonics are

the natural basis for square integrable functions on the sphere [1]. In other words,

any L2-integrable function f on the sphere can be uniquely represented as

f(λ, θ) =
∞∑
`=0

∑̀
m=−`

ãm` Y
m
` (λ, θ),

where the spherical harmonic coefficients, ãm` , are found using the usual L2-inner

product for scalar functions on the sphere:

ãm` = 〈f, Y m
` 〉 =

∫ 2π

0

∫ π

0

f(λ, θ)Y m
` (λ, θ) sin θdθdλ. (2.23)
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CHAPTER 3:

A DIVERGENCE-FREE AND CURL-FREE

RADIAL BASIS FUNCTION PARTITION OF

UNITY METHOD

Kathryn P. Drake, Edward J. Fuselier, and Grady B. Wright

arXiv:2010.15898, 2020.1

Abstract

Divergence-free (div-free) and curl-free vector fields are pervasive in many ar-

eas of science and engineering, from fluid dynamics to electromagnetism. A

common problem that arises in applications is that of constructing smooth

approximants to these vector fields and/or their potentials based only on dis-

crete samples. Additionally, it is often necessary that the vector approximants

preserve the div-free or curl-free properties of the field to maintain certain phys-

ical constraints. Div/curl-free radial basis functions (RBFs) are a particularly

good choice for this application as they are meshfree and analytically satisfy the

div-free or curl-free property. However, this method can be computationally

expensive due to its global nature. In this paper, we develop a technique for

1Submitted for publication in the SIAM Journal of Scientific Computing.
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bypassing this issue that combines div/curl-free RBFs in a partition of unity

framework, where one solves for local approximants over subsets of the global

samples and then blends them together to form a div-free or curl-free global

approximant. The method is applicable to div/curl-free vector fields in R2

and tangential fields on two-dimensional surfaces, such as the sphere, and the

curl-free method can be generalized to vector fields in Rd. The method also pro-

duces an approximant for the scalar potential of the underlying sampled field.

We present error estimates and demonstrate the effectiveness of the method on

several test problems.

3.1 Introduction

Approximating vector fields from scattered samples is a pervasive problem in many

scientific applications, including, for example, fluid dynamics, meteorology, mag-

netohydrodynamics, electromagnetics, gravitational lensing, imaging, and computer

graphics. Often these vector fields have certain differential invariant properties related

to an underlying physical principle. For example, in incompressible fluid dynamics the

velocity of the fluid is divergence-free (div-free) as a consequence of the conservation

of mass. Similarly, in electromagnetics the electric field is curl-free in the absence of a

time varying magnetic field as a consequence of the conservation of energy. Addition-

ally, the fields may have properties of being tangential to a surface (e.g., the sphere

S2) and have a corresponding surface div-free or curl-free property, as occurs in many

areas of geophysical sciences [15]. In several of these applications it is necessary for

the approximants to preserve these differential invariants to maintain certain physi-

cal constraints. For example, in incompressible flow simulations using the immersed
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boundary method, excessive volume loss can occur if the approximated velocity field

of the fluid is not div-free [4].

To enforce these differential invariants on the approximant, one cannot approxi-

mate the individual components of the field separately, but must combine them in a

particular way. One idea uses the property that div-free fields (in two dimensions) and

curl-free fields can be defined in terms of a scalar potential (e.g., a stream function or

electric potential). These methods then compute an approximant for the potential of

the field by solving a Poisson equation involving the divergence or curl of the sampled

field [5]. A separate idea is to use a vector basis for the approximant that satisfies the

underlying differential invariant. This paper develops a radial basis function (RBF)

method that uses latter approach, but has similarities to the former.

RBFs are a main tool for scattered data approximation [17, 44, 19]. In the early

1990s, researchers began to focus on the problem of developing vector RBF inter-

polants for div-free fields that analytically satisfy the div-free constraint [2, 26, 34].

The idea, as presented in [34], is to use linear combinations of shifts of a matrix-valued

kernel, whose columns satisfy the div-free property, to interpolate the samples of given

field. Since these kernels are constructed from scalar-valued RBFs, they are referred

to as div-free RBFs. These ideas were later extended to curl-free fields in [13, 22].

Further extensions of the idea to vector fields tangential to a two-dimensional surface

(e.g., S2) that are surface div-free or curl-free were given in [35]. Some applications

of these div/curl-free RBFs can, for example, be found in [32, 29, 45, 40, 11, 24, 33].

There are, however, issues with scaling div/curl-free RBF interpolation to large

data sets. For a data set with N scattered nodes X = {xj}Nj=1, the method requires

solving a dN -by-dN linear system, where d = 2, 3 is the dimension of the underlying
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domain. Additionally, each evaluation of the resulting interpolant involves dN terms.

If the div/curl-free RBFs are constructed from scalar-valued RBFs with global sup-

port, then the linear system is dense and not well suited to iterative methods. To

ameliorate these issues, a multilevel framework has been developed for compactly sup-

ported div/curl-free RBFs in [16]. However, we take a different approach to reducing

the computational cost using the partition of unity method (PUM) [31, 43, 17, 6, 30].

In RBF-PUM, one only needs to solve for local approximants over small subsets

of the global data set and then blend them together to form a smooth global approx-

imant. A particular challenge with extending this idea to div/curl-free RBFs is in

enforcing that the global approximant is analytically div/curl-free. To overcome this

challenge, we use the local div/curl-free RBFs to obtain local approximants to scalar

potentials for the field and then blend these together to form a global scalar potential

for the entire field. A div/curl-free vector approximant is then obtained by apply-

ing the appropriate differential operator to the global scalar potential. The method

as presented here will only work for fields that can be defined by scalar potentials,

which includes div/curl-free vector fields in R2, surface div/curl-free tangential fields

on two-dimensional surfaces, and curl-free fields in Rd, but not div-free fields in R3.

However, there are several benefits of the method. First, for node sets X that are qua-

siuniform, the algorithm parameters can be chosen to produce global approximants

to the field in O(N logN) operations. Second, we have error estimates showing the

method can give high rates of convergence, and numerical evidence that rates faster

than algebraic with increasing N are possible. Unlike the method from [16], these

convergence rates are possible with the fixed complexity of O(N logN). Finally, a

global approximant for the scalar potential is given directly from the samples without
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having to compute derivatives of the sampled field or solving a Poisson problem.

As far as we are aware, the only other computationally scalable div-free approxima-

tion technique for scattered data is the div-free moving least squares (MLS) method

from [42]. The method is used for generating finite difference type discretizations

for Stokes’ equations. While it worked quite successfully for this application, it can

be computationally expensive for more general approximation problems, since it re-

quires solving a new (small) linear system for each evaluation point. For the method

we develop, the (small) linear systems are independent of the evaluation points.

The rest of the paper is organized as follows. In the next section we introduce some

background material necessary for the presentation of the method. Section 3 contains

a review of PUM and then presents the div/curl-free RBF-PUM. Error estimates for

the new method are presented in Section 4. Section 5 contains numerical experiments

demonstrating the convergence rates of the method on three model problems. The

final section contains some concluding remarks.

3.2 Div/Curl-free RBFs

We review the generalized vector RBF techniques for reconstructing vector fields

below, first for div-free fields and then for curl-free fields. In both cases, we focus on

approximations of tangential vector fields on smooth, orientable, surfaces embedded

in R3 (which includes R2 and S2). In the curl-free case the method extends trivially to

Rd. Before discussing these two techniques, we introduce some notation and review

some relevant background material.
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3.2.1 Notation and preliminaries

Let P denote a smooth, orientable surface embedded in R3, possibly with a boundary,

and let n ∈ R3 denote the unit normal vector to P expressed in the Cartesian basis.

When discussing tangential vector fields on P , we use the terms divergence and curl

to be tacitly understood to refer to surface divergence and surface curl for P . The

surface curl (or rot) operator L and the surface gradient operator G play a central

role in defining div-free and curl-free tangential fields on P . We can express these

operators in extrinsic (Cartesian) coordinates as follows:

L = n×∇, G = (I − nnT )∇,

where ∇ is the standard R3 gradient, and I is the 3-by-3 identity matrix. It is

well-known that div-free and curl-free fields are locally images of these operators.

Proposition. Let u be a tangential vector field defined on P then

1. u is div-free if and only if locally there exists a scalar potential : P −→ R

such that u = L(ψ)

2. u is curl-free if and only if locally there exists a scalar potential ϕ : P −→ R

such that u = G(ϕ)

Both potentials are unique up to the addition of a constant.

The method in this paper relies on the fact that the fields involved have scalar po-

tentials that are unique up to a constant. Three dimensional div-free vector fields

have vector potentials unique up to the addition of the gradient of a harmonic scalar

function, and it is not clear how our method might carry to that case. However, it
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will be applicable to curl-free fields in higher dimensions since a vector field u on Rd

is curl-free if and only if u = ∇ϕ for some scalar potential.

In what proceeds, we use the following notation for the L operator:

L =


0 −a3 a2

a3 0 −a1

−a2 a1 0


︸ ︷︷ ︸

Qx

∇, (3.1)

where n = (a1, a2, a3) is the unit normal to P at x. Note that applying Qx to a vector

in R3 gives the cross product of n with that vector. Similarly, we express G as

G = Px∇, (3.2)

where Px = I− nnT projects any vector at x on P into a plane tangent to P at x.

Two important cases of P are P = R2 and P = S2. For the former case, the

unit normal is independent of its position and is typically chosen as n = (0, 0, 1).

Using this with (3.1) and (3.2), leads to the standard definition for these operators

for vector fields on R2:

L =


−∂y

∂x

0

 and G =


∂x

∂y

0

 , (3.3)

which can be truncated to remove the unnecessary third component. For P = S2, the

unit normal at x is n = x, but L and G do not simplify beyond this.
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3.2.2 Div-free RBF interpolation

Div-free vector RBF interpolants are similar to scalar RBF interpolants in the sense

that one constructs them from linear combinations of shifts of a kernel at each of the

given data sites. The difference between the approaches is that in the vector case one

uses a matrix-valued kernel whose columns are div-free. For the sake of brevity, we

give the final construction of these kernels and refer to reader to [35] for a rigorous

derivation. For more information on scalar-valued RBFs, which we do not discuss

here, see any of the books [17, 44, 19].

Let φ : R3 × R3 −→ R be a radial kernel in the sense that φ(x,y) = η(‖x− y‖),

for some η : [0,∞) −→ R, where ‖ · ‖ is the vector 2-norm. It is common in this case

to simply write φ(x,y) = φ(‖x − y‖). Supposing φ has two continuous derivatives,

then the matrix kernel Φdiv is constructed using the operator L in (3.1) as

Φdiv(x,y) = −LxLT
yφ (‖x− y‖) = Qx

(
∇x∇T

yφ (‖x− y‖)
)
Qy

= −Qx

(
∇∇Tφ (‖x− y‖)

)
Qy,

(3.4)

where the subscripts in the differential operators indicate which variables they operate

on and, for simplicity, no subscript means they operate on the x component. Here we

have used the fact that the matrixQx in (3.1) is skew-symmetric and∇T
yφ (‖x− y‖) =

−∇Tφ (‖x− y‖). For any c ∈ R3 and fixed y ∈ P , the vector field Φdiv(x,y)c is

tangent to P and div-free in x, which follows from Proposition 3.2.1 since

Φdiv(x,y)c = Qx∇
(
−∇Tφ (‖x− y‖)Qyc

)
= L(ψ(x)). (3.5)

The second argument of Φdiv acts as a shift of the kernel and indicates where the field
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Φdivc is “centered.”

An interpolant to a div-free tangential vector field u : P −→ R3 sampled at

distinct points X = {xj}Nj=1 ⊂ P can be constructed using Φdiv as follows:

s(x) =
N∑
j=1

Φdiv(x,xj)cj, (3.6)

where the coefficients cj ∈ R3 are tangent to P at xj (this is necessary to make

the interpolation problem well-posed as discussed below) and are chosen so that

s
∣∣
X

= u
∣∣
X

. We refer to (3.6) as a div-free RBF interpolant.

Instinctively, one may try to solve for the expansion coefficients in (3.6) by im-

posing s(xj) = uj, j = 1, . . . , N , where uj = u(xj). However, this will lead to a

singular system of equations since each uj can be expressed using only two degrees

of freedom rather than three. To remedy this, let {dj, ej,nj} be orthonormal vectors

at the node xj, where nj is the outward normal to P , ej is a unit tangent vector

to P , and dj = nj × ej. Since uj is tangent to P we can write it in this basis as

uj = γjdj + δjej, where γj = dTj uj and δj = eTj uj. We may also express each tangent

cj as cj = αjdj + βjej, which leads us to express (3.6) as

s(x) =
N∑
j=1

Φdiv(x,xj) [αjdj + βjej] , (3.7)

and to write the interpolation conditions as dTi s(xi) = γi and eTi s(xi) = δi. This
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leads to the 2N -by-2N system of equations

N∑
j=1


dTi

eTi

Φdiv(xi,xj)

[
dj ej

]
︸ ︷︷ ︸

A(i,j)

αj
βj

 =

γi
δi

 , 1 ≤ i ≤ N. (3.8)

The interpolation matrix that arises from this system (with its (i, j)th 2-by-2 block

given by A(i,j)) is positive definite if Φdiv is constructed from an appropriately chosen

scalar-valued RBF (e.g., a positive definite φ) [35].

When P = R2, the div-free RBF interpolant can be simplified considerably since

in this case we can choose dj = (1, 0, 0) and ej = (0, 1, 0) and use (3.3) for defining

Φdiv. Using this in (3.7) and truncating the unnecessary third component of the

vector interpolant (since it is always zero) gives the expansion

s̃(x) =
N∑
j=1

Φ̃div(x,xj)c̃j, (3.9)

where s̃, c̃j ∈ R2, and

Φ̃div(x,xj) =

−∂yy ∂xy

∂xy −∂xx

φ(‖x− xj‖).

This expression for Φ̃div can be written as Φ̃div = −I∆φ + ∇∇Tφ, which is the

standard way to express div-free kernels for general Rd [22].

An important consequence from the construction of the div-free RBF interpolant

(3.6) is that we can extract a scalar potential ψ for the interpolated field. Using (3.5)
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for Φdiv in (3.6) we have

s(x) =
N∑
j=1

Φdiv(x,xj)cj = Qx∇︸ ︷︷ ︸
L

(
−

N∑
j=1

∇Tφ (‖x− xj‖)Qxjcj︸ ︷︷ ︸
ψ(x)

)
= L(ψ(x)). (3.10)

This potential will play a crucial role in the developing the PUM in Section 3.3.

3.2.3 Curl-free RBF interpolation

Curl-free vector RBF interpolants are constructed in a similar fashion to the div-free

ones, the only difference being that G is applied instead of L in the construction of

the matrix kernel. Given a scalar RBF φ and using a derivation similar to (3.4), Φcurl

is given as

Φcurl(x,y) = GxG
T
yφ (‖x− y‖) = −Px

(
∇∇Tφ (‖x− y‖)

)
Py, (3.11)

where we have used the fact that the Px matrix in (3.2) is symmetric. For any c ∈ R3

and fixed y ∈ P , the vector field Φcurl(x,y)c is tangential to P and curl-free in x.

This follows from Proposition 3.2.1 since

Φcurl(x,y)c = Px∇
(
−∇Tφ (‖x− y‖)Pyc

)
= G(ϕ(x)). (3.12)

As with the div-free kernel (3.5), the second argument of Φcurl acts as a shift of the

kernel and indicates where the field Φcurlc is “centered”.

Interpolants to a curl-free tangential vector field u : P −→ R3 sampled at distinct
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points X = {xj}Nj=1 ⊂ P are constructed from Φcurl as

s(x) =
N∑
j=1

Φcurl(x,xj)cj, (3.13)

where the coefficients cj ∈ R3 are tangent to P at xj and are chosen so that s
∣∣
X

= u
∣∣
X

.

The procedure for determining these coefficients is identical to the div-free case, one

just needs to replace Φdiv with Φcurl in (3.7) & (3.8). The matrix from the linear

system (3.8) with Φcurl is similarly positive definite for the same φ. Further, a scalar

potential ϕ can also be extracted from the curl-free field (3.13) using (4.2):

s(x) = Px∇︸︷︷︸
G

(
−

N∑
j=1

∇Tφ (‖x− xj‖)Pxjcj︸ ︷︷ ︸
ϕ(x)

)
= G(ϕ(x)). (3.14)

In the Euclidean case Rd, the curl-free kernel is simply given as Φcurl(x,y) =

−∇∇Tφ(‖x − y‖) [22], where ∇ is the d-dimensional gradient. The interpolation

conditions s
∣∣
X

= u
∣∣
X

also lead to the simplified linear system for the expansion

coefficients cj ∈ Rd:

N∑
j=1

Φcurl(xi,xj)cj = ui, i = 1, 2, . . . , N, (3.15)

which is dN -by-dN . A scalar potential ϕ for the vector interpolant can be extracted
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as

s(x) = ∇
(
−

N∑
j=1

∇Tφ (‖x− xj‖) cj︸ ︷︷ ︸
ϕ(x)

)
. (3.16)

3.3 A div-free/curl-free partition of unity method

The cost associated with solving the linear systems (3.8) and (3.15) is O(N3), which

is prohibitively high when the number of nodes N in X is large. In this section,

we develop a partition of unity method (PUM) that requires solving several linear

systems associated with subsets X` of X with n` << N nodes, which reduces the

computational cost significantly regardless of the nature of the RBF used.

3.3.1 Partition of unity methods

Let Ω ⊂ Rd be an open, bounded domain of interest for approximating some function

f : Ω −→ R. Let Ω1, . . . ,ΩM be a collection of distinct overlapping patches that

form an open cover of Ω, i.e., ∪M`=1Ω` ⊇ Ω, and let the overlap between patches

be limited such that at most K << M patches overlap at any given point x ∈ Ω.

For each ` = 1, . . . ,M , let w` : Ω` −→ [0, 1] be a weight function such that w` is

compactly supported on Ω` and the set of weight functions {w`} have the property

that
∑M

`=1 w` ≡ 1. Suppose s` is some approximation to f on each patch Ω`. The

partition of unity approach of Babuška and Melenk [3] is to form an approximant s

to f over the whole domain Ω by “blending” the local approximants s` with w` via

s =
∑M

`=1w`s`.

When samples of f are given at N “scattered” nodes X = {xj}Nj=1 ⊂ Ω, RBF

interpolants are a natural choice for the local approximants s`, as pointed out in [3].
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RBF-PUM was first explored for interpolation in 2002 by Wendland [43] and Lazzaro

and Montefusco [31], and then later in 2007 by Fasshauer [17, Ch. 29]. More recent

work has explored various aspects of the method in terms of applications, methods,

and implementations, especially by Cavoretto, De Rossi, and colleagues (e.g., [7, 8, 9]),

and also extensions to problems on the sphere [6, 40]. Additionally, the method has

been adapted for approximating the solution of partial differential equations (e.g., [38,

41, 30, 1]).

Common choices for the patches in RBF-PUM are disks for problems in R2, spher-

ical caps for problems on S2, and balls for problems in R3, and these are the choices

we use throughout this paper. Figure 3.1 gives an example of a set of patches for a

problem in R2. Techniques for choosing the patches are discussed in, e.g., [9, 30, 40]

(see Section 3.3.3 for more discussion).

Based on the choices of patches, the weight functions w` can be constructed using

Shepard’s method as follows. Let κ : R+ → R have compact support over the interval

[0, 1). For each patch Ω`, let ξ` denote its center and ρ` denote its radius, and define

κ`(x) := κ (‖x− ξ`‖/ρ`). The weight functions are then given by

w`(x) = κ`(x)/
M∑
j=1

κj(x), ` = 1, . . . ,M.

Note that each w` is only supported over Ω` and that the summation on the bottom

only involves terms that are non-zero over patch Ω`, which is bounded by K. Fig-

ure 3.1 (b) illustrates one of these weights functions for the example domain in part
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(a), where κ is chosen as the C1 quadratic B-spline

κ(r) =


1− 3r2, 0 ≤ r ≤ 1

3
,

3
2
(1− r)2, 1

3
≤ r ≤ 1.

(3.17)

This is the weight function we use throughout the paper.

(a) (b)

Figure 3.1 (a) Illustration of partition of unity patches (outlined in blue 
lines) for a node set X (marked with black disks) contained in a domain Ω 

(marked with a dashed line). (b) Illustration of one of the PU weight 
functions for the patches from part (a), where the color transition from 

white to yellow to red to black correspond to weight function values from 0 
to 1.

3.3.2 Description of the method

A first approach at a vector RBF-PUM may be to construct local vector approximants

s` for the patches Ω` that make up the PU using either (3.6) for div-free fields or

(3.13) for curl-free fields. These approximants can then be “blended” into a global
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approximant for the underlying field:

s =
M∑
`=1

w`s`. (3.18)

The issue with this approach is that s will not necessarily inherit the div-free or

curl-free properties of s` because of the multiplication by the weight functions w`.

We instead use the local scalar potentials that are recovered from each s` and then

blend those together. A div-free or curl-free approximant can then be recovered by

applying the appropriate differential operator to the blended potentials. Since the

essential ingredients are very similar for all the kernels treated from Section 3.2, for

brevity we describe the method only for the div-free case in R2 and mention any

relevant differences as needed.

Let X` denote the nodes from X ⊂ R2 that belong to patch Ω`, and let s` denote

the div-free RBF interpolant (3.6) to the target div-free field u over X`. Our interest

is also in the scalar potential for each interpolant given in (3.10), which we denote as

ψ`. While we could try to construct a global PU approximant for the scalar potential

of the field ψ and then apply the operator L to the result, we would immediately

run into problems since the scalar potentials are only unique up to a constant. This

means that for two patches Ω` and Ωk that overlap, ψ` and ψk could be off up to

the addition of a constant in the overlap region and thus lead to an inaccurate PU

approximant. To rectify this situation, we need to “shift” each ψ` by a constant b`

such that ψ` + b` ≈ ψk + bk if Ω` and Ωk overlap.

To summarize, the main steps of the div-free PUM are as follows:

1. On each patch Ω`, compute a divergence free interpolant x` and extract its
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(a) (b)

Figure 3.2 Div-free RBF partition of unity approximant of the 
potential from Section 3.5.1 (a) without the patch potentials shifted (ψk) 

(b) with the patch potentials shifted (ψ̃k).

scalar potential ψ` using (3.10).

2. Determine constants {b`}M`=1 such that ψ̃` := ψ` + b` ≈ ψk + bk =: ψ̃k whenever

Ω` ∩ Ωk 6= ∅.

3. Blend the shifted potentials with the PU weight functions to obtain a global

approximant for the underlying potential:

ψ̃(x) :=
M∑
`=1

w`(x)ψ̃`(x). (3.19)

4. Apply L to ψ̃ to obtain a global div-free approximant to the underlying field:

s̃(x) :=
M∑
`=1

L
(
w`(x)ψ̃`(x)

)
=

M∑
`=1

w`(x)s`(x) +
M∑
`=1

ψ̃`(x)L(w`(x)). (3.20)

Note that the second term in the last equality acts as a correction to the PU approx-

imant formed by just blending the div-free RBF interpolants. Figure 3.2 illustrates



77

the necessity of shifting the patch potentials by way of an example from Section 3.5.1.

The figure shows a div-free RBF-PU approximant of a potential when the local patch

potentials are not shifted (i.e., using ψ` in (3.19) rather than ψ̃`) and when they are

shifted.

We now turn our attention to determining the constants {b`}M`=1 for shifting the

potential. If Ω` and Ωk overlap, then let x̄k` denote the center of the overlap region:

x̄k` := (ρkξ` + ρ`ξk)/(ρk + ρ`), where ` < k to avoid redundancy; see Figure 3.3 for

an illustration. We refer to these points at the “glue points” since they are where

Figure 3.3 Illustration of the glue points for shifting the potentials. The 
asterisks denote the glue points and the small circles denote the patch 

centers.

we will glue the potentials between neighboring patches to each other. We denote

the collection of all such points by X̄ := {x̄`k | Ω` ∩ Ωk 6= ∅, ` < k} = {x̄i}iL=1,

where L = |X̄ | and we have reindexed the set so that each x̄i = x̄`k for some unique 

overlapping pair of patches Ω` and Ωk. On this set we want to impose the conditions

ψ`(x̄`
k) + b` =ψ k(x̄`

k) + bk
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for some constants b`, ` = 1, . . . ,M , which we refer to as the “potential shifts”. This

can be arranged into a sparse L-by-M over-determined linear system

Pb = c (3.21)

with the following properties. The L-by-M matrix P is sparse with two non-zeros per

row: the ith row, where x̄i corresponds to x̄k` , has a 1 in the `th column and a −1 in

the kth column. The vector b contains the potential shifts, and the vector c is given

by ci = ψk(x̄i)− ψ`(x̄i) = ψk(x̄
k
` )− ψ`(x̄k` ). The matrix P also has rank M − 1. This

follows since P is the (oriented) incidence matrix for the graph with vertices being

the patch centers Ω` and edges corresponding to non-empty intersections of patches.

Based on the assumption that {Ω`}M`=1 is an overlapping open covering, this graph is

connected, so rank(P ) = M − 1 [12, Thm. 10.5]. In the next section we discuss the

procedure we use to determine the potential shifts from (3.21).

Remark. The procedure described above works exactly the same for curl-free fields

in R2 and R3 using (4.6) for the interpolants and potential fields on each patch. The

procedure also extends to more general surfaces P for div-free fields (using (3.10))

and curl-free fields (using (3.14)). However, in this case determining the glue points

can be more difficult, but for P = S2, this is trivial.

3.3.3 Implementation details

We now discuss how the patches {Ω`}M`=1 are chosen as well as how one might compute

the potential shifts from the system (3.21). In what follows, we assume that the

nodes X are quasiuniformly distributed (i.e., have low discrepancy) in the underlying
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domain Ω, so that the mesh-norm for X,

h := sup
y∈Ω

min
x∈X

dist(x,y), (3.22)

satisfies h = O(1/ d
√
N), where d is the dimension of Ω. We also assume that there is a

signed distance function for the domain to distinguish the interior from the exterior.

Patch centers

To determine the patches {Ω`} for domains in R2 and R3, we use an approach similar

to the one described in [30]. The idea is to start with a regular grid structure of

spacing H that covers the domain Ω of interest and then remove the grid points that

are not contained in the domain. The remaining grid points are chosen as the patch

centers {ξ`}M`=1. Next, an initial radius ρ is chosen proportional to H so the patches

{Ω`}M`=1 form an open cover and there is sufficient overlap between patches (specifics

on this are given below). Finally, for any node in X that is not contained in one

of the patches, the nearest patch center ξj is determined and the radius ρj for that

patch is enlarged to enclose the node. We perform all range queries on patch centers

using a k-d tree.

For domains in R2, we choose the initial grid structure for the patch centers as

regular hexagonal lattice of spacing H. Neighboring patches will not overlap if the

initial radius is less than or equal to H/2. Therefore, to guarantee overlap, we set

the initial radii for the patches to ρ = (1 + δ)H/2, where δ > 0. See Figure 3.1 for an

illustration of the patches chosen using this algorithm for δ = 1/2. For domains in

R3, we choose the initial grid structure for the patch centers as a regular Cartesian

lattice of spacing H. In this case, neighboring patches along the longest diagonal
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directions will not overlap if the initial radius is less than or equal to
√

3H/2. To

guarantee overlap, we thus set the initial radii for the patches to ρ = (1 + δ)
√

3H/2.

To determine the patches for S2, we use an approach similar to the one described

in [40]. The idea is to use M quasi-uniformly spaced points on S2 for the set of patch

centers. We choose these as near minimum energy (ME) point sets [28], and use the

pre-computed near ones from [46]. For a set with M points, the average spacing H

between the points can be estimated as H ≈
√

4π/M . We select a value of H and

then determine M as M = d4π/H2e. Since the ME points are typically arranged in

hexagonal patterns (with a few exceptions [28]), we choose the radius for each patch

as ρ` = (1 + δ)H/2, where the parameter δ again determines the overlap.

To keep the overall cost under control, the initial radii of the patches H should

decrease as N increases. The rate at which H should decrease can be determined

as follows. Assuming that the patches that intersect the boundary have similar radii

to the interior patches, and using the assumption that X is quasiuniform, a simple

volume argument gives that number of nodes in each patch satisfies n = O(ρdN) =

O(HdN), where d is the dimension of Ω. So, to keep the work roughly constant per

patch, we need H = O(1/N1/d). In our implementation of the vector PUM, we choose

H = q (A/N)1/d , (3.23)

where A is related to the area/volume of Ω, and q is a parameter that controls the

average number of nodes per patch. Note that from the above analysis, the compu-

tational cost increases as the overlap parameter increases and as q increases. Based

on the assumptions on X and the patches, choosing H according to (3.23) results

in a computational cost of O(N) for constructing the vector PUM approximants,
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and O(N logN) for the range queries involved for determining the patch structure.

However, in practice, the cost is dominated by the former part of the method.

Potential shifts

Since rank(P ) = M − 1 and its nullspace consists of constant vectors, we first set

one of the shifts bj to zero, for some 1 ≤ j ≤ M , and then compute the remaining

shifts using the least squares solution of (3.21). For this problem we can form the

normal equations directly since the matrix P TP is just a graph Laplacian (recall P is

an oriented incidence matrix). We have found that the accuracy of the reconstructed

field (3.20) can often be improved if a weighted least squares approach is used. In this

case, we use a diagonal weight matrix W with entries that depend on the distance

between the glue points and the patch centers. Specifically, we set ri as the closer of

the two distances between the ith glue point x̄i and the centers of the two patches it

was formed from, and then set

Wii = exp

(
−γ
(

1− ri
rmin

)2
)
, (3.24)

where rmin = minj rj and γ > 0. The normal equations in this case now look like a

weighted graph Laplacian.

3.4 Error Estimates

The error bounds will be expressed in terms of local mesh norms h`, which are given

by (3.22), with Ω = Ω` and X = X`. Error rates for RBF interpolation, including

divergence-free (curl-free) RBF approximation, both in flat space and on the sphere,

have been known for some time. Many of these estimates are valid for target functions
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within the native space, which we denote by N (Ω), of the RBF used - which for

infinitely smooth RBFs are subspaces of analytic functions and for kernels of finite

smoothness are essentially Sobolev spaces (with norms equivalent to Sobolev norms

on bounded subsets)2. For the RBF kernels considered here, there is a continuous

embedding from the native space into a Sobolev space of order τ > d/2. In this

situation we get the estimate below.

Proposition. Suppose that u ∈ N (Ω) and that each Ω` ⊂ Ω satisfies an interior

cone condition with angle independent of `. Then there is a constant C independent

of diam(Ω`) such that

‖u− s`‖L∞(Ω`) ≤ C E(h`)‖u‖N (Ω`),

where E(h) = hτ−d/2 for some τ > d/2 if the kernel has finite smoothness, and

E(h)→ 0 faster than any fixed hτ if the kernel is infinitely smooth.

Proof. Estimates like these have been worked out for div/curl-free RBFs on subsets

of Rd and on S2 [22, 23, 25]. We should however address that in the papers referenced

the domain was fixed - but here the size of the domain Ω` should scale with h`, so we

should briefly review why the constant C does not depend on the size of the domain

Ω`.

First, note that the function u − s` will be zero on X`. On domains satifying

an interior cone condition, in the Euclidean case and on surfaces, we may therefore

2See [44, Ch. 10] for native spaces of scalar valued functions, and see [21, 23] for the vector cases
on Rd and the sphere.
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employ a “zeros lemma” in each coordinate function to get3 inequalities of the form:

‖u− s`‖L∞(Ω`) ≤ Ch
τ−d/2
` ‖u− s`‖Hτ (Ω`),

where Hτ (Ω`) denotes the space of tangent vector fields with each coordinate function

in the Sobolev spaceHτ (Ω). In these results, the constant only depends on the domain

by way of the angle of an interior cone condition, i.e., C depends on the geometry of

the domain and not its size [27, Theorems A.4 and A.11].

Next, since u ∈ N (Ω), then u ∈ N (Ω`) and there is an isometric extension

E : N (Ω`)→ N (Ω) such that ‖Eu‖N (Ω) = ‖u‖N (Ω`) (see [44, Theorem 10.46,10.47]4).

With this, since N (Ω) is continously embedded in Hτ (Ω) for some τ > d/2, we get

‖u− s`‖Hτ (Ω`) = ‖Eu− sEu,`‖Hτ (Ω`) ≤ ‖Eu− sEu,`‖Hτ (Ω) ≤ C‖Eu− sEu,`‖N (Ω),

where we write sEu,` = s` to emphasize that the interpolant on X` of the extension is

also s`. Note that the constant here may depend on Ω, but not on Ω`. Finally, it is

well-known that the interpolation error is always orthogonal to the kernel interpolant

in the native space, which implies the bound

‖Eu− sEu,`‖N (Ω) ≤ ‖Eu‖N (Ω) = ‖u‖N (Ω`),

where the last equality follows because E is an isometry. This completes the proof.

In addition to the estimate above, our arguments that follow will also rely on the

3See, for example, the Appendix in [27]
4The theorems referenced are given in the Euclidean scalar-valued context, but the arguments

are general enouch to apply to matrix valued positive definite kernels on any set.
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Mean Value Theorem, which for a scalar function ψ and x,y ∈ Rd we express as

|ψ(x)− ψ(y)| ≤ |∇(ψ)|x∗ | dist(x,y),

where x∗ is on the line segment between x and y. Here we use the notation | · |

to denote the Euclidean length when the argument is a vector. To derive a similar

estimate on surfaces, let x,y ∈ P and let γ : [0, distP(x,y)] → P denote a shortest

path in P connecting x and y with γ(0) = x, γ(distP(x,y)) = y, parameterized by

arclength. This implies that γ′ is tangent to P and |γ′| = 1. Applying the single

variable Mean Value Theorem to the real-valued function ψ ◦ γ implies that

|ψ(x)− ψ(y)| ≤ |∇ψ · γ′|t∗ |distP(x,y),

where t∗ ∈ [0, distP(x,y)]. Since γ′ is tangent to P and has length 1, we get |∇ψ ·γ′| =

|Gψ · γ′| ≤ |Gψ|. Combining the above with the fact that |G(ψ)| = |L(ψ)| gives us

the following

|ψ(x)− ψ(y)| ≤ |G(ψ)|x∗| distP(x, y) = |L(ψ)|x∗| distP(x, y), (3.25)

where x∗ ∈ P .

Before proceeding we summarize some of the important assumptions on the par-

tition of unity. Recall that each x ∈ Ω is covered by only a small number of patches

(say at most K patches). We also assume that the number of patches that intersect

a given patch is uniformly bounded by some constant m. Additionally, we suppose

that there are roughly the same number of nodes in each patch, and that the node
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distribution in each patch is quasi-uniform. This leads to an estimate of the form

ch` ≤ diam(Ω`) ≤ Ch` for some constants c, C independent of `. Lastly, we assume

that the partition is “1-stable” (see [44][Def. 15.16]), meaning that first order deriva-

tives of the weight functions satisfy a bound of the form |∇w`| ≤ C(diam(Ω`))
−1,

where C is some constant independent of `. This with the quasi-uniformity supposi-

tion gives the bound |∇w`| = |Lw`| ≤ Ch−1
` for some C independent of `.

Now we give an estimate for the pointwise error of the divergence-free approximant

in a two dimensional domain. Note that the bound is local in the sense that it

comprised of a local interpolation error plus an expression involving the residuals

rk` := ψ̃`(x̄
k
` )− ψ̃k(x̄k` ) from adjusting neighboring potential functions.

Theorem 1. Given a div-free vector field u = L(ψ) ∈ N (Ω), let ψ̃ and s̃ = L(ψ̃)

denote the PUM approximants from (3.19) and (3.20). Then the error at x ∈ Ω

satisfies

∣∣∣G(ψ̃ − ψ)(x)
∣∣∣ =

∣∣∣L(ψ̃ − ψ)(x)
∣∣∣ = |u(x)− s̃(x)|

≤ mC max
` |x∈Ω`

(
E(h`)‖u‖N (Ω`)

)
+ C

∑
`|x∈Ω`, ` 6=k

h−1
` |r

k
` |, (3.26)

where k is any index such that x ∈ Ωk.

Proof. The first equality follows from the fact that Gf and Lf have the same mag-

nitude. Next, note that

s̃ =
∑
`

w`s` +
∑
`

L(w`)ψ̃`. (3.27)

The first term is a weighted average of RBF interpolants to u and the weight functions
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sum to 1, so we have

∣∣∣∣∣u(x)−
∑
`

w`(x)s`(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
`

w`(x)u(x)−
∑
`

w`(x)s`(x)

∣∣∣∣∣ ≤∑
`

w`(x)|u(x)− s`(x)|

≤
∑
`

w`(x)CE(h`)‖u‖N (Ω`) = C max
` |x∈Ω`

E(h`)‖u‖N (Ω`).

To complete the proof we need to bound the second term in (3.27). Given x ∈ Ω,

fix a k such that x ∈ Ωk. Since
∑

L(w`) = 0 and w`(x) = 0 for x /∈ Ω` we get

∑
`

L(w`)ψ̃`(x) =
∑

` |x∈Ω`

L(w`)
(
ψ̃`(x)− ψ̃k(x)

)
.

This and our assumptions on the weight functions give us the estimate

∣∣∣∣∣∑
`

L(w`)ψ̃`(x)

∣∣∣∣∣ ≤ ∑
` |x∈Ω`

Ch−1
`

∣∣∣ψ̃`(x)− ψ̃k(x)
∣∣∣ . (3.28)

If ` = k, the corresponding term in the sum is zero. If ` 6= k, we let g := ψ̃`− ψ̃k and

x̄k` be the adjustment point for Ω` and Ωk, we can rewrite

ψ̃`(x)− ψ̃k(x) = g(x)− g(x̄k` ) + g(x̄k` ) = g(x)− g(x̄k` ) + rk` .

To bound g(x)− g(x̄k` ), we use (3.25) and the fact that L(g) = s` − sk to get

|g(x)− g(x̄k` )| ≤ ‖L(g)‖L∞(Ωk∩Ω`)dist(x, x̄k` ) ≤ ‖L(g)‖L∞(Ωk∩Ω`)h`

≤ h`
(
‖s` − u‖L∞(Ωk∩Ω`) + ‖u− sk‖L∞(Ωk∩Ω`))

)
≤ Ch`

(
E(h`)‖u‖N (Ω`) + E(hk)‖u‖N (Ωk)

)
,
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which when applied to (3.28) gives

∣∣∣∣∣∑
`

L(w`)ψ̃`(x)

∣∣∣∣∣ ≤ ∑
`|x∈Ω`, ` 6=k

C
(
E(h`)‖u‖N (Ω`) + E(hk)‖u‖N (Ωk)

)
+ Ch−1

` |r
k
` |

≤ mC max
` |x∈Ω`

E(h`)‖u‖N (Ω`) + C
∑

`|x∈Ω`, ` 6=k

h−1
` |r

k
` |.

The result follows.

Note that very similar arguments follow through also for curl-free vector fields on

surfaces, i.e. an estimate identical to (3.26) holds for the curl-free case. The proof

also carries directly over to Rd - namely if u = ∇ϕ, and s̃ = ∇ϕ̃ denotes the curl-free

RBF-PUM approximant, one has an estimate of the form

|∇(ϕ̃− ϕ)(x)| = |u(x)− s̃(x)| ≤ mC max
` |x∈Ω`

(
E(h`)‖u‖N (Ω`)

)
+ C

∑
`|x∈Ω`, ` 6=k

h−1
` |r

k
` |.

Now we discuss the residual in shifting the local potentials. We begin by showing

that good constants for the shifts exist.

Proposition. Let s` = Lψ` be the local RBF interpolant on X` ⊂ Ω` and let X̄` =

X̄ ∩ Ω` be the collection of glue points on Ω`. Given any v such that u = L(v), the

constant

b∗` :=
1

|X̄`|
∑
y∈X̄`

v(y)− ψ`(y)

gives

‖ψ` + b∗` − v‖L∞(Ω`) ≤ Ch`E(h`)‖u‖N (Ω`).

Proof. Let x ∈ Ω`. First we apply the triangle inequality and the Mean Value Theo-
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rem to obtain

|ψ`(x) + b∗` − v(x)| ≤ 1

|X̄`|
∑
y∈X̄`

|ψ`(x)− v(x)− (ψ`(y)− v(y))|

≤ 1

|X̄`|
∑
y∈X̄`

‖sj − u‖L∞(Ω`)
dist(x,y).

Next, an application of Proposition 3.4 and the fact that diam(Ω`) ≤ Ch` finishes

the proof.

Letting r∗ := Pb∗ − c, i.e., the residual in the system (3.21) using the shifts given

in the above proposition, with a triangle inequality and using the fact that hk ∼ h`

for neighboring patches, we get

(r∗)k` ≤ Ch`E(h`)‖u‖N (Ω`) + Ch`E(hk)‖u‖N (Ωk). (3.29)

Applying this to the residual term from (3.26) becomes:

∑
`|x∈Ω`, ` 6=k

h−1
` (r∗)k` ≤ mC max

` |x∈Ω`
E(h`)‖u‖N (Ω`) (3.30)

Thus if the shifts are chosen appropriately the method can achieve the same approxi-

mation order as that of local interpolation. However, we compute the shifts according

to the overdetermined (3.21). The residual from that system satisfies the following.

Proposition. Let b be the least squares solution to (3.21). The residual r := Pb− c

satisfies the bound

|r|2 ≤ mC
∑
`

h2
`E(h`)

2‖u‖2
N (Ω`)

.
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Proof. Choose any scalar potential v such that u = L(v), and let b∗ be the vector

whose `th element is b∗` as defined in Proposition 3.4. Then we have |r| ≤ |r∗|. Next,

we square the left-most inequality in (3.29) and estimate further to get

((r∗)k` )
2 ≤ C

(
E(h`)

2h2
`‖u‖2

N (Ω`)
+ E(hk)

2h2
k‖u‖2

N (Ωk)

)
. (3.31)

Now sum the estimate over all glue points, and note that each Ω` (and Ωk) will appear

in the sum at most m times (the maximum number of patches that intersect any given

patch). This gives the result.

In an attempt to bound the error solely in terms of the point distribution and

target function, let us look at an application of this estimate to the residual term

from (3.26). For simplicity, assume that all h` ∼ h for all h`. Since there are at most

m terms in the sum, a Cauchy-Schwarz inequality gives

∑
`|x∈Ω`, ` 6=k

h−1
` |r

k
` | ≤ h−1

√
m|r| ≤ CmE(h)

√∑
`

‖u‖2
N (Ω`)

.

Due to the sum over all patches, this bound may or may not match the expected

error rates. A very rough estimate would introduce a factor of
√
M , where M is the

number of patches. In the quasi-uniform case, a volume argument gives
√
M ∼ h−d/2.

Thus a worst-case scenario is that the method converges according to E(h)h−d/2.

However, numerical experiments suggest that the errors decay according to E(h) (see

for example Section 3.5.2) and do not seem to depend on the number of patches -

which suggests that the estimate E(h)h−d/2 is pessimistic. We conjecture that the

correct error rate is indeed E(h).
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3.5 Numerical experiments

In this section, we numerically study the vector RBF-PUM for three different test

problems: a div-free field in a star-shaped domain in R2, a div-free field on S2, and

a curl-free field in the unit ball in R3. For each of these cases, we numerically test

the convergence rates of the method and compare them to the estimates from Section

3.4. The point sets we use in the experiments are all quasiuniform, so rather than

compute the mesh-norm h and use this to measure convergence rates, we simply use

h ∼ N−1/d.

To illustrate the different convergence rates that are possible, we use the inverse

multiquadric (IMQ) kernel φ(r) = 1/
√

1 + (εr)2 and the Matérn kernel φ(r) =

e−εr
(
1 + (εr) + 3

7
(εr)2 + 2

21
(εr)3 + 1

105
(εr)4

)
. The latter kernel is piecewise smooth

and the local error from Proposition 3.4, in terms of N , is given by E(N) = (
√
N)−3.5

for d = 2 (see [25] for more details). The IMQ kernel is analytic and therefore the

local error decreases faster than any algebraic rate. For scalar interpolation with the

IMQ, the local error estimate is E(N) = e−C log(N)N1/2d
[37], where C > 0 is a con-

stant. We demonstrate that this also appears to be the correct rate for the vector

case. While the error estimates are in terms the ∞-norm, we also include results on

the 2-norm for comparison purposes. Since we are interested in demonstrating the

convergence rates from the theory, we fix the shape parameter ε in all the tests, as

using different ε on a per patch level will lead to different constants in the estimates.

The values were selected so that conditioning of the linear systems (3.8) (or (3.15))

is not an issue. Choosing variable shape parameters in scalar RBF-PUM is explored

in [10] and may be adapted to the current method, but we leave that to a separate

study. For brevity we report results for one kernel per example, with the IMQ ker-
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nel used for the first and third test and the Matérn used for the second. However,

we note that the estimated convergence rates for each kernel were consistent with

the theory across all tests. Finally, we set the weighted least squares parameter in

(3.24) to η = 4. This value produced good results over all the numerical experiments

performed.

All results were obtained from a MATLAB implementation of the vector RBF-

PUM method executed on a MacBook Pro with an Intel i7 dual-core 3.5 GHz processor

and 16 GB RAM. No explicit parallelization was implemented.

3.5.1 Div-free field on R2

The target field and domain for this numerical test are defined as follows. Let the

potential for the field be

ψ(1)(x) = −2g(27
2
‖x‖4)− 1

2
g(27‖x‖2)− 2

4∑
j=0

g(9‖x− ξj‖2), (3.32)

where ξj = (cos(2πj/5 + 0.1), sin(2πj/5 + 1
2
)) and

g(r) = exp(r)/(1 + exp(r))2. (3.33)

The target domain is set from the potential as Ω(1) = {x ∈ R2|ψ(1)(x) ≤ − 1
10
}, and

target div-free vector field is u
(1)
div = Lψ(1). This gives a star-like domain with a non-

trivial field that is tangential to ∂Ω; see Figure 3.4 for a visualization of the potential

and field.

The node sets X for this test were initially generated from DistMesh [36], but

then perturbed by a small amount to remove any regular structures. The sizes of

the node sets for the tests are N = 11149, 17405, 30943, 44570, and 69635. We
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Figure 3.4 Contours of the potentialψ (1) (left) and corresponding div-free

velocity field u (1)
div (right) for the numerical experiment on R2.

estimate A in (3.23) to be 6, and use an overlap parameter for the patches of δ = 1/2.

We test three different values of q to see how the errors are effected by increasing

the nodes per patch. For q = 6, 8, 10, there are an average of 63, 112, 173 nodes

per patch, respectively. The boundaries create some variability in the nodes per

patch and lead to minimum values of 32, 57, 85 and the maximums of 109, 191, 300,

respectively. As mentioned above, we only report results for the IMQ kernel, for

which the shape parameter is set to ε = 13 for all tests. Errors in the approximations

of the target potential and field are computed at a dense set of 94252 points over

the domain. Errors in the approximation of the target potential are computed after

first normalizing the approximant and the potential to have a mean of zero over the

evaluation points. For each N and q, the error reported is the average of the∞-norm

(2-norm) errors using 20 different random perturbations of the initial node set X.

This reduces large spreads in the errors caused by particularly good and bad samples

of the target field.

Figure 3.5 displays the relative ∞-norm and 2-norm errors in the approximation
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(1)
div

Figure 3.5 Convergence results for the numerical experiment on the 
star domain in R2 for the IMQ kernel and different values of q. Filled (open)

markers correspond to the relative ∞-norm (2-norm) errors and solid

(dashed) lines indicate the fit to the estimate E(N) = e−C log(N)N1/4 
, with-out 

the first values included.

of the target potential and field as a function of log(N)N1/4. Included in the figures are 

the lines of best fit to the errors using the error estimate E(N) = e−C log(N)N1/4 
from 

scalar RBF theory. We see from the figure that this error estimate provides a good fit to 

both the ∞-norm and 2-norm errors for the potential and the field. The ∞-norm errors 

for the potential have more variability especially for q = 6, but the 2-norm errors are 

quite consistent. As expected, the errors in reconstructing the

potential are lower than those for reconstructing the field, and the 2-norm errors are 

lower than the ∞-norm errors. Increasing q leads to a consistent decrease in the

2-norm errors, but the decrease is more variable for the ∞-norm errors.
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3.5.2 Div-free field on S2

Let x = (x, y, z) ∈ S2, and the potential for the target field be defined as

ψ(2)(x) = − 1

1 + e−20(z+1/
√

2)
− 1

1 + e−20(z−1/
√

2)
− 3

5∑
j=0

(−1)jg(‖x− yj‖2, aj), (3.34)

where g is given in (3.33), yj = (cos(λj) cos(θj), sin(λj) cos(θj), sin(θj)) for {λj}5
j=0 =

{0.05,1.1,2.12, 3.18,4.22,5.26} and {θj}5
j=0 ={0.79,−0.82,0.76,−0.81,0.8,−0.77}, and

aj = 4 + j/2. The div-free field is then given as u
(2)
div = Lψ(2). The values used in

(3.34) were chosen to produce a zonal jet in the mid-latitudes with three superim-

posed vortices in each of the northern and southern hemispheres; see Figure 3.6 for a

visualization of the potential and field.
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-1

-0.5

0

Figure 3.6 Contours of the potentialψ (2) (left) and corresponding div-free

velocity field u
(2)
div (right) for the numerical experiment on S2.

The node sets X for this test are chosen as Hammersley nodes, which give quasi-

uniform, but random sampling points for S2 [46]. The sizes of the node sets for the

tests are N = 10000, 15000, 20000, 30000, 40000, 50000 and 60000. We use A = 4π

in (3.23) and set the overlap parameter to δ = 9/16. We again use three different
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Figure 3.7 Convergence rates for the numerical experiment on S2 for 
the Matérn kernel and different values of q. Filled (open) markers correspond 
to the relative ∞-norm (2-norm) errors and solid (dashed) lines √indicate the 
lines of best fit to the ∞-norm (2-norm) errors as a function of N on a loglog 
scale. The legend indicates the slopes of these lines with the first number 

corresponding to the ∞-norm and the second the 2-norm, which give 
estimates for the algebraic convergence rates.

values of q to see how the errors are effected by increasing the nodes per patch. For q = 

6, 9, 12, there are an average of 63, 143, 252 nodes per patch, respectively. Since

there are no boundaries for this domain, the number of nodes per patch is much more

consistent across all patches. The minimum nodes per patch are 58, 137, 245 and the

maximums are 69, 150, 261, respective to the q values. For this example, we only re-

port results for the Matérn kernel, for which the shape parameter is set to ε = 7.5 for

all tests. Errors in the approximations of the target potential and field are computed

at a quasiuniform set of 92163 points over S2. Errors in the approximation of the

target potential are again computed after first normalizing the approximant and the

potential to have a mean of zero over the evaluation points. Similar to the previous
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experiment, for each N and q, the error reported is the average of the ∞-norm (2-

norm) errors from 20 different random rotations of the initial Hammersley node set

X.

1 2 3 4 5 6

10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3.8 Timing results for the numerical experiment on S2 with differ-
ent values of q. The dashed lines are the lines of best fit to the timings using 

all but the first two values.

Figure 3.7 displays the relative ∞-norm and 2-norm errors in the approximation of 

the target potential and field as a function of N1/2. Included in the figure are the lines 

of best fit to the log of the errors vs. the log of N1/2 for each q, and the slopes of these 

lines are reported in the legend of the figure (where the first number is for ∞-norm and 

second for the 2-norm). We see from this figure that the computed rates of convergence 

for the ∞-norm are slightly higher than the theoretical rate of −3.5.

Thus the residual estimate from Proposition 3.4 is not leading to a reduction in the 

convergence rates as discussed at the end of Section 3.4. We also see from the figure

that the estimated rates for the 2-norm errors are higher than the ∞-norm errors as 

one would expect. Finally, similar to the previous experiment, we see that the errors

in reconstructing the potential are lower than those for reconstructing the field.
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We also display the timing results for this experiment in Figure 3.8 for running

the entire algorithm with 20164 evaluation points. We see from the data and the

corresponding lines of best fit that the complexity appears to be O(N). The predicted

O(N logN) complexity is most likely not visible over the range of N considered.

3.5.3 Curl-free field on the unit ball

The target curl-free field for this test is generated as follows. Let g(r, a) = (a+r2)−1/2

and define the following potential:

ψ(3)(x) = −1

4
g(‖x‖, 0.1) +

1

8

1∑
j=1

2g(‖x− ξj‖, 0.04), (3.35)

where {xj}12
j=1 are the vertices of a regular icosahedron with each vertex a distance

of 2/3 from the origin. The target curl-free is then generated by u
(3)
curl = −∇ψ(3).

This field can be interpreted as the (idealized) electric field that is generated from a

negative (smoothed) point charge at the origin, surrounded by 12 positive (smoothed)

point charges, equidistance from one another; see Figure 3.9(a) for a visualization of

the potential and field.

The node sets X for this test are obtained from the meshfree node generator

described in [39], which produces quasiuniform but unstructured nodes in general

domains; see Figure 3.9 (b) for an example of the nodes used for the unit ball. The

sizes of the node sets for the tests are N = 4999, 9103, 19636, 59116, and 158474.

We use A = 4/3π in (3.23) and an overlap parameter of δ = 1/4. We again test three

different values of q: q = 2, 3, 4. For q = 2, the minimum, average, and maximum

nodes per patch are 18, 37, 83, for q = 3 these values are 72, 120, 238, and for

q = 4 these values are 186, 271, 512. As with the first experiment, we only present
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(a) Potential and field (b) Nodes

curl

Figure 3.9 (a) Visualization of the potential ϕ(3) and corresponding curl-

free velocity field u(3) 
= −∇ϕ(3) for the numerical experiment on the unit

ball. (b) Example of N = 4999 node set (small solid disks) used in the nu-
merical experiment on the unit ball, where colors of the nodes are propor-

tional to their distance from the origin (yellow=1, green = 0.5, blue=0). The 
plots in both figures show the unit ball with a wedge removed to aid in the 

visualization.

results for the IMQ kernel, for which the shape parameter is set to ε = 4 for all tests. 

Errors in the approximations of the target potential and field are computed at a set of 

208707 points over the unit ball. Errors in the approximation of the target potential 

are again computed after first normalizing the approximant and the potential to have 

a mean of zero over the evaluation points. Similar to the previous experiments, for

each N and q, the error reported is the average of the ∞-norm (2-norm) errors from 

20 different random rotations of the initial node set X.

Figure 3.10 displays the relative ∞-norm and 2-norm errors in the approxima-

tion of the target potential and field as a function of log(N)N1/6. As in the first

experiment, we have included the lines of best fit to the errors, but now using

E(N) = e−C log(N)N1/6 
. We see from the Figure that the error estimate again gen-
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Figure 3.10 Convergence results for the numerical experiment on the unit

ball in R3 for the IMQ kernel and different values of q. Filled (open) mark-
ers correspond to the relative ∞-norm (2-norm) errors and solid (dashed)

lines indicate the fit to the expected error estimate E(N) = e−C log(N)N1/6 
, 

without the first values included.

erally provides a good fit to both the ∞-norm and 2-norm errors for the potential and 

the field. The ∞-norm errors deviate more from the estimates than the 2-norm errors, 

especially for field in the q = 2 case. However, for this case the minimum number of 

points per patch can be quite small.

3.6 Concluding remarks

We have presented a new method based on div/curl-free RBFs and PUM for approx-

imating div/curl-free vector fields in R2 and S2, and for curl-free fields in R3. The

method produces approximants that are analytically div/curl-free and also produces 

an approximant potential for the field at no additional cost. For quasi-uniform sam-

ples, we have shown how the parameters can be selected so that the computational

complexity of the method is O(N log N). We have proved error estimates for the
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approximants based on local estimates for the div/curl-free interpolants on the PU

patches. We have also demonstrated the high-order convergence rates of the method

on three different test problems with samples ranging from thousands to hundreds of

thousands of nodes—all done on a standard laptop.

While we have only focused on div/curl-free interpolation over local patches, a

future area to explore is to instead use a least squares approach similar to the one

used for scalar RBFs in [30]. Here one can choose fewer centers in the local patches for

the div/curl-free RBFs than data samples, a technique referred to as regression splines

in the statistics literature [17, ch. 19]. This has the benefit of further reducing the cost

of the local patch solves for the approximation coefficients and could provide some

regularization. Another future area to explore is the adaption of stable algorithms

for “flat” RBFs [20, 18] to the div/curl-free RBFs. These algorithms are especially

important in scalar RBF-PUM methods based on smooth RBFs for reaching high

accuracies [30]. Some work has been done along these lines for S2 in [14], but not for

the local setting on patches. A final promising area for future research is in developing

adaptive algorithms for the method along the lines of [10].
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Abstract

Surface reconstruction from a set of scattered points, or a point cloud, has

many applications ranging from computer graphics to remote sensing. We

present a new method for this task that produces an implicit surface (zero-level

set) approximation for an oriented point cloud using only information about

(approximate) normals to the surface. The technique exploits the fundamental

result from vector calculus that the normals to an implicit surface are curl-free.

By using a curl-free radial basis function (RBF) interpolation of the normals, we

can extract a potential for the vector field whose zero-level surface approximates

the point cloud. We use curl-free RBFs based on polyharmonic splines for this

task, since they are free of any shape or support parameters. Furthermore, to

make this technique efficient and able to better represent local sharp features,
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we combine it with a partition of unity (PU) method. The result is the curl-free

partition of unity (CFPU) method. We show how CFPU can be adapted to

enforce exact interpolation of a point cloud and can be regularized to handle

noise in both the normal vectors and the point positions. Numerical results are

presented that demonstrate how the method converges for a known surface as

the sampling density increases, how regularization handles noisy data, and how

the method performs on various problems found in the literature.

4.1 Introduction

The process of reconstructing a surface from a set of unorganized points, or a point

cloud, has been used in a variety of applications, including computer graphics, computer-

aided design, medical imaging, image processing, manufacturing, and remote sensing.

Many common methods developed to address this problem require Hermite data

or “oriented” point clouds, which involve the unstructured points as well as their

corresponding normal vectors. In this paper, we present the Curl-free Radial Basis

Function Partition of Unity (CFPU) method for reconstructing surfaces from Hermite

data.

The principle that this new method is based on comes from the following result

from vector calculus. If f : Rd −→ R defines a zero level set P (i.e. implicit curve

for d = 2 or surface for d = 3) and n is a normal vector to P , then n is curl-

free. This follows since n is proportional to ∇f and the curl of a gradient field is

zero. Given a set of points {x1, . . . ,xN} ⊂ P equipped with oriented normal vectors

{n1,n2, . . . ,nN}, we seek to recover f , such that ∇f ≈ n at every point xj. The

method we use to recover f comes, in part, from a curl-free RBF approximant to the
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normal vectors. These approximants were introduced in [1, 16, 22] for approximating

curl-free fields from scattered samples and have the property that the resulting vector

approximant is analytically curl-free. The key to our method lies in the feature that

a scalar potential can be extracted from these vector approximants and this can be

used to approximate the implicit surface f . Implementing this method globally is

too computationally expensive, requiring the solution of a dN -by-dN system. To

bypass this issue, we follow a similar approach to [18] and combine the technique

with a partition of unity (PU) method. This allows the potential f to be solved

for locally on patches involving n << N points and then to be blended together to

form a global implicit surface for the point cloud. An added benefit of this approach

is that it is better equipped to recover sharp features, which many global methods

lack. Additionally, the method can be adapted to enforce exact interpolation of the

surface and can be regularized to handle noisy data. Finally, we develop a version of

the method that is free of shape or scaling parameters, which are common to other

RBF methods and for which good values are computationally expensive to determine

automatically. This method is based on polyharmonic splines and curl-free vector

polynomials.

The paper is structured as follows. For the remainder of Section 1, we briefly dis-

cuss relevant surface reconstruction methods and compare them to CFPU. In Section

2, we provide background on curl-free RBF approximation and how it can be used

for curve/surface reconstruction. We then introduce the CFPU method in Section

3, along with modifications for exact surface interpolation and regularization. We

discuss computational considerations and results of the CFPU method in Section 4

and Section 5, respectively. Finally, we provide concluding remarks in Section 6.
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4.1.1 Relationship to previous work

Reconstructing a surface from an unorganized point cloud has been extensively stud-

ied in literature since the 90s. Some of the approaches involve signed distance meth-

ods [25, 9], RBF-based methods [35, 37, 40, 43, 47, 52, 32, 34, 11, 50, 55, 12], partition

of unity methods [24, 36, 48, 38], and methods which turn the reconstruction problem

into a Poisson problem [28, 29]. While a comprehensive review of the aforementioned

methods is beyond the scope of this paper, the interested reader is directed to various

survey papers [6, 7, 5]. We will now discuss the methods which are closely related to

CFPU.

The first of these methods expresses the surface reconstruction problem as the

solution to a Poisson equation [28] (the so called indicator function approach [5]).

Similar to CFPU, the Poisson surface reconstruction method relies on the fact that

the normal vectors of an oriented point cloud are the gradient of a potential. These

methods take the divergence of the normal vectors to get a Poisson equation and then

use that to solve for the potential f . One issue with this method is that it requires

computing the divergence of the normal vectors. In contrast, the CFPU method also

uses this property, but instead of solving for f directly, we solve for it indirectly, using

a curl-free RBF approximant to the normal vectors. From the approximant, we are

able to extract out the potential without ever needing to compute derivatives of the

normal vectors. A second issue with the method is that it requires solving a global

Poisson problem to recover the potential, whereas CFPU solves for the potential

locally, making it much more amenable to parallel implementations.

The second surface reconstruction method that is closely related to CFPU is the

HRBF Implicits method [34]. The idea behind this method is to interpolate the
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potential at the point clouds (which is taken to be zero) and the normal vectors

using a Hermite RBF interpolant. Our method, by comparison, only interpolates the

normal vectors using a specially constructed matrix-valued kernel that allows us to

extract a potential for the field directly. This allows us to immediately reduce the

size of the linear systems that need to be solved by 33% for 2D problems and 25%

for 3D problems.

We now review other RBF-based surface reconstruction methods from the litera-

ture that are less closely related to the CFPU method, but are still relevant. Global

RBF methods were initially attractive for modeling surfaces due to their ability to

handle sparse point clouds; however, their global nature restricted their applications

to small problems [12, 44, 49]. Subsequently, RBF-based methods have been de-

veloped which address this issue. Carr et al. introduced a reconstruction method

which requires the addition of “auxiliary” points to the data in an ε-width narrow

band around the surface determined by (possibly approximated) normal vectors to

the surface [11]. This method can be sensitive to the selection of the ε parame-

ter, introducing numerical instabilities into the reconstruction, especially around thin

features [32], and there is currently no single optimal choice for it. While direct com-

putation of this method can be expensive and requires solving a 3N -by-3N linear

system, using fast summation algorithms [11], partition of unity [20], and compactly

supported RBFs [37] have been shown to overcome this issue. The use of compactly

supported RBFs has especially gained much attention, due to the resulting sparse

linear systems; however, one must still choose a support radius for the compactly

supported kernels, and if this value is too small, then the approximation power of the

method can be impacted [35, 52, 37, 32]. CFPU addresses the issue of computational
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complexity with RBF systems while still remaining numerically stable and accurate.

Additionally, the method does not require the choice of shape parameter or support

radii for the RBFs.

4.1.2 Contributions

In this paper, we present a novel method for reconstructing curves and surfaces with

curl-free, vector-valued RBFs. CFPU is fast and requires only points on the surface

and their corresponding normals. The RBFs we use are free of parameters, and the

resulting linear systems are well-conditioned. Additionally, our method can handle

noisy data and can even be made interpolatory. Since the implementation of the

method involves local partition of unity patches, it is also scalable and highly paral-

lelizable.

4.2 Curl-free RBFs

Curl-free RBFs were developed for the interpolation of curl-free vector fields that are

given from scattered measurements as occurs, for example, in the areas of electro-

statics and geodesy [1, 17, 22]. This technique has the important features that the

vector interpolants are analytically curl-free and are well-posed for scattered data.

Additionally, a scalar potential can be extracted directly from the interpolants that

approximates the underlying potential of the field (up to an additive constant) [23].

Curl-free RBF interpolation is similar to scalar RBF interpolation in the sense that

one constructs the interpolants from linear combinations of shifts of a kernel at each

of the given data sites. The difference between the approaches is that in the curl-free

case one uses shifts of a matrix-valued kernel whose columns are curl-free. For the

sake of brevity, we do not review scalar RBF approximations but refer the reader to
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any of the books [20, 55, 21].

Let φ : Rd × Rd −→ R be a radial kernel in the sense that φ(x,y) = η(‖x− y‖),

for some η : [0,∞) −→ R, where ‖ · ‖ is the vector two-norm, and x,y ∈ Rd. It is

common in this case to simply write φ(x,y) = φ(‖x− y‖) and refer to φ as an RBF.

A matrix-valued curl-free kernel Φ is given as [22]

Φ(x,y) = −∇∇Tφ(‖x− y‖), (4.1)

where ∇ is the gradient in Rd applied to x, and φ is assumed to have two continuous

derivatives. Since Φ is built from an RBF, these kernels are simply called curl-free

RBFs. For any c ∈ Rd and fixed y, the vector field Φ(x,y)c is curl-free in x. This

follows since

Φ(x,y)c = ∇
(
−∇Tφ (‖x− y‖) c

)︸ ︷︷ ︸
g(x)

= ∇(g(x)), (4.2)

i.e. Φ(x,y)c is the gradient of a scalar function g. Note that the second argument of

Φ acts as a shift of the kernel and indicates where the field (4.2) is “centered.”

An interpolant to a curl-free vector field u ∈ Rd sampled at distinct points X =

{xj}Nj=1 can be constructed from Φ as follows:

s(x) =
N∑
j=1

Φ(x,xj)cj, (4.3)

where the expansion coefficients cj ∈ Rd are found by enforcing the interpolation
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conditions s
∣∣
X

= u
∣∣
X

. This results in the linear system

N∑
j=1

Φ(xi,xj)cj = ui, i = 1, 2, . . . , N, (4.4)

which is commonly written as Ac = u, where A is the block dN -by-dN interpolation

matrix

A =



Φ(x1,x1) Φ(x1,x2) · · · Φ(x1,xN)

Φ(x2,x1) Φ(x2,x2) · · · Φ(x2,xN)

...
...

. . .
...

Φ(xN ,x1) Φ(xN ,x2) · · · Φ(xN ,xN)


. (4.5)

One can show that A is positive definite if Φ is constructed from an appropriately

chosen scalar-valued φ [22]; see Table 4.1 for some examples. An important feature

Radial kernel Expression
Gaussian (GA) φ(r) = exp(−(εr)2)

Inverse multiquadric (IMQ) φ(r) = (1 + (εr)2)−
1
2

Multiquadric (MQ) φ(r) = −(1 + (εr)2)
1
2

from the construction of the curl-free RBF interpolant is that we can extract a scalar

potential for the interpolated field by exploiting (4.2):

s(x) = ∇
(
−

N∑
j=1

∇Tφ (‖x− xj‖) cj︸ ︷︷ ︸
ϕ(x)

)
. (4.6)

While the method described above will ensure a curl-free interpolant of the sam-

Table 4.1 Examples of radial kernels that result in positive definite ma-trices A 
(4.5) for curl-free RBF interpolation. Here ε > 0 is the shape parameter.
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pled field, some issues do arise. First, the size of the linear system (4.4) grows rapidly

with N , and, for a globally supported kernel, will be dense and computationally ex-

pensive to solve—requiring O((dN)3) operations if a direct method is used. Second,

each evaluation of the interpolant (or potential (4.6)) involves dN terms, which can

become computationally expensive when many evaluations are necessary (such as oc-

curs in the present application). Other issues involve the shape parameter ε used in

the radial kernels from Table 4.1. This parameter controls how flat or peaked the

radial kernels are and has a dramatic effect on both the accuracy of the interpolant

as well as the conditioning of the interpolation matrix A. If ε is fixed and the total

number of interpolation points N grows, then the A matrix becomes exponentially

ill-conditioned with N . Additionally, while extensive literature dedicated to finding

the “good” values of ε to use exists for scalar RBF interpolation [10, 41], these ap-

proaches are computationally expensive, and this will only be exacerbated by the

larger sizes of the linear systems for curl-free RBFs. To bypass these issues, we next

discuss curl-free RBFs that do not feature a shape parameter. We address the issues

with the computational cost in Section 4.3.

4.2.1 Curl-free polyharmonic splines

Polyharmonic spline (PHS) kernels were introduced by Duchon as a generalization of

univariate splines to higher dimensions [19]. Scalar interpolants based on polyhar-

monic splines have the property that they minimize an energy functional that can

be interpreted as a type of “bending energy” for the surface they produce, similar to

univariate splines [55, ch. 13]. PHS are radial kernels and come in the following two
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types:

φ`(r) = (−1)`+1


r2` log r, ` positive integer,

r2`+1, ` non-negative integer.

(4.7)

For interpolation in Rd, the first option is typically used for d even and the second

option for d odd. The choice for the order parameter ` is often made based on

smoothness assumptions of the data, with larger ` for smoother data. However, larger

` also negatively effects the numerical stability of the interpolants [55, ch. 12]. The

combination of d and ` determines the minimization properties of the interpolants [55,

ch. 13]; the choice of ` = 1 for d = 2 leads to the classical thin-plate spline. PHS do

not feature a shape parameter like other RBFs, as any scaling of r just factors out

of the kernels. While ` is a free parameter, one does not need to continually search

for a good value to use when the interpolation problem is changed, as is typically the

case for RBFs with shape parameters.

Curl-free PHS were introduced in [1] and have further been studied in [16, 4].

These matrix valued-kernels can be produced by using (4.1) with φ` given by either

of the choices in (4.7) and ` chosen large enough to ensure the derivatives make sense;

we denote these kernels by Φ`. As with scalar PHS, it is necessary to modify the curl-

free RBF interpolant (4.3) to ensure a well-posed problem. In the curl-free PHS case,

the interpolant (4.3) must be augmented with curl-free (vector) polynomials in Rd of

degree ` − 1 [16], where degree refers to the total degree of any of the components

of the (vector) polynomial. A basis for curl-free polynomials up to degree ` − 1 can

be generated as follows. Let {p0, . . . , pL} be a monomial basis for scalar polynomials

up to degree ` in Rd, where L =
(
`+d
d

)
− 1 and p0 = 1. Then a basis for curl-free
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polynomials up to degree ` − 1, {p1, . . . ,pL}, is given by applying the gradient to

each pi, i.e. pi = ∇pi, i = 1, . . . , L. As an example, we give the basis of degree 1 and

in R2 and R3:

Poly. basis in R2 :


1

0

 ,
0

1

 ,
y
x

 ,
x

0

 ,
0

y




Poly. basis in R3 :




1

0

0

 ,


0

1

0

 ,


0

0

1

 ,

y

x

0

 ,

z

0

x

 ,


0

z

y

 ,

x

0

0

 ,


0

y

0

 ,


0

0

z


 .

A curl-free PHS interpolant of order ` to a curl-free vector field u ∈ Rd sampled

at distinct points X = {xj}Nj=1 is given as follows:

s(x) =
N∑
j=1

Φ`(x,xj)cj +
L∑
k=1

bkpk (x) , (4.8)

where the interpolation coefficients cj ∈ Rd and bk ∈ R are determined by the condi-

tions s
∣∣
X

= u
∣∣
X

as well as the constraints

N∑
j=1

cTj pk(xj) = 0, k = 1, 2, . . . , L.

These constraints are necessary for the interpolant to minimize a certain energy norm

and also limit its far-field growth [16]. We can state both constraints in terms of the
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following linear system of equations:

 A P

P T 0


c

b

 =

u

0

 , (4.9)

where A is defined in (4.5) and

P =



p1(x1) p2(x1) · · · pL(x1)

p1(x2) p2(x2) · · · pL(x2)

...
...

. . .
...

p1(xN) p2(xN) · · · pL(xN)


.

Provided the set of points X is unisolvent with respect to the curl-free polynomial

basis (i.e. P is full rank), this linear system is non-singular and thus the interpolation

problem is well-posed [16]. However, as with interpolation matrices based on curl-free

RBFs with shape parameters, this interpolation matrix also becomes ill-conditioned

as N increases, but the growth is algebraic as opposed to exponential [22].

We note that a scalar potential ϕ can also be recovered similarly to (4.6) as

s(x) = ∇
(
−

N∑
j=1

∇Tφ` (‖x− xj‖) cj +
L∑
k=1

bkpk (x)︸ ︷︷ ︸
ϕ(x)

)
, (4.10)

where pk are the scalar polynomial basis used to generate the curl-free polynomial

basis. This potential plays a key role in the CFPU method.
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4.2.2 Example

At this point, it is illustrative to see how curl-free RBFs can be used to recover a

level set from an oriented point cloud. We focus here on the case of a level curve in

R2, since this is the situation in which the global method described above would be

applicable due to the smaller problem sizes. The example we focus on uses the Cassini

oval as the target level curve to recover, which can be described as the zero-level set

of the implicit function

f(x) = f(x1, x2) = (x2
1 + x2

2)2 − 2a2(x2
1 − x2

2) + a4 − b4, (4.11)

where we take a = 1 and b = 1.1; see the Figure 4.1(b) for the resulting curve (dashed-

line). We sample this curve at N nodes X = {xj}Nj=1 and compute the corresponding

(unit) normal vectors using nj = ∇f(xj); see Figure 4.1(a) for a plot of the exact data

used for the case of N = 30. As mentioned in the introduction, the key to our method

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5
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0.5

1
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0

0.5

1

(a) (b)

Figure 4.1 (a) N = 30 points sampled from a Cassini oval (4.11) with 
a = 1 and b = 1.1, together with the corresponding normal vectors to the 
curve. (b) The reconstruction from the global curl-free PHS interpolation 

method (magenta) with the exact curve (blue dashed line).

is the fact that the normal vectors to a level curve (or surface) are curl-free. We thus
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fit the data (xj,nj), j = 1, . . . , N , using the curl-free RBF interpolant (4.8) and from

this extract out the potential ϕ as in (4.10). Since the potential for a curl-free field is

only unique up to a constant (which is a consequence of the Helmholtz decomposition

theorem [8]), the zero-level curve of ϕ will not necessarily approximate the zero-level

curve of f . To fix this we set ϕ̃(x) = ϕ(x)− µ, where µ is the discrete mean of ϕ at

the nodes X. The result from this experiment is shown in Figure 4.1(b), where we

see excellent agreement between the zero-level curve of ϕ̃ and f .

While this global method is reasonable to use for reconstring level curves (and

surfaces) when N is small, the cost of solving the linear system (4.9) becomes too

expensive for large N , which will be the case for any complicated surface from a

sampled point cloud. We address this issue next.

4.3 CFPU method

Partition of unity (PU) methods offer a way to split up a global approximation prob-

lem on a domain Ω into local approximation problems on overlapping patches covering

Ω. These local approximations are then blended together to form a global approxi-

mant using weight functions that form a partition of unity [2]. This procedure can

drastically reduce the computational cost of the original approximation problem. In

order to explain the CFPU method, we first give a brief description of the idea behind

PU methods as it pertains to our problem and introduce some necessary notation for

what follows.

4.3.1 PU methods

Let Ω ⊂ Rd be an open, bounded domain of interest for approximating some function

f : Ω −→ R. Let Ω1, . . . ,ΩM be a collection of distinct overlapping patches that form
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an open cover of Ω, i.e., ∪Mm=1Ωm ⊇ Ω, and let the overlap between patches be limited

such that at most K << M patches overlap at any given point x ∈ Ω. For each

m = 1, . . . ,M , let wm : Ωm −→ [0, 1] be a weight function such that wm is compactly

supported on Ωm, and let the set of weight functions {wm} have the property that∑M
m=1wm ≡ 1. Suppose sm is some approximation to f on each patch Ωm. Then

the PU approach of Babuška and Melenk [2] is to form an approximant s to f over

the whole domain Ω by “blending” the local approximants sm with wm as follows:

s =
∑M

m=1 wmsm.

Common choices for patches are disks for problems in R2 and balls for problems

in R3. Based on these choices, weight functions wm can be easily constructed using

Shepard’s method [46] as follows. Let κ : R+ → R have compact support over the

interval [0, 1). For each patch Ωm, let ξm denote its center and ρm > 0 denote its

radius, and define κm(x) := κ (‖x− ξm‖/ρm). The weight function for patch Ωm is

then given by

wm(x) = κm(x)/
M∑
j=1

κj(x), m = 1, . . . ,M. (4.12)

Note that each wm is only supported over Ωm and that the summation in the denom-

inator only involves terms that are non-zero over patch Ωm, which is bounded by K.

In this study, we choose the patches as balls, and use the C1 quadratic B-spline

κ(r) =


1− 3r2, 0 ≤ r ≤ 1

3
,

3
2
(1− r)2, 1

3
≤ r ≤ 1

(4.13)

to define the weight functions.

RBFs are commonly used with the PU approach to reduce the computational
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cost. They have been used for approximating a function from scattered samples

(e.g. [54, 13, 14]) and solving differential equations (e.g. [42, 31, 45]). Recently the

present authors presented a PU method for interpolation of divergence-free and curl-

free vector fields [18], which is what the current approach is based on.

4.3.2 Description of CFPU

For brevity, we describe the CFPU method for reconstructing a zero level surface P

in R3 defined by f(x) = 0 using curl-free PHS of order `. Let X = {xj}Nj=1 be a given

set points on P and let {nj}Nj=1 denote the unit normals (or approximations to the

normals) of P at X. Let Ω1, . . . ,ΩM be a set of overlapping patches that form an

open cover of P such that each patch contains at least nmin nodes from X. Finally,

let Xm denote the nodes contained in Ωm and nm denote the cardinality of Xm. For

each Ωm, we fit a curl-free RBF interpolant sm of the form (4.8) to the normals at

the points in Xm and then extract from this its scalar potential ϕm using (4.10).

A natural first approach to constructing a global potential for approximating the

level surface P would be to blend these local potentials ϕm using the PU weight

functions wm into a PU approximant of the form ϕ =
∑M

m=1wmϕm. However, this

will lead to an issue since each ϕm is only unique up to a constant. This means that

for two patches Ωk and Ωm that overlap, ϕk and ϕm may be shifted from one another

in the overlap region, which would then lead to an inaccurate global PU approximant

in the overlap. To fix this issue we can shift each potential by a different constant so

that they approximately agree in the overlap region. To determine these constants,

we use the fact that the points Xm reside on the zero level surface P , and we want

each potential ϕm to be approximately zero on Xm. One way to achieve this result is

to enforce that the discrete mean of the local potentials is zero over the patch nodes.
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To this end, let µm denote the the discrete mean of ϕm, and then define the shifted

potential

ϕm := ϕm − µm.

The global CFPU approximant for the underlying implicit function f is then given

by

ϕ(x) :=
M∑
m=1

wm(x)ϕm(x). (4.14)

We can then approximate P as the surface defined by the set of all x in ∪Mm=1Ωm such

that ϕ(x) = 0.

The CFPU method requires solving M linear systems of size (3nm+L)-by-(3nm+

L) rather than one large (3N + L)-by-(3N + L) system for the global CF method

described in Section 4.2.2. We select nm << N , for all m so that this results in a

significant savings, i.e. O(
∑M

m=1(3nm+L)3N) rather than O((3N+L)3), when using a

direct solver. Furthermore, each of these smaller systems can be solved independently,

making the CFPU method pleasingly parallel compared to the global method. Finally

we note that the computational complexity for evaluating the CFPU approximant

(4.14) is also significantly less than the global method. For each evaluation point,

only a small subset (equal to the number of patches that contain the evaluation point)

of the local potentials ϕm need to be evaluated. The cost of evaluating each ϕm is

O(3nm +L) rather than O(3N +L) for the global method. These potentials can also

be evaluated independently.
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4.3.3 Exact interpolation

The CFPU method as described above will not in general exactly interpolate the

zero level surface P at the points in X, i.e. ϕ(xj) 6= 0, j = 1, . . . , N , which is often

desirable when the points are assumed to be exactly on the surface [34]. We can,

however, enforce this condition by simply subtracting an interpolant of the residual

from each patch potential ϕm. We describe the details of this procedure below.

Let the points in patch Ωm from X be denoted by Xm = {xmj }nmj=1 and let δm be

a scalar PHS interpolant to the values of ϕm at Xm. Using the same notation from

Section 4.2.1, this interpolant can be written as

σm(x) =
nm∑
j=1

cmj φ`(‖x− xmj ‖) +
L∑
k=0

bmk pk(x), (4.15)

where the coefficients are determined from the interpolation conditions σm
∣∣
Xm

=

ϕm
∣∣
Xm

and the moment conditions
∑nm

j=1 c
m
j pk(x

m
j ) = 0, k = 0, . . . , L. The potential

ϕm on patch Ωm can be shifted by σm to obtain

ϕ̃m := ϕm − σm.

By construction, this shifted potential satisfies ϕ̃m(xmj ) = 0, so that an interpolatory

global CFPU approximant for the underlying implicit function f can then be obtained

as

ϕ(x) :=
M∑
m=1

wm(x)ϕ̃m(x). (4.16)

An approximation to the surface P is again given as the set of all x in ∪Mm=1Ωm such
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that ϕ(x) = 0.

We note that this exact interpolation technique is more expensive than just shifting

the potentials by the mean as in (4.14), but only by a constant factor. Additionally,

just as with ϕm, each σm can be determined independently of the others.

The residual of the patch potentials ϕm can be highly oscillatory, which could lead

to spurious oscillations in the interpolants σm and hence also ϕ. For 3D reconstruc-

tions, we thus recommend using the PHS kernel φ0 (i.e. φ0(r) = r) for the residual

since the function will have minimal bending energy among all interpolants [19]. This

is the choice we use in all of our examples.

4.3.4 Regularization

Normals

If the samples of the normal vectors of P are corrupted with noise, then interpolating

them exactly on each patch to recover the potentials may cause issues, such as pro-

ducing spurious sheets in the reconstructed surface. In this case, it may make sense

to instead introduce some regularization in the vector approximants on the patches.

Regularized kernel approximation, such as smoothing splines or ridge regression [51],

offers one effective way to do this.

For curl-free PHS vector approximant s given in (4.8), the smoothing spline reg-

ularization approach amounts to solving the following minimization problem:

min
c∈R3n

[
1

3n

n∑
j=1

‖s(xj)− nj‖2 + λcTAc

]
, subject to P Tc = 0, (4.17)

where A and P are the matrices from (4.9) for n points. The first term in the quadratic

functional measures the goodness of fit of the approximant while the second term
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measures its smoothness.1 The regularization parameter λ ≥ 0 controls the tradeoff

between these terms, with larger λ resulting in smoother approximants. For a given λ,

we can obtain the minimizer of the constrained quadratic functional (4.17) by solving

the following modified version of the system (4.9):

A+ 3nλI P

P T 0


c

b

 =

u

0

 ,
where I is the 3n-by-3n identity matrix and u contains the normals. In the CFPU

method, we use this regularization approach on each patch Ωm to obtain regularized

potentials ϕm. This opens up the option of using a different regularization param-

eter λm on each patch, and thus controlling the regularization of the approximants

spatially.

Residual

If the point samples in the point cloud are also noisy, as often occurs in range scans

of real 3D objects, then enforcing exact interpolation on the patch potentials by

interpolating the residual may again cause issues in the reconstruction. We can also

introduce regularization in this process using smoothing splines. In this case, one

uses a similar minimization problem as (4.17), but for the scalar TPS approximant

(4.15). In fact, smoothing splines were developed for this type of problem [51]. Since

different regularization parameters can be used for fitting the normals vs. fitting the

residual of the potential, we let α denote this parameter for the latter method to

avoid confusion.

1This term arises from the minimization of a Hilbert space semi-norm related to the function
space of the vector approximants—the so called native space norm associated with the Φ kernel [4].



128

4.4 Additional algorithmic details

Here we describe some additional algorithmic aspects of the CFPU method not given

above.

Unknown normals

While we have assumed the normals for the underlying level-set P are given, this may

not always be the case for a given point cloud. Fortunately, however, there are many

algorithms available that can approximate the normals directly from from the point

cloud data Y ; see, for example, [53, 26, 39, 30].

Choosing the PU patches

One of the steps of CRBF-PU that can be an issue is the need to find PU patch

centers. For the results in section 4.5, we used Poisson disk sampling as implemented

in Meshlab [15]. Depending on the size of the point cloud data, this step can be

potentially prohibitive. Once the PU patch centers are found, the algorithm depends

on kd-trees for range-queries in order to find which sample points are on each patch.

Again the number of data samples will be a determining factor in the speed of this

step. The curl-free RBF linear system is then solved on each patch directly using

LU decomposition. Since these systems are of size n << N , this is not as much of a

computational concern.

Regularization parameter

Another step that one must consider with this algorithm is choosing the smoothing

parameter, λ. While this can be chosen in an ad hoc fashion, it can also be automated
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using the GCV process [3].

Isosurface extraction

The last step of CFPU is to extract the isosurface from the computed potential ap-

proximant/interpolant. Currently the most popular algorithms for this are marching

cubes [33] and dual-contouring [27]. The results presented in section 4.5 were cre-

ated using the isosurface function in MATLAB (which uses marching cubes) on a

sufficiently dense grid.

4.5 Results

In this section we test the CFPU method on several different surface reconstructions.

We start with a known surface to test the accuracy of the method. We then use the

same problem, but we add noise to the normals in order to show how regularization

can help reconstruct smooth surfaces to the data. We then consider a problem with

raw range data that contains misalignments of the points and noise. Lastly we show

how the method performs on various common surface reconstruction problems found

in the literature. A goal of the tests is to show how the method parameters, such

as the order ` for the curl-free PHS kernels Φ` and the regularization parameters λ,

affect the reconstructions.

4.5.1 Accuracy of the method

We consider the surface generated from a (2,5) torus knot. The 3D curve defining

the knot can be written parametrically as

(x(t), y(t), z(t)) = (cos(2t)(cos(5t) + 3), sin(2t)(cos(5t) + 3), sin(5t)),
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(a) Point cloud (b) CFPU reconstruction

Figure 4.2 (a) N = 6144 point cloud and corresponding normals for the 
knot. (b) CFPU reconstruction of the knot from the data in part (a).

where 0 ≤ t ≤ 2π. We define the surface as a tube of radius 0.7 enclosing the curve, 

where the center of any circular cross section of the tube contains a point on the 

curve as its center. We generated N points X = {x1, . . . , xN } on this surface and the 

corresponding (unit) normals from the parametric representation. Figure 4.2(a) shows 

an example point set for N = 6144, while Figure 4.2(b) shows the reconstruction of 

the knot using the CFPU method with M = 864 patches and the exact interpolation 

method.

To test the accuracy of the CFPU method for approximating a potential for this 

surface, we sample the potentials at a set of 131424 points exactly on the knot and 

computed the difference between these values and the exact solution. Since these 

evaluation points are on the surface, which we take to be the zero-level set of the knot, 

the exact solution should be zero. Table 4.2 displays the root mean square (RMS) and 

max-norm errors for the reconstructed potentials as the number of samples N grows. 

The table contains results for the potentials constructed using the curl-free PHS kernel 

Φ`, for ` = 1, 2, to show how the smoothness of the kernel affects the accuracy. The
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sampling is chosen so that the average spacing between points decreases like N−1/2.

We see from the table that for both ` = 1 and ` = 2, the CFPU method appears

to be converging to true zero-level surface as the density of the samples increases.

Furthermore, we see that the overall errors are smaller when using the ` = 2, and the

convergence rate is higher. This is expected since the surface is smooth.

` = 1 ` = 2
N RMS error Max-norm error RMS error Max-norm error

6114 9.90× 10−5 7.09× 10−4 8.08× 10−6 7.69× 10−5

8664 4.12× 10−5 5.21× 10−4 3.45× 10−6 2.36× 10−5

11616 2.27× 10−5 1.57× 10−4 1.69× 10−6 1.49× 10−5

18816 7.46× 10−6 5.43× 10−5 4.53× 10−7 2.82× 10−6

23064 5.21× 10−6 3.69× 10−5 2.67× 10−7 1.71× 10−6

27744 4.10× 10−6 2.75× 10−5 1.68× 10−7 1.14× 10−6

32856 2.87× 10−6 2.56× 10−5 9.69× 10−8 8.13× 10−7

4.5.2 Reconstructions of a noisy surface

In this test, we demonstrate how the regularization procedures from Section 4.3.4 can

help with noisy normals. We use the knot example from the previous section and add

noise to the exact normals {n1, . . . , nN } according to

nj
∗ = nj + εj

where εj ∈ R3 and each component is a normally distributed random variable with 

mean zero and standard deviation 0.3.

The first column of Figure 4.3 shows the results for both the mean shift and

Table 4.2 Comparison of the errors in the CFPU reconstruction of the knot for 
increasing numbers of samples N using the curl-free PHS kernel ΦŜ, for Ŝ = 1, 2. All 
results use a fixed number of M = 864 PU patches and a fixed patch radius of δ = 3/4.
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No regularization λ = 10−4 λ = 1 GCV λ

`
=

1
`

=
2

Figure 4.3 Comparison of the CFPU reconstructions of the knot with zero 
mean Gaussian white noise added to the normals. First column shows the 

reconstructions without any regularization. Second and third columns show 
the reconstructions using regularization with a fixed parameter λ chosen for 

all the patches. Fourth column shows the reconstructions with the 
regularization parameter chosen using GCV on each patch. All results use N 

= 23064 samples and M = 864 patches with a fixed patch radius of δ = 3/4.

exact interpolation versions of CFPU with no regularization. We can see from these

figures that both methods result in very rough surfaces with spurious sheets. The

next three columns of the figure show the reconstructions of both methods using the

two regularization procedures from Section 4.3.4. The results in the second column

use smoothing splines with a fixed regularization parameter of λ = 10−2, while the

third column uses GCV to select the regularization parameter on a per-patch basis.

The fourth column shows the results using regression splines where the number of

centers for patch Ωj is chosen as njc = min(max(dnj /6e, 18), n). We see that all the 

regularization techniques significantly reduce the noise in the reconstructions, but

that the ones based on smoothing splines with the exact interpolation method give
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Point CF Global method CFPU method
cloud ` = 1 ` = 2 ` = 1 ` = 2

Figure 4.4 CFPU reconstructions of the Stanford bunny with (a) no 
regu-larization and (b) with regularization. In (b) GCV was used to 

determine the regularization parameter on each patch. Both 
experiments used the highest resolution zippered model of the bunny 

consisting of N = 35947 points and normals vectors and M = 848 patches.

the best results.

4.5.3 Standard test surfaces

We now focus on standard test problems from the literature, namely the Stanford 

Bunny, (2) Happy Buddha, (3) Dragon, (4) and Armadillo. The points for these 

models were obtained from high resolution triangulated surfaces of these objects pro-

vided by the Stanford University Computer Graphics Laboratory. Normal vectors for 

the surfaces were obtained from the MeshLab software package [15] after importing 

these triangulated surfaces. We generate surfaces from these points and normals us-

ing the CFPU method both with and without regularization. For the latter method, 

we use GCV to determine the regularization parameters.

The results for the Stanford Bunny are shown in Figure 4.5. We see that without 

regularization (part (a)) the reconstruction is good, but that there are some spurious

zero-level surfaces that result from the reconstructed potentials to the data around
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(a) No regularization (b) Regularization using GCV

Figure 4.5 CFPU reconstructions of the Stanford bunny with (a) no 
regu-larization and (b) with regularization. In (b) GCV was used to 

determine the regularization parameter on each patch. Both 
experiments used the highest resolution zippered model of the bunny 

consisting of N = 35947 points and normals vectors and M = 848 patches.

the ears and feet of the bunny. However, with regularization (part (b)) these spurious 

surfaces are removed without a reduction or smoothing of the details of the bunny.

Figure 4.6 shows the surface reconstructions for the Dragon. The standard method 

again provides a good surface reconstruction in all but a few areas where some spurious 

zero-level surfaces appear. Including regularization removes these spurious surfaces, 

again without any noticeable over-smoothing.

The reconstructions of the Armadillo are shown in Figure 4.7. We see from the

figure that the standard method again gives a good reconstruction of the surface, but 

has a couple of spurious zero-level sets near the fingers and ears of the Armadillo.

With regularization these are removed, and the resulting surface does not show any 

over-smoothing effects.

Finally, the results for the Happy Buddha are shown in Figure 4.8. From this
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(a) No regularization (b) Regularization using GCV

Figure 4.6 CFPU reconstructions of the Dragon with (a) no regulariza-
tion and (b) with regularization. In (b) GCV was used to determine the 
regularization parameter on each patch. Both experiments used the high-
est resolution zippered model of the dragon consisting of N = 436418 points 

and normals vectors and M = 14400 patches.

figure we see that the reconstructed surface without regularization has some issues

with spurious oscillations around the bottom of Happy Buddha’s robe as well as the

bottom of the base of the stand. Regularization with GCV does eliminate some of 

the issues, without over smoothing, but not all of them, especially for the bottom of

the base. This a difficult area to construct an implicit surface too since the actual

scanned object has a hole here.

4.6 Concluding remarks

In this work, we introduced the CFPU method, a novel method for implicit sur-

face reconstruction based on a curl-free radial basis function partition of unity. We 

discussed a regularization for noisy data as well as a modification for exact surface

interpolation. For future work, we will automate choosing the patches from the point
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(a) No regularization (b) Regularization using GCV

Figure 4.7 CFPU reconstructions of the Armadillo with (a) no regular-
ization and (b) with regularization. In (b) GCV was used to determine 
the regularization parameter on each patch. Both experiments used the 
highest resolution zippered model of the dragon consisting of N = 172974 

points and normals vectors and M = 14349 patches.

clouds and adapt the size and shape of the patches to better conform to the surface. We 

will also implement a least squares regularization and a parallelization of the algorithm 

for even further improvements on computational efficiency.
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(a) No regularization (b) Regularization using GCV

Figure 4.8 CFPU reconstructions of the Happy Buddha with (a) no 
regu-larization and (b) with regularization. In (b) GCV was used to 

determine the regularization parameter on each patch. Both 
experiments used the highest resolution zippered model of the dragon 

consisting of N = 583079 points and normals vectors and M = 14226 
patches.
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CHAPTER 5:

CONCLUSION

This dissertation introduced a collection of fast and accurate algorithms for analysis

of data collected on irregular domains. In Chapter 2, we presented our first paper

in which we developed a method for calculating the angular power spectrum of the

cosmic microwave background (CMB) radiation. We used numerical tests to demon-

strate our algorithm’s benefits over the leading method in the HEALPix software

for calculating the angular power spectrum of deterministic functions on the sphere.

Future directions for this work include implementing the method in a low-level com-

puting language, like C++, in order to improve run-time performance. Additionally,

the method could be extended to include functionality for calculating the angular

power spectrum for the polarization of CMB temperature maps.

In Chapter 3, the second paper presents the first method for approximating

divergence-free and curl-free vector fields in R2 and S2 and curl-free fields in R3

with a vector-valued radial basis function partition of unity method. We proved

error-estimates for the approximants and demonstrated the high-order convergence

rates of our method with numerical tests. An area of future work for this method

is to work toward adapting it to be stable for RBFs in the flat limit of the shape

parameter ε. Additionally, extending the method to use a least squares approach

for local interpolation on local PU patches could be useful for further reducing the
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computational cost and introducing some regularization for noisy data.

Finally our third paper is given in Chapter 4, in which we applied the technique

of the second paper to the problem of implicit surface reconstruction from oriented

point clouds. Our novel approach, titled CFPU, uses a curl-free RBF interpolation

of the normal vectors to extract a potential for the reconstructed vector field whose

zero-level surface approximates the point cloud. We discussed a regularization for

noisy data as well as a modification for exact surface interpolation. We then demon-

strated the effectiveness of this method by reconstructing known surfaces as well as

surfaces from scanned point clouds. Future work from the ideas developed in this

paper could include investigating a computationally cheaper regularization approach

based on least squares and an automated method for choosing the PU patches. Fi-

nally, parallelizing the algorithm would be important for further improvements on

computational cost.




