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ABSTRACT

Memory is traditionally thought of as a biological function of the brain. In recent

years, however, researchers have found that some stimuli-responsive molecules exhibit

memory-like behavior manifested as history-dependent hysteresis in response to ex-

ternal excitations. One example is lysenin, a pore-forming toxin found naturally in

the coelomic fluid of the common earthworm Eisenia fetida. When reconstituted into

a bilayer lipid membrane, this unassuming toxin undergoes conformational changes

in response to applied voltages. However, lysenin is able to “remember” past history

by adjusting conformational state based not only on the amplitude of the stimulus

but also on its previous its conformational state. The current model is a simple

two-state Markov description which may not describe a system with memory. In

this respect, this thesis aims to provide a more accurate description of this toxin’s

memory and response to external stimuli by applying a more rigorous mathemati-

cal approach. The traditional setting for investigating the conformational changes of

voltage-responsive channel proteins is based on analyzing the ionic currents recorded

through one or many channels in response to applied voltage stimuli. However, this

approach provides only indirect evidence of the conformational state of the channel,

i.e open (conducting) or closed (non-conducting). Although very useful, this setting

is seriously limited by the inability of electrical measurements to discern between

electrically identical yet conformational different open or closed states. The litera-
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ture that inspired this thesis topic consider models of diffusion on a path-graph with

one open state and an arbitrary number of closed states. The mathematics typically

begins with approximations from a continuous model. In this thesis we study the

analytic solution of the system of linear homogeneous differential equations which are

probability vectors describing the diffusion process; this involves exponential theory

of weighted Laplacian graphs. Since the Laplacian matrix of the path graph is well

studied, we have access to both eigenvectors and eigenvalues in terms of roots of unity

making for a succinct solution. We find that polynomial weights model the hysteresis

successfully.
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CHAPTER 1:

INTRODUCTION

Hysteresis is a fundamental feature of a physical system, which occurs when a system

evolves upon disturbance by following a certain pathway but returns to its original

state by adopting a different, distinct pathway. Such features are currently exploited

for technological purposes, and memories based on electric and magnetic hysteresis

have been largely used in computers, phones, and consumer electronics. Memory is

one of the most important applications of hysteresis; however, some biological systems

also present hysteretic behavior, but the physiological implications of such behavior

have yet to be deciphered. Although biological hysteresis could be a protective mea-

sure against strong and transient stimulation or noise, its association with memory

provides opportunities for endowing cells with molecular memory. This is of upmost

importance for physiology since memory is typically thought of as a function of the

brain. Nonetheless, it has been demonstrated that simple, unicellular organisms may

develop memory of their own and use it as a survival skill. How is this memory func-

tion realized in such simple organisms? Based on experimental evidence, scientists

identified ion channels as presenting a hysteretic behavior in response to physical stim-

uli. Ion channels are protein molecules that assemble into transmembrane structures

providing conducting pathways for ions and molecules across cell membranes. They

are regulated, which means that they open and close (gate) in response to physical
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and chemical stimuli. Voltage-gated ion channels, which open and close in response

to transmembrane voltages are responsible for establishing essential electrochemical

gradients across cell membranes; their opening and closing is an integral part of the

correct functionality of our brain and muscles! Nonetheless, little is known about

their hysteretic behavior that may lead to molecular memory. These molecules can-

not do algebra or recite poetry, but they are able to ”remember” the environmental

conditions they were in while holding a specific conformational state. For example in

the paper ”Voltage Activation and Hysteresis of the Non-selective Voltage-dependent

Channel in the Intact Human Red Blood Cell” the authors are able to apply periodic

voltages to human red blood cells and see that the non-selective cation channels dis-

played memory (3). Other ion channels also present hysteresis in conductance, but it

manifests only at very short time scales.

Lysenin is a weakly-selective (does not distinguish between ion types) pore-forming

toxin made up of 297 amino acids, which is found in the coelomic fluid of the common

earthworm (see Figure 1.1 (10)). This toxin has hysteretic behavior that lasts for

long periods of time (on the scale of 14 hours or more) in a laboratory setting which

makes the other examples pale in comparison. This gives researchers plenty of time

to experiment with lysenin before the bilayer membrane breaks down. Lysenin is also

water soluble and relatively inexpensive making it an even more viable experimental

tool. In one afternoon a new experiment could be started and concluded which is

almost unheard of in the study of cellular biology! We do not have the means to

watch what happens when a lysenin pore gates. Since we have no physical proof of

what is going on, the best we can do to explain the hysteresis is through mathematical

modeling.
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Typically when it comes to theoretically modeling a physical system we will begin

from the ground up by working with well-studied mathematical formulas and theo-

rems before discussing the physics. Here though, the system is so complicated (due

to its biological nature) such that empirical methods need to be utilized to study it.

This new approach to a model will be a hybrid of mathematics, in the form of solving

a system of homogeneous, linear, differential equations, as well as empirical evidence.

To solve these equations a path graph and its Laplacian matrix will be employed.

These tools are well understood in graph theory and are a natural introduction to the

current classical model that is used by those studying lysenin. In one of the papers

that inspired this research the author began with a continuous model of diffusion, and

through approximations, worked his way down to a discrete case (12). The method

we have chosen to employ in this paper is diagonalization of Laplacian path graph

matrices and the application of the exponential map. The point in using this approach

is to find the closed-form spectrum of the path graph and then from there finding

the closed-form eigenvectors and achieve hysteresis in conductance, which yields the

conclusion of this thesis.

Figure 1.1 An image of Eisenia fetida or the common red wiggler 
worm.(6)
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CHAPTER 2:

BIOPHSYICS

Lysenin self-inserts into artificial and natural lipid membranes containing sphin-

gomyelin. The pore formation process is intricate and implies outside assembly of

a nonamer (having nine-parts) pre-pore, after which the pores is completed by de-

ploying the beta-sheets into the target membrane, see Figure 2.1.

Figure 2.1 (a) A lysenin monomer. (b) The nine-part pre-pore is formed.

(c) Lysenin inserted into the bilayer membrane. The pore’s opening is ∼ 
3nm in diameter. (7)

The experimental setup for investigating the response to external voltage stimuli

is simple, see Figure 2.2. It involves a bilayer membrane chamber that consists of two

insulating reservoirs filled with an electrolyte solution and separated by a thin PTFE 

film that contains a small central hole of ∼ 70µm diameter. A tiny amount of a lipid

mixture in an organic solvent is deposited over the central hole and a lipid membrane is 

produced by using a combination of painting and folding procedures. The connections

with the electrophysiology amplifier is realized via two Ag/AgCl electrodes inserted
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into the ionic solutions in the two reservoirs. The entire setup is placed on a floating

table inside a Faraday cage to minimize vibrations and electrical noise. The analog

signal is digitized, visualized in real time, and recorded for further analysis. The

lipid membrane formation is monitored by real-time measurements of conductance

(for leakage) and capacitance (for assessment of the number of lipid layers). Once a

stable bilayer lipid membrane is formed, lysenin channel reconstitution is realized by

adding the lysenin monomer to the grounded reservoir while the active electrode is

biased by negative voltages to prevent voltage-induced gating. Channel insertion is

observed as step-wise, small and uniform changes in the ionic currents; completion of

the insertion process is achieved in approximately 1 hour.

Figure 2.2 A diagram of the experimental set up (9).

There is no direct confirmation of the crystal structure of the domain sensor so 

we can only surmise from data what it may look and behave like. There is evidence 

of a flexible, hinge-like structure that is necessary for pore formation. The theory 

is that the illusive voltage domain sensor is on the tip of this hinge which may be 

located at the “head” of the pore in the α region; the “mushroom cap” (see figure 

2.1). Since the pores respond to pH changes and the ionic strength of the solution
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Figure 2.3 A potassium ion channel which shows evidence to be struc-
turally very similar to lysenin (11).

they are in, it is reasonable to conclude that at rest (when the channels are in a 

conducting state) the voltage domain sensor is fully exposed to the solution. When 

the channels are closed at high electric potential it is thought that the domain sensor 

enters the bilayer membrane changing the confirmation of the channel by squeezing 

the opening of the pore shut. Imagine that each of the nine parts of the lysenin 

channel has a thumb sticking up above the membrane’s surface, and when a large 

positive potential is present, that thumb forces itself into the hydrophobic part of the 

bilayer membrane thereby puckering the pore shut. This hypothesis is based on the 

functionality of a potassium channel which has this gating mechanism and behaves 

similarly to lysenin with respect to voltage-induced gating (see Figure 2.3). The 

channels, upon reopening, follow a similar path along the hysteresis independent of 

ionic concentration (5). Since ions cannot enter a membrane while attached to the 

domain sensor, it is believed that the sensor is screened of all ions lending credence 

to the idea that the voltage domain sensor is attached to the hinge of the pore. The 

current two-state model (open/closed) largely adopted for describing the response 

of channels to voltage and depicted in Figure 2.4 is based on a reversible transition 

between the two states with the closing and opening rates denoted as k+ and k−,
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respectively.

O C

k+

k−

Figure 2.4 The classical two-state process for lysenin.

At any given applied voltage, the system achieves a steady state. This is a dynamic 

equilibrium since transitions between states still occur but no changes in occupancy 

are observed at reasonable large time scales. According to the transition state theory, 

the probability of channels to be in the open state (POpen) at equilibrium is described 

by a Boltzmann distribution:

POpen =
1

1 + e
−∆E+qV

kT

(2.1)

where ∆E is the difference in energy between the closed and open states, V is the

applied voltage, k is the Boltzmann constant, T is temperature in Kelvins, and q is

the gating charge of the voltage domain sensor interacting with the electric field and

responsible for gate movement.

To observe the current we employ Ohm’s Law, I = V/R (where V is the applied

voltage and G is macroscopic conductance) and obtain:

I = V gNPOpen (2.2)

where N is the total number of channels in the membrane and g is the conductance

(I/V ) of a single channel. Eqs. 2.1 and 2.2 may be combined to provide a relationship
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more suitable for experiments that imply measuring ionic currents:

I =
gV N

1 + e
−∆E+qV

kT

+GLV (2.3)

In the above relationship, GL is the leakage conductance, which manifests as small

ionic currents that are recorded through channels in the closed state (when Popen

approaches zero). Also, when thousands of channels are reconstituted in a target

membrane, a few of them may remain in the open state even at high voltages, and

this current is accounted for as leakage. Also, each individual channel presents a very

small leakage current even in the closed state, and the contribution from all these

currents is included in the leakage term.

One may easily observe that Eq. 2.3 describes a reversible response to applied

voltages, and that the POpen value is dependent only on voltage. Sometimes a chan-

nel may be partially blocked and cannot shut properly leading to leakage current.

This means that the equilibrium constant Ke, which is equal to k+

k−
does not change.

This invariance leads to a typical response of ion channels to voltage, i.e. the open

probability depends only on voltage and no hysteretic behavior is observed. However,

lysenin channels present an atypical response to periodic voltages and do not obey

the rule of invariant equilibrium constant. This is exemplified in Figure 5.1, which

shows the record of the ionic currents through lysenin channels in response to periodic

voltages.

When the transmembrane voltage is linearly ramped up, lysenin channels are all

in the open state (conducting) at bias potentials under ∼ 12 mV. In the I-V plot,

this is observed as a linear increase of the macroscopic ionic current with voltage,

indicative of absence of gating. As the voltage is increased, the macroscopic currents
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Figure 2.5 A typical hysteresis for a population of lysenin channels. 
The green curve shows how ionic current decreases as voltage is 

increased in-dicating that the channels are gating. The yellow curve 
indicates how the current increases as the voltage decreases indicating 

that the channels are in a conducting state.

deviate from linearity, reach a peak value, and decrease monotonically with the ap-

plied voltage. This is indicative of channel closing (voltage-induced gating), and it 

is explained by a summary analysis of Eqs. 2.1 and 2.3. As the voltage increases, 

the exponent increases significantly hence the open probability and ionic currents will 

approach a near zero value. However, for a markovian process a completely reversed 

behavior and otherwise identical I-V would be expected when the closed channels are 

subjected to linearly descending voltage ramps. Nonetheless, Figure 5.1 shows a dif-

ferent reactivation (re-opening) pathway, indicative that the channels do not reopen 

in exactly the same fashion they closed. This unexpected hysteresis in conductance 

may reside in the slow inactivation of the channels, i.e. the slow response to applied

voltages. The closing of any channel is a statistic process, and no channel closes 

instantly when a proper transmembrane voltage is applied. Lysenin channels close

slowly in response to voltages, and the characteristic relaxation time is ∼ 10 s (8).

Theoretical models indicate that slow closing may be at the origin of ion channels’
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hysteresis, but this must vanish if the voltage varies so slowly such that each state

may be considered steady. For the case of lysenin, the hysteresis does not vanish

even when the period of the signal is as large as 14 hours, which is much larger that

the characteristic relaxation time (8). Therefore, lysenin channels presents hysteresis

in conductance and memory. One may easily observe from the IV plot that for any

voltage between 8 mV and 28 mV the macroscopic currents depend not only on the

applied voltage but on the history. The macroscopic currents are significantly larger

if the channels were previously in the open state, while previously closed channels ex-

hibit smaller ionic currents at the same applied voltage. This dependency of the past

history is a potential source of molecular memory. The traditional model of gating

explicitly disregard any dependency of the states, leading to memory-less channels.

It is clear that such models are not adequate for describing the behavior of lysenin

channels.

To fill this gap in the knowledge, the biophysical models of gating may be improved

by either considering that the channel undergo multiple yet electrically indiscernible

closed states, or that the gating process is better characterized as fractal diffusion in

the conformational space. Both models account for variable equilibrium constants,

which is a great departure from the classical model of gating. The model adopted for

analysis in this thesis considers that the channels are able to adopt multiple closed

states that may be arranged in a linear kinetics scheme. When a closing voltage is

applied, the channel will explore the closed conformational states without presenting

changes in the ionic currents (which will be near zero for all the closed states). How-

ever, for a linear kinetics scheme the apparent equilibrium constant depends on the

state the channels are in; consequently, as the time passes the equilibrium constant
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varies, which may lead to hysteresis.

There is also some experimental evidence in favor of having multiple electrically

indiscernible closed states. For a typical step experiment it takes 3 or 4 exponential

terms to even closely model the closing of the channels in response to step voltages.

This signifies that there is something about the closing of the channels that is not

being seen by our current two-state model, see Figure 2.6. So to expand upon the

foundation of the model described, we will need to further the mathematical under-

standing of the biophysics. In the following sections we will work to build up our

model to include more closed states as well as time-dependent rate constants.

Figure 2.6 Three or four exponential terms in the sum on the graph are 
needed to analyze data from a typical experiment lending credence to the 

possibility of more undetectable closed states.

It would be good at this point to mention some of the works that have inspired

this paper. “Diffusion models of ion-channel gating and the origin of power-law distri-

butions from single-channel recording” used a continuous model of closed-states with

a single open state for their ion channel. They then modeled the transition between
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each state as a differential equation where the solution would be the probability pn(t)

of being in that particular state at a given time t. In the paper they concluded that a

fractal diffusion (in the form of a polynomial dependent on t and number of channels

N) was the best model to explain how their ion channels gated (12). Another paper

that influenced this thesis was ”Computing rates of Markov models of voltage-gated

ion channels by inverting partial differential equations governing the probability den-

sity functions of the conducting and non-conducting states” which explored having

multiple closed states with exponential rate constants (1). Finally, Reference (8) ti-

tled ”Bi-stability, hysteresis, and memory of voltage-gated lysenin channels” proves

that individual lysenin channels have hysteretic behavior.
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CHAPTER 3:

MATHEMATICAL MODELING

In the previous section evidence was presented that there are most likely many closed-

states, which lysenin can assume. Let’s begin this section with a diagram representing

the different states lysenin can assume, Figure 3.1, with one open state, n closed

states, and rate constants ki±. This process can be represented as a weighted digraph

where the vertices are the states lysenin are thought to be able to physically exist in

and the edges represent rate constants which are single, real variable functions with

time as our variable. However this graphical representation will only be the beginning

step toward representing the different states of lysenin and its open probability at a

given time or voltage. In the following paragraphs we will take this chain of states

make them easier to work with on a practical level.

O C1 C2 Cn−1 Cn· · ·

k1+

k1−

k2+

k2−

k3+

k3−

k(n−1)+

k(n−1)−

kn+

kn−

Figure 3.1 A diagram representing the different states lysenin can theo-
retically assume.
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Definition 3.0.1. Weighted Digraph or Weighted Directed Graph

A weighted digraph is a graph whose vertices or edges have been assigned weights

and whose edges have associated direction.

Typically in the literature one will take a graph like Figure 3.1 and represent it

mathematically as a system of differential equations (12). These equations, when

solved, will tell us the probability PCi of being in a given closed state Ci and the

probability POpen of being in the open state POpen at a given time or voltage. We

derive these equations directly from Figure 3.1 by using directions and weights of

edges to and from each vertex.

dPOpen
dt

= (PC1)(k1−)− (POpen)(k1+)

dPC1

dt
= (POpen)(k1+)− (PC1)(k1−) + (PC2)(k2−)− (PC1)(k2+)

...

dPCi
dt

= (PC(i−1)
)(ki+)− (PCi)(ki−) + (PC(i+1)

)(k(i+1)−)− (PCi)(k(i+1)+)

...

dPCn
dt

= (PC(n−1)
)(kn+)− (PCn)(kn−)

With

P = (POpen, PC1 , PC2 , ..., PCn−1 , PCn)T

and
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Lw =



−k1+ k1− . . . 0

k1+ −(k2+ + k1−) k2− . . . 0

0 k2+ −(k3+ + k2−) . . . 0

...
. . .

...

0 . . . −(k(n−1)− + k(n)+) k(n)−

0 . . . 0 k(n)+ −k(n)−


the system of equations becomes dP

dt
= Lw ·P where P is the vector of probabilities

describing the dynamics of our system above, immediately derived from Figure 3.1.

Lemma 3.0.1. If an n× n matrix A commutes with the matrix d
dt
A, then

d

dt
An = nAn−1

dA

dt
.

Proof. We will prove this by induction. Let A be a matrix that commutes with its

derivative. We will begin with the base case. Let n = 1

d

dt
A1 = 1A0 d

dt
A1

so we have

d

dt
An = nAn−1

dA

dt

holds for n = 1.
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Assume for some n− 1 (where n ∈ {2, 3, . . .}) that we have

d

dt
An−1 = (n− 1)An−2

dA

dt
.

Now consider d
dt
An

d

dt
An =

d

dt
(An−1A)

= (
d

dt
An−1)A+ An−1

d

dt
A

= (n− 1)An−2
dA

dt
A+ An−1

dA

dt

= (n− 1)An−1
dA

dt
+ An−1

dA

dt

= nAn−1
dA

dt

So the assertion also holds true for n. Since we have that

d

dt
An = nAn−1

dA

dt

is true for n = 1 we see by induction that that holds for n = 1, 2, . . ..

Theorem 3.0.2. Suppose an n× n matrix A commutes with its own integral,[
A,
∫ t
0
A ds

]
= 0, then x = e

∫ t
0 A ds is a fundamental matrix solution to the system of

differential equations dx
dt

= Ax.

Proof. Let A be a matrix that commutes with it’s integral and let x = e
∫ t
0 A ds.

Consider d
dt
x
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d

dt
(e

∫ t
0 Ads) =

d

dt

(
∞∑
k=0

(
∫ t
0
A ds)k

k!

)

=
∞∑
k=0

d

dt

(
(
∫ t
0
A ds)k

k!

)

By Lemma 3.0.1 we have that

d

dt

((∫ t

0

A ds

)k)
= k

(∫ t

0

A ds

)k−1
A

Putting this into the sum above we see that each term gets an extra factor of A.

d

dt
x =

d

dt
(e

∫ t
0 A ds) =

∞∑
k=1

k
(∫ t

0
A ds

)k−1
A

k!

= A

 ∞∑
k=0

(∫ t
0
A ds

)k
(k)!


= Ae

∫ t
0 A ds = Ax

This shows us that x is a solution to the system of differential equations, because we

have

d

dt
x = Ax.
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If Lw commutes with its own integral, then by Theorem 3.0.2 this implies that

e
∫ t
0 Lw ds is a fundamental matrix solution to our system of differential equations. A

special case, and the case we will focus most of our attention on, is the case where

all rate constants are equal. In this case the matrix we are studying is one where all

the rate constants are constant numbers and equal or where all rate constants are set

equal to a function that can be factored out of the matrix. As an aside; in the case

where Lw it does not commute with it’s integral, then we can approximate a general

solution using the Peano-Baker series (2).

So we have access to the form of our general solution; e
∫ t
0 Lw ds. However, it is not

in a very useful form. We would like Lw to be diagonalized so we can have access to

it’s eigenvalues, as entries in the diagonal matrix D, and eigenvectors, as columns in

the matrix B.

Definition 3.0.2. Exponential matrix

Let C be a n× n matrix with real or complex entries. The exponential matrix of

C is given by

eC =
∞∑
k=0

1

k!
Ck.

Definition 3.0.3. Diagonalizable Matrix

An n× n matrix A is said to be diagonalizable if there exists a matrix B that is

non-singular and a diagonal matrix D such that A = BDB−1.

Theorem 3.0.3. Let C be a diagonalizable matrix. If C = BDB−1 then

eC = BeDB−1.
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Proof.

eC = eBDB
−1

=
∞∑
n=0

BDnB−1

n!

= B

(
∞∑
n=0

Dn

n!

)
B−1

= BeDB−1

So we arrive at our desired conclusion:

eC = BeDB−1

Lemma 3.0.4. Let C be a diagonalizable matrix that commutes with it’s integral with

C = BDB−1. If B is a constant matrix, then x = Be
∫ t
0 D dsB−1 is a fundamental

matrix solution to the system of differential equations dx
dt

= Ax.

Proof. From Theorem 3.0.2 we have that x = e
∫ t
0 C ds is a solution. Starting from
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there and doing some algebra we get

x = e
∫ t
0 C ds

= e
∫ t
0 BDB

−1 ds

= eB
∫ t
0 D dsB−1

= Be
∫ t
0 D dsB−1

We use the fact that B is constant in the third equality and the final result comes

from Theorem 3.0.3.
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CHAPTER 4:

EIGENVALUES AND EXPLICIT SOLUTIONS

Now that we have established our system of equations and we know our general

solution is of the form e
∫
A = Be

∫
DB−1, we want have to describe B, B−1, and D

are. The first thing we have to do is find the eigenvalues, which will be the entries of

D. To do this the graph in Figure 3.1 will need to be altered by treating the directed

edges as an undirected edge by setting all the rate constants to be equal. This makes

a path graph which can be seen in Figure 4.1. The results of this chapter can be

found in reference (13).

Definition 4.0.1. Path Graph

A path graph or linear graph is a graph, for which the vertices can be listed in

order such that the edges are {ei, ei+1} with i = 1, 2, ..., n−1. All vertices have degree

2 except the two terminal vertices which have degree 1.

O C1 C2
. . . Cn

Figure 4.1 Taking 3.1 and forcing the rate constants to be equal estab-
lishes the directed edges as undirected edges. The vertices are still named 
to make clear to the reader that we will be intentionally still be using this 

to model the indiscernible n closed states of lysenin.
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Lp =



−k k . . . 0

k −2k k . . . 0

0 k −2k . . . 0

...
. . .

...

0 . . . k −2k k

0 . . . 0 k −k


= −k



1 −1 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0

...
. . .

...

0 . . . −1 2 −1

0 . . . 0 −1 1


This is a Laplacian matrix of the path graph multiplied by −k. The Laplacian

matrix of the path graph is well studied. So from here we will look into the Laplacian

matrix of the path graph and establish the eigenvalues like we set out to do.

Definition 4.0.2. The adjacency matrix of a simple graph G is the n × n matrix

A = (Aij) where Aij is equal to 1 when there is an edge in the graph G between

vertex i and vertex j for i 6= j and is equal to 0 when there is no edge.

Definition 4.0.3. The degree matrix D is a diagonal matrix with diagonal elements

given by the number of edges incident to each vertex.

For the corresponding definition of directed multigraphs, see reference (13).

Definition 4.0.4. The Laplacian matrix L is defined as L = D − A.

In order to find the eigenvalues for the Laplacian of the path graph, we will take a

step back and find eigenvalues for the cycle graph instead. First we need to establish

some set up.
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Definition 4.0.5. Union of Two Graphs

Let G1 ∪ G2 be the union of two graphs G1 and G2, which have the same vertex

set V and edge sets E1 and E2. This is the graph with vertex set V and edge set

E1 ∪ E2.

Definition 4.0.6. n-fold Multiplication of a Directed Multigraph

Let G be a directed multigraph with vertex set {v1, ..., vm}. Then Gn, for n ≥ 1, is

the directed graph with the same vertex set. Edges inGn from vi to vj, i, j ∈ {1, ...,m}

are defined by oriented walks in G of length n (i.e. sequences of oriented edges

e1e2...em where el is an edge from vil to vil+1
in G, vil = vi and vim+1 = vj). Note

that G0 is the graph with the identity matrix, I, as its adjacency matrix and thus

has vertex set {v1, .., vm} and a simple (directed) loop at each vi.

Example 4.0.1. n-fold Multiplication of a Graph

Let G be the graph

v1 v2

v3v4

e1

e2

e4

e5
e3

Then G2 is the graph

If we have a graph G with an ordered set of vertices, we are able to find the adjacency

matrix corresponding to that ordered set of vertices and eventually find the set of

eigenvalues using the following statements.

Notation: Let F be an algebraically closed field and let Mn(F) be the F-algebra of

(n× n) matrices with components in F.
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v1 v2

v3v4

e2e3

e1e3

e3e5

e3e4
e1e2

e4e5

Proposition 4.0.1. Polynomial of a Graph

Let G be a graph and let P (x) be a polynomial with coefficients ai ∈ {0, 1, ...}, i =

0, 1, ..., n. Then there is a graph P (G) whose adjacency matrix is P (A). If we have a

polynomial P (x) = a0x
n + ...+ anx

0 then we can use P (G) = a0G
n ∪ ...∪ anG0. (13)

Theorem 4.0.1. Let A ∈ Mn(F). Let {λ1, λ2, ..., λn} ⊂ F be the set of eigenvalues

for A and let P (x) be a polynomial over the field F. Then

det(P (A)) =
n∏
i=1

P (λi).

Proof. The fundamental theorem of algebra says that for the characteristic polynomial

det(A− Ix) = (λ1 − x)(λ2 − x)...(λn − x) =
∏n

i=1(λi − x) where each λi may be real

or complex. Let P (x) = c
∏m

l=1(x − cl) with c, cl ∈ F. Now we will use P (A) as our

new matrix and apply the determinant operation to it.
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det(P (A)) = det

(
c
m∏
l=1

(A− clI)

)

= cn
m∏
l=1

det(A− clI)

= cn
m∏
l=1

n∏
i=1

(λi − cl)

=
n∏
i=1

(
c
m∏
l=1

(λi − cl)

)

=
n∏
i=1

(P (λi))

In Theorem 4.0.1 we were able to solve for what the determinant for P (A) was.

However, we are most interested in the eigenvalues, so in the following theorem we

will solve for the eigenvalues.

Theorem 4.0.2. Let A ∈ Mn(F) and P ∈ F[x]. If λ1, λ2, ..., λn are the eigenvalues

of A, then P (λ1), P (λ2), ..., P (λn) are the eigenvalues of P (A).

Proof. Let γ be an indeterminate over F. Define K as the algebraic closure of F[γ].

Let H ∈ K[x] with definition H(x) = γ − P (x). Consider H(A)

H(A) = γI − P (A)

and so

det(H(A)) = det(γI − P (A)) (4.1)
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Note that det(γI − P (A)) is the characteristic polynomial of P (A), which is what

defines the eigenvalues of P (A). Since K is an algebraically closed field and we have

A ∈Mn(F) ⊂Mn(K) and H ∈ K[x] we can use Theorem 4.0.1 to get

det(H(A)) =
n∏
i=1

H(λi). (4.2)

Combining Equations 4.1 and 4.2 and then apply H we get

det(γI − P (A)) =
n∏
i=1

H(λi)

=
n∏
i=1

(γ − P (λi))

So the characteristic polynomial of P (A) is given by S(γ) =
∏n

i=1(γ − P (λi)), whose

roots are P (λ1), P (λ2), ..., P (λn). Thus P (λ1), P (λ2), ..., P (λn) are the eigenvalues of

P (A).

Example 4.0.2. n-fold Multiplication of a Graph

Let ~Cn be the cycle graph below.

1

2
3

4
5

The above image is a circuit of five vertices which directed edges. By raising this

graph to powers we make new connections. To be specific, if we multiply the graph

to itself, we get the following. Notice how the vertices are now connecting the vertex

that was two spaces away.
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~C5 · ~C5 =
1

2
3

4
5

· 1

2
3

4
5

= 1

2
3

4
5

= ~C2
5

I will continue until I arrive at ~C4
5 .

~C2
5 · ~C5 =

1

2
3

4
5

· 1

2
3

4
5

= 1

2
3

4
5

= ~C3
5

~C3
5 · ~C5 =

1

2
3

4
5

· 1

2
3

4
5

= 1

2
3

4
5

= ~C4
5

If we do this for general n we see that ~Cn−1
n is the graph of ~Cn with edge ori-

entations reversed. Using what we have established above, what we really want is

the undirected cycle graph Cn, but to get it we will set up Cn = ~Cn ∪ ~Cn−1
n where

~Cn−1
n is a directed cycle graph which has been specially set up to have edges that are

complimentary and oppositely oriented to ~Cn.

1

2 3

...

n− 1n

∪ 1

2 3

...

n− 1n
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The adjacency matrix of ~Cn is the following.

A =



0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0

...
. . .

...

0 . . . 0 1

1 . . . 0 0 0


We want to compute powers of this adjacency matrix, we will begin with an

example.

Example 4.0.3. Raising the Adjacency Matrix to Powers

Before moving into a proof that will allow us to assume the general case of what

raising A to a power does, I will offer a small example first to motivate the proof.

A =


0 1 0

0 0 1

1 0 0


The matrix above is an adjacency matrix for a directed cycle with three vertices.

Notice that it is also a permutation matrix and because of this, when we raise A to

the third power, we get the identity matrix I. When we raise it to the fourth power,

we get back A.
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A2 =


0 1 0

0 0 1

1 0 0




0 1 0

0 0 1

1 0 0

 =


0 0 1

1 0 0

0 1 0


Now we will cube A by multiplying our new matrix by A.

A3 =


0 0 1

1 0 0

0 1 0




0 1 0

0 0 1

1 0 0

 =


1 0 0

0 1 0

0 0 1


Notice how the rows permute themselves downward with the final row being

thrown to the top of the matrix. I will now move into proving that this will be

the case in general so we can use this permutation of rows to our advantage.

Lemma 4.0.3. Let

A =

 0 In−1

I1 0


and ei be a canonical basis vector in Rn with i = 1, 2, . . . , n then

eiA = ei+1

for i = 1, ..., n− 1 and

enA = e1

Proof. Let i be an integer between 1 and n− 1 and ei be a general basis vector. Let

A be represented by the row vector of basis vectors (en, e1, e2...en−1).
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Multiplying these two things together we get

eiA = ei(en, e1, e2...en−1) = (eien, eie1, ..., eiei, ..., eien−1) = (0, 0, ..., 1, ..., 0)

We also know that the exact position of our 1 is the i+ 1 spot and we know this

because ei is in the i+ 1 position in the vector we multiplied ei by, it will shift ei over

by one index each time we do the multiplication. So eiA = ei+1 for i = 1, 2, ..., n− 1.

The final thing we must address is the edge case of en.

enA = en(en, e1, e2...en−1) = (enen, ene1, ..., enen−1) = (1, 0, ..., 0) = e1

Theorem 4.0.4. Let

A =

 0 In−1

I1 0


then

Ak =

 0 In−k

Ik 0


for k = 1, 2, . . . , n− 1

Proof. We will proceed by induction. First we need to tackle the base case and in

this situation the base case will be Ak where k = 0 which is the identity matrix and

that is what Ak predicts so the base case has been shown to work.

We assume the following equality holds for some j.
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Aj =

 0 In−j

Ij 0


Now we will show this is true for j + 1.

Aj+1 = AjA =

 0 In−j

Ij 0


 0 In−1

I1 0


Note that we can write Aj and A in terms of ei:

AjA =



en−j
...

en

e1
...

ej


(en, e1, e2, ..., en−1)

By Lemma 4.0.3 we have eiA = ei+1 and enA = e1, so we get

AjA =



en−j
...

en

e1
...

ej


(en, e1, e2, ..., en−1) =



en−(j+1)

...

en

e1
...

ej+1


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Theorem 4.0.5. Eigenvalues of Cn

Let A be the adjacency matrix of the undirected cycle graph Cn. The eigenvalues,

λj where 0 = λ1 < λ2 < ... < λn are given by

λj = ηj + η−1j

where ηj = e
2πij
n , for j = 0, 1, . . . , n− 1. Note that ηnj = 1.

Proof. Let P be a polynomial defined as

P (x) = x+ xn−1

.

Let ~Cn be the directed cycle graph with n vertices and let A be it’s adjacency

matrix. If we apply P to A we get

P (A) = A+ An−1

=

 0 In−1

I1 0

+

 0 I1

In−1 0



=



0 1 0 . . . 1

1 0 1 0

...
. . .

...

1 0 . . . 1 0


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P (A) is the adjacency matrix for the undirected cycle graph, Cn, so P ( ~Cn) = Cn.

It is well known that the eigenvalues of ~Cn is given by

ηj = e2πij/n.

For further reading and proof of these eigenvalues, see reference (4). Note that

ηnj = 1 for j = 0, 1, . . . n − 1. By Theorem 4.0.2 we have that P ( ~Cn) = Cn has the

eigenvalues P (ηj), which gives us

P (ηj) = ηj + ηn−1j

= ηj + ηnj η
−1
j

= ηj + η−1j

So the eigenvalues for the undirected cycle graph are (4)

λj = ηj + η−1j ,

for j = 0, 1, . . . , n− 1

Theorem 4.0.6. Let L be the Laplacian matrix of undirected cycle graph, Cn. The

eigenvalues, λj where 0 = λ1 < λ2 < ... < λn, and their corresponding eigenvectors,

vj, are given by
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λj = 2− ηj − η−1j

and

vj = (1, ηj, η
2
j , ..., η

n−1
j )T

where ηj = e
2πij
n , for j = 0, 1, . . . , n− 1. Note that ηnj = 1.

Proof. Let L be the Laplacian matrix of the undirected cycle graph, Cn with adjacency

matrix A and degree matrix D. In Theorem 4.0.5 we showed that the eigenvalues of

A are

γj = ηj + η−1j ,

where ηj = e
2πij
n for j = 0, 1, . . . , n− 1. The corresponding eigenvectors are

vj = (1, ηj, η
2
j , ..., η

n−1
j )T ,

which can be found in Spectra of Graphs (4).

Consider Lvj,
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Lvj = (D − A)vj

= (2I − A)vj

= 2Ivj − Avj

= 2vj − γjvj

= (2− γj)vj

= λjvj

So we conclude that the eigenvalues of the L are λj = 2− γj = 2− ηj − η−1j with the

corresponding eigenvectors vj.

Theorem 4.0.7. Let L be the Laplacian matrix of the path graph Pn. The eigenvalues,

λj where 0 = λ1 < λ2 < ... < λn, and their corresponding eigenvectors, vj, are given

by

λj = 2− ηj − η−1j

and

vj = (1 + η2n−1j , ..., ηkj + η2n−1−kj , ..., ηn−1j + ηnj )T

where ηj = e
πij
n , for j = 0, 1, . . . , n− 1. Note that η2nj = 1.
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Proof. The entries of L are

al,k =



1 if k = l and l = 1 or l = n

2 if k = l,

−1 if k = l − 1 or k = l + 1,

0 otherwise

When we multiply L and vj the l-th entry of the resulting vector is

(Lvj)(l) =
n∑
k=1

al,kvj(k)

For the middle rows of L (0 < l < n)

(Lvj)(l) = al,l−1vj(l − 1) + al,lvj(l) + al,l+1vj(l + 1)

= −(ηl−1j + η
2n−1−(l−1)
j ) + 2(ηlj + η2n−1−lj )− (ηl+1

j + η
2n−1−(l+1)
j )

= (2− ηj − η−1j )(ηlj + η2n−l−1j )

= λjvj(l)

For the top row of L we have (l = 1)

(Lvj)(1) = a1,1vj(1) + a1,2vj(2)

= (1 + η2n−1j )− (ηj + η2n−2j )

= (2− ηj − η−1j )(1 + η2n−1j )

= λjvj(1)
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For the top row of L we have (l = n)

(Lvj)(n) = an,n−1vj(n− 1) + an,nvj(n)

= −(ηn−2j + η
2n−1−(n−2)
j ) + (ηn−1j + ηnj )

= (2− ηj − η−1j )(ηn−1j + ηnj )

= λjvj(n)
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Figure 4.2 The points on the plot are the eigenvalues are for a 4 × 4 
Laplacian matrix of the path graph.

We have found the eigenvalues and eigenvectors for Lp, so we can perform eigen-

decomposition for Lp. Meaning we can write

Lp = BDB−1

where B is the matrix with eigenvectors as it’s columns and D is the diagonal matrix 

with eigenvalues. Since Lp is diagonalizable and B is a constant matrix then by 

Lemma 3.0.4

P (t) = Be
∫ t
0 −kD dsB−1P 0

is a solution to the differential system of equations dP
dt

= LpP , where P (0) = p0. You

may notice that we are missing one vital piece, namely B−1. We could not determine

a general formula for the inverse matrix of B. However, it is possible to manually

compute (with aid from a computer) the inverse of B for a reasonably small n, which
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we will do when utilizing this solution.
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CHAPTER 5:

RESULTS AND DATA

Figure 5.1 A hysteresis graph for a population of lysenin channels. The 
green curve shows how ionic current decreases as voltage is increased in-
dicating that the channels are gating. The yellow curve indicates how the 
current increases as the voltage decreases indicating that the channels are 

in a conducting state.

In this section of the thesis I will be describing the practical analysis of data 

using the method described in the previous chapters. Note the data shown in Figure

5.1 was used to make the plot shown in Figure 5.2. The hysteresis plot is a very

typical one that displays a slow change in voltage and the ionic currents changing

in response. At each change in voltage the channels are allowed to relax and reach

full equilibrium. This is called a ‘static equilibrium’ and is an uncommon feature in

molecular biophysics; see Equation 5.2.
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Figure 5.2 A typical experiment’s open probability data being modeled by 
the strategy researched in this thesis. The experiment can be broken into 

two parts. The first part, ascending voltage, is where the voltage the 
channels are exposed to increases slowly so they reach equilibrium at each 

new potential so that eventually all channels will be gated. The second part, 
descending voltage, is where the channels are slowly re-opened by 

decreasing the voltage very slowly.

POpen(t) =
k+e

−t(k++k−)

k+ + k−
+

k−
k+ + k−

(5.1)

lim
t→∞

POpen(t) =
k−

k+ + k−
(5.2)

To model the data as seen in Figure 5.2 we begin with the data that makes up

a hysteresis; the voltage and current. With this raw data we compute the open

probability by taking Im (Equation 5.3) and dividing it by the theoretical maximum

current (Equation 5.5). Both of these things count the the channels; Im signifies

the number of open channels at a given voltage and Imax is the total population of

channels.
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Im = O ·G0 · V (5.3)

I0 = G0 · V (5.4)

Imax = I0 ·N (5.5)

The next step is to decide on the number of closed states we want to use to model

the data; in most of the modeling I did for this thesis I assumed there were between

2 and 4 closed states. We also need to decide upfront what the rate constant will

be. For the data analyzed for this thesis simple, often single term, polynomials were

chosen. For example, V or t, but more terms are not forbidden. There is even the

possibility of using logarithmic, exponential, or other function types.

In Figure 5.2 we assumed that there were 3 closed states for lysenin and took

the rate constant to be x3 for the ascending voltage and the rate constant to be

x4 for the descending voltage. With those parameters we generated our eigenvalues

and eigenvectors and computed the inverse of the matrix of eigenvectors to find the

solution to our differential equations. We have two different initial conditions for

ascending and descending voltages. For the ascending voltage we assume that every

channel is open, so the vector is P 0 = (1, 0, 0, 0)T . For the descending voltage we

assume that there is an equal distribution among the closed states, so the vector is

P 0 = (0, 1
3
, 1
3
, 1
3
)T . With these initial conditions we can get our unique solution for

open probability, POpen(t).

There is a slight problem with this function in that we needed to shift and scale the

resulting function to fit in the range of 0 and 1. If we approach a continuous model by
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increasing the number of states we would naturally get this shifting and stretching for

ascending voltage. Alternatively if we had a different model that allowed for the rate

constants to be different from one another as voltage changes (i.e. allowing the rate

constants to reflect changes in the energy landscape). Having one constant means

that we have lost some resolution to how the model fits the data.

The probability functions graphed in Figure 5.2 are modified in two ways. As

previously mentioned they have to be stretched and the descending voltage graph

needs to be reversed (the plot is in terms of voltage and not in time, so we have to

adjust our plot accordingly). In Figure 5.3 we have plotted the versions of the open

probability for ascending and descending voltage that have not been scaled or shifted

(the descending voltage probability has been flipped to account for the voltage plot).

You can see that the probability functions have an asymptote at 1
4

and more generally

1
n

where we have n−1 closed states. This defect in the model is expected, because the

rate constants are equal and so the probability of being in any state will be equally

likely as time goes on.

Figure 5.3 Probability functions plotted in terms of voltage with no 
scal-ing or shifting

The specific modifications we made to the open probability functions to generate
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the graph in Figure 5.2 are

• Ascending voltage

nPOpen − 1

n− 1

• Descending voltage

nPOpen

Physically we understand that the channels will go all the way to the last pos-

sible closed position as voltage is increased and when we allow the channels reach

equilibrium. Figure 5.4 displays how different a fit can be just by altering the initial

condition for the descending voltage from P 0 = (0, 1
3
, 1
3
, 1
3
)T to P 0 = (0, 0, 0, 1)T . I

would like to bring your attention specifically to the fact that the area enclosed in

the curves in Figure 5.4 is larger than in Figure 5.2 which indicates that the channels

do take more time to open when they are able to fully reach equilibrium in the final

closed position.

Figure 5.4 Open probability voltage plot where the descending voltage 
initial condition is taken to be (0, 0, 0, 1)T and the k = t3. No changes to 

ascending voltage shown in Figure 5.2
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CHAPTER 6:

FURTHER THOUGHTS

Naturally when doing research more and more areas to investigate show up. There

are handful that came to our attention the course of researching this thesis that we

will mention here which would be natural next steps to further this line of research

that we could not get to.

First, in our model that we came to at the end of Chapter 4 there is a single-

variable function k. Determining a ‘good’ function that models the data appropriately

is primarily guess-and-check. There are a lot of potential functions that one could

try. We limited our choices to monomial terms (k = tj), but other functions could

be considered like k = et or k = t5 + t3 + 4. Determining a better way to choose

a function is something worth looking into. Also if we could determine an optimal

function type (polynomial, exponential or something else) that would work best that

would also be of interest.

Next, we were able to diagonalize the matrix Lp at the end of Chapter 4, but we

were not able to explicitly write what the inverse of B would be. We have reason to

believe that there is a general form for it’s inverse due to the Vandermonde nature

of the matrix of eigenvectors B. If we had B−1 we would be able to write the closed

form solution for n-closed states.

Lastly, in Chapter 5 we had to shift and scale the resulting probability functions
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to fit the data. The cause of that manipulation of the graph was due to their only be

one rate constant for the Markov process, which led to each state being equally likely

as t increases. This naturally would prompt us to look at increasing the number of

rate constants in our model. This would be a completely different model, but even

increasing the number of rate constants to two is thought to remove the need for this

shifting and scaling. It would also be an interesting topic to investigate as it would

provide an even more general model.
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CHAPTER 7:

CONCLUSION

Understanding the physical role of molecules is essential, not only for making con-

nections to known biological functionalities, but also for deciphering novel and yet

uncovered features. Understanding how memory may occur at a molecular level is the

ultimate goal of studying molecules which may exhibit memory through hysteretic

behavior. Lysenin is one of the best molecules for studying hysteretic behavior in cel-

lular biology due to the fact that it is easy to work with in an experimental setting,

relatively inexpensive, and it displays that it remembers its past history for many

hours during experimentation. Because of these reasons, and others, we have chosen

to invest in improving the modeling used to understand it within thesis.

Typically when modeling ion channels, which lysenin has been compared to in

the biophysical literature, the model only recognizes conducting and non-conducting

states, see Figure 2.4. However, it is thought that lysenin may have more electri-

cally indiscernible states due to the fact that it does display a strong hysteresis in

conductance when exposed to oscillatory voltage stimuli.

The approach described in this thesis reasonably models the hysteretic behavior of

lysenin by applying well-studied mathematical concepts in novel ways. We were able

to take the two-state system and modify it to be more general with n states, closed or

open, since both conducting and non-conducting states are electrically indiscernible.
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The model discussed in this paper also does well to mathematically explain, in part,

the energy-landscape as it changes with the pores. As the channels are exposed

to external stimuli (such as voltage) their preferred state changes and they alter

their confirmation. This is reflected in the multiplicity of the eigenvalues. Since the

eigenvalues are never repeated, see Figure 4.2, this models how the energetics of the

system change.

Studying this mechanism is important because the hysteresis is linked to memory.

Since memory is typically thought of as a product of a more complex system, like

a population of cells or even a brain, it is important to study a molecule that may

exhibit memory. In addition, lysenin behaves similarly to ion channels in our brain,

muscles, and all cells, and scientists may look for similar hysteretic behavior in the

functionality of those transporters and attempt to identify its physiological relevance.

Given that lysenin channels are electrically controlled, future explorations may focus

on its use it as memory in devices that currently use solid-state elements, or even as

an interface between neuron-based systems and artificial systems.
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