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ABSTRACT 

Random numbers are an important, but often overlooked part of the modern 

computing environment. They are used everywhere around us for a variety of purposes, 

from simple decision making in video games such as a coin toss, to securing financial 

transactions and encrypting confidential communications. They are even useful for 

gambling and the lottery.  

Random numbers are generated in many ways. Pseudo random number generators 

(PRNGs) generate numbers based on a formula. True random number generators 

(TRNGs) capture entropy from the environment to generate randomness. As our society 

and our devices become more connected in the digital world, it is important to develop 

new ways to generate truly random numbers in order to secure communications and 

connected devices.  

In this work a novel memristor-based True Random Number Generator is 

designed and a physical implementation is fabricated and tested using a W-based self-

directed channel (SDC) memristor. The circuit was initially designed and prototyped on a 

breadboard. A custom Printed Circuit Board (PCB) was fabricated for the final circuit 

design and testing of the novel memristor-based TRNG. The National Institute of 

Standards and Technology (NIST) Statistical Test Suite (STS) was used to check the 

output of the TRNG for randomness. The TRNG was demonstrated to pass 13 statistical 

tests out of the 15 in the STS. 
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CHAPTER ONE: INTRODUCTION 

Random numbers have a variety of uses in modern computing and information 

security. Uses can range from a simple decision making or branching in a video game to 

providing the basis for keeping banking transactions secure and encryption of secure and 

secret documents. 

1.1 Methods of Generating Random Numbers 

While there are many methods to generate random numbers, there are two main 

types of random number generators: Pseudo Random Number Generators (PRNGs) 

which generate sequence of numbers based on a formula, and True Random Number 

Generators (TNRGs) which generate numbers from entropy and cannot be predicted. 

1.1.1 Pseudo Random Number Generators 

Pseudo Random Numbers Generators generate a deterministic sequence of 

numbers that are nearly random but are not truly random. PRNGs begin with a seed value 

and generate a sequence of random numbers based on a formula. A PRNG will generate 

the exact same sequence of random numbers if it starts with the same seed in each run. 

PRNGs will eventually repeat and follow the same sequence again. In this sense, they 

generate a string of numbers that are difficult to predict and have the appearance of being 

random yet are not truly random. The output from PRNGs however can be predicted. 

This can be useful for many applications, specifically software applications where a 

repetitive but “random” behavior is useful, such as Monte Carlo simulations and low-

stakes games. This behavior is not desirable for other applications, such as security 
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applications, that demand that a random number must be truly unpredictable, not merely 

difficult to predict. PRNGs can be implemented in a variety of ways in either hardware or 

software, but the most common method is to use a liner congruential generator (LCG) or 

a linear feedback shift register (LFSR). 

1.1.2 True Random Number Generators 

A True Random Number Generator generates numbers that are truly random in 

nature. Unlike a PRNG, there is no way to predict the sequence of numbers that a true 

RNG will generate. The same sequence of random numbers will never be generated twice 

by a TRNG. True random number generation is important in data security applications, 

such as securing banking transactions, or encrypting communications where it is essential 

that the sequence of random numbers can never be predicted or guessed. True RNGs 

generally utilize a hardware component that captures entropy to generate truly 

unpredictable results. Examples of true hardware RNGs could be a fair 6-sided die, a lava 

lamp [1], or thermal or quantum noise (shot noise, random telegraph noise, etc.) in a 

circuit component. 

Capturing entropy and generating true random numbers is a very difficult process. 

Many TRNGs require a significant amount of post-processing of the data they generate in 

order to output sequences of numbers that are truly random in nature. For example, 

certain natural sources of entropy such as Random Telegraph Noise (RTN) in NAND 

Flash Memories require post-processing to capture the randomness of the output [2]. 

Other TRNGs require post-processing as well, such as Intel’s RDRAND [3] and the 

Linux TRNG Entropy Pool [4], both of which will be discussed later in this thesis. It is 

challenging to capture entropy at high speed and many TRNGs capture entropy slowly. In 
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many cases a truly random number is generated from an entropy source and used to seed 

a PRNG in order to improve the speed and efficiency of the RNG. The PRNG seed is 

normally updated at a regular interval to ensure unpredictability in the sequence. 

1.1.3 Capturing Entropy in a Memristor 

A memristor is a two-terminal device that changes resistance as charge flows 

through the device. The memristor is often referred to as the 4th circuit element [5-8]. 

Resistors can often be used in TRNGs to capture entropy as thermal noise. In many cases, 

a memristor can be better suited for use in a TRNG because other sources of noise 

besides just thermal noise are present in the device. In this thesis entropy is captured 

using a Tungsten Self Directed Channel (W-SDC) device [9,10]. 

1.2 Topics Covered in this Thesis 

This thesis introduces the concept of random numbers and randomness in Chapter 

1. In Chapter 2, the National Institute of Standards and Technology (NIST) methods for 

testing random numbers are introduced and discussed. Chapter 3 describes the data 

collection hardware and methodology.  Chapter 4 describes six PRNGs and TRNGs that 

have been previously presented in the literature by other researchers. These designs are 

examined in this thesis through breadboard testing. The results of these tests were 

obtained using the procedures and hardware described in Chapters 2 and 3. A novel 

memristor-based TRNG designed for this thesis, including steps to fabricate and test the 

proposed design are described in Chapter 5. Tests were first performed at the breadboard 

level, and upon demonstration of proof of concept, were then performed at the printed 

circuit board level. Results of the breadboard and PCB TRNG tests are presented in 

Chapter 6 and compared with the other PRNG and TRNG designs tested in this work. 
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Chapter 7 contains a discussion of future work, shortcomings of, and improvements to 

the design.  The Appendix contains additional information such as the code that was 

written and use for data collection and analysis.
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CHAPTER TWO: OVERVIEW OF NIST STATISTICAL TEST SUITE 

2.1 NIST Statistical Test Suite 

NIST (the National Institute of Standards and Technology) has made software 

available to test the randomness of random number generators [9,10]. The Statistical Test 

Suite (STS) version 2.1.2 was downloaded, compiled, and used to analyze binary 

bitstreams of numbers generated by RNGs. The NIST statistical test suite contains a 

series of 15 statistical tests to determine the randomness of a series of generated numbers. 

Some are as simple as verifying that the number of ones and zeros is an even 50/50 split. 

Other tests look for repeating patterns or continuous runs of the same bit within the 

sequence. In the paragraphs that follow, a complete list and description of each test is 

included. The following summary of these tests was written after careful reading and 

understanding of the NIST STS guide.  

2.2 Description of NIST Tests 

2.2.1 Frequency (Monobits) Test 

A truly random number should have a 50/50 distribution of ones and zeros. The 

frequency test analyzes the number of ones and zeros in the test sequence. The test will 

fail if there are significantly more ones than zeros, or significantly more zeros than ones. 

The number of ones and zeros should be approximately equal. None of the other NIST 

randomness tests are valid if this test does not pass. A case of all zeros or all ones in a 

sequence is not random and would fail the frequency test.  
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2.2.2 Frequency Test Within a Block 

This test is equivalent to the frequency test described above. This test simply 

looks at the frequencies of ones and zeros in an M-bit sample block. For a truly random 

number, the number of ones and zeros should be approximately equal. It may be possible 

for a series of 100 zeros followed by 100 ones to pass the frequency test, but the 

frequency test within a block would catch and fail this case. 

2.2.3 Runs Test 

The purpose of the runs test is to evaluate the total number of runs in the sequence 

of random numbers. A run consists of a sequence of repeating bits, bounded on each end 

by an opposite bit. The length of the run is the number of bits that are identical in the run. 

For example, the sequence “100001” is a run of zeros of length 4. This test checks if the 

number of runs of various lengths matches the expectation for a random sequence. 

Specifically, this test can find oscillations in the random sequence. A sequence of four 

zeros followed by four ones repeating over and over might pass both frequency tests 

above, but would fail the runs test because there are no runs of length one, two, or three. 

2.2.4 Longest Runs Test 

The longest runs test finds the longest run of ones in each block and tabulates the 

frequencies into categories. Each category is the length of the run. Analysis of the 

frequency of the occurrence of longest runs in a block can predict if a number is random. 

Runs of ones that are longer than expected indicate a non-random number generator. 

Runs of zeros are not checked in this test. This test operates under the assumption that 

runs of zeros are similar to runs of ones.  
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2.2.5 Binary Matrix Rank Test 

The purpose of this test is to look for linear dependence among the fixed length 

substrings of the original sequence. The binary sequence test calculates the rank of a 

matrix formed by arranging the input sequence in the rows and columns. The test fails if 

a linear dependence is detected among the fixed length substrings of the original 

sequence. This sequence is also included in other randomness test software. 

2.2.6 Discrete Fourier Transform (Spectral) Test 

The Discrete Fourier Transform (DFT) Spectral test analyzes the random 

sequence and looks for periodic patterns in the sequence. This test will detect if repetitive 

patterns are near each other. A perfectly random sequence should have a spectral analysis 

that is flat (should look like noise). The test will fail if there are peaks in the spectrum 

that exceed the 95% threshold. The binary representation of a sine wave will fail the DFT 

tests due to a single large spectral peak. 

2.2.7 Non-overlapping Template Matching Test 

The purpose of this test is to analyze the rate of occurrence of pre-specified target 

lists of numbers. This test searches for matches between the binary templates provided 

(located in the “templates” folder) and the random input sequence. If a match is not found 

the sequence is shifted by 1 bit and a search for the next sequence begins from that 

sequence. If a sequence is found, then the search for the next sequence starts from the end 

of the current sequence. The test fails if too many occurrences of the same pattern are 

found in the sequence. For example, the test sequence mentioned above in the frequency 

block test of four zeros followed by four ones repeating would fail the non-overlapping 

template matching test. 
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2.2.8 Overlapping Template Matching Test 

The overlapping template match sequence is very similar to the non-overlapping 

template matching test described above. The main difference from the non-overlapping 

test is that the overlapping template test will scan for new sequences starting at an 

increment of one from the start of the last sequence instead of starting at the end of the 

previous sequence. The test fails if too many occurrences of the same pattern are found in 

the sequence. 

2.2.9 Maurer’s “Universal Statistical” Test 

The purpose of this test is to search for repetition in the input sequence. The first 

portion of the sequence is turned into a set of patterns. The rest of the sequence is 

analyzed for repetition of these patterns. The purpose of this test is to check if the 

sequence is easily compressible without loss of information. If there are too many 

occurrences of these patterns in the rest of the sequence then the sequence is non-random. 

This test is similar to the overlapping and non-overlapping template tests. 

2.2.10 Linear Complexity Test 

The purpose of this test is to compute the length of LFSR required to generate the 

input pattern. The Berlekamp-Massey algorithm is used to determine the minimum length 

LFSR needed to generate a pattern for each block in the sequence. A pattern with short 

length LFSRs, or a pattern that lacks linear complexity is considered non-random. In 

many cases, PRNGs cannot be detected by this test because most modern PRNGs have an 

extremely long period. The well-known Mersenne Twister has a period of 219937-1.  
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2.2.11 Serial Test 

The serial test analyzes the frequency of occurrence of all possible overlapping 

patterns in the input sequence. A random pattern should have a similar occurrence rate of 

all other patterns if it is random. The input is considered non-random if some patterns 

have a higher than expected rate of occurrence. Note that for a pattern length of 1, the 

serial test is the same as the frequency test, 

2.2.12 Approximate Entropy Test 

This test focuses on the frequency of all possible overlapping patterns across the 

entire sequence. This test compares the frequency of occurrence of m-bit patterns with 

m+1-bit patterns in the sequence. The test will fail if the frequency of overlapping blocks 

is not what is expected for a random sequence. 

2.2.13 Cumulative Sums Test 

The cumulative sums test analyzes the cumulative sum of the sequence to test that 

the sequence never deviates too far from the expected value. Ones add one to the 

cumulative sum and zeros subtract one from the cumulative sum. If the sequence is 

random, the cumulative sum should never deviate too far from zero. The cumulative 

sums test will fail if the excursion from zero is too large or too small. From the previous 

example of a sequence of 100 ones followed by 100 zeros, the cumulative sum will reach 

a value of 100 steps away from zero which is not probable to occur in a series of random 

numbers of length 200 that is passing the frequency tests. 

2.2.14 Random Excursions Test 

The random excursions test is a different take on the cumulative sums test. Like 

the cumulative sums test, a one adds one to the cumulative sum and a zero take one away 
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from the cumulative sum. Sequences are selected such that they start and end at zero. An 

analysis of the number of visits to a particular state (i.e. -4, -3, -2, -1, +1, +2, +3, or +4) in 

the sequences is performed. If the number of visits to a particular state does not match 

that expected of a random sequence, the sequence is not random. From the previous 

example of a series of four ones followed by four zeros repeated, the cumulative sums 

test will consistently reach a cumulative sum of +4 and 0 with the same rate of 

occurrence. For a truly random sequence a cumulative sum of +4 should occur less often 

than a cumulative sum of 0. 

2.2.15 Random Excursions Variant Test 

Just like the cumulative sums and random excursions test, the random excursions 

variant test analyzes the total number of times each state is visited. The states in this test 

range from -9 to +9. If the number of visits to each state deviates from that expected of a 

random sequence, the test fails. 

2.3 Downloading, Compiling, and Using the NIST Statistical Test Suite 

The NIST Statistical Test Suite can be downloaded from the NIST website [12]. 

Once the source code is downloaded the application must be compiled. For this thesis 

project Ubuntu 18.04 LTS Sever was installed in a virtual machine using VirtualBox [13] 

running as a guest OS on a Windows 7 PC. This allowed for the Waveforms application 

to run on the Windows environment and STS 2.1.2 code to run in a Linux environment. 

A shared drive that could be accessed from both the host Windows OS and the guest 

Linux OS was used to share data between the two operating systems. Instructions for 

sharing a drive between a guest OS and Windows 7 were found online [14]. 
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To make the STS application a little more friendly and convenient to use, several 

modifications were made to the STS Assess application throughout the course of this 

project. Print statements to show the progress of the statistical analysis were added, as 

well as code to print the number of lines read in the case that there the input file does not 

contain a sufficient amount of data. Due to the simplicity and small amount of 

modification this code is not shared in the appendix. The modifications to the source code 

are contained in the appendix section of this thesis.  

2.3.1 NIST Statistical Test Suite Code Location 

Campbell Research group folder at BSU or Scholarworks: 

\sstoller_thesis_final_writeup\STS\sts-2.1.2 

2.3.2 Compiling the NIST Statistical Test Suite Application 

The following instructions detail how to install and compile the STS application 

on a Ubuntu Linux machine. Instructions for other Linux machines will be similar, but 

may require the use of a different package manager for installing make or gcc. 

1. Install make (“sudo apt-get install make”) 

a. make is required to read the makefile and properly compile and link the 

application. Depending on the version of Linux used, make may already 

be installed. 

2. Install gcc (“sudo apt-get install gcc”) 

a. gcc is the Gnu C++ compiler and must be installed in order to compile 

the application. Depending on the version of Linux used, gcc may already 

be installed. 

3. Clean (“make clean”) 
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a. Executing make clean will remove any previously compiled files and 

executables from the current directory. This is an optional step, but 

certainly a best practice when compiling source code to an executable. 

4. Compile and link the executable (“make”) 

a. Executing make uses the makefile in the current directory to compile and 

link the source code to create an executable. The “assess” executable will 

be created when make runs. 

2.3.3 Testing Randomness with the STS Assess Application 

This section provides a quick overview of how to use the STS assess application 

once it has been compiled by following the steps in the previous section. 

1. Execute assess (“./assess 1000000”) 

a. Assess is an executable application that was compiled from the STS 

source code. The number following the application is the length of each 

bitstream to be tested. A value of 1,000,000 (1M) bits was used for testing 

random numbers whenever possible. 

2. The application prompts the user to select a Generator/Source 

a. To analyze an input file, select option 0 

3. The application prompts the user to select the desired Statistical Tests to run 

a. To run all tests, enter a value of 1. Entering a value of 0 allows the user to 

select which tests to run or not run. For this thesis project all the statistical 

tests were applied. 

4. Next the application prompts the user if any changes to the Parameters are 

desired. 
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a. To keep all Parameter Adjustments at their default values, enter a value of 

0. To modify parameters, select the parameter to adjust by entering a 

number for that test. For this thesis project none of the parameters were 

adjusted. 

5. The application prompts the user for the number of bitstreams to test. 

a. For this test the user must divide the length of the binary file generated by 

the size of the bitstream passed as an input parameter to the assess 

application when the application was executed. In general, the more 

bitstreams that can be tester the better. 100 sequences of 1M bits was the 

target bitstream and test length for this thesis project. This was not always 

possible. 

6. Finally, the application prompts the user for the input file format. 

a. Enter a value of 0 for a file in an ascii format (e.g. each bit is an ascii ‘1’ 

or ‘0’ read in a text editor. Enter a value of 1 for a file in binary format 

(the Perl scripts written to process the Waveforms output write a binary 

file). 

7. Alternatively, the following command string may be used to input a series of 

predefined options: “time echo "0 <path to binary file> 1 0 49 1" | 

./assess 1000000” 

a. The echo command and a pipe are used to input the options (in the order 

prompted by the application) into the assess application. 

b. The time command is used to record and print the execution time it takes 

the assess application to execute. 
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c. The ./ executes the assess command and the 1000000 following specifies 

the length of each bitstream input. 

2.3.4 Understanding the Output from the NIST STS Application 

The NIST statistical test suite generates a text document report in the 

“\experiments\AlgorithmTesting\” path titled “finalAnalysisReport.txt”. This report 

contains a report summary for all statistical tests. Three types of information are provided 

for each test in this report: columns C1 through C10 show the distribution of p-values for 

each test (each column represents a range or “bucket” of p-values). The P-value column 

is a summary of the p-values in columns C1 through C10 via application of a chi-square 

test. According to the NIST STS guide, the P-value is the “probability (under the null 

hypothesis of randomness) that the chosen test statistic will assume values that are equal 

to or worse than the observed test statistic value when considering the null hypothesis.” 

[11].  

The proportion column is the pass rate of the sequences tested. A value of 

“96/100” indicates that 96 sequences of the 100 sequences tested are passing the specific 

test. An asterisk indicator is displayed next to any p-value or proportion that is failing for 

a specific test. The default alpha value of 0.96 was used for this thesis project. This 

means that in order to be considered a random sequence, 96% of sequences must be 

passing each test. 

It is worth noting that some tests run multiple times (i.e. Cumulative Sums or 

Non-Overlapping Template tests). For these tests a single row is displayed in the results 

table showing the sum proportion for all of these tests. Only the summary P-value and 
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proportion for each randomness test are shared in the results for each RNG tested in this 

thesis. An asterisk is shown next to each proportion or P-value that is not passing. 
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CHAPTER THREE: DATA COLLECTION USING THE DIGILENT ANALOG 

DISCOVERY 2 BOARD 

3.1 Introduction 

This section describes the methods, hardware, and software used to test and 

characterize the hardware TRNGs that were implemented. A brief description of the 

Analog discovery 2 board is provided. Design of the data collection circuit that enables 

faster data collection is reviewed. Software and scripts that aided in data collection are 

shared and a workflow for collecting and characterizing the random data is presented. 

3.2 Digilent Analog Discovery 2 Board 

The Digilent Analog Discovery 2 (AD2) board was used to collect all of the 

random data samples from the hardware random number generators tested. The AD2 

interfaces with the Digilent Waveforms software that runs on either a Windows or Linux 

PC (in this case a PC running Windows 7 was used). The AD2 board was chosen because 

it is a small, cost-effective, and versatile board that is easy and convenient to use. The 

AD2 has two power supply outputs, two function generator outputs, two oscilloscope 

inputs, and 16 digital I/Os. Figure 3.1 shows a block diagram of the TRNG, Digilent 

AD2, and PC Waveforms software interface. Figure 3.2 shows a pinout diagram of the 

AD2, from the Digilent AD2 documentation [15]. 
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Figure 3.1 TRNG, Digilent AD2, and PC Waveforms block diagram 

 
Figure 3.2 Pinout diagram of the Digilent AD2 [15] 

3.3 Design of Data Collection Circuit 

In order to maximize the efficiency of data collection on the AD2, a data 

collection circuit was designed and built that was able to sample and collect 8 bits in a 

single clock cycle on the AD2. This allows for 8 times more data to be collected in each 
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capture with the Digilent Waveforms software [16] by reading data in parallel using 8 

bits instead of serially one-by-one. The x8 data collection circuit consists of a binary 

counter and a serial-in-parallel-out shift register. The slow oscillator is input to a binary 

counter. The fast oscillator is input into a shift register. The 3rd bit from the binary 

counter circuit is connected to the AD2 DIO 15 to act as the output clock. The 3rd bit 

toggles every 8 cycles of the input slow clock. The Digilent AD2 samples the output of 

the shift register every 8th cycle of the slow clock. The parallel outputs from the shift 

register are connected to DIOs 0-7 on the AD2. For every 8 cycles of the slow clock, the 

binary counter toggles a master clock for the AD2 to sample DIOs 0-7. As a result, the 

sample frequency of the AD2 can be reduced by a factor of 8, allowing it to save more 

data. Figure 3.3 shows a simplified schematic of the data collection circuit. There are 

some ways that the data collection circuit is not ideal. The design and implementation of 

the data collection circuit are described in depth in Chapter 5. Suggestions for improving 

the data collection circuit design are discussed in Chapter 6 where future work is 

discussed. 
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Figure 3.3 Schematic of the data collection circuit  

The SLOW_CLK_FINAL net is the output from the slow memristor oscillator 

circuit. This signal is connected to both Binary Counter (U3) and the Shift Register (U2). 

The 3rd bit from the binary counter is connected to D15 (DIO 15) on the AD2 board. The 

FAST_CLK_FINAL net is the clock generated by the fast resistor oscillator circuit. This 

is the input to the shift register. Each time the slow clock transitions from low to high, the 

state of the fast oscillator is sampled and shifted in the shift register. The 8 parallel 

outputs of the shift register are connected to the inputs D0-D7 (DIO 0- DIO 7) on the 

AD2 board. 

Figure 3.4 shows the shifting output behavior of the shift register on the DIO 0 

through DIO 7 signals. In this case the sample rate on the AD2 is much faster than the 

slow clock. RV Out (Resistor Multivibrator, or fast oscillator output) can be seen as a 

very fast oscillator. Both MV 1 Out (Memristor Multivibrator 1) and MV 2 Out 

(Memristor Multivibrator 2) outputs can be seen operating at a slower speed. The Clock 

(input clock to the Digilent AD2) can be seen sampling the data on the Data 15Clk data 
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bus. This output is saved to a CSV file for data processing and conversion to a binary 

bitstream later. 

 
Figure 3.4 Sample output from the data collection circuit  

The primary advantage of using the shift register is that 8 bits of data can be 

collected in one sample. The Digilent AD2 logic analyzer capture is limited to 100M 

samples. Using an 8 bit bus to capture output allows for up to 800M bits to be captured in 

a single run. The downside of implementing the circuit is additional components, 

complexity, and power. 

3.4 Importance of Proper Sampling Rate of Data and Other Considerations 

When sampling the output of the random number generator it is important to 

consider the frequency of the slow clock and the sample rate of the logic analyzer used to 

capture the data. In order to maximize the number of data samples taken at once, a slow 

sample rate is desirable. However, the sampling rate must be fast enough to ensure that 

the data is all properly captured. The Nyquist sampling theorem states that in order to 

properly sample a signal, the sample frequency must exceed the signal frequency by a 

factor of 2 [17]. With the data collection circuit this means that a sample rate twice that of 
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the output of the binary counter can be used. This rate is 1/8th the frequency of the slow 

oscillator. The Nyquist sampling theorem states that the sample rate must be twice the 

frequency, resulting in a minimum sample frequency of 1/4th the frequency of the slow 

oscillator clock, 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑀𝑀𝑆𝑆𝑀𝑀𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑀𝑀𝑆𝑆𝑀𝑀𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝐹𝐹𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝐹𝐹

8 ∗ 2 

=
𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑀𝑀𝑆𝑆𝑀𝑀𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝐹𝐹𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝐹𝐹

4 . 

(3.1) 

The minimum sample rate is equal to twice the frequency of the input signal into 

DIO 15. The frequency of DIO 15 is the frequency of the slow oscillator divided by 8. 

3.5 Debiasing the Output of the TRNG 

 In order to debias (or whiten) the output of the TRNG, a simple whitening 

strategy proposed by Jon von Neumann was used. Whitening is required when there is 

bias in the output of the TRNG, for example when there are a disproportionate number of 

0’s and 1’s in the output. Many TRNGs require debiasing in order to pass even just the 

frequency test. Fine-tuning of the output voltage swing of the fast oscillator and the 

reference voltage of the data collection circuit could be done to ensure proper biasing of 

the TRNG, but achieving a level of debiasing that is very close to 50/50 is extremely 

difficult. In addition, it was found that the circuit can quickly drift with time, temperature, 

and other factors. For this reason, Jon von Neumann’s whitening algorithm was applied 

to the circuit [18]. 

 Von Neumann whitening was implemented in software after the data collection 

was performed, but it can also be easily implemented in hardware with basic logic gates. 

An XOR gate can be used to determine whether two samples are the same value of 
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different values. Based on this output both samples can be thrown out or the first sample 

can be kept. The debiasing algorithm does not change the random properties of the output 

stream. In many TRNG implementations (i.e. those that rely on long delays between 

asynchronous events, or circuits that may have a built-in DC bias) it is mandatory to 

apply a whitening algorithm. One example of this is seen when generating random 

numbers based on the output for a Geiger counter where there is a very long time delay 

between events [19].  It should be noted that the debiasing algorithm is simple and 

efficient to implement and does not change the entropy characteristics of the sequence.  

Jon von Neumann’s whitening algorithm is very simple. It searches for the 

transition from a 0 to a 1 or a 1 to a 0 in the string of numbers. Any time two bits in a 

sequence are the same, there is no output. If the sequence transitions from a 0 to a 1 then 

the output is simply a 0. If the sequence transitions from a 1 to a 0 then the output is a 1. 

This reduces the length of the random number sequence by a factor of about four for a 

sequence that does not have a significant bias. The more the sequence is biased the more 

the length of the sequence is reduced. The Perl script 

“csv_to_datastream_von_neumann.pl” applies the von Neumann whitening algorithm to 

the sequence of bits when it converts the data output from the Waveforms CSV file to 

binary file for the Statistical Test Suite. Table 3.1 shows the method to debias output 

samples and return a nearly perfect 50/50 distribution of bits in a truly random stream of 

bits regardless of any bias the input datastream may have. The source code can be found 

in Appendix A.  
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Table 3.1 Von Neumann Whitening Scheme 

Even Bit Value Odd Bit Value Result 

0 1 0 

1 0 1 

0 0 Sample is ignored 

1 1 Sample is ignored 

 

It was observed in testing of all TRNGs in this thesis (Chapters 4 and 6) that 

almost all sequences still had a strong bias after being processed using von Neumann’s 

whitening algorithm. This is often the result of a sequence where a bit may have a strong 

correlation to the previous bit. In this case the sequence is by definition not random. 

The downside of using this algorithm is that many samples may be lost in the 

debiasing effort. The more biased the output of the circuit is, the more often samples are 

thrown out or ignored. In many cases this is a necessary post-processing step, as all other 

NIST statistical tests are invalid if the frequency (monobits) test is not passing. There are 

other potential methods to debias the circuit, such as a feedback loop to adjust the 

reference voltage of the fast oscillator or using a method to convert the output of the fast 

oscillator multivibrator to a square wave to minimize bias etc. The downside of using any 

type of feedback loop is finding the fine balance between the circuit converging on a DC 

voltage that has no bias and the potential of such a circuit to oscillate. Oscillations could 

lead to non-random output in the TRNG. 

3.6 Software and Scripts to Aid in Data Collection 

The Waveforms software can save the collected data output as a text 

Comma-Separated Value (CSV) file format. In order to use the Assess tool in the NIST 
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Statistical Test Suite to analyze the output file it is necessary to convert the file to a 

format that can be used by the tool. The STS tool can only read in files that are in a text 

format that contains only ‘1’ or ‘0’ characters, or a binary format. Example output of the 

Digilent Waveforms software is shown in figure 3.4, along with two sample outputs that 

can be read by the STS software. Note that the text input (B) does not require newlines 

every 8 characters, or at all. The output in (C) is the hexdump output of the binary file 

that converts the raw binary data to a human-readable hex format. For this thesis project, 

only binary files were processed due to the smaller file size. 

Figure 3.5 shows the output from the Waveforms logic capture (A) and sample 

text input (B) and binary input viewed with the Linux hexdump tool (C) that may be 

analyzed by the STS assess application. 

 
Figure 3.5 Examples of different types of random data formats 

Several Perl scripts were written to aid in data post-processing. The primary 

purpose of the Perl scripts is to convert the text (CSV) output from the Waveforms 

application to a binary file that the STS Assess application can read in and test for 

randomness. Perl was selected because it is an easy-to-learn and cross-platform scripting 

language. Perl excels at parsing text files and it can read and write binary files with 
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relative ease. Perl is installed by default on most Unix/Linux systems. The author was 

also very practiced in writing Perl code. Perl’s execution time is slow compared to a 

compiled language like C or C++, but the scripts written and used for this project are 

simple and are generally able to parse the CSV files to binary outputs more quickly than 

the STS Assess application can test the binary sequence for randomness. 

The collection of Perl scripts used for data collection, debiasing, and analysis can 

be found in appendix A. Source code and example usage for all scripts can be found in 

appendix A. 

All of the data processing and analysis scripts follow the same general usage. All 

input arguments are positional arguments. Scripts converting a CSV text file to binary 

generally take a list of input files (separated by a space). One additional file name for the 

output file must be provided, and the file must use the .bin extension. Some of the scripts 

also have an additional switch to enable whitening by exclusive oring output data with 

the RANDU PRNG. A final argument of ‘1’ will enable this function, or a ‘0’ will 

disable. 

Scripts converting a binary stream to another binary stream generally only take a 

single input file, although some may allow multiple file inputs to be read. Input files 

should be binary. A single output file must also be specified, also of .bin extension. 

There are also several other scripts that are simply used to generate a random 

output string of bits. These scripts generally do not have any input options. Output file 

name or length of file generated are determined by variables that are instantiated within 

the script.   
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3.7 Workflow for Collecting and Analyzing Data 

The following workflow was used for collecting, processing, and analyzing data 

output from the TRNG. Figure 3.6 shows a block diagram of the workflow. 

1. Digilent AD2 and Waveforms software was used to collect the output from the 

TRNG. The output was collected using the logic analyzer window and saved to an 

output file (in CSV format) using the logging window. If needed, multiple runs 

were collected depending on sample rate and amount of data collected with the 

AD2 software. The text CSV files were saved to a hard disk location that was 

accessible by both the Windows PC and Linux VM guest OS. 

2. The “csv_to_datastream_von_neumann.pl” Perl script was executed on the Linux 

VM guest OS to convert the text CSV data file(s) to a binary output stream. In 

this project, unless otherwise specified, output data was never XOR’d with the 

RANDU PRNG output. 

3. The STS Assess tool was used to analyze the randomness of the output. In 

general, the bitstream size used was 1 Million. The number of bitstreams tested 

depended on the number of bits in the binary bitstream file. In general, it is a good 

rule of thumb to test at least 100 sequences. Final results for random number 

generators were tested once 100M bits had been collected unless otherwise noted. 

 
Figure 3.6 Entire data collection workflow and process  
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3.7.1 Tips, Tricks, and Problems Found Using the AD2 for Data Collection 

It is best to use the proper configuration of the AD2 depending on the data being 

collected. The Device Manager (in the “Settings” dropdown menu) can be used to 

configure the AD2 device in different configurations. When recording data using the 

Logic Analyzer, configuration 4 should be used because it gives the largest amount of 

space to the Logic hardware. When using the oscilliscope, configuration 2 should be used 

because it allocates the largest amount of space to the Scope hardware. 

Figure 3.7 shows a screenshot from the Waveforms software. There are several 

different hardware configurations for the AD2, each optimized for different functions. 

 
Figure 3.7 Waveforms Device Manager options 

The scope probes are not ideal voltage probes. It is prudent to keep this in mind 

when measuring circuits that have a high resistance node and/or a low drive strength. 

This can be worked around by using a high-impedance input op-amp as a unity gain 

buffer to probe the desired circuit node. The same is also true of the DIOs when used as 
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inputs. Sampling analog signals with the DIOs can impact these circuits by pulling them 

towards a DC bias with a low (for this type of equipment) impedance. 

The wavegen function does not have a very low output impedance. The wavegen 

are able to power simple circuits that do not draw significant current, but the power 

handling is limited. For the purposes of creating an additional power supply for the fast 

oscillator circuit the power handling of the wavegen was sufficient. 

The AD2 may experience issues when running only on USB power, especially 

when powering a high-powered circuit or when the host PC has a USB port that does not 

supply enough power. An external power supply is highly recommended to be used with 

the AD2 for best results. The AD2 requires a 5V DC power supply with a 5.5x2.1mm 

adapter plug. 

It is highly recommended to use a version of the waveforms software that is the 

same or newer than the beta version 3.13.1 used for this thesis project. This version of the 

software was found to be more stable and contained a crucial bugfix to prevent a bad 

current reading on the USB bus from shutting off the power supplies on the AD2 when an 

external power supply was powering the board. Several features, such as the system 

monitor function were also included in the beta version. 

The Waveforms logic analyzer software can be configured to allow the user to 

collect and save up to 100 million samples of digital information in a single run. Up to 16 

digital I/O signals can be saved at once. In the case of this thesis project, data was saved 

on an 8 bit bus. Sampling at the Nyquist frequency would allow one to collect as many as 

50 million samples of the 8 bit bus, or 400 million total bits of output from an RNG per 

run. 
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The Logging window on the Waveforms software can be used to log the output of 

any signal desired to a CSV text file. Logging can be triggered automatically or manually 

after each acquisition. 

The Supplies window of the Waveforms software also displays a system monitor 

for the AD2. Other relevant information such as the USB current and voltage, and aux 

voltage and current is displayed in this window. 

The Logic Analyzer function of the Digilent AD2 is set to operate for 3.3V or 5V 

logic by default. However, it can be configured to operate for 1.8V logic (~0.5V logic 

threshold) by changing the configuration in the device manager. 

Figure 3.8 shows the layout of the Digilent AD2 Waveforms software that was 

primarily used for data collection. This layout can be found by opening the 

Final_PCB_Data_Collection.dwf3work file located in the documentation uploaded to 

BSU Scholarworks for this thesis within the 

“sstoller_thesis_final_writeup\Novel_TRNG\Waveforms” directory. In this view, the 

oscilloscope and logic views can be viewed at the same time. The oscilloscope 

measurements window and a small preview of the logic are available in the oscilloscope 

view. The logging, supplies, and wavegen windows are available in the logic view. 
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CHAPTER FOUR: CHARACTERIZATION OF OTHER CIRCUITS 

4.1 Introduction 

The Intel RDRAND TRNG, Digilent AD2 PRNG, RANDU PRNG, Linux 

Random Entropy Pool TRNG, TRNG from Jiang et al., and TRNG from Rai et al. were 

all tested [20-27]. To characterize these RNGs 100 million bits of data were collected and 

analyzed from each. The data was split into 100 bitstreams with length of 1 Million bits 

each. Scripts or applications were written to capture output from the various RNGS and 

their output was analyzed to assess the effectiveness of the RNGs. 

4.2 Intel RDRAND 

4.2.1 Brief Description of RNG 

The Intel RDRAND is an on-chip TRNG that Intel has included on their modern 

desktop (and server) processors. The RDRAND instruction is part of the Intel 64 and IA-

32 instruction sets and is included on Intel’s Ivy Bridge and newer processors. Modern 

AMD processors also have a built-in TRNG and support the RDRAND instruction. A 

variety of cryptographic standards were used by Intel in the development of their 

RDRAND hardware, including NIST SP800-90, FIPS-140-2, and ANSI X9.82 [11]. 

The Intel RDRAND TRNG is composed of several parts. The first and most 

important part is the entropy source itself. The entropy source is a self-timed, self-

oscillating digital circuit known as a dual differential jamb latch with feedback. At its 

core the circuit consists of two cross-coupled inverters that form a latch. The inverters are 

placed in a metastable state (that is, a state where both inverters are neither a digital 0 or 
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1) and then allowed to settle. There is a 50/50 chance that the latch settles in either one 

direction (output of 0) or the other (output of 1), based on thermal noise. Intel’s circuit is 

self-clocked, meaning that once a stable state has been reached, the circuit triggers itself 

back into the metastable state. There is a feedback mechanism in the circuit in order to 

ensure that a metastable state is reached (and to compensate properly to ensure perfect 

50/50 chance of the circuit settling into either stable state) before the circuit is allowed to 

settle into a stable state again. The output from this part of the circuit is clocked into a 

256 bit shift register [20]. 

The next part of the TRNG is a Health and “Swellness” Testing portion of the 

circuit. This portion of the circuit performs some simple testing on the output from the 

Entropy Source to ensure that the bitstream generated has random characteristics. If the 

bitstream is passing the Health and Swellness testing it is passed on to the next part of the 

circuit that performs more post-processing and conditioning on the bitstream, finally 

outputting bits into 4x128 bit output buffers as high quality nondeterministic random 

seeds [20]. 

There are two instructions that can access the output of the TRNG on Intel 

processors: RDRAND and RDSEED. The RDRAND instruction returns a string of 

random numbers generated by an on-chip PRNG that is periodically re-seeded by the 

entropy source. The numbers generated by the RDRAND instruction are not considered 

to be truly random and are thus not suitable for cryptographic usage, despite being more 

unpredictable than a traditional PRNG alone. Because the outputs of the RDRAND 

instruction rely on a PRNG it may be possible (however unlikely) to guess the next part 

of the sequence by knowing a previous part of the sequence. The RDRAND instruction is 
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more suitable for use in applications that need high quality random numbers capable of 

being generated at a high throughput, such as running Monte-Carlo simulations. 

Throughput of the RDRAND command is very high due to the fact that it’s primary 

source of randomness is through a PRNG. 

The RDSEED instruction on the other hand returns a truly random, 

cryptographically secure key from the entropy source. The RDSEED is truly random and 

is suitable for cryptographic applications or seeding other software PRNGs or hardware 

PRNGs on the computer system. For cases like this, high throughput is not needed since 

secure keys are normally only generated once. The RDSEED instruction is significantly 

lower throughput than the RDRAND instruction [21]. 

4.2.2 Process/Script used to Collect Data 

C code was adapted from an example usage for RDRAND provided by Intel [22]. 

The code was modified to simply write a random string of numbers to a text file. The 

code was converted from text to a binary bitstream. Code used to generate the random 

bitstream may be found in Appendix A. 100 bitstreams of length 1 million bits each were 

tested using the STS assess application. 

4.2.3 Generator Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\drng_samples\testdrng.c 

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\perl\rdrand_to_datastream.pl 

4.2.4 Results Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\data\short\rand_out.bin 
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4.2.5 Results 

Table 4.1 Results of Intel RDRAND TRNG. 

Test P-Value   Proportion   Pass/Fail 

Frequency 0.026948   100/100   PASS 

BlockFrequency 0.657933   99/100   PASS 

CumulativeSums 0.262249, 0.637119   199/200   PASS 

Runs 0.759756   100/100   PASS 

LongestRun 0.366918   97/100   PASS 

Rank 0.401199   98/100   PASS 

FFT 0.978072   99/100   PASS 

NonOverlappingTemplate -   14645/14800   PASS 

OverlappingTemplate 0.304126   97/100   PASS 

Universal 0.075719   95/100 * FAIL 

ApproximateEntropy 0.366918   99/100   PASS 

RandomExcursions -   537/544   PASS 

RandomExcursionsVariant -   1208/1224   PASS 

Serial 0.275709, 0.851383   198/200   PASS 

LinearComplexity 0.779188   100/100   PASS 

All tests are passing except the Universal test with a value of 95/100. A 

proportion of 96/100 or better was needed to consider this test passing. 

4.3 Digilent AD2 RNG 

4.3.1 Brief Description of RNG and Data Collection Process 

The Digilent AD2 Wavegen and Patterns functions have the ability to generate a 

series of random signals. The source of the randomly generated data is not known, but it 
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is highly unlikely that the source is a TRNG due to the high rate at which random bits or 

analog voltages can be generated. It is likely that an LFSR or LCG is implemented in the 

Waveforms software or the AD2 hardware since these are simple and effective methods 

for generating random data in an application like this. 

A data bus consisting of 8 random signals and a single clock was captured on the 

Digilent AD2. The Patterns function was used to set up DIO 0 thru DIO 7 to generate 

random peak-to-peak digital signals at a frequency of 50 kHz. DIO 15 was set to a 50 

kHz clock signal. 100 million samples (50 million bytes, or 400 million bits of data were 

collected) of the clock signal were captured by the Waveforms Logic Analyzer software 

sampling at a frequency of 100 kHz. The output of the RNG passes all statistical tests. 

4.3.2 Process/Script used to Collect Data 

The output from the Digilent AD2 was saved to a .csv file. Data was collected on 

an 8-bit bus, in the same format used for data collection for the memristor TRNG 

implemented in this thesis. A Perl script was written to convert the CSV file to a binary 

bitstream. 100 sequences of 1 million bits each were tested using the STS assess 

application. 

4.3.3 Script Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing\csv_to_datastream.pl 

4.3.4 Results Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\Digilent_AD2_Random\out.bin 
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4.3.5 Results 

Table 4.2 Results of Digilent AD2 RNG. 

Test P-Value   Proportion   Pass/Fail 

Frequency 0.574903   97/100   PASS 

BlockFrequency 0.678686   99/100   PASS 

CumulativeSums 
0.249284, 
0.153763   194/200   PASS 

Runs 0.171867   100/100   PASS 

LongestRun 0.678686   100/100   PASS 

Rank 0.23681   98/100   PASS 

FFT 0.12962   99/100   PASS 

NonOverlappingTemplate -   14624/14800   PASS 

OverlappingTemplate 0.224821   99/100   PASS 

Universal 0.514124   100/100   PASS 

ApproximateEntropy 0.202268   97/100   PASS 

RandomExcursions -   521/528   PASS 

RandomExcursionsVariant -   1184/1188   PASS 

Serial 
0.534146, 
0.419021   199/200   PASS 

LinearComplexity 0.026948   99/100   PASS 

All statistical tests are passing. 

4.4 RANDU 

4.4.1 Brief Description of RNG 

RANDU is a poor PRNG that was implemented on early mainframes in the 

Fortran programming language [23]. RANDU is a linear congruential generator (LCG) 
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and can be easily implemented in programming languages other than Fortran. A LCG 

takes the form of a linear equation with a modulus of the result (discontinuous piecewise 

linear equation). An example is shown in equation 4.1. To assess the randomness of the 

RANDU LCG, it was implemented in Perl and tested using the NIST STS. 

For years it was assumed that RANDU was a good PRNG and was suitable for 

many uses, including research that utilized it for Monte-Carlo simulations. In 1968 

George Marsaglia at Boeing analyzed the RANDU PRNG and showed that it was a poor 

PRNG. When triplets from RANDU’s output are plotted in a 3-dimensional space it was 

found that the resulting points all landed in a set of 15 planes [24]. A TRNG or good 

PRNG should produce an output that has no patterns in a three-dimensional plot 

(appearance should be the general shape of a cloud). Unfortunately, RANDU was widely 

used in many computer systems around the world for many years. A significant amount 

of research (specifically, research that used RANDU for Monte-Carlo simulations) was 

invalidated or had to be redone once the flaws with RANDU were discovered. The LCG 

used for RANDU is  

 𝑅𝑅𝑛𝑛+1 = 65539 ∗ 𝑅𝑅𝑛𝑛 𝑀𝑀𝑆𝑆𝑚𝑚 231 [23]. (4.1) 

One major advantage of using multiplicative congruential generators like equation 

4.1 to generate PRNGs is that they can generate many numbers extremely quickly. For 

example, it took less than 2 seconds to generate 100 million bits of binary data. By 

comparison, testing 100 million bits generated by the RANDU PRNG took 

approximately 23 minutes on the same machine. There are many modern multiplicative 

congruential PRNG generators that output much better strings of pseudo random numbers 

than RANDU. Many modern systems and software use multiplicative congruential 
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generators today. In many cases (e.g. Intel’s RDRAND), a TRNG is used to periodically 

re-seed a PRNG to give nearly TRNG output with the efficiency, speed, and throughput 

of a PRNG. 

4.4.2 Process/Script used to Collect Data 

The RANDU PRNG was implemented in a Perl script, randu.pl. A brief 

description of the script and source code can be found in Appendix A. In this script the 

parameters for output file, sequence length, seed, multiplier, and modulus are set as 

variables. When the script runs it creates a binary output file and writes the resulting 

string of binary numbers generated by the sequence. A starting seed of 31 was used for 

this analysis, but any seed could be chosen and would yield similar results. 

4.4.3 Generator Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\RANDU\randu.pl 

4.4.4 Results Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\RANDU\output.bin 
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4.4.5 Results 

Table 4.3 Results of RANDU PRNG. 

Test P-Value   Proportion   Pass/Fail 

Frequency 0 * 0/100 * FAIL 

BlockFrequency 0 * 0/100 * FAIL 

CumulativeSums 0, 0 * 0/200 * FAIL 

Runs 0 * 0/100 * FAIL 

LongestRun 0 * 14/100 * FAIL 

Rank 0 * 0/100 * FAIL 

FFT 0 * 0/100 * FAIL 

NonOverlappingTemplate -   7834/14800 * FAIL 

OverlappingTemplate 0 * 0/100 * FAIL 

Universal 0 * 45/100 * FAIL 

ApproximateEntropy 0 * 0/100 * FAIL 

RandomExcursions -   0/0   N/A 

RandomExcursionsVariant -   0/0   N/A 

Serial 0, 0 * 0/200 * FAIL 

LinearComplexity 0.366918   100/100   PASS 

 

The Frequency fails for all 100 bitstreams. No other test is considered valid when 

the frequency test does not pass. Regardless, no other tests passed with the exception of 

the Linear Complexity test. 
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4.5 Linux RANDOM Entropy Pool 

4.5.1 Brief Description of RNG 

Linux maintains an entropy pool from which truly random data can be extracted. 

Two files /dev/random and /dev/urandom are special character files which provide an 

interface to the Linux Kernel’s random number generator [12, 25]. This random number 

generator collects noise from many different entropy sources of such as user input 

(mouse and keystroke inputs), external time delays (network latencies, HDD or SSD 

access times), mechanical sensors (HDD or fan rotation speed), onboard TRNGs (Intel 

RDRAND) etc. All this information is collected and pooled together in the entropy pool. 

Up to 4096 bits are stored in the entropy pool. The entropy pool may be directly read 

using the /dev/random character device, or used to seed a PRNG and to generate nearly 

truly random output at a very high bandwidth by reading from the /dev/urandom 

character device. 

1. /dev/urandom returns a string of random numbers from a PRNG that is seeded by 

the entropy pool. 

2. /dev/random returns random bytes directly from the random entropy pool. Note 

that the function will delay and block (wait) for new entropy to be created in the 

entropy pool if it is exhausted by the function call. 

4.5.2 Process/Script used to Collect Data 

Since the random entropy pool /dev/random only has a size of 4096 bytes, an 

output from the RNG was generated from the urandom utility. The Linux command line 

may be used to dump 12,500,000 bytes (100 million bits) into a binary file. 
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4.5.3 Data Collection Process 

The following command was executed to collect data from the Linux 

URANDOM generator “head -c 12500000 /dev/urandom >| output.bin” 

4.5.4 Results Location 

Campbell Research group folder at BSU or Scholarworks: 

System without rdrand: sstoller_thesis_final_writeup\RNGs\urandom\nordrand\ 

urandom_test_nordrand.bin 

System with rdrand: sstoller_thesis_final_writeup\RNGs\urandom\withrdrand\ 

urandom_test_withrdrand.bin 
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4.5.5 Results 

Table 4.4 Results of Linux uRandom RNG on system without RDRAND 

Test P-Value   Proportion   Pass/Fail 

Frequency 0.595549   99/100   PASS 

BlockFrequency 0.678686   100/100   PASS 

CumulativeSums 0.202268, 0.897763   198/200   PASS 

Runs 0.066882   99/100   PASS 

LongestRun 0.145326   99/100   PASS 

Rank 0.739918   98/100   PASS 

FFT 0.834308   100/100   PASS 

NonOverlappingTemplate -   14648/14800   PASS 

OverlappingTemplate 0.102526   99/100   PASS 

Universal 0.935716   100/100   PASS 

ApproximateEntropy 0.99425   99/100   PASS 

RandomExcursions -   508/512   PASS 

RandomExcursionsVariant -   1146/1152   PASS 

Serial 0.798139, 0.366918   196/200   PASS 

LinearComplexity 0.030806   100/100   PASS 

 

All tests are passing for uRandom on a Linux system with a CPU that does not 

support the Intel RDRAND instruction. An additional sequence was tested (location 

listed above) from a system that does support the Intel RDRAND command and all tests 

were found to pass for that system as well (table of results is not shown for this case). 
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4.6 True RNG Circuit from Jiang et al. 

4.6.1 Brief Description of RNG 

Jiang et al. have proposed, and implemented in hardware, a TRNG using a 

Ag:SiO2-based diffusive memristor device [26]. A pulse train is sent through a memristor 

that is wired in series with a resistor. Entropy is captured in the memristor device as a 

variability in the time it takes for the device to transition from a high resistance state to a 

low resistance state. When the memristor device is in a high resistance state, the resistor 

pulls the signal down, resulting in the output of a low voltage into the comparator. Once 

the resistance of the memristor transitions to a low resistance state, it can override the 

resistor and pull the output voltage to a high value, switching the signal output from the 

comparator. 

When the output of the memristor-resistor ladder is low (the memristor is a high 

resistance), below the Vref, the comparator output can be high. The comparator used in 

the hardware implementation had both an output and inverse output to allow the counter 

to be enabled for either the memristor in a low or high resistance state simply by selecting 

one output or the other and adjusting the comparator input voltage accordingly. When the 

comparator output is low, the AND gate output will always be a logic 0 and the counter 

will not count. When the comparator output is high, the AND gate output will be the 

clock input and the counter will count. When the memristor transitions from a high 

resistance to a low resistance the output of the comparator switches from a 1 that allows 

the clock to pass through the AND gate and the counter count, to a 0 and the counter 

stops counting because the clock is no longer passed through the AND gate. In my 

implementation of this circuit, the output of the comparator was fed straight into the 
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enable input on the counter. When the enable input is a 0 (active low enable) the counter 

counts. When the enable input transitions to a 1 the counter stops counting. In addition, I 

also included a brief pulse to clear the counter state with each cycle in order to reduce the 

chances of the output of the previous clock cycle affecting the output of the next clock 

cycle. 

 
Figure 4.1 Proposed TRNG Design by Jiang et al. [26] 

The TRNG proposed by Jiang et al. consists of a pulse generator, memristor, 

resistor, comparator, and gate, and counter. The circuit can easily be implemented on a 

breadboard. 

4.6.2 Process/Script used to Collect Data 

The circuit was implemented on a breadboard with a 1 kHz pulse frequency and a 

2 MHz clock frequency (both generated by the Digilent AD2 Wavegen). Vref was 

generated using a potentiometer between the Digilent AD2 V+ power supply and V- 

power supply. This allowed the Vref voltage to be easily adjusted for varying pulse input 

voltages. 

Data was saved using a 2 kHz sample rate. This was found to be optimal because 

it is a multiple of 1 kHz and the minimum frequency to properly sample the 1 kHz clock 
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by the Nyquist sampling theorem. The data was collected using a data bus sampled on the 

falling edge of the input data clock and post-processed using a generic Perl script to 

convert the single bit samples to a binary format. A 22 kΩ resistor was used in series with 

a W-based self-directed channel (SDC) memristor devices. Figure 4.2 shows the 

schematic of the circuit used in the test of the Jiang et al. circuit [26]. 

 
Figure 4.2 Schematic of Jiang et al. tested in this Thesis 

The Digilent AD2 Logic Analyzer data was saved to a csv data file and post-

processed using a Perl script “perl\CSV_to_Datastream\csv_bin_to_datastream.pl” to 

convert the csv to a binary output file that could be tested by the NIST test suite. This 

script does not perform any debiasing on the raw data. A second script was used to apply 

von Neumann whitening, “datastream_to_datastream_von_neumann.pl”. 
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Figure 4.3 Implementation of Jiang et. al design on a breadboard 

Figure 4.4 shows an oscilloscope output and data bus capture of the TRNG in 

action. The blue oscilloscope trace is the output of the memristor-resistor ladder. The 

switching action of the memristor from low to high resistance can be clearly seen. The 

yellow trace is the analog voltage output of the potentiometer used to set the comparator 

voltage threshold (Vref). In the logic section, the output of the data bus can be seen. 

Output data is clocked on the falling edge of the clock. The MSB value of the Bus 

(DIO15) can be seen counting with the input clock when the output from the comparator 

(DIO9) is low. The output from the comparator only enables the counter when the output 

of the memristor-resistor ladder is above the yellow Vref voltage. 
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Figure 4.4 Data Collection of Jiang et. al. design in Digilent AD2 

4.6.3 Data Collection Script 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\csv_bin_to_datastream.pl 

sstoller_thesis_final_writeup\RNGs\AD2_Post-

Processing\datastream_to_datastream_von_neumann.pl 

4.6.4 Results Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\Jiang 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\Jiang 
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4.6.5 Results 

Table 4.5 Results of TRNG proposed by Jiang et. al. 

Test P-Value   Proportion   Pass/Fail 

Frequency 0.637119   10/11 * FAIL 

BlockFrequency 0.637119   11/11   PASS 

CumulativeSums 0.437274, 0.162606   21/22   PASS 

Runs 0.637119   9/11 * FAIL 

LongestRun 0.162606   10/11 * FAIL 

Rank 0.275709   11/11   PASS 

FFT 0.162606   11/11   PASS 

NonOverlappingTemplate -   1546/1628   PASS 

OverlappingTemplate 0.637119   11/11   PASS 

Universal 0.834308   10/11 * FAIL 

ApproximateEntropy 0.437274   10/11 * FAIL 

RandomExcursions -   47/48   PASS 

RandomExcursionsVariant -   108/108   PASS 

Serial 0.437274, 0.437274   20/22 * FAIL 

LinearComplexity 0.437274   11/11   PASS 

 

Multiple tests are failing with only a single failure. The data in table 4.5 is for 

Jiang’s TRNG with von-Neumann whitening applied to the output bitstream. 11 sequence 

of length 1M bits were tested. Proportion to consider passing was 11/11 (96% or greater). 

Without von Neumann whitening the TRNG returned an 18% to 82% ratio of 0’s to 1’s 
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and was thus not tested. More sequences need to be tested for this TRNG before making 

a final judgement if the Jiang TRNG is passing of failing the NIST STS. 

4.7 True RNG Circuit from Rai et al. 

4.7.1 Brief Description of RNG 

The TRNG proposed by Rai et al. is a design that is similar in concept to the dual 

inverter oscillator design mentioned earlier. Rai et al. simulated and analyzed several 

different TRNGs before settling on a design with two series of oscillators, each with a 

memristor in series with the inverters [27]. A TiO2 memristor model from [28] was used 

in the simulations performed by Rai et al. It is important to note that the results shared in 

this Thesis are from a true implementation of the circuit. Figure 4.5 shows a 

representation of the design. 

 
Figure 4.5 Rai’s proposed circuit design [27]. 

The final design settled upon by Rai et al. was not implemented as a true ring 

oscillator, instead receiving a clock input from another circuit. The final design consisted 

of two identical inverter-memristor string pairs in the order of Inverter, Memristor, 

Inverter, Inverter. The input of the first inverter was a clock signal from another circuit. 

The outputs of the two inverter strings are both sampled and the output of the TRNG is 
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based on which output switches first. If the Dfirst output switches first the output is 0. If 

the Dsecond output switches first, then the output is a 1. 

In this thesis writeup, this TRNG circuit was implemented with discrete 

components on a breadboard and the output was collected using the Digilent AD2 and 

Perl scripts to parse the result. TI SN74AHCT04N inverter chips were used along with 

the W-based SDC memristors. The circuit input was driven by a square wave clock 

generated from the Digilent AD2 Wavegen. An Analog Devices AD8561 comparator was 

used to capture which device switched first by using the latch input on the comparator. 

One delay path was connected to the input of the comparator and the other delay 

path was connected to the latch input on the comparator. If the first delay path was faster, 

the output of the comparator would be driven high before the output was latched by the 

second delay path. If the second delay path was faster, the output of the comparator 

would be latched at a low output. Figure 4.6 shows a schematic of the circuit tested in 

this thesis. 

 
Figure 4.6 Circuit schematic tested for Rai et al. TRNG 

The variability between Memristor devices was a challenge in testing this circuit. 

In many cases one delay path was consistently much faster than the other delay path. It 
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was challenging to find two devices that switched at approximately the same time. In 

addition, the devices sometimes showed a tendency to drift and change with time. In 

order to try to compensate for some of this effect, von Neumann debiasing was applied to 

the outputs and tested as well. The circuit does not pass the NIST STS tests without von 

Neumann whitening applied. 

Several other methods were investigated for collecting data from this TRNG. All 

of these methods involved oversampling the logic output of the AD2 at a very high 

frequency in order to capture which delay path was quicker. Several different data 

processing methods were utilized, from looking at which delay path was faster, to 

looking at whether the number of samples between the input clock and output clocks 

were even or odd. These methods showed potential to also produce random numbers, but 

very few samples could be collected due to the very high sample rate needed to collect 

this information. For this reason only results collected with the latched comparator output 

are saved. 

4.7.2 Process/Script used to Collect Data 

Figure 4.7 shows an image of the test setup and memristor-based TNRG proposed by 

Rai et al. Two inverter ICs and two Memristor ICs are shown on the breadboard along 

with the comparator IC. 2.2 kΩ resistors were placed in series with the memristor devices 

to ensure that current through the devices was limited. 
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Figure 4.7 Image of the test setup and circuit to test Rai et al.  

4.7.3 Data Collection Script 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\AD2_Post-

Processing\csv_bin_to_datastream.pl 

sstoller_thesis_final_writeup\RNGs\AD2_Post-

Processing\datastream_to_datastream_von_neumann.pl 

4.7.4 Final Results Path 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\Rai 

4.7.5 Results 

The TRNG was tested with a squarewave clock frequency of 1kHz into the 

memristor-inverter chain. The output was sampled with a frequency of 8kHz in order to 

ensure that the latched output from the TRNG could be captured. Approximately 62 

million bits were captured. Due to a 60/40% distribution of ones and zeros in the output 
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the raw output was not tested through the STS because it would certainly have failed the 

frequency test. With von Neumann whitening applied 12 sequences of length 1 million 

bits were produced. The results in table 4.6 show all NIST STS tests passed for the 

TRNG proposed by Rai et al [27]. More sequences need to be tested for this TRNG. 

Table 4.6 Results of TRNG proposed by Rai et al [27]. 

Test P-Value   Proportion   Pass/Fail 

Frequency 0.213309   12/12   PASS 

BlockFrequency 0.350485   12/12   PASS 

CumulativeSums 0.739918   24/24   PASS 

Runs 0.017912   12/12   PASS 

LongestRun 0.350485   12/12   PASS 

Rank 0.213309   12/12   PASS 

FFT 0.739918   12/12   PASS 

NonOverlappingTemplate -   1760/1776   PASS 

OverlappingTemplate 0.350485   12/12   PASS 

Universal 0.122325   12/12   PASS 

ApproximateEntropy 0.122325   12/12   PASS 

RandomExcursions -   69/72   PASS 

RandomExcursionsVariant -   158/162   PASS 

Serial 0.122325   23/24   PASS 

LinearComplexity 0.122325   12/12   PASS 
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CHAPTER FIVE: DESIGN OF FINAL CIRCUIT 

The primary purpose of this Master’s thesis project was to implement a True 

Random Number Generator (TRNG). The following sections discuss the final circuit 

design, testing, and implementation of the memristor based TRNG. 

5.1 Design Concept 

The core concept of the novel memristor-based TRNG circuit is not much 

different from many other TRNGs. The circuit consists of two oscillators. One oscillator 

runs at a fast speed and the other oscillator runs at a slow speed. The slow oscillator acts 

as a clock to sample data from the fast oscillator. Entropy is captured in the slow 

oscillator as jitter [29]. 

 
Figure 5.1 A slow clock sampling a fast clock 

Figure 5.1 shows Jitter (emphasized) on a slow clock that is sampling a fast clock. 

Jitter is emphasized. It is desirable to have many oscillations of the fast clock for each 

oscillation of the fast clock.  
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5.2 How a Multivibrator Circuit Works 

The multivibrator circuit shown in figure 5.2 is an astable type of multivibrator. 

The circuits in figure 5.2 are shown with both a resistor and with a memristor in place of 

a resistor as was used in the TRNG presented in this thesis. Figure 5.2 shows the circuit 

schematic for the memristor-based multivibrator circuit used in the TRNG design 

presented in this thesis. 

 
Figure 5.2 Multivibrator circuits implemented with resistor and memristor  

At its core, the multivibrator consists of a voltage divider and an RC circuit 

network. The voltage divider between the resistors is the input to the positive leg of the 

op-amp. The RC network is the input to the negative leg of the op-amp. The multivibrator 

works because the voltage divider always places a supply voltage of ½ VO on the positive 

input of the op-amp and the RC network always lags behind the output switching on the 

negative leg. 

When the voltage output is 1V on VO, the voltage input on the positive leg is 

0.5V. In order for VO to rail its output at the positive supply, the voltage across the 

capacitor must be less than 0.5V. With time, the RC circuit will eventually charge up the 

capacitor to a voltage of 0.5V. Once the supply voltage of 0.5V is reached (negative and 
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positive inputs into the op-amp are the same), VO will drop to 0V. Once VO drops to 0V, 

this changes the voltage at the positive input of the op-amp. As a result, the positive 

voltage is now lower than the negative voltage of the opamp, leading to a VO that will rail 

at -1V, the negative supply voltage. This cap will slowly discharge until a voltage 

of -0.5V is reached and VO will again rail at the high supply voltage. This cycle will 

repeat and the circuit will oscillate as long as the op-amp has a sufficiently high gain and 

very little hysteresis or other types of feedback that could cause the circuit to settle. 

The maximum voltage across the memristor in a multivibrator circuit can be 

easily calculated. The maximum or minimum voltage at the negative input of the op-amp 

is one half of the negative supply or positive supply voltage. In this case, the output of the 

op-amp is 100% of the positive or negative supply voltage. If the supply voltages are 

100% negative of each other (e.g. VCC is equal to -VDD) the maximum voltage across 

the memristor devices is 150% of VCC or VDD supply voltage as calculated by 

 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 =  0.5 𝑉𝑉𝑉𝑉𝑉𝑉 −  𝑉𝑉𝑉𝑉𝑉𝑉 = 0.5 𝑉𝑉𝑉𝑉𝑉𝑉 −  − 𝑉𝑉𝑉𝑉𝑉𝑉 = 1.5 𝑉𝑉𝑉𝑉𝑉𝑉. (5.1) 

It was found that replacing the resistor with a memristor achieved the same type 

of oscillation but with significantly more jitter and noise in the frequency of the 

multivibrator output. A memristor operates well in this circuit because it is continuously 

cycled between a high resistance and low resistance state. Depending on the orientation 

of the memristor device in the circuit and the oscillation speed of the circuit (dependent 

on the memristor device and capacitor), the circuit can have a skewed duty cycle (that is 

it will spend significantly more time in one state than the other). The significant 

difference in the operation of the circuit with a memristor device is that the memristor 

will change resistance from low to high or high to low in the different states of the circuit. 
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As the memristor changes resistance (it has been shown by Jiang et al. that the memristor 

resistance change happens at a truly random time), the RC time constant of the circuit 

changes. Entropy is captured in the delay that it takes for the memristor device to switch 

from low to high or high to low resistance. The circuit may be modified by placing 

multiple memristor devices in parallel or in series with each other or with a resistor.  

Figure 5.3 shows the measured and plotted IV curve for a W-Type SDC 

memristor in a multivibrator circuit. A 1 kΩ resistor was placed in series with the 

memristor in the multivibrator circuit in order to measure current. Voltage was measured 

across both the memristor and the resistor. Current was calculated using the voltage 

across the resistor and Ohm’s law. The IV measurement device response of the W-SDC 

memristor-based multivibrator oscillator is consistent with the IV curve device response 

from other publications [9-10]. 

 
Figure 5.3 Measured IV curve for a W-SDC Memristor in a multivibrator circuit  
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5.3 Multivibrator Oscillator Simulations and Measurements 

This thesis project is unique in the fact that a memristor is incorporated in a 

multivibrator circuit for the slow oscillator. None of the other papers and RNGs that were 

reviewed as part of a literature survey for this topic utilized this type of circuit design to 

capture entropy and generate random numbers. Two other TRNG circuit designs were 

discussed earlier. Both utilized the unique characteristics of memristor devices to capture 

entropy in unique ways, but both ultimately relied on an external circuit to generate a 

square wave clock. This project is unique because the memristor device itself is a part of 

the circuit that creates oscillations. 

After implementing and testing the randomness of many different circuit designs 

and topologies a final circuit design was settled upon and is shown in figure 5.4. It was 

found through rigorous testing and trial and error that a memristor works well in place of 

a resistor in a multivibrator circuit and allows the circuit to oscillate as desired. 

 
Figure 5.4 Simplified schematic of the final circuit 

The characteristic of the memristor (mainly the changing resistance and the 

variability in the delay and amount of resistance changes) lend them well to capturing 

significant amounts of entropy. The comparison of the output from a multivibrator 
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implemented with a memristor compared to a resistor is shown in figures 5.5 and 5.6. In 

both figures approximately 1000 samples have been captured from the oscilloscope on 

the Digilent AD2 and overlaid to show the jitter produced in both circuits. It can be easily 

seen that the circuit with the memristor has significantly more jitter, which lends itself to 

being useful for capturing entropy as the slow clock signal in this TRNG. 

 
Figure 5.5 Persistence plot of the output from a memristor based multivibrator 

Figure 5.5 shows a persistence plot that demonstrates the jitter in 999 samples 

captured from a memristor based multivibrator circuit. Note the significant amount of 

jitter present in the output waveform. 
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Figure 5.6 Persistence plot of the output from a resistor based multivibrator 

Figure 5.6 shows a persistence plot that demonstrates the jitter in 1004 samples 

captured from a resistor based multivibrator circuit. Note that there is significantly less 

jitter shown in this circuit implemented with a resistor. Both circuits were tuned to 

operate at approximately the same frequency. 

The final circuit design settled upon (shown in figure 5.7) consists of three 

oscillators. The fast oscillator design consists of a multivibrator implemented with a 

resistor. In reality this could be any simple circuit that oscillates at a high frequency, such 

as a 555 timer, ring oscillator, or square wave generated by a function generator. The 

primary purpose of this oscillator is to be sampled by the slow oscillator. The frequency 

of the oscillator can be modulated by changing the values of the capacitor or resistor in 

the circuit to change the RC time constant and thus the frequency of oscillation. A 

smaller capacitor or lower value resistor will increase the oscillation speed. A larger 

capacitor or more resistive resistor will slow down the oscillation speed. In order to 

optimize the power of the circuit, the smallest capacitor (and thus largest resistor) should 

be selected. 
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The slow oscillator final design consisted of two multivibrators, each 

implemented with a memristor. As shown in figures 5.5 and 5.6 the memristors 

implemented in this circuit create a very significant amount of jitter. The oscillation 

speed of these circuits can be controlled by changing the value of the capacitors in the 

multivibrators. In addition, a different memristor device could be used. While only a 

single type of memristor was used and characterized for this project, it was noted that 

there was some device-to-device variability. In addition, several experiments were done 

with multiple devices placed in series and in parallel with each other. It was also noted 

that increasing the supply voltage of the circuit also resulted in faster oscillation of the 

memristors. 

The output of the two multivibrator oscillator circuits were XOR’d together. 

There are several advantages of using this topology: the frequency of the slow clock is 

increased by a factor of two, allowing random data to be generated twice as fast. In 

addition, different types of memristors may be mixed, or a memristor may be mixed with 

a resistor etc. in the two different oscillators. The circuit also provides flexibility to allow 

for only one of the oscillators to be active. 

Figure 5.7 shows a simplified schematic of the circuit along with simulated 

SPICE output. For SPICE simulations, resistors were used in place of the memristor 

devices. 

There are many different parts of the circuit. The two slow memristor 

multivibrator oscillator outputs go into an XOR gate that effectively increases the entropy 

captured in the circuit. This also results in a faster clock rate for the circuit (or allows for 

more clock division later on in the circuit to capture even more entropy). The XOR 
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circuits output goes into an 8 bit binary counter with jumpers that are used to divide the 

slow clock to allow for more oscillations of the multivibrators for each slow clock cycle. 

This allows for more entropy to be captured for every oscillation of the slow clock that 

samples the fast clock in the circuit. The output of the binary counter (with clock division 

selected by jumper) goes into the binary counter and the serial-in-parallel-out shift 

register. The 3rd bit of the binary counter here is connected to the Digilent AD2. This 

signal toggles one time for every 8 bits that are shifted through the shift register. The fast 

oscillator (resistor-based multivibrator circuit) goes directly into the serial-in-parallel-out 

shift register where it is sampled as the slow oscillator toggles. 

 
Figure 5.7 Voltage outputs from a transient simulation of the circuit 

The output of the XOR (Red) samples the input to the DQ flip flop (Teal). The 

output of the DQ Flip flop (Pink) shows how “fast clock” is sampled by the “slow clock”. 

Final implementation of the circuit also included a binary counter to allow the “slow 

clock” to be divided by a factor of 2, 4, 8, or up to 256. This allows more oscillations of 
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the slow clock to accumulate extra jitter and noise for each time that the fast clock is 

sampled. 

 
Figure 5.8 Transient Simulation Results for multivibrator with resistor 

Figure 5.8 shows transient simulation results for a multivibrator circuit 

implemented with a resistor. Green shows the output of the op-amp. Blue is the voltage 

across the capacitor, which is also the voltage at the inverting input of the op-amp. Red is 

the voltage across the resistor in lieu of a memristor in the multivibrator. 
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Figure 5.9 Measured output for multivibrator implemented with a W-SDC 

memristor  

Figure 5.9 shows measured output for a multivibrator circuit implemented with a 

W-type SDC memristor. Blue shows the output of the op-amp. Yellow is the voltage 

across the capacitor, which is also the voltage at the inverting input of the op-amp. Red is 

the voltage across the memristor. The op-amp supply voltage in this case is +/- 5V. 
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Figure 5.10 Measured output for multivibrator implemented with a resistor  

Figure 5.10 shows measured output for a multivibrator circuit implemented with a 

resistor in place of the memristor. Blue shows the output of the op-amp. Yellow is the 

voltage across the capacitor, which is also the voltage at the inverting input of the op-

amp. Red is the voltage across the resistor taking the place of the memristor. The op-amp 

supply voltage in this case is +/- 5V. 

5.4 Circuit Design and Development 

Many different circuit iterations were prototyped and tested before settling on the 

final circuit design. These circuits ranged from simple ring oscillators to the memristor 

based multivibrator, to combining the input of multiple multivibrators. Many different 

circuit tweaks and modifications were tested. 

5.4.1 Summary of Breadboard Implementation 

Initially the final circuit design was implemented and prototyped on a breadboard. 

Figure 5.11 shows an image of the breadboard with different parts of the circuit noted. 
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The entire circuit was implemented on breadboard before designing and fabricating the 

PCB. 

 
Figure 5.11 Breadboard with the TRNG prototype 

In the circuit both memristor multivibrators can be seen, along with the XOR 

gate, the binary counter that is used as the clock divider for the slow clock, and the binary 

counter and serial-in-parallel-out shift register used for the data collection. The bus from 

the data collection circuit to the Digilent AD2 can also be seen. The fast oscillator 

multivibrator circuit is also shown. There are additional wires used in the circuit, such as 

the Digilent AD2 oscilloscope inputs which are being used in this image to probe the 

outputs of the memristor multivibrators. 
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5.4.2 PCB Design 

The TRNG was implemented on a printed circuit board (PCB) once the design 

was prototyped and finalized on the breadboard. The PCB was designed to contain the 

entire TRNG circuit on a nine square inch (3”x3”) layout and to plug directly into the 

Digilent AD2 for quick, efficient, and easy data collection. The PCB was fabricated by 

Sunstone Circuits [31]. Sunstone Circuits provides their own circuit design and layout 

application called PCB123 [32]. This software was easy to learn and intuitive to use. The 

software also includes a very large parts library. The PCB123 software allows for the 

creation of custom footprints for any parts that are not in the parts library. 

5.4.3 PCB Schematics 

PCB schematics are shown in figures 5.12, 5.13, 5.14, and 5.15. These figures 

show the memristor multivibrator circuits, the fast resistor multivibrator circuit, the data 

collection circuit, and the binary counter used to divide the output of the slow clock 

circuit. 

 
Figure 5.12 PCB circuit schematic for the two memristor multivibrator oscillators 
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Figure 5.13 Multivibrator circuit schematic for the fast oscillator. 

 
Figure 5.14 Binary counter slow clock divider schematic 
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Figure 5.15 Serial-to-parallel data collection circuit schematic 

5.5 PCB Layout 

Great care was taken in the PCB design and layout. Circuits were kept compact 

and modular in order to help improve trace routing. When designing and laying out the 

PCB good design practices were followed. The PCB layout was done completely by hand 

to ensure optimal placement of all components and optimal routing. Initially the auto 

place and auto routing tools were used, but they yielded suboptimal results. In order to fit 

the final circuit in the desired 3”x3” footprint manual placement and routing was required 

for the entire board. 

In order to reduce IR droop and power loss in PCB traces, routing for power 

traces was sized up to a width of 0.016 inches (twice the width of signal traces). In order 

to provide the shortest routing of power, all power traces were routed before any signal 

traces. Whenever possible, power wires for different supplies were not routed parallel to 

each other to minimize crosstalk. The data collection circuit (specifically the serial-in-

parallel-out shift register) was placed as close as possible to the 30 pin connector for the 

AD2 to minimize routing complexity of the 8-bit output bus. Working backwards from 

the data collection circuit was found to be the most effective method of routing to ensure 
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that routing was kept simple, short, and efficient. This worked well because the 

oscillators only required power routed to them. There are not circuit connections directly 

from the oscillators to the 30 pin AD2 connector. However, some connections were 

added on to the PCB after the fact by soldering wires to jumper outputs from each of the 

oscillators to additional digital inputs that were not used on the AD2 30 pin connector. 

The additional wires can be seen in figure 5.16 that shows the back side of the PCB final 

modified PCB. 

 
Figure 5.16 Backside image of finished, modified PCB 

In an effort to improve the layout of the PCB and routing efficiency, it was found 

that routing could be made easier by flipping over several components in the data 

collection circuitry, including the serial-in-parallel-out shift register and both binary 

counters. Not only did this improve the board layout, it also gave extra room around 
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several of the jumpers and the terminal for external clock inputs. The slow multivibrator 

oscillators shared the same dual op-amp chip. These circuit layouts were mirrored as 

much as possible to make routing and layout easier and yield a cleaner finished look to 

the PCB. 

All components used in the PCB design were through-hole components in order 

to keep soldering easy. This was also convenient when the aforementioned modifications 

were made to help validation and testing of the circuits. 

In some cases, not all components were available in the built-in libraries provided 

by the Sunstone PCB123 software. Several components, such as the screw terminals, 

standoffs, and resistor/capacitor sockets were not readily available or easy to find in the 

software or online for download and import into the PCB software. In addition, models 

were not readily available only for direct import into the PCB123 software libraries. For 

these components, different components with the same footprint were used. After careful 

searching and measurement, adequate substitutions were found for these layouts that had 

the same hole spacing and hole size. 

In order for the PCB to sit on the tabletop when connected to the AD2 and 

provide clearance from between the table top and the PCB for components that were 

placed on the bottom of the board, five holes for standoffs were included in the final 

design. These holes were added last and as a result there was very little room to place the 

standoffs. Not all standoffs could be placed in ideal locations at the corners of the board. 

Standoff height was estimated based on measurements of other boards that plug into the 

Digilent AD2. The aluminum standoffs were sanded slightly (less than 1/16th of an inch) 
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to reduce their height for final fitment and to reduce any rocking due to a very slight but 

noticeable difference in the standoff height and height of the AD2 board/connector. 

 
Figure 5.17 Final PCB Layout. 

Figure 5.17 shows the final PCB layout. Different sections of the PCB are 

highlighted in the figure. These sections are described below, starting at the top left 

corner of the board and moving clockwise around the board. In many cases a 2-pin 
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jumper may be connected to different header pins to change the configuration of the 

board for added flexibility. 

1. Scope Inputs: GND, Scope CH1-, Scope CH1+, Scope CH2-, and Scope CH2+ 

signals are routed from the AD2 to a 5 port screw terminal. This is useful for 

probing and debugging circuits on the board. 

2. Power Outputs: VPP Power Supply (V+), VPP Waveforms (W1), VDD Power 

Supply (V-), VDD Waveforms (W2) signals are routed from the AD2 to a 5-port 

screw terminal. These signals are useful for the case that an external circuit is 

implemented, and the external slow and fast clocks are input directly to the data 

collection circuit, bypassing the oscillators on the board. 

3. VPP Voltage Source Selector for Fast Oscillator Circuit: A jumper is used to 

select between W1 or V+ as the positive power supply for the fast multivibrator 

oscillator. 

4. VPP Voltage Source Selector for Slow Oscillator Circuits: A jumper is used to 

select between W1 or V+ as the positive power supply for the memristor 

multivibrator oscillators. 

5. VDD Voltage Source Selector for Fast Oscillator Circuit: A jumper is used to 

select between W2 or V- as the negative power supply for the fast multivibrator 

oscillator. 

6. VDD Voltage Source Selector for Slow Oscillator Circuits: A jumper is used to 

select between W2 or V- as the negative power supply for the memristor 

multivibrator oscillators. 
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7. Resistors in Series with Power Supplies: Low resistance resistors or wire 

jumpers may be soldered in place here to measure the power consumption in 

various parts of the circuit. 

8. Digilent AD2 Header: 30 pin header for the Digilent AD2. A right-angle header 

female connector is used. 

9. Data Collection Circuit: Binary counter and serial-in-parallel-out shift register 

circuit portion of the data collection circuit. Located as close as possible to the 

AD2 30 pin header. 

10. Internal or External Slow Clock Selector: A jumper is used to select between 

the internally generated slow clock (from the memristor multivibrators) or an 

external slow clock generated by another circuit with input provided to the 

external slow clock screw terminal. 

11. Internal or External Fast Clock Selector: A jumper is used to select between 

the internally generated fast clock (from the resistor multivibrator) or an external 

fast clock generated by another circuit with input provided to the external fast 

clock screw terminal. 

12. External Clock Terminal: 2 port screw terminal for input of slow and/or fast 

external clock oscillators. Jumpers (10) and (11) must be jumpered properly to 

use this input. 

13. Clock Divider Jumper: 8 option jumper to divide the clock down from the slow 

oscillators circuit. Left jumper is fasts, right option is slowest. 

14. Fast Multivibrator Oscillator circuit: Full circuit for fast oscillator, including 

output level shifting resistors. 
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15. Memristor 1 Socket: Memristor socket for first slow oscillator multivibrator 

circuit. A memristor in standard DIP package is placed in the socket. 

16. Memristor 1 Device Select Jumper: The jumper selects which memristor device 

is used for data collection. Multiple devices may be selected. A resistor also fits in 

the socket as an alternative to a memristor. 

17. Memristor 2 Socket: Memristor socket for first slow oscillator multivibrator 

circuit. A memristor in standard DIP package is placed in the socket. The gap 

between the sockets for the memristors is spaced such that a single 16 DIP 

package may be used in both sockets at the same time. 

18. Memristor 2 Device Select Jumper: The jumper selects which memristor device 

is used for data collection. Multiple devices may be selected. A resistor also fits in 

the socket as an alternative to a memristor. 

19. Slow Oscillator Circuit: The rest of the slow oscillator circuit including resistors 

and op-amp. 

PCB design and layout files can be found in the Campbell Research group folder 

at BSU at the location sstoller_thesis_final_writeup\PCB Design. These files can also be 

found in BSU Scholarworks. An Excel spreadsheet with the bill of materials and other 

notes is also included at this location. 

5.5.1 Interface to the Digilent AD2 

The PCB interfaces to the Digilent AD2 through a 30 port right angle female 

header connector. The scope channels are routed directly to a header on the board. The 

scope channels have their own ground signal. The power supply and waveform generator 

signals are routed to resistors/jumpers that allow for power measurements of the circuit. 
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Digital I/Os 0-7 are the 8 bit input sampled from the data collection circuit, with digital 

I/O 15 being the clock. Digital I/Os 11, 12, and 13 were not a part of the original PCB 

design, but were soldered onto the design later with a wire jumper to enable output to the 

digital I/Os from each oscillator in order to aid in circuit validation, debug, and testing. 

Digital I/O 14 was also added later. This signal was soldered in place to enable the 

readout of every 16th byte instead of every 8th byte from the data collection circuit as a 

potential means to increase randomness of the circuit even more. 

Table 5.1 contains a list of the power supply, analog, and digital pins on the 

Digilent AD2 board. There is also a column that list the net that each pin is attached to in 

the PCB schematic. A ‘*’ in the notes section denotes a pin that was not part of the PCB 

design. A wire jumper was soldered on later for one of the PCBs in order to capture these 

signals for debug output or other purposes.  
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Table 5.1 Pin usage of the Digilent AD2 board connector 

Pin 
Number 

Pin 
Name Description Net Notes 

1 1+ Scope CH1 Positive SC_CH1P   

2 1- Scope CH1 Negative SC_CH1N   

3 2+ Scope CH2 Positive SC_CH2P   

4 2- Scope Ch2 Negative SC_CH2N   

5 GND Ground GND_Scope   

6 GND Ground GND_Scope   

7 V+ V+ Power Supply PS_VP VPP PS 

8 V- V- Power Supply PS_VN VDD PS 

9 W1 Waveform Generator 1 W1_P VPP W 

10 W2 Waveform Generator 2 W2_N VDD W 

11 GND Ground GND_AD2   

12 GND Ground GND_AD2   

13 T1 Trigger 1 N/C   

14 T2 Trigger 2 N/C   

15 0 Digital I/O 0 D0  Data out 

16 8 Digital I/O 8 XOR_OUT 
Slow clk out of 
xor 

17 1 Digital I/O 1 D1  Data out 

18 9 Digital I/O 9 FAST_CLK_FINAL Final fast clk 

19 2 Digital I/O 2 D2  Data out 

20 10 Digital I/O 10 SLOW_CLK_FINAL Final slow clk 

21 3 Digital I/O 3 D3  Data out 
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22 11 Digital I/O 11 N/C 
*Mem 1 Osc 
Out 

23 4 Digital I/O 4 D4  Data out 

24 12 Digital I/O 12 N/C 
*Mem 2 Osc 
Out 

25 5 Digital I/O 5 D5  Data out 

26 13 Digital I/O 13 N/C *Fast Osc Out 

27 6 Digital I/O 6 D6  Data out 

28 14 Digital I/O 14 N/C 
*For sampling 
I/Os slower 

29 7 Digital I/O 7 D7  Data out 

30 15 Digital I/O 15 D15 
Clock for 
sampling I/Os 

 

5.5.2 PCB Screw Terminal Signal Breakouts 

There are three sets of terminals on the board. Two sets of terminals are located 

on the top left of the board. One set of terminals is located halfway down the right side of 

the board. The screw terminals require a fine jeweler’s screwdriver to tighten and accept 

various wire gauges and jumper sizes. 

The purpose of the terminals on the top left corner of the PCB (labelled “scope”) 

is to break out signals from the Digilent AD2. The first terminal is a breakout of the 

scope signals for the AD2 board. There is a ground signal. To improve signal integrity 

and reduce noise this screw terminal is the only net connected to this ground net on the 

AD2. This allows for breakout of the oscilloscope inputs for the AD2 in order to probe 

and measure voltages and signals from various locations on the PCB. These signals were 

useful to initially verify functionality of the PCB after fabrication and assembly. They 



79 

 
 

were also used to capture various waveforms and IV curves for the oscillators. The screw 

terminals are each labelled “GND”, “CH0-“, “CH0+”, “CH1-“, “CH1+”. 

The second terminal (labelled “Power”) is a breakout of the power supplies and 

waveforms outputs from the Digilent AD2. There are two power supply outputs and two 

waveform generator outputs as well as another ground. These outputs are connected to 

the output sides of the power measurement resistors to help make power measurements 

easier. These outputs can also be used to power an external oscillator circuit. The output 

of the Waveforms generator are also made accessible at this terminal for use as an 

additional power supply in an external circuit or to generate a wave to stimulate an 

external circuit. To collect data for and evaluate the random waveform generator for the 

Digilent AD2 waveform output, both a clock and random waveform were generated from 

these terminals and connected to the fast clock input and slow clock input terminals on 

the other side of the board. A ground terminal (ground supply used for the rest of the 

circuits) is also supplied to this terminal. The screw terminals are labelled “VPP_PS”, 

“VPP_W”, “VDD_PS”, “VDD_W”, and “GND”. 

The third screw terminal (labelled “J13”) is for an external oscillator input to be 

used. This allows for any external circuit for either the fast or slow oscillator to be used 

for data collection using the PCB’s x8 data collection circuit and interface to the Digilent 

AD2. There are two terminals, one labelled “EXT_SLOW_CLK” for an external slow 

clock/oscillator signal and one labelled “EXT_FAST_CLK” for an external fast 

clock/oscillator signal. Either one or both of these signals may be used in combination 

with the slow or fast oscillators on the PCB. Immediately to the left of this terminal is a 
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pair of jumpers to switch the circuit over from using the internal oscillator signals to an 

external input. 

5.5.3 PCB Jumpers 

There are several sets of jumpers located on the PCB. These jumpers give a high 

level of configurability and flexibility to the circuits on the PCB. Starting from the top 

left corner of the PCB and moving clockwise, the jumpers are J4, J2, J5, J3, J11, J12, J10, 

J17, and J18. The jumpers serve different purposes from selecting power supplies for 

various circuits, to selecting devices to be used in circuit etc. 

J4, J2, J5, and J3 are all jumpers to select which power supplies are connected to 

the oscillator circuits. These jumpers are 3 pin headers. Each jumper should connect the 

center pin to either the left or right pin. For all four of these jumpers, connecting the 

center pin to the left pin will connect the oscillator to the AD2 power supply. Connecting 

the center pin to the right pin will connect the oscillator to the AD2 waveforms output 

(used as an additional power supply). J4 and J5 are for the positive and negative supply 

voltages of the fast oscillator (resistor multivibrator). J2 and J3 are for the positive and 

negative supply voltages of the slow oscillators (memristor multivibrators). Isolating the 

oscillator power supplies from each other will reduce the chances of noise from one 

oscillator affecting the other oscillator. In addition, the waveforms output could be used 

to inject supply noise to the oscillator circuits. The importance of power supply noise 

oscillation is discussed in further detail in Chapter 6. 

Jumpers J11 and J12 are used to toggle between the internal oscillators and 

external oscillator inputs. Each jumper is a 3 pin header. Connecting the center pin to the 

left pin on either jumper will use the internal oscillators. Connecting the center pin to the 
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right pin on either jumper will configure the board to take sample the oscillator input to 

the header just to the right of these jumpers. The top jumper (J11) is for the slow clock. 

The bottom jumper (J12) is for the fast clock. 

Jumper J10 (label not visible on assembled PCB) is a set of 8 pairs of jumpers 

(2x8 set of headers). The purpose of this jumper is to allow for the selection of various 

clock divisions of the slow oscillator. The outputs of a binary counter can be selected as 

the slow clock oscillator to sample the fast clock. Connections between pins should only 

be made vertically from a top pin to bottom pin. Each pin oscillates at ½ of the frequency 

of the pin to the left of it. The fastest option can be chosen by jumping the leftmost 

vertical pair of pins. The slowest option can be chosen by jumping together the rightmost 

vertical pair of pins. In hindsight, a ninth option should have been made available in 

order to allow a bypass of the binary counter altogether. The fastest output of the binary 

counter is only half of the frequency of the input clock frequency. To prevent shorting 

outputs of the binary counter together, jumpering multiple pairs of pins together at once 

should be avoided. 

Jumpers J17 and J18 are located at the bottom center and bottom left corners of 

the PCB. The purpose of these jumpers is to act as a selector for the memristor devices. 

Different devices may be selected by jumping different pins together. The vertical jumper 

jumping two vertical pins together corresponds to select the device in the socket directly 

above it. This also allows for multiple devices could be jumped together to function in 

parallel.  
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5.6 PCB Fabrication and Soldering Process 

The PCB design, layout, and routing were all manually checked multiple times 

over the course of several days to ensure that there were no errors in the final design. 

Several issues were found and corrected in the first and second checks of the PCB. The 

third check found no errors and the design was submitted for fabrication. The PCB123 

software has a built-in Design Rule Check (DRC) and netlist checking tool to ensure that 

there are no violations of design rules (e.g. traces too close together) and that the final 

layout and routing matches the circuit schematic. Four dual layer PCBs were ordered 

from Sunstone circuits at a total cost of $169.00. 

Components were ordered from Digikey. All components used were through-hole 

components which made PCB assembly easy. No surface mount or other types of 

components were used. The downside of using through hole components is that they 

generally require more space on the PCB. Figure 5.18 shows the front and back sides of 

the final PCB. 

 
Figure 5.18 Final PCB front side (left) and back side (right) 
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5.7 Project Bill of Materials 

The final bill of materials for PCB components is listed in table 5.2. A complete 

table of components with comments can be found in the Bill_Of_Materials.xlsx file 

located in “sstoller_thesis_final_writeup\PCB Design” on the Campbell Research group 

folder at BSU or Scholarworks. In some cases the part number of the part that was 

actually ordered (actual Digi-Key Part # column) was different from the part used on in 

the PCB123 software (PCB Part # column). The quantities below are for a single PCB. 

Total cost of components to for two PCBs was $71.95 with shipping, tax, and tariff from 

Digikey [33]. SDC memristors were purchased from Knowm [10]. 

Note that through-pin sockets were soldered in place of some components 

(various resistors and capacitors) so that components of different values could be 

swapped in to change the characteristics of the circuits (e.g. swap resistors and capacitors 

in the oscillator circuits to change the frequency of oscillation). The column titled 

“Actual Digi-Key Part #” is the actual part that was ordered and soldered to the board for 

final implementation. The column titled “PCB Part #” is the part number that was 

substituted for the final PCB design.   
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Table 5.2 List of all components used on the Final PCB Design 

Component 
Identifier 

Description Quantity Actual Digi-Key 
Part # 

PCB Part # 

J1 30 pin connector 1 S5568-ND SAM1037-15-ND 

J2, J3, J4, J5 3 pin jumper 4 SAM1099-03-ND Same 

Jumper 2 pin jumper 
connector 

25 S9337-ND Same 

R1, R2, R3, R4 10 Ohm 
Resistors 

4 10.0XBK-ND Generic Resistor 

J6 5 port wire 
terminal 

1 1528-1975-ND SAM1222-05-ND 

J7 5 port wire 
terminal 

1 1528-1975-ND SAM1222-05-ND 

S1, S2, S3, S4 Hex Standoff 5 1772-1887-ND 0.1160 Hole 

U2 Shift register 1 296-8248-5-ND Same 

U3 Binary Counter 1 296-1599-5-ND Same 

U4 Binary Counter 1 296-1599-5-ND Same 

J10 16 pin jumper 1 SAM1097-08-ND Same 

J11 3 pin jumper 1 SAM1099-03-ND Same 

J12 3 pin jumper 1 SAM1099-03-ND Same 

J13 2 port wire 
terminal 

1 1528-1974-ND SAM1222-02-ND 

U5 XOR Gate 1 296-4627-5-ND Same 

U6, U7 Dual opamp 2 296-34316-5-ND 296-1775-5-ND 

Resistor Resistor Pin 
Thing 

16 ED1256-ND Generic Resistor 

MEM1 Memristor 1 2057-ICS-316-T-
ND 

Generic DIP 

https://www.digikey.com/product-detail/en/sullins-connector-solutions/PPPC152LJBN-RC/S5568-ND/776026
https://www.digikey.com/product-detail/en/samtec-inc/TSW-115-08-G-D-RA/SAM1037-15-ND/1101709
https://www.digikey.com/product-detail/en/samtec-inc/TLW-103-05-T-S/SAM1099-03-ND/1105057
https://www.digikey.com/product-detail/en/sullins-connector-solutions/QPC02SXGN-RC/S9337-ND/2618262
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-10R/10.0XBK-ND/4191
https://www.digikey.com/product-detail/en/adafruit-industries-llc/2139/1528-1975-ND/6827102
https://www.digikey.com/product-detail/en/samtec-inc/SSW-105-02-T-S/SAM1222-05-ND/1112795
https://www.digikey.com/product-detail/en/adafruit-industries-llc/2139/1528-1975-ND/6827102
https://www.digikey.com/product-detail/en/samtec-inc/SSW-105-02-T-S/SAM1222-05-ND/1112795
https://www.digikey.com/product-detail/en/raf-electronic-hardware/2054-440-AL-7/1772-1887-ND/7681298
https://www.digikey.com/product-detail/en/texas-instruments/SN74HC164N/296-8248-5-ND/376946
https://www.digikey.com/product-detail/en/texas-instruments/SN74HC590AN/296-1599-5-ND/277245
https://www.digikey.com/product-detail/en/texas-instruments/SN74HC590AN/296-1599-5-ND/277245
https://www.digikey.com/product-detail/en/samtec-inc/TLW-108-06-T-D/SAM1097-08-ND/1104972
https://www.digikey.com/product-detail/en/samtec-inc/TLW-103-05-T-S/SAM1099-03-ND/1105057
https://www.digikey.com/product-detail/en/samtec-inc/TLW-103-05-T-S/SAM1099-03-ND/1105057
https://www.digikey.com/product-detail/en/adafruit-industries-llc/2138/1528-1974-ND/6827101
https://www.digikey.com/product-detail/en/samtec-inc/SSW-102-02-T-S/SAM1222-02-ND/1112798
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC86N/296-4627-5-ND/375774
https://www.digikey.com/product-detail/en/texas-instruments/TL972IP/296-34316-5-ND/1906129
https://www.digikey.com/product-detail/en/texas-instruments/TL072CP/296-1775-5-ND/277421
https://www.digikey.com/product-detail/en/mill-max-manufacturing-corp/0461-3-15-15-21-27-04-0/ED1256-ND/434091
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862
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J17 16 pin jumper 1 SAM1097-08-ND Same 

MEM2 Memristor 1 2057-ICS-316-T-
ND 

Generic DIP 

J18 16 pin jumper 1 SAM1097-08-ND Same 

R5, R6 10k resistors 2 10KEBK-ND Generic Resistor 

R8, R9 10k resistors 2 10KEBK-ND Generic Resistor 

R12, R13 10k resistors 2 10KEBK-ND Generic Resistor 

R11 10k resistors 1 10KEBK-ND Generic Resistor 

C1, C2, C3 1000pf 
capacitors 

3 
 

Generic Capacitor 

R14, R15, 
R16, R17, 
R18, R19 

10k resistors 6 10KEBK-ND Generic Resistor 

  

5.8 QuickStart Guide to Using the PCB 

The previous sections (specifically sections on the screw terminals and jumper 

settings) thoroughly describe how to reconfigure and change certain options on the PCB. 

The purpose of this section is to describe how to set up and configure the Digilent AD2 

and Waveforms software to capture data. It is essential to set up the Waveforms software 

properly in order to capture data. 

5.8.1 Power Supply Setup 

In order for the circuits to operate properly, the power supplies must all be set up. 

Both the V+ and V- supplies are used, as well as the W1 and W2 outputs. Jumpers J2, J3, 

J4, and J5 may be set up to apply V+ and V- to the slow oscillator power rails and set to 

apply W1 and W2 to the fast oscillator power rails. Both the Supplies window and the 

Wavegen window should be open. Up to +/- 5V may be applied to the positive and 

https://www.digikey.com/product-detail/en/samtec-inc/TLW-108-06-T-D/SAM1097-08-ND/1104972
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862
https://www.digikey.com/product-detail/en/samtec-inc/TLW-108-06-T-D/SAM1097-08-ND/1104972
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
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negative power supplies. It is best to keep the “Tracking” box checked so that the 

supplies both track together. The Wavegen waveform outputs should be set to “DC”. W1 

should be set to a positive voltage and W2 should be set to a negative voltage. All 

supplies should be enabled in the software. In order to verify that power is being supplied 

and the oscillators are operating, it is useful to have the oscilloscope window open and 

the probes hooked up to the Scope screw terminals to probe different areas on the board 

at the VCC and VDD locations. 

5.8.2 Logic Setup 

The logic window is used to capture the data output from the circuit. The logic 

analyzer should be set up to collect data from a data bus. The data bus needs to be set up 

with data on DIO 7 (LSB) through DIO 0 (MSB). The clock for sampling the data should 

be DIO 15. Up to 100M data samples can be collected and saved using the Logging 

function of the Logic window. In order to set this up, the record mode must be used. An 

example workspace for data collection is saved and located on Boise State University 

Scholarworks and the Campbell Research group shared folder in the 

sstoller_thesis_final_writeup\Novel_TRNG\Waveforms directory.
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CHAPTER SIX: FINAL CIRCUIT CHARACTERIZATION 

6.1 PCB and Hardware Verifications 

6.1.1 Verification of PCB 

Once the finished PCBs were received a quick validation was performed. A 

multimeter was used to ensure that proper connections were made, and that the final PCB 

product matched the initial schematic netlist. Throughout the soldering process, care was 

taken to check each net and verify that the solder joint was properly soldered and was not 

in contact with any surrounding nets. 

6.1.2 Verification of circuits 

Once soldering was complete, the PCB was plugged in to the Digilent AD2 and 

the board was powered on. With the data collection circuit disconnected from power by 

turning off the power supplies and using the wavegen only, the oscillators were tested 

individually and confirmed to work properly. Finally, the data collection circuit was 

enabled and verified to be working properly. 

6.2 Power Measurements 

100 Ohm resistors were placed in series with both the V+ and V-, and the W1 and 

W2 power supplies for the circuit in order to measure the amount of power consumed by 

different parts of the circuit. By measuring the voltage across the resistors, current can be 

calculated using Ohms law. Supply voltage is known, and power can be calculated using  

 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 =  𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  ∗  𝑉𝑉𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅  / 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅. (6.1) 
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Power for each part of the circuit was characterized by isolating the different 

portions of the circuit using the power supply jumpers on the PCB. Table 6.1 shows the 

power consumption of each part of the circuit. 

Table 6.1 Power Measurements of the TNRG circuit 

Standby Supply Voltage Current (Ave) Power 

Oscillator VPP 2.7 V 11.885 mA 32.09 mW 

Oscillator VDD -2.7 V 2.4134 mA 6.52 mW 

Data Collection VPP 2.7 V 1.7071 mA 4.61 mW 

 

Average power consumption was measured for the memristor multivibrator 

circuit and was calculated based on equation 6.1. Current was measured by placing a 

100 Ω resistor in series with the positive (VPP) and negative (VPP) supplies for a single 

oscillator circuit. A tungsten memristor was used with 100 nF capacitor yielding an 

oscillation frequency of about 2.5 kHz. Circuit oscillations are obvious in the current 

consumption of the negative power supply but not in the positive supply. Power 

measurements were taken with VPP at 2.7V and VDD at -2.7V (the minimum supply 

voltages for the op-amp used).  

Figure 6.1 shows the power supply measurement of the oscillator circuit. It is 

interesting to note that the positive supply current is the same regardless of the oscillation 

state of the multivibrator circuit, however the negative supply is variable with the 

oscillation of the multivibrator circuit. This behavior was observed with only the op-amp 

connected to the power supply and changing the input voltage to the op-amp to cause the 

output voltage to switch from one voltage supply rail to the other. It was concluded that 
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this behavior is due to the output stage design of the op-amp and not the circuit design of 

the multivibrator. 

 
Figure 6.1 VPP and VDD Current measurements in W-SDC memristor oscillator 
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Figure 6.2 VPP current measurement in data collection circuit 

Power of the data collection circuit was also measured using the same method of 

placing a 100 Ω resistor in series with the VPP power supply. Figure 6.2 shows the power 

supply measurement of the data collection circuit. 

Power consumption of both circuits is shown in table 6.1. Total circuit power 

consumption will be the sum of the oscillator VPP and VDD, tripled because two 

memristor oscillators are used and one resistor oscillator is used. Finally, the data 

collection power consumption must also be added. This yields a total estimated power 

consumption of about 120.44mW. Most of this power consumption is driven by the use 

of op-amps in the circuit.  
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6.3 Randomness Characterization of Final Circuit 

The final circuit was tested for randomness. 100 million bits were collected over 

the course of several runs of the Digilent Waveforms logic analyzer data capture 

function. The data was post-processed using only von Neumann whitening. The NIST 

Statistical Test Suite was used to test the randomness of 100 sequences each of length 1 

million bits. 

Table 6.2 contains the NIST STS test results for the memristor multivibrator 

TRNG. All tests passed except for the runs test, which failed with a proportion of 82/100, 

and the Approximate Entropy test, which barely failed with a proportion of 94/100. A 

proportion of 96/100 or better was needed to pass each test. The final circuit 

characterization shows that the TRNG is passing 13 of 15 NIST STS randomness tests. A 

96/100 proportion or greater is required to pass the randomness tests. The Runs test only 

passesd 82/100 sequences. The Approximate Entropy test barely failed the randomness 

tests with a proportion of 94/100 sequence. The runs test also failed with a P-Value of 0. 

6.3.1 Data Collection Script 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing 

6.3.2 Results Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\Novel_TRNG\Final_Data_Collection  
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6.3.3 Results 

Table 6.2 Results of Memristor Multivibrator TRNG 

Test P-Value   Proportion   Pass/Fail 

Frequency 0.102526   98/100   PASS 

BlockFrequency 0.319084   98/100   PASS 

CumulativeSums 0.122325, 0.001112   194/200   PASS 

Runs 0 * 82/100 * FAIL 

LongestRun 0.202268   100/100   PASS 

Rank 0.153763   98/100   PASS 

FFT 0.319084   97/100   PASS 

NonOverlappingTemplate -   14614/14800   PASS 

OverlappingTemplate 0.494392   98/100   PASS 

Universal 0.350485   100/100   PASS 

ApproximateEntropy 0.090936   94/100 * FAIL 

RandomExcursions -   424/432   PASS 

RandomExcursionsVariant -   962/972   PASS 

Serial 0.739918, 0.595549   195/200   PASS 

LinearComplexity 0.304126   100/100   PASS 

 

6.4 Randomness Characterization of Final Circuit Seeding a PRNG 

It is often common to find a TRNG seeding a PRNG as a method to improve the 

output of quality, speed, and efficiency of a TRNG. In this case an LCG PRNG proposed 

by Lewis, Goodman, and Miller was used [34]. The LCG that was used to generate 

PRNG is 
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 𝐼𝐼 = 16807 ∗ 𝐼𝐼 % 2147483647. (6.2) 

To seed the PRNG 32 bits were read from a binary bitstream of random data. The 

value of I was set to this value. The PRNG equation runs for 128 iterations. Each iteration 

the 16 least significant bits of I are written to the output file. After 128 iterations I is re-

seeded with the next 32 bits from the input file. For each 32 bits (4 bytes) of input data, 

256 bytes of output are generated. 

It is worth noting again that this output is not considered to be truly random and is 

not suitable for use in cryptographic applications. 

6.4.1 Data Collection Script 

Campbell Research group folder at BSU or Scholarworks: 

datastream_to_datastream_prng.pl 

6.4.2 Results Location 

Campbell Research group folder at BSU or Scholarworks: 

sstoller_thesis_final_writeup\Novel_TRNG\Final_Data_Collection\RNG_Seeding

_PRNG  
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6.4.3 Results 

Table 6.3 Results of Memristor Multivibrator TRNG seeding PRNG 

Test P-Value   Porportion   Pass/Fail 

Frequency 0.275709   100/100   PASS 

BlockFrequency 0.494392   98/100   PASS 

CumulativeSums 0.096578, 0.040108   199/200   PASS 

Runs 0.191687   98/100   PASS 

LongestRun 0.678686   98/100   PASS 

ank 0.798139   97/100   PASS 

FFT 0.122325   98/100   PASS 

NonOverlappingTemplate -   14665/14800   PASS 

OverlappingTemplate 0.153763   100/100   PASS 

Universal 0.366918   98/100   PASS 

ApproximateEntropy 0.574903   99/100   PASS 

RandomExcursions -   515/520   PASS 

RandomExcursionsVariant -   1166/1170   PASS 

Serial 0.213309, 0.145326   195/200   PASS 

LinearComplexity 0.739918   100/100   PASS 

 
 

6.5 Comparison to other RNGs 

Table 6.4 shows a comparison of all RNGs tested compared to the TRNG 

designed and implemented in this Thesis project. A pass rate of 96% or better was 

required to pass. Failing tests are shown with bold text. 
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Table 6.5 shows a comparison of the number of sequences tested for each RNG, 

whether debiasing was necessary for each RNG, the approximate time that it took to 

collect the random data sequences for each RNG. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

7.1.1 A TRNG was successfully designed and implemented 

The conclusion of this research shows that memristors may be used in a self-

oscillating multivibrator circuit to successfully generate truly random numbers. 

7.1.2 Importance of Power Supply Isolation 

Throughout the extensive development and testing of the circuit it was found that 

one primary factor that can lead to non-random output from the TRNG is supply noise. 

Power supply ripple can be observed due to the instantaneous high current observed 

when the multivibrator circuit switches from one mono-stable state to the other. This 

supply ripple from one oscillator switching can lead to other oscillators that share the 

same supply switching at the same time. Figures 7.1 and 7.2 show this phenomenon 

occurring between two multivibrator circuits. 

In Figure 7.1 persistent samples of the output of two different memristor 

multivibrator oscillators which normally oscillate at different frequencies are shown 

correlating with one another because of a 100Ω resistor placed in series with the power 

supply. The small power supply voltage droop caused by the 100Ω resistor is enough to 

cause the oscillators to often switch together with each other. 

Figure 7.2 shows the exact same two oscillators with no resistor in series with the 

power supply. It can be clearly seen that there is practically no visible correlation 
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between the two oscillators in the fact that the second oscillator does not consistently 

switch when the first oscillator switches. 

In both images, the oscillators are shown vertically separated. The scope is always 

triggered on the falling edge of the top oscillator. Also note the reduced peak-to-peak 

swing of both oscillators when the 100Ω resistors are placed in series with the power 

supplies due to the IR droop caused by the current draw of the op-amp. 

 
Figure 7.1 Persistence plot with poor power supply for both oscillators 

 
Figure 7.2 Persistence plot with clean supplies for both oscillators 
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This issue was solved on my final circuit design by using the Waveforms outputs 

to power the slow oscillators and the AD2 V+ and V- power supplies to power the fast 

oscillator for the TRNG. This minimized the chances of any correlation between the slow 

and fast oscillators and significantly improved the randomness of the TRNG. 

This exact same problem is present on other TRNG circuits that utilize oscillators 

to capture entropy. For these designs, careful consideration must be taken to ensure a 

clean power supply, especially when multiple supplies are not available, or when 

implementing the design as an integrated circuit. While supply noise could be another 

source of entropy (for example a TRNG implemented on an integrated circuit with a 

CPU), sensitivity to power noise can also be a liability, especially if the noise is 

repetitive. It may be possible for an attacker to compromise the TRNG through a side-

channel attack by either injecting noise on the power supply that may cause the oscillator 

to oscillate in a non-random fashion, or by measuring the power supply noise and using 

this information to predict the output of the TRNG. 

The concerns of power supply noise apply to any oscillator or set of oscillators 

used to implement a TRNG, however not all types of oscillators may be impacted as 

severely as a multivibrator circuit. A multivibrator circuit may be impacted more severely 

than other types of oscillators specifically because there is a long RC time delay that 

causes the circuit to switch from one state to the other state. When the RC voltage at the 

negative input of the op-amp is close to the switching threshold (0.5 VSUPPLY) input at the 

positive input of the op-amp, a slight amount of supply noise can cause the threshold to 

droop and prematurely cause a transition to the other state. 
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Figure 7.3 Power supply noise impact on Multivibrator 

Figure 7.3 shows how voltage noise on the positive power supply can cause the 

output of the multivibrator oscillator to switch early. Power supply noise created by one 

multivibrator can inject noise on another oscillator. In the worst case this can cause the 

two oscillators to sync perfectly. 

7.1.3 SPICE Simulations Alone are not Sufficient for Characterizing a TRNG 

For many reasons such as using an ideal power supply it is possible for SPICE 

simulations of TRNGs to output a truly random string of numbers. In simulations there 

are many factors that are ideal, from the noise in the circuit elements themselves (noise 

generation in a SPICE simulation is an example usage of a PRNG), to the ideality of 

power supplies and lack of other types of interactions, deterministic noise, and distortions 

that are present in a non-ideal circuit. It was observed in the literature survey that often a 

TRNG implementation will perform flawlessly in simulation but will fail to pass the 

NIST randomness tests once implemented in hardware. In addition, it is very inefficient 

to run analog simulations that capture an output of sufficient length for testing. When 

possible in this paper, 100 samples of length 1 million bits were tested (total length 100 
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million bits). This requires a lot of time or a really powerful machine to simulate an 

analog circuit long enough to generate 100 million bits of output. 

7.2 Future Work 

7.2.1 Potential Improvements to Final RNG Circuit 

There are several potential improvements to the final RNG circuit. One 

optimization would be to use a ring oscillator with an RC delay element instead of a 

multivibrator for the fast oscillator. This has many advantages. The main advantage is 

that an op-amp is not required for a ring oscillator. There are many benefits of not having 

an op-amp such as simplicity of the circuit design and most likely a faster output slew 

rate (output will be closer to a square wave and not a sawtooth or triangle wave at high 

frequencies that you get with an op-amp). A ring oscillator design is also probably lower 

power than a multivibrator design that uses an op-amp. 

Another potential improvement in the design would be to provide better power 

supply isolation between the two memristor multivibrators. It is not as much of a concern 

for one of the memristor multivibrators to interfere with the other, as correlation between 

these two oscillators is not as detrimental to the randomness of the design as a correlation 

between either of these oscillators and the fast resistor multivibrator. There are a few 

options to fix this. One method may be to use a device that has multiple power supply 

rails. Another option would be to design in proper power supply isolation between the 

two multivibrators. In order to accomplish this each multivibrator needs to have its own 

discrete op-amp integrated circuit. Both solutions increase design complexity. There is a 

large penalty for doing this on a PCB, but this would not be as complicated if 

implemented in silicon as an integrated circuit. 
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7.2.2 Improvements to Data Collection Circuit Design 

The purpose of the data collection circuit is to increase the amount of data that 

can be collected by taking a serial stream of data and parallelizing it. The data collection 

circuit design has a design flaw in that there is not a latch to hold the output from the 

serial to parallel data converter. Instead, the parallel output from the shift register 

continues to shift data throughout the entire clock period of the slow clock that toggles 

data into the AD2. 

There are several risks as a result of this design oversight. The first issue is that 

the output from the shift register continues to toggle as the Digilent AD2 board is 

sampling the data. In this case, it may be possible that some bits are missed by the data 

collection circuit, even if the Nyquist sample rate is used. This could also lead to a 

violation of setup or hold times for the AD2. Figure 7.4 shows how some bits may be 

missed if data clock has jitter that causes it to operate at a significantly different 

frequency than the AD2 sample clock. It can be seen that some bits are wasted in the 3rd 

sample of the AD2 clock as a result of the data clock running faster than the Nyquist 

frequency. Similarly, some bits are wasted in the 4th sample of the AD2 clock as a result 

of the AD2 clock not sampling exactly on the rising edge of the data clock. 

It is unlikely for the randomness of the output bitstream to change significantly as 

a result of this phenomenon. If anything, it should increase the randomness of the 

resultant datastream as some bits or samples will randomly be thrown out. In order to test 

this, one could oversample the output at a very high frequency and test that sequence for 

randomness. Then take the oversampled output and write software to convert it to a lower 



104 

 
 

sample rate that and compare the results. This is a little difficult to test because the under 

sampled results will generate a shorter sequence of bits. 

 
Figure 7.4 Missed samples with current data collection circuit design 

In addition, a latch can be timed to latch data on the falling edges of the slow 

oscillator clock in order to improve data integrity by giving sufficient margin for setup 

and hold times. In the current circuit there is not much thought given to the setup and 

hold times of the components in the circuit. At slow data collection frequencies this is not 

a large problem, but in order to make the circuit more robust, reliable, and have the 

ability to operate at a higher speed it would be prudent to spend some additional time 

here. 

The proper way to implement this circuit is to use a x8 latch circuit (such as the 

Texas Instruments TPIC6B237) could be attached to the outputs of the serial-in-parallel-

out shift register. This circuit would sample the output of the shift register exactly at the 

rising edge of the clock and hold the same value until the next rising edge. 

7.2.3 Characterization of the Circuit with Different Types of Devices 

More potential future work would be to characterize the TRNG circuit with 

different types of devices (memristors or other devices). All of the characterization for 
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this thesis project was done on a W-Based device. There are many other types of 

memristor devices readily available (SDC devices such as C, Sn, Cr-based devices), 

among many others. Some devices may not be as tolerant to high voltages and currents as 

the W-based devices used in this thesis project. The basic circuit design should still 

suffice, but devices will need to operate at a lower power supply voltage or have a 

resistor in series with the memristor to limit current. A resistor could also be used in the 

multivibrator oscillator in place of a memristor. 

7.2.4 Fabrication of the Circuit as a Custom IC Design 

Future work could be done to fabricate this circuit as a fully custom designed 

chip. In order to fabricate this design as a chip several things must be considered: 

1. Op-amp design and linearity is not crucial to the operation of the circuit, however 

design needs to be good enough to eliminate significant amounts of ringing of 

other types of distortion. There is no need to design a complex and low-distortion 

op-amp output stage. In fact, distortion could add or amplify noise in this type of 

circuit. 

2. An additional benefit of using a custom-design op-amp is the fact that the design 

can be optimized for low power. For example, a design that supports a lower 

supply voltage can be implemented. In addition, rail-to-rail voltage output swing 

could be sacrificed to improve power efficiency in the op-amp circuit because it is 

not needed for this circuit to function properly. 

3. Power supply design is very crucial to successfully designing the circuit. If the 

same voltage source is to be used for the supplies for both the slow and fast 

oscillators, then careful attention must be payed to the design of regulator circuits 
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to ensure that there is no noise or interference between the two supplies. 

Alternatively, two different voltage sources could be provided to the chip or 

generated on the chip. 

7.2.5 Alternative Multivibrator Circuit Topologies 

Figure 7.5 shows three additional alternative circuit topologies. In reality, there 

are many different potential topologies as any resistor or combination of resistors could 

be replaced with memristors. 

 
Figure 7.5 Three alternative circuit topologies for TRNG 

There are several potential advantages of replacing the resistors attached to the 

noninverting input of the op-amp as opposed to the circuit topology used in the TRNG 

presented in this paper. 

One advantage is that less voltage is applied over one or both memristors when 

they are on the noninverting input of the op-amp. When the multivibrator switches, the 

capacitor is further from ground and leads to a higher potential than simply VO over the 

memristor. In the designs shown in figure 7.5, the voltage is split between the memristors 

(each memristor will see about ½ VO), or current is limited if a memristor plus resistor is 

used. This could allow or necessitate the usage of a higher supply voltage, which could 
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be an advantage or disadvantage. The circuits (A) or (B) would capture entropy in a very 

similar manner to the design proposed by Jiang et al. 

Another potential advantage is that as more memristor devices are added to the 

final circuit, there is the potential to capture more noise. 

One thing that must be carefully considered during circuit design is the frequency 

at which the circuit operates. Resistor and capacitor values mush be chosen such that the 

circuit operates at a frequency that is similar to the typical transition delay between states 

of the memristor. This is crucial to capture entropy of the circuit. If the circuit is very 

slow or very fast, then the memrsitor will always be in the same state by the time the 

capacitor is charged or discharged and there will be less entropy generated by the circuit. 

Another thing which must be considered in this circuit is that the previous state of 

the circuit (the voltage on the capacitor) can impact the next state of the multivibrator. If 

the previous state switched quickly because the memristor changed voltage quickly, then 

the voltage on the capacitor will be lower, which will make the transition to the state after 

quicker too. This could cause a correlation (and thus a loss of randomness) from one 

oscillation of the multivibrator to the next.
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This section of the appendix contains the Perl scripts used to aide in data 

collection. 

csv_bin_to_datastream.pl 

The purpose of this script is to convert a CSV file output with a single bit binary 

output per line from the Digilent AD2 to a binary bitstream file that can be analyzed by 

the STS assess application. This script has the option to whiten the output data by 

XORing with the RANDU PRNG. 

Location 

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing 

Usage 

Perl csv_bin_to_datastream.pl <infiles> <outfile.bin> <whitening> 

Code 

#!/usr/bin/perl 
use strict; 
use warnings; 
 
die "Not enough arguments. Script requires a list of input files and one output file 
and a 0/1 toggle for RANDU whitening." if @ARGV < 3; 
 
my $outfile = $ARGV[-2]; 
my $whitening = $ARGV[-1]; 
my @infiles = @ARGV; 
@infiles = splice( @infiles, 0, -2 ); 
 
die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin'; 
 
# fix issue where csv data file is overwritten when I forget to give a unique output 
file name. 
foreach my $infile (@infiles){ 
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile; 
} 
 
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!"; 
 
# Variables for RANDU whitening 
my $seed = 31; 
my $b = 65539; 
my $mod = 4294967296; 
 
# Variables for manipulating random sequence 
my $num1 = 0; 
my $count = 0; 
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my $out = 0x00; 
my $pos = 0; 
my $numlines = 0; 
my $fc = 0; 
 
# variables for deserializing stuff 
my $b0 = 0; 
my $b1 = 0; 
my $c = 0; 
 
# Iterate over all input files and convert to binary and single output file 
foreach my $infile (@infiles) 
{ 
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!"; 
  
 while(my $line = <$FI>) { 
  last if $line =~ ',Data'; 
 } 
  
 $fc++; 
 print ("Working on file $infile\n"); 
 while(my $line = <$FI>) { 
  if($line =~ ',1') {  
   $b0 = 1; 
  } 
  else { 
   $b0 = 0; 
  } 
  $out = $out + ($b0 << $pos); 
  $pos = $pos + 1; 
   
  # If an entire 8-bit number has been generated print it out and count 
the 1's and 0's 
  if($pos == 8) { 
   if($whitening) {  # Whiten sequence with RANDU? 
    $seed = $seed*$b % $mod;  # RANDU whitening 
    $out = $out ^ ($seed & 0xFF);  # RANDU whitening 
   } 
   print $FO pack('C', $out); 
   # printf("0x%2x\n",$out); 
   $count++; 
   if(($out & 0x01) == 0x01){$num1++;} 
   if(($out & 0x02) == 0x02){$num1++;} 
   if(($out & 0x04) == 0x04){$num1++;} 
   if(($out & 0x08) == 0x08){$num1++;} 
   if(($out & 0x10) == 0x10){$num1++;} 
   if(($out & 0x20) == 0x20){$num1++;} 
   if(($out & 0x40) == 0x40){$num1++;} 
   if(($out & 0x80) == 0x80){$num1++;} 
   $pos = 0; 
   $out = 0; 
  } 
 } 
 $numlines += $.; 
 print "$. lines Parsed!\n"; 
 close $FI; 
} 
 
my $numbits = $count * 8;  # total number of bits found 
my $num0 = $numbits - $num1;  # number of zeros 
my $p0 = 100 * $num0 / $numbits;  # percent zeros 
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my $p1 = 100 * $num1 / $numbits;  # percent ones 
my $et = time - $^T;  # elapsed time the script ran 
if($et == 0) {$et = 1};  # Make sure elapsed time is not 0 
my $lps = $numlines/$et;  # lines per second 
print "\nFinished parsing all files in $et seconds!\n"; 
print "Parsing a total of $numlines lines or $lps lines per second!\n"; 
print "File size is $count bytes or $numbits bits\n"; 
print "Found $num0 0's and $num1 1's\n"; 
print "$p0 percent 0's and $p1 percent 1's\n\n"; 
 
close $FO; 
 
exit(0); 
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csv_to_datastream.pl 

The purpose of this script is to convert a CSV file output with 8 bits (1 byte) of 

data per line from the Digilent AD2 to a binary bitstream file that can be analyzed by the 

STS assess application. This script has the option to whiten the output data by XORing 

with the RANDU PRNG. 

Location 

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing 

Usage 

Perl csv_to_datastream.pl <infiles> <outfile.bin> <whitening> 

Code 

#!/usr/bin/perl 
use strict; 
use warnings; 
 
die "Not enough arguments. Script requires a list of input files and one output file 
and a 0/1 toggle for RANDU whitening." if @ARGV < 3; 
 
my $outfile = $ARGV[-2]; 
my $whitening = $ARGV[-1]; 
my @infiles = @ARGV; 
@infiles = splice( @infiles, 0, -2 ); 
 
die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin'; 
 
# fix issue where csv data file is overwritten when I forget to give a unique output 
file name. 
foreach my $infile (@infiles){ 
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile; 
} 
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!"; 
 
# Variables for RANDU whitening 
my $seed = 31; 
my $b = 65539; 
my $mod = 4294967296; 
 
# Variables for manipulating random sequence 
my $clk = 1; 
my $data = 0xFF; 
my $num1 = 0; 
my $count = 0; 
my $numlines = 0; 
my $fc = 0; 
my $out = "0xQQ"; 
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foreach my $infile (@infiles) 
{ 
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!"; 
 $fc++; 
 print ("Working on file $infile\n"); 
 while(my $line = <$FI>) { 
 
  if($line =~ /,h(\w\w)/) { 
   $out = hex($1); 
   if($whitening) {  # Whiten sequence with RANDU? 
    $seed = $seed*$b % $mod;  # RANDU whitening 
    $out = $out ^ ($seed & 0xFF);  # RANDU whitening 
   } 
   print $FO pack('C', $out); 
   $count++; 
   if(($out & 0x01) == 0x01){$num1++;} 
   if(($out & 0x02) == 0x02){$num1++;} 
   if(($out & 0x04) == 0x04){$num1++;} 
   if(($out & 0x08) == 0x08){$num1++;} 
   if(($out & 0x10) == 0x10){$num1++;} 
   if(($out & 0x20) == 0x20){$num1++;} 
   if(($out & 0x40) == 0x40){$num1++;} 
   if(($out & 0x80) == 0x80){$num1++;} 
  } 
 } 
 $numlines += $.; 
 print "$. lines Parsed!\n"; 
 close $FI; 
} 
 
my $numbits = $count * 8;  # total number of bits found 
my $num0 = $numbits - $num1;  # number of zeros 
my $p0 = 100 * $num0 / $numbits;  # percent zeros 
my $p1 = 100 * $num1 / $numbits;  # percent ones 
my $et = time - $^T;  # elapsed time the script ran 
if($et == 0) {$et = 1};  # Make sure elapsed time is not 0 
my $lps = $numlines/$et;  # lines per second 
print "\nFinished parsing all $fc file(s) in $et seconds!\n"; 
print "Parsing a total of $numlines lines or $lps lines per second!\n"; 
print "File size is $count bytes or $numbits bits\n"; 
print "Found $num0 0's and $num1 1's\n"; 
print "$p0 percent 0's and $p1 percent 1's\n\n"; 
 
close $FO; 
 
exit(0); 
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csv_to_datastream_von_neumann.pl 

The purpose of this script is to convert a CSV file output from the Digilent AD2 

to a binary bitstream file that can be analyzed by the STS assess application. This script 

also applies von Neumann debiasing to the output. This script has the option to whiten 

the output data by XORing with the RANDU PRNG. 

Location 

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing 

Usage 

Perl csv _to_datastream_von_neumann.pl <infiles> <outfile.bin> <whitening> 

Code 

#!/usr/bin/perl 
use strict; 
use warnings; 
 
die "Not enough arguments. Script requires a list of input files and one output file 
and a 0/1 toggle for RANDU whitening." if @ARGV < 3; 
 
my $outfile = $ARGV[-2]; 
my $whitening = $ARGV[-1]; 
my @infiles = @ARGV; 
@infiles = splice( @infiles, 0, -2 ); 
 
die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin'; 
 
# fix issue where csv data file is overwritten when I forget to give a unique output 
file name. 
foreach my $infile (@infiles){ 
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile; 
} 
 
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!"; 
 
# Variables for RANDU whitening 
my $seed = 31; 
my $b = 65539; 
my $mod = 4294967296; 
 
# Variables for manipulating random sequence 
my $num1 = 0; 
my $count = 0; 
my $out = 0x00; 
my $pos = 0; 
my $numlines = 0; 
my $fc = 0; 
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# Iterate over all input files and convert to binary and single output file 
foreach my $infile (@infiles) 
{ 
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!"; 
 $fc++; 
 print ("Working on file $infile\n"); 
 while(my $line = <$FI>) { 
  if($line =~ /,h(\w\w)/) { 
   # Look at every pair of bits (4 pairs per byte) 
   for(my $bit = 0; $bit < 8; $bit += 2) { 
    my $c = chr(hex($1)); 
    my $b0 = (ord($c) >> $bit & 0x01); 
    my $b1 = (ord($c) >> ($bit + 1) & 0x01); 
    # only put a bit in the sequence in B0 and B1 are 
different 
    if($b0 != $b1) { 
     $out = $out + ($b0 << $pos); 
     $pos = $pos + 1; 
    } 
     
    # If an entire 8-bit number has been generated print it 
out and count the 1's and 0's 
    if($pos == 8) { 
     if($whitening) {  # Whiten sequence with RANDU? 
      $seed = $seed*$b % $mod;  # RANDU whitening 
      $out = $out ^ ($seed & 0xFF);  # RANDU 
whitening 
     } 
     print $FO pack('C', $out); 
     $count++; 
     if(($out & 0x01) == 0x01){$num1++;} 
     if(($out & 0x02) == 0x02){$num1++;} 
     if(($out & 0x04) == 0x04){$num1++;} 
     if(($out & 0x08) == 0x08){$num1++;} 
     if(($out & 0x10) == 0x10){$num1++;} 
     if(($out & 0x20) == 0x20){$num1++;} 
     if(($out & 0x40) == 0x40){$num1++;} 
     if(($out & 0x80) == 0x80){$num1++;} 
     $pos = 0; 
     $out = 0; 
    } 
   } 
  } 
 } 
 $numlines += $.; 
 print "$. lines Parsed!\n"; 
 close $FI; 
} 
 
my $numbits = $count * 8;  # total number of bits found 
my $num0 = $numbits - $num1;  # number of zeros 
my $p0 = 100 * $num0 / $numbits;  # percent zeros 
my $p1 = 100 * $num1 / $numbits;  # percent ones 
my $et = time - $^T;  # elapsed time the script ran 
if($et == 0) {$et = 1};  # Make sure elapsed time is not 0 
my $lps = $numlines/$et;  # lines per second 
print "\nFinished parsing all files in $et seconds!\n"; 
print "Parsing a total of $numlines lines or $lps lines per second!\n"; 
print "File size is $count bytes or $numbits bits\n"; 
print "Found $num0 0's and $num1 1's\n"; 
print "$p0 percent 0's and $p1 percent 1's\n\n"; 
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close $FO; 
 
exit(0); 
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datastream_to_datastream_prng.pl 

The purpose of this script is to convert binary datastreams to a binary datastream 

with the input stream seeding a PRNG that generates the output datastream. 

Location 

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing 

Usage 

Perl datastream_to_datastream_prng.pl <infiles.bin> <outfile.bin> 

Code 

#!/usr/bin/perl 
use strict; 
use warnings; 
 
# README!!! ######################################## 
# DATASTREAM TO DATASTREAM PRNG 
# The purpose of this perl script is to take a binary datastream and use it to seed a 
PRNG. The PRNG used 
# is an LCG proposed by Lewis, Goodman, and Miller. I = a*I % m. a = 7^5 = 16807. M = 
2^31-1 = 2147483647. 
# 32 binary bits are read and used to initially seed the RNG. The 16 LSBs are written 
to the output file 
# for 128 iterations before the PRNG is re-seeded. 64 bytes are written to the output 
file for every byte 
# read from the input file. 
 
die "Not enough arguments. Script requires a list of input files and one output file." 
if @ARGV < 2; 
 
my $outfile = $ARGV[-1]; 
my @infiles = @ARGV; 
@infiles = splice( @infiles, 0, -1 ); 
 
die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin'; 
 
# fix issue where csv data file is overwritten when I forget to give a unique output 
file name. 
foreach my $infile (@infiles){ 
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile; 
} 
 
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!"; 
 
# Variables for manipulating random sequence 
my $num1 = 0; 
my $count = 0; 
my $numlines = 0; 
my $fc = 0; 
 
# Variables for PRNG (Lewis, Goodman, Miller) 
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my $a = 16807; # 7^5 
my $m = 2147483647; # 2^31 - 1  
 
# Variables for save_data sub; 
my $dchar = 0; 
my $dcount = 0; 
 
# Iterate over all input files and convert to binary and single output file 
foreach my $infile (@infiles) 
{ 
 open(my $FI, '<:raw', $infile) or die "Could not open infile $infile $!"; 
 $fc++; 
 print ("Working on file $infile\n"); 
 while(1) {  # read in the file 
  my $bytes_read = read $FI, my $bytes, 4; # read 1 byte at a time 
   
  last if($bytes_read < 4);  # until there are no more bytes to read 
  my $data = unpack('L', $bytes);  # unpack the 4 bytes into a long 
   
  # Seed the PRNG and generate some number (128) of samples 
  for(my $num = 0; $num < 128; $num++) 
  { 
   $data = ($a * $data) % $m; 
   my $temp_data = $data;  # create new var to preserve current seed 
    
   # shift out every bit and write it to the file 
   for(my $shift = 0; $shift < 16; $shift ++) 
   { 
    my $bit = $temp_data & 0x00000001; 
    &save_data($bit); 
    $temp_data = $temp_data >> 1; 
   } 
  } 
 } 
 close $FI; 
} 
 
my $numbits = $count * 8;  # total number of bits found 
my $num0 = $numbits - $num1;  # number of zeros 
my $p0 = 100 * $num0 / $numbits;  # percent zeros 
my $p1 = 100 * $num1 / $numbits;  # percent ones 
my $et = time - $^T;  # elapsed time the script ran 
if($et == 0) {$et = 1};  # Make sure elapsed time is not 0 
my $lps = $numlines/$et;  # lines per second 
print "\nFinished parsing all files in $et seconds!\n"; 
print "Parsing a total of $numlines lines or $lps lines per second!\n"; 
print "File size is $count bytes or $numbits bits\n"; 
print "Found $num0 0's and $num1 1's\n"; 
print "$p0 percent 0's and $p1 percent 1's\n\n"; 
 
close $FO; 
 
exit(0); 
 
 
# sub to save data to a file. 
sub save_data() 
{ 
 my ($data) = @_; 
 # print "$data\n";  # for debug 
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 # add the number to the char; 
 $dchar += $data * (0x01 << $dcount); 
 $dcount += 1; 
  
 if($dcount == 8) { 
  # printf ("dchar=0x%2x\n", $dchar);  # for debug 
  print $FO pack('C', $dchar); 
  $count++; 
  if(($dchar & 0x01) == 0x01){$num1++;} 
  if(($dchar & 0x02) == 0x02){$num1++;} 
  if(($dchar & 0x04) == 0x04){$num1++;} 
  if(($dchar & 0x08) == 0x08){$num1++;} 
  if(($dchar & 0x10) == 0x10){$num1++;} 
  if(($dchar & 0x20) == 0x20){$num1++;} 
  if(($dchar & 0x40) == 0x40){$num1++;} 
  if(($dchar & 0x80) == 0x80){$num1++;} 
  $dcount = 0; 
  $dchar = 0; 
 } 
} 
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datastream_to_datastream_von_neumann.pl 

The purpose of this script is to convert binary datastreams to a binary datastream 

with von Neumann whitening applied. 

Location 

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing 

Usage 

Perl datastream_to_datastream_von_neumann.pl <infiles.bin> <outfile.bin> 

<whitening> 

Code 

#!/usr/bin/perl 
use strict; 
use warnings; 
 
# README!!! ######################################## 
# DATASTREAM TO DATASTREAM VON NEUMANN 
# The purpose of this perl script is to take a binary datastream and perform Von 
Neumann debiasing on it. 
 
die "Not enough arguments. Script requires a list of input files and one output file." 
if @ARGV < 2; 
 
my $outfile = $ARGV[-1]; 
my @infiles = @ARGV; 
@infiles = splice( @infiles, 0, -1 ); 
 
die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin'; 
 
# fix issue where csv data file is overwritten when I forget to give a unique output 
file name. 
foreach my $infile (@infiles){ 
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile; 
} 
 
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!"; 
 
# Variables for manipulating random sequence 
my $num1 = 0; 
my $count = 0; 
my $numlines = 0; 
my $fc = 0; 
 
# Variables for save_data sub; 
my $dchar = 0; 
my $dcount = 0; 
 
# Iterate over all input files and convert to binary and single output file 
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foreach my $infile (@infiles) 
{ 
 open(my $FI, '<:raw', $infile) or die "Could not open infile $infile $!"; 
 $fc++; 
 print ("Working on file $infile\n"); 
 while(1) {  # read in the file 
  my $bytes_read = read $FI, my $bytes, 1; # read 1 byte at a time 
  last if($bytes_read == 0);  # until there are no more bytes to read 
  my $data = unpack('C', $bytes); 
  # print "$data\n" if($data != 0);  # for debug 
   
  # unpack it into bits 0 or 1   
  my $b0 = ($data & 0x01) >> 0; 
  my $b1 = ($data & 0x02) >> 1; 
  my $b2 = ($data & 0x04) >> 2; 
  my $b3 = ($data & 0x08) >> 3; 
  my $b4 = ($data & 0x10) >> 4; 
  my $b5 = ($data & 0x20) >> 5; 
  my $b6 = ($data & 0x40) >> 6; 
  my $b7 = ($data & 0x80) >> 7; 
   
  # print("$data, $b7, $b6, $b5, $b4, $b3, $b2, $b1, $b0\n");  # for debug 
   
  # write the value of the 1st bit if the bits are not the same (e.g. 
there is a transition) 
  if($b0 != $b1) {&save_data($b0);} 
  if($b2 != $b3) {&save_data($b2);} 
  if($b4 != $b5) {&save_data($b4);} 
  if($b6 != $b7) {&save_data($b6);} 
 } 
 close $FI; 
} 
 
my $numbits = $count * 8;  # total number of bits found 
my $num0 = $numbits - $num1;  # number of zeros 
my $p0 = 100 * $num0 / $numbits;  # percent zeros 
my $p1 = 100 * $num1 / $numbits;  # percent ones 
my $et = time - $^T;  # elapsed time the script ran 
if($et == 0) {$et = 1};  # Make sure elapsed time is not 0 
my $lps = $numlines/$et;  # lines per second 
print "\nFinished parsing all files in $et seconds!\n"; 
print "Parsing a total of $numlines lines or $lps lines per second!\n"; 
print "File size is $count bytes or $numbits bits\n"; 
print "Found $num0 0's and $num1 1's\n"; 
print "$p0 percent 0's and $p1 percent 1's\n\n"; 
 
close $FO; 
 
exit(0); 
 
 
# sub to save data to a file. 
sub save_data() 
{ 
 my ($data) = @_; 
 # print "$data\n";  # for debug 
  
 # add the number to the char; 
 $dchar += $data * (0x01 << $dcount); 
 $dcount += 1; 
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 if($dcount == 8) { 
  # printf ("dchar=0x%2x\n", $dchar);  # for debug 
  print $FO pack('C', $dchar); 
  $count++; 
  if(($dchar & 0x01) == 0x01){$num1++;} 
  if(($dchar & 0x02) == 0x02){$num1++;} 
  if(($dchar & 0x04) == 0x04){$num1++;} 
  if(($dchar & 0x08) == 0x08){$num1++;} 
  if(($dchar & 0x10) == 0x10){$num1++;} 
  if(($dchar & 0x20) == 0x20){$num1++;} 
  if(($dchar & 0x40) == 0x40){$num1++;} 
  if(($dchar & 0x80) == 0x80){$num1++;} 
  $dcount = 0; 
  $dchar = 0; 
 } 
} 
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randu.pl 

The RANDU PRNG was implemented in a software Perl script. The script is very 

simple and writes a binary data file of 100M bits length. The script has variable that 

allow the user to change the multiplier, modulus, and starting seed for the PRNG. 

Location 

sstoller_thesis_final_writeup\RNGs\RANDU 

Usage 

perl randu.pl 

Code 

#!/usr/bin/perl 
use strict; 
use warnings; 
 
my $outfile = "output.bin"; 
my $length = int(100000000/32); # generate 100M bits (each "seed" is 32 bits) 
my $seed = 13; 
 
my $multiplier = 65539; 
my $modulus = 2147483648; 
 
# open(my $FO, '>', $outfile) or die "Could not open file $outfile $!"; 
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!"; 
for(my $n=0; $n<$length; $n++) 
{ 
 # printf $FO "%032b\n", $seed; 
 print $FO pack('L', $seed); 
 # printf "%08x\n", $seed; 
 $seed = $seed * $multiplier % $modulus; 
} 
close $FO; 

rdrand_to_datastream.pl 

rdrand_to_datastream.pl was used to convert the text output from the rdrand 

generator to a binary bitstream that the STS assess application can read in and test for 

randomness. Multiple input files can be read. A single binary file is output. 

Location 

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\perl 
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Usage 

Perl rdrand_to_datastream.pl <infiles > <outfile.bin>  

Code 

#!/usr/bin/perl 
use strict; 
use warnings; 
 
die "Not enough arguments. Script requires a list of input files and one output file." 
if @ARGV < 2; 
 
my $outfile = $ARGV[-1]; 
my @infiles = @ARGV; 
@infiles = splice( @infiles, 0, -1 ); 
 
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!"; 
 
my $clk = 1; 
my $data = 0xFF; 
my $num1 = 0; 
my $count = 0; 
my $numlines = 0; 
my $fc = 0; 
 
foreach my $infile (@infiles) 
{ 
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!"; 
 $fc++; 
 print ("Working on file $infile\n"); 
 while(my $line = <$FI>) { 
 
  # Example Line: 0x9b1f5269c6cfa127 
  if($line =~ /0x(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)/) { 
   for my $c($1, $2, $3, $4, $5, $6, $7, $8) { 
    print $FO pack('C', hex($c)); 
    $count++; 
    if((hex($c) & 0x01) == 0x01){$num1++;} 
    if((hex($c) & 0x02) == 0x02){$num1++;} 
    if((hex($c) & 0x04) == 0x04){$num1++;} 
    if((hex($c) & 0x08) == 0x08){$num1++;} 
    if((hex($c) & 0x10) == 0x10){$num1++;} 
    if((hex($c) & 0x20) == 0x20){$num1++;} 
    if((hex($c) & 0x40) == 0x40){$num1++;} 
    if((hex($c) & 0x80) == 0x80){$num1++;} 
   } 
  } 
 } 
 $numlines += $.; 
 print "$. lines Parsed!\n"; 
 close $FI; 
} 
 
my $numbits = $count * 8;  # total number of bits found 
my $num0 = $numbits - $num1;  # number of zeros 
my $p0 = 100 * $num0 / $numbits;  # percent zeros 
my $p1 = 100 * $num1 / $numbits;  # percent ones 
my $et = time - $^T;  # elapsed time the script ran 
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my $lps = $numlines/$et;  # lines per second 
print "\nFinished parsing all $fc file(s) in $et seconds!\n"; 
print "Parsing a total of $numlines lines or $lps lines per second!\n"; 
print "File size is $count bytes or $numbits bits\n"; 
print "Found $num0 0's and $num1 1's\n"; 
print "$p0 percent 0's and $p1 percent 1's\n\n"; 
 
close $FO; 
 
exit(0); 
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testdrng.c 

Testdrng.c was used to generate a string of random bits using the Intel RDRAND 

TRNG. Code was modified from the Intel RDRAND example code downloadable from 

Intel’s website. The code was modified to simply write bits to a binary output file using 

the Intel RDRAND instruction. Code was compiled using the Make command. The code 

below has been condensed (large sections of comments and unused functions removed 

from the code). 

Location 

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\drng_samples\testdrng.c 

Usage 

Compile with make 

./assess 

Code 

#include "drng.h" 
#include <stdio.h> 
#include <stdint.h> 
#include <string.h> 
#include "hexdump.h" 
 
void test_rdrand(); 
 
int main (int argc, char *argv[])  
{ 
 unsigned int drng_features; 
 
 /* Determine DRNG support */ 
 
 drng_features= get_drng_support(); 
 if ( drng_features == DRNG_NO_SUPPORT ) { 
  printf("This CPU does not support Intel(R) Data Protection with Secure 
Key\n"); 
  return 1; 
 } 
 
 if ( drng_features & DRNG_HAS_RDRAND ) { 
  printf("This CPU supports the RDRAND instruction\n"); 
 } else { 
  printf("This CPU does not support the RDRAND instruction\n"); 
 } 
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 if ( drng_features & DRNG_HAS_RDSEED ) { 
  printf("This CPU supports the RDSEED instruction\n"); 
 } else { 
  printf("This CPU does not support the RDSEED instruction\n"); 
 } 
 
 if ( drng_features & DRNG_HAS_RDRAND ) { 
  test_rdrand(); 
 } 
 
} 
 
void test_rdrand() 
{ 
 unsigned int i, n; 
 uint16_t rand16; 
 uint32_t rand32, rand32ar[18]; 
#ifdef __x86_64__ 
 uint64_t rand64; 
#endif 
 unsigned char data[1024] __attribute__ ((aligned (16))); 
 unsigned char *dp; 
 
 
#ifdef __x86_64__ 
 int a; 
 for(a=0; a<625000000; a++) { 
  if ( ! rdrand64_step(&rand64) ) { 
   fprintf(stderr, "rdrand64_step: random number not available\n"); 
  } else { 
   printf("rand64= 0x%016llx\n", (unsigned long long) rand64); 
  } 
 } 
#endif 
 
} 
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