
NOVEL MEMRISTOR BASED TRUE RANDOM NUMBER GENERATOR

by

Scott Stoller

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

Boise State University

December 2020

© 2020

Scott Stoller

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Scott Stoller

Thesis Title: Novel Memristor Based True Random Number Generator

Date of Final Oral Examination: 09 October 2020

The following individuals read and discussed the thesis submitted by Scott Stoller, and
they evaluated their presentation and response to questions during the final oral
examination. They found that the student passed the final oral examination.

Kristy A. Campbell, Ph.D. Chair, Supervisory Committee

Elisa H. Barney, Ph.D. Member, Supervisory Committee

Kurtis Cantley, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Kristy A. Campbell, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.

iv

DEDICATION

I would like to dedicate this work to my wife Gabrielle. I want to thank her for her

patient encouragement and support throughout the course of my research. She was

always willing to listen, talk through issues with me, and for patiently allowing me to

process my thoughts out loud to her.

v

ACKNOWLEDGMENTS

I would like to thank Dr. Campbell for her encouragement, guidance, support, and

patience throughout the course of this research. I would also like to thank Dr. Barney and

Dr. Cantley for their support and willingness to be a part of my supervisory committee.

Special thanks to Alex Nugent from Knowm for his support, knowledge, and

recommendation of memristor devices to use for this thesis project as well as providing

devices to use for the project.

Finally, I would also like to thank my employer, Micron Technology, for

providing the flexibility and support that allowed me to pursue my M.S. while working

full time, as well as the financial support they provided in the form of tuition

reimbursement.

vi

ABSTRACT

Random numbers are an important, but often overlooked part of the modern

computing environment. They are used everywhere around us for a variety of purposes,

from simple decision making in video games such as a coin toss, to securing financial

transactions and encrypting confidential communications. They are even useful for

gambling and the lottery.

Random numbers are generated in many ways. Pseudo random number generators

(PRNGs) generate numbers based on a formula. True random number generators

(TRNGs) capture entropy from the environment to generate randomness. As our society

and our devices become more connected in the digital world, it is important to develop

new ways to generate truly random numbers in order to secure communications and

connected devices.

In this work a novel memristor-based True Random Number Generator is

designed and a physical implementation is fabricated and tested using a W-based self-

directed channel (SDC) memristor. The circuit was initially designed and prototyped on a

breadboard. A custom Printed Circuit Board (PCB) was fabricated for the final circuit

design and testing of the novel memristor-based TRNG. The National Institute of

Standards and Technology (NIST) Statistical Test Suite (STS) was used to check the

output of the TRNG for randomness. The TRNG was demonstrated to pass 13 statistical

tests out of the 15 in the STS.

vii

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGMENTS ... v

ABSTRACT ... vi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xvi

CHAPTER ONE: INTRODUCTION .. 1

1.1 Methods of Generating Random Numbers .. 1

1.1.1 Pseudo Random Number Generators ... 1

1.1.2 True Random Number Generators ... 2

1.1.3 Capturing Entropy in a Memristor ... 3

1.2 Topics Covered in this Thesis ... 3

CHAPTER TWO: OVERVIEW OF NIST STATISTICAL TEST SUITE 5

2.1 NIST Statistical Test Suite .. 5

2.2 Description of NIST Tests .. 5

2.2.1 Frequency (Monobits) Test.. 5

2.2.2 Frequency Test Within a Block ... 6

2.2.3 Runs Test .. 6

2.2.4 Longest Runs Test ... 6

viii

2.2.5 Binary Matrix Rank Test ... 7

2.2.6 Discrete Fourier Transform (Spectral) Test 7

2.2.7 Non-overlapping Template Matching Test 7

2.2.8 Overlapping Template Matching Test .. 8

2.2.9 Maurer’s “Universal Statistical” Test .. 8

2.2.10 Linear Complexity Test ... 8

2.2.11 Serial Test ... 9

2.2.12 Approximate Entropy Test .. 9

2.2.13 Cumulative Sums Test ... 9

2.2.14 Random Excursions Test ... 9

2.2.15 Random Excursions Variant Test... 10

2.3 Downloading, Compiling, and Using the NIST Statistical Test Suite 10

2.3.2 Compiling the NIST Statistical Test Suite Application 11

2.3.3 Testing Randomness with the STS Assess Application 12

2.3.4 Understanding the Output from the NIST STS Application 14

CHAPTER THREE: DATA COLLECTION USING THE DIGILENT ANALOG
DISCOVERY 2 BOARD ... 16

3.1 Introduction .. 16

3.2 Digilent Analog Discovery 2 Board .. 16

3.3 Design of Data Collection Circuit ... 17

3.4 Importance of Proper Sampling Rate of Data and Other Considerations .. 20

3.5 Debiasing the Output of the TRNG ... 21

3.6 Software and Scripts to Aid in Data Collection 23

3.7 Workflow for Collecting and Analyzing Data ... 26

ix

3.7.1 Tips, Tricks, and Problems Found Using the AD2 for Data
Collection ... 27

CHAPTER FOUR: CHARACTERIZATION OF OTHER CIRCUITS 31

4.1 Introduction .. 31

4.2 Intel RDRAND ... 31

4.2.1 Brief Description of RNG.. 31

4.2.2 Process/Script used to Collect Data ... 33

4.2.3 Generator Location .. 33

4.2.4 Results Location .. 33

4.2.5 Results .. 34

4.3 Digilent AD2 RNG ... 34

4.3.1 Brief Description of RNG and Data Collection Process 34

4.3.2 Process/Script used to Collect Data ... 35

4.3.3 Script Location .. 35

4.3.4 Results Location .. 35

4.3.5 Results .. 36

4.4 RANDU ... 36

4.4.1 Brief Description of RNG.. 36

4.4.2 Process/Script used to Collect Data ... 38

4.4.3 Generator Location .. 38

4.4.4 Results Location .. 38

4.4.5 Results .. 39

4.5 Linux RANDOM Entropy Pool .. 40

4.5.1 Brief Description of RNG.. 40

x

4.5.2 Process/Script used to Collect Data ... 40

4.5.3 Data Collection Process ... 41

4.5.4 Results Location .. 41

4.5.5 Results .. 42

4.6 True RNG Circuit from Jiang et al. ... 43

4.6.1 Brief Description of RNG.. 43

4.6.2 Process/Script used to Collect Data ... 44

4.6.3 Data Collection Script ... 47

4.6.4 Results Location .. 47

4.6.5 Results .. 48

4.7 True RNG Circuit from Rai et al. .. 49

4.7.1 Brief Description of RNG.. 49

4.7.2 Process/Script used to Collect Data ... 51

4.7.3 Data Collection Script ... 52

4.7.4 Final Results Path .. 52

4.7.5 Results .. 52

CHAPTER FIVE: DESIGN OF FINAL CIRCUIT .. 54

5.1 Design Concept .. 54

5.2 How a Multivibrator Circuit Works .. 55

5.3 Multivibrator Oscillator Simulations and Measurements 58

5.4 Circuit Design and Development .. 65

5.4.1 Summary of Breadboard Implementation 65

5.4.2 PCB Design .. 67

xi

5.4.3 PCB Schematics .. 67

5.5 PCB Layout .. 69

5.5.1 Interface to the Digilent AD2 .. 75

5.5.2 PCB Screw Terminal Signal Breakouts 78

5.5.3 PCB Jumpers... 80

5.6 PCB Fabrication and Soldering Process .. 82

5.7 Project Bill of Materials.. 83

5.8 QuickStart Guide to Using the PCB .. 85

5.8.1 Power Supply Setup .. 85

5.8.2 Logic Setup ... 86

CHAPTER SIX: FINAL CIRCUIT CHARACTERIZATION .. 87

6.1 PCB and Hardware Verifications .. 87

6.1.1 Verification of PCB ... 87

6.1.2 Verification of circuits ... 87

6.2 Power Measurements .. 87

6.3 Randomness Characterization of Final Circuit .. 91

6.3.1 Data Collection Script ... 91

6.3.2 Results Location .. 91

6.3.3 Results .. 92

6.4 Randomness Characterization of Final Circuit Seeding a PRNG 92

6.4.1 Data Collection Script ... 93

6.4.2 Results Location .. 93

6.4.3 Results .. 94

xii

6.5 Comparison to other RNGs ... 94

CHAPTER 7: CONCLUSIONS AND FUTURE WORK ... 98

7.1 Conclusions .. 98

7.1.1 A TRNG was successfully designed and implemented................. 98

7.1.2 Importance of Power Supply Isolation ... 98

7.1.3 SPICE Simulations Alone are not Sufficient for Characterizing a
TRNG 101

7.2 Future Work ... 102

7.2.1 Potential Improvements to Final RNG Circuit 102

7.2.2 Improvements to Data Collection Circuit Design 103

7.2.3 Characterization of the Circuit with Different Types of Devices 104

7.2.4 Fabrication of the Circuit as a Custom IC Design 105

7.2.5 Alternative Multivibrator Circuit Topologies 106

REFERENCES .. 108

APPENDIX A ... 112

xiii

LIST OF TABLES

Table 3.1 Von Neumann Whitening Scheme .. 23

Table 4.1 Results of Intel RDRAND TRNG. .. 34

Table 4.2 Results of Digilent AD2 RNG. ... 36

Table 4.3 Results of RANDU PRNG.. 39

Table 4.4 Results of Linux uRandom RNG on system without RDRAND 42

Table 4.5 Results of TRNG proposed by Jiang et. al. .. 48

Table 4.6 Results of TRNG proposed by Rai et al [27]. .. 53

Table 5.1 Pin usage of the Digilent AD2 board connector 77

Table 5.2 List of all components used on the Final PCB Design 84

Table 6.1 Power Measurements of the TNRG circuit .. 88

Table 6.2 Results of Memristor Multivibrator TRNG ... 92

Table 6.3 Results of Memristor Multivibrator TRNG seeding PRNG 94

Table 6.4 Results Comparison of all RNGs .. 96

Table 6.5 Additional Comparisons of all RNGs .. 97

xiv

LIST OF FIGURES

Figure 3.1 TRNG, Digilent AD2, and PC Waveforms block diagram 17

Figure 3.2 Pinout diagram of the Digilent AD2 [15] .. 17

Figure 3.3 Schematic of the data collection circuit ... 19

Figure 3.4 Sample output from the data collection circuit .. 20

Figure 3.5 Examples of different types of random data formats 24

Figure 3.6 Entire data collection workflow and process ... 26

Figure 3.7 Waveforms Device Manager options .. 27

Figure 3.8 Screenshot of the Digilent AD2 Waveforms application 30

Figure 4.1 Proposed TRNG Design by Jiang et al. [26].. 44

Figure 4.2 Schematic of Jiang et al. tested in this Thesis .. 45

Figure 4.3 Implementation of Jiang et. al design on a breadboard 46

Figure 4.4 Data Collection of Jiang et. al. design in Digilent AD2 47

Figure 4.5 Rai’s proposed circuit design [27]... 49

Figure 4.6 Circuit schematic tested for Rai et al. TRNG .. 50

Figure 4.7 Image of the test setup and circuit to test Rai et al. 52

Figure 5.1 A slow clock sampling a fast clock ... 54

Figure 5.2 Multivibrator circuits implemented with resistor and memristor 55

Figure 5.3 Measured IV curve for a W-SDC Memristor in a multivibrator circuit 57

Figure 5.4 Simplified schematic of the final circuit .. 58

Figure 5.5 Persistence plot of the output from a memristor based multivibrator 59

xv

Figure 5.6 Persistence plot of the output from a resistor based multivibrator 60

Figure 5.7 Voltage outputs from a transient simulation of the circuit 62

Figure 5.8 Transient Simulation Results for multivibrator with resistor 63

Figure 5.9 Measured output for multivibrator implemented with a W-SDC memristor
 ... 64

Figure 5.10 Measured output for multivibrator implemented with a resistor 65

Figure 5.11 Breadboard with the TRNG prototype .. 66

Figure 5.12 PCB circuit schematic for the two memristor multivibrator oscillators 67

Figure 5.13 Multivibrator circuit schematic for the fast oscillator. 68

Figure 5.14 Binary counter slow clock divider schematic .. 68

Figure 5.15 Serial-to-parallel data collection circuit schematic 69

Figure 5.16 Backside image of finished, modified PCB ... 70

Figure 5.17 Final PCB Layout. .. 72

Figure 5.18 Final PCB front side (left) and back side (right) 82

Figure 6.1 VPP and VDD Current measurements in W-SDC memristor oscillator ... 89

Figure 6.2 VPP current measurement in data collection circuit 90

Figure 7.1 Persistence plot with poor power supply for both oscillators 99

Figure 7.2 Persistence plot with clean supplies for both oscillators 99

Figure 7.3 Power supply noise impact on Multivibrator ... 101

Figure 7.4 Missed samples with current data collection circuit design 104

Figure 7.5 Three alternative circuit topologies for TRNG 106

xvi

LIST OF ABBREVIATIONS

AD2 Analog Discovery 2

BSU Boise State University

CSV Comma-Separated Value

DFT Discrete Fourier Transform

DRC Design Rule Check

GCC Gnu C++ compiler

LCG Linear Congruential Generator

LFSR Linear Feedback Shift Register

NIST National Institute of Standards and Technology

PRNG Pseudo-Random Number Generator

RNG Random Number Generator

RTN Random Telegraph Noise

SDC Self Directed Channel

STS Statistical Test Suite

TRNG True Random Number Generator

1

CHAPTER ONE: INTRODUCTION

Random numbers have a variety of uses in modern computing and information

security. Uses can range from a simple decision making or branching in a video game to

providing the basis for keeping banking transactions secure and encryption of secure and

secret documents.

1.1 Methods of Generating Random Numbers

While there are many methods to generate random numbers, there are two main

types of random number generators: Pseudo Random Number Generators (PRNGs)

which generate sequence of numbers based on a formula, and True Random Number

Generators (TNRGs) which generate numbers from entropy and cannot be predicted.

1.1.1 Pseudo Random Number Generators

Pseudo Random Numbers Generators generate a deterministic sequence of

numbers that are nearly random but are not truly random. PRNGs begin with a seed value

and generate a sequence of random numbers based on a formula. A PRNG will generate

the exact same sequence of random numbers if it starts with the same seed in each run.

PRNGs will eventually repeat and follow the same sequence again. In this sense, they

generate a string of numbers that are difficult to predict and have the appearance of being

random yet are not truly random. The output from PRNGs however can be predicted.

This can be useful for many applications, specifically software applications where a

repetitive but “random” behavior is useful, such as Monte Carlo simulations and low-

stakes games. This behavior is not desirable for other applications, such as security

2

applications, that demand that a random number must be truly unpredictable, not merely

difficult to predict. PRNGs can be implemented in a variety of ways in either hardware or

software, but the most common method is to use a liner congruential generator (LCG) or

a linear feedback shift register (LFSR).

1.1.2 True Random Number Generators

A True Random Number Generator generates numbers that are truly random in

nature. Unlike a PRNG, there is no way to predict the sequence of numbers that a true

RNG will generate. The same sequence of random numbers will never be generated twice

by a TRNG. True random number generation is important in data security applications,

such as securing banking transactions, or encrypting communications where it is essential

that the sequence of random numbers can never be predicted or guessed. True RNGs

generally utilize a hardware component that captures entropy to generate truly

unpredictable results. Examples of true hardware RNGs could be a fair 6-sided die, a lava

lamp [1], or thermal or quantum noise (shot noise, random telegraph noise, etc.) in a

circuit component.

Capturing entropy and generating true random numbers is a very difficult process.

Many TRNGs require a significant amount of post-processing of the data they generate in

order to output sequences of numbers that are truly random in nature. For example,

certain natural sources of entropy such as Random Telegraph Noise (RTN) in NAND

Flash Memories require post-processing to capture the randomness of the output [2].

Other TRNGs require post-processing as well, such as Intel’s RDRAND [3] and the

Linux TRNG Entropy Pool [4], both of which will be discussed later in this thesis. It is

challenging to capture entropy at high speed and many TRNGs capture entropy slowly. In

3

many cases a truly random number is generated from an entropy source and used to seed

a PRNG in order to improve the speed and efficiency of the RNG. The PRNG seed is

normally updated at a regular interval to ensure unpredictability in the sequence.

1.1.3 Capturing Entropy in a Memristor

A memristor is a two-terminal device that changes resistance as charge flows

through the device. The memristor is often referred to as the 4th circuit element [5-8].

Resistors can often be used in TRNGs to capture entropy as thermal noise. In many cases,

a memristor can be better suited for use in a TRNG because other sources of noise

besides just thermal noise are present in the device. In this thesis entropy is captured

using a Tungsten Self Directed Channel (W-SDC) device [9,10].

1.2 Topics Covered in this Thesis

This thesis introduces the concept of random numbers and randomness in Chapter

1. In Chapter 2, the National Institute of Standards and Technology (NIST) methods for

testing random numbers are introduced and discussed. Chapter 3 describes the data

collection hardware and methodology. Chapter 4 describes six PRNGs and TRNGs that

have been previously presented in the literature by other researchers. These designs are

examined in this thesis through breadboard testing. The results of these tests were

obtained using the procedures and hardware described in Chapters 2 and 3. A novel

memristor-based TRNG designed for this thesis, including steps to fabricate and test the

proposed design are described in Chapter 5. Tests were first performed at the breadboard

level, and upon demonstration of proof of concept, were then performed at the printed

circuit board level. Results of the breadboard and PCB TRNG tests are presented in

Chapter 6 and compared with the other PRNG and TRNG designs tested in this work.

4

Chapter 7 contains a discussion of future work, shortcomings of, and improvements to

the design. The Appendix contains additional information such as the code that was

written and use for data collection and analysis.

5

CHAPTER TWO: OVERVIEW OF NIST STATISTICAL TEST SUITE

2.1 NIST Statistical Test Suite

NIST (the National Institute of Standards and Technology) has made software

available to test the randomness of random number generators [9,10]. The Statistical Test

Suite (STS) version 2.1.2 was downloaded, compiled, and used to analyze binary

bitstreams of numbers generated by RNGs. The NIST statistical test suite contains a

series of 15 statistical tests to determine the randomness of a series of generated numbers.

Some are as simple as verifying that the number of ones and zeros is an even 50/50 split.

Other tests look for repeating patterns or continuous runs of the same bit within the

sequence. In the paragraphs that follow, a complete list and description of each test is

included. The following summary of these tests was written after careful reading and

understanding of the NIST STS guide.

2.2 Description of NIST Tests

2.2.1 Frequency (Monobits) Test

A truly random number should have a 50/50 distribution of ones and zeros. The

frequency test analyzes the number of ones and zeros in the test sequence. The test will

fail if there are significantly more ones than zeros, or significantly more zeros than ones.

The number of ones and zeros should be approximately equal. None of the other NIST

randomness tests are valid if this test does not pass. A case of all zeros or all ones in a

sequence is not random and would fail the frequency test.

6

2.2.2 Frequency Test Within a Block

This test is equivalent to the frequency test described above. This test simply

looks at the frequencies of ones and zeros in an M-bit sample block. For a truly random

number, the number of ones and zeros should be approximately equal. It may be possible

for a series of 100 zeros followed by 100 ones to pass the frequency test, but the

frequency test within a block would catch and fail this case.

2.2.3 Runs Test

The purpose of the runs test is to evaluate the total number of runs in the sequence

of random numbers. A run consists of a sequence of repeating bits, bounded on each end

by an opposite bit. The length of the run is the number of bits that are identical in the run.

For example, the sequence “100001” is a run of zeros of length 4. This test checks if the

number of runs of various lengths matches the expectation for a random sequence.

Specifically, this test can find oscillations in the random sequence. A sequence of four

zeros followed by four ones repeating over and over might pass both frequency tests

above, but would fail the runs test because there are no runs of length one, two, or three.

2.2.4 Longest Runs Test

The longest runs test finds the longest run of ones in each block and tabulates the

frequencies into categories. Each category is the length of the run. Analysis of the

frequency of the occurrence of longest runs in a block can predict if a number is random.

Runs of ones that are longer than expected indicate a non-random number generator.

Runs of zeros are not checked in this test. This test operates under the assumption that

runs of zeros are similar to runs of ones.

7

2.2.5 Binary Matrix Rank Test

The purpose of this test is to look for linear dependence among the fixed length

substrings of the original sequence. The binary sequence test calculates the rank of a

matrix formed by arranging the input sequence in the rows and columns. The test fails if

a linear dependence is detected among the fixed length substrings of the original

sequence. This sequence is also included in other randomness test software.

2.2.6 Discrete Fourier Transform (Spectral) Test

The Discrete Fourier Transform (DFT) Spectral test analyzes the random

sequence and looks for periodic patterns in the sequence. This test will detect if repetitive

patterns are near each other. A perfectly random sequence should have a spectral analysis

that is flat (should look like noise). The test will fail if there are peaks in the spectrum

that exceed the 95% threshold. The binary representation of a sine wave will fail the DFT

tests due to a single large spectral peak.

2.2.7 Non-overlapping Template Matching Test

The purpose of this test is to analyze the rate of occurrence of pre-specified target

lists of numbers. This test searches for matches between the binary templates provided

(located in the “templates” folder) and the random input sequence. If a match is not found

the sequence is shifted by 1 bit and a search for the next sequence begins from that

sequence. If a sequence is found, then the search for the next sequence starts from the end

of the current sequence. The test fails if too many occurrences of the same pattern are

found in the sequence. For example, the test sequence mentioned above in the frequency

block test of four zeros followed by four ones repeating would fail the non-overlapping

template matching test.

8

2.2.8 Overlapping Template Matching Test

The overlapping template match sequence is very similar to the non-overlapping

template matching test described above. The main difference from the non-overlapping

test is that the overlapping template test will scan for new sequences starting at an

increment of one from the start of the last sequence instead of starting at the end of the

previous sequence. The test fails if too many occurrences of the same pattern are found in

the sequence.

2.2.9 Maurer’s “Universal Statistical” Test

The purpose of this test is to search for repetition in the input sequence. The first

portion of the sequence is turned into a set of patterns. The rest of the sequence is

analyzed for repetition of these patterns. The purpose of this test is to check if the

sequence is easily compressible without loss of information. If there are too many

occurrences of these patterns in the rest of the sequence then the sequence is non-random.

This test is similar to the overlapping and non-overlapping template tests.

2.2.10 Linear Complexity Test

The purpose of this test is to compute the length of LFSR required to generate the

input pattern. The Berlekamp-Massey algorithm is used to determine the minimum length

LFSR needed to generate a pattern for each block in the sequence. A pattern with short

length LFSRs, or a pattern that lacks linear complexity is considered non-random. In

many cases, PRNGs cannot be detected by this test because most modern PRNGs have an

extremely long period. The well-known Mersenne Twister has a period of 219937-1.

9

2.2.11 Serial Test

The serial test analyzes the frequency of occurrence of all possible overlapping

patterns in the input sequence. A random pattern should have a similar occurrence rate of

all other patterns if it is random. The input is considered non-random if some patterns

have a higher than expected rate of occurrence. Note that for a pattern length of 1, the

serial test is the same as the frequency test,

2.2.12 Approximate Entropy Test

This test focuses on the frequency of all possible overlapping patterns across the

entire sequence. This test compares the frequency of occurrence of m-bit patterns with

m+1-bit patterns in the sequence. The test will fail if the frequency of overlapping blocks

is not what is expected for a random sequence.

2.2.13 Cumulative Sums Test

The cumulative sums test analyzes the cumulative sum of the sequence to test that

the sequence never deviates too far from the expected value. Ones add one to the

cumulative sum and zeros subtract one from the cumulative sum. If the sequence is

random, the cumulative sum should never deviate too far from zero. The cumulative

sums test will fail if the excursion from zero is too large or too small. From the previous

example of a sequence of 100 ones followed by 100 zeros, the cumulative sum will reach

a value of 100 steps away from zero which is not probable to occur in a series of random

numbers of length 200 that is passing the frequency tests.

2.2.14 Random Excursions Test

The random excursions test is a different take on the cumulative sums test. Like

the cumulative sums test, a one adds one to the cumulative sum and a zero take one away

10

from the cumulative sum. Sequences are selected such that they start and end at zero. An

analysis of the number of visits to a particular state (i.e. -4, -3, -2, -1, +1, +2, +3, or +4) in

the sequences is performed. If the number of visits to a particular state does not match

that expected of a random sequence, the sequence is not random. From the previous

example of a series of four ones followed by four zeros repeated, the cumulative sums

test will consistently reach a cumulative sum of +4 and 0 with the same rate of

occurrence. For a truly random sequence a cumulative sum of +4 should occur less often

than a cumulative sum of 0.

2.2.15 Random Excursions Variant Test

Just like the cumulative sums and random excursions test, the random excursions

variant test analyzes the total number of times each state is visited. The states in this test

range from -9 to +9. If the number of visits to each state deviates from that expected of a

random sequence, the test fails.

2.3 Downloading, Compiling, and Using the NIST Statistical Test Suite

The NIST Statistical Test Suite can be downloaded from the NIST website [12].

Once the source code is downloaded the application must be compiled. For this thesis

project Ubuntu 18.04 LTS Sever was installed in a virtual machine using VirtualBox [13]

running as a guest OS on a Windows 7 PC. This allowed for the Waveforms application

to run on the Windows environment and STS 2.1.2 code to run in a Linux environment.

A shared drive that could be accessed from both the host Windows OS and the guest

Linux OS was used to share data between the two operating systems. Instructions for

sharing a drive between a guest OS and Windows 7 were found online [14].

11

To make the STS application a little more friendly and convenient to use, several

modifications were made to the STS Assess application throughout the course of this

project. Print statements to show the progress of the statistical analysis were added, as

well as code to print the number of lines read in the case that there the input file does not

contain a sufficient amount of data. Due to the simplicity and small amount of

modification this code is not shared in the appendix. The modifications to the source code

are contained in the appendix section of this thesis.

2.3.1 NIST Statistical Test Suite Code Location

Campbell Research group folder at BSU or Scholarworks:

\sstoller_thesis_final_writeup\STS\sts-2.1.2

2.3.2 Compiling the NIST Statistical Test Suite Application

The following instructions detail how to install and compile the STS application

on a Ubuntu Linux machine. Instructions for other Linux machines will be similar, but

may require the use of a different package manager for installing make or gcc.

1. Install make (“sudo apt-get install make”)

a. make is required to read the makefile and properly compile and link the

application. Depending on the version of Linux used, make may already

be installed.

2. Install gcc (“sudo apt-get install gcc”)

a. gcc is the Gnu C++ compiler and must be installed in order to compile

the application. Depending on the version of Linux used, gcc may already

be installed.

3. Clean (“make clean”)

12

a. Executing make clean will remove any previously compiled files and

executables from the current directory. This is an optional step, but

certainly a best practice when compiling source code to an executable.

4. Compile and link the executable (“make”)

a. Executing make uses the makefile in the current directory to compile and

link the source code to create an executable. The “assess” executable will

be created when make runs.

2.3.3 Testing Randomness with the STS Assess Application

This section provides a quick overview of how to use the STS assess application

once it has been compiled by following the steps in the previous section.

1. Execute assess (“./assess 1000000”)

a. Assess is an executable application that was compiled from the STS

source code. The number following the application is the length of each

bitstream to be tested. A value of 1,000,000 (1M) bits was used for testing

random numbers whenever possible.

2. The application prompts the user to select a Generator/Source

a. To analyze an input file, select option 0

3. The application prompts the user to select the desired Statistical Tests to run

a. To run all tests, enter a value of 1. Entering a value of 0 allows the user to

select which tests to run or not run. For this thesis project all the statistical

tests were applied.

4. Next the application prompts the user if any changes to the Parameters are

desired.

13

a. To keep all Parameter Adjustments at their default values, enter a value of

0. To modify parameters, select the parameter to adjust by entering a

number for that test. For this thesis project none of the parameters were

adjusted.

5. The application prompts the user for the number of bitstreams to test.

a. For this test the user must divide the length of the binary file generated by

the size of the bitstream passed as an input parameter to the assess

application when the application was executed. In general, the more

bitstreams that can be tester the better. 100 sequences of 1M bits was the

target bitstream and test length for this thesis project. This was not always

possible.

6. Finally, the application prompts the user for the input file format.

a. Enter a value of 0 for a file in an ascii format (e.g. each bit is an ascii ‘1’

or ‘0’ read in a text editor. Enter a value of 1 for a file in binary format

(the Perl scripts written to process the Waveforms output write a binary

file).

7. Alternatively, the following command string may be used to input a series of

predefined options: “time echo "0 <path to binary file> 1 0 49 1" |

./assess 1000000”

a. The echo command and a pipe are used to input the options (in the order

prompted by the application) into the assess application.

b. The time command is used to record and print the execution time it takes

the assess application to execute.

14

c. The ./ executes the assess command and the 1000000 following specifies

the length of each bitstream input.

2.3.4 Understanding the Output from the NIST STS Application

The NIST statistical test suite generates a text document report in the

“\experiments\AlgorithmTesting\” path titled “finalAnalysisReport.txt”. This report

contains a report summary for all statistical tests. Three types of information are provided

for each test in this report: columns C1 through C10 show the distribution of p-values for

each test (each column represents a range or “bucket” of p-values). The P-value column

is a summary of the p-values in columns C1 through C10 via application of a chi-square

test. According to the NIST STS guide, the P-value is the “probability (under the null

hypothesis of randomness) that the chosen test statistic will assume values that are equal

to or worse than the observed test statistic value when considering the null hypothesis.”

[11].

The proportion column is the pass rate of the sequences tested. A value of

“96/100” indicates that 96 sequences of the 100 sequences tested are passing the specific

test. An asterisk indicator is displayed next to any p-value or proportion that is failing for

a specific test. The default alpha value of 0.96 was used for this thesis project. This

means that in order to be considered a random sequence, 96% of sequences must be

passing each test.

It is worth noting that some tests run multiple times (i.e. Cumulative Sums or

Non-Overlapping Template tests). For these tests a single row is displayed in the results

table showing the sum proportion for all of these tests. Only the summary P-value and

15

proportion for each randomness test are shared in the results for each RNG tested in this

thesis. An asterisk is shown next to each proportion or P-value that is not passing.

16

CHAPTER THREE: DATA COLLECTION USING THE DIGILENT ANALOG

DISCOVERY 2 BOARD

3.1 Introduction

This section describes the methods, hardware, and software used to test and

characterize the hardware TRNGs that were implemented. A brief description of the

Analog discovery 2 board is provided. Design of the data collection circuit that enables

faster data collection is reviewed. Software and scripts that aided in data collection are

shared and a workflow for collecting and characterizing the random data is presented.

3.2 Digilent Analog Discovery 2 Board

The Digilent Analog Discovery 2 (AD2) board was used to collect all of the

random data samples from the hardware random number generators tested. The AD2

interfaces with the Digilent Waveforms software that runs on either a Windows or Linux

PC (in this case a PC running Windows 7 was used). The AD2 board was chosen because

it is a small, cost-effective, and versatile board that is easy and convenient to use. The

AD2 has two power supply outputs, two function generator outputs, two oscilloscope

inputs, and 16 digital I/Os. Figure 3.1 shows a block diagram of the TRNG, Digilent

AD2, and PC Waveforms software interface. Figure 3.2 shows a pinout diagram of the

AD2, from the Digilent AD2 documentation [15].

17

Figure 3.1 TRNG, Digilent AD2, and PC Waveforms block diagram

Figure 3.2 Pinout diagram of the Digilent AD2 [15]

3.3 Design of Data Collection Circuit

In order to maximize the efficiency of data collection on the AD2, a data

collection circuit was designed and built that was able to sample and collect 8 bits in a

single clock cycle on the AD2. This allows for 8 times more data to be collected in each

18

capture with the Digilent Waveforms software [16] by reading data in parallel using 8

bits instead of serially one-by-one. The x8 data collection circuit consists of a binary

counter and a serial-in-parallel-out shift register. The slow oscillator is input to a binary

counter. The fast oscillator is input into a shift register. The 3rd bit from the binary

counter circuit is connected to the AD2 DIO 15 to act as the output clock. The 3rd bit

toggles every 8 cycles of the input slow clock. The Digilent AD2 samples the output of

the shift register every 8th cycle of the slow clock. The parallel outputs from the shift

register are connected to DIOs 0-7 on the AD2. For every 8 cycles of the slow clock, the

binary counter toggles a master clock for the AD2 to sample DIOs 0-7. As a result, the

sample frequency of the AD2 can be reduced by a factor of 8, allowing it to save more

data. Figure 3.3 shows a simplified schematic of the data collection circuit. There are

some ways that the data collection circuit is not ideal. The design and implementation of

the data collection circuit are described in depth in Chapter 5. Suggestions for improving

the data collection circuit design are discussed in Chapter 6 where future work is

discussed.

19

Figure 3.3 Schematic of the data collection circuit

The SLOW_CLK_FINAL net is the output from the slow memristor oscillator

circuit. This signal is connected to both Binary Counter (U3) and the Shift Register (U2).

The 3rd bit from the binary counter is connected to D15 (DIO 15) on the AD2 board. The

FAST_CLK_FINAL net is the clock generated by the fast resistor oscillator circuit. This

is the input to the shift register. Each time the slow clock transitions from low to high, the

state of the fast oscillator is sampled and shifted in the shift register. The 8 parallel

outputs of the shift register are connected to the inputs D0-D7 (DIO 0- DIO 7) on the

AD2 board.

Figure 3.4 shows the shifting output behavior of the shift register on the DIO 0

through DIO 7 signals. In this case the sample rate on the AD2 is much faster than the

slow clock. RV Out (Resistor Multivibrator, or fast oscillator output) can be seen as a

very fast oscillator. Both MV 1 Out (Memristor Multivibrator 1) and MV 2 Out

(Memristor Multivibrator 2) outputs can be seen operating at a slower speed. The Clock

(input clock to the Digilent AD2) can be seen sampling the data on the Data 15Clk data

20

bus. This output is saved to a CSV file for data processing and conversion to a binary

bitstream later.

Figure 3.4 Sample output from the data collection circuit

The primary advantage of using the shift register is that 8 bits of data can be

collected in one sample. The Digilent AD2 logic analyzer capture is limited to 100M

samples. Using an 8 bit bus to capture output allows for up to 800M bits to be captured in

a single run. The downside of implementing the circuit is additional components,

complexity, and power.

3.4 Importance of Proper Sampling Rate of Data and Other Considerations

When sampling the output of the random number generator it is important to

consider the frequency of the slow clock and the sample rate of the logic analyzer used to

capture the data. In order to maximize the number of data samples taken at once, a slow

sample rate is desirable. However, the sampling rate must be fast enough to ensure that

the data is all properly captured. The Nyquist sampling theorem states that in order to

properly sample a signal, the sample frequency must exceed the signal frequency by a

factor of 2 [17]. With the data collection circuit this means that a sample rate twice that of

21

the output of the binary counter can be used. This rate is 1/8th the frequency of the slow

oscillator. The Nyquist sampling theorem states that the sample rate must be twice the

frequency, resulting in a minimum sample frequency of 1/4th the frequency of the slow

oscillator clock,

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑀𝑀𝑆𝑆𝑀𝑀𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑀𝑀𝑆𝑆𝑀𝑀𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝐹𝐹𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝐹𝐹

8 ∗ 2

=
𝐹𝐹𝐹𝐹𝑆𝑆𝐹𝐹𝑀𝑀𝑆𝑆𝑀𝑀𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝐹𝐹𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝐹𝐹

4 .

(3.1)

The minimum sample rate is equal to twice the frequency of the input signal into

DIO 15. The frequency of DIO 15 is the frequency of the slow oscillator divided by 8.

3.5 Debiasing the Output of the TRNG

 In order to debias (or whiten) the output of the TRNG, a simple whitening

strategy proposed by Jon von Neumann was used. Whitening is required when there is

bias in the output of the TRNG, for example when there are a disproportionate number of

0’s and 1’s in the output. Many TRNGs require debiasing in order to pass even just the

frequency test. Fine-tuning of the output voltage swing of the fast oscillator and the

reference voltage of the data collection circuit could be done to ensure proper biasing of

the TRNG, but achieving a level of debiasing that is very close to 50/50 is extremely

difficult. In addition, it was found that the circuit can quickly drift with time, temperature,

and other factors. For this reason, Jon von Neumann’s whitening algorithm was applied

to the circuit [18].

 Von Neumann whitening was implemented in software after the data collection

was performed, but it can also be easily implemented in hardware with basic logic gates.

An XOR gate can be used to determine whether two samples are the same value of

22

different values. Based on this output both samples can be thrown out or the first sample

can be kept. The debiasing algorithm does not change the random properties of the output

stream. In many TRNG implementations (i.e. those that rely on long delays between

asynchronous events, or circuits that may have a built-in DC bias) it is mandatory to

apply a whitening algorithm. One example of this is seen when generating random

numbers based on the output for a Geiger counter where there is a very long time delay

between events [19]. It should be noted that the debiasing algorithm is simple and

efficient to implement and does not change the entropy characteristics of the sequence.

Jon von Neumann’s whitening algorithm is very simple. It searches for the

transition from a 0 to a 1 or a 1 to a 0 in the string of numbers. Any time two bits in a

sequence are the same, there is no output. If the sequence transitions from a 0 to a 1 then

the output is simply a 0. If the sequence transitions from a 1 to a 0 then the output is a 1.

This reduces the length of the random number sequence by a factor of about four for a

sequence that does not have a significant bias. The more the sequence is biased the more

the length of the sequence is reduced. The Perl script

“csv_to_datastream_von_neumann.pl” applies the von Neumann whitening algorithm to

the sequence of bits when it converts the data output from the Waveforms CSV file to

binary file for the Statistical Test Suite. Table 3.1 shows the method to debias output

samples and return a nearly perfect 50/50 distribution of bits in a truly random stream of

bits regardless of any bias the input datastream may have. The source code can be found

in Appendix A.

23

Table 3.1 Von Neumann Whitening Scheme

Even Bit Value Odd Bit Value Result

0 1 0

1 0 1

0 0 Sample is ignored

1 1 Sample is ignored

It was observed in testing of all TRNGs in this thesis (Chapters 4 and 6) that

almost all sequences still had a strong bias after being processed using von Neumann’s

whitening algorithm. This is often the result of a sequence where a bit may have a strong

correlation to the previous bit. In this case the sequence is by definition not random.

The downside of using this algorithm is that many samples may be lost in the

debiasing effort. The more biased the output of the circuit is, the more often samples are

thrown out or ignored. In many cases this is a necessary post-processing step, as all other

NIST statistical tests are invalid if the frequency (monobits) test is not passing. There are

other potential methods to debias the circuit, such as a feedback loop to adjust the

reference voltage of the fast oscillator or using a method to convert the output of the fast

oscillator multivibrator to a square wave to minimize bias etc. The downside of using any

type of feedback loop is finding the fine balance between the circuit converging on a DC

voltage that has no bias and the potential of such a circuit to oscillate. Oscillations could

lead to non-random output in the TRNG.

3.6 Software and Scripts to Aid in Data Collection

The Waveforms software can save the collected data output as a text

Comma-Separated Value (CSV) file format. In order to use the Assess tool in the NIST

24

Statistical Test Suite to analyze the output file it is necessary to convert the file to a

format that can be used by the tool. The STS tool can only read in files that are in a text

format that contains only ‘1’ or ‘0’ characters, or a binary format. Example output of the

Digilent Waveforms software is shown in figure 3.4, along with two sample outputs that

can be read by the STS software. Note that the text input (B) does not require newlines

every 8 characters, or at all. The output in (C) is the hexdump output of the binary file

that converts the raw binary data to a human-readable hex format. For this thesis project,

only binary files were processed due to the smaller file size.

Figure 3.5 shows the output from the Waveforms logic capture (A) and sample

text input (B) and binary input viewed with the Linux hexdump tool (C) that may be

analyzed by the STS assess application.

Figure 3.5 Examples of different types of random data formats

Several Perl scripts were written to aid in data post-processing. The primary

purpose of the Perl scripts is to convert the text (CSV) output from the Waveforms

application to a binary file that the STS Assess application can read in and test for

randomness. Perl was selected because it is an easy-to-learn and cross-platform scripting

language. Perl excels at parsing text files and it can read and write binary files with

25

relative ease. Perl is installed by default on most Unix/Linux systems. The author was

also very practiced in writing Perl code. Perl’s execution time is slow compared to a

compiled language like C or C++, but the scripts written and used for this project are

simple and are generally able to parse the CSV files to binary outputs more quickly than

the STS Assess application can test the binary sequence for randomness.

The collection of Perl scripts used for data collection, debiasing, and analysis can

be found in appendix A. Source code and example usage for all scripts can be found in

appendix A.

All of the data processing and analysis scripts follow the same general usage. All

input arguments are positional arguments. Scripts converting a CSV text file to binary

generally take a list of input files (separated by a space). One additional file name for the

output file must be provided, and the file must use the .bin extension. Some of the scripts

also have an additional switch to enable whitening by exclusive oring output data with

the RANDU PRNG. A final argument of ‘1’ will enable this function, or a ‘0’ will

disable.

Scripts converting a binary stream to another binary stream generally only take a

single input file, although some may allow multiple file inputs to be read. Input files

should be binary. A single output file must also be specified, also of .bin extension.

There are also several other scripts that are simply used to generate a random

output string of bits. These scripts generally do not have any input options. Output file

name or length of file generated are determined by variables that are instantiated within

the script.

26

3.7 Workflow for Collecting and Analyzing Data

The following workflow was used for collecting, processing, and analyzing data

output from the TRNG. Figure 3.6 shows a block diagram of the workflow.

1. Digilent AD2 and Waveforms software was used to collect the output from the

TRNG. The output was collected using the logic analyzer window and saved to an

output file (in CSV format) using the logging window. If needed, multiple runs

were collected depending on sample rate and amount of data collected with the

AD2 software. The text CSV files were saved to a hard disk location that was

accessible by both the Windows PC and Linux VM guest OS.

2. The “csv_to_datastream_von_neumann.pl” Perl script was executed on the Linux

VM guest OS to convert the text CSV data file(s) to a binary output stream. In

this project, unless otherwise specified, output data was never XOR’d with the

RANDU PRNG output.

3. The STS Assess tool was used to analyze the randomness of the output. In

general, the bitstream size used was 1 Million. The number of bitstreams tested

depended on the number of bits in the binary bitstream file. In general, it is a good

rule of thumb to test at least 100 sequences. Final results for random number

generators were tested once 100M bits had been collected unless otherwise noted.

Figure 3.6 Entire data collection workflow and process

27

3.7.1 Tips, Tricks, and Problems Found Using the AD2 for Data Collection

It is best to use the proper configuration of the AD2 depending on the data being

collected. The Device Manager (in the “Settings” dropdown menu) can be used to

configure the AD2 device in different configurations. When recording data using the

Logic Analyzer, configuration 4 should be used because it gives the largest amount of

space to the Logic hardware. When using the oscilliscope, configuration 2 should be used

because it allocates the largest amount of space to the Scope hardware.

Figure 3.7 shows a screenshot from the Waveforms software. There are several

different hardware configurations for the AD2, each optimized for different functions.

Figure 3.7 Waveforms Device Manager options

The scope probes are not ideal voltage probes. It is prudent to keep this in mind

when measuring circuits that have a high resistance node and/or a low drive strength.

This can be worked around by using a high-impedance input op-amp as a unity gain

buffer to probe the desired circuit node. The same is also true of the DIOs when used as

28

inputs. Sampling analog signals with the DIOs can impact these circuits by pulling them

towards a DC bias with a low (for this type of equipment) impedance.

The wavegen function does not have a very low output impedance. The wavegen

are able to power simple circuits that do not draw significant current, but the power

handling is limited. For the purposes of creating an additional power supply for the fast

oscillator circuit the power handling of the wavegen was sufficient.

The AD2 may experience issues when running only on USB power, especially

when powering a high-powered circuit or when the host PC has a USB port that does not

supply enough power. An external power supply is highly recommended to be used with

the AD2 for best results. The AD2 requires a 5V DC power supply with a 5.5x2.1mm

adapter plug.

It is highly recommended to use a version of the waveforms software that is the

same or newer than the beta version 3.13.1 used for this thesis project. This version of the

software was found to be more stable and contained a crucial bugfix to prevent a bad

current reading on the USB bus from shutting off the power supplies on the AD2 when an

external power supply was powering the board. Several features, such as the system

monitor function were also included in the beta version.

The Waveforms logic analyzer software can be configured to allow the user to

collect and save up to 100 million samples of digital information in a single run. Up to 16

digital I/O signals can be saved at once. In the case of this thesis project, data was saved

on an 8 bit bus. Sampling at the Nyquist frequency would allow one to collect as many as

50 million samples of the 8 bit bus, or 400 million total bits of output from an RNG per

run.

29

The Logging window on the Waveforms software can be used to log the output of

any signal desired to a CSV text file. Logging can be triggered automatically or manually

after each acquisition.

The Supplies window of the Waveforms software also displays a system monitor

for the AD2. Other relevant information such as the USB current and voltage, and aux

voltage and current is displayed in this window.

The Logic Analyzer function of the Digilent AD2 is set to operate for 3.3V or 5V

logic by default. However, it can be configured to operate for 1.8V logic (~0.5V logic

threshold) by changing the configuration in the device manager.

Figure 3.8 shows the layout of the Digilent AD2 Waveforms software that was

primarily used for data collection. This layout can be found by opening the

Final_PCB_Data_Collection.dwf3work file located in the documentation uploaded to

BSU Scholarworks for this thesis within the

“sstoller_thesis_final_writeup\Novel_TRNG\Waveforms” directory. In this view, the

oscilloscope and logic views can be viewed at the same time. The oscilloscope

measurements window and a small preview of the logic are available in the oscilloscope

view. The logging, supplies, and wavegen windows are available in the logic view.

30

Fi
gu

re
 3

.8

Sc
re

en
sh

ot
 o

f t
he

 D
ig

ile
nt

 A
D

2
W

av
ef

or
m

s a
pp

lic
at

io
n

31

CHAPTER FOUR: CHARACTERIZATION OF OTHER CIRCUITS

4.1 Introduction

The Intel RDRAND TRNG, Digilent AD2 PRNG, RANDU PRNG, Linux

Random Entropy Pool TRNG, TRNG from Jiang et al., and TRNG from Rai et al. were

all tested [20-27]. To characterize these RNGs 100 million bits of data were collected and

analyzed from each. The data was split into 100 bitstreams with length of 1 Million bits

each. Scripts or applications were written to capture output from the various RNGS and

their output was analyzed to assess the effectiveness of the RNGs.

4.2 Intel RDRAND

4.2.1 Brief Description of RNG

The Intel RDRAND is an on-chip TRNG that Intel has included on their modern

desktop (and server) processors. The RDRAND instruction is part of the Intel 64 and IA-

32 instruction sets and is included on Intel’s Ivy Bridge and newer processors. Modern

AMD processors also have a built-in TRNG and support the RDRAND instruction. A

variety of cryptographic standards were used by Intel in the development of their

RDRAND hardware, including NIST SP800-90, FIPS-140-2, and ANSI X9.82 [11].

The Intel RDRAND TRNG is composed of several parts. The first and most

important part is the entropy source itself. The entropy source is a self-timed, self-

oscillating digital circuit known as a dual differential jamb latch with feedback. At its

core the circuit consists of two cross-coupled inverters that form a latch. The inverters are

placed in a metastable state (that is, a state where both inverters are neither a digital 0 or

32

1) and then allowed to settle. There is a 50/50 chance that the latch settles in either one

direction (output of 0) or the other (output of 1), based on thermal noise. Intel’s circuit is

self-clocked, meaning that once a stable state has been reached, the circuit triggers itself

back into the metastable state. There is a feedback mechanism in the circuit in order to

ensure that a metastable state is reached (and to compensate properly to ensure perfect

50/50 chance of the circuit settling into either stable state) before the circuit is allowed to

settle into a stable state again. The output from this part of the circuit is clocked into a

256 bit shift register [20].

The next part of the TRNG is a Health and “Swellness” Testing portion of the

circuit. This portion of the circuit performs some simple testing on the output from the

Entropy Source to ensure that the bitstream generated has random characteristics. If the

bitstream is passing the Health and Swellness testing it is passed on to the next part of the

circuit that performs more post-processing and conditioning on the bitstream, finally

outputting bits into 4x128 bit output buffers as high quality nondeterministic random

seeds [20].

There are two instructions that can access the output of the TRNG on Intel

processors: RDRAND and RDSEED. The RDRAND instruction returns a string of

random numbers generated by an on-chip PRNG that is periodically re-seeded by the

entropy source. The numbers generated by the RDRAND instruction are not considered

to be truly random and are thus not suitable for cryptographic usage, despite being more

unpredictable than a traditional PRNG alone. Because the outputs of the RDRAND

instruction rely on a PRNG it may be possible (however unlikely) to guess the next part

of the sequence by knowing a previous part of the sequence. The RDRAND instruction is

33

more suitable for use in applications that need high quality random numbers capable of

being generated at a high throughput, such as running Monte-Carlo simulations.

Throughput of the RDRAND command is very high due to the fact that it’s primary

source of randomness is through a PRNG.

The RDSEED instruction on the other hand returns a truly random,

cryptographically secure key from the entropy source. The RDSEED is truly random and

is suitable for cryptographic applications or seeding other software PRNGs or hardware

PRNGs on the computer system. For cases like this, high throughput is not needed since

secure keys are normally only generated once. The RDSEED instruction is significantly

lower throughput than the RDRAND instruction [21].

4.2.2 Process/Script used to Collect Data

C code was adapted from an example usage for RDRAND provided by Intel [22].

The code was modified to simply write a random string of numbers to a text file. The

code was converted from text to a binary bitstream. Code used to generate the random

bitstream may be found in Appendix A. 100 bitstreams of length 1 million bits each were

tested using the STS assess application.

4.2.3 Generator Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\drng_samples\testdrng.c

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\perl\rdrand_to_datastream.pl

4.2.4 Results Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\data\short\rand_out.bin

34

4.2.5 Results

Table 4.1 Results of Intel RDRAND TRNG.

Test P-Value Proportion Pass/Fail

Frequency 0.026948 100/100 PASS

BlockFrequency 0.657933 99/100 PASS

CumulativeSums 0.262249, 0.637119 199/200 PASS

Runs 0.759756 100/100 PASS

LongestRun 0.366918 97/100 PASS

Rank 0.401199 98/100 PASS

FFT 0.978072 99/100 PASS

NonOverlappingTemplate - 14645/14800 PASS

OverlappingTemplate 0.304126 97/100 PASS

Universal 0.075719 95/100 * FAIL

ApproximateEntropy 0.366918 99/100 PASS

RandomExcursions - 537/544 PASS

RandomExcursionsVariant - 1208/1224 PASS

Serial 0.275709, 0.851383 198/200 PASS

LinearComplexity 0.779188 100/100 PASS

All tests are passing except the Universal test with a value of 95/100. A

proportion of 96/100 or better was needed to consider this test passing.

4.3 Digilent AD2 RNG

4.3.1 Brief Description of RNG and Data Collection Process

The Digilent AD2 Wavegen and Patterns functions have the ability to generate a

series of random signals. The source of the randomly generated data is not known, but it

35

is highly unlikely that the source is a TRNG due to the high rate at which random bits or

analog voltages can be generated. It is likely that an LFSR or LCG is implemented in the

Waveforms software or the AD2 hardware since these are simple and effective methods

for generating random data in an application like this.

A data bus consisting of 8 random signals and a single clock was captured on the

Digilent AD2. The Patterns function was used to set up DIO 0 thru DIO 7 to generate

random peak-to-peak digital signals at a frequency of 50 kHz. DIO 15 was set to a 50

kHz clock signal. 100 million samples (50 million bytes, or 400 million bits of data were

collected) of the clock signal were captured by the Waveforms Logic Analyzer software

sampling at a frequency of 100 kHz. The output of the RNG passes all statistical tests.

4.3.2 Process/Script used to Collect Data

The output from the Digilent AD2 was saved to a .csv file. Data was collected on

an 8-bit bus, in the same format used for data collection for the memristor TRNG

implemented in this thesis. A Perl script was written to convert the CSV file to a binary

bitstream. 100 sequences of 1 million bits each were tested using the STS assess

application.

4.3.3 Script Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing\csv_to_datastream.pl

4.3.4 Results Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\Digilent_AD2_Random\out.bin

36

4.3.5 Results

Table 4.2 Results of Digilent AD2 RNG.

Test P-Value Proportion Pass/Fail

Frequency 0.574903 97/100 PASS

BlockFrequency 0.678686 99/100 PASS

CumulativeSums
0.249284,
0.153763 194/200 PASS

Runs 0.171867 100/100 PASS

LongestRun 0.678686 100/100 PASS

Rank 0.23681 98/100 PASS

FFT 0.12962 99/100 PASS

NonOverlappingTemplate - 14624/14800 PASS

OverlappingTemplate 0.224821 99/100 PASS

Universal 0.514124 100/100 PASS

ApproximateEntropy 0.202268 97/100 PASS

RandomExcursions - 521/528 PASS

RandomExcursionsVariant - 1184/1188 PASS

Serial
0.534146,
0.419021 199/200 PASS

LinearComplexity 0.026948 99/100 PASS

All statistical tests are passing.

4.4 RANDU

4.4.1 Brief Description of RNG

RANDU is a poor PRNG that was implemented on early mainframes in the

Fortran programming language [23]. RANDU is a linear congruential generator (LCG)

37

and can be easily implemented in programming languages other than Fortran. A LCG

takes the form of a linear equation with a modulus of the result (discontinuous piecewise

linear equation). An example is shown in equation 4.1. To assess the randomness of the

RANDU LCG, it was implemented in Perl and tested using the NIST STS.

For years it was assumed that RANDU was a good PRNG and was suitable for

many uses, including research that utilized it for Monte-Carlo simulations. In 1968

George Marsaglia at Boeing analyzed the RANDU PRNG and showed that it was a poor

PRNG. When triplets from RANDU’s output are plotted in a 3-dimensional space it was

found that the resulting points all landed in a set of 15 planes [24]. A TRNG or good

PRNG should produce an output that has no patterns in a three-dimensional plot

(appearance should be the general shape of a cloud). Unfortunately, RANDU was widely

used in many computer systems around the world for many years. A significant amount

of research (specifically, research that used RANDU for Monte-Carlo simulations) was

invalidated or had to be redone once the flaws with RANDU were discovered. The LCG

used for RANDU is

 𝑅𝑅𝑛𝑛+1 = 65539 ∗ 𝑅𝑅𝑛𝑛 𝑀𝑀𝑆𝑆𝑚𝑚 231 [23]. (4.1)

One major advantage of using multiplicative congruential generators like equation

4.1 to generate PRNGs is that they can generate many numbers extremely quickly. For

example, it took less than 2 seconds to generate 100 million bits of binary data. By

comparison, testing 100 million bits generated by the RANDU PRNG took

approximately 23 minutes on the same machine. There are many modern multiplicative

congruential PRNG generators that output much better strings of pseudo random numbers

than RANDU. Many modern systems and software use multiplicative congruential

38

generators today. In many cases (e.g. Intel’s RDRAND), a TRNG is used to periodically

re-seed a PRNG to give nearly TRNG output with the efficiency, speed, and throughput

of a PRNG.

4.4.2 Process/Script used to Collect Data

The RANDU PRNG was implemented in a Perl script, randu.pl. A brief

description of the script and source code can be found in Appendix A. In this script the

parameters for output file, sequence length, seed, multiplier, and modulus are set as

variables. When the script runs it creates a binary output file and writes the resulting

string of binary numbers generated by the sequence. A starting seed of 31 was used for

this analysis, but any seed could be chosen and would yield similar results.

4.4.3 Generator Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\RANDU\randu.pl

4.4.4 Results Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\RANDU\output.bin

39

4.4.5 Results

Table 4.3 Results of RANDU PRNG.

Test P-Value Proportion Pass/Fail

Frequency 0 * 0/100 * FAIL

BlockFrequency 0 * 0/100 * FAIL

CumulativeSums 0, 0 * 0/200 * FAIL

Runs 0 * 0/100 * FAIL

LongestRun 0 * 14/100 * FAIL

Rank 0 * 0/100 * FAIL

FFT 0 * 0/100 * FAIL

NonOverlappingTemplate - 7834/14800 * FAIL

OverlappingTemplate 0 * 0/100 * FAIL

Universal 0 * 45/100 * FAIL

ApproximateEntropy 0 * 0/100 * FAIL

RandomExcursions - 0/0 N/A

RandomExcursionsVariant - 0/0 N/A

Serial 0, 0 * 0/200 * FAIL

LinearComplexity 0.366918 100/100 PASS

The Frequency fails for all 100 bitstreams. No other test is considered valid when

the frequency test does not pass. Regardless, no other tests passed with the exception of

the Linear Complexity test.

40

4.5 Linux RANDOM Entropy Pool

4.5.1 Brief Description of RNG

Linux maintains an entropy pool from which truly random data can be extracted.

Two files /dev/random and /dev/urandom are special character files which provide an

interface to the Linux Kernel’s random number generator [12, 25]. This random number

generator collects noise from many different entropy sources of such as user input

(mouse and keystroke inputs), external time delays (network latencies, HDD or SSD

access times), mechanical sensors (HDD or fan rotation speed), onboard TRNGs (Intel

RDRAND) etc. All this information is collected and pooled together in the entropy pool.

Up to 4096 bits are stored in the entropy pool. The entropy pool may be directly read

using the /dev/random character device, or used to seed a PRNG and to generate nearly

truly random output at a very high bandwidth by reading from the /dev/urandom

character device.

1. /dev/urandom returns a string of random numbers from a PRNG that is seeded by

the entropy pool.

2. /dev/random returns random bytes directly from the random entropy pool. Note

that the function will delay and block (wait) for new entropy to be created in the

entropy pool if it is exhausted by the function call.

4.5.2 Process/Script used to Collect Data

Since the random entropy pool /dev/random only has a size of 4096 bytes, an

output from the RNG was generated from the urandom utility. The Linux command line

may be used to dump 12,500,000 bytes (100 million bits) into a binary file.

41

4.5.3 Data Collection Process

The following command was executed to collect data from the Linux

URANDOM generator “head -c 12500000 /dev/urandom >| output.bin”

4.5.4 Results Location

Campbell Research group folder at BSU or Scholarworks:

System without rdrand: sstoller_thesis_final_writeup\RNGs\urandom\nordrand\

urandom_test_nordrand.bin

System with rdrand: sstoller_thesis_final_writeup\RNGs\urandom\withrdrand\

urandom_test_withrdrand.bin

42

4.5.5 Results

Table 4.4 Results of Linux uRandom RNG on system without RDRAND

Test P-Value Proportion Pass/Fail

Frequency 0.595549 99/100 PASS

BlockFrequency 0.678686 100/100 PASS

CumulativeSums 0.202268, 0.897763 198/200 PASS

Runs 0.066882 99/100 PASS

LongestRun 0.145326 99/100 PASS

Rank 0.739918 98/100 PASS

FFT 0.834308 100/100 PASS

NonOverlappingTemplate - 14648/14800 PASS

OverlappingTemplate 0.102526 99/100 PASS

Universal 0.935716 100/100 PASS

ApproximateEntropy 0.99425 99/100 PASS

RandomExcursions - 508/512 PASS

RandomExcursionsVariant - 1146/1152 PASS

Serial 0.798139, 0.366918 196/200 PASS

LinearComplexity 0.030806 100/100 PASS

All tests are passing for uRandom on a Linux system with a CPU that does not

support the Intel RDRAND instruction. An additional sequence was tested (location

listed above) from a system that does support the Intel RDRAND command and all tests

were found to pass for that system as well (table of results is not shown for this case).

43

4.6 True RNG Circuit from Jiang et al.

4.6.1 Brief Description of RNG

Jiang et al. have proposed, and implemented in hardware, a TRNG using a

Ag:SiO2-based diffusive memristor device [26]. A pulse train is sent through a memristor

that is wired in series with a resistor. Entropy is captured in the memristor device as a

variability in the time it takes for the device to transition from a high resistance state to a

low resistance state. When the memristor device is in a high resistance state, the resistor

pulls the signal down, resulting in the output of a low voltage into the comparator. Once

the resistance of the memristor transitions to a low resistance state, it can override the

resistor and pull the output voltage to a high value, switching the signal output from the

comparator.

When the output of the memristor-resistor ladder is low (the memristor is a high

resistance), below the Vref, the comparator output can be high. The comparator used in

the hardware implementation had both an output and inverse output to allow the counter

to be enabled for either the memristor in a low or high resistance state simply by selecting

one output or the other and adjusting the comparator input voltage accordingly. When the

comparator output is low, the AND gate output will always be a logic 0 and the counter

will not count. When the comparator output is high, the AND gate output will be the

clock input and the counter will count. When the memristor transitions from a high

resistance to a low resistance the output of the comparator switches from a 1 that allows

the clock to pass through the AND gate and the counter count, to a 0 and the counter

stops counting because the clock is no longer passed through the AND gate. In my

implementation of this circuit, the output of the comparator was fed straight into the

44

enable input on the counter. When the enable input is a 0 (active low enable) the counter

counts. When the enable input transitions to a 1 the counter stops counting. In addition, I

also included a brief pulse to clear the counter state with each cycle in order to reduce the

chances of the output of the previous clock cycle affecting the output of the next clock

cycle.

Figure 4.1 Proposed TRNG Design by Jiang et al. [26]

The TRNG proposed by Jiang et al. consists of a pulse generator, memristor,

resistor, comparator, and gate, and counter. The circuit can easily be implemented on a

breadboard.

4.6.2 Process/Script used to Collect Data

The circuit was implemented on a breadboard with a 1 kHz pulse frequency and a

2 MHz clock frequency (both generated by the Digilent AD2 Wavegen). Vref was

generated using a potentiometer between the Digilent AD2 V+ power supply and V-

power supply. This allowed the Vref voltage to be easily adjusted for varying pulse input

voltages.

Data was saved using a 2 kHz sample rate. This was found to be optimal because

it is a multiple of 1 kHz and the minimum frequency to properly sample the 1 kHz clock

45

by the Nyquist sampling theorem. The data was collected using a data bus sampled on the

falling edge of the input data clock and post-processed using a generic Perl script to

convert the single bit samples to a binary format. A 22 kΩ resistor was used in series with

a W-based self-directed channel (SDC) memristor devices. Figure 4.2 shows the

schematic of the circuit used in the test of the Jiang et al. circuit [26].

Figure 4.2 Schematic of Jiang et al. tested in this Thesis

The Digilent AD2 Logic Analyzer data was saved to a csv data file and post-

processed using a Perl script “perl\CSV_to_Datastream\csv_bin_to_datastream.pl” to

convert the csv to a binary output file that could be tested by the NIST test suite. This

script does not perform any debiasing on the raw data. A second script was used to apply

von Neumann whitening, “datastream_to_datastream_von_neumann.pl”.

46

Figure 4.3 Implementation of Jiang et. al design on a breadboard

Figure 4.4 shows an oscilloscope output and data bus capture of the TRNG in

action. The blue oscilloscope trace is the output of the memristor-resistor ladder. The

switching action of the memristor from low to high resistance can be clearly seen. The

yellow trace is the analog voltage output of the potentiometer used to set the comparator

voltage threshold (Vref). In the logic section, the output of the data bus can be seen.

Output data is clocked on the falling edge of the clock. The MSB value of the Bus

(DIO15) can be seen counting with the input clock when the output from the comparator

(DIO9) is low. The output from the comparator only enables the counter when the output

of the memristor-resistor ladder is above the yellow Vref voltage.

47

Figure 4.4 Data Collection of Jiang et. al. design in Digilent AD2

4.6.3 Data Collection Script

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\csv_bin_to_datastream.pl

sstoller_thesis_final_writeup\RNGs\AD2_Post-

Processing\datastream_to_datastream_von_neumann.pl

4.6.4 Results Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\Jiang

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\Jiang

48

4.6.5 Results

Table 4.5 Results of TRNG proposed by Jiang et. al.

Test P-Value Proportion Pass/Fail

Frequency 0.637119 10/11 * FAIL

BlockFrequency 0.637119 11/11 PASS

CumulativeSums 0.437274, 0.162606 21/22 PASS

Runs 0.637119 9/11 * FAIL

LongestRun 0.162606 10/11 * FAIL

Rank 0.275709 11/11 PASS

FFT 0.162606 11/11 PASS

NonOverlappingTemplate - 1546/1628 PASS

OverlappingTemplate 0.637119 11/11 PASS

Universal 0.834308 10/11 * FAIL

ApproximateEntropy 0.437274 10/11 * FAIL

RandomExcursions - 47/48 PASS

RandomExcursionsVariant - 108/108 PASS

Serial 0.437274, 0.437274 20/22 * FAIL

LinearComplexity 0.437274 11/11 PASS

Multiple tests are failing with only a single failure. The data in table 4.5 is for

Jiang’s TRNG with von-Neumann whitening applied to the output bitstream. 11 sequence

of length 1M bits were tested. Proportion to consider passing was 11/11 (96% or greater).

Without von Neumann whitening the TRNG returned an 18% to 82% ratio of 0’s to 1’s

49

and was thus not tested. More sequences need to be tested for this TRNG before making

a final judgement if the Jiang TRNG is passing of failing the NIST STS.

4.7 True RNG Circuit from Rai et al.

4.7.1 Brief Description of RNG

The TRNG proposed by Rai et al. is a design that is similar in concept to the dual

inverter oscillator design mentioned earlier. Rai et al. simulated and analyzed several

different TRNGs before settling on a design with two series of oscillators, each with a

memristor in series with the inverters [27]. A TiO2 memristor model from [28] was used

in the simulations performed by Rai et al. It is important to note that the results shared in

this Thesis are from a true implementation of the circuit. Figure 4.5 shows a

representation of the design.

Figure 4.5 Rai’s proposed circuit design [27].

The final design settled upon by Rai et al. was not implemented as a true ring

oscillator, instead receiving a clock input from another circuit. The final design consisted

of two identical inverter-memristor string pairs in the order of Inverter, Memristor,

Inverter, Inverter. The input of the first inverter was a clock signal from another circuit.

The outputs of the two inverter strings are both sampled and the output of the TRNG is

50

based on which output switches first. If the Dfirst output switches first the output is 0. If

the Dsecond output switches first, then the output is a 1.

In this thesis writeup, this TRNG circuit was implemented with discrete

components on a breadboard and the output was collected using the Digilent AD2 and

Perl scripts to parse the result. TI SN74AHCT04N inverter chips were used along with

the W-based SDC memristors. The circuit input was driven by a square wave clock

generated from the Digilent AD2 Wavegen. An Analog Devices AD8561 comparator was

used to capture which device switched first by using the latch input on the comparator.

One delay path was connected to the input of the comparator and the other delay

path was connected to the latch input on the comparator. If the first delay path was faster,

the output of the comparator would be driven high before the output was latched by the

second delay path. If the second delay path was faster, the output of the comparator

would be latched at a low output. Figure 4.6 shows a schematic of the circuit tested in

this thesis.

Figure 4.6 Circuit schematic tested for Rai et al. TRNG

The variability between Memristor devices was a challenge in testing this circuit.

In many cases one delay path was consistently much faster than the other delay path. It

51

was challenging to find two devices that switched at approximately the same time. In

addition, the devices sometimes showed a tendency to drift and change with time. In

order to try to compensate for some of this effect, von Neumann debiasing was applied to

the outputs and tested as well. The circuit does not pass the NIST STS tests without von

Neumann whitening applied.

Several other methods were investigated for collecting data from this TRNG. All

of these methods involved oversampling the logic output of the AD2 at a very high

frequency in order to capture which delay path was quicker. Several different data

processing methods were utilized, from looking at which delay path was faster, to

looking at whether the number of samples between the input clock and output clocks

were even or odd. These methods showed potential to also produce random numbers, but

very few samples could be collected due to the very high sample rate needed to collect

this information. For this reason only results collected with the latched comparator output

are saved.

4.7.2 Process/Script used to Collect Data

Figure 4.7 shows an image of the test setup and memristor-based TNRG proposed by

Rai et al. Two inverter ICs and two Memristor ICs are shown on the breadboard along

with the comparator IC. 2.2 kΩ resistors were placed in series with the memristor devices

to ensure that current through the devices was limited.

52

Figure 4.7 Image of the test setup and circuit to test Rai et al.

4.7.3 Data Collection Script

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\AD2_Post-

Processing\csv_bin_to_datastream.pl

sstoller_thesis_final_writeup\RNGs\AD2_Post-

Processing\datastream_to_datastream_von_neumann.pl

4.7.4 Final Results Path

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\Rai

4.7.5 Results

The TRNG was tested with a squarewave clock frequency of 1kHz into the

memristor-inverter chain. The output was sampled with a frequency of 8kHz in order to

ensure that the latched output from the TRNG could be captured. Approximately 62

million bits were captured. Due to a 60/40% distribution of ones and zeros in the output

53

the raw output was not tested through the STS because it would certainly have failed the

frequency test. With von Neumann whitening applied 12 sequences of length 1 million

bits were produced. The results in table 4.6 show all NIST STS tests passed for the

TRNG proposed by Rai et al [27]. More sequences need to be tested for this TRNG.

Table 4.6 Results of TRNG proposed by Rai et al [27].

Test P-Value Proportion Pass/Fail

Frequency 0.213309 12/12 PASS

BlockFrequency 0.350485 12/12 PASS

CumulativeSums 0.739918 24/24 PASS

Runs 0.017912 12/12 PASS

LongestRun 0.350485 12/12 PASS

Rank 0.213309 12/12 PASS

FFT 0.739918 12/12 PASS

NonOverlappingTemplate - 1760/1776 PASS

OverlappingTemplate 0.350485 12/12 PASS

Universal 0.122325 12/12 PASS

ApproximateEntropy 0.122325 12/12 PASS

RandomExcursions - 69/72 PASS

RandomExcursionsVariant - 158/162 PASS

Serial 0.122325 23/24 PASS

LinearComplexity 0.122325 12/12 PASS

54

CHAPTER FIVE: DESIGN OF FINAL CIRCUIT

The primary purpose of this Master’s thesis project was to implement a True

Random Number Generator (TRNG). The following sections discuss the final circuit

design, testing, and implementation of the memristor based TRNG.

5.1 Design Concept

The core concept of the novel memristor-based TRNG circuit is not much

different from many other TRNGs. The circuit consists of two oscillators. One oscillator

runs at a fast speed and the other oscillator runs at a slow speed. The slow oscillator acts

as a clock to sample data from the fast oscillator. Entropy is captured in the slow

oscillator as jitter [29].

Figure 5.1 A slow clock sampling a fast clock

Figure 5.1 shows Jitter (emphasized) on a slow clock that is sampling a fast clock.

Jitter is emphasized. It is desirable to have many oscillations of the fast clock for each

oscillation of the fast clock.

55

5.2 How a Multivibrator Circuit Works

The multivibrator circuit shown in figure 5.2 is an astable type of multivibrator.

The circuits in figure 5.2 are shown with both a resistor and with a memristor in place of

a resistor as was used in the TRNG presented in this thesis. Figure 5.2 shows the circuit

schematic for the memristor-based multivibrator circuit used in the TRNG design

presented in this thesis.

Figure 5.2 Multivibrator circuits implemented with resistor and memristor

At its core, the multivibrator consists of a voltage divider and an RC circuit

network. The voltage divider between the resistors is the input to the positive leg of the

op-amp. The RC network is the input to the negative leg of the op-amp. The multivibrator

works because the voltage divider always places a supply voltage of ½ VO on the positive

input of the op-amp and the RC network always lags behind the output switching on the

negative leg.

When the voltage output is 1V on VO, the voltage input on the positive leg is

0.5V. In order for VO to rail its output at the positive supply, the voltage across the

capacitor must be less than 0.5V. With time, the RC circuit will eventually charge up the

capacitor to a voltage of 0.5V. Once the supply voltage of 0.5V is reached (negative and

56

positive inputs into the op-amp are the same), VO will drop to 0V. Once VO drops to 0V,

this changes the voltage at the positive input of the op-amp. As a result, the positive

voltage is now lower than the negative voltage of the opamp, leading to a VO that will rail

at -1V, the negative supply voltage. This cap will slowly discharge until a voltage

of -0.5V is reached and VO will again rail at the high supply voltage. This cycle will

repeat and the circuit will oscillate as long as the op-amp has a sufficiently high gain and

very little hysteresis or other types of feedback that could cause the circuit to settle.

The maximum voltage across the memristor in a multivibrator circuit can be

easily calculated. The maximum or minimum voltage at the negative input of the op-amp

is one half of the negative supply or positive supply voltage. In this case, the output of the

op-amp is 100% of the positive or negative supply voltage. If the supply voltages are

100% negative of each other (e.g. VCC is equal to -VDD) the maximum voltage across

the memristor devices is 150% of VCC or VDD supply voltage as calculated by

 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 = 0.5 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉𝑉𝑉 = 0.5 𝑉𝑉𝑉𝑉𝑉𝑉 − − 𝑉𝑉𝑉𝑉𝑉𝑉 = 1.5 𝑉𝑉𝑉𝑉𝑉𝑉. (5.1)

It was found that replacing the resistor with a memristor achieved the same type

of oscillation but with significantly more jitter and noise in the frequency of the

multivibrator output. A memristor operates well in this circuit because it is continuously

cycled between a high resistance and low resistance state. Depending on the orientation

of the memristor device in the circuit and the oscillation speed of the circuit (dependent

on the memristor device and capacitor), the circuit can have a skewed duty cycle (that is

it will spend significantly more time in one state than the other). The significant

difference in the operation of the circuit with a memristor device is that the memristor

will change resistance from low to high or high to low in the different states of the circuit.

57

As the memristor changes resistance (it has been shown by Jiang et al. that the memristor

resistance change happens at a truly random time), the RC time constant of the circuit

changes. Entropy is captured in the delay that it takes for the memristor device to switch

from low to high or high to low resistance. The circuit may be modified by placing

multiple memristor devices in parallel or in series with each other or with a resistor.

Figure 5.3 shows the measured and plotted IV curve for a W-Type SDC

memristor in a multivibrator circuit. A 1 kΩ resistor was placed in series with the

memristor in the multivibrator circuit in order to measure current. Voltage was measured

across both the memristor and the resistor. Current was calculated using the voltage

across the resistor and Ohm’s law. The IV measurement device response of the W-SDC

memristor-based multivibrator oscillator is consistent with the IV curve device response

from other publications [9-10].

Figure 5.3 Measured IV curve for a W-SDC Memristor in a multivibrator circuit

58

5.3 Multivibrator Oscillator Simulations and Measurements

This thesis project is unique in the fact that a memristor is incorporated in a

multivibrator circuit for the slow oscillator. None of the other papers and RNGs that were

reviewed as part of a literature survey for this topic utilized this type of circuit design to

capture entropy and generate random numbers. Two other TRNG circuit designs were

discussed earlier. Both utilized the unique characteristics of memristor devices to capture

entropy in unique ways, but both ultimately relied on an external circuit to generate a

square wave clock. This project is unique because the memristor device itself is a part of

the circuit that creates oscillations.

After implementing and testing the randomness of many different circuit designs

and topologies a final circuit design was settled upon and is shown in figure 5.4. It was

found through rigorous testing and trial and error that a memristor works well in place of

a resistor in a multivibrator circuit and allows the circuit to oscillate as desired.

Figure 5.4 Simplified schematic of the final circuit

The characteristic of the memristor (mainly the changing resistance and the

variability in the delay and amount of resistance changes) lend them well to capturing

significant amounts of entropy. The comparison of the output from a multivibrator

59

implemented with a memristor compared to a resistor is shown in figures 5.5 and 5.6. In

both figures approximately 1000 samples have been captured from the oscilloscope on

the Digilent AD2 and overlaid to show the jitter produced in both circuits. It can be easily

seen that the circuit with the memristor has significantly more jitter, which lends itself to

being useful for capturing entropy as the slow clock signal in this TRNG.

Figure 5.5 Persistence plot of the output from a memristor based multivibrator

Figure 5.5 shows a persistence plot that demonstrates the jitter in 999 samples

captured from a memristor based multivibrator circuit. Note the significant amount of

jitter present in the output waveform.

60

Figure 5.6 Persistence plot of the output from a resistor based multivibrator

Figure 5.6 shows a persistence plot that demonstrates the jitter in 1004 samples

captured from a resistor based multivibrator circuit. Note that there is significantly less

jitter shown in this circuit implemented with a resistor. Both circuits were tuned to

operate at approximately the same frequency.

The final circuit design settled upon (shown in figure 5.7) consists of three

oscillators. The fast oscillator design consists of a multivibrator implemented with a

resistor. In reality this could be any simple circuit that oscillates at a high frequency, such

as a 555 timer, ring oscillator, or square wave generated by a function generator. The

primary purpose of this oscillator is to be sampled by the slow oscillator. The frequency

of the oscillator can be modulated by changing the values of the capacitor or resistor in

the circuit to change the RC time constant and thus the frequency of oscillation. A

smaller capacitor or lower value resistor will increase the oscillation speed. A larger

capacitor or more resistive resistor will slow down the oscillation speed. In order to

optimize the power of the circuit, the smallest capacitor (and thus largest resistor) should

be selected.

61

The slow oscillator final design consisted of two multivibrators, each

implemented with a memristor. As shown in figures 5.5 and 5.6 the memristors

implemented in this circuit create a very significant amount of jitter. The oscillation

speed of these circuits can be controlled by changing the value of the capacitors in the

multivibrators. In addition, a different memristor device could be used. While only a

single type of memristor was used and characterized for this project, it was noted that

there was some device-to-device variability. In addition, several experiments were done

with multiple devices placed in series and in parallel with each other. It was also noted

that increasing the supply voltage of the circuit also resulted in faster oscillation of the

memristors.

The output of the two multivibrator oscillator circuits were XOR’d together.

There are several advantages of using this topology: the frequency of the slow clock is

increased by a factor of two, allowing random data to be generated twice as fast. In

addition, different types of memristors may be mixed, or a memristor may be mixed with

a resistor etc. in the two different oscillators. The circuit also provides flexibility to allow

for only one of the oscillators to be active.

Figure 5.7 shows a simplified schematic of the circuit along with simulated

SPICE output. For SPICE simulations, resistors were used in place of the memristor

devices.

There are many different parts of the circuit. The two slow memristor

multivibrator oscillator outputs go into an XOR gate that effectively increases the entropy

captured in the circuit. This also results in a faster clock rate for the circuit (or allows for

more clock division later on in the circuit to capture even more entropy). The XOR

62

circuits output goes into an 8 bit binary counter with jumpers that are used to divide the

slow clock to allow for more oscillations of the multivibrators for each slow clock cycle.

This allows for more entropy to be captured for every oscillation of the slow clock that

samples the fast clock in the circuit. The output of the binary counter (with clock division

selected by jumper) goes into the binary counter and the serial-in-parallel-out shift

register. The 3rd bit of the binary counter here is connected to the Digilent AD2. This

signal toggles one time for every 8 bits that are shifted through the shift register. The fast

oscillator (resistor-based multivibrator circuit) goes directly into the serial-in-parallel-out

shift register where it is sampled as the slow oscillator toggles.

Figure 5.7 Voltage outputs from a transient simulation of the circuit

The output of the XOR (Red) samples the input to the DQ flip flop (Teal). The

output of the DQ Flip flop (Pink) shows how “fast clock” is sampled by the “slow clock”.

Final implementation of the circuit also included a binary counter to allow the “slow

clock” to be divided by a factor of 2, 4, 8, or up to 256. This allows more oscillations of

63

the slow clock to accumulate extra jitter and noise for each time that the fast clock is

sampled.

Figure 5.8 Transient Simulation Results for multivibrator with resistor

Figure 5.8 shows transient simulation results for a multivibrator circuit

implemented with a resistor. Green shows the output of the op-amp. Blue is the voltage

across the capacitor, which is also the voltage at the inverting input of the op-amp. Red is

the voltage across the resistor in lieu of a memristor in the multivibrator.

64

Figure 5.9 Measured output for multivibrator implemented with a W-SDC

memristor

Figure 5.9 shows measured output for a multivibrator circuit implemented with a

W-type SDC memristor. Blue shows the output of the op-amp. Yellow is the voltage

across the capacitor, which is also the voltage at the inverting input of the op-amp. Red is

the voltage across the memristor. The op-amp supply voltage in this case is +/- 5V.

65

Figure 5.10 Measured output for multivibrator implemented with a resistor

Figure 5.10 shows measured output for a multivibrator circuit implemented with a

resistor in place of the memristor. Blue shows the output of the op-amp. Yellow is the

voltage across the capacitor, which is also the voltage at the inverting input of the op-

amp. Red is the voltage across the resistor taking the place of the memristor. The op-amp

supply voltage in this case is +/- 5V.

5.4 Circuit Design and Development

Many different circuit iterations were prototyped and tested before settling on the

final circuit design. These circuits ranged from simple ring oscillators to the memristor

based multivibrator, to combining the input of multiple multivibrators. Many different

circuit tweaks and modifications were tested.

5.4.1 Summary of Breadboard Implementation

Initially the final circuit design was implemented and prototyped on a breadboard.

Figure 5.11 shows an image of the breadboard with different parts of the circuit noted.

66

The entire circuit was implemented on breadboard before designing and fabricating the

PCB.

Figure 5.11 Breadboard with the TRNG prototype

In the circuit both memristor multivibrators can be seen, along with the XOR

gate, the binary counter that is used as the clock divider for the slow clock, and the binary

counter and serial-in-parallel-out shift register used for the data collection. The bus from

the data collection circuit to the Digilent AD2 can also be seen. The fast oscillator

multivibrator circuit is also shown. There are additional wires used in the circuit, such as

the Digilent AD2 oscilloscope inputs which are being used in this image to probe the

outputs of the memristor multivibrators.

67

5.4.2 PCB Design

The TRNG was implemented on a printed circuit board (PCB) once the design

was prototyped and finalized on the breadboard. The PCB was designed to contain the

entire TRNG circuit on a nine square inch (3”x3”) layout and to plug directly into the

Digilent AD2 for quick, efficient, and easy data collection. The PCB was fabricated by

Sunstone Circuits [31]. Sunstone Circuits provides their own circuit design and layout

application called PCB123 [32]. This software was easy to learn and intuitive to use. The

software also includes a very large parts library. The PCB123 software allows for the

creation of custom footprints for any parts that are not in the parts library.

5.4.3 PCB Schematics

PCB schematics are shown in figures 5.12, 5.13, 5.14, and 5.15. These figures

show the memristor multivibrator circuits, the fast resistor multivibrator circuit, the data

collection circuit, and the binary counter used to divide the output of the slow clock

circuit.

Figure 5.12 PCB circuit schematic for the two memristor multivibrator oscillators

68

Figure 5.13 Multivibrator circuit schematic for the fast oscillator.

Figure 5.14 Binary counter slow clock divider schematic

69

Figure 5.15 Serial-to-parallel data collection circuit schematic

5.5 PCB Layout

Great care was taken in the PCB design and layout. Circuits were kept compact

and modular in order to help improve trace routing. When designing and laying out the

PCB good design practices were followed. The PCB layout was done completely by hand

to ensure optimal placement of all components and optimal routing. Initially the auto

place and auto routing tools were used, but they yielded suboptimal results. In order to fit

the final circuit in the desired 3”x3” footprint manual placement and routing was required

for the entire board.

In order to reduce IR droop and power loss in PCB traces, routing for power

traces was sized up to a width of 0.016 inches (twice the width of signal traces). In order

to provide the shortest routing of power, all power traces were routed before any signal

traces. Whenever possible, power wires for different supplies were not routed parallel to

each other to minimize crosstalk. The data collection circuit (specifically the serial-in-

parallel-out shift register) was placed as close as possible to the 30 pin connector for the

AD2 to minimize routing complexity of the 8-bit output bus. Working backwards from

the data collection circuit was found to be the most effective method of routing to ensure

70

that routing was kept simple, short, and efficient. This worked well because the

oscillators only required power routed to them. There are not circuit connections directly

from the oscillators to the 30 pin AD2 connector. However, some connections were

added on to the PCB after the fact by soldering wires to jumper outputs from each of the

oscillators to additional digital inputs that were not used on the AD2 30 pin connector.

The additional wires can be seen in figure 5.16 that shows the back side of the PCB final

modified PCB.

Figure 5.16 Backside image of finished, modified PCB

In an effort to improve the layout of the PCB and routing efficiency, it was found

that routing could be made easier by flipping over several components in the data

collection circuitry, including the serial-in-parallel-out shift register and both binary

counters. Not only did this improve the board layout, it also gave extra room around

71

several of the jumpers and the terminal for external clock inputs. The slow multivibrator

oscillators shared the same dual op-amp chip. These circuit layouts were mirrored as

much as possible to make routing and layout easier and yield a cleaner finished look to

the PCB.

All components used in the PCB design were through-hole components in order

to keep soldering easy. This was also convenient when the aforementioned modifications

were made to help validation and testing of the circuits.

In some cases, not all components were available in the built-in libraries provided

by the Sunstone PCB123 software. Several components, such as the screw terminals,

standoffs, and resistor/capacitor sockets were not readily available or easy to find in the

software or online for download and import into the PCB software. In addition, models

were not readily available only for direct import into the PCB123 software libraries. For

these components, different components with the same footprint were used. After careful

searching and measurement, adequate substitutions were found for these layouts that had

the same hole spacing and hole size.

In order for the PCB to sit on the tabletop when connected to the AD2 and

provide clearance from between the table top and the PCB for components that were

placed on the bottom of the board, five holes for standoffs were included in the final

design. These holes were added last and as a result there was very little room to place the

standoffs. Not all standoffs could be placed in ideal locations at the corners of the board.

Standoff height was estimated based on measurements of other boards that plug into the

Digilent AD2. The aluminum standoffs were sanded slightly (less than 1/16th of an inch)

72

to reduce their height for final fitment and to reduce any rocking due to a very slight but

noticeable difference in the standoff height and height of the AD2 board/connector.

Figure 5.17 Final PCB Layout.

Figure 5.17 shows the final PCB layout. Different sections of the PCB are

highlighted in the figure. These sections are described below, starting at the top left

corner of the board and moving clockwise around the board. In many cases a 2-pin

73

jumper may be connected to different header pins to change the configuration of the

board for added flexibility.

1. Scope Inputs: GND, Scope CH1-, Scope CH1+, Scope CH2-, and Scope CH2+

signals are routed from the AD2 to a 5 port screw terminal. This is useful for

probing and debugging circuits on the board.

2. Power Outputs: VPP Power Supply (V+), VPP Waveforms (W1), VDD Power

Supply (V-), VDD Waveforms (W2) signals are routed from the AD2 to a 5-port

screw terminal. These signals are useful for the case that an external circuit is

implemented, and the external slow and fast clocks are input directly to the data

collection circuit, bypassing the oscillators on the board.

3. VPP Voltage Source Selector for Fast Oscillator Circuit: A jumper is used to

select between W1 or V+ as the positive power supply for the fast multivibrator

oscillator.

4. VPP Voltage Source Selector for Slow Oscillator Circuits: A jumper is used to

select between W1 or V+ as the positive power supply for the memristor

multivibrator oscillators.

5. VDD Voltage Source Selector for Fast Oscillator Circuit: A jumper is used to

select between W2 or V- as the negative power supply for the fast multivibrator

oscillator.

6. VDD Voltage Source Selector for Slow Oscillator Circuits: A jumper is used to

select between W2 or V- as the negative power supply for the memristor

multivibrator oscillators.

74

7. Resistors in Series with Power Supplies: Low resistance resistors or wire

jumpers may be soldered in place here to measure the power consumption in

various parts of the circuit.

8. Digilent AD2 Header: 30 pin header for the Digilent AD2. A right-angle header

female connector is used.

9. Data Collection Circuit: Binary counter and serial-in-parallel-out shift register

circuit portion of the data collection circuit. Located as close as possible to the

AD2 30 pin header.

10. Internal or External Slow Clock Selector: A jumper is used to select between

the internally generated slow clock (from the memristor multivibrators) or an

external slow clock generated by another circuit with input provided to the

external slow clock screw terminal.

11. Internal or External Fast Clock Selector: A jumper is used to select between

the internally generated fast clock (from the resistor multivibrator) or an external

fast clock generated by another circuit with input provided to the external fast

clock screw terminal.

12. External Clock Terminal: 2 port screw terminal for input of slow and/or fast

external clock oscillators. Jumpers (10) and (11) must be jumpered properly to

use this input.

13. Clock Divider Jumper: 8 option jumper to divide the clock down from the slow

oscillators circuit. Left jumper is fasts, right option is slowest.

14. Fast Multivibrator Oscillator circuit: Full circuit for fast oscillator, including

output level shifting resistors.

75

15. Memristor 1 Socket: Memristor socket for first slow oscillator multivibrator

circuit. A memristor in standard DIP package is placed in the socket.

16. Memristor 1 Device Select Jumper: The jumper selects which memristor device

is used for data collection. Multiple devices may be selected. A resistor also fits in

the socket as an alternative to a memristor.

17. Memristor 2 Socket: Memristor socket for first slow oscillator multivibrator

circuit. A memristor in standard DIP package is placed in the socket. The gap

between the sockets for the memristors is spaced such that a single 16 DIP

package may be used in both sockets at the same time.

18. Memristor 2 Device Select Jumper: The jumper selects which memristor device

is used for data collection. Multiple devices may be selected. A resistor also fits in

the socket as an alternative to a memristor.

19. Slow Oscillator Circuit: The rest of the slow oscillator circuit including resistors

and op-amp.

PCB design and layout files can be found in the Campbell Research group folder

at BSU at the location sstoller_thesis_final_writeup\PCB Design. These files can also be

found in BSU Scholarworks. An Excel spreadsheet with the bill of materials and other

notes is also included at this location.

5.5.1 Interface to the Digilent AD2

The PCB interfaces to the Digilent AD2 through a 30 port right angle female

header connector. The scope channels are routed directly to a header on the board. The

scope channels have their own ground signal. The power supply and waveform generator

signals are routed to resistors/jumpers that allow for power measurements of the circuit.

76

Digital I/Os 0-7 are the 8 bit input sampled from the data collection circuit, with digital

I/O 15 being the clock. Digital I/Os 11, 12, and 13 were not a part of the original PCB

design, but were soldered onto the design later with a wire jumper to enable output to the

digital I/Os from each oscillator in order to aid in circuit validation, debug, and testing.

Digital I/O 14 was also added later. This signal was soldered in place to enable the

readout of every 16th byte instead of every 8th byte from the data collection circuit as a

potential means to increase randomness of the circuit even more.

Table 5.1 contains a list of the power supply, analog, and digital pins on the

Digilent AD2 board. There is also a column that list the net that each pin is attached to in

the PCB schematic. A ‘*’ in the notes section denotes a pin that was not part of the PCB

design. A wire jumper was soldered on later for one of the PCBs in order to capture these

signals for debug output or other purposes.

77

Table 5.1 Pin usage of the Digilent AD2 board connector

Pin
Number

Pin
Name Description Net Notes

1 1+ Scope CH1 Positive SC_CH1P

2 1- Scope CH1 Negative SC_CH1N

3 2+ Scope CH2 Positive SC_CH2P

4 2- Scope Ch2 Negative SC_CH2N

5 GND Ground GND_Scope

6 GND Ground GND_Scope

7 V+ V+ Power Supply PS_VP VPP PS

8 V- V- Power Supply PS_VN VDD PS

9 W1 Waveform Generator 1 W1_P VPP W

10 W2 Waveform Generator 2 W2_N VDD W

11 GND Ground GND_AD2

12 GND Ground GND_AD2

13 T1 Trigger 1 N/C

14 T2 Trigger 2 N/C

15 0 Digital I/O 0 D0 Data out

16 8 Digital I/O 8 XOR_OUT
Slow clk out of
xor

17 1 Digital I/O 1 D1 Data out

18 9 Digital I/O 9 FAST_CLK_FINAL Final fast clk

19 2 Digital I/O 2 D2 Data out

20 10 Digital I/O 10 SLOW_CLK_FINAL Final slow clk

21 3 Digital I/O 3 D3 Data out

78

22 11 Digital I/O 11 N/C
*Mem 1 Osc
Out

23 4 Digital I/O 4 D4 Data out

24 12 Digital I/O 12 N/C
*Mem 2 Osc
Out

25 5 Digital I/O 5 D5 Data out

26 13 Digital I/O 13 N/C *Fast Osc Out

27 6 Digital I/O 6 D6 Data out

28 14 Digital I/O 14 N/C
*For sampling
I/Os slower

29 7 Digital I/O 7 D7 Data out

30 15 Digital I/O 15 D15
Clock for
sampling I/Os

5.5.2 PCB Screw Terminal Signal Breakouts

There are three sets of terminals on the board. Two sets of terminals are located

on the top left of the board. One set of terminals is located halfway down the right side of

the board. The screw terminals require a fine jeweler’s screwdriver to tighten and accept

various wire gauges and jumper sizes.

The purpose of the terminals on the top left corner of the PCB (labelled “scope”)

is to break out signals from the Digilent AD2. The first terminal is a breakout of the

scope signals for the AD2 board. There is a ground signal. To improve signal integrity

and reduce noise this screw terminal is the only net connected to this ground net on the

AD2. This allows for breakout of the oscilloscope inputs for the AD2 in order to probe

and measure voltages and signals from various locations on the PCB. These signals were

useful to initially verify functionality of the PCB after fabrication and assembly. They

79

were also used to capture various waveforms and IV curves for the oscillators. The screw

terminals are each labelled “GND”, “CH0-“, “CH0+”, “CH1-“, “CH1+”.

The second terminal (labelled “Power”) is a breakout of the power supplies and

waveforms outputs from the Digilent AD2. There are two power supply outputs and two

waveform generator outputs as well as another ground. These outputs are connected to

the output sides of the power measurement resistors to help make power measurements

easier. These outputs can also be used to power an external oscillator circuit. The output

of the Waveforms generator are also made accessible at this terminal for use as an

additional power supply in an external circuit or to generate a wave to stimulate an

external circuit. To collect data for and evaluate the random waveform generator for the

Digilent AD2 waveform output, both a clock and random waveform were generated from

these terminals and connected to the fast clock input and slow clock input terminals on

the other side of the board. A ground terminal (ground supply used for the rest of the

circuits) is also supplied to this terminal. The screw terminals are labelled “VPP_PS”,

“VPP_W”, “VDD_PS”, “VDD_W”, and “GND”.

The third screw terminal (labelled “J13”) is for an external oscillator input to be

used. This allows for any external circuit for either the fast or slow oscillator to be used

for data collection using the PCB’s x8 data collection circuit and interface to the Digilent

AD2. There are two terminals, one labelled “EXT_SLOW_CLK” for an external slow

clock/oscillator signal and one labelled “EXT_FAST_CLK” for an external fast

clock/oscillator signal. Either one or both of these signals may be used in combination

with the slow or fast oscillators on the PCB. Immediately to the left of this terminal is a

80

pair of jumpers to switch the circuit over from using the internal oscillator signals to an

external input.

5.5.3 PCB Jumpers

There are several sets of jumpers located on the PCB. These jumpers give a high

level of configurability and flexibility to the circuits on the PCB. Starting from the top

left corner of the PCB and moving clockwise, the jumpers are J4, J2, J5, J3, J11, J12, J10,

J17, and J18. The jumpers serve different purposes from selecting power supplies for

various circuits, to selecting devices to be used in circuit etc.

J4, J2, J5, and J3 are all jumpers to select which power supplies are connected to

the oscillator circuits. These jumpers are 3 pin headers. Each jumper should connect the

center pin to either the left or right pin. For all four of these jumpers, connecting the

center pin to the left pin will connect the oscillator to the AD2 power supply. Connecting

the center pin to the right pin will connect the oscillator to the AD2 waveforms output

(used as an additional power supply). J4 and J5 are for the positive and negative supply

voltages of the fast oscillator (resistor multivibrator). J2 and J3 are for the positive and

negative supply voltages of the slow oscillators (memristor multivibrators). Isolating the

oscillator power supplies from each other will reduce the chances of noise from one

oscillator affecting the other oscillator. In addition, the waveforms output could be used

to inject supply noise to the oscillator circuits. The importance of power supply noise

oscillation is discussed in further detail in Chapter 6.

Jumpers J11 and J12 are used to toggle between the internal oscillators and

external oscillator inputs. Each jumper is a 3 pin header. Connecting the center pin to the

left pin on either jumper will use the internal oscillators. Connecting the center pin to the

81

right pin on either jumper will configure the board to take sample the oscillator input to

the header just to the right of these jumpers. The top jumper (J11) is for the slow clock.

The bottom jumper (J12) is for the fast clock.

Jumper J10 (label not visible on assembled PCB) is a set of 8 pairs of jumpers

(2x8 set of headers). The purpose of this jumper is to allow for the selection of various

clock divisions of the slow oscillator. The outputs of a binary counter can be selected as

the slow clock oscillator to sample the fast clock. Connections between pins should only

be made vertically from a top pin to bottom pin. Each pin oscillates at ½ of the frequency

of the pin to the left of it. The fastest option can be chosen by jumping the leftmost

vertical pair of pins. The slowest option can be chosen by jumping together the rightmost

vertical pair of pins. In hindsight, a ninth option should have been made available in

order to allow a bypass of the binary counter altogether. The fastest output of the binary

counter is only half of the frequency of the input clock frequency. To prevent shorting

outputs of the binary counter together, jumpering multiple pairs of pins together at once

should be avoided.

Jumpers J17 and J18 are located at the bottom center and bottom left corners of

the PCB. The purpose of these jumpers is to act as a selector for the memristor devices.

Different devices may be selected by jumping different pins together. The vertical jumper

jumping two vertical pins together corresponds to select the device in the socket directly

above it. This also allows for multiple devices could be jumped together to function in

parallel.

82

5.6 PCB Fabrication and Soldering Process

The PCB design, layout, and routing were all manually checked multiple times

over the course of several days to ensure that there were no errors in the final design.

Several issues were found and corrected in the first and second checks of the PCB. The

third check found no errors and the design was submitted for fabrication. The PCB123

software has a built-in Design Rule Check (DRC) and netlist checking tool to ensure that

there are no violations of design rules (e.g. traces too close together) and that the final

layout and routing matches the circuit schematic. Four dual layer PCBs were ordered

from Sunstone circuits at a total cost of $169.00.

Components were ordered from Digikey. All components used were through-hole

components which made PCB assembly easy. No surface mount or other types of

components were used. The downside of using through hole components is that they

generally require more space on the PCB. Figure 5.18 shows the front and back sides of

the final PCB.

Figure 5.18 Final PCB front side (left) and back side (right)

83

5.7 Project Bill of Materials

The final bill of materials for PCB components is listed in table 5.2. A complete

table of components with comments can be found in the Bill_Of_Materials.xlsx file

located in “sstoller_thesis_final_writeup\PCB Design” on the Campbell Research group

folder at BSU or Scholarworks. In some cases the part number of the part that was

actually ordered (actual Digi-Key Part # column) was different from the part used on in

the PCB123 software (PCB Part # column). The quantities below are for a single PCB.

Total cost of components to for two PCBs was $71.95 with shipping, tax, and tariff from

Digikey [33]. SDC memristors were purchased from Knowm [10].

Note that through-pin sockets were soldered in place of some components

(various resistors and capacitors) so that components of different values could be

swapped in to change the characteristics of the circuits (e.g. swap resistors and capacitors

in the oscillator circuits to change the frequency of oscillation). The column titled

“Actual Digi-Key Part #” is the actual part that was ordered and soldered to the board for

final implementation. The column titled “PCB Part #” is the part number that was

substituted for the final PCB design.

84

Table 5.2 List of all components used on the Final PCB Design

Component
Identifier

Description Quantity Actual Digi-Key
Part #

PCB Part #

J1 30 pin connector 1 S5568-ND SAM1037-15-ND

J2, J3, J4, J5 3 pin jumper 4 SAM1099-03-ND Same

Jumper 2 pin jumper
connector

25 S9337-ND Same

R1, R2, R3, R4 10 Ohm
Resistors

4 10.0XBK-ND Generic Resistor

J6 5 port wire
terminal

1 1528-1975-ND SAM1222-05-ND

J7 5 port wire
terminal

1 1528-1975-ND SAM1222-05-ND

S1, S2, S3, S4 Hex Standoff 5 1772-1887-ND 0.1160 Hole

U2 Shift register 1 296-8248-5-ND Same

U3 Binary Counter 1 296-1599-5-ND Same

U4 Binary Counter 1 296-1599-5-ND Same

J10 16 pin jumper 1 SAM1097-08-ND Same

J11 3 pin jumper 1 SAM1099-03-ND Same

J12 3 pin jumper 1 SAM1099-03-ND Same

J13 2 port wire
terminal

1 1528-1974-ND SAM1222-02-ND

U5 XOR Gate 1 296-4627-5-ND Same

U6, U7 Dual opamp 2 296-34316-5-ND 296-1775-5-ND

Resistor Resistor Pin
Thing

16 ED1256-ND Generic Resistor

MEM1 Memristor 1 2057-ICS-316-T-
ND

Generic DIP

https://www.digikey.com/product-detail/en/sullins-connector-solutions/PPPC152LJBN-RC/S5568-ND/776026
https://www.digikey.com/product-detail/en/samtec-inc/TSW-115-08-G-D-RA/SAM1037-15-ND/1101709
https://www.digikey.com/product-detail/en/samtec-inc/TLW-103-05-T-S/SAM1099-03-ND/1105057
https://www.digikey.com/product-detail/en/sullins-connector-solutions/QPC02SXGN-RC/S9337-ND/2618262
https://www.digikey.com/product-detail/en/yageo/MFR-25FBF52-10R/10.0XBK-ND/4191
https://www.digikey.com/product-detail/en/adafruit-industries-llc/2139/1528-1975-ND/6827102
https://www.digikey.com/product-detail/en/samtec-inc/SSW-105-02-T-S/SAM1222-05-ND/1112795
https://www.digikey.com/product-detail/en/adafruit-industries-llc/2139/1528-1975-ND/6827102
https://www.digikey.com/product-detail/en/samtec-inc/SSW-105-02-T-S/SAM1222-05-ND/1112795
https://www.digikey.com/product-detail/en/raf-electronic-hardware/2054-440-AL-7/1772-1887-ND/7681298
https://www.digikey.com/product-detail/en/texas-instruments/SN74HC164N/296-8248-5-ND/376946
https://www.digikey.com/product-detail/en/texas-instruments/SN74HC590AN/296-1599-5-ND/277245
https://www.digikey.com/product-detail/en/texas-instruments/SN74HC590AN/296-1599-5-ND/277245
https://www.digikey.com/product-detail/en/samtec-inc/TLW-108-06-T-D/SAM1097-08-ND/1104972
https://www.digikey.com/product-detail/en/samtec-inc/TLW-103-05-T-S/SAM1099-03-ND/1105057
https://www.digikey.com/product-detail/en/samtec-inc/TLW-103-05-T-S/SAM1099-03-ND/1105057
https://www.digikey.com/product-detail/en/adafruit-industries-llc/2138/1528-1974-ND/6827101
https://www.digikey.com/product-detail/en/samtec-inc/SSW-102-02-T-S/SAM1222-02-ND/1112798
https://www.digikey.com/product-detail/en/texas-instruments/SN74AHC86N/296-4627-5-ND/375774
https://www.digikey.com/product-detail/en/texas-instruments/TL972IP/296-34316-5-ND/1906129
https://www.digikey.com/product-detail/en/texas-instruments/TL072CP/296-1775-5-ND/277421
https://www.digikey.com/product-detail/en/mill-max-manufacturing-corp/0461-3-15-15-21-27-04-0/ED1256-ND/434091
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862

85

J17 16 pin jumper 1 SAM1097-08-ND Same

MEM2 Memristor 1 2057-ICS-316-T-
ND

Generic DIP

J18 16 pin jumper 1 SAM1097-08-ND Same

R5, R6 10k resistors 2 10KEBK-ND Generic Resistor

R8, R9 10k resistors 2 10KEBK-ND Generic Resistor

R12, R13 10k resistors 2 10KEBK-ND Generic Resistor

R11 10k resistors 1 10KEBK-ND Generic Resistor

C1, C2, C3 1000pf
capacitors

3

Generic Capacitor

R14, R15,
R16, R17,
R18, R19

10k resistors 6 10KEBK-ND Generic Resistor

5.8 QuickStart Guide to Using the PCB

The previous sections (specifically sections on the screw terminals and jumper

settings) thoroughly describe how to reconfigure and change certain options on the PCB.

The purpose of this section is to describe how to set up and configure the Digilent AD2

and Waveforms software to capture data. It is essential to set up the Waveforms software

properly in order to capture data.

5.8.1 Power Supply Setup

In order for the circuits to operate properly, the power supplies must all be set up.

Both the V+ and V- supplies are used, as well as the W1 and W2 outputs. Jumpers J2, J3,

J4, and J5 may be set up to apply V+ and V- to the slow oscillator power rails and set to

apply W1 and W2 to the fast oscillator power rails. Both the Supplies window and the

Wavegen window should be open. Up to +/- 5V may be applied to the positive and

https://www.digikey.com/product-detail/en/samtec-inc/TLW-108-06-T-D/SAM1097-08-ND/1104972
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862
https://www.digikey.com/product-detail/en/adam-tech/ICS-316-T/2057-ICS-316-T-ND/9832862
https://www.digikey.com/product-detail/en/samtec-inc/TLW-108-06-T-D/SAM1097-08-ND/1104972
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977
https://www.digikey.com/product-detail/en/yageo/CFR-12JB-52-10K/10KEBK-ND/3977

86

negative power supplies. It is best to keep the “Tracking” box checked so that the

supplies both track together. The Wavegen waveform outputs should be set to “DC”. W1

should be set to a positive voltage and W2 should be set to a negative voltage. All

supplies should be enabled in the software. In order to verify that power is being supplied

and the oscillators are operating, it is useful to have the oscilloscope window open and

the probes hooked up to the Scope screw terminals to probe different areas on the board

at the VCC and VDD locations.

5.8.2 Logic Setup

The logic window is used to capture the data output from the circuit. The logic

analyzer should be set up to collect data from a data bus. The data bus needs to be set up

with data on DIO 7 (LSB) through DIO 0 (MSB). The clock for sampling the data should

be DIO 15. Up to 100M data samples can be collected and saved using the Logging

function of the Logic window. In order to set this up, the record mode must be used. An

example workspace for data collection is saved and located on Boise State University

Scholarworks and the Campbell Research group shared folder in the

sstoller_thesis_final_writeup\Novel_TRNG\Waveforms directory.

87

CHAPTER SIX: FINAL CIRCUIT CHARACTERIZATION

6.1 PCB and Hardware Verifications

6.1.1 Verification of PCB

Once the finished PCBs were received a quick validation was performed. A

multimeter was used to ensure that proper connections were made, and that the final PCB

product matched the initial schematic netlist. Throughout the soldering process, care was

taken to check each net and verify that the solder joint was properly soldered and was not

in contact with any surrounding nets.

6.1.2 Verification of circuits

Once soldering was complete, the PCB was plugged in to the Digilent AD2 and

the board was powered on. With the data collection circuit disconnected from power by

turning off the power supplies and using the wavegen only, the oscillators were tested

individually and confirmed to work properly. Finally, the data collection circuit was

enabled and verified to be working properly.

6.2 Power Measurements

100 Ohm resistors were placed in series with both the V+ and V-, and the W1 and

W2 power supplies for the circuit in order to measure the amount of power consumed by

different parts of the circuit. By measuring the voltage across the resistors, current can be

calculated using Ohms law. Supply voltage is known, and power can be calculated using

 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 = 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑉𝑉𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅 / 𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅. (6.1)

88

Power for each part of the circuit was characterized by isolating the different

portions of the circuit using the power supply jumpers on the PCB. Table 6.1 shows the

power consumption of each part of the circuit.

Table 6.1 Power Measurements of the TNRG circuit

Standby Supply Voltage Current (Ave) Power

Oscillator VPP 2.7 V 11.885 mA 32.09 mW

Oscillator VDD -2.7 V 2.4134 mA 6.52 mW

Data Collection VPP 2.7 V 1.7071 mA 4.61 mW

Average power consumption was measured for the memristor multivibrator

circuit and was calculated based on equation 6.1. Current was measured by placing a

100 Ω resistor in series with the positive (VPP) and negative (VPP) supplies for a single

oscillator circuit. A tungsten memristor was used with 100 nF capacitor yielding an

oscillation frequency of about 2.5 kHz. Circuit oscillations are obvious in the current

consumption of the negative power supply but not in the positive supply. Power

measurements were taken with VPP at 2.7V and VDD at -2.7V (the minimum supply

voltages for the op-amp used).

Figure 6.1 shows the power supply measurement of the oscillator circuit. It is

interesting to note that the positive supply current is the same regardless of the oscillation

state of the multivibrator circuit, however the negative supply is variable with the

oscillation of the multivibrator circuit. This behavior was observed with only the op-amp

connected to the power supply and changing the input voltage to the op-amp to cause the

output voltage to switch from one voltage supply rail to the other. It was concluded that

89

this behavior is due to the output stage design of the op-amp and not the circuit design of

the multivibrator.

Figure 6.1 VPP and VDD Current measurements in W-SDC memristor oscillator

90

Figure 6.2 VPP current measurement in data collection circuit

Power of the data collection circuit was also measured using the same method of

placing a 100 Ω resistor in series with the VPP power supply. Figure 6.2 shows the power

supply measurement of the data collection circuit.

Power consumption of both circuits is shown in table 6.1. Total circuit power

consumption will be the sum of the oscillator VPP and VDD, tripled because two

memristor oscillators are used and one resistor oscillator is used. Finally, the data

collection power consumption must also be added. This yields a total estimated power

consumption of about 120.44mW. Most of this power consumption is driven by the use

of op-amps in the circuit.

91

6.3 Randomness Characterization of Final Circuit

The final circuit was tested for randomness. 100 million bits were collected over

the course of several runs of the Digilent Waveforms logic analyzer data capture

function. The data was post-processed using only von Neumann whitening. The NIST

Statistical Test Suite was used to test the randomness of 100 sequences each of length 1

million bits.

Table 6.2 contains the NIST STS test results for the memristor multivibrator

TRNG. All tests passed except for the runs test, which failed with a proportion of 82/100,

and the Approximate Entropy test, which barely failed with a proportion of 94/100. A

proportion of 96/100 or better was needed to pass each test. The final circuit

characterization shows that the TRNG is passing 13 of 15 NIST STS randomness tests. A

96/100 proportion or greater is required to pass the randomness tests. The Runs test only

passesd 82/100 sequences. The Approximate Entropy test barely failed the randomness

tests with a proportion of 94/100 sequence. The runs test also failed with a P-Value of 0.

6.3.1 Data Collection Script

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing

6.3.2 Results Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\Novel_TRNG\Final_Data_Collection

92

6.3.3 Results

Table 6.2 Results of Memristor Multivibrator TRNG

Test P-Value Proportion Pass/Fail

Frequency 0.102526 98/100 PASS

BlockFrequency 0.319084 98/100 PASS

CumulativeSums 0.122325, 0.001112 194/200 PASS

Runs 0 * 82/100 * FAIL

LongestRun 0.202268 100/100 PASS

Rank 0.153763 98/100 PASS

FFT 0.319084 97/100 PASS

NonOverlappingTemplate - 14614/14800 PASS

OverlappingTemplate 0.494392 98/100 PASS

Universal 0.350485 100/100 PASS

ApproximateEntropy 0.090936 94/100 * FAIL

RandomExcursions - 424/432 PASS

RandomExcursionsVariant - 962/972 PASS

Serial 0.739918, 0.595549 195/200 PASS

LinearComplexity 0.304126 100/100 PASS

6.4 Randomness Characterization of Final Circuit Seeding a PRNG

It is often common to find a TRNG seeding a PRNG as a method to improve the

output of quality, speed, and efficiency of a TRNG. In this case an LCG PRNG proposed

by Lewis, Goodman, and Miller was used [34]. The LCG that was used to generate

PRNG is

93

 𝐼𝐼 = 16807 ∗ 𝐼𝐼 % 2147483647. (6.2)

To seed the PRNG 32 bits were read from a binary bitstream of random data. The

value of I was set to this value. The PRNG equation runs for 128 iterations. Each iteration

the 16 least significant bits of I are written to the output file. After 128 iterations I is re-

seeded with the next 32 bits from the input file. For each 32 bits (4 bytes) of input data,

256 bytes of output are generated.

It is worth noting again that this output is not considered to be truly random and is

not suitable for use in cryptographic applications.

6.4.1 Data Collection Script

Campbell Research group folder at BSU or Scholarworks:

datastream_to_datastream_prng.pl

6.4.2 Results Location

Campbell Research group folder at BSU or Scholarworks:

sstoller_thesis_final_writeup\Novel_TRNG\Final_Data_Collection\RNG_Seeding

_PRNG

94

6.4.3 Results

Table 6.3 Results of Memristor Multivibrator TRNG seeding PRNG

Test P-Value Porportion Pass/Fail

Frequency 0.275709 100/100 PASS

BlockFrequency 0.494392 98/100 PASS

CumulativeSums 0.096578, 0.040108 199/200 PASS

Runs 0.191687 98/100 PASS

LongestRun 0.678686 98/100 PASS

ank 0.798139 97/100 PASS

FFT 0.122325 98/100 PASS

NonOverlappingTemplate - 14665/14800 PASS

OverlappingTemplate 0.153763 100/100 PASS

Universal 0.366918 98/100 PASS

ApproximateEntropy 0.574903 99/100 PASS

RandomExcursions - 515/520 PASS

RandomExcursionsVariant - 1166/1170 PASS

Serial 0.213309, 0.145326 195/200 PASS

LinearComplexity 0.739918 100/100 PASS

6.5 Comparison to other RNGs

Table 6.4 shows a comparison of all RNGs tested compared to the TRNG

designed and implemented in this Thesis project. A pass rate of 96% or better was

required to pass. Failing tests are shown with bold text.

95

Table 6.5 shows a comparison of the number of sequences tested for each RNG,

whether debiasing was necessary for each RNG, the approximate time that it took to

collect the random data sequences for each RNG.

96

Ta
bl

e
6.

4
R

es
ul

ts
 C

om
pa

ri
so

n
of

 a
ll

R
N

G
s

Te
st

RA
N

D
U

[2

4]

(P
RN

G
)

D
ig

ile
nt

A

D
2

(P
RN

G
)

uR
an

do
m

 [4
]

(T
N

RG
 +

PR

N
G

)

RD
R

A
N

D
 [3

]
(T

N
RG

 +

PR
N

G
)

St
ol

le
r

RN
G

(T

RN
G

)

Jia
ng

 e
t a

l.
[2

6]

(T
RN

G
)*

Ra
i e

t a
l.

[2
7]

(T

RN
G

)*

Fr
eq

ue
nc

y
0%

97

%

99
%

10

0%

98
%

91

%

10
0%

B
lo

ck
Fr

eq
ue

nc
y

0%

99
%

10

0%

99
%

98

%

10
0%

10

0%

Cu
m

ul
at

iv
eS

um
s

0%

97
%

99

%

10
0%

97

%

95
%

10

0%

Ru
ns

0%

10

0%

99
%

10

0%

82
%

82

%

10
0%

Lo
ng

es
tR

un

14
%

10

0%

99
%

97

%

10
0%

91

%

10
0%

Ra
nk

0%

98

%

98
%

98

%

98
%

10

0%

10
0%

FF
T

0%

99
%

10

0%

99
%

97

%

10
0%

10

0%

N
on

O
ve

rla
pp

in
gT

em
pl

at
e

53
%

99

%

99
%

99

%

99
%

95

%

99
%

O
ve

rla
pp

in
gT

em
pl

at
e

0%

99
%

99

%

97
%

98

%

10
0%

10

0%

U
ni

ve
rs

al

45
%

10

0%

10
0%

95

%

10
0%

91

%

10
0%

A
pp

ro
xi

m
at

eE
nt

ro
py

0%

97

%

99
%

99

%

94
%

91

%

10
0%

Ra
nd

om
Ex

cu
rs

io
ns

0%

99

%

99
%

99

%

98
%

98

%

96
%

Ra
nd

om
Ex

cu
rs

io
ns

V
ar

ia
nt

0%

10

0%

99
%

99

%

99
%

10

0%

98
%

97

Se
ria

l
0%

10

0%

98
%

99

%

98
%

91

%

96
%

Li
ne

ar
Co

m
pl

ex
ity

10

0%

99
%

10

0%

10
0%

10

0%

10
0%

10

0%

Ta
bl

e
6.

5
A

dd
iti

on
al

 C
om

pa
ri

so
ns

 o
f a

ll
R

N
G

s

RA
N

D
U

[2

4]
(P

RN
G

)
D

ig
ile

nt

A
D

2
(P

RN
G

)

uR
an

do
m

 [4
]

(T
N

RG
 +

PR

N
G

)

RD
R

A
N

D

[3
](

TN
RG

 +
PR

N
G

)

St
ol

le
r R

N
G

(T

RN
G

)
Jia

ng
 e

t a
l.

[2
6]

(T

RN
G

)*

Ra
i e

t a
l.

[2
7]

(T

RN
G

)*

N
um

be
r o

f s
eq

ue
nc

es

as
se

ss
ed

 (l
en

gt
h

10
0M

bi

ts
)

10
0

10
0

10
0

10
0

10
0

11

12

D
eb

ia
sin

g
N

ec
es

sa
ry

?
N

o
N

o
N

o
N

o
Y

es

Y
es

Y

es

Ti
m

e
to

 c
ol

le
ct

ra

nd
om

 sa
m

pl
es

2

se
co

nd
s

2
m

in
ut

es

2
se

co
nd

s
2

se
co

nd
s

8
ho

ur
s

8
ho

ur
s

8
ho

ur
s

98

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

7.1.1 A TRNG was successfully designed and implemented

The conclusion of this research shows that memristors may be used in a self-

oscillating multivibrator circuit to successfully generate truly random numbers.

7.1.2 Importance of Power Supply Isolation

Throughout the extensive development and testing of the circuit it was found that

one primary factor that can lead to non-random output from the TRNG is supply noise.

Power supply ripple can be observed due to the instantaneous high current observed

when the multivibrator circuit switches from one mono-stable state to the other. This

supply ripple from one oscillator switching can lead to other oscillators that share the

same supply switching at the same time. Figures 7.1 and 7.2 show this phenomenon

occurring between two multivibrator circuits.

In Figure 7.1 persistent samples of the output of two different memristor

multivibrator oscillators which normally oscillate at different frequencies are shown

correlating with one another because of a 100Ω resistor placed in series with the power

supply. The small power supply voltage droop caused by the 100Ω resistor is enough to

cause the oscillators to often switch together with each other.

Figure 7.2 shows the exact same two oscillators with no resistor in series with the

power supply. It can be clearly seen that there is practically no visible correlation

99

between the two oscillators in the fact that the second oscillator does not consistently

switch when the first oscillator switches.

In both images, the oscillators are shown vertically separated. The scope is always

triggered on the falling edge of the top oscillator. Also note the reduced peak-to-peak

swing of both oscillators when the 100Ω resistors are placed in series with the power

supplies due to the IR droop caused by the current draw of the op-amp.

Figure 7.1 Persistence plot with poor power supply for both oscillators

Figure 7.2 Persistence plot with clean supplies for both oscillators

100

This issue was solved on my final circuit design by using the Waveforms outputs

to power the slow oscillators and the AD2 V+ and V- power supplies to power the fast

oscillator for the TRNG. This minimized the chances of any correlation between the slow

and fast oscillators and significantly improved the randomness of the TRNG.

This exact same problem is present on other TRNG circuits that utilize oscillators

to capture entropy. For these designs, careful consideration must be taken to ensure a

clean power supply, especially when multiple supplies are not available, or when

implementing the design as an integrated circuit. While supply noise could be another

source of entropy (for example a TRNG implemented on an integrated circuit with a

CPU), sensitivity to power noise can also be a liability, especially if the noise is

repetitive. It may be possible for an attacker to compromise the TRNG through a side-

channel attack by either injecting noise on the power supply that may cause the oscillator

to oscillate in a non-random fashion, or by measuring the power supply noise and using

this information to predict the output of the TRNG.

The concerns of power supply noise apply to any oscillator or set of oscillators

used to implement a TRNG, however not all types of oscillators may be impacted as

severely as a multivibrator circuit. A multivibrator circuit may be impacted more severely

than other types of oscillators specifically because there is a long RC time delay that

causes the circuit to switch from one state to the other state. When the RC voltage at the

negative input of the op-amp is close to the switching threshold (0.5 VSUPPLY) input at the

positive input of the op-amp, a slight amount of supply noise can cause the threshold to

droop and prematurely cause a transition to the other state.

101

Figure 7.3 Power supply noise impact on Multivibrator

Figure 7.3 shows how voltage noise on the positive power supply can cause the

output of the multivibrator oscillator to switch early. Power supply noise created by one

multivibrator can inject noise on another oscillator. In the worst case this can cause the

two oscillators to sync perfectly.

7.1.3 SPICE Simulations Alone are not Sufficient for Characterizing a TRNG

For many reasons such as using an ideal power supply it is possible for SPICE

simulations of TRNGs to output a truly random string of numbers. In simulations there

are many factors that are ideal, from the noise in the circuit elements themselves (noise

generation in a SPICE simulation is an example usage of a PRNG), to the ideality of

power supplies and lack of other types of interactions, deterministic noise, and distortions

that are present in a non-ideal circuit. It was observed in the literature survey that often a

TRNG implementation will perform flawlessly in simulation but will fail to pass the

NIST randomness tests once implemented in hardware. In addition, it is very inefficient

to run analog simulations that capture an output of sufficient length for testing. When

possible in this paper, 100 samples of length 1 million bits were tested (total length 100

102

million bits). This requires a lot of time or a really powerful machine to simulate an

analog circuit long enough to generate 100 million bits of output.

7.2 Future Work

7.2.1 Potential Improvements to Final RNG Circuit

There are several potential improvements to the final RNG circuit. One

optimization would be to use a ring oscillator with an RC delay element instead of a

multivibrator for the fast oscillator. This has many advantages. The main advantage is

that an op-amp is not required for a ring oscillator. There are many benefits of not having

an op-amp such as simplicity of the circuit design and most likely a faster output slew

rate (output will be closer to a square wave and not a sawtooth or triangle wave at high

frequencies that you get with an op-amp). A ring oscillator design is also probably lower

power than a multivibrator design that uses an op-amp.

Another potential improvement in the design would be to provide better power

supply isolation between the two memristor multivibrators. It is not as much of a concern

for one of the memristor multivibrators to interfere with the other, as correlation between

these two oscillators is not as detrimental to the randomness of the design as a correlation

between either of these oscillators and the fast resistor multivibrator. There are a few

options to fix this. One method may be to use a device that has multiple power supply

rails. Another option would be to design in proper power supply isolation between the

two multivibrators. In order to accomplish this each multivibrator needs to have its own

discrete op-amp integrated circuit. Both solutions increase design complexity. There is a

large penalty for doing this on a PCB, but this would not be as complicated if

implemented in silicon as an integrated circuit.

103

7.2.2 Improvements to Data Collection Circuit Design

The purpose of the data collection circuit is to increase the amount of data that

can be collected by taking a serial stream of data and parallelizing it. The data collection

circuit design has a design flaw in that there is not a latch to hold the output from the

serial to parallel data converter. Instead, the parallel output from the shift register

continues to shift data throughout the entire clock period of the slow clock that toggles

data into the AD2.

There are several risks as a result of this design oversight. The first issue is that

the output from the shift register continues to toggle as the Digilent AD2 board is

sampling the data. In this case, it may be possible that some bits are missed by the data

collection circuit, even if the Nyquist sample rate is used. This could also lead to a

violation of setup or hold times for the AD2. Figure 7.4 shows how some bits may be

missed if data clock has jitter that causes it to operate at a significantly different

frequency than the AD2 sample clock. It can be seen that some bits are wasted in the 3rd

sample of the AD2 clock as a result of the data clock running faster than the Nyquist

frequency. Similarly, some bits are wasted in the 4th sample of the AD2 clock as a result

of the AD2 clock not sampling exactly on the rising edge of the data clock.

It is unlikely for the randomness of the output bitstream to change significantly as

a result of this phenomenon. If anything, it should increase the randomness of the

resultant datastream as some bits or samples will randomly be thrown out. In order to test

this, one could oversample the output at a very high frequency and test that sequence for

randomness. Then take the oversampled output and write software to convert it to a lower

104

sample rate that and compare the results. This is a little difficult to test because the under

sampled results will generate a shorter sequence of bits.

Figure 7.4 Missed samples with current data collection circuit design

In addition, a latch can be timed to latch data on the falling edges of the slow

oscillator clock in order to improve data integrity by giving sufficient margin for setup

and hold times. In the current circuit there is not much thought given to the setup and

hold times of the components in the circuit. At slow data collection frequencies this is not

a large problem, but in order to make the circuit more robust, reliable, and have the

ability to operate at a higher speed it would be prudent to spend some additional time

here.

The proper way to implement this circuit is to use a x8 latch circuit (such as the

Texas Instruments TPIC6B237) could be attached to the outputs of the serial-in-parallel-

out shift register. This circuit would sample the output of the shift register exactly at the

rising edge of the clock and hold the same value until the next rising edge.

7.2.3 Characterization of the Circuit with Different Types of Devices

More potential future work would be to characterize the TRNG circuit with

different types of devices (memristors or other devices). All of the characterization for

105

this thesis project was done on a W-Based device. There are many other types of

memristor devices readily available (SDC devices such as C, Sn, Cr-based devices),

among many others. Some devices may not be as tolerant to high voltages and currents as

the W-based devices used in this thesis project. The basic circuit design should still

suffice, but devices will need to operate at a lower power supply voltage or have a

resistor in series with the memristor to limit current. A resistor could also be used in the

multivibrator oscillator in place of a memristor.

7.2.4 Fabrication of the Circuit as a Custom IC Design

Future work could be done to fabricate this circuit as a fully custom designed

chip. In order to fabricate this design as a chip several things must be considered:

1. Op-amp design and linearity is not crucial to the operation of the circuit, however

design needs to be good enough to eliminate significant amounts of ringing of

other types of distortion. There is no need to design a complex and low-distortion

op-amp output stage. In fact, distortion could add or amplify noise in this type of

circuit.

2. An additional benefit of using a custom-design op-amp is the fact that the design

can be optimized for low power. For example, a design that supports a lower

supply voltage can be implemented. In addition, rail-to-rail voltage output swing

could be sacrificed to improve power efficiency in the op-amp circuit because it is

not needed for this circuit to function properly.

3. Power supply design is very crucial to successfully designing the circuit. If the

same voltage source is to be used for the supplies for both the slow and fast

oscillators, then careful attention must be payed to the design of regulator circuits

106

to ensure that there is no noise or interference between the two supplies.

Alternatively, two different voltage sources could be provided to the chip or

generated on the chip.

7.2.5 Alternative Multivibrator Circuit Topologies

Figure 7.5 shows three additional alternative circuit topologies. In reality, there

are many different potential topologies as any resistor or combination of resistors could

be replaced with memristors.

Figure 7.5 Three alternative circuit topologies for TRNG

There are several potential advantages of replacing the resistors attached to the

noninverting input of the op-amp as opposed to the circuit topology used in the TRNG

presented in this paper.

One advantage is that less voltage is applied over one or both memristors when

they are on the noninverting input of the op-amp. When the multivibrator switches, the

capacitor is further from ground and leads to a higher potential than simply VO over the

memristor. In the designs shown in figure 7.5, the voltage is split between the memristors

(each memristor will see about ½ VO), or current is limited if a memristor plus resistor is

used. This could allow or necessitate the usage of a higher supply voltage, which could

107

be an advantage or disadvantage. The circuits (A) or (B) would capture entropy in a very

similar manner to the design proposed by Jiang et al.

Another potential advantage is that as more memristor devices are added to the

final circuit, there is the potential to capture more noise.

One thing that must be carefully considered during circuit design is the frequency

at which the circuit operates. Resistor and capacitor values mush be chosen such that the

circuit operates at a frequency that is similar to the typical transition delay between states

of the memristor. This is crucial to capture entropy of the circuit. If the circuit is very

slow or very fast, then the memrsitor will always be in the same state by the time the

capacitor is charged or discharged and there will be less entropy generated by the circuit.

Another thing which must be considered in this circuit is that the previous state of

the circuit (the voltage on the capacitor) can impact the next state of the multivibrator. If

the previous state switched quickly because the memristor changed voltage quickly, then

the voltage on the capacitor will be lower, which will make the transition to the state after

quicker too. This could cause a correlation (and thus a loss of randomness) from one

oscillation of the multivibrator to the next.

108

REFERENCES

[1] C. N. Landon, R. G. Mende, and S. Sisodiya, “Method for seeding a pseudo-

random number generator with a cryptographic hash of a digitization of a chaotic

system,” 24-Mar-1998.

[2] Y. Wang, W.-K. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan, “Flash

Memory for Ubiquitous Hardware Security Functions: True Random Number

Generation and Device Fingerprints,” 2012 IEEE Symposium on Security and

Privacy, 2012.

[3] G. Cox, C. Dike, and D. J. Johnston, “Intels digital random number generator

(DRNG),” 2011 IEEE Hot Chips 23 Symposium (HCS), 2011.

[4] “urandom(4) - Linux man page,” urandom(4): kernel random number source

devices - Linux man page. [Online]. Available:

https://linux.die.net/man/4/urandom. [Accessed: 23-Sep-2020].

[5] L. Chua, “Memristor-The missing circuit element,” IEEE Transactions on Circuit

Theory, vol. 18, no. 5, pp. 507–519, 1971.

[6] L. Chua, “Everything You Wish to Know About Memristors But Are Afraid to

Ask,” Radioengineering, vol. 24, no. 2, pp. 319–368, 2015.

[7] L. O. Chua, “The Fourth Element,” Proceedings of the IEEE, vol. 100, no. 6, pp.

1920–1927, 2012.

[8] L. Chua, “If it’s pinched it’s a memristor,” Semiconductor Science and

Technology, vol. 29, no. 10, p. 104001, 2014.

[9] K. A. Campbell, “Self-directed channel memristor for high temperature

operation,” Microelectronics Journal, vol. 59, pp. 10–14, 2017.

109

[10] “M SDC Memristor 8 Discrete 16 DIP,” Knowm Inc. [Online]. Available:

https://knowm.com/collections/frontpage/products/m-sdc-memristor-8-discrete-

16-dip. [Accessed: 23-Sep-2020].

[11] L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B. Barker,

S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks, N. A. Heckert, J. F. Dray, and

S. Vo, “A statistical test suite for random and pseudorandom number generators

for cryptographic applications,” 2010.

[12] I. T. L. Computer Security Division, “NIST SP 800-22: Documentation and

Software - Random Bit Generation: CSRC,” CSRC. [Online]. Available:

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software.

[Accessed: 23-Sep-2020].

 [13] “Welcome to Box.org!,” Oracle VM VirtualBox. [Online]. Available:

https://www.virtualbox.org/. [Accessed: 23-Sep-2020].

[14] “Mounting VirtualBox shared folders on Ubuntu Server 16.04 LTS,” Gist.

[Online]. Available:

https://gist.github.com/estorgio/1d679f962e8209f8a9232f7593683265.

[Accessed: 23-Sep-2020].

[15] M. Dabacan, “Analog Discovery 2 Reference Manual,” Analog Discovery 2

Reference Manual [Digilent Documentation]. [Online]. Available:

https://reference.digilentinc.com/reference/instrumentation/analog-discovery-

2/reference-manual. [Accessed: 23-Sep-2020].

[16] “WaveForms - Digilent” Digilent. [Online]. Available:

https://store.digilentinc.com/waveforms-download-only/. [Accessed: 23-Sep-

2020].

[17] H. Nyquist, “Certain topics in telegraph transmission theory,” Proceedings of the

IEEE, vol. 90, no. 2, pp. 280–305, 2002.

[18] J. von Neumann, “Various Techniques Used in Connection with Random Digits,”

in Monte Carlo Method, vol. 12, Washing, DC: US Government Printing Office,

1951, pp. 36–38.

110

[19] P. Crowley, “Generating random binary data from Geiger counters,”

ciphergoth.org: Generating random binary data from Geiger counters. [Online].

[20] M. Hamburg, P. Kocher, and M. E. Marson, Analysis of Intel's Ivy Bridge Digital

random Number Generator, Cryptography Research, Inc., 2012.

[21] “Intel® Digital Random Number Generator (DRNG) Software

Implementation...,” Intel. [Online]. Available:

https://software.intel.com/content/www/us/en/develop/articles/intel-digital-

random-number-generator-drng-software-implementation-guide.html. [Accessed:

23-Sep-2020].

[22] “The DRNG Library and Manual,” Intel. [Online]. Available:

https://software.intel.com/content/www/us/en/develop/articles/the-drng-library-

and-manual.html. [Accessed: 23-Sep-2020].

[23] IBM application package: System/360 scientific subroutine package; version III;

programmers manual; program number 360A-CM-03X. White Plains, NY: IBM

Technical Publications Dept., 1968. P 77.

[24] G. Marsaglia, “Random Numbers Fall Mainly In The Planes,” Proceedings of the

National Academy of Sciences, vol. 61, no. 1, pp. 25–28, 1968.

[25] random(4) - Linux manual page. [Online]. Available: https://man7.org/linux/man-

pages/man4/random.4.html. [Accessed: 23-Sep-2020].

[26] H. Jiang, D. Belkin, S. E. Savel’Ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C.

Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia, “A novel true random

number generator based on a stochastic diffusive memristor,” Nature

Communications, vol. 8, no. 1, 2017.

[27] V. K. Rai, S. Tripathy, and J. Mathew, “Memristor based Random Number

Generator: Architectures and Evaluation,” Procedia Computer Science, vol. 125,

pp. 576–583, 2018.

[28] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams. “The missing

memristor found,” Nature, 2008.

111

[29] S. Robson, “A Ring Oscillator Based Truly Random Number Generator,” 2013.

[Online]. Available:

https://uwspace.uwaterloo.ca/bitstream/handle/10012/7911/Robson_Stewart.pdf?s

equence=1. [Accessed: 23-Sep-2020].

[30] S. P. Adhikari, M. P. Sah, H. Kim, and L. O. Chua, “Three Fingerprints of

Memristor,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

60, no. 11, pp. 3008–3021, 2013.

[31] “Sunstone Circuits Printed Circuit Boards,” Sunstone Circuits Printed Circuit

Boards | Sunstone.com. [Online]. Available: https://www.sunstone.com/.

[Accessed: 23-Sep-2020].

[32] “PCB123® ,” PCB123LP. [Online]. Available:

https://www.sunstone.com/pcb123-lp. [Accessed: 23-Sep-2020].

[33] “World's Largest Selection of Electronic Components Available for Immediate

Shipment!®,” DigiKey Electronics - Electronic Components Distributor.

[Online]. Available: https://www.digikey.com/. [Accessed: 23-Sep-2020].

[34] P. A. A. Lewis, A. S. Goodman, and J. M. Miller, “A pseudo-random number

generator for the System/360,” IBM Systems Journal, vol. 8, no. 2, pp. 136–146,

1969.

112

APPENDIX A

113

This section of the appendix contains the Perl scripts used to aide in data

collection.

csv_bin_to_datastream.pl

The purpose of this script is to convert a CSV file output with a single bit binary

output per line from the Digilent AD2 to a binary bitstream file that can be analyzed by

the STS assess application. This script has the option to whiten the output data by

XORing with the RANDU PRNG.

Location

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing

Usage

Perl csv_bin_to_datastream.pl <infiles> <outfile.bin> <whitening>

Code

#!/usr/bin/perl
use strict;
use warnings;

die "Not enough arguments. Script requires a list of input files and one output file
and a 0/1 toggle for RANDU whitening." if @ARGV < 3;

my $outfile = $ARGV[-2];
my $whitening = $ARGV[-1];
my @infiles = @ARGV;
@infiles = splice(@infiles, 0, -2);

die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin';

fix issue where csv data file is overwritten when I forget to give a unique output
file name.
foreach my $infile (@infiles){
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile;
}

open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!";

Variables for RANDU whitening
my $seed = 31;
my $b = 65539;
my $mod = 4294967296;

Variables for manipulating random sequence
my $num1 = 0;
my $count = 0;

114

my $out = 0x00;
my $pos = 0;
my $numlines = 0;
my $fc = 0;

variables for deserializing stuff
my $b0 = 0;
my $b1 = 0;
my $c = 0;

Iterate over all input files and convert to binary and single output file
foreach my $infile (@infiles)
{
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!";

 while(my $line = <$FI>) {
 last if $line =~ ',Data';
 }

 $fc++;
 print ("Working on file $infile\n");
 while(my $line = <$FI>) {
 if($line =~ ',1') {
 $b0 = 1;
 }
 else {
 $b0 = 0;
 }
 $out = $out + ($b0 << $pos);
 $pos = $pos + 1;

 # If an entire 8-bit number has been generated print it out and count
the 1's and 0's
 if($pos == 8) {
 if($whitening) { # Whiten sequence with RANDU?
 $seed = $seed*$b % $mod; # RANDU whitening
 $out = $out ^ ($seed & 0xFF); # RANDU whitening
 }
 print $FO pack('C', $out);
 # printf("0x%2x\n",$out);
 $count++;
 if(($out & 0x01) == 0x01){$num1++;}
 if(($out & 0x02) == 0x02){$num1++;}
 if(($out & 0x04) == 0x04){$num1++;}
 if(($out & 0x08) == 0x08){$num1++;}
 if(($out & 0x10) == 0x10){$num1++;}
 if(($out & 0x20) == 0x20){$num1++;}
 if(($out & 0x40) == 0x40){$num1++;}
 if(($out & 0x80) == 0x80){$num1++;}
 $pos = 0;
 $out = 0;
 }
 }
 $numlines += $.;
 print "$. lines Parsed!\n";
 close $FI;
}

my $numbits = $count * 8; # total number of bits found
my $num0 = $numbits - $num1; # number of zeros
my $p0 = 100 * $num0 / $numbits; # percent zeros

115

my $p1 = 100 * $num1 / $numbits; # percent ones
my $et = time - $^T; # elapsed time the script ran
if($et == 0) {$et = 1}; # Make sure elapsed time is not 0
my $lps = $numlines/$et; # lines per second
print "\nFinished parsing all files in $et seconds!\n";
print "Parsing a total of $numlines lines or $lps lines per second!\n";
print "File size is $count bytes or $numbits bits\n";
print "Found $num0 0's and $num1 1's\n";
print "$p0 percent 0's and $p1 percent 1's\n\n";

close $FO;

exit(0);

116

csv_to_datastream.pl

The purpose of this script is to convert a CSV file output with 8 bits (1 byte) of

data per line from the Digilent AD2 to a binary bitstream file that can be analyzed by the

STS assess application. This script has the option to whiten the output data by XORing

with the RANDU PRNG.

Location

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing

Usage

Perl csv_to_datastream.pl <infiles> <outfile.bin> <whitening>

Code

#!/usr/bin/perl
use strict;
use warnings;

die "Not enough arguments. Script requires a list of input files and one output file
and a 0/1 toggle for RANDU whitening." if @ARGV < 3;

my $outfile = $ARGV[-2];
my $whitening = $ARGV[-1];
my @infiles = @ARGV;
@infiles = splice(@infiles, 0, -2);

die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin';

fix issue where csv data file is overwritten when I forget to give a unique output
file name.
foreach my $infile (@infiles){
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile;
}
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!";

Variables for RANDU whitening
my $seed = 31;
my $b = 65539;
my $mod = 4294967296;

Variables for manipulating random sequence
my $clk = 1;
my $data = 0xFF;
my $num1 = 0;
my $count = 0;
my $numlines = 0;
my $fc = 0;
my $out = "0xQQ";

117

foreach my $infile (@infiles)
{
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!";
 $fc++;
 print ("Working on file $infile\n");
 while(my $line = <$FI>) {

 if($line =~ /,h(\w\w)/) {
 $out = hex($1);
 if($whitening) { # Whiten sequence with RANDU?
 $seed = $seed*$b % $mod; # RANDU whitening
 $out = $out ^ ($seed & 0xFF); # RANDU whitening
 }
 print $FO pack('C', $out);
 $count++;
 if(($out & 0x01) == 0x01){$num1++;}
 if(($out & 0x02) == 0x02){$num1++;}
 if(($out & 0x04) == 0x04){$num1++;}
 if(($out & 0x08) == 0x08){$num1++;}
 if(($out & 0x10) == 0x10){$num1++;}
 if(($out & 0x20) == 0x20){$num1++;}
 if(($out & 0x40) == 0x40){$num1++;}
 if(($out & 0x80) == 0x80){$num1++;}
 }
 }
 $numlines += $.;
 print "$. lines Parsed!\n";
 close $FI;
}

my $numbits = $count * 8; # total number of bits found
my $num0 = $numbits - $num1; # number of zeros
my $p0 = 100 * $num0 / $numbits; # percent zeros
my $p1 = 100 * $num1 / $numbits; # percent ones
my $et = time - $^T; # elapsed time the script ran
if($et == 0) {$et = 1}; # Make sure elapsed time is not 0
my $lps = $numlines/$et; # lines per second
print "\nFinished parsing all $fc file(s) in $et seconds!\n";
print "Parsing a total of $numlines lines or $lps lines per second!\n";
print "File size is $count bytes or $numbits bits\n";
print "Found $num0 0's and $num1 1's\n";
print "$p0 percent 0's and $p1 percent 1's\n\n";

close $FO;

exit(0);

118

csv_to_datastream_von_neumann.pl

The purpose of this script is to convert a CSV file output from the Digilent AD2

to a binary bitstream file that can be analyzed by the STS assess application. This script

also applies von Neumann debiasing to the output. This script has the option to whiten

the output data by XORing with the RANDU PRNG.

Location

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing

Usage

Perl csv _to_datastream_von_neumann.pl <infiles> <outfile.bin> <whitening>

Code

#!/usr/bin/perl
use strict;
use warnings;

die "Not enough arguments. Script requires a list of input files and one output file
and a 0/1 toggle for RANDU whitening." if @ARGV < 3;

my $outfile = $ARGV[-2];
my $whitening = $ARGV[-1];
my @infiles = @ARGV;
@infiles = splice(@infiles, 0, -2);

die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin';

fix issue where csv data file is overwritten when I forget to give a unique output
file name.
foreach my $infile (@infiles){
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile;
}

open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!";

Variables for RANDU whitening
my $seed = 31;
my $b = 65539;
my $mod = 4294967296;

Variables for manipulating random sequence
my $num1 = 0;
my $count = 0;
my $out = 0x00;
my $pos = 0;
my $numlines = 0;
my $fc = 0;

119

Iterate over all input files and convert to binary and single output file
foreach my $infile (@infiles)
{
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!";
 $fc++;
 print ("Working on file $infile\n");
 while(my $line = <$FI>) {
 if($line =~ /,h(\w\w)/) {
 # Look at every pair of bits (4 pairs per byte)
 for(my $bit = 0; $bit < 8; $bit += 2) {
 my $c = chr(hex($1));
 my $b0 = (ord($c) >> $bit & 0x01);
 my $b1 = (ord($c) >> ($bit + 1) & 0x01);
 # only put a bit in the sequence in B0 and B1 are
different
 if($b0 != $b1) {
 $out = $out + ($b0 << $pos);
 $pos = $pos + 1;
 }

 # If an entire 8-bit number has been generated print it
out and count the 1's and 0's
 if($pos == 8) {
 if($whitening) { # Whiten sequence with RANDU?
 $seed = $seed*$b % $mod; # RANDU whitening
 $out = $out ^ ($seed & 0xFF); # RANDU
whitening
 }
 print $FO pack('C', $out);
 $count++;
 if(($out & 0x01) == 0x01){$num1++;}
 if(($out & 0x02) == 0x02){$num1++;}
 if(($out & 0x04) == 0x04){$num1++;}
 if(($out & 0x08) == 0x08){$num1++;}
 if(($out & 0x10) == 0x10){$num1++;}
 if(($out & 0x20) == 0x20){$num1++;}
 if(($out & 0x40) == 0x40){$num1++;}
 if(($out & 0x80) == 0x80){$num1++;}
 $pos = 0;
 $out = 0;
 }
 }
 }
 }
 $numlines += $.;
 print "$. lines Parsed!\n";
 close $FI;
}

my $numbits = $count * 8; # total number of bits found
my $num0 = $numbits - $num1; # number of zeros
my $p0 = 100 * $num0 / $numbits; # percent zeros
my $p1 = 100 * $num1 / $numbits; # percent ones
my $et = time - $^T; # elapsed time the script ran
if($et == 0) {$et = 1}; # Make sure elapsed time is not 0
my $lps = $numlines/$et; # lines per second
print "\nFinished parsing all files in $et seconds!\n";
print "Parsing a total of $numlines lines or $lps lines per second!\n";
print "File size is $count bytes or $numbits bits\n";
print "Found $num0 0's and $num1 1's\n";
print "$p0 percent 0's and $p1 percent 1's\n\n";

120

close $FO;

exit(0);

121

datastream_to_datastream_prng.pl

The purpose of this script is to convert binary datastreams to a binary datastream

with the input stream seeding a PRNG that generates the output datastream.

Location

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing

Usage

Perl datastream_to_datastream_prng.pl <infiles.bin> <outfile.bin>

Code

#!/usr/bin/perl
use strict;
use warnings;

README!!! ##
DATASTREAM TO DATASTREAM PRNG
The purpose of this perl script is to take a binary datastream and use it to seed a
PRNG. The PRNG used
is an LCG proposed by Lewis, Goodman, and Miller. I = a*I % m. a = 7^5 = 16807. M =
2^31-1 = 2147483647.
32 binary bits are read and used to initially seed the RNG. The 16 LSBs are written
to the output file
for 128 iterations before the PRNG is re-seeded. 64 bytes are written to the output
file for every byte
read from the input file.

die "Not enough arguments. Script requires a list of input files and one output file."
if @ARGV < 2;

my $outfile = $ARGV[-1];
my @infiles = @ARGV;
@infiles = splice(@infiles, 0, -1);

die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin';

fix issue where csv data file is overwritten when I forget to give a unique output
file name.
foreach my $infile (@infiles){
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile;
}

open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!";

Variables for manipulating random sequence
my $num1 = 0;
my $count = 0;
my $numlines = 0;
my $fc = 0;

Variables for PRNG (Lewis, Goodman, Miller)

122

my $a = 16807; # 7^5
my $m = 2147483647; # 2^31 - 1

Variables for save_data sub;
my $dchar = 0;
my $dcount = 0;

Iterate over all input files and convert to binary and single output file
foreach my $infile (@infiles)
{
 open(my $FI, '<:raw', $infile) or die "Could not open infile $infile $!";
 $fc++;
 print ("Working on file $infile\n");
 while(1) { # read in the file
 my $bytes_read = read $FI, my $bytes, 4; # read 1 byte at a time

 last if($bytes_read < 4); # until there are no more bytes to read
 my $data = unpack('L', $bytes); # unpack the 4 bytes into a long

 # Seed the PRNG and generate some number (128) of samples
 for(my $num = 0; $num < 128; $num++)
 {
 $data = ($a * $data) % $m;
 my $temp_data = $data; # create new var to preserve current seed

 # shift out every bit and write it to the file
 for(my $shift = 0; $shift < 16; $shift ++)
 {
 my $bit = $temp_data & 0x00000001;
 &save_data($bit);
 $temp_data = $temp_data >> 1;
 }
 }
 }
 close $FI;
}

my $numbits = $count * 8; # total number of bits found
my $num0 = $numbits - $num1; # number of zeros
my $p0 = 100 * $num0 / $numbits; # percent zeros
my $p1 = 100 * $num1 / $numbits; # percent ones
my $et = time - $^T; # elapsed time the script ran
if($et == 0) {$et = 1}; # Make sure elapsed time is not 0
my $lps = $numlines/$et; # lines per second
print "\nFinished parsing all files in $et seconds!\n";
print "Parsing a total of $numlines lines or $lps lines per second!\n";
print "File size is $count bytes or $numbits bits\n";
print "Found $num0 0's and $num1 1's\n";
print "$p0 percent 0's and $p1 percent 1's\n\n";

close $FO;

exit(0);

sub to save data to a file.
sub save_data()
{
 my ($data) = @_;
 # print "$data\n"; # for debug

123

 # add the number to the char;
 $dchar += $data * (0x01 << $dcount);
 $dcount += 1;

 if($dcount == 8) {
 # printf ("dchar=0x%2x\n", $dchar); # for debug
 print $FO pack('C', $dchar);
 $count++;
 if(($dchar & 0x01) == 0x01){$num1++;}
 if(($dchar & 0x02) == 0x02){$num1++;}
 if(($dchar & 0x04) == 0x04){$num1++;}
 if(($dchar & 0x08) == 0x08){$num1++;}
 if(($dchar & 0x10) == 0x10){$num1++;}
 if(($dchar & 0x20) == 0x20){$num1++;}
 if(($dchar & 0x40) == 0x40){$num1++;}
 if(($dchar & 0x80) == 0x80){$num1++;}
 $dcount = 0;
 $dchar = 0;
 }
}

124

datastream_to_datastream_von_neumann.pl

The purpose of this script is to convert binary datastreams to a binary datastream

with von Neumann whitening applied.

Location

sstoller_thesis_final_writeup\RNGs\AD2_Post-Processing

Usage

Perl datastream_to_datastream_von_neumann.pl <infiles.bin> <outfile.bin>

<whitening>

Code

#!/usr/bin/perl
use strict;
use warnings;

README!!! ##
DATASTREAM TO DATASTREAM VON NEUMANN
The purpose of this perl script is to take a binary datastream and perform Von
Neumann debiasing on it.

die "Not enough arguments. Script requires a list of input files and one output file."
if @ARGV < 2;

my $outfile = $ARGV[-1];
my @infiles = @ARGV;
@infiles = splice(@infiles, 0, -1);

die "Error: Specificed output file is not .bin file" unless $outfile =~ '.bin';

fix issue where csv data file is overwritten when I forget to give a unique output
file name.
foreach my $infile (@infiles){
 die "ERROR: Infile is same as outfile.\n" if $infile eq $outfile;
}

open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!";

Variables for manipulating random sequence
my $num1 = 0;
my $count = 0;
my $numlines = 0;
my $fc = 0;

Variables for save_data sub;
my $dchar = 0;
my $dcount = 0;

Iterate over all input files and convert to binary and single output file

125

foreach my $infile (@infiles)
{
 open(my $FI, '<:raw', $infile) or die "Could not open infile $infile $!";
 $fc++;
 print ("Working on file $infile\n");
 while(1) { # read in the file
 my $bytes_read = read $FI, my $bytes, 1; # read 1 byte at a time
 last if($bytes_read == 0); # until there are no more bytes to read
 my $data = unpack('C', $bytes);
 # print "$data\n" if($data != 0); # for debug

 # unpack it into bits 0 or 1
 my $b0 = ($data & 0x01) >> 0;
 my $b1 = ($data & 0x02) >> 1;
 my $b2 = ($data & 0x04) >> 2;
 my $b3 = ($data & 0x08) >> 3;
 my $b4 = ($data & 0x10) >> 4;
 my $b5 = ($data & 0x20) >> 5;
 my $b6 = ($data & 0x40) >> 6;
 my $b7 = ($data & 0x80) >> 7;

 # print("$data, $b7, $b6, $b5, $b4, $b3, $b2, $b1, $b0\n"); # for debug

 # write the value of the 1st bit if the bits are not the same (e.g.
there is a transition)
 if($b0 != $b1) {&save_data($b0);}
 if($b2 != $b3) {&save_data($b2);}
 if($b4 != $b5) {&save_data($b4);}
 if($b6 != $b7) {&save_data($b6);}
 }
 close $FI;
}

my $numbits = $count * 8; # total number of bits found
my $num0 = $numbits - $num1; # number of zeros
my $p0 = 100 * $num0 / $numbits; # percent zeros
my $p1 = 100 * $num1 / $numbits; # percent ones
my $et = time - $^T; # elapsed time the script ran
if($et == 0) {$et = 1}; # Make sure elapsed time is not 0
my $lps = $numlines/$et; # lines per second
print "\nFinished parsing all files in $et seconds!\n";
print "Parsing a total of $numlines lines or $lps lines per second!\n";
print "File size is $count bytes or $numbits bits\n";
print "Found $num0 0's and $num1 1's\n";
print "$p0 percent 0's and $p1 percent 1's\n\n";

close $FO;

exit(0);

sub to save data to a file.
sub save_data()
{
 my ($data) = @_;
 # print "$data\n"; # for debug

 # add the number to the char;
 $dchar += $data * (0x01 << $dcount);
 $dcount += 1;

126

 if($dcount == 8) {
 # printf ("dchar=0x%2x\n", $dchar); # for debug
 print $FO pack('C', $dchar);
 $count++;
 if(($dchar & 0x01) == 0x01){$num1++;}
 if(($dchar & 0x02) == 0x02){$num1++;}
 if(($dchar & 0x04) == 0x04){$num1++;}
 if(($dchar & 0x08) == 0x08){$num1++;}
 if(($dchar & 0x10) == 0x10){$num1++;}
 if(($dchar & 0x20) == 0x20){$num1++;}
 if(($dchar & 0x40) == 0x40){$num1++;}
 if(($dchar & 0x80) == 0x80){$num1++;}
 $dcount = 0;
 $dchar = 0;
 }
}

127

randu.pl

The RANDU PRNG was implemented in a software Perl script. The script is very

simple and writes a binary data file of 100M bits length. The script has variable that

allow the user to change the multiplier, modulus, and starting seed for the PRNG.

Location

sstoller_thesis_final_writeup\RNGs\RANDU

Usage

perl randu.pl

Code

#!/usr/bin/perl
use strict;
use warnings;

my $outfile = "output.bin";
my $length = int(100000000/32); # generate 100M bits (each "seed" is 32 bits)
my $seed = 13;

my $multiplier = 65539;
my $modulus = 2147483648;

open(my $FO, '>', $outfile) or die "Could not open file $outfile $!";
open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!";
for(my $n=0; $n<$length; $n++)
{
 # printf $FO "%032b\n", $seed;
 print $FO pack('L', $seed);
 # printf "%08x\n", $seed;
 $seed = $seed * $multiplier % $modulus;
}
close $FO;

rdrand_to_datastream.pl

rdrand_to_datastream.pl was used to convert the text output from the rdrand

generator to a binary bitstream that the STS assess application can read in and test for

randomness. Multiple input files can be read. A single binary file is output.

Location

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\perl

128

Usage

Perl rdrand_to_datastream.pl <infiles > <outfile.bin>

Code

#!/usr/bin/perl
use strict;
use warnings;

die "Not enough arguments. Script requires a list of input files and one output file."
if @ARGV < 2;

my $outfile = $ARGV[-1];
my @infiles = @ARGV;
@infiles = splice(@infiles, 0, -1);

open(my $FO, '>:raw', $outfile) or die "Could not open outfile $outfile $!";

my $clk = 1;
my $data = 0xFF;
my $num1 = 0;
my $count = 0;
my $numlines = 0;
my $fc = 0;

foreach my $infile (@infiles)
{
 open(my $FI, '<', $infile) or die "Could not open infile $infile $!";
 $fc++;
 print ("Working on file $infile\n");
 while(my $line = <$FI>) {

 # Example Line: 0x9b1f5269c6cfa127
 if($line =~ /0x(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)(\w\w)/) {
 for my $c($1, $2, $3, $4, $5, $6, $7, $8) {
 print $FO pack('C', hex($c));
 $count++;
 if((hex($c) & 0x01) == 0x01){$num1++;}
 if((hex($c) & 0x02) == 0x02){$num1++;}
 if((hex($c) & 0x04) == 0x04){$num1++;}
 if((hex($c) & 0x08) == 0x08){$num1++;}
 if((hex($c) & 0x10) == 0x10){$num1++;}
 if((hex($c) & 0x20) == 0x20){$num1++;}
 if((hex($c) & 0x40) == 0x40){$num1++;}
 if((hex($c) & 0x80) == 0x80){$num1++;}
 }
 }
 }
 $numlines += $.;
 print "$. lines Parsed!\n";
 close $FI;
}

my $numbits = $count * 8; # total number of bits found
my $num0 = $numbits - $num1; # number of zeros
my $p0 = 100 * $num0 / $numbits; # percent zeros
my $p1 = 100 * $num1 / $numbits; # percent ones
my $et = time - $^T; # elapsed time the script ran

129

my $lps = $numlines/$et; # lines per second
print "\nFinished parsing all $fc file(s) in $et seconds!\n";
print "Parsing a total of $numlines lines or $lps lines per second!\n";
print "File size is $count bytes or $numbits bits\n";
print "Found $num0 0's and $num1 1's\n";
print "$p0 percent 0's and $p1 percent 1's\n\n";

close $FO;

exit(0);

130

testdrng.c

Testdrng.c was used to generate a string of random bits using the Intel RDRAND

TRNG. Code was modified from the Intel RDRAND example code downloadable from

Intel’s website. The code was modified to simply write bits to a binary output file using

the Intel RDRAND instruction. Code was compiled using the Make command. The code

below has been condensed (large sections of comments and unused functions removed

from the code).

Location

sstoller_thesis_final_writeup\RNGs\rdrand\rdrand\drng_samples\testdrng.c

Usage

Compile with make

./assess

Code

#include "drng.h"
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "hexdump.h"

void test_rdrand();

int main (int argc, char *argv[])
{
 unsigned int drng_features;

 /* Determine DRNG support */

 drng_features= get_drng_support();
 if (drng_features == DRNG_NO_SUPPORT) {
 printf("This CPU does not support Intel(R) Data Protection with Secure
Key\n");
 return 1;
 }

 if (drng_features & DRNG_HAS_RDRAND) {
 printf("This CPU supports the RDRAND instruction\n");
 } else {
 printf("This CPU does not support the RDRAND instruction\n");
 }

131

 if (drng_features & DRNG_HAS_RDSEED) {
 printf("This CPU supports the RDSEED instruction\n");
 } else {
 printf("This CPU does not support the RDSEED instruction\n");
 }

 if (drng_features & DRNG_HAS_RDRAND) {
 test_rdrand();
 }

}

void test_rdrand()
{
 unsigned int i, n;
 uint16_t rand16;
 uint32_t rand32, rand32ar[18];
#ifdef __x86_64__
 uint64_t rand64;
#endif
 unsigned char data[1024] __attribute__ ((aligned (16)));
 unsigned char *dp;

#ifdef __x86_64__
 int a;
 for(a=0; a<625000000; a++) {
 if (! rdrand64_step(&rand64)) {
 fprintf(stderr, "rdrand64_step: random number not available\n");
 } else {
 printf("rand64= 0x%016llx\n", (unsigned long long) rand64);
 }
 }
#endif

}

	NOVEL MEMRISTOR BASED TRUE RANDOM NUMBER GENERATOR
	DEDICATION
	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 Methods of Generating Random Numbers
	1.1.1 Pseudo Random Number Generators
	1.1.2 True Random Number Generators
	1.1.3 Capturing Entropy in a Memristor

	1.2 Topics Covered in this Thesis

	CHAPTER TWO: OVERVIEW OF NIST STATISTICAL TEST SUITE
	2.1 NIST Statistical Test Suite
	2.2 Description of NIST Tests
	2.2.1 Frequency (Monobits) Test
	2.2.2 Frequency Test Within a Block
	2.2.3 Runs Test
	2.2.4 Longest Runs Test
	2.2.5 Binary Matrix Rank Test
	2.2.6 Discrete Fourier Transform (Spectral) Test
	2.2.7 Non-overlapping Template Matching Test
	2.2.8 Overlapping Template Matching Test
	2.2.9 Maurer’s “Universal Statistical” Test
	2.2.10 Linear Complexity Test
	2.2.11 Serial Test
	2.2.12 Approximate Entropy Test
	2.2.13 Cumulative Sums Test
	2.2.14 Random Excursions Test
	2.2.15 Random Excursions Variant Test

	2.3 Downloading, Compiling, and Using the NIST Statistical Test Suite
	2.3.1 NIST Statistical Test Suite Code Location
	2.3.2 Compiling the NIST Statistical Test Suite Application
	2.3.3 Testing Randomness with the STS Assess Application
	2.3.4 Understanding the Output from the NIST STS Application

	CHAPTER THREE: DATA COLLECTION USING THE DIGILENT ANALOG DISCOVERY 2 BOARD
	3.1 Introduction
	3.2 Digilent Analog Discovery 2 Board
	3.3 Design of Data Collection Circuit
	3.4 Importance of Proper Sampling Rate of Data and Other Considerations
	3.5 Debiasing the Output of the TRNG
	3.6 Software and Scripts to Aid in Data Collection
	3.7 Workflow for Collecting and Analyzing Data
	3.7.1 Tips, Tricks, and Problems Found Using the AD2 for Data Collection

	CHAPTER FOUR: CHARACTERIZATION OF OTHER CIRCUITS
	4.1 Introduction
	4.2 Intel RDRAND
	4.2.1 Brief Description of RNG
	4.2.2 Process/Script used to Collect Data
	4.2.3 Generator Location
	4.2.4 Results Location
	4.2.5 Results

	4.3 Digilent AD2 RNG
	4.3.1 Brief Description of RNG and Data Collection Process
	4.3.2 Process/Script used to Collect Data
	4.3.3 Script Location
	4.3.4 Results Location
	4.3.5 Results

	4.4 RANDU
	4.4.1 Brief Description of RNG
	4.4.2 Process/Script used to Collect Data
	4.4.3 Generator Location
	4.4.4 Results Location
	4.4.5 Results

	4.5 Linux RANDOM Entropy Pool
	4.5.1 Brief Description of RNG
	4.5.2 Process/Script used to Collect Data
	4.5.3 Data Collection Process
	4.5.4 Results Location
	4.5.5 Results

	4.6 True RNG Circuit from Jiang et al.
	4.6.1 Brief Description of RNG
	4.6.2 Process/Script used to Collect Data
	4.6.3 Data Collection Script
	4.6.4 Results Location
	4.6.5 Results

	4.7 True RNG Circuit from Rai et al.
	4.7.1 Brief Description of RNG
	4.7.2 Process/Script used to Collect Data
	4.7.3 Data Collection Script
	4.7.4 Final Results Path
	4.7.5 Results

	CHAPTER FIVE: DESIGN OF FINAL CIRCUIT
	5.1 Design Concept
	5.2 How a Multivibrator Circuit Works
	5.3 Multivibrator Oscillator Simulations and Measurements
	5.4 Circuit Design and Development
	5.4.1 Summary of Breadboard Implementation
	5.4.2 PCB Design
	5.4.3 PCB Schematics

	5.5 PCB Layout
	5.5.1 Interface to the Digilent AD2
	5.5.2 PCB Screw Terminal Signal Breakouts
	5.5.3 PCB Jumpers

	5.6 PCB Fabrication and Soldering Process
	5.7 Project Bill of Materials
	5.8 QuickStart Guide to Using the PCB
	5.8.1 Power Supply Setup
	5.8.2 Logic Setup

	CHAPTER SIX: FINAL CIRCUIT CHARACTERIZATION
	6.1 PCB and Hardware Verifications
	6.1.1 Verification of PCB
	6.1.2 Verification of circuits

	6.2 Power Measurements
	6.3 Randomness Characterization of Final Circuit
	6.3.1 Data Collection Script
	6.3.2 Results Location
	6.3.3 Results

	6.4 Randomness Characterization of Final Circuit Seeding a PRNG
	6.4.1 Data Collection Script
	6.4.2 Results Location
	6.4.3 Results

	6.5 Comparison to other RNGs

	CHAPTER 7: CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.1.1 A TRNG was successfully designed and implemented
	7.1.2 Importance of Power Supply Isolation
	7.1.3 SPICE Simulations Alone are not Sufficient for Characterizing a TRNG

	7.2 Future Work
	7.2.1 Potential Improvements to Final RNG Circuit
	7.2.2 Improvements to Data Collection Circuit Design
	7.2.3 Characterization of the Circuit with Different Types of Devices
	7.2.4 Fabrication of the Circuit as a Custom IC Design
	7.2.5 Alternative Multivibrator Circuit Topologies

	REFERENCES
	APPENDIX A
	csv_bin_to_datastream.pl
	Location
	Usage
	Code

	csv_to_datastream.pl
	Location
	Usage
	Code

	csv_to_datastream_von_neumann.pl
	Location
	Usage
	Code

	datastream_to_datastream_prng.pl
	Location
	Usage
	Code

	datastream_to_datastream_von_neumann.pl
	Location
	Usage
	Code

	randu.pl
	Location
	Usage
	Code

	rdrand_to_datastream.pl
	Location
	Usage
	Code

	testdrng.c
	Location
	Usage
	Code

