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ABSTRACT 

The J-integral is used to develop an alternative double cantilever beam (DCB) test 

method for the Mode I fracture toughness suitable for both small and large displacements. 

The current focus is the experimental determination of the Mode I interlaminar fracture 

toughness of composite materials, but the method is generally applicable to other similar 

tests and material systems, such as to the Mode I fracture toughness of adhesives. A 

series of five identical specimens are tested to compare the linear-elastic fracture 

mechanics method recommended by ASTM, which makes use of linear beam theory with 

root rotation, large displacement, and end block corrections, with the new nonlinear-

elastic and elastic-plastic fracture mechanics method, which does not require these 

corrections. Experimental results show excellent agreement between the two methods 

over a series of five tests of primarily linear-elastic DCB specimens subjected to 

moderate to large displacements as defined in the ASTM standard. Furthermore, an 

agreement is found between the results of the derivations for the two methods being 

compared, whereby the large displacement equation for JIc presented in this work is 

identical to the equation given by J. G. Williams (1987) and which he found to be the true 

value of GIc. It is the true value of GIc that the large displacement and root rotation 

correction factors were intended to approximate, and the test method presented here 

allows for direct measurement of its parameters and evaluation. This method has the 

added benefit that specimens can be primarily linear-elastic or nonlinear-elastic at the 

crack tip and may extend to those that are elastic-plastic at the crack tip.
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CHAPTER 1: INTRODUCTION AND MOTIVATION 

The most widely used method of determining Mode I interlaminar fracture 

toughness in a composite material is the double cantilever beam (DCB) test (ASTM 

D5528-13). The ASTM recommended modified beam theory (MBT) method is based in 

linear-elastic fracture mechanics (LEFM) theory (Griffith, 1920; Irwin, 1948; Irwin and 

Kies, 1952 and 1954; Orowan, 1950) and calculates GIc using a visual measurement of 

the crack length as well as measurements of the applied load, load point displacement, 

and initial specimen geometry. 

Motivation for using the J-integral comes from the problematic cost, accuracy, 

and rate of data acquisition inherent in crack length measurement, as well as the limited 

application of MBT to primarily linear-elastic specimens. The current ASTM test method 

requires the applied load and load point displacement to be recorded as well as 

instantaneous location of the delamination front. Typically, visual measurements of the 

crack front are acquired using a traveling microscope or other visual means, though 

visual methods can experience inaccuracies due to crack tunneling. The equipment and 

automation commonly used to monitor crack front location tends to be expensive and 

prone to error. Manual recording of crack front locations and manual validation or 

correction of automated measurements are labor intensive. In addition to the data 

acquisition challenges during testing, the test is limited to specified constraints on 

specimen size and the assumption of small displacements. Correction factors for end 

blocks and large displacements provided in the ASTM standard extend these limitations, 
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but also add complexity in post processing and introduce additional sources of 

uncertainty. The J-integral has been shown (Paris and Paris, 1988) to reveal alternative 

formulations for the DCB Mode I interlaminar fracture toughness which do not depend 

upon knowledge of the crack front location and which are not limited by the full set of 

constraints associated with MBT.  

Prior efforts have produced preliminary data that show for a small displacement 

analysis of the DCB specimen the J-integral produces experimental results similar to the 

LEFM based ASTM method (Gunderson, Brueck, and Paris, 2007). The present work 

extends the equations developed for GIc and JIc to accommodate large displacements and 

nonlinear materials and carries out a series of DCB Mode I fracture toughness tests with 

moderate to large displacements to show whether the results using GIc and JIc are 

statistically interchangeable.
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CHAPTER 2: THEORY 

2.1 The DCB Specimen 

Figure 1 shows the DCB specimen geometry where a0 is the original crack length, 

b is the specimen width, h is the thickness of the specimen, L is total length, and P is the 

applied load. Figure 2 shows test parameters such as load point displacement δ, crack 

length a, opening angle θ, and the horizontal distance from the crack tip to the load line 

1X  . Both the energy release rate G and the J-Integral (defined below) are evaluated for 

large displacements for the DCB specimen to ensure a proper comparison of the two 

approaches. In the literature, there is some variation in nomenclature between authors 

writing on the same or related subject matter. An attempt has been made here to define 

and use consistent nomenclature throughout this thesis. This necessitated some deviation 

from nomenclature used in the referenced literature. Wherever practical, the notation 

used in the ASTM standard was adopted. 
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Figure 1 The DCB Specimen.  

Specimen geometry is shown where a0 is the original crack length, b is the specimen 
width, h is the thickness of the specimen, L is total length, and P is the applied load. 

 
Figure 2 DCB Parameters.  

Test parameters are shown including load point displacement δ, crack length a, opening 
angle θ, and the horizontal distance from the crack tip to the load line 1X .  

a0 = 55 mm 
 b = 25.4 mm 
 h = 4.3 mm 
 L = 200 mm 

a0 
L 

P 

P 

Piano 
Hinges 

h 

b 

  

 

 

1X
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2.2 Energy Release Rate G 

Figure 3 shows a cracked body subject to a single load. The linear-elastic fracture 

mechanics (LEFM) energy release rate G (Irwin 1948; Irwin and Kies, 1952; Irwin and 

Kies, 1954) can be expressed as 

 𝐺𝐺 =
𝑃𝑃
𝑏𝑏

d𝛿𝛿
d𝑎𝑎 −

𝑃𝑃
𝑏𝑏

d𝑈𝑈
d𝑎𝑎 =

1
𝑏𝑏

d𝑈𝑈
d𝑎𝑎�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

= −
1
𝑏𝑏

d𝑈𝑈
d𝑎𝑎�𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

, (1) 

where a is the crack length, b is the constant body thickness, δ is the load point 

displacement in the direction of the load, P is the applied load, and U is the strain energy 

in the body.  
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Figure 3 Cracked Body Subjected to Loading.  
Shows a cracked body subject to a single load where a is the crack length, b is the 

constant body thickness, P is the applied load, and W is the complementary energy in the 
body. 

 

The energy release rate G may also be expressed in terms of compliance. For a 

linear-elastic material and geometry, the strain energy U is equal to the complementary 

strain energy W in the body, and 

 𝑊𝑊 = 𝑈𝑈 =
1
2𝑃𝑃𝛿𝛿, (2) 

where δ is the displacement of the loading point in the direction of the load. Equations (1) 

and (2) and the definition of compliance 𝐶𝐶 = 𝛿𝛿 𝑃𝑃⁄  yield  

a 
X1 

X2 

 

P 

δ 
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 𝐺𝐺 =
𝑃𝑃2

2𝑏𝑏
d𝐶𝐶
d𝑎𝑎 . (3) 

This method, known as the compliance method, requires an appropriately large 

number of load, displacement, and crack length measurements such that a third order 

polynomial approximation may be developed for 𝐶𝐶 = 𝑓𝑓(𝑎𝑎). It does require that the load 

and displacement are linearly proportional for any given crack length.  

The energy release rate GI may be considered for use as a fracture criterion 

(Hertzberg, Vinci, and Hertzberg, 2013). Equilibrium is achieved when the crack driving 

force GI is equal to the material’s resistance R. For a material that is well characterized by 

an idealized R-curve (that is, the R-curve has a sufficiently sharp corner and is 

subsequently constant for increasing crack lengths), a critical value of the energy release 

rate GIc can be defined.  Mode I crack growth begins when GI = GIc. 

Application of Linear-Elastic Fracture Mechanics to the DCB Specimen 

The derivation used here relies on a paper by Williams (1987) concerning large 

displacement and end block corrections. Figure 4 summarizes the primary dimensions 

necessary for the analysis. 
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Figure 4 Beam Arm Geometry.  
Shown are the primary dimensions necessary for the analysis where P is the applied load, 
𝑋𝑋1 is the horizontal distance measured from the load line, a is the crack length, θ is the 

opening angle, and φ is the angle of the beam at 𝑋𝑋1. 
 

For the loading condition shown, the bending moment M along the beam arm is 

 𝑀𝑀 = −𝑃𝑃𝑋𝑋1, (4) 

where 𝑋𝑋1 is the horizontal distance measured from the load line. Pure bending is assumed 

such that 

 
1
𝑅𝑅 =

𝑀𝑀
𝐸𝐸𝐸𝐸 , (5) 

where R is the radius of curvature of the middle surface, E the axial modulus, and I the 

second moment of the area for the cross-section.  

End or loading block corrections are introduced here in the form of 

 𝑀𝑀 = −𝑃𝑃(𝑋𝑋1 + 𝐿𝐿′ cos(𝜃𝜃 2⁄ )− 𝑡𝑡 sin(𝜃𝜃 2⁄ )), (6) 

φ 

P 

a

1X
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where L' and t are defined in Figure 5. When  L' and t are small compared with 𝑋𝑋1, as 

may be the case for piano hinges, the corrections may prove to be negligible (ASTM 

D5528-13).  

 
Figure 5 End Block Correction Factor Parameters.  

The end block geometry is shown, including parameters L' and t as defined in ASTM 
D5528-13. 

 

Combining eqs. (4) and (5) yields 

 𝑅𝑅 = −�
𝐸𝐸𝐸𝐸
𝑃𝑃 �

1
𝑋𝑋1

. (7) 

For the differential beam element shown in Figure 6 

 𝑅𝑅 =
d 𝑠𝑠
d𝜙𝜙 =

d𝑋𝑋1
d𝜙𝜙

1
cos𝜙𝜙 , (8) 

where ds is the differential distance along the beam’s middle surface, φ is the angle of the 

beam element relative to the undeformed orientation at X1, and dφ is the differential 

change in the angle of the beam element. Combining eqs. (7) and (8) and integrating 

yields 

L' 

t 
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 � 𝑋𝑋1

𝑋𝑋1

0

d𝑋𝑋1 = −�
𝐸𝐸𝐸𝐸
𝑃𝑃 �

� cos𝜙𝜙
0

𝜃𝜃 2⁄  

d𝜙𝜙. (9) 

 

 
Figure 6 Differential Beam Element Geometry.  

Here ds is the differential distance along the beam’s middle surface, φ is the angle of the 
beam element relative to the undeformed orientation at X1, and dφ is the differential 

change in the angle of the beam element. 

 

where φ is the beam angle at the location 1X  and 1X  is the value of 1X  at the crack tip. 

Integrating and solving for 1X  yields 

 𝑋𝑋1 = �
2𝐸𝐸𝐸𝐸 sin(𝜃𝜃 2⁄ )

𝑃𝑃 �
1 2⁄

. (10) 

where 𝜃𝜃 2⁄  is the beam angle at the load point.  

If the energy is due to beam bending and the complementary energy is equal to 

the strain energy, the strain energy U and energy release rate can be expressed as 

dϕ 
R 

ds 

dX1 
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 𝑊𝑊 = 𝑈𝑈 = �
𝑀𝑀2

2𝐸𝐸𝐸𝐸

𝑎𝑎

0

d𝑠𝑠 (11) 

and 

 

 𝐺𝐺I =
2
𝑏𝑏

d
d𝑎𝑎

�
𝑀𝑀2

2𝐸𝐸𝐸𝐸

𝑎𝑎

0

d𝑠𝑠 =
𝑀𝑀2

𝑏𝑏𝐸𝐸𝐸𝐸
�
𝑠𝑠=𝑎𝑎

, (12) 

where the bending moment at the crack tip due to the applied load is 

 𝑀𝑀 = −𝑃𝑃𝑋𝑋�1. (13) 

The result of combining eqs. (10), (12), and (13) is 

 𝐺𝐺I =
2𝑃𝑃
𝑏𝑏 sin(𝜃𝜃 2⁄ ) . (14) 

The ASTM standard for this type of test assumes small displacements (linear 

beam theory), which allows the energy release rate to be calculated by measuring load 

point displacement and crack length rather than beam angle. The small displacement 

linear beam theory assumption provides 

 
𝛿𝛿
2 =

𝑃𝑃𝑎𝑎3

3𝐸𝐸𝐸𝐸  (15) 

and 

 𝑋𝑋1 = 𝑎𝑎. (16) 
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Combining eqs. (10), (15) and (16) yields 

 sin(𝜃𝜃 2⁄ ) =
3𝛿𝛿
4𝑎𝑎 . (17) 

Finally, substituting eq. (17) into eq. (14) yields the familiar 

 𝐺𝐺I =
3𝑃𝑃𝛿𝛿
2𝑏𝑏𝑎𝑎 . (18) 

Here a problem arises due to an incongruity between the actual DCB test 

specimen and the assumption of a perfectly built-in beam inherent in the linear beam 

theory. Beam root rotation occurs near the crack tip, for which three methods of 

correction are provided in the ASTM standard. The modified beam theory (MBT) is 

recommended in the standard and replaces eq. (18) with 

 𝐺𝐺I =
3𝑃𝑃𝛿𝛿

2𝑏𝑏(𝑎𝑎 + |Δ|) , (19) 

where the compliance offset ∆  is found by plotting the delamination length vs. the cube 

root of compliance 𝐶𝐶, where 𝐶𝐶 = 𝛿𝛿 𝑃𝑃⁄ , and finding the value at which a least squares fit 

line intersects the ordinate. This process is illustrated in Chapter 4. 

In addition to root rotation, corrections for large displacement and end block 

effects must now be considered due to the specimen geometry and material properties 

used in the present experiment. Corrections for these effects are defined in the ASTM 

standard and were developed by Williams (1987, 1989) and Hashemi et al. (1989). They 

modify eq. (19) firstly with an end block correction N for load point displacement so that 

eq. (15) can be rearranged and the compliance becomes 



13 
 

 

 
𝛿𝛿
𝑃𝑃 =

2𝑎𝑎3

3𝐸𝐸𝐸𝐸 𝑁𝑁. (20) 

The crack length a must again be adjusted for root rotation, but here the 

delamination length must be plotted against 𝐶𝐶1 3� = (𝛿𝛿 𝑃𝑃𝑁𝑁⁄ )1 3� . The result is a smaller 

offset, Δcor. Secondly, eq. (19) also requires a large displacement correction F so that 

 𝐺𝐺I =
3𝑃𝑃𝛿𝛿

2𝑏𝑏(𝑎𝑎 + |Δcor|)
𝐹𝐹
𝑁𝑁 . (21) 

The ASTM standard defines large displacements as having 𝛿𝛿 𝑎𝑎⁄ > 0.4.  

The two correction factors are given by Williams (1989) as follows: 

 𝐹𝐹 = 1 −
3

10 �
𝛿𝛿
𝑎𝑎�

2

−
3
2 �

𝛿𝛿𝑡𝑡
𝑎𝑎2� (22) 

and 

 
  

𝑁𝑁 = 1 − �
𝐿𝐿′

𝑎𝑎�
3

−
9
8
�1 − �

𝐿𝐿′

𝑎𝑎�
2

� �
𝛿𝛿𝑡𝑡
𝑎𝑎2� −

9
35 �

𝛿𝛿
𝑎𝑎�

2

. (23) 

In the case of a piano hinge, 𝐿𝐿′ may be sufficiently small that N can be approximated by 

 
  𝑁𝑁 = 1 −

9
8 �

𝛿𝛿𝑡𝑡
𝑎𝑎2� −

9
35 �

𝛿𝛿
𝑎𝑎�

2

. (24) 

Criteria are given in the ASTM standard for the use of the two correction factors. 

For loading with piano hinges, these criteria together with the specimen geometry call for 

the use of F, but not N. After observing counter-intuitive differences between the results 

of experimental data analyses with and without the correction factors as described in the 
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ASTM standard, a thorough review of the source material (Williams, 1989) revealed 

deviations of the ASTM standard from the source material. We determined that both F 

and N ought to be used to appropriately correct for large displacements, regardless of 

whether piano hinges or loading blocks were being used, and that the stated purpose in 

the ASTM standard for each correction factor within the ASTM standard needed 

clarification. Specifically, the ASTM standard explains that the correction factor F 

accounts for shortening of the moment arm as well as tilting of the end blocks and N 

accounts for stiffening of the specimen. This implies that the correction factor N has no 

terms present to account for large displacement, and thus if beam arm stiffening is not 

anticipated then the correction factor N need not be used. However, Williams derivations 

of F and N and an inspection of eqs. (22) and (23) above show that both correction 

factors contain similar terms which are important to correct for large displacements δ, 

and thus both F and N should be used whenever large displacements are present, 

regardless of whether beam stiffening is likely to occur. We have communicated a 

proposed change to the ASTM standard and traveled to an ASTM committee meeting to 

present our proposal (Gunderson and Paris, 2017). The committee has agreed in principle 

with our findings and plans to consider implementing the proposed change in a future 

revision to the standard. 

The compliance method given by eq. (3) and the polynomial approximation 𝐶𝐶 =

𝑓𝑓(𝑎𝑎) is used as a reference when plotting and comparing GIc from eq. (21 - 23) and JIc 

which is introduced next. Since the compliance method does not rely on linear beam 

theory, it does not need a root rotation correction (Hashemi et al., 1989). 
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2.3 J-integral 

This method makes use of the J-integral and the critical value JIc (Rice, 1968). 

The J-integral as described by Rice considers a two-dimensional strain field applied to a 

notched body of linear or nonlinear elastic material as shown in Figure 7.  

 

Figure 7 Two-Dimensional Cracked Body Subjected to Loading.  
Here Γ is the contour and a is the crack length. 

 

The strain energy density W is then a function of the stress and strain fields as 

 𝑊𝑊 = � 𝜎𝜎𝑖𝑖𝑖𝑖d𝜀𝜀𝑖𝑖𝑖𝑖

𝜀𝜀𝑖𝑖𝑖𝑖

0

 (25) 

 

Γ 

a 
X1 

X2 
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The J-integral is a path independent integral around the crack tip and appears as 

 𝐽𝐽I = ��𝑊𝑊d𝑋𝑋2 − 𝐓𝐓 ⋅
∂u
∂𝑋𝑋1

dΓ�
Γ

, (26) 

where W is the strain energy density from eq. (25), T is the traction vector 𝑇𝑇𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖, n 

is the outward normal vector to Γ, Γ is the contour, 𝑋𝑋1 and 𝑋𝑋2 are rectangular coordinates 

parallel and normal to the crack front respectively, dΓ is the counterclockwise 

incremental distance along the contour, and u  is the displacement vector. Begley and 

Landes (1972) demonstrated the use of an experimental method to evaluate JI using the 

load deflection curves of identical specimens with varying crack lengths. They also 

explained that both numerical and analytical solutions to the J-integral are possible. In 

this experiment, we employed an analytical solution.  

The parameter JI may be used in a Mode I crack growth criterion. Mode I crack 

growth begins when JI = JIc. 

Rice (1968) assumed a linear elastic or nonlinear elastic material when proving 

path independence for the J-integral, though he extended the theory to allow for small 

scale yielding in the vicinity of the crack tip for elastic-plastic materials. The path 

independent J-integral may continue to provide reasonable results when plastic zones 

extend beyond the vicinity of the crack tip, exceeding the constraints of small scale 

yielding, so long as the assumptions inherent to the deformation theory of plasticity are 

valid (i.e. a nonlinear elastic-plastic stress-strain relationship such that the stress tensor is 

a monotonic function of the strain tensor and loading is proportional to the deviatoric 

stress components). Additionally, care must be exercised when large scale yielding or 

large strains are permitted, as adjustments may need to be made to account for specimen 
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geometry (Anderson, 1991). Increasing plasticity tends to complicate the use of a single 

parameter to characterize conditions at the crack tip.  

Application of the J-integral to the DCB Test 

Application of the J-integral to the Mode I DCB test was first presented by Paris 

and Paris (1988) who required knowledge of only two measurands, the beam angle and 

the applied load. However, this derivation relied on the assumption of small 

displacements throughout the specimen whereas in the present work allowance is made 

for large displacements. The geometry and material of the DCB specimens considered in 

this analysis is such that the assumption of small scale yielding is applicable.  

The J-integral contour and subsequent derivation develop differently depending 

on where one chooses to account for the applied tractions. Two viable approaches are a 

horizontal contour segment at the interface between the piano hinge and beam arm shown 

in Figure 8 (representing a surface in the  𝑋𝑋1𝑋𝑋3 plane) and a vertical contour segment at 

the inward edge of the piano hinge or loading block shown in Figure 9 (representing a 

surface in the 𝑋𝑋2𝑋𝑋3 plane).  
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Figure 8 Undeformed DCB Specimen (Tractions on Horizontal Contour 
Segment).  

Here the specimen is depicted in the 𝑋𝑋1𝑋𝑋2 plane where P is the applied load, a is the 
crack length, h is the specimen thickness, T is the applied traction under the piano hinge, 

Γ is the contour. 
 

J-integral (Horizontal Surface) 

Gunderson, Brueck, and Paris (2007) utilized the horizontal surface approach with 

the assumption that the traction was varying and that the beam curvature throughout the 

surface was negligible due to hinge stiffness. The following derivation illustrates the 

horizontal surface approach and instead assumes constant traction and small curvature. 

Applying eq. (26) to the DCB specimen shown in Figure 8 yields 

 𝐽𝐽I = 2 � 𝑇𝑇
d𝑣𝑣

d𝑋𝑋1
Δ𝑋𝑋1

d𝑋𝑋1. (27) 

Γ  

P 

X2 

X1 

P 

T 

ΔX1 

a 

h 
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Note that if T is constant eq. (27) becomes  

 𝐽𝐽I = 2𝑇𝑇 �
d𝑣𝑣

d𝑋𝑋1
Δ𝑋𝑋1

d𝑋𝑋1 = 2𝑇𝑇Δ𝑣𝑣𝑏𝑏 =
2(𝑇𝑇𝑏𝑏Δ𝑋𝑋1)

𝑏𝑏
Δ𝑣𝑣
Δ𝑋𝑋1

, (28) 

where 𝛥𝛥𝑣𝑣 𝛥𝛥𝑋𝑋1⁄  is approximately sin(𝜃𝜃 2⁄ ), 𝜃𝜃 is the total angle between the specimen 

arms at the load points, and PXTb =1Δ . Equation (28) then becomes 

 𝐽𝐽I =
2𝑃𝑃
𝑏𝑏 sin(𝜃𝜃 2⁄ ) . (29) 

If an R-curve is desired, solving eq. (15) for a, the derived crack length, yields 

 𝑎𝑎 =
3𝛿𝛿
2 csc(𝜃𝜃 2⁄ ) . (30) 

Applying the linear beam theory assumptions to eq. (17) allows the derived crack length 

to be approximated by  

 𝑎𝑎 = 3δ 2𝜃𝜃⁄ . (31) 

J-Integral (Vertical Surface) 

The large displacement derivation presented by Nilsson (2006) uses the vertical 

surface approach and is applicable for a more generalized loading condition. The 

following derivation accounts for an application of the load using a piano hinge. Here we 

generally follow the form of the derivation developed by Nilsson, deviating in the later 

stages as we apply simplifying assumptions appropriate to the present experiment. 
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Figure 9 Undeformed DCB Specimen (Tractions on Vertical Contour 

Segment).  
Here the specimen is depicted in the 𝑋𝑋1𝑋𝑋2 plane where P is the applied load, a is the 

crack length, h is the specimen thickness, Γ is the contour. 

 

The J-integral is a path independent line integral around the crack tip and appears 

as 

 𝐽𝐽I𝑏𝑏 = ��𝑊𝑊𝛿𝛿1𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖
∂𝑢𝑢𝑖𝑖
∂𝑋𝑋1

�𝑁𝑁𝑖𝑖
𝑆𝑆

d𝑆𝑆 (32) 

using nomenclature similar to that chosen by Nilsson and shown in Figure 9. Here 𝑊𝑊 =

∫𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is the strain energy density, δ is the Kronecker Delta, S is the contour surface, 

X1 and X2 are rectangular coordinates parallel and normal to the crack front respectively, 

dS is the counterclockwise incremental distance along the contour surface, Q is the Piola-

Kirchhoff stress tensor acting on the contour, u is the displacement vector, and N is the 

outward unit normal vector to the contour. 

Γ  

a 
P 

X2 

X1 

P 

h
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Figure 10 Displacements.  
Here u and v are the undeformed displacements of a point on the specimen’s 

neutral axis, u1 and u2 are the deformed displacements of an arbitrary point, φ is the angle 
of the beam at an arbitrary point, 𝑇𝑇1 and 𝑇𝑇2 are the tractions associated with the applied 
load, θ is the opening angle, and X1 and X2 are the undeformed coordinate directions. 

 

The applied load P appears as the set of orthogonal tractions shown in Figure 10 

so that 

 𝑄𝑄11 = −𝑇𝑇1 (33) 

and 

 𝑄𝑄12 = −𝑇𝑇2. (34) 

In the undeformed coordinate system 

 d𝑆𝑆 = 𝑏𝑏d𝑋𝑋2. (35) 

  

v T2 

T1 
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X1 

(X1, X2) 
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φ θ/2 
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Observing the geometry of the displacements depicted in Figure 10 yields 

 𝑢𝑢1 = 𝑢𝑢 + 𝑋𝑋2 sin𝜙𝜙 (36) 

 𝑢𝑢2 = 𝑣𝑣 − 𝑋𝑋2(1− cos𝜙𝜙). (37) 

The specimen geometry, loading, J-integral contour, and eqs. (32-37) yield 

 

𝐽𝐽I𝑏𝑏
2 = ��𝑊𝑊 + 𝑇𝑇1 �

∂𝑢𝑢
∂𝑋𝑋1

+ 𝑋𝑋2 cos𝜙𝜙
∂𝜙𝜙
∂𝑋𝑋1

�
ℎ/2

+ 𝑇𝑇2 �
𝜕𝜕𝑣𝑣
𝜕𝜕𝑋𝑋1

− 𝑋𝑋2 sin𝜙𝜙
∂𝜙𝜙
∂𝑋𝑋1

�� 𝑏𝑏d𝑋𝑋2. 
(38) 

Noting that 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋1

, and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋1

 are constant with respect to 𝑋𝑋2 in eq. (38) yields 

 

𝐽𝐽I𝑏𝑏
2 = �𝑊𝑊

ℎ/2

𝑏𝑏d𝑋𝑋2 +
𝜕𝜕𝑢𝑢
𝜕𝜕𝑋𝑋1

�𝑇𝑇1
ℎ/2

𝑏𝑏d𝑋𝑋2 +
𝜕𝜕𝑣𝑣
𝜕𝜕𝑋𝑋1

�𝑇𝑇2
ℎ/2

𝑏𝑏d𝑋𝑋2

+
𝜕𝜕𝜙𝜙
𝜕𝜕𝑋𝑋1

�(𝑇𝑇1 cos𝜙𝜙 − 𝑇𝑇2 sin𝜙𝜙)𝑋𝑋2
ℎ/2

𝑏𝑏d𝑋𝑋2. 
(39) 

We now deviate from Nilsson’s derivation to apply constraints specific to the 

present experiment. The loading at the vertical surface shown in Figure 9 and Figure 10 

can be expressed in terms of the tractions as follows: 

 � 𝑇𝑇1
ℎ 2⁄

𝑏𝑏d𝑋𝑋2 = 0, (40) 

 � 𝑇𝑇2
ℎ 2⁄

𝑏𝑏d𝑋𝑋2 = 𝑃𝑃, (41) 
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and 

 �(𝑇𝑇1 cos𝜙𝜙 − 𝑇𝑇2 sin𝜙𝜙)𝑋𝑋2
ℎ/2

𝑏𝑏d𝑋𝑋2 = 𝑀𝑀. (42) 

Here M is the applied moment and P is the applied load in the vertical direction. 

Substituting from eqs. (40-42) into eq. (39) yields the much simpler 

 
𝐽𝐽I𝑏𝑏
2 = �𝑊𝑊

ℎ/2

𝑏𝑏d𝑋𝑋2 + 𝑃𝑃
𝜕𝜕𝑣𝑣
𝜕𝜕𝑋𝑋1

+ 𝑀𝑀
𝜕𝜕𝜙𝜙
𝜕𝜕𝑋𝑋1

. (43) 

If 𝜃𝜃 2⁄  is the beam angle at the loading point, then 

 
𝜕𝜕𝑣𝑣
𝜕𝜕𝑋𝑋1

= sin(𝜃𝜃 2⁄ ) . (44) 

Finally, if the beam is loaded with piano hinges,  ∫ 𝑊𝑊𝑏𝑏d𝑋𝑋2ℎ 2⁄  and M are small, and eq. 

(43) simplifies to 

 𝐽𝐽I =
2𝑃𝑃
𝑏𝑏 sin(𝜃𝜃 2⁄ ) . (45) 

Regardless of whether the horizontal or vertical contour surface is used to account 

for the applied load, the J-integral analysis results in the same equation for JI. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Test Materials 

The specimens were prepared in accordance with the specifications in the 

standard (ASTM D5528-13) with the exception of slight modifications necessary to 

facilitate attachment of the angle measurement assemblies and the use of woven fibers 

rather than unidirectional. The composite material was LTM24ST on woven 7725 glass 

manufactured using an autoclave process with a curing temperature of 79.4 °C. Referring 

to Figure 1, the specimen nominal dimensions were a0 = 55 mm, b = 25.4 mm, h = 4.3 

mm and L = 200 mm. 

The tensile test machine was a United SFM-30 using an Interface Force 

Transducer (D11267 SM-100N) with 10V excitation voltage. Angle measurements were 

obtained using transducers connected to a National Instruments USB-6009 data 

acquisition unit utilizing LabView 8.0. The transducers were US Digital MA3 absolute 

magnetic rotary encoders. These would replace the equipment used to measure load point 

displacement and crack length if the J-integral method was used in place of the method 

prescribed in the current ASTM standard. A photograph of the apparatus is shown in Fig. 

11.  
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3.2 Experimental Procedure 

The specific aim of the experiment was to compare the results of five tests to 

show that GIc and JIc are statistically interchangeable. This required that the test methods 

be carried out simultaneously on each specimen and the data analyzed to determine the 

degree of agreement between them.  

DCB specimens were tested in tension at a rate of 5 mm per minute and a digital 

video camcorder was used to visually record the delamination length while transducers 

measured the beam angle, applied load, and load point displacement. The 

fiberglass/epoxy specimens were translucent, making it possible to make a visual 

measurement of the crack length from above rather than from the edge. This avoided 

problems associated with edge measurement as well as crack tunneling. Figure 2 shows 

the loading geometry of the DCB specimen as well as those parameters not included in 

Figure 1. Visual, audio, and force markers were used to synchronize the time scale of the 

digital video with that of the data acquisition unit. Synchronizing was facilitated by 

matching crack propagation observed on a plot of load vs. time (abrupt drops in applied 

load) and crack propagation observed in the recorded video. Synchronization offset 

values were checked by using the load plot to predict the location of sudden crack 

propagation events as well as the moment when the tensile testing machine’s chain drive 

was activated. If these predicted times corresponded to the appropriate event in the 

recorded video to within one frame then the offset value was considered to be accurate.  

While all the parameters in the equations are important when calculating the 

fracture toughness, the load and specimen width (provided the width is within tolerances) 

lose relative importance when attempting to show equivalence between GIc and JIc and it 
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is the crack length, angle, and load point displacement that have the greatest effect on the 

results. For this reason, extra care was taken to ensure a valid zero condition was used to 

generate an offset for the raw data in the case of the angle and load point displacement. 

Zeros for the rotary encoders and load point displacement were facilitated through the use 

of spring clamps. The clamps were applied to the specimen before and after the piano 

hinges tending to close the crack after which a load of approximately twenty newtons was 

gradually applied. This allowed the transducers to record the angle when the specimen 

was perpendicular to the direction of loading as well as the load as the slack was removed 

from the hinges. These two values became the zero values for both the angle and the load 

point displacement. 
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Figure 11 Test Apparatus.  

The tensile test machine is shown with a specimen in the DCB fixture. The load cell and 
rotary encoders are visible. A lamp adjacent to the specimen allows the crack front to be 

clearly seen in timestamped video recordings.

Rotary 
Encoder 

Load Cell 

Crack Front 

 Lamp 
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CHAPTER 4: RESULTS AND DISCUSSION 

The data for test 5 is used to illustrate the results. Figure 12 shows load vs. load 

point displacement, and Figure 13 shows crack length and beam angle vs. load point 

displacement. In order to show the vertical portion of the R-curve, non-critical ramp-up 

data points must be included. These ramp-up points are shown in Figure 12 with a unique 

symbol and they are combined with the critical points in Figure 13 and Figure 15. 

Figure 13 compares the measured crack length with the derived crack length 

calculated using eq. (31). Note that accuracy of the derived crack length improves and 

becomes sufficient as applied load approaches the critical value. Figure 14 shows crack 

length vs. cube root of compliance and the method used to determine the compliance 

offset Δcor as discussed earlier. 
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Figure 12 Applied Load vs. Load Point Displacement.  

Here P is the applied load and δ is the load point displacement. Both critical load and 
ramp-up load points are shown. 
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Figure 13 Measured and Derived Crack Lengths and Beam Angle vs. Load Point 

Displacement.  
Here a is the crack length, δ is the load point displacement, and θ is the opening angle. 

Both critical load and ramp-up load points are shown. Equation (31) was used to 
calculate the derived crack length. 
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Figure 14 Determination of the Compliance Offset from the Crack Length vs. 

Corrected Cube Root of Compliance.  
Here a is the crack length, C is the compliance, N is the correction factor from eq. 23, and 

Δcor is the root rotation correction introduced in eq. 21. 
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Figure 15 G and J vs. a.  

Here a is the crack length and GI and JI are defined in eqs. 21 and 45 respectively. 

 

Test 5 fracture toughness results are presented in Fig. 15 and in the Appendix, 

Table 1. GI was calculated using eqs. (21-23) and measured values of P, δ, b, and a found 

in Figs. 1 and 2. JI was calculated using eq. (45) and measured values of P and θ (Figs. 1 

and 2). The corrected compliance equation was also plotted in Fig. 14 to determine the 

offset to correct for root rotation. It was found for the fifth specimen that the average 

value of GIc was 0.760 ± 0.037 kJ m2⁄  and for JIc was 0.743 ± 0.037 kJ m2⁄ . The 

average difference between GIc and JIc was 0.97% ± 0.92%. In each case the average is 

given followed by the standard deviation. After the crack has advanced sufficiently, the 

R-curves are constant, showing neither a perceptible increasing nor decreasing trend for 

increasing crack length.  The results for both GIc and JIc agree exceptionally well with the 

results of GIc calculated using the compliance method of eq. (3), the method independent 
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of the DCB specific theoretical analysis above, giving confidence in each method of 

determining the Mode I interlaminar fracture toughness.  

 
Figure 16 GIc and JIc Summary with Mean and Standard Deviation.  
Results of five tests are shown, with whiskers indicating standard deviation. 

 

The results of all five tests are summarized in the Appendix, Table 2. The average 

difference between GIc and JIc for the series of tests was 0.97% and the standard deviation 

from the mean for GIc and JIc over the five tests was 0.030  kJ m2⁄  and 0.026  kJ m2⁄  

respectively. These standard deviations compare favorably with those given in the ASTM 

standard as being typical based on round-robin testing. Furthermore, these values indicate 

that the variance between specimens, while relatively small, is still greater than the 
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variance between GIc and JIc. The ANOVA P-values for the five tests had a mean of 

0.564 and a standard deviation of 0.277. 
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CHAPTER 5: CONCLUSIONS 

Williams (1987) formulated the correction factor F, allowing eq. (18) to be 

corrected for large displacements since in standard tests neither 1X  nor 2θ  is measured. 

He states that if 1X  is known and used rather than the crack length then no correction 

factor is needed. A root rotation correction is unnecessary since eq. (14) does not require 

that the beam be perfectly built in. The relationship between 1X  and 𝜃𝜃 2⁄  is tolerant of 

large displacements so long as the geometry and loads do not become so extreme as to 

violate the assumption of pure bending. Thus if 𝜃𝜃 2⁄  is measured, it becomes possible to 

evaluate the large displacement fracture toughness using eq. (14) without further 

correction. It is precisely this formula for GI that Williams (1987, 1989) considers the 

true value of GI when developing correction factors for large displacements. Notice that 

eq. (14) for GI and eq. (45) for JI are identical. While it has long been known that GI and 

JI are identical for a small displacement analysis of linear-elastic DCB specimens, we are 

aware of no previous analysis showing their equivalence when the assumption of linear 

beam theory with small displacements is avoided. 

A DCB interlaminar fracture toughness test using the J-integral as suggested 

herein removes the need to acquire visual measurements of the delamination length and 

avoids problems associated with locating the crack tip and crack tunneling. Also avoided 

are the correction factors which account for deviation from linear beam theory including 

geometric nonlinearity associated with large deformation and root rotation. As a 
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corollary, costly equipment such as a traveling microscope and the software required to 

automate it are replaced with inexpensive transducers. The J-integral DCB method allows 

for an instantaneous calculation of J applicable to a variety of material systems and is 

able to accommodate significant nonlinearity and/or plasticity at the crack tip.  Perhaps 

most importantly, the method reduces the time and cost of interlaminar fracture 

toughness testing of composite materials while the five tests carried out in the present 

work show no significant difference between the results for interlaminar fracture 

toughness obtained by three different methods. 
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Table 1 Test 5 Data 
Ramp-Up Propagation 

δ P a θ JIC GIC δ P a θ JIc GIc 

mm N mm rad kJ/m2 kJ/m2 mm N mm rad kJ/m2 kJ/m2 

0.4 2.49 54.5 0.004 0.000 0.001 11.88 41.79 57.00 0.295 0.488 0.491 

1.5 6.33 54.5 0.036 0.009 0.010 14.38 45.08 59.75 0.341 0.607 0.613 

2.5 10.24 54.5 0.059 0.024 0.027 16.87 48.20 61.50 0.391 0.744 0.748 

3.5 14.26 54.5 0.084 0.048 0.053 19.36 42.12 67.50 0.416 0.690 0.687 

4.6 18.18 54.5 0.110 0.079 0.087 21.85 41.53 71.00 0.453 0.740 0.728 

5.6 22.17 54.9 0.141 0.124 0.128 24.31 38.15 75.25 0.466 0.699 0.704 

6.6 26.08 55.1 0.166 0.172 0.178 26.79 40.67 77.50 0.511 0.815 0.804 

7.7 29.90 55.3 0.192 0.228 0.235 29.28 35.52 82.25 0.520 0.725 0.725 

8.7 33.06 55.7 0.218 0.285 0.293 31.77 34.46 86.00 0.546 0.737 0.731 

9.8 36.37 55.9 0.248 0.357 0.359 34.26 34.46 88.00 0.571 0.771 0.771 

10.8 38.62 56.9 0.272 0.416 0.415 36.75 31.18 93.50 0.582 0.710 0.705 

11.8 41.76 57.2 0.294 0.486 0.489 39.24 31.61 95.50 0.607 0.750 0.748 

      41.72 31.40 97.50 0.632 0.774 0.774 

      44.21 30.76 100.25 0.657 0.788 0.783 

      46.70 30.76 102.50 0.681 0.816 0.809 

      49.19 28.01 107.00 0.680 0.742 0.744 

      51.67 27.30 110.50 0.701 0.744 0.739 

      54.16 25.02 115.50 0.706 0.687 0.680 

      56.65 26.04 116.00 0.737 0.744 0.737 

      59.15 24.92 119.00 0.749 0.723 0.718 

      61.63 24.71 121.00 0.761 0.728 0.730 
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Table 2 Combined Data for 5 Tests 
 1 2 3 4 5 Mean Std. Dev. 

GIc (kJ/m2) 0.719 0.682 0.695 0.699 0.760 0.711 0.0304 

JIc (kJ/m2) 0.712 0.673 0.690 0.701 0.743 0.704 0.0262 

Difference (%) 0.970 1.275 0.709 -0.311 2.213 0.971 0.915 

ANOVA P 0.704 0.388 0.690 0.865 0.176 0.564 0.277 
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