
DIMERIZATION OF THE NOTCH INTRACELLULAR DOMAIN RESULTS 

IN DISTINCT SIGNALING ACTIVITY 

 

by 

Jacob Jeffery Crow 

 

 

 

 

 

 

 

 

 

A dissertation 

submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Biomolecular Sciences 

Boise State University 

August 2020  



 

© 2020 

Jacob Jeffery Crow 

ALL RIGHTS RESERVED  



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 

of the dissertation submitted by 

Jacob Jeffery Crow 

Dissertation Title: Dimerization of the Notch Intracellular Domain Results in Distinct 

Signaling Activity 

Date of Final Oral Examination: 12 August 2020 

The following individuals read and discussed the dissertation submitted by student Jacob 

Jeffery Crow, and they evaluated their presentation and response to questions during the 

final oral examination. They found that the student passed the final oral examination. 

Chair, Supervisory Committee 

Member, Supervisory Committee 

Member, Supervisory Committee 

Allan Albig, Ph.D.

Julia Thom Oxford, Ph.D. 

Kenneth A. Cornell, Ph.D. 

Richard S. Beard, Ph.D. Member, Supervisory Committee 

The final reading approval of the dissertation was granted by Allan Albig, Ph.D., Chair of 

the Supervisory Committee. The dissertation was approved by the Graduate College.  



 

iv 

DEDICATION 

I’d like to dedicate this dissertation to my parents, Jeff and Maria Crow, who have 

always encouraged and nurtured academic excellence, never-wavering integrity, an intense 

work ethic, and a passion for whatever I set my sights on. They taught through example 

how to persevere and stay headstrong when life gets challenging and reminded that hard 

work eventually pays dividends. Little did I know back then, this type of tenacity is a much-

needed skill in the sciences and one that I became am intimately familiar with.  

 

Thank you. 



 

v 

ACKNOWLEDGMENTS 

I’d like to thank Dr. Allan Albig for being my scientific mentor through my 

undergraduate and graduate careers. I have studied and researched under Allan’s guidance 

for quite some time (nearly eight years!) and was even one of the first students Allan took 

on when he transitioned to Boise State University. During this time, I’ve experienced many 

changes within the Albig laboratory; from a plethora of students coming and going, a 

handful of grant turnovers, and even Allan’s transition into associate professorship! One 

thing remaining constant, however, is his passion for science and mentorship. Through the 

thick and thin, you knew you could go to him for ideas, questions, and advice. Whether it 

was in his office or even while he was working alongside you in the lab (yes, this PI still 

works in the lab), he was always easily accessible, open to help, encouraging, and 

understanding. Finally, along with Dr. Albig and a special mention for Dr. Alison 

Miyamoto, I’d like to acknowledge all the past, present, and future Albig lab members. I 

couldn’t have asked for a better group of people to work with. Thanks for putting up with 

my bitching.  



 

vi 

ABSTRACT 

The Notch signaling pathway is a core component of multicellularity; enabling cells 

to directly communicate with both their neighbors and the surrounding microenvironment. 

These signals are translated directly through the Notch proteins, where a fragment of Notch 

transitions into the nucleus to act as a co-transcription factor, setting into motion a host of 

physiological responses. Commonly involved in pathways that define a cell’s identity and 

fate decisions, what appears to be a simplistic pathway instead exists in a state of high-

tunability and strict control. Missteps in this pathway are generally embryonically lethal or 

lead to a suite of congenital disorders and cancers. Therefore, it’s pertinent to understand 

the mechanisms of Notch that provide its flexibility and pleiotropic outcomes. One such 

property is its ability to homodimerize on DNA while within its transcriptional activation 

complex, resulting in an enhanced transcriptional signal of a select pool of Notch target 

genes. This dissertation reviews the general mechanics behind Notch signaling, discusses 

how the field of Notch dimerization came to be and where it stands currently, and finally, 

details my contributions to the understanding of this regulatory mechanism. Despite 

Notch’s ubiquitous function in metazoan life, there are still many mysteries behind this 

signaling pathway. The work detailed here describes my time spent as a basic science 

researcher, where my findings contribute a couple of puzzle pieces to the expansive Notch 

signaling field. 
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CHAPTER ONE: INTRODUCTION 

Classical Notch Signaling 

The Notch signaling system is a core component of multicellularity; utilized across 

the metazoan spectrum with components of the pathway found in even earlier common 

ancestors 1–3. These ubiquitous signaling proteins engage in cell-to-cell contacts and 

through this mechanism, control processes such as differentiation, cell identity, and 

maintenance of tissue homeostasis. When dysregulated, either through direct Notch 

mutations or other indirect mechanisms, it can result in an assortment of genetic disorders 

and cancers (thoroughly reviewed by Siebel & Lendahl, (2017) 4). Amusingly, phenotypic 

mutations within Notch signaling resulted in its initial identification, where over 100 years 

ago landmark studies first described ‘Notches’ in Drosophila melanogaster wings 5,6 

(Figure 1.1A). As the field of genetics progressed, a Notch gene from fruit flies was first 

cloned, sequenced, and initially characterized in the 80s 7–10. Finally, developments within 

the fields of cell and molecular biology have surged research on Notch signaling forward 

to where it is today (summarized in Figure 1.1B). This introductory chapter aims to 

summarize the field as it currently stands; including both Notch signaling at large and a 

specific signaling mechanism, the dimerization of the Notch intracellular domain. The 

following chapters within this dissertation detail my contributions to this ever-evolving 

field. 
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Figure 1.1: Landmark Studies Concerning Notch’s Function and Dimerization 

 

A) Adapted from his original manuscript, Dexter JS. (1914) The Analysis of a Case of 

Continuous Variation in Drosophila by a Study of its Linkage Relations. The American 

Naturalist. 48(576): 712-758., Dexter described a Beaded wing, D. melanogaster line, 

with “Perfect Notched” wings. This phenotypic observation is the namesake for the 

Notch signaling pathway. B) A timeline representing over a hundred years of Notch 

signaling research, emphasizing the last forty years of progress. Selected publications 

represent landmark studies with key findings of what the Notch protein is, identification 

of its structural domains, how it functions, and eventually, how it signals through NICD 

dimerization. The following table lists these breakthrough manuscripts and their key 

finding(s). 
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Authors (First and Last), Year Published,  Critical Finding, Emphasis on 

Reference Number NICD Dimerization 

Hunt TH (1911) 5 Notch Fly Phenotype 

Dexter JS (1914) 6 Notch Fly Phenotype 

Kidd S, Young MW, et al. (1983) 8 Notch Gene Identification (Fly) 

Artavanis-Tsakonas S, Yedvobnick B, et al. (1983) 10 Notch Gene Identification (Fly) 

Wharton KA, Artavanis-Tsakonas S, et al. (1985) 9 Sequence, Structure Prediction 

Kidd S, Young MW, et al. (1986) 7 Sequence, Structure Prediction 

Breeden L and Nasmyth K (1987) 11 Ankyrin Repeats Identification 

Lux SE, Bennett V, et al. (1990) 12 Ankyrin Repeats Identification 

Rebay I, Artavanis-Tsakonas S, et al. (1991) 13 Receptor/Ligand Activation 

Weinmaster G, Lemke G, et al. (1991) 14 Notch Gene Identification  

 (Mammal, Rat) 

Rebay I, Artavanis-Tsakonas S, et al. (1993) 15 Extracellular = Regulatory, 

 Intracellular = Activity 

Lieber T, Young MW, et al. (1993) 16 Ankyrin domain is necessary,  

  NICD found in the nucleus 

Tun T, Kawaichi M, et al. (1994) 17 RBPJ DNA binding sequence 

Jarriault S, Israel A, et al. (1995) 18 Notch interacts with RBPJ, 

 Interaction induces gene 

 transcription 

Bailey AM and Posakony JW (1995) 19 Sequence-paired site Identification 

Tamura K, Honjo T, et al. (1995) 20 RBPJ and  NICD’s RAM 

 interaction 

Kato H, Honjo T, et al. (1996) 21 Comparison of the Notch1-4 family 

 members 

Kopan R, Nye JC, et al. (1996) 22 Canonical Activation 

Schroeter EH, Kopan R, et al. (1998) 23 Canonical Activation 

Nellesen DT, Posakony JW, et al. (1999) 24 Sequence-paired site Identification 

Wu L, Griffin JD, et al. (2000) 25 MAML1 interacts with NICD 

Kitagawa M, Harigaya K, et al. (2001) 26 MAML1 interacts with NICD 

Cave JW, Caudy MA, et al. (2005) 27 Sequence-paired site Identification 

Ong C, Kopan R, et al. (2006) 28 Sequence-paired site Identification, 

 Thorough Promoter Analysis 

Nam Y, Blacklow SC, et al. (2007) 29 Ankyrin-mediated Dimerization 

 Model 

Arnett KL, Blacklow SC, et al. (2010) 30 Ankyrin-mediated Dimerization 

 Crystal 

Liu H, Pear WS, et al. (2010) 31 Dimerization’s Physiological  

 Relevance 

Vasquez-Del Carpio R, Capobianco AJ, et al. (2011) 32 Anti-parallel Dimerization Model 

Castel D, Stunnenberg HG, et al. (2013) 33 Sequence-paired site Identification 

Hass MR, Kopan R, et al. (2015) 34 Sequence-paired site Identification 

Severson E, Aster JC, et al. (2017) 35 Analysis of Cryptic SPSs, 

 Sequence-paired site Identification 
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Protein Structure and Processing 

As a transmembrane signaling protein, Notch can be readily split into two 

functional halves. The extracellular region interacts with neighboring cells to receive 

signals from their displayed ligands, while the intracellular region translates this signal into 

transcriptional responses. For a structural summary of the Notch1 receptor, refer to Figure 

1.2, where each indicated subdomain will be discussed in the following sections. 

The Extracellular Domain 

Throughout its lifetime the Notch protein is continuously processed and cleaved to 

elicit or inhibit its transcriptional capabilities. The first cleavage event occurs during its 

initial maturation before it traffics to the plasma membrane, where within the trans-Golgi 

network it is cleaved by the convertase Furin (or Furin-like proteases) at the S1 cleavage 

site 36,37. Interestingly, cleavage at this location is not necessary for normal Notch 

extracellular domain folding or further proteolysis, but instead is required for standard 

trafficking to the cell surface 38,39, though this mechanism is not well understood. As a 

mature protein, the extracellular and intracellular halves of Notch are held together by 

several interdomain non-covalent interactions. The first is through a region termed the 

heterodimerization domain (HD) which consists of hydrophobic and electrostatic 

interactions, rejoining the two Notch parts separated by S1 cleavage. Importantly, the HD 

contains an internal S2 cleavage site which is covered and protected by the other set of 

interdomain contacts, the three Lin12/Notch repeats (LNR) 40,41. Altogether, these 

components and contacts form the negative regulatory region (NRR) and its activation will 

be further explored in the ‘Signaling Mechanism’ section.  
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Beyond this crucial regulatory region lies the Epidermal Growth Factor (EGF)-like 

repeats which make up the bulk of the extracellular domain. These repeats are heavily post-

translationally modified by several forms of O-linked glycosylation and act to regulate 

Notch signaling through its interactions with partner ligands. This regulation is variable 

based on the EGF-like repeat composition of the different Notch receptors, what ligands 

are available to interact with, and even depends on cell-specific contexts which dictate how 

the EGFs are first modified (thoroughly reviewed by Harvey & Haltiwanger, (2018); 

Gordon et al., (2008) 42,43). 

The Intracellular Domain 

Soon after the S2 site within the HD is a transmembrane-spanning domain, 

followed by the remainder of the Notch protein; the Notch Intracellular Domain (NICD). 

Located within the transmembrane-spanning region are the S3 and S4 cleavage sites, both 

cleaved by the presenilin/γ-secretase complex. The S3 cleavage site is near the cytosolic 

side of the plasma membrane 23, though the exact cleavage location and the resulting start 

of the N-terminus of the NICD are variable based on if the Notch protein goes through 

traditional ligand-induced activation or endosomal-mediated signaling 44,45. The S4 

cleavage site is found near the middle of the transmembrane spanning region and, when 

cleaved, results in the secretion of a small extracellular/intramembrane fragment 46,47. 

Starting immediately after the S3 cleavage sites is the NICD, the transcriptionally 

active, “dissertation-relevant” portion of the Notch protein. It consists of three large 

domains with a plethora of other regulatory elements within. To be discussed in length in 

the upcoming ‘Transcriptional Activation Complex’ and ‘Notch Intracellular Domain 

Dimerization’ sections, Notch is a co-transcription factor which interacts with the DNA-



6 

 

 

binding protein Recombination signal Binding Protein for immunoglobulin kappa J region 

(RBPJ), also commonly called CSL, for CBF-1/Suppressor of Hairless/Lag-1. This 

interaction with RBPJ is initiated through the first of NICD’s large domains, the RBPJ 

associated module (RAM) domain 20,48. 

The second large domain is composed of ankyrin repeat (ANK) motifs, which are 

individually made up of two antiparallel α-helices connected by a short loop, with tandem 

ankyrin repeats linked together by longer loops 49. Notch contains seven of these ankyrin 

repeats, and this domain is essential for transcriptional activation of target genes by 

mediating protein-protein interactions 18,50. Critically, when an active NICD molecule 

binds to a DNA-bound RBPJ protein, this complex further recruits a Mastermind-like 

(MAML) family member through interactions with both RBPJ and NICD’s ankyrin 

domain 51. 

The third large domain is the transactivation domain (TAD), which is the least 

characterized region within the Notch proteins. Its presence in Notch1 is a requirement for 

successful activation of target genes 52,53, yet its structural characteristics and interactions 

aren’t well defined. Overall, it’s thought to augment Notch1-induced transcription by 

playing roles in the assembly of the Notch1/RBPJ/MAML ternary transcription complex 

54, and may also be involved in the recruitment of other transcriptional machinery, like 

histone acetyltransferases 55,56.  

Beyond these large domains are several smaller structural features and a wide array 

of post-translational modifications. These modifications range from the assortment of 

glycosylations on the EGF-like repeats, to protein attachments 

(ubiquitination/sumoylation), and a plethora of other transient, amino-acid level 
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modifications (phosphorylations/acetylations/methylations/hydroxylations), all 

thoroughly reviewed in Antfolk et al., (2019) 57. Other minor, yet critical, structural 

features include two nuclear localization signals (NLS) 50,58 and a Proline/Glutamic 

acid/Serine/Threonine (PEST) domain, which is involved in the Notch protein’s rapid 

degradation 59,60. An EP domain has also been described within the C-terminus of the 

ankyrin domain which recruits the histone acetyltransferase p300 61,62. However, whether 

it holds this specific function or if it just aids in the stability of the ankyrin domain, which 

itself has larger implications, is up for debate 63,64. 

 
Figure 1.2: Structural Domains of Notch1 

The functional domains of the mouse Notch1 protein. As a transmembrane (TM) receptor, 

Notch can be readily split into two functional regions: the extracellular region which 

receives signals from neighboring cells and the intracellular region, which translates these 

signals into transcriptional outputs. This diagram represents a Notch protein that has 

already been cleaved with Furin at the S1 site, reassembled through the heterodimerization 

domain, and is primed for activation. EGF-like repeats 8-13 have been identified through 

color shading, arrows indicate the minimal EGF-like repeats required for Notch activation; 

repeats 11 and 12 (further discussed in the ‘Signaling Mechanism’ section). In this figure, 

the Notch protein and its domains have been scaled accordingly for relative size. 
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Differences Between the Notch Receptors 

Historically, the majority of original structural work was through research on the 

D. melanogaster and C. elegans Notch receptor, and fortunately, due to the high 

conservation of this pathway, most of the identified domains are equivalently found in the 

vertebrate Notch receptors. Within the vertebrate Notch family, however, there are some 

noteworthy differences. There are four members of the mammalian Notch family, aptly 

named Notch1 through 4, which all play roles in development though with varying degrees 

of importance and overlapping functions. For example, Notch1 and Notch2 knockout mice 

are embryonically lethal, whereas mice without Notch3 and Notch4 were viable and fertile 

(whole-animal and tissue-level, conditional Notch knockouts are reviewed in Hozumi, 

(2020) 65). 

At a structural level, the four Notch proteins are mostly homologous, though with 

several distinct differences. First, the EGF-like repeats are variable among the Notch 

proteins: there are 36 repeats in Notch1/2, 34 in Notch3, and 29 in Notch4 66,67, though 

they all still contain EGF11 and 12 which are crucial for receptor-ligand interaction 

(discussed in the ‘Signaling Mechanism’ section, also in Fleming, (1998) 68). This 

variability in the number of repeats, combined with the substantial amino acid differences 

between their respective EGF-like repeats 69, may allow the Notch receptors to have 

preferential ligands and other extracellular interactions. 

Second, the presence and functionality of the TAD domain is disputed for the Notch 

receptors. As for the presence of the TAD domain, none of the other Notch proteins have 

a C-terminus that strictly resembles the TAD found in Notch1, though the equivalent region 

in Notch2 does behave somewhat similarly 52. In contrast, a Notch1-esque TAD is 
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nonexistent in Notch3 and 4, though the C-terminal region past the ankyrin domain in 

Notch3 does interact with some zinc finger-mediated transcription factors, resulting in its 

trans-activation 28. 

Finally, there are mixed reports about if the Notch4 protein is even capable of 

canonical Notch signaling, despite having all the necessary domains for minimal activity. 

In all cases, a constitutively active Notch4 intracellular domain could induce transcriptional 

signal, so the question lies in if the extracellular domain can bind to a ligand and induce 

the cascade of cleavages to release the N4ICD. This question is commonly addressed 

through co-culture experiments, where one cell type has the Notch4 receptor and is grown 

alongside another cell type presenting a Notch ligand. Paradoxically, some co-cultures with 

cells presenting the Notch ligands Delta-like 4 or Jagged1 weren’t capable of activating 

Notch4 70,71, whereas other co-cultures, using the same ligands, did observe Notch4 

activation 72,73. Therefore, despite having the same proteins present, the collective results 

here are conflicting. This can likely be contributed to the usage of different cell lines or 

different overall methodologies, but all told, it’s still unknown if or under what contexts, 

Notch4 if capable of canonical Notch signaling. 

Signaling Mechanism 

All Notch proteins signal through the same activation format. As summarized in 

Figure 1.3, Notch proteins are found on the cell surface, primed for activation, awaiting 

interactions with a ligand displayed by a physically interacting, neighbor cell. These 

interactions induce a cascade of proteolytic cleavages within the Notch protein that results 

in the release of the intracellular domain. As a co-transcription factor, the NICD 
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translocates to the nucleus to induce transcription of target genes. The following section 

will further explore each step of this signaling mechanism.  

 After the initial protein cleavage event by Furin, the heterodimerized Notch protein 

awaits at the cell membrane in an autoinhibited state. In this state, the S2 cleavage site is 

physically protected by the NRR, where if absent or non-functional, the S2 site is readily 

available for cleavage and results in a constitutively active Notch receptor 16,40,41,74,75. 

Instead, typical Notch activation is through EGF-mediated interactions with the DSL 

(Delta, Serrate, LAG-2) family of ligands (Delta-like 1, 3, 4 (DLL1,3,4), and Jagged1, 2 

(JAG1,2) in humans). These ligands (excluding DLL3, see Chapman et al., (2011); Ladi et 

al., (2005) 76,77) are present on neighboring cells’ surfaces and interact with the EGF-like 

repeats within the Notch extracellular domain. These interactions are mediated through two 

ubiquitous domains found within the DSL ligands: an N-terminal C2 phospholipid 

recognition domain (also called an MNNL domain) 78,79, followed by a DSL domain 80. 

These structural components and interactions are thoroughly reviewed in Handford et al., 

(2018) 81. 

 Among the many EGF-like repeats within Notch, substantial mutational analysis 

initially uncovered that the repeats 11 and 12 were critical for signaling 13, though these 

repeats alone were not enough for complete ligand-mediated activation 15. The scope of 

necessary EGF repeats has expanded since then, where an assortment of other studies 

implicate repeats 8-13 and beyond to mediate ligand-receptor affinity and preferences 82–

88. Nevertheless, in an antiparallel fashion, the glycosylated Notch EGF repeats 11 and 12 

are the minimum required for ligand-receptor interactions. In Figure 1.2 and 1.3, these 

repeats have been differentially shaded (8-13) and further identified through arrows (11-
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12). The engagement between the Notch receptor’s repeats 11 and 12 and a potential ligand 

is through the C2 and DSL domains of a partnered DSL ligand 89 and is sufficient to induce 

the next step in the activation pathway: ligand-induced proteolysis. 

 Upon Notch-ligand engagement, the signal sending cell endocytoses the DSL 

ligand through Clathrin-mediated processes 90,91. The mechanism or triggering behind this 

event is not well understood, though evidence suggests that ligand endocytosis is not 

random or consistently occurring, but instead depends on a Notch extracellular domain 

interaction 92. Regardless, this endocytosis transfers a mechanical force through the 

heterodimerized Notch receptor, inducing an unfolding event within the NRR 91–95. 

Previously compared to a mushroom cap protecting its stem, the LNR domains cover and 

protect the S2 cleavage site found within the HD domain 43. Through the endocytotic force, 

the LNR domains unfold and open the S2 site for cleavage by members of the ADAM (a 

disintegrin and metalloprotease) protease family 96–98. 

 The primary ADAM member utilized for ligand-induced proteolysis is ADAM10, 

though some evidence suggests that ADAM17 is also capable of ligand-independent 

cleavage of Notch 99–103. As membrane-bound proteases, they can be classified as 

sheddases where, as in the case of Notch, they cleave the extracellular portion of proteins 

from the cell surface. The extracellular Notch fragment, still bound to the DSL ligand, is 

then completely endocytosed into the signal sending cell and targeted for degradation 92. 

The other portion, the membrane-spanning and intracellular domain, is further cleaved at 

the S3 and S4 sites. 

 These sites are found within the transmembrane spanning region and are cleaved 

by the γ-secretase complex, also an integral membrane protein (reviewed in Jorissen & De 
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Strooper, (2010) 104). Among other structural components, its catalytic subunits are 

Presenilin 1 or 2, and these are necessary for the complex to cut Notch and cause the release 

of the intracellular domain 105,106. Protein cleavage through γ-secretase is prevented in the 

presence of a large extracellular domain 107, and therefore, this final cleavage step is 

regulated by the action of the ADAM proteases. The two cleavage sites are cut sequentially 

(S3 then S4), and the S3 site ends up dictating the new N-terminus of the NICD 44,46,108. 

Canonically, the new N-terminus amino acid is Valine 1744 (for mouse N1ICD, human 

N1ICD is V1754) but the exact cleavage site can be variable. An alternative, though 

uncommon, cascade of NICD processing and signaling involves an endocytosis-mediated 

mechanism, and this subfield is still in development 44,109–112. Post cleavage, the Notch 

intracellular domain, through its internal nuclear localization signals, is then translocated 

and imported into the nucleus through the canonical importin-α/β1 transport pathway 

113,114. Here, the functional roles of the Notch signaling pathway take place. 

Transcriptional Activation Complex 

Within the nucleus is the transcription factor RBPJ, where it interacts with its 

cognate DNA binding sites within gene enhancers and promoters. This protein has three 

functional domains: an N-terminal and C-terminal Rel-homology region (RHR-N or -C), 

and a beta-trefoil domain (BTD) between them 51,115. The RHR-N and BTD interact with 

the DNA’s major and minor groove, respectively, resulting in its transcription factor nature 

51,115,116. Importantly, the BTD and RHR-C include the sites for protein-protein 

interactions, including the interaction with the RAM domain of the NICD, along with a 

suite of interactions with corepressors 115,117,118. Notably, RBPJ’s default state is one of 

repression, where the interacting co-repressors differ based on specific cell types or tissues 
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and the state of development of those cells (thoroughly reviewed in Oswald & Kovall, 

(2018); Contreras-Cornejo et al., (2016); Borggrefe & Oswald, (2009); 119–121). 

An active Notch signaling pathway works to displace the co-repressors bound to 

RBPJ and instead recruit its own co-activators to drive transcription of target genes. For a 

bit of history, the first observations of an RBPJ-Notch interaction was well over twenty 

years ago 122, and was quickly verified in both vertebrate and invertebrate systems 

18,20,123,124. This signaling system has distinct biological functions, dependent on 

interactions between RBPJ and Notch, and was observed to occur between each of the four 

mammalian Notch proteins 21,48. 

The transition from corepression to coactivation starts with binding of the NICD 

RAM domain to RBPJ, which displaces any interacting co-repressors 125. This protein-

protein interaction results in a new binding interface created between RBPJ and the ankyrin 

domain of Notch, where a member of the MAML family is recruited and binds, creating a 

ternary complex (RBPJ/NICD/MAML, annotated in Figures 1.3 and 1.4) 25,26,51,117,126–129. 

The MAML protein can be considered the catalyst for Notch-regulated transcription, as it 

recruits an assortment of transcriptional machinery (reviewed in Kitagawa, (2015) 130). 

First, MAML1 has been shown to recruit p300/CBP, PCAF, and GCN5 which are all 

histone acetyltransferases and promote nucleosome acetylation 55,56,61,121,131,132. Second, 

MAML1 induces the recruitment of RNA polymerase II for gene transcription. Beyond 

acetylating DNA, p300/CBP also acetylates MAML1 which creates docking sites for the 

protein PEAK1 related, kinase-activating pseudokinase 1 (also commonly called NACK 

and Pragmin). Through currently unknown mechanisms, NACK recruits RNA polymerase 

II, leading to transcription initiation 133,134. 
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Figure 1.3: Activation of the Notch Signaling Pathway 

The activation of the Notch signaling pathway can be summarized into four essential steps, 

detailed in the above sections. 1) A signal sending cell presents a ligand from the DSL 

family which interacts with a Notch receptor on the signal-receiving cell’s surface. Ligand-

receptor recognition, mediated primarily through the ligand’s DSL and C2 domains 

interacting with the receptor’s EGF-like repeats 11 and 12, induces endocytosis of the DSL 

ligand. This places a mechanical pulling force on the attached Notch receptor, inducing an 

unfolding event of the NRR. 2) This unfolding event allows a series of proteolytic cleavage 

events; first at the S2 site by an ADAM metalloprotease and then at the S3 site by the γ-

secretase complex. 3) These two cleavage events release the transcriptionally active 

intracellular domain which is free to translocate to the nucleus through the utilization of its 

nuclear localization signals. 4) Within the nucleus, NICD assembles into a ternary complex 

with RBPJ and a member of the MAML family. This complex recruits further 

transcriptional machinery, primarily through interactions with MAML, and eventually 

drives transcription of Notch target genes. 

Signal Inhibition and Protein Degradation 

The canonical route for Notch degradation is through the utilization of the Notch 

PEST domain, though cells utilize several other signaling pathways to turnover and 

finetune the amount of Notch signal (thoroughly reviewed in Francesca A. Carrieri & Dale, 
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(2017) 135). As for PEST-mediated degradation, this route begins immediately after the 

initiation of gene transcription through the ternary Notch complex. To start, members of 

the MAML family, all while within the ternary complex, recruit an assortment of kinases 

that phosphorylate the NICD 131. This includes the Cyclin C/Cyclin-dependent kinase 

complex (CycC:CDK1, 2, or 8) which bind directly to MAML and phosphorylate serines 

and threonines within the NICD TAD and PEST domains 136,137. The serine/threonine 

kinases Glycogen synthase kinase-3α/β (GSK-3α or β) are similarly involved 

phosphorylating amino acids within the PEST domain, but their method of recruitment and 

regulation is less understood 138–140. These modified amino acids within the PEST domain 

form a phosphodegron motif which acts as a specific substrate binding region for the F-

box/WD repeat-containing protein 7 (FBXW7), a member of the Skp, Cullin, F-box 

containing complex (SCF complex), and together act as an E3 ubiquitin ligase 59,60,141–147. 

After ubiquitination, the transcriptional signal is halted, the transcription factor complex 

falls apart, and the NICD is recycled in the proteasome through canonical mechanisms. 

While the final proteasome degradation is the same, the route there can change 

based on alternative mechanisms of Notch signaling or slight protein modifications based 

on cellular contexts. For some mechanistic examples, there are phosphodegrons found 

within the RAM and ankyrin domains, regulated through a yet to be identified E3 ligase 

148 and through the E3 ligase Itch (also named AIP4) 149,150. In both of these cases, Notch 

is signaled for degradation while still in a non-activated state, either before interactions 

with RBPJ 148 or even at the cell membrane before ligand activation 151–153. As far as 

regulation based on cellular context goes, some examples include integrin-linked kinase or 

the Src family kinases which phosphorylate select serine/threonines or tyrosines, 
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respectively, found within the Notch ankyrin domain. Their amino acid targets indirectly 

affect Notch stability through the inactivation or recruitment of other kinases or complex 

proteins 154–157. Altogether, these degradation mechanisms allow for the rapid and precise 

responses to changes in Notch signaling to meet the needs of the cell. 

Notch Intracellular Domain Dimerization 

Promoter Structure 

Canonical Notch target genes, such as those within the hairy and enhancer of split 

family (Hes1-7)  and the Hairy/enhancer-of-split related with YRPW motif protein family 

(Hey1, 2, L), transition the Notch signal and act as transcriptional repressors (reviewed in 

Davis & Turner, (2001); Fischer & Gessler, (2007) 158,159). Among a variety of other 

promoter elements that all regulate gene transcription, these Notch-target genes generally 

contain multiple RBPJ recognition sequences. This sequence motif, 5’-CGTGGGAA-3’, 

has not dramatically changed since it was first identified 17, though we now understand that 

not every base has equivalent nucleotide-RBPJ interactions 35,160,161. The core RBPJ 

recognition sequence is 5’-YGTGRGAA-3’, where ‘Y’ is a pyrimidine base (C or T) and 

‘R’ is a purine base (A or G). 4 

Screening for this consensus motif within the Hes family-equivalent Drosophila 

promoters (Enhancer of split complex genes, such as E(spl)m4, 8, γ) identified two 

important trends. First, these promoters are controlled by multiple RBPJ binding sites 

(Su(H) protein in Drosophila) spread throughout, both in the proximal promoter and distal 

enhancers. Second, and significantly relevant to this dissertation, a select number of these 

sites were in a ‘paired’ arrangement, abbreviated as an SPS (Su(H) paired site) 19. An SPS 

was originally characterized as two RBPJ binding sites in the forward (sense) and reverse 
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(antisense) orientation, separated by a defined number of nucleotides (16 bp) that was 

conserved between the Drosophila E(spl)m4, m8, mγ and mouse Hes1 genes (this 

separating space has been termed as ‘spacer’ or ‘gap’ distances). Herein, it was first 

hypothesized that the SPS permits synergistic interactions between two Notch ternary 

complexes 19. This SPS motif was later identified in more members of the E(spl) complex 

genes and its necessity for gene transcription was further explored. Interestingly, its 

presence was required for some Drosophila developmental aspects but not in others 24.  

Cave et al. (2005) 27 further defined the SPS architecture to only include the forward 

and reverse site orientations. Manipulation of these sites into other arrangements, such as 

forward-forward or into a single RBPJ binding site, severely ablated any transcriptional 

activation from the promoter element 27. Using a Drosophila cell culture model, Cave et 

al. also observed further synergism with another promoter element, a so-called ‘A site,’ 

where proneural basic Helix-Loop-Helix (bHLH) activator proteins bind. Only when in 

combination with the bHLH activator proteins Achaete and Daughterless was the 

Drosophila NICD able to robustly activate the E(spl)m8 promoter, which contains both an 

SPS and A site motif. On a synthetic promoter within mammalian cells, this combination 

(SPS + A) resulted in substantial promoter activation only when transfected with both 

NICD and the proneural bHLH activator protein MASH1, and displayed poor activation 

when only one of these transcription factors was present 27. However, this specific promoter 

arrangement has not been further identified or explored in any native mammalian Notch 

target genes, suggesting that the SPS + A code may be a Drosophila-specific mechanism. 

The first comprehensive mammalian promoter analysis was by Ong et al. (2006) 28, 

where the authors explored the promoter activation potential of each Notch family member 
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(Notch1-4) on a suite of native, mutated, and synthetic promoters in a variety of 

mammalian cell lines 28. As hinted at in a previous study 162, they found that the four NICDs 

have substantially different activation strengths, even on the same promoter. In general, 

Notch1 is the strongest activator, and Notch3 and Notch4 compete for the ‘weakest NICD’ 

title. Their relative activities, therefore, likely depend both on their amino acid 

compositions and various regulatory interactions dependent on cellular contexts. Since the 

four mammalian Notches equivalently interact with the same RBPJ protein 161,162, their 

variable activation strengths may be attributed to either structural differences within their 

ankyrin or C-terminal domains, or within cis-regulatory elements found within different 

promoters and cell types.  

To address these two possibilities, Ong et al. performed substantial promoter 

mutagenesis on Notch-target genes to find the minimum promoter elements required for 

Notch-induced transcription. Strikingly, they found that the SPS within Hes1 (with an 

additional TATA box) is the minimal promoter element necessary for robust Notch-

induced activation. Further, this minimal SPS-induced promoter had variable activation by 

the different Notch proteins (N1 > N2/4 > N3), all while within the same cell type. This 

indicates that the different strengths seen in full-length promoters can be primarily 

attributed to the amino acid composition of the individual Notch proteins, not cis-

interacting promoter elements 28.  

The latter half of their manuscript sought to determine the minimum requirements 

and signaling potential of sequence-paired sites. In summary, their work confirmed the 

characteristics identified by the original landmark studies 19,24, where SPSs are composed 

of two RBPJ binding sites oriented head-to-head, with precisely 16-nucleotides between 
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them 28. Further, they demonstrated that they can artificially create a canonical SPS from a 

monomeric RBPJ-site within Hes5, which dramatically increased its transcriptional 

potential, and any non-canonical formats performed poorly. This agrees with results from 

Cave et al., who also found the orientation and spacing between these two RBPJ-sites was 

crucial for activation; any deviation from the canonical motif nulls the transcriptional 

response. While the promoter mutagenesis performed by Ong et al. indicates the inflexible 

nature and importance of an intact SPS motif, the mechanistic details behind its NICD-

induced activation were again left unanswered. 

Notch Dimerization: The First Observations 

Just a year after the Ong et al. (2006) paper was published, the question regarding 

the mechanism behind Su(H) paired sites was addressed. The Blacklow laboratory utilized 

a Notch ternary complex crystal structure (PDB ID: 2F8X) they had previously solved to 

model two Notch transcriptional activation complexes (NTC) on DNA 29,126. This original 

crystal structure includes partial proteins of RBPJ, MAML1, and N1ICD, as well a segment 

of the Hes1 promoter including a single, canonical, RBPJ binding site. When observing 

their ternary complex crystal, as well as a crystal structure of the Notch1 ankyrin domain 

solved by another independent group 163, they noticed points of contact between the convex 

surfaces of adjacent NICD ankyrin domains. These contact points led to two important 

observations: 1) interacting complexes orient in a head-to-head conformation (two NICDs 

facing each other, as they would be oriented on an SPS) and 2) when connected through 

the ankyrin domains, the resulting distance between the two NTCs is roughly equivalent to 

the distance between the two RBPJ binding sites of an SPS. Further, the amino acids 

implicated in dimerization are conserved both across Notch homologs and within a range 
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of species 29. These few observations led the Blacklow laboratory to hypothesize the 

possibility of NICD dimerization, explore any transcriptional implications of this process, 

and practically started the field of Notch intracellular domain dimerization. Culminating 

their work, Figure 1.4 represents the structure, orientation, and interacting amino acids used 

for NICD dimerization.  

 
Figure 1.4: Crystal Structure of a Dimerized Notch Ternary Complex 

A dimerized NICD ternary complex assembles on the head-to-head RBPJ binding sites 

within a sequence-paired site. This structure is assembled on the human Hes1 SPS, and is 

composed of human RBPJ, a fragment of MAML1, and the ankyrin domain of Notch1. 

The ternary complex proteins are labeled respective to their colors within the figure. The 

inset box indicates the conserved dimerization interface and the panel to the right is an 

expanded view of this region. Interacting amino acids are identified (green) and their 

corresponding amino acids in the reciprocal protein can be found in orange. This crystal 

structure was solved by Arnett et al., (2010) 30, submitted to the RCSB Protein Data Bank 

(ID: 3NBN), and further visualized in the EzMol software wizard developed by Reynolds 

et al., (2018) 164. 
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Dimerization as a Transcriptional Activator 

By modeling two NTC cores on an SPS (hereafter an abbreviation for ‘sequence-

paired site,’ as it changed with the literature), Nam et al. (2007) 29 observed three 

electrostatic points of contact between the two dimerizing ankyrin domains. The first 

includes hydrogen bonds between the guanidino group of R1984 (amino acids and 

positions represent those found within human Notch1) and three backbone carbonyl 

oxygen atoms within the partner ankyrin domain. The second interaction includes salt 

bridges between E1949 and K1945 of the two ankyrin domains, and the third includes 

hydrogen bonds between R1982, S1951, and a backbone carbonyl oxygen atom 29.  

While these contacts were sufficient for ankyrin-dependent dimerization, Nam et 

al. were curious if dimerization was necessary for transcriptional activation through a 

gene’s SPS. This was tested through mutational analysis of the dimerizing amino acids and 

they found that, upon null-mutations (primarily of R1984, R→A), transcriptional 

activation of a Hes1 luciferase reporter was abrogated 29. Similarly, through the utilization 

of electrophoretic mobility shift assays (EMSA) on the Hes1 SPS, wild-type proteins were 

capable of cooperatively loading onto the promoter segment, whereas dimerizing-mutants 

abrogated any complex assembly. To further characterize SPS limitations through EMSA 

analysis, Nam et al. both expanded and shortened the gap distance between the two RBPJ 

binding sites. They observed that cooperative loading is slightly flexible, allowing for 15-

19 bp gap distances (a wild-type gap is 16 nucleotides). To push complex assembly to its 

limits, additional mutations of the SPS, such as through site inversions or large nucleotide 

insertions between the sites, also disrupted any cooperative complex loading, as seen in 

similar previous studies 27,28. Altogether, this landmark study discovered Notch 
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intracellular domain dimerization, associated it with the known mechanisms of sequence-

paired sites, and characterized some of its limitations 29. Further, Nam et al. found that this 

is a physiologically relevant subset of Notch signaling, where dimerization almost 

completely controls transcriptional activation of the SPS-inclusive gene, Hes1. 

In a follow-up study 30, the Blacklow laboratory sought to address a problem with 

their previous dimerization model: when two NTCs were modeled on an SPS with an ideal 

B-form DNA conformation, the dimerization interface was almost 50 Å apart. They preface 

that for native dimerization to occur, then the two NTCs, the gap distance DNA, or both 

would have to go through substantial conformational change. To address this issue, Arnett 

et al. (2010) 30 solved the crystal structure of the entire dimeric complex, using partial 

proteins of RBPJ, Notch1, and MAML1, and a 37-bp DNA segment containing the Hes1 

SPS (PDB ID: 3NBN), visualized in Figure 1.4. As indicated in their original models, the 

crystal structure resolved with the same contacts between the two NTC’s ankyrin domains 

and had little overall conformational change of the individual NTCs. Instead, the DNA 

went through substantial bending and untwisting to accommodate the dimerized 

complexes. Importantly, this suggests that, while the ideal gap distance between two NTCs 

is 16 nucleotides 29, alternatively spaced gap distances may accommodate dimeric complex 

assembly as well. This was previously explored by Nam et al., but was through mutational 

analysis of the Hes1 SPS, not natural gene targets.  

In this follow-up study, Arnett et al. identified alternative sequence-paired sites in 

genes with a 16-nucleotide (Hes4, FJX1), a 15-nucleotide (SYT14), and a 17-nucleotide 

gap distance (CUL1), all of which demonstrated NTC dimerization through EMSA 

analysis. Further, to examine the effects of dimerization on canonical Notch-target genes 
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without standard sequence-paired sites, they used luciferase reporter assays driven by 

promoter sections of HeyL, Hey2, and Hes5. As anticipated, HeyL and Hey2 activated 

equivalently with wild-type or dimerization deficient NICDs, but surprisingly, activation 

of the Hes5 promoter required dimer formation.  

These observations split Notch-responsive promoters into two categories; those 

without dimerization dependence (HeyL, Hey2) and those that depended on dimerization 

for robust activation (Hes1, Hes5). However, while Hes1 contains a canonical SPS, Hes5 

contains several RBPJ binding sites but none in the canonical SPS conformation. To 

explore this conundrum, Arnett et al. performed mutation analysis of RBPJ sites within the 

promoter to find the cause of dimer dependence. Through further EMSAs, luciferase 

assays, and various mutant promoters, they identified a ‘cryptic’ partner site, 16 nucleotides 

away from one of the canonical RBPJ binding sites within Hes5 30. This observation adds 

a critical aspect to the scope of Notch dimerization: sequence-paired sites may contain 

subpar/cryptic secondary RBPJ binding motifs that alone would not normally bind RBPJ. 

The presence and activation of a cryptic sequence-paired site results in an important point 

of concern that will be a theme throughout the rest of this dissertation: screening and 

identifying genes activated through non-standard sequence-paired sites will prove 

exceedingly difficult. Altogether, Nam et al. (2007) 29 and Arnett et al. (2010) 30 identified 

Notch dimerization as a novel method of transcriptional activation and resulted in the 

categorization of Notch target genes based on their utilization of Notch dimerization. 

However, these two studies only observed the activation of two dimerization-dependent 

genes (Hes1 and Hes5), and all work performed was in vitro, so the field was wide-open 

to find further physiological relevance. 
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Physiological Relevance of Notch Dimerization 

A classical model to study Notch activity is through the normal specification and 

maturation of T cells, as well as in the disease state; T-cell acute lymphoblastic leukemia 

(T-ALL). For a brief and simplified overview, the differentiation of T cells starts with 

hematopoietic stem cells found within the bone marrow. Upon cell division, they create 

multipotent progenitor cells which, through extensive cell signaling, are directed down one 

of two paths: to become myeloid or lymphoid progenitor cells. Myeloid progenitor cells 

are eventually specified to become erythrocytes, megakaryocytes, mast cells, and 

myeloblasts, where the myeloblasts are unipotent stem cells and further differentiate into 

the granulocyte series. The lymphoid progenitor cells can differentiate into natural killer 

cells or a precursor cell which further differentiate into T or B lymphocytes. Most of the 

differentiation steps during hematopoiesis occur in the bone marrow and some in the blood 

stream, but of note, T cell maturation is unique in that it occurs in the thymus. 

Among the large array of cytokines, surface proteins, transcription factors, and 

other signaling molecules involved in hematopoiesis, among them, the Notch signaling 

pathway is best known for its role in T cell development. Simply summarized, active Notch 

signaling transitions the lymphocyte precursor into T cells and is further involved in their 

maturation in the thymus, whereas inhibited or inactive Notch signaling in the bone marrow 

results in a B cell lineage. These lineage decisions are normally regulated due to the 

presence or absence of Notch ligands on bone marrow stromal cells and thymic epithelial 

cells. However, when Notch-activating mutations occur within the lymphoid progenitor 

cell line, this commonly results in T cell leukemia. T-ALL is a result from constitutively 

activating mutations within Notch, commonly within the HD or PEST domains. Mutations 
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within the heterodimerization domain result in ligand-independent Notch signaling, 

whereas PEST mutations stabilize the activated Notch intracellular domain. Lesser-

activating mutations within Notch are unable to induce T-ALL by themselves, though in 

combination with other oncogenic hits, can result in an accelerated development of 

leukemia. While the above summary should provide sufficient basal-level information 

about hematopoiesis and the normal and abnormal development of T cells for the rest of 

this dissertation, please refer to the following reviews for more in-depth material: Koch & 

Radtke, (2011); Radtke et al., (2010); McCarter et al., (2018) 165–167. 

The first source of physiological relevance for Notch dimerization was through the 

Pear laboratory a few years after the first report of NICD dimerization. Using a mix of in 

vivo and in vitro techniques, Liu et al. (2010) 31 discovered that not all Notch-dependent 

processes in T cell development require Notch dimerization. This indicates that Notch 

dimerization is not some all-encompassing mechanism, but instead regulates the 

transcription of specific genes and processes. For example, both wild-type and dimerizing 

mutants (Notch1, R1984A) were equally potent in inducing T-cell development from a 

multipotent lymphoid progenitor. In contrast, the induction and development of T-ALL in 

mice through the expression of a constitutively active NICD in hematopoietic stem cells 

only occurred with wild-type NICDs; R1984A mutants remained leukemia-free. This 

effect was similarly observed in vitro in two T-ALL cell lines, where wild-type NICD 

induced cell growth and R1984A mutants did not 31. 

Liu et al. hypothesized that this is due to the NICD R1984A mutant’s failure to 

induce the expression of critical target genes essential for leukemogenesis. This question 

led to the identification of the other dimer-dependent genes beyond the original Hes1 and 
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Hes5. While the NICD induction of Hey1 and CD25 was equivalent between wild-type and 

mutant proteins (dimer-independent genes), the dimer mutant failed to activate Hes1 (as 

seen previously, 29), c-Myc (a proto-oncogene encoding a transcription factor), and pTα (a 

gene encoding a transmembrane protein which is involved in early T-cell development), 

classifying them all as dimer-dependent genes. These genes were explored further 

throughout the manuscript, utilizing various reporter and cellular assays, combined with 

the mutagenesis of proteins and promoters. Together, these experiments indicated that 

these were novel, dimer-dependent genes and that NICD dimerization was necessary for T 

cell maturation and leukemic cell growth 31. 

The conclusion that pTα is a dimer-dependent gene led them to an unexpected 

observation: just like Hes5 30, the promoter of pTα did not have a canonical SPS. While the 

previously identified RBPJ binding site within the pTα promoter has a near-optimal 

consensus sequence 35,168, there was no standard consensus site found in the antisense 

strand, 15-17 bases away, as in a canonical SPS. To explore the possibility and mechanism 

of dimerization on the pTα promoter, Liu et al. performed EMSA analysis with the RBPJ-

containing fragment, including the area around it. As its dimerization-dependence 

suggested, they identified a cryptic RBPJ binding site 16 nucleotides away from the high-

affinity site. Interestingly, this secondary site only demonstrated the assembly of an NTC 

if the high-affinity site was intact; it alone would not load an NTC. Further, while Liu et 

al. did not initially identify the SPS regulating c-Myc, in a follow-up study the Pear 

laboratory identified a cryptic SPS, with a 15-nucleotide gap, within c-Myc’s distal 

enhancer 169. These cryptic sequence-paired sites will be further explored in the upcoming 

manuscripts and in the remaining chapters of this dissertation. Altogether, the Pear 
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laboratory was the first, and to date, the only group to demonstrate an in vivo physiological 

relevance for Notch dimerization. Through the utilization of models for T cell and leukemic 

maturation, Liu et al. observed that Notch dimerization is not a ubiquitously used process 

within downstream Notch target genes. As Arnett et al. also concluded, this signaling 

mechanism appears to function on a specific subset of Notch transcriptional targets. 

However, led by the examples of Hes5, pTα, and c-Myc, the discovery of cryptic sequence-

paired sites may make this group unpredictably large. 

Identification of Sequence-Paired Sites 

Following the identification, characterization, and physiological relevance of the 

first sequence-paired sites 29–31, the search was on to identify further SPS-driven, Notch 

target genes. The identification of a single RBPJ binding site is relatively easy through the 

recent advances in sequencing technologies and bioinformatics. Through chromatin 

immunoprecipitation with parallel DNA sequencing (ChIP-seq), researchers can 

immunoprecipitate DNA-associated proteins (such as RBPJ), purify the DNA fragments, 

perform high-throughput sequencing, and through bioinformatics, identify and characterize 

DNA binding sites of interest. 

This process has been performed several times previously to identify Notch-

associated genes, though previous efforts did not attempt to identify any paired RBPJ 

binding sites 170,171. While not the primary emphasis of the manuscript, Castel et al. (2013) 

33 were the first researchers to attempt to identify RBPJ motifs in tandem. By performing 

ChIP-seq on a single RBPJ-immunoprecipitation, they were able to use bioinformatic 

screening approaches to find nearby motifs (motifs found with the GimmeMotifs matrix, 

172). Their analysis only found a small pool of tandem RBPJ motifs (26 of 158 high-
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confidence RBPJ sites), but when present, sites were most often in the head-to-head 

conformation and 11- to 21-base pairs apart 33. Of note, most of their identified SPS-

inclusive genes did not contain the ideal 16-nucleotide spacer 29 and instead generally had 

a shorter gap distance. Further complicating these findings, the RBPJ motifs were not often 

found in the gene’s proximal promoters, but instead found at distal enhancer sites. As this 

subset of Notch signaling was not the emphasis of the manuscript, the authors did not 

explore this thread any further. 

SPS-inclusive promoters and enhancers were further studied by a complementary 

approach to ChIP-seq, termed Split DNA adenine methyltransferase Identification 

(SpDamID, 34,173). In this experimental approach, an E. coli DNA adenine 

methyltransferase (Dam) is split into two halves and fused to proteins of interest (such as 

RBPJ and Notch). When their host proteins interact, the two Dam halves can come back 

together into a functional whole protein, resulting in the methylation of nearby adenines 

within the DNA sequence 5’-GATC-3’. This creates a recognition site for the restriction 

enzyme DpnI (GAmTC), which allows isolated genomic DNA to be restriction enzyme-

treated (digested), put through adaptor ligation, and finally amplified through ligation-

mediated PCR. This amplified library pool can then be used as templates for further gene-

specific PCR reactions or used in genome-wide arrays like microarray hybridization or 

high throughput sequencing 34. 

While primarily a methods paper, Hass et al. (2015) 34 did validate their approach 

through basic analysis of Notch dimerization. SpDamID is capable of finding RBPJ 

sequence-paired sites by fusing the two Dam halves onto two NICDs and comparing the 

library pool between wild-type and dimerization interface-mutated proteins. Similar to 
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Castel et al., Hass et al. sequenced their dimer-positive library pool, identified the strongest 

RBPJ motif, and screened the surrounding nucleotides looking for a paired RBPJ site 

(motifs found with the HOMER toolkit, 174). Their work identified two dimerization-

dependent sites within the NRARP enhancer (gene encodes the Notch Regulated Ankyrin 

Repeat Protein, which acts as a negative feedback regulator of NICD signaling), both of 

which contained a canonical and cryptic RBPJ binding site. Further, SpDamID and its 

motif screening identified an assortment of RBPJ binding motif sequences found within 

SPSs, both canonical and cryptic, but the authors failed to connect these sequences to any 

gene’s promoters or enhancers. 

The most recent attempt at identifying SPS-regulated genes was by the Aster 

laboratory, who also used ChIP-seq and a host of bioinformatic tools to analyze their 

datasets 35. First, however, they sought to further characterize the dimeric complex’s 

sequence requirements to use these guidelines when sorting through their future ChIP data 

sets. To address this question, they developed a fluorescence resonance energy transfer 

(FRET)-based assay to quantitatively measure NTC dimerization on a host of DNA 

sequences. In their system, two maleimide-derived fluorophores are used and attached to 

NTC components through specific cysteine mutations within the ankyrin domain of NICD. 

In a FRET assay, one of the fluorophores is excited by an outside source and, if spatially 

close (<10 nm, as in their NICD dimerization arrangement), will transfer its energy to an 

acceptor fluorophore (creating a donor-acceptor pair), which then itself excites and emits 

detectable light at an alternative wavelength. In the absence of NICD dimerization, as in 

the case of ankyrin interface mutants or non-cooperating sequence-paired sites, the 
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fluorophores are no longer paired resulting in the excitation and emission of just the donor 

fluorophore. 

Utilization of their FRET-based assay clarified two requirements for NICD 

dimerization on sequence-paired sites. First, as previously explored through EMSAs 29,30, 

cooperative assembly (and therefore FRET signal) only occurs on DNAs containing spacer 

distances of 15 to 17 base pairs. Second, they explored the NTC dimerization on DNA with 

consensus or a variety of nonconsensus RBPJ binding sites. They observed that when these 

nonconsensus (cryptic) sites were paired as palindromic sequences (the same site at the 

forward and reverse locations), they failed to support dimerization. In contrast, when a 

nonconsensus site is paired with a consensus site (as in the case of Hes5 or pTα, detailed 

previously 30,31), this arrangement facilitates dimerization 35. Since a wide variety of 

nonconsensus sequences were observed to facilitate dimerization, these previous and 

current observations indicate that screening for Notch-driven sequence-paired sites is an 

exceedingly tall order.  

To identify further sequence-paired sites, Severson et al. (2017) 35  reanalyzed 

ChIP-seq data they had previously acquired from a T-ALL cell line, CUTLL1 175,176. Their 

original ChIP-seq analysis identified dynamic RBPJ/Notch binding sites which are 

spatially associated with Notch responsive genes, and nondynamic RBPJ binding sites, 

which appeared insensitive to the status of Notch signaling (on or off). The nondynamic 

sites were purged from their dataset which was then further analyzed for sequences likely 

to support NTC dimerization, through both canonical and cryptic SPSs. They found that of 

996 dynamic and high-confidence RBPJ/Notch binding sites, 197 (~20%) of those 

contained high-confidence SPSs. Interestingly, while the 16-nucleotide spacer provided the 
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best structure for NTC cooperation, there was a roughly equivalent number of sites with 

15- to 17- base pair spacers (15 bp, n = 78; 16 bp, n = 60; 17 bp, n = 60, note these don’t 

add up to 197 and the authors did not clarify this discrepancy). Finally, as was the case 

with monomeric RBPJ sites 175, most SPSs (86%) were found within distal gene enhancers. 

With the number of SPS-inclusive genes in CUTLL1 cells in mind, Severson et al. 

sought to identify the contribution of NTC dimerization towards gene expression in T-ALL 

(using CUTLL1 cells). They performed RNA-seq on cells transduced with either wild-type 

or ankyrin mutated (R1984A) N1ICD, and of the 281 genes activated by wild-type N1ICD, 

93 of those were not activated by the dimerization-deficient protein. At face value, this data 

indicates that about a third of Notch-induced transcription relies on NICD dimerization. 

However, a portion of these 281 genes could just be downstream targets of Notch effector 

proteins, and not actual targets of NICDs themselves, resulting in the possibility of false 

positives. To narrow the focus of this analysis to genes that are directly regulated by Notch 

signaling through RBPJ sites in their promoters or enhancers, they referred to the CTCF-

bounded chromatin domains model of spatial DNA arrangement. 

In this model of genome organization, the genome can be split into functional 

chromatin domains, divided by insulator DNA elements. These elements prevent 

inappropriate interactions between neighboring regions of the genome and effectively act 

as blockades for the effects of enhancers. The DNA binding protein CCCTC-binding factor 

(CTCF) is a well-characterized insulator-binding protein and plays crucial roles for the 

insulator’s barrier function 177–180. Severson et al.’s previous ChIP-seq work 175 suggested 

that dynamic RBPJ binding sites within enhancers are most likely to control genes within 



32 

 

 

their same CTCF block, even if those RBPJ sites are closer in sequence to the start site of 

another gene that’s within a different CTCF block.  

Utilizing this model to rescreen their RNA-seq dataset for direct Notch target genes, 

they found that of 107 high-probability, direct Notch-target genes in a T-ALL cell line, 38 

of those are NTC dimerization dependent. A list of these genes are available in their online 

supplementary data 35 and includes known dimer-dependent genes like Hes1, Hes4, Hes5, 

and NRARP, though distinctly, the identified site within the Hes5 enhancer was not the 

cryptic SPS identified by Arnett et al. Further, this screen does not identify the previously 

discussed pTα, c-Myc, FJX1, SYT14, or CUL1 genes. While the Severson et al. 

dimerization-dependent gene list is likely accurate, these discrepancies suggest that this is 

not a complete story. The absence of FJX1, SYT14, and CUL1 from the dimerization-

dependent list may be slightly ignored: their SPS sites were only explored in vitro through 

EMSA analysis and may not be even transcribed in T-ALL cell lines 30. However, their 

bioinformatic screen not identifying the cryptic SPSs within pTα, c-Myc, and Hes5 can’t 

be so easily dismissed. pTα (also named PTCRA) and c-Myc contain a bona fide cryptic 

sequence-paired site within their enhancers, were significantly controlled by NTC 

dimerization and were observed in another T-ALL cell line, T6E cells 31,169,181,182. The 

cryptic SPS control of the Hes5 promoter was thoroughly explored as well, though its 

activation was tested in an alternative cell line. The absence of these three genes on this 

list may be attributed to some differences in cell line genomics (despite pTα and c-Myc 

being explored in the same disease model), their promoters and enhancers may contain a 

variety of monomeric and SPS sites which could confound these screen results, or most 
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troubling, cryptic sequence-paired sites may not be sufficiently identified through Severson 

et al.’s bioinformatic approach. 

In summary, Severson et al. developed a technique to quantitate and compare NTC 

dimer formation on alternative sequence-paired sites and transitioned these findings into a 

search for both canonical and cryptic SPSs from ChIP-seq data sets. They identified a 

variety of dimer-responsive elements active in T-ALL cell lines, and are the first group to 

connect these elements, most often within enhancers, to their effector genes. However, just 

how exhaustive their screens are, remains to be seen. Their bioinformatic tools are likely 

proficient at identifying both monomeric and canonical sequence-paired sites involved in 

T-ALL development. That said, exemplified by the absence of the cryptic SPS genes pTα, 

c-Myc, and Hes5 from their list, their approach is not perfect and may need remodeling. 

Altogether, bioinformatic tools and techniques have been developed to identify a wide 

variety of RBPJ/Notch binding sites within the genome. While using ChIP-based 

approaches to identify single RBPJ binding sites has been well studied and developed, 

taking those same data sets and reanalyzing for paired-sites is still in its infancy. Hass et 

al. and Severson et al. both offer tools and approaches to screen and identify active 

sequence-paired sites, and these techniques should be transferrable to other Notch-

regulated models, such as within vascular development. 

An Alternative Dimerization Model 

 Beyond the ankyrin-mediated dimerization model, there exists one other case of 

Notch dimerization. In a report from 2002, back from before the first crystal structures for 

the Notch ternary complex were solved, the Capobianco lab isolated stable Notch nuclear 

complexes from Notch-induced neoplasmic cells and confirmed its protein components 
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(RBPJ/NICD/MAML), among other unidentified members 183. They also made note of 

another NICD complex, smaller than the ternary complex and with substoichiometric 

amounts of MAML and RBPJ, found within the cytoplasm. In a follow-up report nearly a 

decade later, the Capobianco lab identified it as a Notch dimer and a precursor to the 

complete ternary complex 32. 

 Using recombinant proteins from various host sources (bacterial/insect/mammalian 

cells), performing both in vitro and within cell line experiments, the authors were able to 

recreate and identify their previous cytoplasmic Notch complex. They found that the 

complex starts with a simple homodimer between two N1ICDs; no other proteins were 

necessary for this interaction. Distinctly, this interaction was ankyrin-domain independent. 

This homodimer instead utilizes sections just outside of the NICD RAM and TAD 

domains, where the RAM-interacting portion binds to a section near the TAD domain of 

the partner protein, resulting in an antiparallel arrangement between the bound proteins. 

For clarity, I’ll refer to this arrangement in the rest of this dissertation as the ‘antiparallel 

model’ since the Capobianco lab only referred to it as an NICD multimer. Vasquez-Del 

Carpio et al. (2011) 32 found that this initial antiparallel complex then starts the stepwise 

assembly of the nuclear ternary complex.  

Through a strenuous series of mutations and domain deletions, Vasquez-Del Carpio 

et al. suggested a model for the assembly of the Notch transcriptional activation complex. 

First, antiparallel Notch homodimers form in the cytoplasm and then recruit and complex 

with Ski-interacting protein (Skip), a transcriptional coactivator, through the NICD ankyrin 

domain. Skip was originally implicated in the Notch signaling pathway through its binding 

to DNA-bound RBPJ, where the SMRT/HDAC corepressor complex and active NICDs 
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compete for Skip/RBPJ binding 184. This model was later refined to include Skip’s role in 

transcriptional activation and recruitment of other transcriptional machinery, though the 

exact mechanism was not elucidated 137,185. Vasquez-Del Carpio et al. observed that, in the 

complex with an NICD homodimer, Skip and NICDs create a docking site for MAML1, 

forming a preactivated complex. At some point, which is not clarified in the manuscript, 

the complex must translocate to the nucleus as the next step is to interact with RBPJ. 

Beyond the canonical contacts with the NICD’s RAM domain, RBPJ has also been 

described as interacting with the NICD’s ankyrin domain (briefly reviewed and studied in 

Wilson & Kovall, (2006); Nam et al., (2006) 117,126). The NTC complex finally forms by 

an RBPJ-mediated displacement of Skip from the NICD ankyrin domain, where RBPJ 

competes for the same contact region 32. They also hypothesize that the Skip/RBPJ 

exchange removes the corepressor complexes from RBPJ, though this mechanism was not 

further explored. Similarly, the preactivation complex interacting with RBPJ was thought 

to displace the partner NICD in the antiparallel model, which was then free to restart this 

stepwise assembly, though its fate was not investigated. 

There are a few important clarifications between the antiparallel and ankyrin-

mediated NICD dimerization models that need to be mentioned. First and foremost, as it 

currently stands, the antiparallel model does not have any direct implications in dimer-

dependent signaling. This model posits that dimerization is completely through the RAM 

and TAD domains; the ankyrin domain and any mutations (R1984A) did not alter their 

observed dimerization 32. Instead, the antiparallel model may have broader impacts on all 

Notch signaling targets: in their work, NICDs that could not complete the first antiparallel 

assembly step (Notch homodimerization) were incapable of activating downstream Notch 
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reporter assays 32. Second, their reporter assays were only studied with synthetic, dimer-

independent promoters. All NICD domain mutations utilized were only applied on head-

to-tail RBPJ binding site constructs, and therefore their observed downstream application 

may not apply to dimer-dependent Notch signaling. This is of particular interest since the 

mechanism behind the loss of the dimerized NICD partner and its fate was not explored; 

what if the lost protein could be instead integrated into a secondary RBPJ binding site 

within a sequence-paired site? Third, the antiparallel model may only apply to Notch1 

signaling. In contrast to the highly conserved ankyrin-mediated dimerization interface, 

these sections of the RAM and TAD domains are not well conserved across the four 

mammalian Notch proteins. Further, while the other Notch proteins (Notch2-4) were only 

minimally studied in the ankyrin-mediated model 29, Vasquez-Del Carpio et al. did not look 

for dimerization within the other Notch proteins, opting to just study Notch1. 

In summary, antiparallel NICD dimerization through sites near the RAM and TAD 

domains appears to be an important first step for NTC assembly and transcriptional 

activation. Importantly, the two Notch dimerization models are not mutually exclusive. 

While Vasquez-Del Carpio et al. hypothesized that the second NICD leaves the completed 

NTC complex, it’s also possible that it gets integrated into a secondary complex or doesn’t 

leave at all. To be explored in-depth in the next section, all of the previously discussed 

manuscripts concerning the ankyrin-mediated dimerization interface have never explored 

the alternative binding sites found within the antiparallel model. Unfortunately, the 

dimerization crystal structure solved by the Blacklow laboratory 30 did not include these 

RAM and TAD sites within their purified NICD. While this was likely due to the size 

restrictions of X-ray crystallography or perhaps just because of the expression constructs 
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they had on-hand, regardless, it’s still completely unknown if or how the RAM and TAD 

domains interact in full-length, ankyrin-dimerized, NICDs. 

Outstanding Questions 

 While the field of Notch intracellular domain dimerization has moved steadily 

forward since it was first described in 2007, the vanguard has left behind concerning gaps 

in knowledge and open questions in its wake. Many of these gaps can be attributed to two 

assumptions made in the first dimerization manuscript which have not been addressed in 

any of the field’s research since. The Blacklow laboratory assumed that 1) the other 

members of the Notch family dimerize the same way as Notch1, and 2) the ankyrin domain 

is the only site that mediates NICD dimerization. These assumptions, combined with 

various other observations and experimental weaknesses, led us to ask three outstanding 

questions which will be addressed and explored within Chapters 2 and 3 of this dissertation. 

The ensuing questions will be followed by a brief explanation, our research objective, and 

then concluded by a more thorough explanation and justification. 

Question 1: Are all members of the Notch family capable of homodimerization? Would 

this extend to heterodimerization? 

In their original dimerization manuscript 29, the Blacklow laboratory identified 

several points of contact between two Notch1 ICD ankyrin domains by using two mirrored 

NTC complexes on the Hes1 SPS. Mutation of these N1ICD residues prevents Notch-

driven activation of SPS-inclusive genes (Hes1), resulting in a new category of Notch 

target genes; those that are dimer-dependent. They further note that these contact points 

are conserved across the Notch family members, indicating that dimerization is likely an 

evolutionarily conserved function. However, their manuscript and all follow-up studies 
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since then have lacked evidence demonstrating that this dimerization mechanism is 

consistent throughout the four mammalian Notch receptors. 

Objective 1: To explore which NICD dimerization iterations occur within a protein over-

expression, cell culture model. 

The single piece of support for dimerization outside Notch1 is through an EMSA 

of 1-1, 2-2, 3-3, and 4-4 homodimers 29. While this experiment did demonstrate that two 

NTCs were loading on the Hes1 SPS, two important controls were missing before we can 

claim that they dimerize. Beyond N1ICD, the authors did not perform any mutagenesis on 

the other Notch family members. Without this negative control for dimerization, we 

shouldn’t assume that the other Notch family members contain an identical dimerization 

interface, or even dimerize at all. While the contact amino acids involved are conserved, 

there are no crystal structures of the ankyrin domains for Notch2-4 to refer to for structural 

comparisons. Further, there are other variations within the ankyrin domain (including the 

interface), RAM domain, and massive differences in the C-terminal region which could all 

change the small window necessary for ankyrin-ankyrin cooperativity. The second control 

that was left unaddressed is at the transcriptional level. While Nam et al. demonstrated that 

N1ICD dimerization mutants cannot activate a Hes1 reporter assay, they did not check if 

the other suspected Notch family homodimers are in this same category. We know that all 

NICDs can activate this type of promoter element 28, so even if this activation is through 

dimerization, we should not assume that it plays an equivalent role for each Notch protein. 

The Blacklow laboratory further proposed that since each Notch protein could 

dimerize, and the interface is conserved among them, then it’s feasible that NICD 

heterodimers could form too. This possibility would depend on cellular contexts, requiring 
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expression and activation of multiple Notch proteins in the same cell at the same time. This 

situation occurs in a variety of cell types and within Notch models, such as in T-ALL 

development 186–188 or within vascular biology 70,189,190. Regardless, even with the existence 

of these model systems, the hetero- or homodimerization of NICDs outside of Notch1 has 

not been explored to date.  

Question 2: How do the RAM and C-terminal domains affect NICD dimerization? Does 

the antiparallel model interact with the ankyrin-mediated dimerization model, or are they 

independent systems? 

 When analyzing the Notch crystal structures discussed previously 30,126, it’s 

important to keep in mind that these complexes were built using partial proteins. These 

NTC crystals are composed of the canonical SPS from Hes1, most of an RBPJ protein, a 

small fragment of MAML1, and just the ankyrin domain of Notch1. While these protein 

sections are sufficient for complex assembly, and the identified ankyrin-ankyrin contacts 

have transcriptional implications in a dimerization-dependent system, it’s presumptuous to 

assume that this partial model correctly represents a dimerized transcriptional complex for 

all Notch family members. 

Objective 2: To explore the roles the RAM and C-terminal domains may have in NICD 

dimerization, particularly emphasizing if these less-conserved regions alter the 

dimerization abilities of the different Notch proteins.  

 These crystal structures are potentially poor representatives of a dimerized system 

because of the missing domains of Notch1. In a canonical system, the RAM domain drives 

the initial recruitment of an NICD to RBPJ through its BTD domain, and then the NICD 

ankyrin domain docks with the other domains of RBPJ, RHR-N and -C, which is 
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hypothesized to be a reversible process. In combination with the RHR domains of RBPJ 

and the ankyrin domain of NICD, a segment of MAML1 nestles into a newly formed 

groove derived from both proteins, which is thought to ‘lock’ the complex together 126. 

Since the RAM domain is missing in the dimerized NTC crystals, it’s difficult to say for 

sure exactly how the ankyrin domain will arrange onto RBPJ and therefore interact with a 

partner complex. This isn’t the most troubling observation, however, since Notch variants 

lacking the RAM domain can still activate transcription, indicating that a ternary complex 

can still form independently of the RAM domain 53,183. An even more concerning 

possibility, however, can be derived from an observation Arnett et al. made of their 

dimerized NTC crystal. They note that for the ankyrin-ankyrin contacts to come together, 

the DNA had to go through substantial bending and untwisting 30. Again, this observation 

was made from a dimerized NTC complex built without the NICD RAM domain. If this 

domain was intact, would an increased number of contacts between NICD and RBPJ result 

in more or less flexibility of the larger complex? If that’s the case, would a change in 

flexibility alter the ideal number of bases between an SPS? 

 These questions are partially addressed, albeit indirectly, in these pioneer 

manuscripts. While the Blacklow laboratory used just the ankyrin domain for their crystals, 

they opted to use the RAM and ankyrin domain (RAMANK) for their in vitro EMSA 

experiments. Beyond supporting canonical dimerization, these EMSAs demonstrate that 

cooperating NTCs can also form on cryptic SPSs 30,31,169, an observation that will become 

pertinent later in this dissertation. Ultimately, these experiments produce the same 

guidelines for dimerization that the crystal structure does and indicates the RAM domain 

likely has a neutral effect on cooperative assembly. Distinctively, however, neither the 
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crystal structures nor EMSAs include the NICD’s substantially large and highly divergent 

C-terminal region. 

 Containing at least two well-accepted domains (TAD/PEST) and littered with less 

characterized regions, Notch’s C-terminus is the least studied part of the Notch protein and 

is the most variable between the four family members. While each Notch protein contains 

a PEST domain, earmarked by its roles in protein degradation, the presence and 

composition of a TAD domain is variable among the Notch family members. Besides 

necessary assisting roles in transcriptional activation, any structural roles or interactions of 

the CTD domains within the NTC complex are unknown. Further, the Notch2 TAD 

deviates heavily from the Notch1 TAD (about 45% overall identity, 191), while Notch3 and 

4 are not considered to contain a TAD at all, and instead, their truncated C-termini are 

entirely uncharacterized (except for their PEST domain). 

 These C-terminal uncharacterized regions and the RAM domain contain the 

alternative dimerization sites used in the anti-parallel dimerization model proposed by the 

Capobianco laboratory. While the N-terminal location would be present within the 

Blacklow laboratory’s EMSAs, the antiparallel model has the N-terminal site strictly 

interacting with a region just N-terminus of the TAD, which is lacking in their in vitro 

experiments. While the Capobianco lab hypothesized that the antiparallel dimerized 

NICDs resolve into monomers on DNA, this theory was only derived from their utilization 

of reporter constructs with monomeric RBPJ binding sites.  

This situation culminates in an interesting possibility and relates back to our 

original question: perhaps on sequence-paired sites, the N- and C-termini remain associated 

within their cooperating NTCs. Retaining these interactions would require physical access 
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to these regions all while assembled within a dimerized NTC, and unfortunately, the 

substantial crystal structures needed for this conformational information have yet to be 

resolved. However, while this possibility has not been specifically addressed, we may be 

able to glean insight from other Notch crystal structures. There are two crystal structures 

of a Notch ternary complex which include the RAM domain within the purified protein. 

The first was of the RAMANK domain of the C. elegans Notch protein (Lin-12) (PDB ID: 

2FO1, 117), and the second was of human Notch1 RAMANK (PDB ID: 6PY8, 192). 

Importantly, both protein crystals resolved the same way: while the specific RBPJ-RAM 

interactions were structured and resolved, the region containing the proposed N-terminal 

dimerization region did not have electron density, indicating a disordered, presumably 

unstructured region. Since this region is within an open interface within the NTC and not 

already used in an internal interaction, it’s a possibility that the N-terminal dimerization 

site is capable of protein-protein interactions within a dimerized complex. 

Structural information regarding the other component of the antiparallel interaction, 

the C-terminal site, isn’t as convenient. There are no crystal structures of the Notch C-

terminus, within an assembled ternary complex or even by itself, so trying to predict if this 

region interacts with the N-terminus would likely be overambitious. Still, a variety of 

reports have demonstrated its importance for NICD-induced gene transcription of known 

dimerization-dependent genes 52,54,55. Further, an in vitro analysis was performed which 

compared NTC complex assembly efficiency between wild-type N1ICD and one that’s 

missing the TAD domain, including the suspected C-terminus dimerization site. Nuclear 

lysates were collected and allowed to assemble on an oligonucleotide of the Hes1 SPS and 

demonstrated that the presence of the TAD is important for the proper assembly of a ternary 
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complex 54. The authors predicted that the simplest explanation for this behavior is that the 

TAD participates in intermolecular contacts to stabilize the complex, or perhaps other 

cofactors interact with the TAD and promote ternary complex assembly 54. Importantly, 

either of these two possibilities could be fulfilled by N-/C-terminal interactions as in the 

antiparallel model. 

In combination with hindsight, this evidence suggests that not including the RAM 

and C-terminal domains in the original characterization assays was a potential misstep. 

While it appears that in a reduced system (crystallization, EMSAs) the NICD ankyrin 

domain is sufficient for dimerization, in an in vivo system, dimerization may be much more 

involved. Further, these additional interactions may explain how dimerization results in its 

profound transcriptional activation or how cooperative loading works at cryptic sequence-

paired sites. These possibilities remain to be explored and these findings may drastically 

affect the model on how NICD dimerization functions across the Notch family. 

Question 3: What are the limitations to dimerization on sequence-paired sites? By 

differing in size and presence or absence of domains, do the other Notch family members 

have alternative preferences? 

 The intracellular domain dimerization of Notch1 appears to adhere to strict 

requirements, where cooperative loading only occurs when the gap distance between RBPJ 

binding sites is 15-17 base pairs 29,30,35. While the optimally spaced gap distance appears 

to be 16 base pairs for Notch1 ICD, Severson et al. found that there was roughly equivalent 

SPS representation between the three possibilities (15-17 nucleotides), where the 15-

nucleotide gap was the most common arrangement 35. Further, a ChIP-seq screen for 

sequence-paired sites by Castel et al. identified 22 genes with paired RBPJ motifs with 
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gaps that range from 11-21 base pairs 33, though the dimerization dependence of these 

genes was not explored in that manuscript nor elsewhere. Altogether, this argues that the 

presence of non-optimal and noncanonical sequence-paired sites exist and they may be 

more abundant than initially thought. 

Objective 3: To examine these alternative SPS gap distances and identify if the Notch 

family members have preferential target arrangements. 

 Beyond minor variations in the SPS gap distances, the initial characterization 

studies may have forgotten an important property of their sequence-paired site DNA 

oligonucleotides: in its standard form, DNA is in a double helix with orientation and spatial 

implications. The crystal structure and FRET assays dictate that a 16-nucleotide spacer 

allows for the lowest degree of untwisting and bending of the DNA between the two NTCs 

so that they are optimally facing each other. Since DNA requires about 10 nucleotides to 

complete a full rotation, consider how the secondary site rotates around the DNA as the 

SPS gap distance increases or decreases. They originally tested up to ± 5 bp (11-21 bp), 

meaning that the secondary NTC site, despite still being in the same orientation, would 

slowly rotate around the DNA as the gap distance changes. Therefore, in their experiments, 

it’s logical that the contacts would break as the size increases (substantial decreases would 

lead to spatial overlaps too) and no cooperative assembly was observed at their most 

extreme distances tested.  

It’s possible, however, that the NTC complexes could rejoin once more as the NTC 

rotates around the DNA even further. We hypothesized that an additional five nucleotides 

would be required to complete a full rotation around the DNA to make the two NTC 

complexes on the same side of the DNA again. This new gap distance, a total of 26 
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nucleotides, may allow for long-distance cooperative assembly and therefore dimerization-

induced signaling. This logic could be taken to extremes and be applied to previously 

recognized monomeric sites, but as the DNA gap distance increases, so does the spatial 

distance, which requires even further kinking or looping of the DNA. Thus far, the potential 

of these larger gap distances tolerating cooperative assembly has been left unaddressed; 

both through in vitro analysis and bioinformatic screening for sequence-paired sites. 

With these possibilities in mind, one question that arises is: What’s the limit of SPS 

gap lengths that are constructive for cooperative assembly and result in dimerization-

induced signaling? Considering that the original characterization studies just used partial 

proteins and these experiments were performed in vitro, we should question if the original 

guidelines transfer to more in vivo models. Perhaps some cellular conditions would allow 

these smaller or larger gap-distanced sites to act as locations for dimerization, or it’s a 

possibility that the alternative-distanced SPSs Castel et al. identified were just false-

positives. If they do exist and function as sites for dimerization, one intriguing prospect is 

through its utilization of other members of the Notch family. If all Notch family members 

can homodimerize, their slightly different RAM and ankyrin domains, and perhaps their 

substantially different C-termini, may dictate alternative idyllic gap distances.  

This mechanism would have substantial impacts on Notch signaling. As it stands, 

all active NICDs (Notch1-4) bind to the same RBPJ protein which interacts with the same 

consensus site to drive gene transcription 161. At this most rudimentary level of 

understanding, it implies that all Notch proteins result in the same signaling outcomes. This 

is not the case, however, thanks to a wide variety of NICD differences and modifications, 

protein recruitment and cooperativity, and various cellular contexts. Another possible 
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mechanism for Notch-family control and specification is if they deviate in their preferred 

SPS gap distances, introducing a method for gene-specific Notch targeting. In a 

hypothetical situation, for example, if Notch4 homodimers prefer a 14-nucleotide gap 

distance whereas the other Notch family members prefer alternative distances, then only 

Notch4 would be able transcriptionally activate Mdm1, a gene with a suspected 14-

nucleotide SPS detected in the screen by Castel et al. This kind of specification would 

prove beneficial in the Notch signaling system, where cells generally express multiple 

Notch receptor family members and their ligand-induced activation is generally non-

specific 193–197. Consequently, an SPS-specific Notch targeting system would grant cells an 

additional layer of control over their Notch functions. Therefore, the possibility of 

alternative preferences beyond those set by Notch1 is worth investigating. 

Dissertation Summary and Future Directions 

The following chapters of this dissertation represent two manuscripts which sought 

to address the aforementioned concerns and questions. Our overarching goal was to take 

these questions and answer them outside of an in vitro context, attempting to get as close 

to endogenous interactions as possible, given the tools and methodologies available to our 

laboratory. While the work performed here is not within a perfect in vivo context, it should 

act as a steppingstone for further Notch dimerization research in our lab and provide 

direction for the field’s future. 

Chapter 2 – Analysis of Notch Family Dimerization 

Chapter 2 identifies that all Notch homodimer and heterodimer iterations (1-2, 1-3, 

2-2, 2-3, etc.) can exist within cells, though they were at varying abundances. Further, 

NICD dimerization with an N4ICD partner led to, by far, the most abundant interactions. 
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Herein, we also implicated a dimerization-responsive region within the Notch protein’s C-

terminal region, in contrast to the NICD’s N-terminus which acted equivalently. Our 

methodology used here was primarily co-immunoprecipitations of overexpressed, peptide 

tagged NICDs, which is a step towards in vivo work that has rarely been taken in the Notch 

dimer field. However, this technique cannot discriminate between the two dimerization 

models (ankyrin versus anti-parallel), thus we are not able to conclude if, when, or where 

these two dimerization states exist. 

Chapter 3 – Dimerization within Transcriptional Systems  

Chapter 3 found that all members of the Notch family adhere to the strict 

dimerization guidelines set by Notch1; the only SPS gap distances that elicited signal were 

of 15-17 nucleotides. Further, in our minimalistic dimerization reporter assay, a cryptic 

sequence-paired site (Hes5) was unresponsive to dimerization, contrasting the 

dimerization-dependence seen when using the full-length promoter. 

In this chapter, we wanted to specifically examine the transcriptional outcomes of 

NICD dimerization, and further manipulate and change the sequence-paired sites in the 

most basic ways to push this signaling system to its limit. When first using the dimer-

dependent reporters that previous studies utilized, we noted that these assays were likely 

too generic for our purpose. They contain large segments of the promoters of dimer-

dependent genes, such as Hes1 and Hes5, and any effects of small manipulations of these 

promoters would be muted behind the roles of other transcription factors and regulatory 

systems. Thus, in this chapter, we developed a new type of reporter assay to specifically 

study the roles and limitations of dimerization-mediated transcriptional activation. These 

novel reporter assays consist of the sequence-paired site found within dimer-dependent 
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genes with its few surrounding nucleotides, and this minimalized system is sufficient to 

drive transcription of a luciferase gene, thus resulting in a minimalistic luciferase reporter 

assay. 

These reporter assays demonstrated that while canonical sequence-paired sites 

(Hes1) are sufficient for dimerization and further transcriptional activation, the same 

cannot be said for cryptic sequence-paired sites (Hes5). Distinctly, while previous reports 

suggest that a cryptic SPS oligonucleotide can cooperatively load NTCs in vitro 30,31,169, 

our report suggests that this minimalized segment either does not assemble complexes 

within cells or does assemble but is insufficient for robust transcriptional activation. We 

were then able to take these functioning SPS-luciferase reporters and manipulate their gap 

distances to observe any differential preferences of the Notch family members. Contrary 

to our original hypothesis, each Notch family member followed the requirements set by 

Notch1 in the original landmark studies; only SPSs with a gap of 15-17 nucleotides were 

capable of dimerization-induced activation. Therefore, the alternative gap distances 

identified by Castel et al. and any other larger gap distances (>21 bp) are likely just 

coincidentally similar to traditional SPSs and are not activated through canonical NICD 

dimerization. 

Future Directions 

The work described here has filled-in some potentially troubling holes the vanguard 

left behind during their initial surge of research activity and has further solidified the 

foundation for future work to build upon. However, as with all sciences, the recovery of 

some holes has uncovered the possibility of others. The mystery surrounding cryptic SPS 

activation, the troubles of identifying genes controlled through SPSs, and further 
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identification of Notch dimer-dependent models are all worthwhile avenues of future 

research.  

Given the apparent abundance of cryptic SPS-driven genes, future work should aim 

to identify what dictates their transcriptional activity compared to canonical SPSs. We and 

others have shown that the complete Hes5 reporter is dimer-dependent, yet when its cryptic 

SPS was isolated out in our studies, this minimalized reporter lost its dimer-dependence. 

We propose two possible explanations that would need further validation. First, it’s a 

possibility that while cryptic SPSs can load two NTC complexes in a purified, high 

stoichiometry system (EMSAs), this may not occur in a natural cell state without the aid 

of cis-regulatory elements or other co-transcription factors. Alternatively, like in others’ 

EMSAs, our Hes5(SPS) luciferase reporter may be loading cooperating complexes but is 

lacking another promoter element that transitions dimerization into transcriptional output. 

Both explanations lead to a single experimental resolution: expand the Hes5(SPS) into the 

surrounding natural promoter area in an attempt to find a cis-regulating element. This 

element could then be screened for and identified in other known cryptic SPS genes to find 

some shared co-transcription factor regulating Notch dimerization. 

In addition to screening for other cis-elements, perhaps more importantly, the Notch 

dimerization field needs to improve their methodology of finding genes regulated through 

sequence-paired sites. The current standard of performing ChIP-seq after a single round of 

purification and screening those targets for secondary RBPJ binding sites has left much to 

be desired. Our previous discussions on studies which utilized ChIP-seq screening pointed 

out that the screens used either have holes too specific which miss many cryptic sequence-

paired sites or have holes too wide which identify genes that contain alternatively spaced 
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SPSs or ones with RBPJ motifs in the wrong orientation. Further, this dissertation 

demonstrates that any alternatively spaced SPSs are not constructive for dimerization, and 

thus should be purged from future ChIP-seq attempts. One resolution to this problem, 

which we have shown is experimentally feasible, is to perform ChIP-seq on targets that 

went through two rounds of purification. Instead of immunoprecipitating the standard 

RBPJ, future attempts should target differentially tagged NICDs (or heterodimers) for 

double selection and then perform ChIP-seq on this more specific pool. While a more 

stringent approach, it should identify active SPS motifs specifically regulated through 

dimerization. 

Along with identifying further SPS-driven genes, it’s necessary to do this within 

the context of multiple Notch-regulated cell systems. With expanded knowledge that all 

Notch proteins are capable of dimerization, it’s pertinent to see how this can be applied to 

Notch models for development and disease. While a good starting point has been the role 

of Notch dimerization in the development of T cell acute lymphoblastic leukemia, this is 

still a cancer model of constitutively active Notch signaling. Future work should expand 

into other Notch models such as within neurogenesis 198 or the vasculature 199,200, with a 

particular interest in systems that utilize multiple Notch receptors to further explore the 

potential of Notch heterodimerization. 

With further identification of dimerization-induced Notch target genes, this system 

could provide an interesting opportunity for Notch therapeutics. One potential therapeutic 

approach for leukemia and other cancers, for example, is through treatment with γ-

secretase inhibitors. These inhibitors prevent Notch S3/S4 proteolysis through interactions 

with the γ-secretase complex, thereby stopping Notch signaling. However, these inhibitors 
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have been disappointing in clinical trials because of dose-limiting and on-target toxicities 

167,201. Notch dimerization presents a new target for therapeutic intervention; the 

dimerization interface. As previously proposed by both the Blacklow and Pear laboratories, 

specifically targeting the dimerization interface with a small molecule inhibitor, abrogating 

just a single facet of Notch signaling, may have more favorable toxicity profiles than other 

pan-Notch inhibitors. Efficacy of this method of inhibition and the development of these 

dimerization-inhibitors remains to be explored.   
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Abstract 

Notch signaling is universally conserved in metazoans where it is important for a 

wide variety of both normal and abnormal physiology.  All four mammalian Notch 

receptors are activated by interactions with Notch ligands present on adjacent cells in the 

cellular microenvironment and trigger the release of Notch intracellular domains (NICDs) 

that translocate to the nucleus and stimulate transcription from Notch sensitive promoters.  

All NICDs contain highly conserved ankyrin domains which are important for NICD 

homodimerization and are flanked by more divergent N- and C-termini.  Due to the highly 

conserved nature of Notch ankyrin domains, we hypothesized that NICDs may also engage 

in heterodimerization.  Using a co-immunoprecipitation approach, we show that all NICDs 

engage in both homodimeric and heterodimeric interactions.  The Notch4 ICD (N4ICD) 

demonstrated the greatest capacity for dimerization.  Interestingly, ankyrin domains were 

not necessary for co-immunoprecipitation.  Instead, a 50-amino acid segment immediately 

C-terminus of the Notch4 ankyrin domain was necessary and sufficient for strong 

dimerization.  Finally, chromatin-IP confirmed that at least a fraction of heterodimers 

formed on DNA.  Collectively, these results confirm that NICDs can engage in 

heterodimeric complexes with other NICDs and suggest a mechanism by which Notch 

signaling may be diversified through NICD heterodimeric interactions. 

Introduction 

The Notch signal transduction system is an ancient cell-cell communication 

mechanism that is conserved in essentially all multicellular animals 1,3.  Under normal 

conditions, Notch serves a wide variety of functions such as development, vascular 

biology, and immune function 202.  In contrast, dysregulation of Notch is linked to a variety 
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of diseases 202. A clearer understanding of Notch signaling will provide new insights into 

the diverse processes governed by Notch. 

There are four individual Notch receptors (Notch 1-4) present in mammalian 

genomes.  Notch1 and Notch2 are highly similar molecules while Notch3 is significantly 

different, and Notch4 is the most divergent compared to the other Notches 203.  All Notch 

receptors are thought to be activated by the same mechanism involving juxtracrine 

interactions between adjacent cells when a Notch ligand on one cell is presented to a Notch 

receptor on a neighboring cell.  Following ligand-receptor interaction, endocytosis of the 

Notch ligand provides ~4-12 pN of force 204 which physically separates the Notch 

receptor’s extracellular domain at the S1 cleavage site thus priming the molecule for 

subsequent cleavage at the S2, then S3 cleavage sites (reviewed in Kadesch, (2004) 205).  

The solubilized cytoplasmic S3 fragments (Notch intracellular domain, NICD) of all Notch 

receptors then translocate to the nucleus and participate in a tripartite co-transcriptional 

complex with the DNA binding protein and the transcriptional activator MAML 18,26.   

interacts with an 8 bp-optimized sequence (i.e. TP-1 elements) on the DNA 17, and these 

sequences can be arranged as monomers, or in head-to-tail (HT), tail-to-tail (TT), or head-

to-head (HH) orientations also known as sequence-paired sites (SPS).   

Experimental evidence from EMSA and crystallography studies have shown that 

NICD tripartite complexes can form HH homodimers on SPS sites and that HH 

dimerization is important for transcriptional activation of SPS sites 19,24,28–30.  NICD 

dimerization is thought to occur between the ankyrin domains of interacting NICD 

molecules and both EMSA and crystallographic studies have confirmed the importance of 

ankyrin domains in NICD dimerization and transcription from sequence paired sites 29,30.  



55 

 

 

The importance of NICD dimerization through ankyrin interactions is illustrated by the 

observations of Liu et al, who found that NICD dimerization is required for Notch induced 

leukemogenesis and T-cell development 31.  Sequences in the more divergent N- and C-

termini of Notch receptors have also been implicated in NICD homo-dimerization although 

this is less well understood 32.  Given the high degree of conservation within the ankyrin 

domains of all four mammalian Notch receptors, a long-outstanding question is whether or 

not different NICD molecules can engage in both homodimeric as well as heterodimeric 

complexes.   

The goal of this investigation was to test the hypothesis that the N1-4ICD molecules 

can engage in heterodimeric interactions.  Using an immunoprecipitation approach, we 

were able to confirm that all NICDs interact in both homo- and heterodimeric complexes.  

Moreover, we found that the N4ICD was unique in that it demonstrated the strongest homo- 

and heterodimeric interactions.  Interestingly, ankyrin domains were not important for the 

unique behavior of Notch4.  Instead, we determined that a region of the Notch4 C-terminus, 

directly downstream of the ankyrin domain, was responsible for mediating strong 

interactions with other NICDs. 

Materials and Methods 

Cell Culture 

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM) 

supplemented with 10% equafetal (Atlas Biologicals) and 1x penicillin-streptomycin 

solution. Cells were grown in 10 cm plates and passaged at 80-90% confluence. 
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Plasmids and Plasmid Mutagenesis 

The FLAG-NICD constructs were all gifts from Raphael Kopan 28 and acquired 

from Addgene. N1ICD (Addgene #20183), N2ICD (#20184), N3ICD (#20185), and 

N4ICD (#20186) all have an N-terminal 3xFLAG tag and code for the transcriptionally 

active, intracellular domain of the mouse Notch proteins. The NICD coding regions were 

then subcloned into pKH3 (#12555), a gift from Ian Macara 206 to add a C-terminal 3xHA 

tag as well as into pcDNA3.1/MYC-His (Invitrogen) to add a C-terminal MYC-His tag. 

The C-terminally truncated N1ICD-MYC construct was given to us by Raphael Kopan 23 

(#41730) and encodes for the mouse N1ICD from V1744 to S2184. 

The mouse Notch ankyrin domain mutants were created by aligning the human and 

mouse N1ICD to find the equivalent arginine involved in N1ICD dimerization 29,63. 

Afterward, the mouse NICDs were aligned to find the equivalent arginines across the 

mouse Notches. N1ICD (R1974A), N2ICD (R1934A), N3ICD (R1896A), and N4ICD 

(R1685A) mutants were all created through site-directed mutagenesis in each tagged-

variation of the NICD (FLAG/HA/MYC).  

The N1ICD-N4ICD domain-swapped proteins were created through Gibson 

assembly using the FLAG-tagged variants. The equivalent mouse ankyrin domain was 

found using the previously outlined human Notches 191 and centered our swaps around 

these sites. Therefore, we have three NICD regions to swap between each other; the N-

terminus region (N1: V1744-D1863, N4: V1463-D1571), the ankyrin domain (N1: V1864-

S2111, N4: V1572-A1826), and the C-terminus region (N1: P2112-K2531, N4: H1827-

N1964). 
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The N4ICD C-terminus truncations were created through Gibson assembly. The 

N4ICD C-terminus consists of 138 amino acids (everything C-terminus of the ankyrin 

domain), which we truncated into nearly equal portions. The first truncation was of 13 

amino acids (-13 V1463-H1951) and from there we cut off 25 amino acids at a time (-38 -

A1926, -63 -R1901, -88 -C1876, -113 -G1851, and -138 -A1826). 

For the transcriptional reporter assays, Hes5-Luc (#41724) was a gift from 

Ryoichiro Kageyama and Raphael Kopan. This luciferase reporter contains portions of the 

mouse Hes5 promoter and includes several RBPJ binding sites to report the activity of 

Notch signaling.  The Hes4-luc reporter (-139 to -9) was cloned by PCR amplification of 

the ChIP isolated Hes4 DNA shown in figure 2.8.  This PCR fragment was cloned into 

pGL3-basic (Promega) with 5’Kpn1 and 3’SacI sites.  The CMV-β-gal plasmid was 

originally from Clonetech. 

All primers used for vector cloning and NICD mutagenesis can be found in 

Supplementary Table 2.1. 

Immunoprecipitations 

Cells were plated into 6-well plates at a density of 300,000 cells/well. The following 

day, cells were transfected with polyethylenimine (PEI, Polysciences) at a ratio of 5 μg PEI 

for every 1 μg plasmid DNA. Since the various NICD molecules are expressed at different 

levels in cells, we transfected varying amounts of NICD expression construct to standardize 

protein concentrations in CO-IPs as follows (750ng N1ICD, 500ng N2ICD, 500ng N3ICD, 

250ng N4ICD).  Forty-eight hours after transfection, cell lysates were prepared for 

immunoprecipitations and performed as previously described 157.  
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Western Blotting 

Prepared protein lysates and CO-IP samples were separated through SDS-PAGE 

on polyacrylamide gels. Samples were then blotted onto nitrocellulose membranes and 

blocked in TBS-T (140 mM NaCl, 25 mM Tris-HCl, pH 7.4, 0.1% Tween-20) with 5% 

bovine serum albumin. Membranes were incubated with primary antibody (1:500; MYC, 

1:1000; FLAG, 1:2000; HA) overnight on a rotator at 4oC. Following incubation, 

membranes were washed 3 x 10 minutes in TBS-T and then incubated with a secondary 

antibody solution, composed of horseradish peroxidase-conjugated secondary antibodies 

at a concentration of 1:10,000. Membranes were then washed again 3 x 10 minutes in TBS-

T and proteins were detected through enhanced chemiluminescence. 

Antibodies 

For western blotting, primary antibodies against FLAG(DYKDDDDK)-tag 

(D6W5B) were purchased from Cell Signaling Technology, while antibodies against 

HA(YPYDVPDYA)-tag (Y-11, sc-805) and MYC(EQKLISEEDL)-tag (9E10, sc-40) were 

purchased from Santa Cruz Biotechnology. Secondary antibodies were purchased from GE 

Healthcare Life Sciences and consisted of α-mouse (NA931V) or α-rabbit (NA934V) 

horseradish peroxidase-conjugated antibodies.  The anti-FLAG antibody resin used for 

CoIP was from Genscript. 

Luciferase Assays 

Cells were plated in 24-well plates at 50,000 cells/well. The following day, cells 

were transfected with PEI at a ratio of 5 μg PEI for every 1 μg DNA. Cells were transfected 

with 100 ng/well Hes5-luciferase and 10 ng/well of the various NICD constructs. To 

normalize data for transfection efficiency and potential cell growth/death, we co-
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transfected with 10 ng/well of a CMV-β-Galactosidase construct. Cells were lysed 48 hours 

post-transfection in 1x firefly luciferase lysis buffer (Biotium). Lysates were analyzed 

following the manufacturer’s protocol (Firefly Luciferase Assay Kit, Biotium) using a 

Promega© Glomax Multi Detection System luminometer. Luciferase activity was 

normalized to β-Galactosidase activity (Promega) and values were reported as a fold 

change to control. To minimize transfection variations and output noise, all conditions were 

performed in triplicate for each independent experiment. 

RT-PCR Analysis 

A variety of cell lines were grown to collect their mRNA and analyze their Notch 

expression profiles.  Cells were plated in 10 cm dishes and grown until 80% confluence. 

To collect the cells and their mRNAs, they were washed with 1xPBS and lysed with 

RiboZol RNA Extraction Reagent (Amresco). mRNA was collected and purified following 

the manufacturer’s recommended protocol. Equivalent amounts of RNA was reverse 

transcribed with iScript (Bio-Rad) following the manufacturer’s protocol and diluted for 

PCR analysis. Primers used to target human Notch mRNAs are listed in Supplementary 

Table 2.1. Primers targeting 18S rRNA was used as an internal control to check cDNA 

quality. 

Chromatin IP 

Chromatin immunoprecipitation (ChIP) analyses were performed as previously 

described 207, with minor modifications including omission of SDS from the dilution, high-

salt wash, and elution buffers, and omission of spermidine from the micrococcal nuclear 

buffer.  293T cells were transfected with two differentially tagged NICDs and then 48 hours 

later were fixed by formaldehyde-induced crosslinking and the nuclear fraction was 
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isolated and collected. Micrococcal nuclease (NEB) was used to cut the chromatin into 

300-1,500 base pair fragments, the nucleus briefly sonicated to lyse the fraction, and the 

DNA collected. To specifically isolate the dimerized complexes bound to DNA, they were 

placed through two rounds of selection, targeting both partners within the Notch dimer. 

The first round of selection was performed with anti-FLAG G1 affinity resin (GenScript), 

samples thoroughly washed, and complexes eluted with 3xFLAG-peptide (ApexBio). 

Those complexes were placed through a second round of selection, probing for an HA-

tagged NICD partner, with biotinylated HA antibodies (Bioss). These targets were 

precipitated out of solution with streptavidin magnetic beads (NEB), thoroughly washed 

again, and the DNA was isolated out of the complexes with Proteinase K (Amresco) and 

reverse crosslinking. DNA was cleaned and purified with a PCR purification kit and 

samples were analyzed for Notch-dimer targets using Hes1 or Hes4 primers as indicated in 

supplementary tables. 

Results 

NICD dimerization in mammalian cells 

Previous work revealed the canonical crystal structure of the mammalian Notch 

transcriptional complex containing fragments of RBPJ, MAML1, and the N1ICD ankyrin 

domains in a head-to-head dimerized state 29,30.  Nam et al., 29 further defined key residues 

in the Notch1 NICD (N1ICD) ankyrin domain critical for dimerization of N1ICD 

molecules and determined that these residues are highly conserved in Notch 2-4 (N2ICD, 

N3ICD, N4ICD).  This data suggested that all Notch NICD domains may engage in head-

to-head dimerization interactions.  Furthermore, given the overall sequence similarity of 

the Notch ankyrin domains and the conservation of these key amino acids required for 
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dimerization, it was hypothesized that NICD domains may also be able to engage in 

heterodimeric interactions, although this has not been investigated. 

To test this hypothesis, we first established a cellular co-immunoprecipitation (CO-

IP) assay to monitor NICD homodimerization.   To  differentiate between two dimerizing 

versions of the same molecule, we generated various plasmids encoding FLAG-, MYC, or 

HA-tagged versions of mouse NICD molecules.  293T cells were transiently co-transfected 

with cDNAs encoding one FLAG-tagged and a second MYC- or HA-tagged pair of NICD 

molecules.  Anti-FLAG co-immunoprecipitation was used to isolate FLAG-tagged NICDs, 

then immunoblotting with anti-MYC or anti-HA antibodies was used to detect MYC- or 

HA-tagged Co-IP NICD partners, depending on combination.  

To validate this co-immunoprecipitation system, we first sought to detect 

homodimerization of N1ICD molecules, which had previously been observed to dimerize 

by EMSA 30.  We co-transfected 293T cells with a FLAG-tagged full-length N1ICD (1FL) 

and a truncated MYC-tagged N1ICD (1T) similar to the N1ICD previously used in EMSA 

experiments to study the interaction between N1ICD proteins (i.e. 347 amino acids of the 

N1ICD C-terminus including the PEST domain deleted).  As shown in figure 2.1A, MYC-

tagged truncated N1ICD readily precipitated with full-length N1ICD.  Importantly, 

precipitation of MYC-tagged N1ICD was dependent on the presence of FLAG-tagged 

N1ICD thus demonstrating specificity of the CO-IP approach.  Having successfully 

observed N1ICD homodimerization, we next sought to monitor homodimerization of the 

other NICD molecules (Fig 2.1B).  Interestingly, while we again observed 

homodimerization between full-length and truncated N1ICD, homodimerization of two 

full-length N1ICD molecules was only inconsistently observed.  For example, results 
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shown in figure 2.1B do not demonstrate homodimerization between full-length N1ICD 

molecules while data shown in figure 2.2A does illustrate a successful co-

immunoprecipitation of full-length N1ICD molecules.  This inconsistency of 

homodimerization between full-length N1ICD molecules continued for unknown reasons 

throughout the project. In contrast, experimentation with FLAG- and MYC-tagged full-

length N2ICD and N3ICD determined that the N2 and N3ICDs engaged in what appeared 

to be fairly weak, but consistent, homodimerization (Fig. 2.1 deep exposure). Finally, and 

in stark contrast, N4ICD homodimerization was consistently observed and appeared to be 

significantly more robust compared to N1-3ICD homodimerization despite having 

equivalent protein concentration in whole-cell lysates. Thus, these results demonstrated 

that all NICD molecules are capable of homodimerization, although the strength of 

homodimeric interactions did not appear to be equivalent for all dimer complexes. 

Heterodimerization of NICD proteins 

Due to the overall amino acid similarity of Notch proteins, especially in the ankyrin 

domains, and the shared ability of the Notch proteins to form homodimers, we 

hypothesized that NICD molecules may also be able to engage in heterodimeric complexes. 

To address this possibility, we used the same co-transfection model as described above but 

transfected cells with all permutations of epitope tagged N1, 2, 3, and 4ICD molecules. As 

shown in figure 2.2a, full-length FLAG-N1ICD engaged in homodimeric interactions with 

full-length HA-tagged N1ICD and heterodimeric interactions with the HA-tagged N2, N3, 

and N4ICD molecules.  Interestingly, N1ICD co-immunoprecipitated with N2, N3, and 

N4ICD better than with N1ICD suggesting that N1ICD preferentially engaged in 

heterodimeric interactions.  Moreover, N1ICD most strongly precipitated with N4CID.  
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N2ICD also formed homodimers and heterodimers with each of the other NICDs and again, 

the N2ICD-N4ICD interaction appeared to be the most robust (Fig. 2.2B). N3ICD formed 

heterodimers with each of the other NICDs (Fig 2.2C) although dimerization with N1ICD 

and N2ICD appeared to be weak (Fig 2.2C dark) and as before, the interaction between 

N3ICD and N4ICD appeared to be the strongest (Fig. 2.2C light). Finally, N4ICD 

demonstrated strong heterodimerization with the other NICDs, but again, N4ICD 

homodimerization appeared to be the most robust (Fig. 2.2D). Importantly, co-precipitation 

of N4CID-HA was dependent on N4ICD-FLAG co-transfection thus again illustrating the 

specificity of the co-immunoprecipitation system.   

 Collectively, this series of Co-IP experiments demonstrated that all Notch 

heterodimer combinations appear to be capable of formation.  Moreover, these results also 

showed that Notch NICDs do not appear to equally engage in dimerization and that N4ICD 

consistently displayed the most robust homodimerization and heterodimerization 

compared to the other NICD molecules. 

N4ICD homodimers and N4/N1 heterodimers outcompete N1ICD homodimers 

Our results support the hypothesis that all NICD domains can engage in both homo- 

and heterodimer interactions.  In cells that express multiple Notch proteins, it is therefore 

possible that NICD heterodimerization may present an opportunity for diversification of 

Notch signaling outputs through alternative dimerization similar to what has been 

described for other transcriptional systems 208.  To assess the expression of multiple Notch 

receptors in single cell lines, and thus the possibility of NICD heterodimerization, we 

screened several cell lines for co-expression of Notch receptors.  Reverse-Transcription 

PCR (RT-PCR) was used to monitor mRNA expression of each Notch protein.  As shown 
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in figure 2.3A, each of the cell lines examined expressed at least two Notch receptors, while 

several expressed three or even all four Notch receptors.  Consistent with previous results  

67, Notch4 expression was limited to the endothelial cell lines (i.e. HUVEC and HMEC). 

Based on our observation that the majority of cell lines express more than one 

Notch protein and our results showing that N4ICD demonstrates the strongest potential for 

dimerization in our system, we next sought to determine if N4ICD would dominate dimer 

formation even when expressed in tandem with N1ICD.  To accomplish this, we performed 

an experiment wherein HA-tagged N1ICD and N4ICD were allowed to simultaneously 

compete for binding and co-immunoprecipitation with a single FLAG-tagged “bait” 

protein (Fig 2.3B).  FLAG-N1ICD or FLAG-N4ICD were co-transfected individually with 

both HA-tagged N1ICD and HA-tagged N4ICD, and immunoprecipitated with anti-FLAG 

antibodies as before. Despite nearly equivalent expression of HA-tagged N1ICD and 

N4ICD in whole cell lysate, we observed that N1ICD preferred forming heterodimers with 

N4ICD rather than engage in homodimer interactions, although N1ICD-N1ICD 

homodimers were also detected.  In contrast, we found that N4ICD preferentially engaged 

in homodimer formation and we were unable to detect N4ICD-N1ICD heterodimers when 

N4ICD was used as bait, possibly as a result of the stronger interaction between N4ICD 

molecules. 

Ankyrin domains are not required for NICD dimerization 

The Notch ankyrin domains have been shown to interact in a head-to-head 

orientation that is important for NICD dimerization 29,30.  Given our results, we sought to 

determine if the NICD ankyrin domains were important for NICD dimerization in our 

immunoprecipitation assay.  Arg1984 within the human N1ICD ankyrin domain was 



65 

 

 

previously identified as important for NICD dimerization and transcriptional responses 

from promoters with paired RBPJ binding sites such as the Hes5 promoter 29,30. Using 

sequence alignments, we found equivalent arginine residues in the mouse Notch1 and 

Notch4 NICDs (Arg1974 and Arg1685 respectively) and performed site-directed 

mutagenesis to change these arginines to alanine residues. To confirm that these mutations 

decreased transcriptional activity from paired RBPJ sites, we monitored luciferase 

expression downstream from the Hes5 promoter that was previously used by Arnett et al., 

30 to monitor NICD transcriptional activity. This element contains paired RBPJ sites in a 

“head-to-head” orientation that are important for efficient transcription from this promoter.  

As shown in figure 2.4A, ankyrin mutant N1ICD demonstrated much weaker 

transcriptional activity compared to wild-type N1ICD.  Moreover, ankyrin mutant N4ICD 

was also less efficient at driving Hes5 promoter activity, although the inherently low 

transcriptional activity of wild-type N4ICD made this effect less obvious compared to 

N1ICD. 

Having confirmed the importance of the N1ICD and N4ICD ankyrin domains for 

driving transcription from paired RBPJ binding sites, we next sought to determine if 

ankyrin domains are required for NICD co-immunoprecipitation.  To accomplish this, we 

again used our co-immunoprecipitation assay to compare the ability of wild-type and 

ankyrin mutant N1 and N4ICD to co-precipitate in 293T cells (Fig 2.4B).  Due to the 

inconsistencies observing full-length N1ICD homodimers previously stated, the C-

terminally truncated N1ICD construct was again employed for this experiment. Despite the 

importance of ankyrin domains for transcriptional activity, even when the ankyrin domains 

of both NICD partners were mutated we were unable to detect significant changes in N1 
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or N4ICD homodimerization.  Interestingly, however, when we compared the ability of 

HA-tagged N4ICD to CO-IP with various FLAG-tagged N1ICD truncations, we found that 

N4ICD was able to CO-IP with a C-terminal deletion fragment of N1ICD (RAM/Ank) and 

the isolated N1ICD ankyrin domain (Figure 2.4C).  Finally, since the effect of the R1685A 

mutation on N4ICD transcriptional activity was relatively weak, we further characterized 

the role of the N4ICD ankyrin domain in N4ICD dimerization. We found that N4ICD 

homodimerization was not affected by a complete deletion of the N4ICD ankyrin domain 

(Figure 2.4D).  Taken as a whole, these results confirm that NICD ankyrin domains are 

important for NICD transcriptional activity and also suggest that NICD ankyrin domains 

may contribute to NICD dimerization but are not required for NICD dimerization as 

detected by CO-IP. 

Dimerization is controlled by NICD C-terminal domain 

Analysis of N1ICD by both crystallography and EMSA has shown that N1ICD 

homodimerization and transcriptional activity of homodimers appears to be dependent on 

interactions between opposing ankyrin domains.  Our results confirm that ankyrin domains 

are important for NICD transcriptional activity but also suggest that NICD ankyrin 

domains are dispensable for co-immunoprecipitation of NICD dimers.  Therefore, it was 

important to determine which domains of NICD molecules are important not only for the 

dimerization of NICDs but also for dictating the differential strengths of NICD homo- and 

heterodimerization that we had observed.  To accomplish this, we took advantage of the 

differential dimerization of the N1ICD and N4ICD dimers.  We constructed chimeric 

proteins that swapped the N-termini, ankyrin domains, and C-termini between N1ICD and 

N4ICD (Fig 2.5A) and compared the ability of these constructs to co-immunoprecipitate.  
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We found that the N1ICD and N4ICD N-terminus and ankyrin domains could be 

interchanged without any obvious effect on dimerization (Fig 2.5B and C) suggesting these 

sequences are interchangeable during dimerization and not important for controlling 

differential NICD dimerization. In contrast, swapping the N4ICD C-terminus onto N1ICD 

significantly enhanced dimerization (Fig 2.5B) whereas swapping the N1ICD C-terminus 

to N4ICD drastically reduced N4ICD dimerization (Fig 2.5C).  These results taken together 

with those presented in figure 2.4 indicate that co-immunoprecipitation is not dependent 

on interactions between ankyrin domains and that control of differential dimerization 

resides in the C-terminal sequences.  However, based on this experiment we were unable 

to determine if the enhanced dimerization of N1ICD with the N4ICD C-terminal domain 

was due to either the simple deletion of the N1ICD C-terminus, the addition of the N4ICD 

C-terminal domain, or a combination of these changes.  Yet, we had previously shown that 

truncated N1ICD co-immunoprecipitated better than full-length N1ICD suggesting the 

N1ICD C-terminal domain contains a dimerization inhibition domain.  Similarly, we were 

also unable to conclude if decreased dimerization of N4ICD with N1ICD C-terminal 

domain was due to the deletion of a dimerization enhancer in the N4ICD C-terminal 

domain, addition of the N1ICD C-terminal domain, or a combination of these changes. 

N4ICD contains a dimerization enhancing domain 

Having shown that the N4ICD C-terminal domain was associated with enhanced 

dimerization potential, our next goal was to dissect the N4ICD C-terminal domain to 

identify regions important for strong dimerization.  To accomplish this, we created a 

progressive series of FLAG-tagged N4ICD C-terminal deletions (summarized in figure 

2.6A) and compared dimerization between full-length and truncated N4ICD. To our 
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surprise, we failed to observe any effect of N4ICD C-terminal deletion on dimerization 

between mutant and full-length N4ICD (Fig 2.6B).  According to Vasquez et al., 32 NICD 

domains dimerize through interactions between the N- and C-termini of dimerizing 

molecules.  Based on this, we rationalized that a single full-length C-terminal domain may 

still be sufficient to promote strong dimerization.  To confirm this, we compared 

dimerization of two truncated N4ICDs or two WT N4ICDs in our co-immunoprecipitation 

assay.  As shown in figure 2.6C, CO-IP between truncated N4ICDs was significantly 

weaker compared to WT N4ICDs suggesting that an enhancer of dimerization resides in 

the N4ICD C-terminus.  Therefore, we next compared dimerization between C-terminal 

truncated HA-tagged N4ICD, and the set of FLAG-tagged C-terminal progressive 

truncations.  As shown in figure 2.6D, deletion of the most C-terminal 88 amino acids did 

not impact dimerization.  However, further deletion of the most C-terminal 113 amino acids 

significantly decreased dimerization while deletion of the entire C-terminal 138 amino 

acids prevented dimerization entirely.  

 To determine if the 50 amino acid region between amino acids A1826 and C1876 

(i.e. the region of interest or ROI) was sufficient by itself to enhance NICD dimerization, 

we swapped this ROI into the equivalent site of N1CID and again compared co-

immunoprecipitation between various NICD molecules.  As shown in figure 2.6E, despite 

the introduction of the N4ICD ROI into N1ICD, we were still unable to consistently 

observe dimerization between N1ICD molecules.  However, dimerization was consistently 

increased between N4ICD and the modified N1ICD containing the N4ICD ROI. Based on 

this observation we believe the 50 amino acid region directly C-terminal to the N4ICD 

ankyrin domain, between amino acids A1826 and C1876, is responsible for efficient 
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N4ICD dimerization and that efficient dimerization between N4ICDs requires only a single 

N4ICD C-terminus.   

Dimerization of NICD domains does not correlate with transcriptional activity 

Our results demonstrated that the N4ICD displays significantly stronger 

dimerization potential compared to the other NICDs.  Optimal activation of some Notch 

promoters including the Hes5 promoter is dependent on NICD dimerization since the RBPJ 

binding sites in these promoters are arranged in a head-to-head orientation or SPS site. 

Given this, we hypothesized that increased dimerization would correlate with increased 

transcriptional activity from the Hes5 promoter, which we previously confirmed, requires 

NICD dimerization for optimal transcriptional activation (Fig 2.4).  293T cells were 

transfected with luciferase reporters driven from the Hes5 promoter and various chimeric 

proteins developed in figure 2.5.  As shown in figure 2.7A, chimeric N1ICD/N4ICD 

proteins did display somewhat altered transcriptional activity compared to N1ICD, 

however, the addition of the N4ICD C-terminal decreased transcriptional activity despite 

increasing the dimerization activity of N1ICD.  Conversely, the addition of the N1ICD C-

terminal to N4ICD did not significantly change N4ICD transcriptional activity despite 

decreasing N4CID dimerization potential.  Interestingly, swapping the N4ICD ankyrin 

domain to N1ICD decreased reporter activity while swapping the N1ICD ankyrin domain 

to N4ICD increased transcriptional activity despite these swaps having no discernable 

effect on dimerization.  Therefore, these results further suggested that dimerization of 

NICD proteins (as measured by co-immunoprecipitation) does not directly correlate to 

transcriptional activity. 
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NICD molecules heterodimerize on DNA 

Our results indicated that dimerization between NICD molecules (as measured by 

Co-IP) did not directly correlate to transcriptional activity.  Nonetheless, dimerization 

between NICD molecules on Notch sensitive promoters has been observed by X-ray 

crystallography and EMSA analysis.  These two observations appeared to be in conflict 

and therefore suggested that NICDs may exist in multiple dimerization states. One state 

was detected by co-immunoprecipitation, dependent on NICD C-terminals, but did not 

apparently correspond to transcriptional activity.  The second state was transcriptionally 

active and dependent on interactions between ankyrin domains but was apparently not 

detected by Co-IP.  These observations raised the important question whether or not the 

NICD complexes that were being recovered by Co-IP were engaged in heterodimer 

complexes on DNA or rather were strictly in a non-transcriptional state as suggested by 

Vasquez et al., 32.  To address this question, we transfected 293T cells with combinations 

of FLAG-tagged N1ICD or N4ICD coupled with HA-tagged N1ICD or N4ICD binding 

partners.  DNA/protein complexes were crosslinked, fragmented by micrococcal nuclease 

treatment, and lysates were subjected to a two-step co-immunoprecipitation, first with anti-

FLAG resin and second with anti-HA antibodies. Control samples included transfection 

with FLAG-tagged N1ICD alone and a single anti-FLAG immunoprecipitation step 

(+control) and negative control that was transfected with HA-tagged NICD and subjected 

to the two-step Co-IP procedure.  In all cases, precipitated DNA was detected by PCR with 

oligos that were designed to flank the paired head-to-head binding sites within the Hes4 

and Hes1 promoters. As shown in figure 2.8A, both Hes1 and Hes4 sequences were 

detected in the precipitated chromatin of all NICD combinations.  Importantly, the ChIP 
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was specific since Hes4 and Hes1 promoters were not recovered if a FLAG-tagged protein 

was not included.  This result showed that NICD molecules were engaged in heterodimer 

complexes on DNA.  Based on this result, it was logical to compare the effect of N1ICD, 

N4ICD, or N1ICD + N4ICD transfection on transcriptional activation from the Hes1 and 

Hes4 promoters.   As shown in figure 2.8B, N1ICD activated the Hes1 promoter 

significantly more than N4ICD, and the combination of N1ICD and N4ICD was heavily 

biased towards lower activation.  Interestingly, this trend was not consistent for the Hes4 

promoter.  Instead, Hes4 activation was equivalently activated by N1ICD, N4ICD, and the 

N1ICD/N4ICD combination. Together these results indicated that not only were N1ICD 

and N4ICD were forming homodimer complexes on DNA but also that N1ICD/N4ICD 

heterodimers were forming on DNA.  Moreover, these results also suggested that N4ICD 

might be able to regulate N1ICD transcriptional activity on some promoters through 

heterodimeric interactions. 

Discussion 

The Notch signaling mechanism is highly conserved in the earliest metazoans and 

understanding Notch function is likely to be important not just for basic biology, but also 

for the many diseases with which Notch malfunction has been associated.  Previous work 

found that Notch1 NICD domains dimerize through interaction between NICD ankyrin 

domains and these findings are supported by both EMSA and X-ray crystallography.  

However, it has also been shown that NICD dimerization is influenced by interactions 

between the N- and C-terminals of dimerizing NICD molecules 32.  The results presented 

in this work expands these findings by showing that 1.) all mammalian Notch NICD 

domains engage in homodimerization, 2.) that all mammalian Notch NICD domains also 
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engage in heterodimerization, 3.) that the N4ICD demonstrates robust dimerization 

potential compared to the other NICDs, and 4.) that the C-terminal domains of Notch1 and 

Notch4 contain negative and positive regulators of dimerization respectively.  Collectively, 

our findings provide new insight into the molecular underpinnings of Notch signaling and 

should help understand how Notch function, and malfunction, contributes to cell biology. 

The majority of our understanding of Notch dimerization comes from 

experimentation with partial domains of the three proteins found in the Notch tripartite 

complex of (i.e. N1ICD, MAML, and RBPJ) that were produced in bacterial cells and 

analyzed by EMSA, X-ray crystallography, or FRET 29,30,35,51.  Overall, the major findings 

of these studies were to determine the structure of the Notch tripartite complex and to 

understand how NICD molecules engage in head-to-head dimerization through their 

ankyrin domains.  A limitation of these works, however, was that the partial N1ICD 

molecules used primarily represented the highly conserved NICD ankyrin domains and 

lacked the more divergent N- and C-termini.  Therefore, it was concluded that N1ICD 

dimerization is dependent on interactions between NICD ankyrin domains. This conclusion 

was supported by reporter assays wherein mutation of key ankyrin domain residues 

significantly reduced transcriptional activation from paired (head-to-head) RBPJ binding 

sites 30. Our results partially support this result since we also find that mutation of key 

residues within the ankyrin domains decrease transcriptional activity from promoters 

containing paired RBPJ binding sites.  However, we also found that these same mutations, 

which negatively impacted transcriptional activity, did not affect co-immunoprecipitation 

of NICD molecules, although an isolated N1ICD ankyrin domain was capable, but not 

required, for co-immunoprecipitation with N4ICD. Therefore, it appears that the previous 
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conclusion that NICD dimerization is dependent on interactions between ankyrin domains 

was oversimplified.  

A major difference between our experiments and those that observed dimerization 

through ankyrin domains 29,30,35,51 is that we employed NICD molecules with full-length 

N- and C-terminal domains whereas the previous studies utilized ankyrin domains lacking 

N- and C-terminal sequences.  In addition, our experiments were performed with whole-

cell lysates whereas much of the work cited above has been performed with purified 

components.  Using these full-length NICD constructs, we found that N-terminal sequences 

in N1ICD and N4ICD appeared to perform equivalent and interchangeable roles in 

dimerization.  In comparison, the N4ICD C-terminal sequence enhanced dimerization 

whereas the N1ICD C-terminal decreased dimerization.  These findings are largely 

compatible with results presented earlier by Vasquez et al., 32 who also used co-

immunoprecipitation to demonstrate that dimerization of N1ICD also engages interactions 

between the N- and C-terminal domains of N1ICD. 

As outlined above, there are conflicting observations regarding the nature of NICD 

dimerization. We envision two possibilities that may help to unify the existing data.  The 

first possibility is a “two-state model” where NICD molecules can exist in two different 

states, each with different functions.  In the first state, (which may not require DNA) 

dimerization is driven primarily by interactions between the N- and C-termini of 

dimerizing NICDs.  This first state may exist independently of transcription or even DNA 

binding and the ankyrin domains would have a negligible effect on dimerization.  This is 

supported by our co-immunoprecipitation experiments showing that N4ICD lacking its 

ankyrin domain is still capable of dimerization (figure 2.4D).  This model is favored (and 
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initially proposed) by Vasquez et al., 32 who hypothesize that NICD multimers (first state) 

are required to recruit MAML during assembly of the final NICD transcriptionally active 

tripartite complex, (i.e. the second state).  In this second state, NICD molecules together 

with and MAML dimerize on head-to-head SPS sites in an ankyrin domain-dependent 

fashion.  The role of the N- and C-termini in this second state appears to be secondary to 

the ankyrin domains although evidence suggests the N- and C-terminals still have a role 

during transcriptional activity.  For example, we found that swapping the N4ICD C-

terminal onto N1ICD decreased transcriptional activity from the Hes5 promoter (figure 

2.7).  Similarly, Blain et al., 209 observed that overexpression of N1ICD with a C-terminal 

238 amino acid deletion does not recapitulate normal Notch signaling.  This is a point of 

practical concern since this Notch1 C-terminal truncation construct has been described as 

“full-length” and used in a number of studies, including the generation of a transgenic 

mouse model for Notch activation 210.  In addition to this “two-state” model of NICD 

dimerization, a second possible model of NICD dimerization is that a single dimer state 

exists that simultaneously engages the N-terminals, ankyrin domains, and C-terminals of 

dimerizing NICDs.  In this model, the ankyrin domains might contribute less to 

dimerization but more to transcriptional activity while the N- and C-terminals might still 

be primarily responsible for dimerization perhaps through reciprocal interactions around 

the central ankyrin domain interactions.  However, since the existing NICD structural 

models use isolated ankyrin domains, this remains a hypothesis and would need to be tested 

in future experiments.  

One of the important results from our work is the confirmation that all NICD 

domains are capable of homodimerization as previously demonstrated 29. An important 
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difference between previous homodimerization studies however is that we monitored 

homodimerization of full-length NICD molecules in whole-cell lysates compared to 

purified ankyrin domains in in-vitro EMSA assays. Therefore, our results add an important 

perspective to the understanding of NICD homodimerization.  Taking this a step further, 

our co-immunoprecipitation studies also discovered that all NICD domains engage in 

heterodimeric interactions.  Moreover, the apparent strength of interaction between NICDs 

was not equivalent.  Instead, we found that N4ICD appeared to most robustly form NICD 

heterodimers but had an even greater preference for N4ICD homodimerization.  The 

implications of this finding remain unknown; however, several tantalizing possibilities 

present themselves.  First, we and others have shown that many cells express more than 

one Notch receptor (figure 2.3A).  Since the various NICD molecules demonstrate varying 

transcriptional activity, it is possible that NICDs with lower transcriptional activity such as 

N3ICD or N4ICD may act as negative regulators for N1ICD or N2ICD by engaging in 

heterodimeric interactions at sequence paired sites.  In particular, since N4ICD seems to 

promiscuously engage in dimerization and is expressed almost exclusively in endothelial 

tissues, it is tempting to speculate that N4ICD may serve to regulate Notch1 function in the 

vascular system.  In support of this, we confirmed the presence of N1/N4ICD heterodimers 

on the Hes1 and Hes4 promoters by ChIP analysis and found that N1ICD transcriptional 

activity on the Hes1 and Hes4 luciferase reporters was reduced by co-transfection with 

N4ICD (Figure 2.8).  Care must be taken to interpret this result however since the overall 

reporter activity probably represents a sum of N1ICD homodimers, N4ICD homodimers, 

and N1/N4ICD heterodimers. 
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In conclusion, our results suggest that there remain many important questions about 

the basic mechanism of Notch signaling.  Major outstanding questions that remain include 

the formation and function of the NICD dimerization complex(s), the extent to which 

NICD heterodimerization influences Notch signaling output, and if Notch 

homodimerization or heterodimerization can be regulated by cell signaling.  Answering 

these questions should shed light on Notch signaling and help to understand how this 

ubiquitous signaling mechanism regulates cell biology. 
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Figure 2.1: Detection of Notch intracellular domain homodimer complexes within 

a cell culture model 

 

(A) HEK293T cells were co-transfected with cDNAs encoding FLAG-tagged full-length 

N1ICD and MYC-tagged truncated N1ICD (1T).  Whole-cell lysates were 

immunoprecipitated with anti-FLAG antibodies and western blotted with anti-MYC and 

anti-FLAG antibodies.  Input represents 10% of whole-cell lysate used in 

immunoprecipitation.  Shown is a representative image of a single experiment that was 

performed four independent times. (B)  FLAG- and MYC-tagged N1-4ICDs were 

transfected into 293T cells, homodimer complexes were detected by immunoprecipitation 

(IP) with an anti-FLAG antibody and western blotting with anti-MYC antibodies. A 

longer anti-MYC western blot exposure (deep exposure) was required to visualize N2 and 

N3ICD homodimers.  Shown is a representative image of a single experiment that was 

performed four independent times. 
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Figure 2.2: Detection of Notch intracellular domain homo- and heterodimer 

complexes 

 

293T cells were transfected with FLAG- and HA- tagged species of various NICDs and 

dimerization was detected by co-immunoprecipitation with anti-FLAG antibodies and 

western blotting with anti-HA antibodies. In all panels, Input represents 10% of whole-

cell lysates before CO-IP.  The heterodimerization possibilities are represented with (A) 

N1ICD, (B) N2ICD, (C) N3ICD, and (D) N4ICD. To prevent confounding results from 

residual unstripped antibodies, lysates were run twice on two different membranes for 

cleaner western blot analysis. Panel D also includes a negative FLAG-tagged NICD lane 

(-), controlling for non-specific interactions between HA-tagged protein on anti-FLAG 

antibody resins. 
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Figure 2.3: N4ICD outcompetes N1ICD 

 

(A) RT-PCR was used to monitor expression of Notch proteins in cell lines from various 

tissues.  +/- denotes +RT experimental samples and -RT control samples.  Image shown 

represents data from two independent repetitions.  (B) HA-tagged N1ICD and N4ICD 

were simultaneously co-transfected with either FLAG-tagged N1ICD or N4ICD.  

Dimerization was detected by precipitation with anti-FLAG antibodies and western 

blotting with anti-HA antibodies.  Input represents 10% of whole cell lysate used in the 

immunoprecipitation. The image depicts a representative example of a single experiment 

that was performed three times. 
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Figure 2.4: Ankyrin domains are not required for NICD dimerization 

 

293T cells were co-transfected with Hes5-promoter luciferase reporter and wild-type 

(WT) or corresponding ankyrin domain mutant (Mut) NICDs. Reporter activation is 

compared to its basal activity in cells, which received an equivalent amount of empty 

overexpression vector (EV). Shown are the average +/- SE of six experiments. 

Transfection efficiency was normalized by co-transfection with CMV-β-gal reporter 

plasmids and measuring β-gal activity. Statistical significance was determined through a 

student’s two-tailed t test, where *** is p < 0.001, and * is p < 0.05.  (B) 293T cells were 

transfected with pairs of cDNAs encoding FLAG- and MYC-tagged WT NICD domains 

or mutant FLAG- and MYC-tagged mutant ankyrin NICD domains.  Anti-FLAG 
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antibodies were used to isolate FLAG-tagged proteins and western blotting with anti-

MYC antibodies was used to detect interacting NICD domains.  Shown is a 

representative image of a single experiment that was performed four independent times.  

To account for dimerization intensities, the figure includes a light and dark exposure of 

the co-immunoprecipitated MYC-partners. (C) 293T cells were transfected with HA-

tagged N4ICD and various FLAG-tagged N1ICD constructs including the full-length 

(FL) N1ICD, N1ICD lacking the C-terminus (RAM/Ank), and the isolated N1ICD 

ankyrin domain (Ank).  Anti-FLAG antibodies were used to detect interacting HA-tagged 

molecules.  Shown is a representative image of a single experiment that was performed 

three times. (D) 293T cells were transfected with full-length HA-tagged N4ICD and 

either full-length or ankyrin deletion mutant (ΔAnk) FLAG-tagged N4ICD.  CO-IP and 

western analysis was performed as above.   In all panels, Input represents 10% of whole 

cell lysate from each sample as a control for protein expression. 
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Figure 2.5: NICD C-termini regulate dimerization 

 

(A) Chimeric proteins were made by swapping the N-terminals (N), Ankyrin domains 

(A), and C-terminals (C) between wild-type N1ICD and N4ICD.  Amino acids demarking 

domain positions on N1ICD and N4ICD are indicated.  (B) CO-IP between WT HA-

tagged N4ICD and chimeric FLAG-tagged N1ICD.  (C) CO-IP between WT HA-tagged 

N4ICD and chimeric FLAG-tagged N4ICD.  In B and C, Input represents 10% of whole 

cell lysate as a loading control.  Shown are representative images of an experiment that 

was performed three independent times. 
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Figure 2.6: Identification of dimerization enhancer domain in Notch4 

 

(A) N4ICD was progressively truncated beginning from the C-terminal.  Shaded, is the 

region of interest (ROI) of N4ICD linked to enhanced dimerization potential. (B) Various 

FLAG-tagged N4ICD truncations were co-transfected with full-length HA-tagged N4ICD 

and co-immunoprecipitated.  (C) Deletion of the N4ICD C-terminal prevents efficient 

dimerization.  The C-terminal 138 amino acids were deleted from FLAG- and HA-tagged 

N4ICD then full-length (4) or truncated (4T) cDNAs were transfected into 293T for 

immunoprecipitation analysis.  (D) Paired sets of progressive N4ICD C-terminal 

deletions were monitored for dimerization by immunoprecipitation.  (E) Amino acids 

A1826 to C1876 corresponding to the N4ICD ROI, were swapped into the corresponding 

region downstream of the N1ICD ankyrin domain then co-transfected with various 

combinations of N1ICD or N4ICD.  Co-immunoprecipitation was used to monitor 
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interactions.  All panels depict representative images of experiments that were performed 

at least three independent times. 
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Figure 2.7: Transcriptional activity of N1ICD / N4ICD chimeric proteins 

 

(A and B) 293T cells were transfected with the Hes5-luciferase reporter construct and 

various chimeric proteins.  Shown is the average +/- SE of six independent experiments.   

*** indicates p<.01, student’s t-test. 
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Figure 2.8: Detection of NICD homodimer and heterodimer complex on DNA 

 

(A) 293T cells were transfected with combinations of FLAG-tagged N1ICD or N4ICD 

and FLAG- or HA-tagged binding NICD partners.  ChIP was performed by two-step CO-

IP with anti-FLAG then anti-HA antibodies.  A positive control reaction was transfected 

with FLAG-tagged N1ICD alone and subjected to anti-FLAG CO-IP.  A negative control 

reaction was transfected with HA-tagged N1ICD and subjected to anti-FLAG and anti-

HA CO-IP.  Hes1 and Hes4 promoter sequences were detected by PCR with antibodies 

flanking the head-to-head binding sites in each promoter.  Shown is a representative 

image of a single experiment that was performed three independent times with similar 

results. (B) 293T cells were transfected with Hes1 (top) or Hes4 (bottom) promoter 
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luciferase reporters and equivalent amounts of either empty CMV control vector, N1ICD, 

N4ICD, N1 and N4ICD.  Shown are the average +/- SE of six independent experiments. 
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Figure S2.1: Diagram of important landmarks in N1ICD and N4ICD 

 

Indicated in each figure are the 1.) sites of antiparallel multimerization as defined by 

Vasquez et al., 32 2.) ankyrin dimerization interface with key amino acids indicated based 

on sequence alignment between human and mouse NICDs as described by Nam et al., 29. 

3.) The region of N4ICD C-terminal we define as important for enhanced dimerization, 

4.) the transactivation domain (TAD) present in N1ICD but not N4ICD, and 5.) the PEST 

domain present in both N1ICD and N4ICD.  
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Abstract 

Notch signaling is essential for multicellular life, regulating core functions such as 

cellular identity, differentiation, and fate. These processes require highly sensitive systems 

to avoid going awry, and one such regulatory mechanism is through Notch intracellular 

domain dimerization. Select Notch target genes contain sequence-paired sites (SPS); 

motifs in which two Notch transcriptional activation complexes can bind and interact 

through Notch’s ankyrin domain, resulting in enhanced transcriptional activation. This 

mechanism has been mostly studied through Notch1, and to date, the abilities of the other 

Notch family members have been left unexplored. Through the utilization of minimalized, 

SPS-driven luciferase assays, we were able to test the functional capacity of Notch dimers. 

Here we show that the Notch 2 and 3 NICDs also exhibit dimerization-induced signaling, 

following the same stringent requirements as seen with Notch1. Furthermore, our data 

suggested that Notch4 may also exhibit dimerization-induced signaling, although the 

amino acids required for Notch4 NICD dimerization appear to be different than those 

required for Notch 1, 2, and 3 NICD dimerization.  Interestingly, we identified a 

mechanical difference between canonical and cryptic SPSs, leading to differences in their 

dimerization-induced regulation. Finally, we profiled the Notch family members’ SPS gap 

distance preferences and found that they all prefer a 16-nucleotide gap, with little room for 

variation. In summary, this work highlights the potent and highly specific nature of Notch 

dimerization and refines the scope of this regulatory function. 

Introduction 

Notch signaling is a cornerstone of multicellularity and dictates cellular fate and 

identity. Notch signaling is heavily influenced by microenvironmental cues 3, including 
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adjacent “sending cells” which present any of five Notch ligands to up to four Notch 

receptors expressed on so called “receiving cells”.  Ligand bound and activated Notch 

receptors undergo a series of proteolytic cleavages which release an active intracellular 

domain (NICD) 22,23,211. This transcriptionally active fragment translocates to the nucleus 

to act as a co-transcription factor. Common Notch signaling targets are transcription factors 

themselves, which have their own broader implications and cascades, culminating in a 

system which requires a fine-tuned, highly sensitive signaling network. Disruption of 

Notch signaling, both through over- and under-activation, leads to a variety of 

developmental abnormalities and cancers 4. Understanding mechanisms behind this precise 

level of internal control may pave the way for treatments of many of its resulting disorders. 

The mammalian Notch signaling system consists of four mostly homologous 

receptors (Notch1-4) which are all activated through this manner. Each NICD molecule 

can be readily split into three sections; the N-terminus which contains the RBPJ associated 

module (RAM) domain, the central ankyrin domain, and a variable C-terminus which 

houses the Pro-Glu-Ser-Thr (PEST) domain used in protein turnover and in some Notch 

proteins, a transactivation domain (TAD). Through the RAM domain, all Notch proteins 

bind to the same transcription factor, recombination signal binding protein for 

immunoglobulin kappa J region (RBPJ, also commonly called CSL, CBF-1/Suppressor of 

Hairless/Lag-1) 212. Upon NICD binding to RBPJ, a new NICD/RBPJ interface is formed 

which recruits another co-activator, a member of the Mastermind-like (MAML) family 25. 

This new tri-protein complex recruits a cascade of other transcriptional machinery to drive 

transcription of its target genes 121. While each Notch protein contains the conserved RAM 
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and ankyrin domains, their transcriptional activation profiles are not identical and are 

largely dependent on context within promoter elements 28.  

The DNA target sites which the Notch transcriptional activation complex (NTC) 

binds to have been the subject of thorough analysis. The consensus binding site was 

originally defined as a “TP1 element” with the sequence 5’ CGTGGGAAAAT 3’ that 

recruits RBPJ to Notch responsive promoters 213,214. TP1 elements are found in a variety of 

configurations within promoters.  Perhaps most importantly, TP1 elements orientated in a 

head-to-head directionality and separated by 16 base pairs (bp), also known as sequence-

paired sites (SPS), enable cooperative binding of two NICD molecules 19,24. This 

cooperation results in better repression in the absence of NICD, and enhanced activation 

in its presence 27,28. Upon modeling of two N1ICD transcriptional cores on a SPS, it was 

proposed that complex dimerization occurs through the N1ICD ankyrin domain 29  and this 

was further supported through crystallization of the interface 30. Importantly, theses SPS-

driven promoters appear to be dimer-dependent. When dimerization was interrupted, 

N1ICD’s transcriptional potential was substantially reduced on promoters containing SPSs 

29,30 and could no longer induce T-cell acute lymphoblastic leukemia 31. Together, 

sequence-paired sites and Notch dimerization appear to be potent regulators of Notch 

signaling and warrant a closer investigation into their mechanics.  

In the search for new Notch responsive genes, ChIP-Seq approaches have recently 

been adopted to identify new SPS sites based on DNA interaction with RBPJ.  While the 

NTC-dimer crystal structure dictates a 16-nucleotide spacer region, ChIP-Seq analysis by 

Castel, et al. identified a variety of potential SPS-driven genes with spacer regions from 11 

to 21 base pairs 33. These possible targets are opposed by in vitro analysis which observed 
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a more limited spacer region of 15 to 17 base pairs 29,35. This discrepancy in spacer length 

is further complicated due to ChIP-Seq approaches that experimentally identified 

individual RBPJ binding sites then computationally screened for nearby secondary sites 

33,35,175. Screening for secondary sites however is not straightforward since loading of a 

NTC onto a high-affinity site directly enables cooperativity on cryptic, low affinity sites 

which may not even resemble traditional RBPJ binding sequences 30,31,35. While the 

transcriptional outcomes seem to be clear, the mechanisms dictating this SPS-response 

within promoters and enhancers are not clearly understood. 

While dimerization-induced signaling of Notch1 has been previously explored, the 

ability, specifications, and limitations for the other members of the Notch family remain 

unknown.  To compare dimer-dependent signaling of the various NICDs, we generated 

luciferase reporter constructs driven by either isolated sequence-paired sites from known 

dimer-dependent promoters or an artificial/optimized SPS site. We observed that all NICDs 

activate these promoters with varying efficiency.  We also observed that Notch1, 2, and 3 

functions through dimerization dependent mechanisms, while Notch4 appeared dimer 

independent. Finally, we compared the optimal gap length within SPS sites and found that 

all NICD molecules prefer promoters with 16bp between RBPJ binding sites, with little 

room for deviation. These results should help us to understand how the various NICD 

molecules interact in cells and potentially diversify Notch signaling outputs in cells that 

express multiple Notch proteins. 
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Materials and Methods 

Cell Culture 

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

(Mediatech, Inc.) supplemented with 10% EquaFetal Bovine Serum (FBS) (Atlas 

Biologicals) and 1x penicillin-streptomycin solution (Mediatech, Inc.). Cells were grown 

in 10 cm culture plates and subcultured at 70-80% confluency. 

Expression and Reporter Plasmids 

Protein expression constructs were obtained through the following: FLAG-N1ICD 

(AddGene #20183), N2ICD (#20184), N3ICD (#20185), and N4ICD (#20186) were all 

gifted by Raphael Kopan 28 and acquired through AddGene.org. All constructs code for the 

intracellular domain of the mouse Notch proteins and have a 3xFLAG peptide tag on the 

N-terminus. The N1ICD-MYC ΔS2184 construct, also a gift from Raphael Kopan 23 

(#41730), includes a substantial C-terminal truncation, encoding mouse N1ICD V1744 to 

S2184 with a MYC tag located at the C-terminus. The NICD coding regions were 

subcloned into pKH3 (#12555), a gift from Ian Macara 206 to add a C-terminal 3xHA tag.  

N1ICD (R1974A), N2ICD (R1934A), N3ICD (R1896A), and N4ICD (R1685A) mutants 

were all created through site-directed mutagenesis of the NICDs based on sequence 

alignment to identify amino acids (Figure S3.2) in mouse NICDs homologous to the human 

N1CID R1984 site previously shown to be essential for NICD dimerization 30. The empty 

coding vector pcDNA3.1/MYC-His was obtained from Invitrogen and pCMV-β-

Galactosidase was obtained from Clontech/Takara Bio. 

Transcriptional reporter constructs were obtained or created as the following: Full-

length mouse promoters for Hes1 (#41723) and Hes5 (#41724) were a gift from Ryoichiro 
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Kageyama and Raphael Kopan 215. 4xTP1 (#41726), a synthetic promoter containing four 

high-affinity RBPJ binding sites in tandem, was a gift from Raphael Kopan 216. These 

promoter sequences were designed and cloned into pGL2-Basic (Promega), a luciferase 

reporter plasmid, which upon promoter activation drives expression of firefly luciferase. 

Construct Creation and Mutagenesis 

To create luciferase reporters that activate specifically upon Notch dimerization, 

we isolated the sequence-paired sites from the native mouse and human Hes1 and Hes5 

genes and cloned these fragments into the pGL3-Basic vector (Promega) which contains a 

minimal promoter that is incapable of transcriptional initiation without additional enhancer 

elements. Our synthetic promoters, the 2xTP1 constructs, were designed using the TP1 

response element as originally isolated from the Epstein-Barr virus, which contains two 

high-affinity binding site for RBPJ 213,214. TP1’s ‘complete’ RBPJ consensus sequence (5’-

CGTGGGAAAAT-3’) and a ubiquitous “core” sequence (5’-GTGGGAA-3’) were taken 

from the response element, its secondary site reversed and placed in the complementary 

strand to result in a head-to-head arrangement, and two nucleotides were inserted into 

TP1’s spacer region to result in a sixteen-base pair, sequence-paired site. 

These fragments were synthesized as oligonucleotides (Integrated DNA 

Technologies, IDT) and were designed to be partially complementary so that when 

annealed, the ends were left overhanging, matching cuts from the restriction enzymes KpnI 

and SacI (New England Biolabs, NEB). pGL3-Basic was cut with these two enzymes, 

dephosphorylated with shrimp alkaline phosphatase (NEB), inserts phosphorylated with 

T4 Polynucleotide Kinase (NEB), and ligated together with T4 DNA Ligase (NEB). 
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A variety of sequence-paired site gap distances were created through blunt-end 

ligation. PCR primers to mutate Hes1, Hes5, and 2xTP1 were designed to align with the 

desired base excisions or to include base extensions. Base extensions were designed to 

keep the gap distance nucleotide composition (G/C vs A/T) approximately consistent with 

the native promoters’. PCR products were phosphorylated, ligated, and reaction template 

digested with the restriction enzyme DpnI (NEB). A statistical comparison of the modified 

constructs’ basal activity levels did not indicate the addition or subtraction of any other 

regulatory elements (data not shown).  

All constructs were sequenced verified before experimental use. SPS sequence 

information can be found in Supplementary S3.1 table. 

Western Blotting 

For western blotting analyses, HEK293T cells were plated into 6-well plates at a 

density of 300,000 cells/well. The following day, cells were transfected with 

polyethylenimine MW 25,000 (PEI, Polysciences) at a ratio of 5 μg PEI to 1 μg DNA. 

Wells were transfected with 1000 ng of plasmid DNA for the various FLAG-NICD 

constructs, allowed to grow for two days, and cells collected and prepared in 1x SDS-page 

lysis buffer. Western blotting was performed as described previously 157. Membranes were 

incubated with primary antibodies against FLAG tag (Cell Signaling Technology, #14793) 

or GAPDH (Santa Cruz Biotechnology, sc-25778) and detected through horseradish 

peroxidase conjugated α-rabbit antibodies (GE Healthcare Life Sciences, NA934V). 

Experiments were repeated independently three times, where the figure displayed uses the 

best representative exposures. 
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Luciferase Assays 

For all luciferase assays, HEK293T cells were plated into 24 well plates at a density 

of 50,000 cells/well where the experimental conditions were treated as triplicates or 

duplicates. The following day, cells were transfected. When analyzing the full-length 

promoters, 100 ng of luciferase construct and 10 ng of NICD expression plasmid were 

used, whereas in experiments of sequence-paired site constructs, 200 ng and 100 ng were 

used, respectively. In all experimental variations, 10 ng of a β-Galactosidase expression 

plasmid was used per well to normalize data for transfection efficiency and cell 

growth/death. To equate amounts of DNA between experimental conditions, the empty 

coding plasmid pcDNA3.1/MYC-His was utilized. Forty-eight hours post transfection, 

cells were collected and analyzed as previously described 157. All samples were treated in 

triplicates, except for the single-base change experiment, which was in duplicates. 

Independent experiments were performed at least four times. 

Chromatin Immunoprecipitation and PCR Analysis 

Chromatin immunoprecipitation (ChIP) analyses were performed as previously 

described 207, with minor modifications. Briefly, cells were transfected with two 

differentially tagged NICDs and the 2xTP1(SPS)-Core luciferase construct to act as a 

dimerization target. Following formaldehyde-induced crosslinking, the nuclear fraction 

was isolated and collected. Micrococcal nuclease (NEB) was used to cut the chromatin into 

300-1,500 base pair fragments, the nucleus briefly sonicated to lyse the fraction, and the 

DNA collected. To specifically isolate the dimerized complexes bound to DNA, they were 

placed through two rounds of selection, targeting both partners within the Notch dimer. 

The first round of selection was performed with anti-FLAG affinity resin (GenScript) and 
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captured complexes were eluted with 3xFLAG-peptide (ApexBio). Those complexes were 

further enriched through a second round of selection, probing for a HA-tagged NICD 

partner, with biotinylated HA antibodies (Bioss). These targets were precipitated out of 

solution with streptavidin magnetic beads (NEB) and the DNA was isolated out of the 

complexes with Proteinase K (Amresco) and heat-induced reverse crosslinking. DNA was 

cleaned and purified with a PCR purification kit and samples were analyzed for Notch-

dimer targets. To observe our synthetic luciferase construct, we used primers 5’-

CTAGCAAAATAGGCTGTCCC-3’, FWD and 5’-CTTTATGTTTTTGGCGTCTTCCA-

3’, REV. Three independent experiments were performed and the most representative 

analysis was used in our figure. 

Statistical Analysis 

Statistical significance was determined through a student’s two-tailed t test, 

comparing two-samples with homoscedastic variance. Significance is determined as *** is 

p ≤ 0.001, ** is p ≤ 0.01, and * is p ≤ 0.05. 

Results 

Activation of Notch target genes containing sequence-paired sites requires ankyrin-

dependent dimerization 

Notch target genes often have multiple RBPJ binding sites within their promoter 

sequences and a fraction of these are orientated in head-to-head, paired sites 33,35. This 

arrangement allows for NTC dimerization through NICD ankyrin domains, resulting in 

potent transcription of SPS containing genes. The canonical Notch target genes Hes1 and 

Hes5 have previously shown to be activated by Notch1 in a dimer-dependent manner 30,35.  
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Using luciferase reporter assays, we first sought to confirm if other members of the 

mammalian Notch family also activate Hes1 and Hes5 in a dimer-dependent manner. 

HEK293T cells were co-transfected with commercially available luciferase 

reporter plasmids containing large fragments of the Hes1 or Hes5 promoters, and either 

wild-type or dimerization incompetent Notch1–4 NICD expression plasmids to observe 

dimerization dependence of these promoters.  In agreement with previous work, the full-

length Hes1 (Figure 3.1A) and Hes5 (Figure 3.1B) constructs were significantly activated 

by wild-type N1ICD and transcriptional activation was significantly less for dimer 

incompetent N1ICD.  Likewise, wild-type N2ICD and N3ICD also displayed activation on 

both promoters but dimer-dependent activation only on the Hes1 promoter.  Indeed, mutant 

N2ICD and N3ICD dimer incompetent constructs demonstrated a similar ability to activate 

the Hes5 promoter suggesting the N2ICD and N3ICDs were functioning in a dimer-

independent manner on the Hes5 promoter.  Finally, N4ICD activated the Hes1 promoter 

to a similar degree as the other NICDs but was significantly weaker on the Hes5 promoter 

compared to the other NICDs.  Moreover, N4ICD failed to demonstrate dimer dependence 

on either the Hes1 or Hes5 promoters.  In agreement with previous observations 29, western 

blot analysis of the various NICDs demonstrated that the decreased transcriptional 

activation of the dimer incompetent ankyrin mutant NICD molecules was not associated 

with decreased protein expression of these mutant NICDs (Figure 3.1C).  Moreover, 

mutation of NICD ankyrin domains did not impinge the basal transcriptional activity of 

NICD molecules since WT and ankyrin mutant NICDs exhibited nearly identical 

transcriptional activity on the non-dimerizing 4xTP1 promoter (Figure 3.1D). 
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Collectively, these results largely supported the previously reported dimer-

dependent nature of the Hes1 and Hes5 promoters.  However, we also noted several 

weaknesses with these experiments.  In particular, we noticed significant background with 

modest activation of the Hes1 promoter and reduced dimer dependence for N2-4ICD on 

the Hes5 promoter.  Based on these weaknesses, we more closely examined these promoter 

sequences (Figure S3.1).  We searched for high affinity binding sites that were defined by 

the RBPJ consensus sequence TGTGGGAA, and low affinity sites that were defined as 

having up to two nucleotide differences compared to the high-affinity sites.  We found a 

multitude of possible low affinity RBPJ binding sites in addition to the high-affinity SPS 

sites previously described 28.  Based on this result, we hypothesized that the overall 

promoter complexity and number of potential low affinity RBPJ binding sites within these 

promoter sequences might have been responsible for the high background, low relative 

activation, and dimer independence observed in our experiments.  Moreover, beyond Notch 

signaling, Hes genes are also controlled by a variety of other transcription factor families 

217,218, including self-regulation 219,220, suggesting that these relatively large promoter 

fragments might have been responding to both Notch specific and non-Notch 

transcriptional activity. Collectively, these observations prompted us to perform further 

experiments on the Hes1 and Hes5 promoters with the goal of refining these promoters into 

more specific tools to monitor dimer-dependent NICD activation. 

The isolated Hes5 sequence-paired site does not respond to dimerization 

Our results in Figure 3.1 show that the Hes5 promoter demonstrated both stronger 

activation than the Hes1 promoter and N1ICD dimer dependence.  We therefore 

rationalized that isolation of the Hes5 SPS site should yield a promoter element that would 



107 

 

 

specifically and robustly respond to NICD dimerization.  We isolated the mouse and human 

Hes5 SPS elements containing two head-to-head orientated RBPJ binding sites separated 

by a 16-nucleotide gap, and the 4 to 5 surrounding nucleotides (Figure 3.2A) as previously 

described 30 and cloned these sequences into a luciferase reporter vector containing a 

minimal promoter that was incapable of transcriptional initiation without additional 

enhance elements. Interestingly, this cloned region includes one canonical RBPJ binding 

site and a partnered “cryptic site” which doesn’t match standard RBPJ binding sequences, 

but instead was hypothesized to form the partner site for the high-affinity site 30. In 

addition, there are two nucleotide differences between the mouse and human genes in this 

region (Fig 3.2A), one of which is inside the cryptic RBPJ binding site.  As shown in Figure 

3.2B, we found that both mouse and human isolated Hes5 SPS promoters were indeed 

responsive to N1ICD, however, neither of these isolated elements appeared to be dependent 

on NICD dimerization since they were equivalently activated by WT and dimer-

incompetent versions of N1ICD.  In addition, the isolated Hes5 SPS responded to Notch 

activation almost exactly the same as to promoters with RBPJ binding sites in a non-

dimerizing head-to-tail orientation (i.e. 2xTP1(H-T) and 4xTP1(H-T) constructs).  

Moreover, N1ICD activated the Hes5 SPS construct less than the 2xTP1 construct despite 

these promoters both containing two RBPJ binding sites.  Interestingly, N4ICD was unable 

to activate transcription from the isolated Hes5 SPS sites despite successfully activating 

the full length Hes5 promoter in Figure 3.1.  In stark contrast to this result, the full-length 

Hes5 promoter did display dimer dependence to N1ICD (Figure 3.1B).  This difference 

between the full-length and SPS versions of the Hes5 promoter suggested that the Hes5 

promoter might have been functioning differently than previously thought. Given the 
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weakness of the cryptic RBPJ binding site, the presence of several other potential RBPJ 

binding sites within the full-length promoter, and the dimer dependence of the full-length 

Hes5 promoter, we hypothesized that the high affinity RBPJ binding site might be making 

a long-distance interaction with another high-affinity site within the promoter.  This 

possibility would allow cooperation between previously thought independent NTCs within 

gene promoters and enhancers and perhaps explain the transcriptional differences between 

full-length and SPS versions of the Hes5 promoter. To test this possibility, we designed a 

series of Hes5 SPS mutants based on the helical nature of DNA. Since a DNA helix 

completes approximately one rotation every 10 bp, we hypothesized that an insertion or 

deletion of five extra base pairs would place the secondary NTC on the opposite side of the 

DNA, breaking any cooperativity. Further, an addition of an extra five nucleotides may 

restore cooperativity, despite the NTC being further away, due to a long range NTC 

dimerization. However, no obvious cooperative binding, or loss thereof, was observed in 

these constructs (Figure 3.2C). 

Collectively, these results indicated that the Hes5 SPS does not function in a dimer-

dependent manner in cells and instead behaves as a monomeric RBPJ binding site. Due to 

this unexpected complication, to further explore SPS capabilities we moved on to the Hes1 

promoter, which contains a more canonical SPS site. 

The Hes1 SPS acts through traditional NICD dimerization mechanisms 

Hes1 is another Notch target gene which demonstrates dimer-dependence. Its 

promoter contains a single canonical RBPJ binding site and secondary site 16 nucleotides 

away in the reverse orientation (Figure 3.1A). This secondary site is slightly non-

consensus, but only displays a minor decrease in RBPJ affinity compared to the high 
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affinity consensus site 35,160. Therefore, we took the same reductionist approach used with 

Hes5 and isolated the SPS element out of the Hes1 promoter.  

 Since the human and mouse sequences in this promoter region are identical, a 

generic Hes1(SPS) construct was cloned into a minimal promoter luciferase vector to 

quantitatively monitor its activation by Notch signaling (Figure 3.3A, Top). As before, 

transfections of this construct into HEK293T cells, along with WT or ankyrin mutated 

NICDs, allowed us to analyze dimer dependence of the Hes1 SPS element. The Hes1(SPS) 

construct responded to NICD activation (Fig 3.3A, Bottom) and interestingly, the isolated 

Hes1 SPS demonstrated approximately 5 times greater sensitivity to N1ICD compared to 

the full-length Hes1 promoter, most likely due to reduced background of the isolated SPS 

construct.  Both N1ICD and N2ICD ankyrin mutants showed a significant decrease in 

activation compared to their wild-type counterparts.  In comparison, N4ICD was again 

dimer independent, matching trends observed on the counterpart full-length promoter 

(Figure 3.1A). Finally, N3ICD only weakly activated the isolated Hes1 SPS.  Indeed, 

compared to the full-length Hes1 promoter, N3ICD showed no increased activity on the 

isolated Hes1 SPS.  Moreover, N3ICD did not demonstrate dimer dependence on the 

isolated Hes1 SPS but did demonstrate dimer dependence on the full-length Hes1 promoter 

(Figure 3.1A). This is potentially unsurprising since Notch3 has been shown to 

synergistically utilize other nearby transcription factors for its own signaling responses 28, 

which would be lacking in this minimalized promoter.  

 With a properly responding SPS-driven promoter, we again wanted to determine if 

long-range interactions were possible between RBPJ binding sites. We again followed the 

same logic employed when mutating the Hes5 SPS and we created gap distances in steps 



110 

 

 

of five nucleotides to take advantage of the periodicity of the DNA helix. We found that 

the wild-type, 16-nucleodtide gap, was the only distance all NICDs were capable of 

cooperatively binding and eliciting activation on (Figure 3.3B). This observation further 

limits the options of dimerization dependent signaling since independent NTC sites within 

this promoter are unlikely to cooperate over long distances by methods of kinking, looping, 

or untwisting the gap DNA. 

Establishment of a high activity, NICD dimer-specific reporter construct 

Having found that the SPS element isolated from the Hes1 promoter functions in a 

dimer-dependent manner, we next sought to optimize an SPS-driven luciferase construct 

as a tool to specifically study the transcriptional activity of NICD dimers. To accomplish 

this, we constructed a synthetic SPS site that contained two high-affinity RBPJ binding 

sites in a head-to-head configuration separated by 16 bp. We utilized the complete TP1 

consensus sequence (5’-CGTGGGAAAAT-3’) originally described by Meitinger et al., 213 

thus forming the 2xTP1(SPS)-Complete construct. RBPJ shows high affinity towards this 

site and multiple copies of this RBPJ binding site have previously been arranged in a head-

to-tail orientation to measure the activation of Notch signaling 214,221,222.  These sequences 

however have not previously been orientated in a head-to-head orientation to measure 

transcriptional activation by dimerized NICD molecules. 

 As shown in Figure 3.4A, the 2xTP1(SPS)-Complete construct successfully 

responded to Notch signaling.  Unexpectedly however, dimer-incompetent N1ICD mutants 

increased activation even better than wild-type proteins indicating this promoter was not 

dimer-dependent. We hypothesized that since the last three nucleotides in the consensus 

sequence were not necessary for RBPJ-DNA interactions 213, this effectively resulted in a 
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22 nucleotide gap distance between RBPJ binding sites, and therefore the promoter lost its 

dimerization dependence. In response to this possibility, we created another SPS construct, 

this time with a core, essential sequence for RBPJ responsiveness (5’-GTGGGAA-3’) 17,213 

separated by 16 bp.  We named this new construct the 2xTP1(SPS)-Core construct. Cloning 

of this fragment resulted in a ‘T’ on the 5’ side of each core sequence. This addition 

coincidentally matches the RBPJ consensus sequence found in Hes1/5, though this position 

within the consensus is variable 161.  As shown in Figure 3.4B, wild-type N1, N2, and 

N3ICD all strongly activated this promoter while the corresponding dimer-incompetent 

ankyrin domain mutants demonstrated significantly reduced transcriptional activity. 

N4ICD also activated the promoter, but remained dimerization independent, which has 

persisted across all SPS promoter variations tested.  Nonetheless, the 2xTP1(SPS)-Core 

construct appeared to be an optimized promoter for evaluating dimer-dependent Notch 

signaling. 

To ensure that NICD proteins were in fact forming dimers on the 2xTP1(SPS)-Core 

construct, we performed a “proof of concept” ChIP analysis of NICD partners binding to 

the Core promoter (Figure 3.4C). Our goal in this experiment was not to attempt to 

quantitate binding or cooperative binding, but instead to enable for a more direct 

visualization of NICD molecules in the head-to-head orientation. To enable this, it was 

necessary to transfect cells with two differentially tagged NICDs (Flag- or HA- variants of 

N1 and N4ICD) in unison and perform a two-step IP, first with anti-Flag antibodies and 

second with anti-HA antibodies.  This was required to enable both the isolation of 

dimerized NICDs and the exclusion of monomeric NICDs.  Moreover, this procedure was 

also required for the identification of potential N1ICD/N4ICD heterodimer pairs since 
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heterodimers could only be distinguished from homodimers based on the two-step co-IP 

approach.  In addition to the anti-FLAG + anti-HA two-step Co-IP procedure, we also co-

transfected cells with the 2xTP1(SPS)-Core construct and detected this construct by PCR 

of the final precipitate. This was essential for the elimination of false positives since this 

luciferase construct only has two RBPJ binding sites. In contrast, native Notch target genes 

such as Hes5 and Hes1 have multiple monomeric RBPJ binding sites in addition to their 

SPS element (Figure 3.1) that likely could result in the recovery of false positive NICDs 

bound to non-dimerizing sites.  To control for non-specific isolation of DNA by Co-IP, we 

also performed negative controls consisting of either 2xTP1(SPS)-Core transfected alone, 

or 2xTP1(SPS)-Core transfected with HA-tagged NICD that were subjected to the two-

step Co-IP.  A positive control reaction was transfected with 2xTP1(SPS)-Core and Flag-

tagged N1ICD but only subjected to one-step IP with anti-Flag antibodies.  As shown in 

Figure 3.4C, PCR with primers extending over the 2xTP1(SPS)-Core promoter sequence 

successfully detected DNA in the single IP positive control reaction indicating the presence 

of (at least) monomeric N1ICD bound to DNA.  Importantly, DNA was also detected in 

the N1ICD and N4ICD homodimer samples.  Moreover, PCR also detected DNA in the 

N1ICD/N4ICD sample suggesting that N1ICD + N4ICD heterodimer complexes were also 

present in transfected cells.  Finally, DNA was not detected if no NICD molecules were 

transfected or if only a single HA-tagged NICD was transfected. 

Non-optimal SPS sites select against transcriptional activation by NICD dimers 

The results in Figure 3.4A revealed an interesting phenomenon wherein non-

dimerizing ankyrin mutant NICDs performed better than their WT counterparts on the 

2xTP1(SPS)-Complete construct which had a slightly longer gap than the 16 bp preferred 
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by NICD molecules. This observation suggested that two RBPJ binding sites gapped 

slightly more or less than 16 bp within a promoter might actually suppress promoter 

responsiveness to NICD dimer-dependent Notch signaling and favor NICD dimer-

independent Notch signaling, a phenomenon which has not been previously described.  To 

test this hypothesis, we compared WT and ankyrin mutant N1ICD transcriptional 

activation from the Hes1(SPS) and 2xTP1(SPS)-Core constructs which we modified to 

contain head-to-head RBPJ binding sites separated by 11, 16, or 21 bp.  As shown in Figure 

3.5A and 3.5B, WT N1ICD strongly activated reporter transcription on the 16 bp gap 

promoters and was significantly weaker on the 11 bp and 21 bp gap promoters.  Moreover, 

the ankyrin mutant N1ICD also performed as expected, showing no synergistic activity 

across the various gap distances. Importantly however, the ankyrin mutant N1ICD slightly 

outperformed the WT N1ICD on the 11 bp and 21 bp gap promoters (Figure 3.5A and B 

right panels).  This observation suggested that head-to-head orientated RBPJ binding sites 

with non-optimal gap widths are more likely to be activated by non-dimerizing NICD 

molecules.  Whether or not there is a condition that actively manipulates NICD 

dimerization is currently unknown. 

A restrictive spacer range dictates the signaling capabilities of NICD dimerization 

Having established a highly active and NICD dimer-specific promoter, we set out 

to compare the promoter specificity of the various NICD molecules.  To accomplish this, 

we established a series of 2xTP1(SPS)-Core promoters with modified SPS gap distances 

ranging from 11 to 21 bp in one bp increments.  Combinations of each NICD protein 

coupled with each spacer variation were then transfected into HEK293T cells and assayed 

for their transcriptional activity.  Our rational for this approach was the previous finding 
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that ChIP-Seq screening identified SPS-driven genes with various gap distances, from 11-

21 base spacers 33.  Our data in Figure 3.3 did not support the idea that gap distances greater 

or less than 16 bp (in 5 bp increments) can support dimer-dependent transcription on the 

Hes1 promoter.  Nonetheless, we wanted to use our optimized promoter to investigate the 

possibility that smaller variation in gap distances may be tolerated during NICD 

dimerization, or that different Notch family members may exhibit slightly different 

preferences in SPS gap width.  As shown in Figure 3.6, all mouse NICDs have a strong 

preference for the SPS sites with 16 bp gaps, with little room for variation. For N1ICD, 

there was some flexibility observed with 15 and 17 bp spacers, though anything outside of 

this range did not demonstrate cooperative signaling (Figure 3.6A). In contrast, N2ICD 

showed even more specificity, where there was only slight cooperativity at the 15 bp gap, 

and none observed at 17 (Figure 3.6B).  N3ICD showed cooperativity at 16 bases (Figure 

3.6C), and N4ICD at 16 and 17 bases (Figure 3.6D), however it’s difficult to make a 

judgement call about their flexibility due to their low activation and their apparent 

dimerization independent signaling. Also, it’s worth noting is that N4ICD preferred a 16 

bp gap suggesting that N4ICD was functioning as a dimer which is in conflict with our 

earlier observations that N4ICD functioned dimer-independently.  Moreover, N4ICD 

demonstrated slight inhibition on promoters with 11 or 14 bp gaps, which was similarly 

observed in the Hes5 (Figure 3.2C) and Hes1 (Figure 3.3B) SPS promoter constructs. This 

might indicate that N4ICD proteins generally act as transcription inhibitors on monomeric 

NTC sites, or perhaps occupy RBPJ binding sites and prevent other NICDs from binding, 

though we did not explore these possibilities. Further we also observed a slight increase in 

activation of the 12 or 13 bp gap constructs for all four NICD proteins, which could be 
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attributed to some form of cooperativity, though we did not explore this thread any further. 

Finally, as with the Hes5(SPS) and Hes1(SPS), we extended the gap distances of the 

2xTP1(SPS)-Core out to 36 nucleotides and again observe little to no long-range 

cooperativity. 

Discussion 

Notch signaling is an important cellular communication mechanism that is required 

for multicellular organisms.  Ongoing research continues to reveal how Notch functions 

and how Notch signaling is integrated into many facets of cell biology.  Despite our 

growing understanding of Notch function, however, there are basic questions about Notch 

signaling that remains to be addressed.  In this study, we sought to address some of these 

basic questions about Notch signaling that have been overlooked in the quest to dig into 

the deeper questions of Notch function.  In particular, we felt that a head-to-head 

transcriptional comparison of the full-length Notch NICD molecules on a variety of 

promoter elements should be performed. Most of what we know about Notch dimerization, 

including how the proteins interact and on which promoters, comes from studies with 

Notch1. While the four mammalian Notch proteins are mostly homologous within the N-

terminal and ankyrin domains, there are substantial differences within the C-terminal 

regions. Notably, this domain is absent in much of the field’s previous characterization 

work. Indeed, molecular modeling 29 and crystallization 30 were performed with just the 

ankyrin domain, and these studies laid the original groundwork for the NTC’s spatial 

conformations, interacting amino acids, and DNA preferences. Similarly, further in vitro 

work with EMSAs and FRET assays supported NTC cooperative loading and SPS gap 

preferences, though these were performed using N1ICDs with just the N-terminal RAM 
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and ankyrin domains 29,30,35. Importantly, the C-terminus has known transcriptional effects 

52, regulatory capacity 135, and contains a multimerization site 32. Therefore, it was 

important to ensure 1) the presence of these domains don’t interrupt dimerization responses 

in a cellular context, and 2) if the lessons learned by studying Notch1 can be broadly 

applied to the other mammalian Notch proteins. 

To address these concerns, we first revisited full-length, Notch-responsive 

promoters, which contain canonical sequence-paired sites to drive transcription. While 

these promoters did require NICD dimerization for full activation and therefore allowed 

for preliminary conclusions, our data collection suffered from low activation levels (Hes1) 

or high experimental variability (Hes5). This is a logical byproduct from using full-length 

promoters since these genes are regulated through mechanisms beyond just Notch signaling 

and overexpression of constitutively active NICDs would have wide, overarching, 

signaling outcomes. For example, as in the case of Hes1, this gene is understood to be self-

regulated, resulting in its oscillatory nature 223. For our purposes, this implies that 

endogenous Hes1 may be activated by NICD overexpression and circles back to our Hes1-

luciferase promoter to negatively-regulate it, resulting in its poor overall activation. For 

reasons like this, we sought to create minimalized promoters to more specifically monitor 

dimerization-induced signaling. 

Since synthetic promoters with tandemly arranged RBPJ sites had been previously 

used to monitor Notch activity (e.g. 4xCSL-Luc, 216), we reasoned that the SPS alone 

should also be sufficient for Notch activation. Therefore, we isolated the known sequence-

paired sites out of Hes1 and Hes5 and created the Hes1/5(SPS)-luciferase vectors. Since 

the reverse sites within Hes1 and 5 do not perfectly match the canonical RBPJ binding site, 
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we also crafted the synthetic 2xTP1(SPS)-Core promoter to make a “perfect” SPS element. 

Upon testing we found that the Hes1(SPS) and the 2xTP1(SPS)-Core promoters operated 

as expected in that they were robustly activated by N1ICD and inefficiently activated by 

dimer-incompetent NICD ankyrin mutants.  Surprisingly however, our results did not 

indicate that the isolated Hes5 SPS site functions in a dimer-dependent manner, although 

the full-length Hes5 promoter was dimer-dependent.  We return to this point later in this 

discussion. 

Having established two reporters with high activity and specificity for dimerized 

NICD signaling we were able to specifically ask questions about dimerization of full-length 

NICD proteins in cells. We found that full-length N1ICD and N2ICD activated sequence-

paired sites in a dimerization-dependent mechanism. In contrast, N3ICD’s activation of 

these minimal promoters was poor, which may be partially attributed to its lack of a TAD 

domain in its C-terminal 52 or usage of other transcription factors for its activation 28. It 

also differed in its dimer-dependence; where it was not dimer-dependent on the Hes1(SPS) 

but was on the 2xTP1(SPS)-Core. This implies there is some difference located within 

these two minimalized constructs that can affect dimerization outcomes. The primary 

source of variation can be found within the 16 bp gap between RBPJ binding sites. The 

original crystallography studies found that the Hes1 gap distance DNA must go through 

substantial untwisting to bring the ankyrin domains into contact with each other for 

dimerization 30. Gap composition of the 2xTP1(SPS)-Core construct has even higher G/C 

content than Hes1’s, so while N1ICD and N2ICD can utilize variable gap compositions, 

perhaps N3ICD utilizes a more inflexible gap sequence. Whether or not this would enable 

differential transcriptional activity of Notch remains to be tested.  We also found that 
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N4ICD activated these promoters and our ChIP data indicated that N4ICD formed homo- 

and heterodimers on DNA.  In contrast, however, N4ICD did not appear to have dimer-

dependent activation on the Hes1(SPS) or 2xTP1(SPS)-Core constructs despite still 

displaying a preference for a 16 bp gap between RBPJ binding sites on these promoters.  

Based on these results, we believe that the single R1685A mutation (which ablates 

dimerization of the other NICDs) on N4ICD was insufficient to abolish its dimerization 

activity suggesting that perhaps N4ICD has an alternative dimerization interface. Indeed, 

crystallography work on human N1ICD homodimers indicated two other amino acids 

(K1945 and E1949) beyond the R1984 that are involved in ankyrin-mediated dimerization 

30. Interestingly the N4ICD is the only NICD with an “R” located at the K1945 site, 

suggesting this position may be especially important for N4ICD dimerization (Figure 

S3.2).   

In addition to comparing the activation parameters of the various NICDs on these 

optimized promoters, we were also curious about the standard 16-nucleotide gap distance 

established by the N1ICD containing tripartite complex. Two hypotheses presented 

themselves to us.  First, given the contortion of DNA evident in the crystalized N1ICD 

trimeric complex, we hypothesized that RBPJ sites outside of the optimal 16 bp gap might 

be utilized through further contortions of DNA between RBPJ binding sites.  Second, we 

further hypothesized that given the variable sequences and sizes of the NICD proteins, 

different NICDs might have preferences for slightly longer or shorter gap distances 

between RBPJ binding sites. To test the first hypothesis, we created SPS sites with variable 

gap distances in 5 bp increments to take advantage of the periodicity of helical DNA.  We 

found that none of these long-range alternative gap distances, for any of the NICDs, had 
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significantly enhanced signaling above monomeric signaling. This indicated that long-

range interactions between NTC complexes are unlikely to occur.  Our analysis however 

only extended to measuring 36 bp gaps and therefore, longer-range interactions between 

RBPJ binding sites cannot be ruled out.  To address the second hypothesis (that different 

sized NICDs might have subtle differences in SPS preference), we compared NICD activity 

on SPS sites with 11-21 bp gap distances in one bp increments.  Similar to previous results 

30,35,51 , we found that all full-length NICDs also prefer a 16 bp gap distance, with little 

room for variation. Based on this result, we conclude that the C-terminal regions of NICDs 

do not appear to change the SPS dimensions preferred by NICDs nor impact NICD 

dimerization.  It should also be stated, however, that deletion of the N1ICD C-terminal tail 

(ΔS2184) which contains the trans-activation domain (TAD) significantly reduced 

transcriptional activity (Figure S3.3).  Minor differences in the NICDs however were 

observed.  For example, N2ICD appeared slightly more restrictive when choosing SPS sites 

than Notch1, since N2ICD activated 15/16 bp spacers but not the 17 bp gap. This poses an 

interesting possibility where N1ICD might dimer-dependently activate CUL1 or TXN2, 

which have SPSs with a 17-nucleotide gap distance 30,33, whereas binding of N2ICD on 

this promoter would only cause monomeric levels of transcription, though this idea was 

left untested. While N3ICD and N4ICD had questionable dimerization activities, they did 

seem to have cooperative binding and higher activity on the 16/17 bp gap SPSs. Making 

firm conclusions about their preferences is difficult however due to their low overall 

activity and high variability. Together, these experiments highlight the stringent 

requirements for dimerization-induced transcription. 
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Our results have also shed some light on the nature of NICD dimerization.  First, 

there has been some debate as to the order of events leading up to NICD activated 

transcription.  It is currently unclear whether individual NICD molecules first bind to 

RBPJ/DNA then form dimers, or alternatively if two NICDs first form a dimer, then bind 

to RBPJ/DNA. In Figure 3.4 and 3.5, we demonstrated that dimer-incompetent N1ICD 

performed slightly better than WT N1ICD on SPS elements with non-optimal 11 or 21 bp 

gaps.  This suggests that the attempt to dimerize may impede NICD molecules from 

binding to these sites and might be a clue as to the mechanics of NICD function.  Our result 

indicates that non-optimal SPS elements discourage NICD dimer formation and we believe 

this is evidence that NICD molecules are pre-forming dimers before binding to 

RBPJ/DNA.  Whether or not this has an actual impact on how promoters with non-optimal 

SPS sites are utilized by Notch signaling remains to be seen but as shown by Castel et al., 

33, several Notch responsive promoters with non-optimal SPS elements have been 

identified.  Another outstanding question about NICD dimerization is whether or not NICD 

molecules can engage in heterodimerization.  Given the conservation of sequence in the 

ankyrin domains and the importance of ankyrin domains for NICD dimerization it has been 

hypothesized that NICD heterodimers may exist.  While further research on this topic is 

certainly warranted, our results in Figure 3.6 showing similar SPS element preferences and 

in Figure 3.4 showing ChIP recovery of N1/N4 complexes suggests that heterodimers 

between N1ICD and N4ICD can form in transfected 293T cells and therefore possibly 

under more physiological conditions.  Here again, the biological implications of this 

observation are unknown but given the strong differences in transcriptional activation 

between N1ICD and N4ICD, we hypothesize that N1/N4ICD heterodimers would have 
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intermediate activity compared to N1ICD or N4ICD homodimers.  Thus, 

heterodimerization of NICD molecules may offer a new mechanism to regulate outputs 

from Notch signaling. 

Finally, our minimized Hes5(SPS) promoter was not sufficient to elicit 

dimerization-dependent activation. The Hes5 promoter does not contain a canonical 

sequence-paired site and instead has been described as ‘cryptic’ 30, with a standard forward 

RBPJ binding site but an abnormal reverse site. When arranged as a palindrome in a SPS, 

this abnormal reverse site does not support dimerization, yet it facilitated dimerization 

when paired with a strong RBPJ binding site 35. Work with EMSAs of this cryptic SPS 

showed that N1ICD homodimers can form, and dimerization-dependent activation through 

this site was supported through luciferase assays 30, but distinctly, these luciferase assays 

were still performed with the full-length promoter. In our analyses we isolated out this SPS, 

which should be sufficient for dimerization, yet this construct did not demonstrate 

dimerization-dependent activation.  

This inconsistency poses two thought-provoking problems. First, and as originally 

described by Severson et al. 35, if cryptic sequence-paired sites are capable of forming 

NICD dimers, then searching for SPSs by ‘sequence-gazing’ becomes far more difficult. 

For example, previous ChIP work isolated out RBPJ-bound DNA targets, and these 

sequences were screened for nearby RBPJ binding motifs located in tandem 33. The issue 

here lies in the partner sequence, wherein any non-conforming RBPJ sequences would be 

missed through a simple screening approach. To further identify other cryptic sequence-

paired sites, like those in Hes5 or pTα 30,31, we propose that a logical course of action is to 

perform ChIP-Seq on a double-selected pool of DNA, as in our simplified ChIP 
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experiment. The second problem concerns the activation of Hes5 through its SPS. While it 

appears that NTC complexes dimerize on this promoter segment in vitro, do they still form 

in living cells and if so, what’s the missing link for transcriptional activation? Other than 

the cryptic RBPJ binding site, the Hes5(SPS) construct is nearly identical to the Hes1(SPS) 

and 2xTP1(SPS)-Core constructs which respond as expected. Since the full-length Hes5 

promoter is apparently dimer-responsive and the other minimalized SPS constructs are 

sufficient for activation, we predict that there are other promoter elements involved which 

enable these low-affinity dimers to form and signal in a cellular context. Comparing the 

promoters and enhancers of multiple, cryptic, SPS genes may identify other sequence 

motifs in common and identify signaling or regulatory pathways involved. 

In conclusion, since much of the work on NICD dimerization has been performed 

studying C-terminally truncated N1ICD, we felt it was important to 1.) examine full-length 

NICD molecules to insure the C-terminal domain does not affect NICD promoter 

preference, and 2.) compare promoter preferences of the other NICD molecules, which 

have been largely overlooked.  In so doing, we confirmed that while the C-terminal domain 

of the various NICDs has a transcriptional role, this domain does not appear to play a role 

in promoter preference.  In addition, we also found that all the mammalian NICDs have 

remarkably similar SPS gap length preferences with only minor (+/- one bp) flexibility.  

Overall, these results both support previous work but also help fill in missing gaps in our 

understanding of Notch transcriptional activity. 
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Figure 3.1: Dimerization dependence of full-length Hes1 and Hes5 promoters 

 

HEK293T cells were transfected with portions of the (A) Hes1 (-467 to +46) (B) Hes5 (-

800 to +73) promoters for luciferase assays to monitor promoter activation. Cells were 

co-transfected with wild-type (WT) or ankyrin mutated (R→A) NICDs to compare their 

dimer dependence.  Shown are the average +/- SE of 5 independent experiments. * 

indicates P<.05, **<.01, ***<.001 (student’s t-test). (C) Western blots to compare the 

protein abundancies of WT or dimer incompetent ankyrin mutated NICDs. HEK293T 

cells were transfected with NICD expression constructs and NICD proteins were detected 

with anti-Flag antibodies. Endogenous GAPDH was also detected from the same lysates 

for use as a loading control. The image displayed is a representative blot from an 

experiment that was replicated three independent times. (D) 293T cells were transfected 

with the dimer independent 4XTP1 luciferase construct and WT or ankyrin mutated 

NICDs as above.  Shown are the average +/- SE of three independent experiments.  
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Figure 3.2: Lack of dimerization dependence of the Hes5 sequence-paired site 

 

(A) Promoter structure of the Hes5, 2xTP1(H-T), and 4xTP1(H-T) luciferase constructs. 

Red dots indicate nucleotide differences between the human and mouse Hes5 SPS sites. 

Suspected RBPJ binding sites are highlighted in yellow and arrows depict directionality 

of RBPJ binding sites. (B) HEK293T cells were transfected with either the mouse 

(mHes5(SPS)) or human (hHes5(SPS)) sequence-paired site constructs or with the 

2xTP1(H-T) or 4xTP1(H-T) head-to-tail constructs and WT or dimer-null versions of 

NICDs.  Shown is the average +/- SE of n = 4 independent experiments. * <0.05, ** 

<0.01, *** <0.001, student’s t-test. (C) HEK293T cells were transfected with various 

NICDs and Hes5 SPS constructs with 11 – 36 bp spacer regions (5 bp increments), n = 6. 
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Figure 3.3: Dimer dependence of the Hes1 sequence-paired site 

 

(A, Top) Sequence information for the human and mouse isolated Hes1 SPS element. (A, 

Bottom) HEK293T cells were transfected with the Hes1(SPS) construct and WT or 

dimer-null versions of NICD proteins.  Shown is the average +/- SE of n = 4 independent 

experiments. Student’s t-test was performed to compare the activation between WT and 

mutant NICDs where * <0.05, ** <0.01, *** <0.001. (B) HEK293T cells were 

transfected with various NICDs and Hes1(SPS) constructs that had been modified to 

contain variable gap distances between RBPJ binding sites in 5 bp interments.  Shown is 

the average +/- SE of 4 independent experiments. 
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Figure 3.4: An optimized Notch responsive SPS element 

 

(A and B) A synthetic SPS-driven promoter, using the (A) complete TP1 binding element 

or (B) core TP1 binding element, was transfected into HEK293T cells. These two 

constructs were activated with either wild-type (WT) or ankyrin mutated (R→A) NICDs 

to observe their dimer responsiveness.  Shown are the average +/- SE of n = 4 

independent experiments.   Student’s t-test was performed to compare the activation 



128 

 

 

between WT and mutant NICDs where * <0.05, ** <0.01, *** <0.001. (C) ChIP was 

used to confirm NICD dimer formation on the 2xTP1(SPS)-Core construct.  HEK293T 

cells were transfected with various combinations of plasmids encoding FLAG-tagged 

NICD and HA-tagged NICD proteins. NICD dimers were detected by 

immunoprecipitation first with anti-FLAG antibodies then with anti-HA antibodies 

followed by PCR to detect the co-transfected 2xTP1(SPS)-Core construct.  Positive 

control reaction was subject to a single round of selection with anti-FLAG antibodies.  

Negative controls were transfected with 2xTP1(SPS)-Core alone or 2xTP1(SPS)-Core 

and HA-N1ICD then subjected to both anti-FLAG and anti-HA immunoprecipitation.  

Shown is a representative image of a single experiment that was performed three 

independent times. 

  



129 

 

 

 
Figure 3.5: Non-optimal SPS sites select against dimer-dependent NICD 

transcriptional activation 

 

(A and B) 293T cells were transfected with 11, 16, or 21 bp gap versions of the (A) 

Hes1(SPS) or (B) 2xTP1(SPS)-Core reporters and WT or ankyrin mutated N1ICD.  

Shown is the average +/- SE of n = 6 experiments. In all panels, a student’s t-test was 

performed to compare the activation between WT and ankyrin mutated NICDs, where P-

values are reported as * <0.05, ** <0.01, *** <0.001. 
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Figure 3.6: Notch homodimers do not tolerate alternative gap distances 

 

(A-D) HEK293T cells were co-transfected with various NICD expression plasmids and 

2xTP1(SPS)-Core promoter with varying SPS gap lengths from 11-21 bp, in one bp 

increments, or 21-36 bp, in 5 bp increments. For all luciferase studies, an empty 

expression vector was used to equate the amount of DNA transfected across samples. 

Fold differences are represented as the NICD-induced activity compared to the basal 

activity levels. Shown are the average +/- SE of n = 5 independent experiments. (E) 

Overlay of data in panels A-D to emphasize different transcriptional strengths of the 
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various NICDs.  Statistical analysis was performed by using a one-way analysis of 

variance (ANOVA), followed by a Tukey-Kramer's HSD post-hoc test.  Only points that 

were statistically different from other points are indicated in each graph where capital 

letters indicate P values < 0.001, whereas small case letters indicate P < 0.05 on a point-

by-point basis. 
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Figure S3.1: Identification of low and high affinity SPS sites in Hes1 and Hes5 

promoters 

 

DNA sequences are as reported for AddGene products Hes1-luciferase (#41723) and 

Hes5-luciferase (#41724) vectors.  Possible high and low affinity sites (as described in 

material and methods) are indicated by forward or reverse arrows.  High affinity sites 
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confirmed to serve as RBPJ binding sites are indicated with red shading.  Nucleotides 

that diverge from the core TP1 element as originally defined (C/tGTGGGAA) are 

indicated by bolded letters.  
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Figure S3.2: Sequence comparison of human N1ICD and mouse NICD 

dimerization domains 

 

Amino acids previously identified as important for dimerization of N1ICD ankyrin 

domains are indicated 30.  Amino acid numbers are based on equivalent positions in 

human N1ICD.  R1984A equivalents were used throughout this work to attempt to make 

generate dimer-incompetent NICD variants. 
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Figure S3.3: N1ICD C-terminus does not impact NICD dimerization 

HEK293T cells were transfected with 11, 16, or 21 bp versions of Hes1(SPS) or 

2xTP1(SPS)-Core luciferase reporters and either full-length N1ICD or ΔS2184 N1ICD 

(which deletes residues C-terminal of the N1ICD ankyrin domain).  Shown is the average 

+/- SE of four independent experiments. 
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