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DEDICATION 

To the sagebrush whom were excellent teachers in both science and self – keep 

fighting those exotic annual grasses! 
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ABSTRACT 

The native vegetation communities in the sagebrush steppe, a semi-arid 

ecosystem type, are under threat from exotic annual grasses. Exotic annual grasses 

increase fire severity and frequency, decrease biodiversity, and reduce soil carbon storage 

amongst other ecosystem services. The invasion of exotic annual grasses is causing 

detrimental impacts to land use by eliminating forage for livestock and creating a huge 

economic cost from fire control and post-fire restoration. To combat invasion, land 

managers need to know what exotic annual grasses are present, where they are invading, 

and estimates of their biomass. Mapping exotic annual grasses is challenging because 

many areas in the sagebrush steppe are difficult to access; yet field measurements are the 

main method to identify and quantify their existence. In this study, we address this 

challenge by exploring the use of both landscape-scale and plot-scale observations with 

remote sensing. First, we use satellite imagery to map where exotic annual grasses are 

invading and identify the native species which are being encroached upon. Second, we 

investigate the use of fine-scale imagery for non-destructive measurements of biomass of 

exotic annual grasses.   

Understanding the location of exotic annual grasses is important for restoration 

efforts, e.g. large swath (~100m) herbicide spraying. Restoration efforts are expensive 

and often ineffective in areas already dominated by exotic annual grasses. Early detection 

of exotic annual grasses in sagebrush and native grasses communities will increase the 

chances of effective ecosystem restoration. We used Sentinel-2 satellite imagery in 
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Google Earth Engine, a cloud computing platform, to train a random forest (RF) machine 

learning algorithm to map vegetation in ~150,000 acres in the sagebrush steppe in 

southeast Idaho. The result is a classification map of vegetation (overall accuracy of 

72%) and a map of percent cover of annual grass (R2 = 0.58). The combination of these 

two maps will allow land managers to target areas of restoration and make informed 

decisions about where to allow grazing.  

In addition to knowing what exotic annual grasses exist and their percent cover, 

detailed information about their biomass is important for understanding fuel loads and 

forage quality. Structure from Motion (SfM) is a photogrammetry technique that uses 

digital images to develop 3-dimensional point clouds that can be transformed into 

volumetric measurements of biomass. The SfM technique has the potential to quantify 

biomass estimates across multiple plots while minimizing field work. We developed 

allometric equations relating SfM-derived volume (m3) to biomass (g/m2) for a study area 

in southeast Oregon. The resulting equation showed a positive relationship (R2 = 0.51) 

between the log transformed SfM-derived volume and log transformed biomass when 

litter was removed. This relationship shows promise in being upscaled to larger surveys 

using aerial platforms. This method can reduce the need for destructively harvesting 

biomass, and thus allow field work to cover a greater spatial extent. Ultimately, 

increasing spatial coverage for biomass will improve accuracy in quantifying fuel loads 

and carbon storage, providing insights to how these exotic plants are altering ecosystem 

services. 
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CHAPTER ONE 

Introduction 

Exotic Annual Grasses in Semi-Arid Ecosystems 

Drylands play a critical role as global terrestrial carbon sinks. The extent of their 

impact is still being quantified, Poulter et al. (2014) found in 2011 that semi-arid biomes 

were responsible for 60% of terrestrial carbon uptake in the Southern Hemisphere. Semi-

arid ecosystems are sensitive to changes in precipitation and air temperature. Shifts in 

precipitation and air temperature related to climate change are expected to negatively 

impact semi-arid ecosystems and reduce their global carbon uptake (Ahlström et al., 

2015; Smith et al., 2019). The sagebrush-steppe ecosystem, a dryland ecosystem type, 

covers much of the western U.S. and is a dominant ecosystem type in the Great Basin and 

Range (Figure 1.1). One of the largest threats to the sagebrush-steppe ecosystem, 

specifically low elevation sites, is the introduction of invasive exotic annual grasses such 

as cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae). 

Cheatgrass and other exotic annual grasses dominate native vegetation in many 

geographic areas of the Great Basin and Range, with profuse expansion in the Snake 

River Plain in southwest Idaho (Figure 1.1). A 2014 study indicates that over 85% of the 

vegetation cover in the Snake River Plain consists of cheatgrass (Boyte & Wylie, 2016). 

Flat areas of low to mid elevation sagebrush steppe like the Snake River Plain are at high 

risk for invasion. The invasion of these exotic annual grasses can be attributed to 
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disturbances such as fire, urbanization, land use, and improperly managed grazing 

regimens (Chambers et al., 2014; DiTomaso et al., 2010).  

 
Figure 1.1 Exotic annual grass percent cover of the Great Basin. The Snake 

River Plain has high percent cover (modified from Boyte et al., 2018). 

The introduction of exotic annual grasses has led to a decrease in biodiversity, 

alteration of the natural fire cycle, and changes in ecosystem services that the sagebrush 

steppe provides. An undisturbed, healthy sagebrush steppe ecosystem can be described as 

heterogenous and diverse, with a large amount of biological soil crust in the interspace of 

native shrubs, forbs, and perennial bunchgrasses (Chambers et al., 2014). Native plant 

communities grow slowly to establish a deep root system making them resilient to the 

natural water scarcity. In contrast, cheatgrass and medusahead have shallow roots that 

allow for rapid soil moisture uptake following precipitation events and quickly thrive by 

using up ecosystem nutrients (namely Nitrogen) (Boyte et al., 2015). These traits allow 

2018 Exotic Annual Grass 

Cover 
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them to easily outcompete native plants, altering the landscape to a dense homogenous 

cover of exotic annual grasses, and reducing the biodiversity.  

The positive feedback loop between invasive grasses and fire in the Great Basin is 

well documented (shown in Figure 1.2). The presence of cheatgrass has increased the 

frequency of burning from a 50-100-year cycle to a mere 5-10-year cycle (Moriarty et al., 

2015). The increase in atmospheric CO2 has promoted cheatgrass productivity, resulting 

in greater biomass, creating an increase in fuel load and fire severity (Ziska et al., 2005). 

These alterations of the fire cycle have widespread ecological impacts and decrease the 

resistance of native plant communities to invasive species (Chambers et al., 2014; Peeler 

& Smithwick, 2018). Condon et al. (2018) quantified site resistance to biotic factors 

directly altered by fire and grazing. The decrease in resistance and increased fire cycle 

makes previously burned areas especially vulnerable to invasion from exotic annual 

grasses. Cheatgrass presence was found in 47% of areas that have previously burned in 

the Great Basin, increasing the probability those areas will burn again (Bradley et al., 

2018).  
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Figure 1.2 Positive feedback loop where the altered fire cycle includes cheatgrass 

invasion which promotes fire and leaves native areas susceptible to further invasion. 

Bradley et al. (2006) suggested the shift from native shrubs and bunchgrasses to invasive 

annual grasses has resulted in a loss of carbon storage upwards of 8 ± 3TgC and could 

lead to another 50±20 TgC in the future.  

Remotely Sensed Data for Management of Exotic Annual Grasses 

The extensive spread of exotic annual grasses is difficult for land managers to 

control. Current land management strategies for cheatgrass and other exotic annual 

grasses focus on control (e.g. spraying herbicides) and restoration of plant ecosystems 

that are not as susceptible to invasive species, including planting non-natives (DiTomaso 

et al., 2010). Knowing the location of large swaths of exotic annual grasses on a 

landscape scale can help land managers plan for treatments. Identifying undisturbed 

native shrub communities can help identify areas to protect from future disturbances and 

focus post-fire restoration efforts. Davies et al. (2011) in describing conservation 

strategies for the sagebrush steppe ecosystem called for more research on identifying 

areas for restoration, and a need to reduce disturbances, such as human-caused fires, to 
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prevent the spread of exotic annual grasses. Remote sensing offers a solution to better 

understand the status of and focus conservation efforts of the sagebrush steppe by 

offering higher spatial and temporal data than field collection alone. Remote sensing of 

drylands has dramatically improved through innovative combinations of remotely sensed 

data, improvements of algorithms specifically for dryland ecosystems and improvements 

on how in situ data are collected when used with remotely sensed data (Smith et al., 

2019).  

My thesis focuses on developing and applying two different optical remote 

sensing processes at fine (cm) to medium (m) spatial scales to better understand the 

impacts of exotic annual grasses and to help inform land managers. The second chapter 

uses satellite imagery to identify areas for restoration and conservation by mapping 

vegetation at a landscape scale. The third chapter works to develop a relationship 

between volume and biomass of exotic annual grasses using Structure-from-Motion point 

cloud data at a plot scale. Deriving biomass from remotely sensed data can provide 

researchers and land managers better insight to the impacts of exotic grasses on 

ecosystem structure and function.  
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CHAPTER TWO: MAPPING DOMINANT VEGETATION AND CHEATGRASS 

COVER IN THE SNAKE RIVER PLAIN USING SENTINEL-2 AND RANDOM 

FOREST MACHINE LEARNING IN GOOGLE EARTH ENGINE 

Introduction 

Importance of Mapping the Sagebrush Steppe Ecosystem for Science and Land 

Management 

Understanding the distribution of vegetation at a medium spatial scale (10s of m) 

over a large geographic area is critical for land managers to understand ecosystem health 

and to plan for restoration. To better inform ecosystem health of the sagebrush steppe, it 

is critical to know where exotic annual grasses, such as cheatgrass are invading. The pre-

disturbance vegetation composition of a landscape is a major predictor of post-

disturbance recovery (Jones et al., 2018). Annual vegetation maps can be used to assess 

the impact of disturbance and determine the effectiveness of restoration efforts by land 

managers such as the U.S. Department of Defense (DoD). In order to assess these 

impacts, accurate maps of the distribution and density of both invasive and native plants 

are necessary. 

The DoD is the third largest land manager nationwide, including management of 

large tracts of land in the Snake River Plain as part of the Mountain Home Air Force 

Base (MHAFB) installations. Human disturbance and human-caused fires from activities 

such as ground training and artillery exercises on these installations cause stress to the 

native ecosystem, resulting in invasive species spread. Subsequently, the increase in fire 
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risk from cheatgrass can drastically impact training schedules, routines, and economic 

costs to the DoD. The DoD needs regularly updated vegetation maps to gauge how 

disturbances impact the vegetation on the managed land. Annual vegetation maps are 

critical to understanding how exotic annual grasses have spread, to gauge effectiveness of 

restoration techniques, and to determine areas to be protected. Since installations are 

typically extensive, located in remote areas with few access roads, and there is danger in 

performing field work due to unexploded ordinances, it is challenging to understand the 

composition of the plant communities. Additionally, creating annual vegetation maps can 

be time and labor intensive, and often expensive. Advances in remote sensing 

technology, such as high-resolution satellite imagery, and advances in computing offer a 

potential solution to mapping vegetation at a species level on DoD installations. 

Optical Remote Sensing of Semi-Arid Ecosystems 

Sentinel-2 satellite imagery provides regular observations of the entire spatial 

extent of MHAFB. Sentinel-2 is an optical satellite launched by the European Space 

Agency in 2015 and was chosen for this study because of the high temporal resolution 

(every 5 days at the equator, more frequently in higher latitudes) and the medium spatial 

resolution of 10 – 20m pixels (Table 2.1). The imagery is multispectral with 13 spectral 

bands ranging from the ultraviolet to the shortwave infrared  (UV-SWIR) (Drusch et al., 

2012). Sentinel-2 imagery have been used to map vegetation and biocrust in dryland 

ecosystems in Nevada through spectral unmixing of biocrust in-situ measurements 

(Panigada et al., 2019). Multiple studies have shown successful mapping of cheatgrass 

using optical remote sensing (Boyte et al. 2016; Bradley et al. 2018; Van Gunst et al. 

2017; Peterson 2015; West et al. 2017). For example, West et al. (2017) demonstrated the 
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use of Landsat imagery and species-distribution models to map and model percent 

cheatgrass cover post-fire in the Medicine Bow National Forrest. 

Table 2.1 Sentinel-2 bands, spectral wavelengths (center), and spatial 

resolutions, used in the study (Drusch et al., 2012). NIR is near infrared and SWIR 

is shortwave infrared. 

Sentinel-2 Band Center Wavelength  

(µm) 

Resolution  

(m) 

Band 2 - Blue  0.490 10 

Band 3 - Green 0.560 10 

Band 4 - Red 0.665 10 

Band 5 - Vegetation Red Edge 0.705 20 

Band 6 - Vegetation Red Edge 0.740 20 

Band 7 - Vegetation Red Edge 0.783 20 

Band 8 - NIR 0.842 10 

Band 8a – Narrow NIR  0.865 20 

Band 11 - SWIR 1.610 20 

Band 12 - SWIR  2.190 20 

 

The 5-day repeat cycle of Sentinel-2 is ideal for capturing the phenology of vegetation in 

the sagebrush steppe. Phenology can be described as the life cycle of plants, and is used 

to track their growth, major biological events and photosynthesis. In the Great Basin and 

Range, cheatgrass phenology has been studied using Landsat-derived Normalized 

Difference Vegetation Index (NDVI) spectral indices to better understand the relationship 

of cheatgrass and precipitation events (Clinton et al., 2010). Cheatgrass and other 

invasive annuals can be distinguished based on their early-season phenology, described 

as a sharp green-up period followed by a rapid decrease in growth and production to early 
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senescence. Spectral indices are standard metrics of phenological responses of 

ecosystems in remote sensing.  

 
Figure 2.1 Temporal differences in NDVI of select species from the sagebrush 

steppe ecosystem in this study, derived from 2018 Sentinel-2 data. 

A major challenge in optical remote sensing of semi-arid ecosystems is the heterogeneity 

of the landscape and sparse vegetation cover. The latter results in the spectral response 

signal being mixed with the high reflectance of the bare ground. This makes it difficult to 

de-couple the vegetation from the ground reflectance (Smith et al., 2019). To address 

these challenges two approaches are often used in remote sensing: spectral indices 

developed for semi-arid ecosystems and “big data”.  In addition to NDVI, multiple 

spectral indices have been successful in dryland ecosystems such as Optimized Soil 

Adjusted Vegetation Index (OSAVI), Soil-Adjusted Vegetation Index (SAVI), and the 

Enhanced Vegetation Index (EVI). For a comprehensive review of spectral indices for 

drylands, refer to West et al. (2017).  The use of a phenological time-series of Sentinel-2 
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images proved to effectively map invasive pines (Pinus radiata) in Chile (Forster et al., 

2017). This study also found that increasing the number of Sentinel-2 images had the 

greatest impact on increasing the accuracy. Many studies have shown successful mapping 

of cheatgrass using a phenological time-series approach with satellite data (Clinton et al., 

2010; Peterson, 2015; West et al., 2017). Remote sensing platforms have been used to 

study dryland ecosystems since the 1980’s; however recent advances in cloud computing, 

open source technology, and instrumentation/satellites have led to a better understanding 

of ecosystem dynamics in drylands.  

Google Earth Engine for Classification 

Traditionally, supervised classifications have been incredibly time intensive in 

part because processing of satellite data required manually downloading data from the 

data source, sifting through dates with cloud-free images, and classification of every 

image. Google Earth Engine (GEE) is a cloud computing interface specifically designed 

for scientific research in the remote sensing community. The GEE platform eliminates 

the need for local data acquisition and data processing on all imagery, and processing can 

be reduced to a few lines of code in the user’s browser (Gorelick et al., 2017; Kumar et 

al., 2018).  

Machine-learning techniques within GEE can be leveraged to improve the 

accuracy of species classification by finding trends in remotely sensed data (Gallagher, 

2018). Random forest (RF) is an ensemble machine learning algorithm that can be used 

to take training data and create either a classification or regression model (Belgiu & 

Drăgu, 2016; Pavlov, 2019). It is iterative in design to address over-fitting and instability 

that can arise when using conventional classification tree-based approaches. RF has been 
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shown to outperform Support Vector Machines (SVM), another machine learning 

algorithm, in land cover classification using a two year time-series of Landsat data in 

France with an overall accuracy of 83% using RF compared to 77% for SVM (Pelletier et 

al., 2016).  The workflow of GEE and RF are reproducible and thus we eliminate the 

need to manually reprocess satellite data when updated field and satellite imagery 

become available. In other words, the workflow allows us to support monitoring for a 

restoration program. GEE and RF regressions have been used to map historical percent 

cover maps of four plant functional types across the Great Basin and Range at a 30m 

resolution, but relies on spatially sparse training data (Jones et al., 2018). We leverage 

these advances in satellite technology, cloud computing, and machine learning to develop 

accurate maps of semi-arid ecosystems at a medium spatial scale. 

Research Questions  

1. How effectively can random forest (RF) map vegetation at a landscape-scale 

using time-series of Sentinel-2 imagery over a semi-arid ecosystem to support 

land management?  

2. How can cloud computing be leveraged to develop a reproduceable workflow 

for the purpose of vegetation monitoring in the sagebrush steppe?  

Methods 

Study Area: Mountain Home Air Force Base  

In southwest Idaho, the DoD is responsible for managing ~150,000 acres of 

sagebrush steppe ecosystem, primarily as part of the MHAFB. The MHAFB installations 

cover an elevation gradient from 800 to 1667 m (Figure 4). The relatively flat 

topography, low elevation, and extensive fire history make MHAFB installations prone to 
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cheatgrass invasion. Boyte et al. (2016) found cheatgrass does not currently grow at 

elevations above 2000 m, therefore the entire study area is at risk of invasion and that 

invasion will likely lead to a high percent cheatgrass cover. The installations are 

surrounded by Bureau of Land Management (BLM) land, private agriculture, and state 

parks. There is intense land use both from training and grazing allowed on these 

installations. Subsequently, large parts of the installations are dominated with invasive 

annual plants, specifically cheatgrass, which have increased the cost of fire management  

 
Figure 2.2  Extent and elevation of MHAFB installations. 

1667 

800 
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and training time. For example, in 2011, frequent fires removed significant amounts of 

vegetation, causing major dust storms that shut down training for multiple weeks.  

The diversity of the landscape both in vegetation composition and land 

management makes MHAFB an ideal study area for mapping representative low 

elevation sagebrush ecosystems. The ecosystem ranges from highly degraded areas of 

cheatgrass to pristine low elevation sagebrush steppe, as well as areas of restoration 

where non-native perennial grasses were planted. One installation, Saylor Creek Range 

(SCR), is highly disturbed from bombing and is dominated with cheatgrass, whereas 

Juniper Butte Range (JBR) has few disturbances and therefore is dominated with native 

shrubs. A major challenge MHAFB land managers face is identifying target areas for 

restoration. Remote sensing techniques and advances in technology provide a potential 

method to map the entire ~150,000 acres at a species level. 

Field Plot Design and Protocol  

Field data were collected with the purpose of being used as training data for a 

remote sensing land cover classification map. Field data collection took place from June-

July 2018, a time period that is ideal for distinguishing plant species in the study area. 

The field protocol was designed to capture the diversity of vegetation species and their 

spatial distributions, to be scalable to Sentinel-2 satellite imagery, and to be collected 

during a single field season. Locations of field plots were chosen at random locations 

(given road access) and with a minimum of 30 training plots for each plant functional 

type, the actual number of plots collected for each target species type is shown in Table 

2.2. 
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Table 2.2 Field data collection including species, number of plots, and percent 

cover. 

Species 

Common Name 
Scientific Name** 

Target Number 

of Plots 

Min. 

cover (%) 

Plots 

Collected 

Wyoming Big and 

Mountain Big Sagebrush 
Artemisia tridentata 30 15 35 

Green and Grey 

Rabbitbrush 
Chrysothamnus 30 10 38 

Winterfat* 
Krascheninnikovia 

lanata 
30* 15 13 

Shadscale* Atriplex confertifolia 30* 10 2 

Forage Kochia* Bassia prostrata 30* 10 23 

Cheatgrass Bromus tectorum 30 30 39 

Sandberg Bluegrass Poa secunda 30* 30 7 

Crested Wheatgrass Agropyron cristatum 30 15 39 

Exotic Annuals:  

Burbuttercup, Clasping 

pepperweed, Russian 

thistle  

Ceratocephala 

testiculata, Lepidium 

perfoliatum, Kali 

tragus 

30 10 11 

Playa  10 70 10 

Data added using GEE  

Bare Ground or 

Impervious  
   42 

Cultivated or Riparian     22 

*if possible   ** scientific names from USDA 

Each field plot represents a 20 x 20 m area and consisted of 5 RTK (Real Time 

Kinematic) GPS points taken 2 m above ground at the central point of the field plot and 

10 m in the four cardinal directions (Figure 2.3a). The protocol was informed and 

modified based on a 2016 data collection of the same study area (Enterkine, 2019). The 

20 x 20 m plot was chosen to correspond to roughly 2 x 2 pixels in the Sentinel-2 

multispectral imagery for bands 2-8, 11, and 12 (Table 2.1). This field plot design 

accommodated registration mismatch within Sentinel-2 specifications and mitigates the 



15 

 

 

 

influence of neighboring areas on the signal of observed pixels. At each of the 5 GPS 

points a nadir (vertically downward facing) image was taken with a 16-megapixel all-

weather Nikon Coolpix AW110 camera mounted on a 1 m boom attached 

perpendicularly to a 2 m pole (Figure 2.3b). Each image covered approximately 2.8 m x 

2.1 m area. 

A minimum percent cover, estimated ocularly, was established for each species to 

be considered as a training plot for that species (Table 2.2). These minimum thresholds 

were set based on previous field experience in this and other low-elevation sagebrush 

steppe ecosystems (e.g. Enterkine, 2019; Spaete et al., 2016). The plots were collected to 

have a representative distribution of percent cover and composition for the dominant 

species in the study area, e.g. a sagebrush plot with a biocrust understory and sagebrush 

plots with invasive grass understory.  

 
Figure 2.3 Field plot schematic from a birds-eye view, one Survey 123 survey was 

taken per plot (a); data collected 10 m in each cardinal direction from the center of 

the field plot included an RTK GPS point and Nikon Photo (b). 
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At each field plot, we recorded all species found in the plot, the dominant species, and 

additional field notes using a tablet running the ESRI Survey123 app (see Appendix A). 

Field plots were randomly stratified across the MHAFB installations to capture the 

variability of the targeted vegetation types. A total of 256 field plots were collected. 

Processing Field Data  

To quantitatively determine the vegetation cover for each field plot, SamplePoint 

software (version 1.59, a free image analysis software developed for the United States 

Department of Agricultural Research Service; samplepoint.org) was used on the nadir 

images as a time-efficient alternative to the traditional field-based point-frame technique. 

This method lends itself to remote sensing because most of the signal from the satellites 

is attributed to canopy cover not the understory of the vegetation. In SamplePoint, a grid 

was overlaid on each image, and research assistants (in the lab) classified the vegetation 

species at each crosshair of the grid. Fractional cover of each plot was calculated by 

taking mean cover type from the five images associated with each plot. Dominate species 

were aggregated in some cases with the purposes of creating training classes of sufficient 

size for modeling (Table 2.3).  
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Table 2.3 Aggregated vegetation classes for the purposes of training.  

Aggregated Class 
Species in Class 

Common Name Scientific Name 

Sagebrush  Sagebrush  Artemisia tridentata  

Bare 
Dirt without vegetation or biocrust 

present  
 

Bluebunch 

Wheatgrass 
Bluebunch Wheatgrass Pseudoroegneria spicata 

Cheatgrass Cheatgrass Bromus tectorum  

Crested Wheatgrass Crested Wheatgrass Agropyron cristatum  

Exans 
Russian Thistle, Bur Buttercup, 

Clasping Pepperweed 

Salsola tragus, Ceratocephala 

testiculata, Lepidium perfoliatum 

Forage Kochia  Forage Kochia  Bassia prostrata 

Native Grasses 
Thurber's Needlegrass, Indian 

Ricegrass 

Achnatherum thurberianum, 

Achnatherum hymenoides 

Mustard Tumble Mustard   Sisymbrium altissimum 

Sandberg bluegrass Sandberg bluegrass Poa secunda  

Rabbitbrush  
Green Rabbitbrush, Grey 

Rabbitbrush  

Chrysothamnus viscidiflorus, 

Ericameria nauseosa 

Winterfat Winterfat Krascheninnikovia lanata 

Playa   

 

An RTK GPS base station collected data in the field for more than 2 hours, and 

base station data were uploaded to Online Positioning User Service (OPUS) Solutions 

static processing (2 weeks after data collection per recommendation by OPUS). The 

output from OPUS Solutions was used to correct the raw RTK GPS points for field plots 

in MagnetTools Software. Base stations were set as control points and corrected to the 

output location based on OPUS solutions. This shifted the corresponding RTK points on 

the sub-cm scale which is an order of magnitude smaller than the scale of the field plots  
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Figure 2.4 Extent and elevation of Mountain Home Air Force Base installations.   

and satellite data. The center points of each plot were buffered by 10 m to create a 

circular polygon to be associated with fractional percent cover obtained from the  

SamplePoint data. The fractional cover provides a quantitative metric for determining the 

expected dominant spectral signal in the plot. We found that bare ground was the 

dominant (highest percent cover) cover type for many plots, even though the plot was 

initially collected as a sagebrush plot. To address this, plots with bare cover greater than 

70% were considered bare dominant. In these plots, we then identified the second highest 

percent cover and if that met the minimum percent cover for the species, then the plot 
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was classified as that of the second highest percent cover. For example, a sagebrush plot 

with 40% bare ground and 30% sagebrush would be classified at sagebrush. If the highest 

cover species and second highest cover species are within 5% cover of each other, the 

plot is considered mixed and discarded for training. Field plots were given a single 

classification of their dominant species cover, e.g. sagebrush, to be used in the 

classification (Figure 2.4). Ancillary data for additional land cover types not surveyed 

(e.g. water, pavements) were identified using high-resolution imagery (NAIP, Worldview 

via Google Earth in GEE). Additionally, several areas of playa and bare ground were 

delineated in the field using the RTK GPS. After accounting for bare ground dominated 

plots and mixed pixels, there were 252 plots used in the classification, maintaining a 

range of species and percent cover (Figure 2.5). For the regression analysis of cheatgrass 

distribution, the percent cover of cheatgrass was taken from each point to be used in the 

regression. The shapefile (Figure 2.4) with the vegetation class and percent cheatgrass 

cover were uploaded as an asset into GEE.  
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Figure 2.5  Boxplot showing distribution of percent cover for dominant 

vegetation classes. 

Sentinel-2 Preprocessing  

We aggregated Sentinel-2 Level 1 (L1) top of atmosphere data in GEE from 

August 2017-August 2018. On August 25, 2018, a fire occurred within the study area 

which influenced the spectral signal of some of the training plots captured by Sentinel 2. 

While some Sentinel-2 L2 data are available on GEE, the data do not fully cover the 

study area and therefore L1 data were used. The data were filtered to remove images with 

greater than 5% cloud cover. In addition, the GEE cloud mask for Sentinel-2 was applied 

to the data. The study area covers 3 tiles of Sentinel-2 imagery data, where one tile is 

offset, and imagery is acquired during a different overpass time. To address the offset in 

imagery, weekly mosaics were created from the 3 tiles. This removed the temporal offset 

and ensured the same number of images for each plot.   
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RF Classification and Regression in GEE  

From the time series of Sentinel-2 data we computed the spectral indices listed in 

Table 2.4 for every weekly mosaic.  The buffered shapefile of the field plots was 

imported to GEE and overlaid on the imagery. For each field plot, the mean reflectance 

for each band along with the vegetation indices (from Table 2.4) for every image in the 

stack were calculated. These data were then used as the predictor variables in training the 

RF decision tree.  Each field plot has 102 predictor variables associated with it. For both 

the classification and regression analysis, 70% of field plots were used for training and 

30% were used for validation.  

Table 2.4 Computed spectral indices used in the random forest models.  

Index or Ratio Abbreviation Formula Reference 

Anthocyanin 

Reflectance Index 

 

ARI (
1

𝐺𝑟𝑒𝑒𝑛560𝑛𝑚
) − (

1

𝑅𝑒𝑑𝐸𝑑𝑔𝑒704𝑛𝑚
) 

(Gitelson et 

al., 2001) 

Canopy 

Chlorophyll 

Content Index 

CCCI 

𝑁𝐼𝑅864𝑛𝑚 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒780𝑛𝑚
𝑁𝐼𝑅864𝑛𝑚 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒780𝑛𝑚
𝑁𝐼𝑅864𝑛𝑚 − 𝑅𝑒𝑑665𝑛𝑚
𝑁𝐼𝑅864𝑛𝑚 + 𝑅𝑒𝑑665𝑛𝑚

 
(Fitzgerald 

et al., 2010) 

Enhanced 

Vegetation Index 
EVI (

2.5 ∗ (𝑁𝐼𝑅833𝑛𝑚 − 𝑅𝑒𝑑665𝑛𝑚)

𝑁𝐼𝑅833𝑛𝑚 + (6 ∗ 𝑅𝑒𝑑665𝑛𝑚) − (7.5 ∗ 𝐵𝑙𝑢𝑒492𝑛𝑚) + 1
) 

(Gurung et 

al., 2009) 

Normalized 

Difference 

Vegetation Index 

NDVI 
𝑁𝐼𝑅833𝑛𝑚 − 𝑅𝑒𝑑665𝑛𝑚
𝑁𝐼𝑅833𝑛𝑚 + 𝑅𝑒𝑑665𝑛𝑚

 
(Rouse et 

al., 1973) 

Near InfraRed-

Normalized 

NDVI   

NDVIxNIR 
(𝑁𝐼𝑅833𝑛𝑚 − 𝑅𝑒𝑑665𝑛𝑚)

(𝑁𝐼𝑅833𝑛𝑚 + 𝑅𝑒𝑑665𝑛𝑚)
∗ 𝑁𝐼𝑅833𝑛𝑚 * 

Normalized 

Difference 

SWIR-Green 

ND_B11B3 
𝑆𝑊𝐼𝑅1612𝑛𝑚 − 𝐺𝑟𝑒𝑒𝑛560𝑛𝑚
𝑆𝑊𝐼𝑅1612𝑛𝑚 + 𝐺𝑟𝑒𝑒𝑛560𝑛𝑚

 * 

Normalized 

Difference 

Narrow NIR-Red 

ND_B8AB4 
𝑁𝐼𝑅864𝑛𝑚 − 𝑅𝑒𝑑665𝑛𝑚
𝑁𝐼𝑅864𝑛𝑚 + 𝑅𝑒𝑑665𝑛𝑚

 * 

Normalized 

Difference 

Narrow NIR-

RedEdge 

ND_B8AB5 
𝑁𝐼𝑅864𝑛𝑚 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒704𝑛𝑚
𝑁𝐼𝑅864𝑛𝑚 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒704𝑛𝑚

 * 

*Modified NDVI utilizing spectral bands unique to Sentinel-2  
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For the classification map, the discretized dominant species assigned to each plot 

was the response variable. The RF decision tree was then trained with 70% of the plots 

using the spectral data for 2018 described above. The trained classifier was applied to the 

entire study area to determine the classification of every pixel (Figure 2.6a). A nearest 

neighbor resampling was applied to the final classification to smooth the map for 

aesthetics, and to remove a speckling effect. This did not change the confusion matrix.  

 
Figure 2.6 Vegetation classification map of Juniper Butte Range installation (a); 

and corresponding percent cheatgrass cover map from regression (b) 

The regression analysis uses the percent cover of cheatgrass associated with each field 

plot as the response variable and the same spectral data used in the classification as the 

predictor variables. Again, the RF decision tree classifier was trained, but this time in 
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regression mode to determine percent cover as a continuous variable, compared to the 

discrete classification. The trained model was then run over the entire study area.  The 

resulting map gives every pixel a percent cover of cheatgrass (Figure 2.6b). 

Results 

The confusion matrix (Table 2.5) details the quantitative results from the 

classification for each species type for all MHAFB installations. The overall accuracy of 

the classification was 72.0%. The producer’s accuracy was 66.3%, and the user’s 

accuracy was 62.2%. The lowest accuracies occur in classes where there were less than 

10 training plots. The lack of training data for a vegetation class is attributed to the lack 

of vegetation present in the study area. Sandberg’s bluegrass was not highly abundant, 

and few patches were found on the installations resulting in limited training (n=7) and 

test (n=1) data. In many cases, Sandberg’s bluegrass was mixed with cheatgrass or 

crested wheatgrass and not the dominant species. Winterfat had a low user’s accuracy 

(25%) due to confusion with bare ground. Further inspection of the winterfat field plots 

indicate they are dominated by bare ground cover and are near a dirt road. As expected in 

this heterogeneous ecosystem, misclassifications can be attributed to spectral mixing and 

a low vegetation signal.  Sagebrush had a high producer’s accuracy (60.5%) and in the 

few instances of misclassification, sagebrush was confused with native bunchgrasses, 

which are often the understory of sagebrush.  Rabbitbrush is only confused with 

sagebrush, in part due to their similar phenological signals, and in part due to the training 

plots collected at Juniper Butte Range where rabbitbrush was often co-dominant with 

sagebrush, resulting in a mixed signal in the training data. Bluebunch wheatgrass has a 
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high producer’s accuracy at 91.7%, however it has a low user’s accuracy of 47.8% due to 

the confusion of sagebrush plots as bluebunch wheatgrass.  
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Qualitatively the classification captured the species distributions of the installations. The 

Base and Small Arms Range (Figure 2.7) have many exotic annuals but still contain a 

few areas dominated by sagebrush such as the northwest corner of the Base. However, 

both the classification and regression maps show those areas are next to areas of high 

cheatgrass cover.   

 
Figure 2.7 Vegetation classification of MHAFB Base and Small Arms Range (a); 

and corresponding cheatgrass cover (b) with fire history. 

Saylor Creek Range is the largest of the MHAFB installations and has had the most 

disturbances from natural fire and training exercises. Crested wheatgrass has been 

mechanically planted in much of this range to try to combat the cheatgrass and this is 

clearly observed in the map (Figure 2.8a).  
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Figure 2.8 Vegetation classification of Saylor Creek Range (a); and 

corresponding cheatgrass cover (b) with fire history (c). 

Juniper Butte Range has a higher elevation compared to other installations and has had 

few disturbances, leaving it the most intact range. The landscape is heterogenous, with a 

distribution of rabbitbrush, sagebrush and native grasses. The sharp boundary in the 

middle of the map is a fenced area where grazing is allowed on the south side.  
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Figure 2.9 Vegetation classification of Juniper Butte Range (a); and 

corresponding cheatgrass cover (b) with fire history. 

Figure 2.9b shows cheatgrass encroachment on Juniper Butte Range in the north 

end, where there was a fire. Figure 2.9a shows the area dominated by sagebrush and 

rabbitbrush but we know from Figure 2.9b there is a cheatgrass understory. The 

cheatgrass regression was of interest to land managers because they wanted to identify 

areas of encroachment before cheatgrass dominated the area. The R2 of the cheatgrass 

regression is 0.58, with a Root Mean Square Error of 0.67%, and Mean Absolute Error of 

11.8% (Figure 2.10).  
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Figure 2.10 Cheatgrass percent cover from RF regression vs. field data (R2 = 

0.58). 

Discussion 

The combination of a vegetation classification and cheatgrass percent cover map 

provides detailed information for land managers to identify areas of native shrubs and 

areas of encroachment by cheatgrass. The 72.0% overall accuracy of the classification 

map is acceptable to our land management partners. Errors in the classification can be 

attributed to the heterogeneity of the ecosystem where 10 m spatial resolution results in 

mixed field plots for training and validation data, low signal to noise ratio, and spectral 

mixing in areas of abrupt vegetation change. This accuracy is relatively high for a 

heterogeneous dryland ecosystem, where pixels are inherently mixed, and across a large 

geographic area. Our overall accuracy for our classification with RF is slightly lower than 

Pelletier et al. (2016) who reported an overall accuracy of 83.3%; however, they 
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classified vegetation in agricultural fields (managed system). Our results for the 

cheatgrass regression showed an RMSE 0.67% which was lower compared to (Peterson, 

2015) who reported RMSE values of 9.14% for their regression over Nevada. A potential 

source of error is the field data collection. The 5 photos used to determine percent cover 

for field plots only covered 1% of the plot area. More accurate assessments of vegetation 

cover, such as coverage from a UAV as described by Breckenridge et al. (2012) will 

improve the training data used.  

The MHAFB Base and Small Arms Range have large amounts of cheatgrass close 

to many structures and houses, and few areas of sagebrush cover. Restoration efforts 

should work to remove cheatgrass and protect any current sagebrush to reduce fire 

frequency and risk (Bradley et al., 2018). Agriculture fields surrounding MHAFB Base 

and Small Arms Range were correctly classified but in the cheatgrass map some fields 

show a high percent cheatgrass cover while others show no understory of cheatgrass. The 

agriculture fields with cheatgrass understory have previously burned.  

Saylor Creek Range is the target of wide swath (~150m) sprays of herbicides on 

cheatgrass. Crested wheatgrass was seeded throughout this range and dominates the 

northern half of the landscape. The cheatgrass map suggests there is an understory of 

cheatgrass in these areas. In fact, during field data collection we frequently observed 

seeded crested wheatgrass with an interspace of cheatgrass. This demonstrates the ability 

of the classification to pick out the spectral signal of the dominant vegetation in a co-

dominated area. A yellow strip of tumble mustard runs from the west side to the southeast 

side of the map. This strip follows the main road that runs through the range and is not an 

artifact of the road but a validation of our classification because tumble mustard was 
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observed to grow within 10m on either side of the road.  The southern half of the 

classification map shows areas dominated by sagebrush are adjacent to areas dominated 

by crested wheatgrass. The cheatgrass regression map in combination with the vegetation 

classification indicates that the areas of crested wheatgrass have a high percent 

cheatgrass. The patches of cheatgrass closely match previously burned areas on the range 

as shown in Figure 2.8b. Care should be taken to protect the sagebrush areas on Saylor 

Creek Range from burning because these areas likely would not recover. This range has a 

high amount of livestock grazing, and to conserve remaining sagebrush it is 

recommended to manage livestock grazing to support this conservation (Condon & Pyke, 

2018; Davies et al., 2011).  

At Juniper Butte Range, native rabbitbrush and sagebrush are the dominant 

species. In Figure 2.9 there appears to be a line through the middle of the range. This line 

is a fence through the range and was used as a fire break for a 1995 fire on the northern 

half of the range. Bluebunch wheatgrass was planted and spread throughout the southern 

half of the range after the 1980 fire. The 1995 fire and subsequent fire break stopped this 

spread of bluebunch wheatgrass. While Juniper Butte is the most intact range, the 1995 

fire in the northern part of the range shows major cheatgrass encroachment. The 

classification map shows areas dominated by cheatgrass - these highly degraded areas are 

extremely hard to restore, and it is often more effective to identify where cheatgrass is 

spreading but is not yet the dominant vegetation (DiTomaso et al., 2010). The regression 

map shows exactly that; areas where cheatgrass is not yet dominant but encroaching. The 

classification map provides a complementary piece of information by indicating what 

vegetation the cheatgrass is encroaching on and where. Both maps are important for land 
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management, because they capture the gradient of vegetation and offer insights about the 

transition to an annual grass-dominated state.  

The GEE code and workflow are open source and can be replicated in following 

years through collection of new training data and by changing the dates of the satellite 

imagery. To improve the classification and regression, we utilize Sentinel-2 Level 2 data 

corrected to surface reflectance instead of top of atmosphere. This may improve the 

overall accuracy because of the removal of atmospheric effects that have attenuated the 

surface reflectance signal. While some areas of Sentinel-2 Level 2 are available in GEE, 

there is not global coverage, although this is an available data product starting in 2020. 

Additionally, topography data such as a DEM and slope layer could be added as predictor 

variables to improve the classifier which is currently only based on spectral data 

(Franklin & Wulder, 2008). If available, more training data for sparse classes will 

improve the accuracy in the classification. The advent of unmanned aerial vehicles 

(UAVs) allows for field data collection of a large area in less time compared to a field 

crew (Gaston et al., 2018). UAV flights could be instrumental for collecting test and 

training data for landscape scale observations and provide imagery to develop a more 

accurate percent cover of vegetation for individual pixels (Breckenridge et al., 2012).  

Future Work  

While the cheatgrass regression map shows a range of 0-100%, work should be 

done to investigate the percent cover at which a spectral signal can be detected from a 

satellite. This threshold will likely be different based on the other vegetation in the pixel. 

Importantly, these thresholds would inform the uncertainty in areas of low percent cover 

cheatgrass. The time series of satellite imagery ranged from August 2017 - August of 
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2018. We did not use imagery after August 2018 due to a fire on the range that would 

have impacted the spectral signal. Future work should investigate different techniques 

such as including fire perimeters to mask out these areas and/or analyze the areas 

separately. The data from these maps can be implemented into fire models to better 

understand the interactions of fire and vegetation on a larger scale while maintaining a 

medium spatial resolution. Peeler et al. (2018) used models of cheatgrass cover to 

investigate the relationship of cheatgrass cover to fire history, fire frequency and severity 

across the entire Great Basin. Our cheatgrass cover map could be used to understand if 

these findings hold at a smaller spatial scale. Additionally, vegetation cover is an 

important parameter in modeling fire spread and severity. Pre-fire vegetation is a major 

predictor in post-fire vegetation growth, if an area was dominated by sagebrush but had a 

presence of cheatgrass pre-fire, Barker et al. (2019) found it was more likely to be 

dominated by exotic annuals post-fire. The regression and classification map can be used 

in predicting post-fire vegetation growth and combat invasive annual growth immediately 

following a fire.  
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CHAPTER THREE: ALLOMETRIC EQUATIONS FOR NON-NATIVE GRASSES 

USING EXTREMELY CLOSE-RANGE IMAGES AND STRUCTURE FROM 

MOTION 

Introduction 

Vegetation biomass is an important metric for assessing ecosystem structure, 

tracking vegetation growth, and quantifying carbon storage (Houghton & Hole, 2008). 

Semi-arid ecosystems act as carbon sinks and are thought to play a major role in global 

interannual carbon variations (Ahlström et al. 2015). There is a need to quantify above 

ground biomass (AGB) in semi-arid ecosystems to better understand their contribution to 

the global carbon flux, and the impacts of ecosystem shifts towards desertification 

(Chambers et al., 2014). AGB, defined as the dried weight of vegetation above the 

ground including both alive and dead components, is difficult to accurately measure in 

semi-arid ecosystems because of the heterogeneity and fine-scale structure of vegetation 

(Fern et al., 2018; Wijesingha et al., 2019).  

The sagebrush steppe ecosystem is currently under threat from exotic annual 

grasses, such as cheatgrass (Broumus Tectorum) and medusahead (Taeniatherum caput-

medusae), which are decreasing the biodiversity (Knapp, 1996), altering the fire cycle 

(Bradley et al., 2018), and reducing carbon storage (Bradley et al., 2006). AGB is an 

important metric for fire modeling, understanding fuel loads, and quantifying the effects 

of grazing on these threatened rangelands. In eastern Oregon, Davies et al. (2015) found 

dormant season grazing could decrease wildfire probability by decreasing fuel loads, 
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quantified by biomass measurements. Accurate AGB measurements at the plot scale can 

offer insights to land managers on the impacts of different grazing regimens on fuel load 

in the sagebrush steppe, while informing and validating AGB metrics derived at a 

landscape scale. 

Current methods for collecting AGB can be described as a combination of site-

specific and extrapolated measurements. An example of site-specific measurements is the 

destructive harvesting of biomass. Often quantification of biomass at the plot scale is 

extrapolated to larger scales (Clark et al., 2008). Further, in the field plot-level data 

collection of plants are destructively harvested, dried, and weighed to obtain a biomass 

metric, or point frame data is used to relate to biomass. The manual process itself has 

uncertainty in the collection from human error. Often these plots are small, and the 

biomass can vary significantly across spatial scales, even within 1 m or less. The act of 

removing plants itself alters the landscape and impacts future studies of those plots. 

Advances in remote sensing systems like lidar, unmanned aerial systems (UAS), and 

structure from motion (SfM) software have led to advances in quantifying biomass in 

dryland ecosystems (Anderson et al., 2018; Cunliffe et al., 2016). SfM is 

photogrammetry, the method of using 2D stereoscopic images and detecting common 

points, resulting in a 3D reconstruction in the form of a point cloud. SfM provides a 

similar data product to lidar - a point cloud in which vegetation structure can be 

interpreted. However since SfM is based on optical passive imagery it does not penetrate 

the canopy (Salamí et al., 2014). SfM and lidar are similar in their point cloud 

reconstruction, however, because lidar is active and it has an intensity associated with 
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each point. Additionally, lidar is often collected as full-waveform or in discrete returns 

which can characterize the understory.  

In contrast SfM is derived from passive remote sensing relying on optical imagery 

to create point clouds where each point has an associated color value for the spectra of 

the optical image. This value is rarely radiometrically calibrated. SfM point clouds are 

not discretized from a waveform but developed based on the overlap of imagery taken.  

Vegetation parameters, like volume, can be derived from point clouds to develop 

allometric relationships between vegetation and destructively harvested biomass. SfM 

offers a low-cost, time efficient, and in some cases, more accurate method compared to 

terrestrial laser scanning (TLS) for estimating vegetation structure in dryland ecosystems 

(Olsoy et al., 2018; Wallace et al., 2017).  

Extremely close-range SfM, defined by the use of hand-held instruments to 

collect the imagery for the SfM method, has shown success comparable to TLS in 

deriving parameters such as height and volume from the reconstruction of individual trees 

(Miller et al., 2015). In grasslands, extremely close-range SfM was shown to outperform 

TLS and traditional height measurements in developing allometric equations, in part 

because SfM can capture finer details compared to TLS, dependent upon the 

experimental setup (Cooper et al., 2017). SfM has been shown to successfully capture 

grasses and reconstruct fine features such as leaves and stems (Kröhnert et al., 2018). 

These previous studies demonstrate that SfM shows promise in providing accurate 

information for allometric equations used to extrapolate biomass of rangeland grass to a 

landscape-scale.  
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Allometric measurements relating point-cloud derived volumes have been 

developed for sagebrush using TLS point clouds and UAS (often referred to as close-

range) SfM (Cunliffe et al., 2016; Li et al., 2015; Olsoy et al., 2014).  Cunliffe et al. 

(2016) developed a reproduceable workflow for UAS data in the sagebrush steppe; 

grasses were assumed to be native perennial grasses and the allometric equation for black 

grama (Bouteloua eriopoda) was used in determining grass-dominated biomass. 

Anderson et al. (2018) used a machine learning algorithm to investigate TLS point cloud 

parameters for predicting exotic annual grasses, however this relationship cannot be 

applied outside of the study. To the author’s knowledge allometric relationships of exotic 

annual grasses or non-native perennial grasses in the sagebrush steppe have not been 

developed for SfM volume and biomass. Allometric relationships have been developed 

for shrubs and trees in the sagebrush steppe but there is a need for relationships that 

include exotic annual grasses for the purpose of biomass quantification.    

It is important to have biomass measurements of all plant functional types 

(PFT’s), defined as groups of species that provide similar ecosystem functions, in the 

sagebrush steppe. Previous biomass studies in the sagebrush steppe have primarily 

focused on measurements of shrubs, forbs, perennial bunchgrasses and trees; biomass 

measurement of exotic grasses (both perennial and annual) are often neglected. This 

omission is problematic because exotic annuals were found to be present in 82% percent 

of the sagebrush steppe ecosystem in 2015 and continue to constitute a large percent of 

biomass (Boyte & Wylie, 2016). There is a need to quantify the AGB of exotic annual 

grasses for fuel load, forage availability, and carbon cycling. We aim to develop 

techniques for non-destructive SfM data collection of exotic annual grasses for the 
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purpose of AGB measurements. Due to the heterogenous nature of grasses we suggest a 

multi-species allometric relationship that includes exotic annual grasses to improve AGB 

estimates in the sagebrush steppe (Paul et al., 2013).  

The objective of our work is to develop allometric relationships between SfM-

derived volume and AGB in the sagebrush steppe. We are particularly interested in 

investigating this relationship in low elevation sagebrush steppe that has been invaded by 

exotic annual grasses.  We test the ability of extremely close-range SfM to recreate mixed 

vegetation field plots (at the cm scale). Field work for capturing extremely close-range 

SfM imagery requires less training for field crews compared to TLS and UAS data 

collection and eliminates the need for specialized equipment.  Developing an allometric 

relationship at a plot scale (cm) will inform future SfM studies that utilize UAS imagery 

(Gillan et al., 2020).  

Research Questions 

1. Can SfM imagery capture the structure of exotic grasses in low-elevation semi-

arid ecosystems?  

a. If so, what relationship exists between SfM-derived volume and 

destructively harvested biomass measurements? 

b. What allometric relationship can be developed that includes native and 

exotic grasses in the sagebrush steppe?  

2. How can biomass collection of heterogenous low elevation sagebrush steppe 

grasses be streamlined, as well as made affordable and easily reproducible?   
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Methods 

Study Area: Three Fingers Allotment 

The Three Fingers allotment located in southeastern Oregon (Figure 3.1) is a 

sagebrush steppe ecosystem and can be described as highly degraded with few shrubs 

present and an extensive cover of exotic annual grasses. Currently the Bureau of Land 

Management (BLM) manages the allotment which has a history of disturbance from 

grazing, recreation, and fire. Data collection was performed in 2019 by an Oregon State 

University and University of Idaho field crew in support of a USDA funded fine fuels 

project (Award #2019-68008-29914).  Data collection took place on 3 different pastures– 

Camp Kettle, Saddle Butte, and McIntyre within each pasture a northern and southern 

exclosure was randomly placed, for a total of 6 treatment areas. Each exclosure contained 

4 paddocks 150 m by 150 m in size.  
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Figure 3.1 Three Fingers allotment and study exclosures 

2019 Above Ground Biomass and SfM Data Collection  

The protocol for the SfM data collection was designed to be efficient, minimize 

cost, and to coincide with rangeland data collection. In each paddock (n=24) the field 

crew took 3 transects at 25m, 50m and 75m from the fence. Along each transect line the 

field crew collected images for SfM and clipped biomass at 7m, 17m, 27m, 37m and 

47m. To collect SfM images and AGB at each point along the transect, the field crew 

placed a ~40cm by 50cm Daubenmire frame. SfM data were initially collected with all 

destructively harvested AGB plots, but halfway through data collection SfM images were 

only taken at 7m, 27m, and 47m along the transect for a total data collection of n = 252. 

Approximately 30 images of the vegetation within and surrounding the frame were taken 
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with a Nikon CoolPix AW120 camera. 

 
Figure 3.2 Schematic of transects in a paddock and biomass plot.  

The camera was zoomed out and all images were taken with the camera oriented 

horizontally. After images were taken, the vegetation was destructively harvested and 

sorted into PFT’s consisting of annual grass, perennial grass, forb, and litter. Vegetation 

was clipped at ground height and 2cm above ground for dense bunchgrasses. Vegetation 

was dried for 48 hours at 60ºC then weighed, initially reported in grams then divided by 

plot area (0.2 m2) to be reported in g/m2. A total of 252 SfM plots were collected out of a 

total of 360 biomass plots. The AGB distribution of plots used in the final analysis are 

shown in Figure 3.3a, litter made up most biomass collected, followed by annual grasses. 

Figure 3.3a does not have litter included as it was not used in the final analysis. Most 

plots contained exotic annual grasses (n=24), with only 13 plots containing perennial 

grasses (Figure 3.3b).  
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Figure 3.3 Distribution of dried AGB weights from plots used in final analysis 

(n=26).  

SfM Photogrammetry Processing  

We processed images using Agisoft Metashape Professional on Alienware 

computers with 2 GeForce RTX 2080 GPUs used to reduce processing time. The 

alignment settings used in Agisoft were highest and only generic preselestion was 

checked because everything was processed in local coordinates. When processing the 

image data, we found many of the images were of poor quality for SfM because of 

limited overlap between them (Figure 3.4). Image overlap of at least 60% is 

recommended for SfM reconstruction (Agisoft, 2020). Many images also contained 

people, horizon lines and human shadows that affected the post-processing.  

a. b. 
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Figure 3.4 Examples of images with and without overlap used in image 

alignment in Agisoft.  

In addition, if 20% of images did not align during the first alignment iteration in Agisoft, 

the plot was not further processed or used in AGB analysis. The 20% threshold was based 

on preliminary testing and analysis for data quality. We discarded 226 plots, leaving 26 

plots which were processed to point clouds. In plots with 80% alignment, we manually 

added markers using the Daubenmire frame as a reference. A total of 11 markers were 

added to each plot to improve alignment of photos (see Appendix B).  
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Figure 3.5 SfM point cloud (left) derived from corresponding photo (right) used 

in reconstruction. 

After markers were added the images were re-aligned with reset current 

alignment, highest and only generic preselection. Markers were used to add 4 scale bars 

in the Agisoft reference pane to provide the plot scale. Dense point clouds were created 

with Ultra-High quality and Mild depth filtering, point colors and confidence levels were 

checked. Local coordinates were added to markers to ensure that all point clouds were 

loaded and analyzed in the same reference frame. Dense point clouds were manually 

clipped to the surrounding Daubenmire frame, extraneous points were removed, and the 

point cloud was exported in local coordinates.  

Volume Derived from SfM Point Clouds  

A MATLAB script was developed to batch process the point clouds. Point clouds 

were clipped to a region of interest (ROI) defined by the Daubenmire frame and 

constrained by 4 cm below the frame in the vertical direction (Figure 3.6a). We used a 

volumetric surface differencing approach as described by Cooper et al. (2017) because 

SfM does not penetrate the canopy. The ground was determined by creating a coarse 
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mesh of 5 cm over the point cloud and finding the minimum elevation point within each 

cell as described in Wijesingha et al. (2019). This coarse mesh was resampled to a cell 

size of 0.5cm so the ground surface model was at the same resolution as the Digital 

Surface Model (DSM) (Figure 3.6b). To create the DSM a grid with a pixel size of 0.5 

cm (Cooper et al., 2017) was overlaid on the point cloud.  The highest elevation point 

within each cell was used to create the DSM. This grid was interpolated to fill any values 

that were empty with a natural neighbor interpolation (Figure 3.6c). The ground surface 

was subtracted from the DSM to create a Canopy Height Model (CHM) (Figure 3.6d). 

The height model was used to determine a volume (m3) for each plot. The volume was 

associated with the destructively harvest biomass for each plot, shown in Appendix C.  
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Figure 3.6 Workflow for SfM point cloud processing.  

 

 

 



47 

 

 

 

Regression Models 

We used linear regression models to develop our mixed-plant functional type 

allometric equation. We compared field derived total AGB to SfM derived volume. Since 

litter was not resolved in the point clouds, it was subtracted from the total field derived 

AGB. However, since the variables do not follow a normal distribution (Figure 3.7), a 

natural log transformation of the variables was also investigated. 

 

Figure 3.7 Distributions for SfM derived volume (a); and AGB minus litter (b).  

Results 

Allometric Regression Models  

  Using linear regression, we investigated a relationship between total AGB 

(g/m2) and the SfM volume (m3). We found no significant relationship with total AGB 

and SfM volume (R2 = 0.07). We then investigated with SfM volume (m3) and the total 

AGB minus litter (g/m2) using the same approach. The linear regression with the total 

AGB adjusted for litter (g/m2), had an R2 of 0.43 and a Root Mean Square Error (RMSE) 

of 7.61g in a range of 2 to 38 g. The resulting allometric equation is AGB-Litter ~ 3.42 + 

a. b. 
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1343.3(SfM Volume). However, the residuals are not normally distributed and have a 

higher frequency of negative values, suggesting a log regression may better represent the 

data relationship (see Appendix D). As expected, transforming the variables to log space 

resulted in normally distributed residuals and improved the R2 to 0.51 with an RMSE of 

0.56g in a range of 0.69 to 3.64. The equation for the natural log transformed variables is 

thus ln(AGB - Litter) ~ 2.133+ 0.89 ln(SfM Volume).  

 

Figure 3.8 Linear regression of total AGB minus litter and SfM-derived Volume 

(a) compared to log-transformed linear regression (b).  

Discussion 

We found that the use of the non-destructive SfM method accurately estimated 

AGB in plots of mixed grasses, including annual and perennial, and forbs in low 

elevation sagebrush steppe ecosystems. Often a spectral classification is used to 

discriminate between PFT’s or vegetation species before analysis (Akar et al., 2017; 

Gaston et al., 2018; Jing et al., 2017; Lu & He, 2017). Spectral data from images in this 

study were not used because they were not radiometrically corrected. Uncalibrated 

spectral parameters cannot be applicable to another study site or even to a different time 

a. b. 

2 

3 

2 

3 
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period in the same study site and were therefore omitted.  In the sagebrush steppe, annual 

grasses are often mixed with perennial grasses and forbs and can be difficult to 

discriminate using spectral data alone, even with high spatial resolution UAS images 

(Gillan et al., 2020). With additional SfM field plots we could investigate models with 

individual PFT’s to validate our assumption that a mixed PFT model will best represent 

the ecosystem. We expect our allometric equation to hold true for similar low elevation 

areas of sagebrush steppe with similar combinations of PFTs, and especially in highly 

degraded areas where non-native grasses were planted for restoration. This is because all 

perennial grasses in the study were non-native and we had a high amount of annual 

grasses in the training plots. Future work is needed to assess the extent to which this 

allometric equation can be used in other regions of the sagebrush steppe ecosystem. 

SfM and point cloud reconstruction of grasses is difficult at any scale. At close-

range (usually referring to UAS imagery) and extremely close-range (referring to 

handheld imagery) individual grasses are often too fine to discriminate in the 

reconstruction. Annual grasses are challenging in SfM. Their complex structure and 

heterogeneity provide little contrast between plants in the images, resulting in noisy point 

clouds (Agisoft, 2020; Miller et al., 2015). Visually, bunch grasses showed more success 

in reconstruction and less noise in the point clouds likely attributed to their distinct 

structure and the contrast in images with the surrounding bare ground. Sources of error 

can be attributed to the ground surface model, which often used points within the canopy 

of the bunch grass because the optical images, and thus SfM, cannot penetrate their dense 

bases. Other sources of error can be attributed to the manually added markers used for 

image registration in Agisoft. Since the markers were manually added to the Daubenmire 
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in Agisoft to align images, it is likely the markers were not on the same spot on the frame 

when added to each photo. Errors in image alignment are carried over to point cloud 

generation. We suggest the use of automatic markers be included in future close-range 

SfM studies to reduce error in image alignment, this would also decrease processing time 

in Agisoft. A revised field protocol for 2020 field data collection was informed from 

processing the 2019 data.  

 
Figure 3.9 An example of marker/point 8 used in image alignment in two slightly 

different locations on the frame. This error will cause error in the point cloud 

reconstruction.  

Many open-source tools used for SfM point cloud processing, such as LAStools, 

were developed to process lidar data. Software such as CloudCompare, Agisoft, and 

Pix4D are well suited for processing a few individual point clouds, like those created 

from UAS data through to volume measurements (Spreitzer et al., 2019; Wijesingha et 

al., 2019). However, we found it too time-intensive and computationally expensive to 

process more than approximately 20 individual point clouds using the software. 

Processing each point cloud independently also has the potential risk of inconsistency in 
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processing due to the introduction of human error. To reduce these issues, all data were 

processed using a batch script in MATLAB following a similar workflow to what the 

software provides, resulting in a final processing time of ~36 min to process all point 

clouds. This is remarkable given that our preliminary testing with other software would 

take more than 30 min per point cloud. This code can be used on future extremely close-

range SfM datasets to minimize processing time and focus efforts on model development. 

Linear regression models were used in previous studies in grasslands to relate 

biomass and structure (Wachendorf & Astor, 2019). In our dataset there were not enough 

structural differences to discriminate litter from the ground. SfM cannot penetrate litter 

and thus litter was often included in the ground surface model. This is shown in our poor 

relationship between SfM volume and biomass measurements that included litter. Since 

allometric equations are empirically based, we used the best-fit model while keeping the 

equation simple (Grinath, 2019). The resulting equation with an R2 = 0.51 is comparable 

to results found by Grüner et al. (2019) in relating CHM derived from UAS SfM data to 

grass biomass R2 = 0.56. Our equation is also comparable to Cooper et al. (2017) in their 

relationship between extremely close-range SfM volume and AGB of grass with an R2 = 

0.54. Their study also found they could not resolve the litter layer.  

Further work is needed to investigate alternative methods for deriving volume, 

such as a convex hull, to see if the challenge associated with the litter layer can be 

resolved. Our residuals from our first model of biomass-litter to SfM volume showed an 

increase in error with an increase in volume, suggesting a log transform. A source of 

error with volumetric surface differencing is instances where vegetation is overhanging 

empty space. The code we used assumes the area under the highest point in the pixel is 
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filled with biomass and thus would overestimate the volume. Grass awns overhanging 

empty space were frequently observed in medusahead plots. To address the issue of 

counting empty space as biomass volume, the points in between the ground and 

vegetation surface could be used. Areas where the awns overlay empty space will have 

few points between the ground surface and vegetation height surface. In contrast, there 

should be more points defining the structure in areas where awns overlay biomass. This 

method would have issues with bunchgrasses where the canopy of awns is so dense the 

underlying stems are not captured in the point cloud. Future work is needed to find the 

most effective solution.  

To improve and validate the model, additional high quality SfM plot data are 

needed. Often, plots with high error values had high AGB-litter measurements. Visual 

inspection of these plots found they were plots in which the vegetation was dense and 

thus had few ground points in the image reconstruction.  In determining the ground 

surface, often vegetation points were misclassified as ground, leading to an 

underestimation of the volume. Determining the ground surface is a complex problem in 

processing both lidar and SfM point clouds. Grasses are often dense in cover and 

completely occlude the ground; it is recommended in SfM studies of grasses that ground 

control points be interspersed to verify the ground surface model as in Hillman et al. 

(2019).  

Allometric equations of grasses derived from SfM have outperformed those 

derived from in situ measurements such as a disc pasture meter (Cooper et al., 2017). 

This could lead to large scale improvements in AGB estimates of grasses and forbs in the 

sagebrush steppe and improve the temporal resolution of these measurements.  While 
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there are currently many UAS studies of the sagebrush steppe, the inclusion of AGB from 

annual grasses, non-native perennial grasses, and forbs will improve our understanding of 

this changing landscape.  
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CONCLUSIONS 

The invasion of exotic annual grasses is dramatically altering the sagebrush 

steppe ecosystem. Remote sensing offers tools to researchers and land managers to 

understand the impact of exotic annual grasses at multiple scales, from the plot level to 

regional scales. Advances in cloud computing and machine learning when applied to 

satellite imagery offer accurate and reproducible workflows for mapping vegetation in 

semi-arid ecosystems. Mapping both dominate vegetation and percent cover for species 

of interest can offer land managers insight into areas susceptible to invasion and target 

areas for restoration. Structure from Motion can capture the structure and volume of 

mixed annual grasses and non-native perennial grasses to quantify above ground biomass. 

Accurate, non-destructive biomass measures of non-native grasses will help land 

managers quantify the impacts on fuel loads and forage quality, and help researchers 

understand the alterations to the carbon and Nitrogen cycles.  
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APPENDIX A 

Survey 123 Survey Questions  
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Plot Number 

Location on MHAFB Installation  

RTK taken? 

Date 

Image facing North: {Image from the center of the plot facing north} 

Image facing East: {Image from the center of the plot facing north} 

Image facing South: {Image from the center of the plot facing north} 

Image facing West: {Image from the center of the plot facing north} 

Center Photoplot #?   

North Photoplot #? 

East Photoplot #? 

South Photoplot #? 

West Photoplot #? 

Dominant species? 

Second Dominant Species Percentage? 

Third Dominant Species Percentage? 

Fourth Dominat Species Percentage? 

Shrubs Present? 

Shrub Species 

Grass Present? 

Grass Species 

Forbes Present? 

Forbes Species: 

Exotics Present? 

Exotic Species: 

ID Noxious Weeds Present? 

Others? 

Any Notes? 

Location 
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APPENDIX B 

Schematic of Daubenmire Frame and Markers Placed in Agisoft  



68 

 

 

 

 



69 

 

 

APPENDIX C 

Table of AGB and SfM Volume  
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 Destructively Harvested Biomass (g) 
SfM Volume 

(m3) 
Annual 

Grass 

Perennial 

Grass 
Forb Litter Total 

Total - 

Litter 

18 0 1 24 43 19 0.009058099 

1 3 1 27 32 5 0.010423257 

2 17 0 7 26 19 0.009278486 

24 0 14 19 57 38 0.019452383 

27 0 0 49 76 27 0.021216075 

8 2 0 10 20 10 0.011410407 

22 0 1 111 134 23 0.005938089 

2 3 5 154 164 10 0.006168341 

2 1 2 4 9 5 0.004107299 

1 1 1 2 5 3 0.003598496 

1 5 1 1 8 7 0.003369051 

1 0 7 15 23 8 0.005379119 

1 0 1 6 8 2 0.003327917 

1 1 9 1 12 11 0.001844679 

16 0 15 16 47 31 0.010361896 

6 0 8 20 34 14 0.009353981 

6 0 6 20 32 12 0.009700746 

8 0 12 35 55 20 0.008547655 

35 0 0 80 115 35 0.008813524 

11 0 4 40 55 15 0.015189377 

7 1 1 11 19 8 0.009764435 

0 19 0 11 30 19 0.008504406 

0 11 0 15 26 11 0.011529978 

1 46 1 2 50 48 0.006571117 

0 6 0 2 8 6 0.005155168 

1 1 1 1 4 3 0.002258037 

3 15 1 23 42 19 0.012193352 

0 0 0 3 3 0 0.01093019 
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APPENDIX D 

Residuals from SfM Regression Plots   
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Histogram of Residuals from AGB – Litter ~ SfM Volume 

 
Histogram of Residuals from Linear Regression of ln(AGB – Litter) ~ ln(SfM Volume)  

 


