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ABSTRACT 

Climate change is one of the most concerning global issues and has the potential 

to influence every aspect of human life. Like different components of society, it can 

impose significant adverse impacts on pavement infrastructure. Although several research 

efforts have focused on studying the effects of climate change on natural and built 

systems, its impact on pavement performance has not been studied as extensively. The 

primary objectives of this thesis research was to quantify the effect of temperature 

changes on flexible pavement response and performance prediction using the 

AASHTOWare Pavement ME Design (PMED), and quantify the effects of Local 

Calibration Factors (LCFs) used by different state highway agencies in the United States 

on predicted pavement performance. Particular emphasis was given to LCF values used 

by the Idaho Transportation Department. The climatic data, as well as LCFs 

corresponding to several different states, were used to identify how different LCF values 

affect pavement performance prediction. The effects of atmospheric temperature changes 

on pavement temperature and Asphalt Concrete (AC) layer modulus were studied by 

analyzing the intermediate files generated by PMED. Finally, the impact of temperature 

change on AC dynamic modulus (E*) was also analyzed to link the PMED-predicted 

distresses with asphalt mix properties. 

Historical climatic data was obtained from the Modern-Era Retrospective 

Analysis for Research and Applications (MERRA) database. Projected data considered to 

simulate the temperature changes in the future were generated by adopting two different 
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approaches: (1) Manual alteration of historical temperature distribution data to represent 

scenarios with increased mean and standard deviation values; and (2) Use of temperature 

data projected by established Global Climate Models (GCM). All different climatic 

scenarios were used in PMED along with a standard pavement section, and the distresses 

predicted over the design life of the pavement were compared. Simulation results showed 

consistent increase in Total Pavement rutting and AC rutting with increasing air 

temperatures. The effect of temperature increase on AC thermal cracking predicted by 

PMED demonstrated inconsistent trends. In contrast, the projected temperature increase 

had no significant effect on bottom-up fatigue cracking for the chosen study locations. It 

was found that the impact of changed air temperatures can be different for pavement 

sections constructed in different geographic locations. Moreover, the analysis confirmed 

that the Local Calibration Factors (LCFs) established by different state highway agencies 

played a major role in governing the effect of future temperature increase on predicted 

pavement performance. Through an extensive study of the LCFs used in the states of 

Idaho, Colorado, and Michigan, it was observed that the LCFs in Idaho did not 

adequately reflect the effects of future temperature changes on predicted pavement 

performance. Findings from this study emphasize the importance of considering non-

stationary climate conditions likely to occur in the future during the process of pavement 

design. Moreover, this study also highlighted different aspects of the LCFs that play a 

significant role in capturing the effects of climatic factors on pavement performance 

predicted by PMED. Based on the findings, it is believed that further fine-tuning of the 

LCFs used in Idaho may be needed.  
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CHAPTER ONE: INTRODUCTION 

Climate Change 

This research effort primarily focused on two broad topics: Climate change and 

Pavement Engineering. Climate change is one of the most concerning issues facing 

modern society. It causes significant adverse impacts on human as well as infrastructure 

health. Climate change is defined as global or regional change in any of the climatic 

parameters, such as precipitation, temperature, humidity, sunshine, and wind ("Climate 

change," n.d.; National Aeronautics and Space Administration [NASA], 2014). The 

subject of climate change has captured the attention of the research community for 

several decades. A vast number of scientific publications have addressed different aspects 

of climate change and the corresponding adverse effects. Although the general perception 

about factors driving the climate change phenomenon is not consistent across the world 

(Hansen et al., 2012), most researchers agree on some of the primary factors. One such 

factor is the increase in greenhouse gas, especially CO2 in the atmosphere. Increased CO2 

in the atmosphere has been linked to the global rise in temperature; a phenomenon also 

referred to as Global Warming. After the industrial revolution, in the 1800s, greenhouse 

gas emissions and the CO2 level in the atmosphere has increased by record amounts, 

attaining higher levels compared to any other time in the past 800,000 years (National 

Aeronautics and Space Administration [NASA], n.d.). The Fifth Assessment Report 

(AR5) of the Intergovernmental Panel on Climate Change (IPCC) reported that the last 

three decades have consecutively become warmer; and there is a 95% chance that human 
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activities had driven this change (Stocker et al., 2013). The AR5 also stated that in 2017, 

the anthropogenic temperature increase was on an average 1°C higher than its 

corresponding value during pre-industrial times (Allen et al., 2018). Scientists predict that 

unless remedial/preventive actions are taken to control global CO2 emission levels, these 

trends and associated adverse impacts will continue beyond the next century. Potential 

regional and global effects will encompass all aspects of human life, including the 

transportation infrastructure (Hayhoe et al., 2008; Daniel et al., 2014). The current 

research effort focused on studying the effects of temperature change on flexible 

pavement response and performance. 

Significance of the Pavement Network in the United States 

The United States (U.S.) has the most extensive and longest roadway network in 

the world. According to the World Factbook released by the Central Intelligence Agency 

(CIA) (Central Intelligence Agency [CIA], n.d.), the total length of the US road network 

is over 4 million miles; this comprises approximately 2.7 million miles of paved roads 

and approximately 1.5 million miles of unpaved highway. The road network also consists 

of nearly fifty thousand miles of expressway. Just for the sake of comparison, the length 

of the entire U.S. road network is approximately 4.40% of the distance from the Earth to 

the Sun (92.96 million miles), 12.1% of the closest distance from the Earth to the Mars 

(33.9 million miles), and more than 17 times of the distance from the Earth to the Moon 

(2,38,900 miles). Traveling at the speed of sound (767 mph), it would take approximately 

five months to traverse the entire length of the paved roadway network in the US.  

Moreover, according to the Bureau of Transportation Statistics (BTS), during the 

2014 fiscal year, total government transport-related revenue was 183,588 million dollars, 
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and the total expenditure was 3,23,995 million dollars (considering the dollar value of 

2014) (Bureau of Transportation Statistics [BTS ], n.d.). This spending can increase even 

further when the road network deteriorates significantly due to external (traffic- or 

environment-related) factors.  

Background and Problem Statement 

Like any other civil engineering structure, pavements are usually designed and 

constructed for a specific design period with an optimum section that can withstand the 

traffic- and environment-induced loading throughout its design life. The lifetime of a 

pavement section varies depending on its type and function. The primary factors 

contributing to pavement distresses are aspects related to traffic and environmental 

loading. Generally, with time, the amount and severity of distresses in a pavement section 

increase, and the level of serviceability decreases. The current research focuses primarily 

on studying the effects of environmental factors on flexible pavement performance. In 

particular, emphasis is on studying the effects of temperature increases that can be 

attributed to prevalent patterns in climate change.  In order to isolate the effects of 

temperature change on pavement performance, traffic loading with a 3% linear growth 

was considered during pavement analysis and performance prediction. 

Pavement performance can be affected by multiple climatic parameters such as air 

temperature, precipitation, sunshine, relative humidity, wind speed, groundwater table, 

and number of freeze-thaw cycles. Different manifestations of climate change can 

adversely affect flexible pavement performance through different mechanisms. For 

example, higher temperatures lead to softer Asphalt Concrete (AC) layers, thereby 

increasing surface rutting under heavy loads. Similarly, increased precipitation can 
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increase the moisture content in unbound (soil and aggregate) layers, resulting in poor 

support conditions underneath the pavement. This can lead to rapid structural 

deterioration under heavy loads  

In addition, the standard practice of pavement design involves the assumption of 

“stationary” climatic conditions. In other words, the historical climatic conditions at a 

particular location are assumed to remain unchanged throughout the design life of a 

pavement section. However, numerous research studies have proved that future climatic 

conditions will no longer be the same as what was observed historically, and the changed 

climatic conditions need to be incorporated into pavement design. Failure to account for 

the effects of climate change during pavement design may lead to premature failure. This 

would result in undesirable driving conditions for road users, ultimately requiring 

significant financial investments for maintenance and rehabilitation.  

Underwood et al. (2017) investigated how climate change could affect the life-

cycle cost of flexible pavement infrastructure. Findings from their study showed that the 

historical assumption of “stationary” climatic conditions greatly influences the selection 

of the material and the cost associated with it. They emphasized that in the past 20 years, 

among the 799 different U.S. locations considered, 35% had selected the wrong materials 

for pavement construction. Besides, they also projected that if the current practice of 

material selection continues based on the stationary climatic data, the changing 

temperature estimated from the RCP 4.5 (Representative Concentration Pathway 4.5; 

discussed later in this thesis) scenario will increase the pavement life-cycle cost by 

US$13.6, US$19.0, and US$21.8 billion by 2010, 2040, and 2070, respectively. The 

projected additional cost will be even higher (US$14.5, US$26.3, and US$35.8) under the 
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RCP 8.5 scenario. Therefore, it is important to consider the effects of future climatic 

conditions during the design and construction of pavement sections. The current study 

aimed to quantify the effect of changing temperature patterns on flexible pavement 

performance predicted using AASHTOWare Pavement ME Design (PMED).  

Research Objective 

The overall goal of this research effort was to thoroughly investigate how PMED 

captures the effects of climatic factors (temperature in particular) during pavement 

analysis and performance prediction. More specifically, the current study solely focused 

on evaluating the impact of changing temperature patterns in the future on flexible 

pavement performance. Individual research objectives were to:  

1. Quantify the effects of synthetically generated future temperature 

distribution data on pavement response and performance prediction using 

PMED. 

2. Assess the impact of LCF values on how PMED captures the effects of 

changing temperature distribution patterns while predicting pavement 

performance.  

3. Thoroughly illustrate how different LCF values combined with varying 

climatic condition data can lead to significantly different pavement 

performance predictions.  

4. Investigate how changing air temperature patterns get translated into 

changing pavement temperature patterns within PMED. The current study 



6 

 

also investigated how the changing pavement temperatures affected the 

AC sublayer modulus distribution within a pavement structure.   

Research Approach 

Two different climatic scenarios were considered during this thesis research: 

(1) Historical climatic data obtained from the MERRA reanalysis dataset; and  

(2) Future/projected climatic conditions represented by changing temperature 

distribution patterns.  

Note that the first scenario is representative of current practice in the US that 

assumes a "stationary" climate throughout the design life of the pavement. The second 

scenario, on the other hand, represents changed temperature distribution in the future. 

These altered temperature distribution patterns for the future were generated by either 

manually shifting the temperature distribution to represent warmer climates in the future, 

or by downscaling the projected temperature distribution data from established Global 

Climatic Models (GCMs). Pavement performance predictions using PMED were 

compared under both scenarios.  

The manual “shifting” of past temperature distribution patterns to represent future 

climatic conditions was accomplished by altering the mean (µ) and/or standard deviation 

(σ) of the temperature distribution data. The primary objective of this approach was to 

achieve a detailed understanding of the functionalities of distress prediction models 

inherent to PMED and how pavement distress predictions are affected by temperature 

changes. Accordingly, the very first step involved analysis and performance prediction of 

a typical flexible pavement section in Boise, Idaho, under stationary and altered 

temperature distribution conditions. Analyses were performed using both Global and 
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Local Calibration factors to investigate how changing the calibration factors affected 

pavement performance predictions. Another scenario modelled to study the effect of 

altered temperature distributions involved modifying the temperature distribution to 

simulate seasonal extremes. In other words, instead of altering the mean or the standard 

deviation value of the annual temperature distribution, only data for certain seasons was 

modified. This was done to simulate cases where the effects of climate change on 

temperature are felt predominantly in the summer or the winter seasons. Such targeted 

alterations in the temperature distribution would facilitate an in-depth understanding of 

the functionality of the distress models inherent to PMED.  

Besides using the climatic data and LCFs for Boise, Idaho (BOI), the current 

study also focused on two more locations (Denver, Colorado or DEN, and Detroit, 

Michigan or DTM) during pavement performance prediction under altered temperature 

distributions. Simulation results obtained from those cities were compared against those 

for BOI, Idaho, to identify the location-based climatic impact on pavement performance 

prediction.  

Once a basic understanding of the PMED distress prediction trends was 

established, the second method of simulating altered temperature distributions involved 

the use of downscaled temperature data from four randomly selected GCMs. Using the 

temperature data projected by GCMs to analyze pavement performance in the future is 

more realistic as those climatic models have been developed by climate scientists around 

the world, and temperature distributions thus projected, are more representative of 

plausible climatic conditions compared to artificially altered temperature distributions. 

The primary focus during this task was to compare pavement performances under 
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temperature scenarios that are likely to occur in the future and compare the performances 

of different LCFs in capturing the effects of the temperature changes. Note that the 

alterations in climatic conditions (both through manual shifting as well as through 

downscaling of the GCM data) in this study constituted changes in temperature 

distributions only; all other climatic factors (precipitation, wind speed, percent sunshine, 

and relative humidity) were kept unchanged (or under "stationary conditions").  

Organization of the Thesis 

This thesis document comprises a total of four chapters. Chapter 2 presents the 

background and findings from the review of previous studies related to climate change and 

pavement performance. Moreover, Chapter 2 also describes the data processing methods 

adopted in this study to generate the future temperature distributions that were subsequently 

used as input in PMED. Chapter 3 presents all relevant details concerning the research 

approach, discusses the relevant findings and corresponding implications. Finally, Chapter 4 

summarizes important findings from the current research and provides recommendations 

for future research. 
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CHAPTER TWO: BACKGROUND AND LITERATURE REVIEW  

Previous Research on Effects of Climate Change on Pavement Performance 

Several studies over the past few years have focused on studying climate change 

and its effects on the pavement infrastructure. The Infrastructure & Climate Network 

(ICNet) at the University of New Hampshire, USA, is one of the leading research 

organizations in this field. ICNet researchers have evaluated the progress, challenges, and 

future work required to merge the disciplines of climate change and transportation 

infrastructure (Douglas et al., 2017). ICNet researchers have also studied topics such as 

the effects of Sea Level Rise on transportation design and planning, the impact of 

Reclaimed Asphalt Pavement (RAP) on pavement life cycle costs under future 

temperatures, etc. (Hayhoe et al., 2015; Knott et al., 2017; Qiao et al., 2019). 

Similarly, Mallick et al., (2018) used Monte Carlo simulations of climatic data 

collected from two different sources and a system dynamics model to establish a 

framework for assessing climatic impacts on the pavement performance. Daniel et al., 

(2018) studied the effects of winter temperature changes on frost-thaw conditions and 

load restriction timings for low-volume roadways and reported that the low traffic 

volumes roads would deteriorate faster due to the expected changes in freeze-thaw 

patterns. 

Stoner et al. (2019) studied the impact of future climate on flexible pavement 

performance and developed a method to project the hourly climate data for different 

locations within the U.S. Additionally, several research studies over the years have 
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focused on the implementation of mechanistic-empirical pavement design practices by 

developing databases for state-specific traffic distributions, material properties, and 

climatic inputs. Moreover, several research studies have focused on establishing state-

specific (local) calibration factors to be used in the transfer functions (Hall et al., 2005; 

Darter et al., 2009; Li et al., 2013; Schwartz et al., 2015; Bayomy et al., 2018; Jibon et 

al., 2020). Researchers have also investigated climatic impacts on pavements in the US 

and abroad using PMED (Qiao et al., 2013; Elshaeb et al., 2014; Gudipudi et al., 2017; 

El-Maaty, 2017; Yang et al., 2017; Hasan & Tarefder, 2018). 

Qiao et al. (2013) investigated the sensitivity of pavement performance to all the 

climatic factors, including the annual and seasonal temperature change. They observed 

that temperature change has a significant impact on pavement distress predictions. 

Similarly, Elshaeb et al. (2014) developed climatic input data for PMED to evaluate the 

influence of climatic factors on pavement performance in 16 locations of Egypt and 

observed that temperature variations had a significant impact on predicted pavement 

performance.  Gudipudi et al. (2017) studied the effects of temperature and precipitation 

change on pavement performance using PMED. Different global climate models and 

climatic regions were considered to observe the change in pavement performance 

predictions due to changes incorporated into primary climate parameters. El-Maaty 

(2017) used PMED to observe that temperature variations at a given location had adverse 

impacts on flexible pavement performance in Egypt. Yang et al. (2017) used PMED to 

evaluate the effects of all five climatic factors on flexible pavement distress prediction at 

six different locations in Michigan and found that temperature was the most significant 

climatic factor affecting pavement performance. Hasan & Tarefder (2018) studied the 
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effects of mean annual temperature and precipitation on pavement performance in 13 

U.S. states with varying climatic conditions. They confirmed that certain pavement 

distress predictions were significantly influenced by temperature, whereas several others 

were influenced by precipitation. 

Most of the previous studies analysed the effects of temperature change on 

pavement performance using projected climate data obtained from GCMs.  The current 

study, on the other hand, focused not only on investigating the effects of temperature 

changes on flexible pavement performance, but also the effects of different LCFs on 

pavement performance prediction using PMED. The objective was to understand how 

PMED captures the effects of temperature change using the distress prediction models. 

To generate altered temperature distributions representing future climatic conditions, this 

study adopted a statistical approach to manually modify the historical temperature 

distribution data. 

Moreover, the effects of temperature change on different parameters such as 

PMED-generated pavement layer temperature and AC sub-layer modulus were also 

studied. This parametric analysis facilitated an in-depth understanding of PMED distress 

prediction trends. Subsequently, more realistic future temperature distributions were 

obtained from selected GCMs, and the data was downscaled to generate hourly 

temperature distributions that can be used as input during PMED analysis. Pavement 

performance prediction using the downscaled GCM data facilitated verification of the 

trends observed during analyses with the manually shifted data.   
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AASHTOWare Pavement ME Design 

The AASHTOWare Pavement ME Design (PMED) software (AASHTO, 2019) is 

an implementation of the Mechanistic-Empirical (M-E) pavement design approach 

developed under the scope of National Cooperative Highway Research Program 

(NCHRP) project 1-37A, (Applied Research Associates [ARA], 2004)  and documented 

in the Mechanistic-Empirical Pavement Design Guide (MEPDG). (AASHTO, 2008). The 

M-E pavement design approach comprises of mechanistic and empirical components that 

are combined to facilitate analysis and performance prediction of pavement structures. In 

the mechanistic component, it relies on the principles of physics (or mechanics) to 

compute critical pavement response parameters (stress, strain, deflection) under traffic- as 

well as environment-induced loading using specified material properties. As the next 

step, the M-E approach uses empirical transfer functions (or damage models) to predict 

pavement distresses from the critical pavement response parameters. Different transfer 

functions are used to predict commonly observed pavement distresses; in case of flexible 

pavements, the primary distresses being predicted include: rutting, thermal cracking, and 

fatigue cracking. Additionally, PMED also predicts the pavement surface roughness 

using the International Roughness Index (IRI) as the quantifying measure. Details about 

the principle of M-E design and required inputs can be found in the NCHRP project 1-

37A final report (ARA, 2004).    

  Figure 2.1 shows a schematic of the PMED iterative design process adopted 

from the Idaho PMED user’s guide. (Mallela et al., 2014).  
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Figure 2.1 Schematic Showing the Iterative Nature Design Process in 

AASHTOWare Pavement ME 

Tables 2.1 summarizes the transfer functions used in PMED to predict the 

different distress types in flexible pavements (Mallela et al., 2014). Further details of the 

variables associated with the transfer functions can are available in NCHRP 1-37A Final 

Report: Appendix GG-1, Appendix HH, and Appendix II-1 and have been excluded from 

this chapter for the sake of brevity (ARA, 2004).     
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Table 2.1 Transfer Functions used in PMED Performance Models 

Distress Type Transfer Function Formulation 

AC Rutting ∆p(AC)= β1rkzεr(AC)10
k1rnk2rβ2rTk3rβ3rhac 

Unbound or granular or 

aggregate base Rutting 
∆p(soil)= βs1ks1εvhsoil(

ε0
εr
)e−(

ρ
n
)
β

 

Subgrade rutting 

Bottom-up fatigue cracking 

(Alligator cracking) 
FCBottom=(

1

60
)(

c4

1+e(c1c1
∗ + c2c2

∗Log(DIBottom∗100))
) 

Top-down fatigue cracking 

(Longitudinal cracking) 
FCTop=10.56(

c4

1+e(c1 − c2Log
(DITop))

) 

Thermal cracking 

(transverse cracking) 
TC =βt1N [

1

σd
 Log (

cd
HAC
)] 

IRI IRI = IRIo+ C1(RD)+C2(FCTotal)+ C3(TC)+ C4(SF)  

As seen from Table 2.1, the transfer functions comprise multiple coefficients, 

whose values are established through statistical regression of empirical data. The values 

of these model coefficients can be significantly affected by local conditions, therefore, 

requiring local PMED calibration efforts by state highway agencies. It is important to 

note that during the original MEPDG developmental effort, “global” values (known as 

Global Calibration Factors or GCFs) of the model coefficients were established using 

national-level empirical data. A large volume of actual pavement section data 

corresponding to different pavement types, materials properties, and climatic conditions 

across the USA was collected mostly through the Federal Highway Administration 

(FHWA) Long-Term Pavement Performance Program (LTPP) and other State or Local 

agencies to calibrate the PMED. However, it was not possible to account for all the data 
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variability related to the candidate locations and include the data for all types of 

pavement in the PMED. 

To further improve the accuracy of these models in predicting pavement 

performance in a particular geographic region, the models need to be further “fine-tuned” 

using Local Calibration Factors (LCFs). For example, in the AC rutting transfer function 

(refer to Table 2.1), the k1,2,3 terms represent GCFs, whereas the β1,2,3 terms represent 

LCFs. The GCFs for all the transfer functions of all the PMED prediction models were 

developed through the NCHRP 1-37A project (ARA, 2004), and were later recalibrated 

through NCHRP Project 1-40D (Darter et al., 2006). However, during this national level 

calibration effort, it was not possible to calibrate the models based on state-specific data.  

Therefore, to further improve the accuracy of these models in predicting 

pavement performance in a particular geographic region, the models need to be further 

“fine-tuned” using Local Calibration Factors (LCFs). LCFs are established by State and 

Local agencies to minimize the impact of data variability in performance predictions and 

to incorporate the actual local conditions of the candidate location. A large number of 

states have already established LCFs based on the procedures outlined by the American 

Association of State Highway and Transportation Officials (AASHTO) (AASHTO, 

2010). For example, in the AC rutting transfer function (refer to Table 2.1), the k1,2,3 

terms represent the GCFs, whereas the β1,2,3 terms represent the LCFs.  

As previously mentioned, the current study focused on comparing the LCFs for 

three different states (Idaho, Colorado, and Michigan). Table 2.2 lists the GCFs 

established through NCHRP 1-40D project (Darter et al., 2006) and LCFs for flexible 

pavement distress prediction used by the three states. Note that there are several other 
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calibration coefficients used by the distress prediction models; GCF values have been 

established for all the coefficients. However, Table 2.2 only shows the GCFs 

corresponding to the coefficients which have been calibrated to establish the 

corresponding LCFs. The LCF values were obtained from research reports published by 

the respective agencies based on their respective local calibration efforts (Mallela et al., 

2013; Haider et al., 2014; Bayomy et al., 2018). 

Table 2.2 Global and Local Calibration Factors used for Flexible Pavement 

Distress Prediction in the States of Idaho, Colorado, and Michigan 

Performance Model 
Calibration 

Coefficient 
GCFs 

LCFs 

Idaho, 

ID 

Colorado, 

CO 

Michigan, 

MI 

AC Rutting 

β1r 1 3 1.34 0.9453 

β2r 1 1* 1* 1.3 

β3r 1 0.661 1* 0.7 

Unbound Base Rutting βs1 1 0.53 0.4 0.0985 

Subgrade Rutting βs1 1 0.477 0.84 0.0367 

Bottom-up Fatigue 

Cracking  

C1 1 1* 0.07 0.5 

C2 1 0.824 2.35 0.56 

Top-Down Fatigue 

Cracking  

C1 7 4.533 7* 2.97 

C2 3.5 0.229 3.5* 1.2 

Fatigue damage model 

(AC fatigue) 

βf1 1 1* 130.3674 1* 

βf2 1 1* 1* 1* 

βf3 1 1* 1.217799 1* 

Thermal Cracking 

 K1  1.5 2.169 7.5 0.75 

K2 0.5 0.835 0.5 0.5  

K3  1.5 2.169 1.5 4  

IRI 

C1  40 35* 35* 50.372 

C2  0.4 0.35 0.3 0.4102 

C3  0.008 0.008 0.02 0.0066 

C4  0.015 0.01 0.019 0.0068 

Note: * same as GCF 

As the current research effort is primarily focused on the effects of temperature 

change on flexible pavement performance, greater emphasis was given to flexible 

pavement distress types that have been known to be significantly affected by temperature. 

Accordingly, the distress types primarily considered in this study were: AC rutting and 
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thermal cracking. The following sections present brief descriptions of the AC rutting and 

thermal cracking prediction models incorporated into PMED. 

AC rutting model 

Rutting can be defined as the permanent deformation of the flexible pavement 

layers along the wheel path (Huang, Y. H., 2004, p. 35). Rutting can occur due to the 

plastic deformation of the AC layer(s), unbound aggregate layer(s), or the subgrade 

(Huang, Y. H., 2004, pp. 24, 374). The mechanistic analysis approach incorporated into 

PMED divides each layer of a pavement section into multiple sublayers. Subsequently, 

rut depths are computed at the mid-depth of each sublayer; these individual sublayer rut 

depths are finally summed to calculate the total pavement rutting. Equation 2.1 presents 

the transfer function used in PMED to predict AC rutting in a flexible pavement 

structure. 

 ∆𝑝(𝐴𝐶)= 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐴𝐶)10
𝑘1𝑟𝑛𝑘2𝑟𝛽2𝑟𝑇𝑘3𝑟𝛽3𝑟ℎ𝐴𝐶 (2.1) 

Where, 

∆𝑝(𝐴𝐶) = Accumulated permanent or plastic vertical deformation in the AC 

layer/sublayer, in. 

𝜀𝑟(𝐴𝐶) = Resilient or elastic strain calculated by the structural response model at the mid-

depth of each AC sublayer, in./in. 

ℎ𝐴𝐶 = Thickness of the AC layer/sublayer, in. 

𝑛 = Number of axle-load repetitions. 

T = Mix or pavement temperature, °F 

𝑘𝑧 = Depth confinement factor 
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𝑘1𝑟,2𝑟,3𝑟 = Global field calibration parameters (𝑘1𝑟= –3.35412, 𝑘2𝑟= 1.5606, 𝑘3𝑟= 

0.4791) 

𝛽1𝑟,𝛽2𝑟,𝛽3𝑟 = Local or mixture field calibration constants. 

From Equation 2.1 it can be seen that the β1r coefficient corresponds to the 

resilient or elastic strain (εr) within the AC layer, whereas, β3r is the exponent of the 

temperature variable (T). Given that the k values are the global coefficients and have 

constant values, it is evident that the temperature effect on AC rutting is primarily 

governed by the β3r coefficient. Of course, it should be acknowledged that other 

parameters such as β1r will be indirectly affected by temperature changes. This is 

because, change in temperature will affect the AC modulus, which in turn will affect the 

resilient strain magnitude under loading. Nevertheless, as evident from Equation 2.1, β3r 

is the only parameter that is directly linked to the temperature value.  

AC Thermal Cracking Model 

Thermal cracking is another flexible pavement distress that is largely affected by 

temperature change. Asphalt is a temperature-dependent material, and its stiffness can 

vary over a wide range depending on temperature. At low temperatures, asphalt behaves 

as a stiff solid, and gradually turns into a viscous liquid with increasing temperature. Due 

to increased stiffness at low temperatures, AC layers in cold regions are more susceptible 

to thermal cracking than those in warmer areas. Equation 2.2 shows the transfer function 

corresponding to the PMED thermal cracking model.  

 𝑇𝐶= 𝛽𝑡1N[
1

𝜎𝑑
𝑙𝑜𝑔(

𝐶𝑑

𝐻𝐻𝑀𝐴
)] (2.2) 

Where, 

TC = Observed amount of thermal cracking, ft./mi 
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βt1 = Regression coefficient determined through global calibration (400) 

N[z] = Standard normal distribution evaluated at [z] 

σd = Standard deviation of the log of the depth of cracks in the pavement (0.769), in. 

Cd = Crack depth, in. 

HAC = Thickness of AC layers, in. 

From the equation it can be observed that for a higher crack depth, the thermal 

cracking of the AC layer would be higher. Again, the crack propagation can be estimated 

using the Equation 2.3 

 ∆𝐶=𝐴(∆𝐾)𝑛 (2.3) 

Where, 

∆𝐶 = Change in the crack depth due to a cooling cycle, 

∆𝐾 = Change in the stress intensity factor due to a cooling cycle, and 

A, n = Fracture parameters for the AC mixture.  

The stress intensity factor can be calculated using Equation 2.4 

 K=σtip[0.45+1.99 (C0)0.56] (2.4) 

Where, 

σtip = Far-field stress from pavement response model at a depth of crack tip, psi 

Co = Current crack length, ft. 

The fracture parameters A and n (in Equation 2.3) can be calculated using 

Equation 2.5 and Equation 2.6. With increasing magnitude of the fracture parameters (A 

and/or n), the crack depth (Cd) will also increase, which will eventually increase the 

thermal cracking (TC) of the AC layer. As seen from Equation 2.5, the fracture parameter 

‘A’ is dependent on two important materials properties of the AC layer: (1) AC tensile 
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strength (σm); and (2) AC indirect tensile modulus (EAC). Changes in either of these 

parameters can greatly affect the thermal cracking susceptibility of the AC layer.  

 𝐴= 𝑘𝑡𝛽𝑡10
[4.389−2.52𝑙𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝑛)] (2.5) 

 

 𝑛= 0.8 [1+
1

𝑚
] (2.6) 

Where, 

kt = Coefficient determined through global calibration for each input level (Level 1 = 1.5; 

Level 2 = 0.5; and Level 3 = 1.5) 

βt = Local or mixture calibration coefficient 

EAC = AC indirect tensile modulus, psi 

σm = Mixture tensile strength, psi 

m = Derived from the indirect tensile creep compliance curve measured in the 

laboratory 

 The βt factor in Equation 2.5 is the field calibration coefficient, which should be 

established through a state or local transportation agency's local calibration effort. 

However, the PMED software does not allow changing the βt coefficient. Therefore, 

during the Idaho local calibration efforts, instead of “βt,” the global factors “K” were 

altered to accommodate local conditions during thermal cracking prediction (Bayomy et 

al., 2018). A similar approach was undertaken during Colorado and Michigan local 

calibration efforts (Mallela et al., 2013; Haider et al., 2014).  

 The AC tensile strength (σm) is a fundamental parameter in PMED low pavement 

temperature thermal cracking predictions. An asphalt mixture with high tensile strength 

would provide better thermal cracking performance. In contrast, if the tensile strength of 
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the mixture decreases, the AC layer will be more prone to thermal cracking. While 

accounting for temperature effects on material behavior, PMED assumes that with 

increasing temperature, the asphalt mixture tensile strength decreases, which eventually 

reduces the AC layer resistance to the cracking, thus making it more susceptible to 

thermal cracking. Besides, pavement cooling rate also affects the thermal cracking of the 

AC layer, which will be discussed in Chapter 3 of this thesis. Therefore, during pavement 

analysis and performance prediction using PMED, the AC thermal cracking depends on 

multiple factors such as pavement temperature, mix tensile strength, pavement cooling 

rate, etc. This understanding will be important during interpretation of the analysis results 

presented in Chapter 3 of this master’s thesis.
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CHAPTER THREE: RESEARCH METHODOLOGY AND FINDINGS  

As stated in the earlier chapters, the initial goal of this study was to evaluate how 

the transfer functions inherent to PMED accommodate the effects of temperature changes 

during pavement analysis and performance prediction. This was accomplished by using a 

manual shifting approach to generate synthetic temperature distribution data. Once a 

good understanding of the PMED distress prediction mechanism was achieved, a more 

realistic approach was adopted to generate future temperature distributions using 

established GCMs. This chapter presents details regarding the specific data processing 

methods to generate temperature distributions representative of future climatic 

conditions, as well as findings from the PMED simulations run using different 

temperature distributions.  

Data Processing Methods 

This section provides a brief description of how the climatic data were generated 

in this study for analysis with PMED. Historical climatic data starting from 1985 for the 

nearest climate station of the location under consideration (Boise, Denver, or Detroit) 

were downloaded from the Modern-Era Retrospective Analysis for Research and 

Applications (MERRA) database developed by the National Aeronautics and Space 

Administration (NASA) (NASA, 2009; Federal Highway Administration [FHWA] 

MERRA Climate Data for MEPDG Inputs, n.d.). The MERRA climatic data file consists 

of hourly distributions of Temperature (°F), Precipitation (in.), Wind Speed (mph), 

Percent Sunshine (%), and Relative Humidity (%), among others. 
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Two independent scenarios were considered during statistical manipulation of the 

temperature distribution: (1) Alter the mean (µ), and (2) alter the standard deviation (σ) 

of the temperature distribution. Researchers have projected that by 2100, the temperature 

of the Pacific Northwest would rise approximately by 3ºF and 10ºF (United States 

Environmental Protection Agency [EPA], n.d.). The scenarios initially considered to 

study the effects of temperature change on flexible pavement performance involved: (a) 

increasing the mean of the temperature distribution by 1°C (1.8°F), and (b) increasing the 

standard deviation of the temperature distribution by 10%. Later on, a third scenario, i.e. 

(c) increasing the mean of the temperature distribution by 5°C (9°F), was added to study 

the effect of extreme shifts in temperature distribution on flexible pavement performance.  

Climatic data from four randomly selected Global Climate Models (GCMs) were 

also collected, and the temperature data was downscaled to facilitate its use with PMED. 

A period of twenty years between 2046-2065 was considered while working with the 

GCM-projected temperature data. This specific time frame was considered as the current 

study intended to study the effect of temperature change at a period that is about 30 years 

ahead, representing the middle of the 21st century. According to Pachauri et al. (2014), 

the global mean surface temperature change in the mid-21st century (2046-2065) could be 

up to 1°C to 2°C depending on the emission scenarios. Therefore, selection of this 

analysis time frame is in line with the temperature increase scenarios considered during 

the manual shifting process.    
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Generating Manually Shifted Temperature Distribution 

Historical Climate Data 

Before going into further details about data manipulation methods used to 

generate future temperature distributions, this section provides a brief description of the 

historical climatic data. The projected temperature patterns were synthetically generated 

through modification of the MERRA historical temperature data as well as downscaled 

GCM-projected temperature data. The FHWA LTPP InfoPave component known as 

“MERRA climate data for MEPDG inputs” has climatic data available from 1985 to 2018 

for all the climate stations considered in this study, except for Boise, which has available 

data until mid of 2017 (FHWA MERRA Climate Data for MEPDG Inputs, n.d.).  

Figure 3.1 compares the temperature distributions for Boise, Idaho (BOI) 

corresponding to the first (1985), and the last (2017) years, at different time scales 

ranging from a particular day to a month within the year.   
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(a) 
(b) 

 

(c) 

Figure 3.1 Comparison of 1985 and 2017 Temperature Data (a) Typical Day: Jan 

01, 1985 & 2017; (b) Typical Week: Jan 01-07, 1985 & 2017; (c) Typical Month: 

Jan,1985 & 2017  

Although the overall temperature distributions for the two years look similar, the 

individual values were significantly different from each other. The figures clearly show 

the wide range of temperatures experienced in Boise during a particular year. 

Figure 3.2 compares the frequency distribution of full-year (Jan-Dec) historical 

temperature data for the years 1985 and 2017. Figure 3.2 indicates that the overall 

distribution shape for temperature data is similar for the two years considered. However, 

the temperatures in 2017 were greater than those in 1985. A similar trend was observed 
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for other cities (Denver and Detroit) considered in the study, but have been excluded 

from graphical representation in this thesis document for the sake of brevity. 

 
Figure 3.2 Comparing the Frequency Distribution of Full-Year Historical 

Temperature Data for Boise (1985 and 2017) 

Full-Year Modified Temperature Data 

This study used MATLAB® (Version 2019b; Mathworks, 2019) to develop a code 

that can modify the historical temperature data and create the manually shifted 

future/projected temperature distribution. The first task involved extracting the 

temperature data from the historical '.hcd' files, and determining what statistical 

distribution could be used to best describe the temperature patterns. From the analysis, it 

was determined that the Generalized Extreme Value (GEV) distribution worked best for 

the historical temperature data. The GEV distribution has three parameters: (1) Shape (ξ); 

(2) location (µ); and scale (σ) describing the nature of the distribution. Equation 3.1 taken 

from Wikipedia (“Generalized extreme value distribution,” n.d.), shows the cumulative 

distribution function (CDF) and the probability density function of the GEV distribution.  
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 𝐹(𝑥;𝜇,𝜎,𝑘)=𝑒𝑥𝑝{−[1+𝜉(
𝑥−𝜇

𝜎
)]
−1
𝜉⁄
} (3.1) 

Where,  

ξ = Shape parameter  

µ = location parameter  

σ = scale parameter  

This study primarily focused on the location and scale parameters, which 

represent mean and standard deviation of the distribution, respectively.  Figure 3.3, 

obtained from Wikipedia (“Generalized extreme value distribution,” n.d.), shows a 

typical shape of the GEV distribution corresponding to different shape parameter values. 

 
Figure 3.3 Graph Showing Shape of the Generalized Extreme Value (GEV) 

Distribution Corresponding to Different Shape Parameters 

Once the GEV distribution was fit to the data, the mean (µ) and standard 

deviation (σ) values were determined, and corresponding Cumulative Distribution 

Functions (CDFs) were identified. The mean of the historical data was increased by 1.8ºF 

(1ºC) (σ remaining unchanged), and a probability distribution object was created using 

the shifted mean. The new temperature distribution was generated using the shifted 
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probability distribution object and the previously established CDF. Finally, the 

temperature values in the historical ".hcd" file were replaced by the newly generated 

(shifted) temperature values. All other climate parameters (precipitation, relative 

humidity, percent sunshine, wind speed, etc.) remained unchanged in the shifted 

database.  

Figure 3.4 shows the frequency distribution of the temperature data for the three 

cities, e.g., Boise, Idaho (BOI); Denver, Colorado (DEN); and Detroit, Michigan (DTM), 

considered in this study before and after manual shifting by different values. Figure 3.4 

(a) shows the historical temperature distribution, whereas Figures 3.4(b) and 3.4(c) show 

the temperature distribution after the mean (µ) was shifted by 1.8ºF (1º C) and 9ºF (5º C), 

respectively. A comparison between Figure 3.4(a) and Figure 3.4(b) clearly shows that 

shifting the mean by 1.8ºF results in an increase in the number of high-temperature days 

in all the studied locations.   
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(a) 

(b) 

(c) (d) 

Figure 3.4 Frequency Distribution of the Temperature Distribution for Three 

Cities Considered in this Study: (a) Historical Case; (b) Increased µ by 1°C (1.8°F); 

(c) Increased µ by 5°C (9°F); (d) Increased σ by 10%  

A similar trend can be observed by comparing Figures 3.4(a) and 3.4(c). 

Following the same data manipulation procedure, the other scenario of changed 

temperature distribution was simulated by increasing the standard deviation of the 

historical temperature distribution by 10%, while keeping the mean of the distribution 

unchanged (see Figure 3.4(d)). Note that an increase in standard deviation can be 

perceived as a widening of the distribution curve, with the location (mean) of the 

distribution curve remaining unchanged. 

Table 3.1 lists the mean and standard deviation values for the historical and 

manually altered temperature distribution scenarios.   
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Table 3.1 Summary of the Mean and Standard Deviation Values for the 

Temperature Distributions Corresponding to the Different Scenarios 

City 
Historical Shifted µ 1°C Shifted µ 5°C 

Increased σ by 

10% 

µ (°F) σ (°F) µ (°F) σ (°F) µ (°F) σ (°F) µ (°F) σ (°F) 

BOI 42.89 18.49 44.69 18.49 51.89 18.49 42.89 20.78 

DEN 42.88 19.31 44.68 19.31 51.88 19.31 42.88 21.24 

DTM 41.61 20.31 43.41 20.31 50.61 20.31 41.61 22.34 

A comparison of mean temperature data indicates that the three cities selected for 

consideration in the current study have similar temperature conditions. With the 

temperature distributions being more-or-less similar, the effects of the LCFs on pavement 

performance predicted using PMED can be effectively isolated as discussed later in this 

chapter.  

Seasonal Modification of Temperature Distributions 

The above section represented a situation where the temperature distribution 

corresponding to the entire year was manipulated to generate the distributions 

corresponding to different scenarios. A second approach considered in this study was 

manually altering the statistical parameters for the temperature distribution corresponding 

to specific seasons (rather than the entire year). This was done to simulate situations 

where climate change is manifested in a manner so that summers become hotter, or 

winters become hotter, etc. This is particularly important while studying the temperature-

dependent behaviour of AC layers in a flexible pavement system. For example, the 

rutting problem in flexible pavement becomes more significant when the temperatures 

become hotter. On the other hand, thermal cracking (also known as low-temperature 

cracking) becomes worse under extremely cold winters. Altering the seasonal 
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temperature distribution parameters, will therefore, facilitate investigation of the effects 

of such scenarios on pavement performance predictions. A standard hypothesis would be 

that rutting would increase when the summer gets hotter, and thermal cracking (at cold 

locations) would decrease when winters get warmer.  

A simplistic approach was adopted to define the seasons of the year (see Table 

3.2) in this study. Historical temperature data for each of the seasons was extracted, and a 

data manipulation procedure, identical to the one described above for the full-year 

distribution was followed to simulate the altered mean and standard deviation scenarios. 

Table 3.2 Season Definitions used in the Current Study 

Season Month 

Winter December, January, February 

Spring March, April, May 

Summer June, July, August 

Fall September, October, November 

 

Typical Pavement Section Design 

A typical rural primary arterial pavement section was considered for analysis and 

performance prediction in this study. Historical climatic data for Boise, Idaho was used 

as the base case for the PMED simulations. The pavement section was first analyzed 

using PMED with the default Global Calibration Factors (GCFs). As already explained, 

the GCFs do not account for local conditions and use generic coefficient values to predict 

pavement performance based on the critical pavement response parameters. Over the 

years, several state highway agencies in the US have undertaken research/implementation 

studies to develop Local Calibration Factors (LCFs) that can be used for pavement 
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analysis and performance prediction in the corresponding states. All three states 

considered in the current study (Idaho, Colorado, and Michigan) have undertaken such 

calibration efforts (Mallela et al., 2013; Haider et al., 2014; Bayomy et al., 2018). 

Pavement analysis and performance prediction using PMED requires four generic types 

of input data: (1) General and reliability inputs; (2) Traffic; (3) Climate; and (4) 

Structural input with material characteristics.  

Table 3.3 presents a summary of the preliminary design inputs considered during 

the first part of this study. The design inputs were collected from a database developed by 

the Idaho Transportation Department (ITD) as a part of their PMED implementation 

efforts (Bayomy et al., 2012; Mallela et al., 2014, Bayomy et al., 2018). The Hot-Mix 

Asphalt (HMA) binder type was selected using the LTPPBind Online tool (FHWA 

LTPPBind online, n.d.) based on MERRA historical climatic data for Boise. Based on the 

climatic data, it was found that at 98% reliability, the average seven-day maximum 

pavement temperature is 62.45 °C, and the minimum pavement temperature is -26.40 °C.  

Therefore, the Superpave performance grade PG 64-28 asphalt binder was selected for 

designing the pavement section. All the design inputs were kept unchanged between 

different simulations except for the temperature data in the climatic data files.   
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Table 3.3 Design Inputs used for the Design of a Representative Flexible 

Pavement Section Used in the Current Study 

Design Parameter Input 

Pavement Section Design State Highway 

Performance Criteria & Reliability 
Rural-Primary Arterials (reliability: 

85% for all the distress types and IRI) 

AADTT (Annual Avg. Truck Traffic 720 

Growth Rate 3% 

Vehicle Class Distribution WIM 156 (SH 33) 

Speed Limit 55 mph 

Vehicle Axle Load Distribution WIM 156 (Moderately Loaded) 

Climatic Data Boise Station (Lat. 43.5; long. -116.25) 

Pavement 

Structure 

AC 6 in.; PG 64-28 

Base 6 in.; Mr: 40,000 psi (A-1-a) 

Subbase 12 in.; Mr: 30,000 psi (A-2-4) 

Subgrade Semi-infinite; Mr: 9000 psi (A-2-7) 

 

 

Analysis of Temperature Sensitivity of PMED Distress Predictions: Manually 

Shifted Results 

PMED uses distress prediction models to translate the critical pavement response 

parameters obtained from the mechanistic analyses into distress development in the 

pavement structure throughout its service life. The following flexible pavement distresses 

are used to determine the adequacy of a particular design alternative: Total Pavement 

Rutting, AC Rutting, Bottom-Up Fatigue Cracking, Top-Down Fatigue Cracking, AC 

Thermal Cracking or Transverse Cracking, and International Roughness Index (IRI). 
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Threshold values corresponding to each of these distress types were obtained from ITD’s 

design manual (Mallela et al., 2014); threshold values used for total pavement rutting, AC 

rutting, AC thermal cracking, and AC bottom-up fatigue cracking were 0.5 in., 0.5 in., 

1500 ft./mile, and 15.00 % lane area, respectively (Mallela et al., 2014). The PMED-

predicted distresses under different climatic scenarios were compared to assess the 

sensitivity of the pavement performance prediction approach to the temperature changes. 

Three distress types that are most likely to be affected by temperature changes (pavement 

rutting, thermal-cracking) have been discussed in this thesis document for the sake of 

brevity. AC top-down fatigue cracking prediction was not included in the analysis 

because the PMED manual of practice does not recommend using the current top-down 

cracking model for design purposes. The current version (2.5.5) of PMED has not been 

calibrated with the recently developed top-down cracking models (Lytton et al., 2018). 

Moreover, IRI was excluded from the analysis because the IRI prediction depends on all 

the other distress types, and some other factors (such as a site factor), which is not 

directly related to temperature change.  

Comparison between Historical and Manually Altered Temperature Distributions: Boise 

Tables 3.4 and 3.5 summarize the results from PMED simulations corresponding 

to the cases where the historical and manually shifted temperature distributions for Boise 

were used as input.  Results corresponding to the GCFs have been tabulated in Table 3.4, 

whereas Table 3.5 lists the results corresponding to Idaho-established LCFs.   
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Table 3.4 Summary of Predicted Pavement Distresses for Boise Climatic Data 

and Global Calibration Factors  

Climatic 

Condition 
Data type 

Distress Predicted 

Total 

Pavement 

Rutting (in.) 

AC Rutting 

(in.) 

AC Thermal 

Cracking 

(ft./mile) 

Historical Entire Year 0.43 0.11 270.98 

Shifted 

mean (µ) 

1°C 

Entire Year 0.44 0.12 733.99 

Winter 0.43 0.11 587.67 

Spring 0.43 0.11 781.15 

Summer 0.44 0.12 781.15 

Fall 0.43 0.11 777.52 

 

Incr. SD (σ) 

Entire Year 0.45 0.13 2399.10 

Winter 0.43 0.11 1975.87 

Spring 0.43 0.11 769.06 

Summer 0.44 0.12 767.86 

Fall 0.43 0.12 772.69 
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Table 3.5 Summary of Predicted Pavement Distresses for Boise Climatic Data 

and Local Calibration Factors  

Climatic 

Condition 
Data type 

Distress Predicted 

Total 

Pavement 

Rutting (in.) 

AC Rutting 

(in.) 

AC thermal 

cracking 

(ft./mile) 

Historical Entire Year 0.37 0.13 721.90 

Shifted 

mean (µ) 

1°C 

Entire Year 0.38 0.14 372.43 

Winter 0.37 0.13 378.48 

Spring 0.37 0.13 718.27 

Summer 0.38 0.14 717.06 

Fall 0.37 0.13 715.86 

 

Incr. SD (σ) 

Entire Year 0.39 0.15 2000.05 

Winter 0.37 0.13 1383.35 

Spring 0.37 0.13 723.10 

Summer 0.38 0.14 721.90 

Fall 0.37 0.13 724.32 

From the simulation results it can be seen that the predicted distresses do not 

change significantly due to the increase in temperature. Simulation results exhibit little 

differences in total pavement rutting and AC rutting predictions between the historical 

and projected temperature cases. This is true for scenarios where the temperature 

distribution was altered for the entire year, as well as when the summer seasons were 

artificially made warmer.   

Thermal cracking predictions showed considerable sensitivity to increase in mean 

and standard deviation of temperature distribution irrespective of whether the change was 
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implemented for the entire year’s data or just for certain seasons. From Table 3.4 it can 

be seen that for all the projected cases, the predicted thermal cracking increased due to 

increase in temperature, with the highest cracking observed when the SD of full-year 

temperature data increased. On the other hand, results from Table 3.5 (corresponding to 

LCFs) show that the predicted thermal cracking magnitudes decrease for almost all the 

projected cases except when SD of the full year and winter temperature data increased.  

AC thermal cracking in flexible pavements is generally related to cold temperatures, and 

intuitively speaking, the thermal cracking magnitudes should be less under warmer 

climates. However, the PMED-predicted thermal cracking values do not follow this 

expected pattern. This is primarily because AC thermal cracking in flexible pavements 

depends on several other parameters beside the absolute temperature. Two such 

parameters are the cooling rate of pavement layer and indirect tensile strength of the AC 

layer. Apeagyei et al. (2008) studied the effect of cooling rate on the AC thermal 

cracking using the thermal cracking model (TCMODEL), which is also incorporated into 

PMED for thermal cracking predictions. From the analysis of TCMODEL predictions, 

they concluded that pavement cooling rate significantly affects the thermal cracking in 

flexible pavements. Moreover, it should be noted that the algorithms inherent to PMED 

assume that with the increase in temperature, the indirect tensile strength of asphalt 

concrete decreases. This, in turn, would make the AC layer more susceptible to thermal 

cracking even under warmer climates. Therefore, the predicted AC thermal cracking 

values do not follow the intuitive trend of reduced cracking under warmer climates.  

For simulations using GCFs as well as LCFs, the AC bottom-up fatigue cracking 

at the end of the design period didn't change much due to the change in temperature. 
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Accordingly, discussions about bottom-up fatigue cracking have been eliminated from 

this thesis.  

From the results presented in Tables 3.4 and 3.5, it appears that the effect of 

increasing the standard deviation of full-year temperature distribution has a greater 

impact on total pavement rutting and AC rutting compared to increasing the 

corresponding mean values. Finally, among the seasonal temperature cases, only an 

increase in summer temperature produced slightly higher pavement distresses for the 

considered pavement section of Boise.  

Comparison between Historical and Manually Altered Projected Cases: Multiple Cities 

As evident from the above discussion, temperature change was found to have 

minimal effects on pavement rutting predictions for the primary study location, i.e., 

Boise, ID. This was true for simulations with both GCFs as well as LCFs. This raised 

questions about the sensitivity of PMED in capturing the effect of increased temperatures 

while predicting flexible pavement performance. To further investigate this aspect, 

similar analyses were performed for two more cities: Denver (Colorado) and Detroit 

(Michigan). As previously mentioned, the temperature distributions for the three cities 

(Boise, Denver, and Detroit) were more or less similar to each other. Note that similarity 

between the distributions in the present context refers to the shape of the temperature 

distribution as well as the mean values. Therefore, PMED simulations with climatic 

conditions at these locations would give insight into two different aspects. Firstly, as the 

temperature distributions for the three cities are similar, PMED simulation results with 

GCFs should indicate similar sensitivity to temperature changes for the three locations. 

Secondly, PMED simulations with LCFs at these locations will clearly compare the effect 
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of LCFs used by the three states (Idaho, Colorado, and Michigan) in predicting pavement 

performance under varying climatic conditions. Besides the different temperature 

distribution scenarios discussed above, this section also compares pavement performance 

predictions at the three cities under an extreme condition where the mean of the historical 

temperature distribution is increased by 9°F (5°C).  Note that all design inputs (except for 

the temperature data) were kept unchanged from the base case (for Boise) during this 

multi-location comparative effort. LCFs established by the corresponding states were 

used during the analyses.   

Tables 3.6 and 3.7 present results from this multi-location comparative effort. 

Table 3.6 presents results corresponding to the GCFs, whereas results from simulations 

with LCFs have been listed in Table 3.7. As evident from Table 3.6, the change in rutting 

predictions with changing temperature was similar for all three locations. For example, 

the predicted AC rutting for Boise changed from 0.11 in. to 0.12 in. when the mean 

temperature was increased by 1°C. Similarly, the predicted AC rutting for Denver and 

Detroit changed from 0.24 in. to 0.25 in., and 0.08 in. to 0.09 in., respectively. Somewhat 

similar behavior was observed in the predicted AC rutting values when the mean 

temperature was increased by 5°C, and the standard deviation was increased by 10%. 

However, it should be noted that unlike the AC rutting predictions, the thermal cracking 

predictions did not follow similar patterns for the three locations. This may be attributed 

to the compounding factors governing AC thermal cracking behavior.   
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Table 3.6 Summary of Predicted Pavement Distresses for Multiple Cities 

Climatic Data and Global Calibration Factors  

Climatic 

Condition 

Total Pavement  

Rutting (in.) 
AC Rutting (in.) 

AC Thermal Cracking 

(ft./mile) 

BOI DEN DTM BOI DEN DTM BOI DEN DTM 

Historical 0.43 0.39 0.41 0.11 0.24 0.08 270.98 175.92 686.83 

Shifted mean 

(µ) 1°C 
0.44 0.40 0.42 0.12 0.25 0.09 733.99 175.17 590.09 

Shifted mean 

(µ) 5°C 
0.46 0.45 0.43 0.15 0.30 0.11 2169.34 356.50 356.50 

Incr. SD (σ) 0.45 0.42 0.43 0.13 0.27 0.09 2399.10 228.41 2036.33 

 

Table 3.7 Summary of Predicted Pavement Distresses for Multiple Cities 

Climatic Data and Local Calibration Factors 

Climatic 

Condition 

Total Pavement  

Rutting (in.) 
AC Rutting (in) 

AC Thermal Cracking 

(ft/mile) 

BOI DEN DTM BOI DEN DTM BOI DEN DTM 

Historical 0.37 0.75 0.32 0.13 0.42 0.29 721.90 2592.57 175.13 

Shifted mean 

(µ) 1°C 
0.38 0.78 0.34 0.14 0.45 0.32 372.43 2592.57 175.12 

Shifted mean 

(µ) 5°C 
0.41 0.89 0.43 0.17 0.56 0.41 356.56 1879.12 356.50 

Incr. SD (σ) 0.39 0.81 0.36 0.15 0.48 0.34 2000.05 2592.57 177.89 

 

From the summary of the simulation results (with LCFs) presented in Table 3.7, it 

can be observed that the AC rutting predictions for Boise show less sensitivity to 

temperature change compared to the two other locations. This is clearly evident from 

results corresponding to the extreme case where the mean historical temperature was 

shifted by 5°C (9°F). Even for such a drastic change, the predicted AC rutting for Boise 
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changed by only 0.04 in. (from 0.13 in. to 0.17 in.). On the other hand, the AC rutting 

prediction for Denver changed from 0.42 in. to 0.56 in., and that for Detroit changed from 

0.29 in. to 0.41 in. This indicates that there are some differences between the LCFs used 

by the three states that lead to such drastically different sensitivities in AC rutting 

prediction with increasing temperature. This aspect was investigated as the next step in 

this thesis research. Note that the thermal cracking predictions listed in Table 3.7 did not 

show any consistent pattern between the three states. When the mean temperature was 

increased by 5°C, the AC thermal cracking for Boise and Denver decreased, whereas that 

for Detroit increased.     

Temperature Sensitivity Analysis Using PMED Rutting Prediction Model 

Rutting prediction results from the multi-location comparison presented in the 

above section highlighted the insensitivity of LCFs used in Idaho to temperature changes. 

A temperature sensitivity study was performed using the PMED rutting transfer function 

to investigate the effect of LCF values.  

Table 3.8 lists the LCFs for AC rutting established by the three states being 

compared in the current study. These calibrations factors are used in the transfer function 

presented in Equation 2.1. From Table 3.8 it can be seen that the Beta (β) coefficient 

values vary widely from one state to another, especially the values of β1 and β3. The K-

coefficient values, on the other hand, are identical for the three states as they correspond 

to the GCFs. As shown in Equation 2.1, β1 is the coefficient corresponding to the elastic 

strain (ɛ) in the asphalt layer, and β3 factor is the exponent of the temperature (T) 

variable in the transfer function. Accordingly, β3 directly affects how the transfer 

function captures the effect of temperature variations while predicting AC rutting.  
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Table 3.8 Comparison of Studied States LCFs Established for the AC Rutting 

Prediction Model 

Prediction 

Model 

Calibration 

Coefficient 

LCFs 

ID CO MI 

AC Rutting 

β1r 3 1.34 0.9453 

β2r 1 1 1.3 

β3r 0.661 1 0.7 

K1r -3.35412 -3.35412 -3.35412 

K2r 1.5606 1.5606 1.5606 

K3r 0.4791 0.4791 0.4791 

Table 3.9 lists how changing the β3 and T values (either simultaneously or 

separately) affects the AC rutting predictions. Using the AC rutting transfer function, 

considering all other variables of the transfer function to be constant, the AC rutting was 

calculated for three different scenarios based on different β3 and T values.  The first 

involved increasing β3 values while the T was kept constant. As expected, it was found 

that as the β3 increases, the calculated AC rutting also increases. Similarly, calculated 

rutting also increases when both β3 and T increase (second scenario).   
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Table 3.9 Sensitivity Analysis of PMED AC Rutting Transfer Function 

Analysis 

Scenario 
β3 T 

Calculated 

∆P(HMA) 

β3 increasing 

and T constant 

0.4 50 0.19 

0.661 50 0.31 

0.8 50 0.41 

1 50 0.59 

both β3 and T 

increasing 

0.4 30 0.17 

0.661 50 0.31 

0.8 70 0.46 

1 80 0.74 

β3 decreasing 

and T increasing 

1 30 0.15 

0.8 50 0.27 

0.666 70 0.35 

0.4 80 0.28 

However, when the β3 values decrease, but the temperature increases (third 

scenario), the rutting predictions reduce significantly. In other words, this clearly 

establishes that if a low value of β3 is established during local calibration efforts by a 

state highway agency, then the corresponding transfer function will be relatively 

insensitive to temperature variations while predicting AC rutting.  

From the coefficients listed in Table 3.8 it can be clearly seen that Idaho has the 

highest β1 value (β1 = 3), but the lowest β3 value (β3 = 0.661) among the three states 

being compared. This indicates that based on the LCFs used in Idaho, AC rutting is 

primarily governed by elastic strain in the asphalt layer, whereas the effect of temperature 
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changes is minimal. This is the reason, the PMED simulations using Idaho LCFs were 

relatively insensitive to temperature variations. Even the relatively large value of  β1 for 

Idaho did not lead to a noticeable increase in AC rutting with increasing temperatures. 

From Table 3.8 it can also be seen that the β3 value for Colorado was the highest (β3 = 

1.0), whereas that for Michigan (β3 = 0.7) was greater than that for Idaho (β3 = 0.661), 

but lower than that for Colorado (β3 = 1.0). Based on this observation, it is expected that 

the PMED simulations for Colorado would show the highest temperature sensitivity as 

far as AC rutting is concerned. This can be easily verified by the results presented in 

Table 3.7. 

Effect of LCFs on PMED Rutting Predictions Studied using different LCF and Climatic 

Data Combinations  

PMED simulation results corresponding to manual shifting of temperature 

distributions and the sensitivity analysis of the AC rutting prediction transfer function 

revealed that the effect of temperature change does not have a similar impact on 

pavement distress predictions at the three different locations under consideration. For 

example, Boise was found to have very little sensitivity to temperature changes, whereas 

results for Denver showed the highest temperature sensitivity, particularly in terms of AC 

rutting. This section presents findings from further PMED simulations performed to 

isolate the effects of varying LCFs from those of varying climatic data. The primary 

objective of this exercise was to investigate the underlying reason behind the insensitivity 

of PMED simulation results for Idaho to temperature variations.  
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To accomplish this objective, nine (9) different combinations of LCF and climatic 

data were considered, and PMED simulations were run for each combination. The 

combination considered were:  

1. Use the manually shifted climatic data for Boise with LCFs from the three 

different states (ID, CO, MI)  

2. Use the manually shifted climatic data for Denver with LCFs from the 

three different states (ID, CO, MI)  

3. Use the manually shifted climatic data for Detroit with LCFs from the 

three different states (ID, CO, MI) 

The simulation for each scenario was performed in a way where the respective local 

calibration factors available for each studied state were considered as the only variable 

instead of considering the climatic data as the variable of the design. In other words, for 

each scenario, three different simulations were run using three states LCFs and one 

common city's climatic data where all the inputs were kept the same except the LCFs.  

 Table 3.10 summarizes the results from the considered simulation scenarios. 

From Table 3.10 it can be observed that for all three simulation scenarios, while using the 

Idaho LCFs, the predicted rutting values exhibited minimal change from the base 

(historical) case to the different projected climatic conditions. In contrast, simulation 

results corresponding to LCFs from the two other states, increased sensitivity to 

temperature variations were observed. The findings from those simulations further 

reinforced the hypothesis that the LCFs for Idaho were established in a manner that the 

AC rutting predictions were rendered relatively insensitive to temperature variations.   
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Table 3.10 Summary of Simulation Results obtained from Different LCFs 

Analysis Scenarios 

Simulation Scenario 

Total Pavement Rutting (in.) AC Rutting (in) 

State LCF 

ID CO MI ID CO MI 

Using Boise (BOI) Climatic data 

Historical 0.37 0.78 0.44 0.13 0.45 0.42 

Shifted mean (µ) 1°C 0.38 0.80 0.47 0.14 0.47 0.45 

Shifted mean (µ) 5°C 0.41 0.92 0.59 0.17 0.60 0.57 

Incr. SD (σ) 0.39 0.84 0.52 0.15 0.52 0.49 

 Using Denver (DEN) Climatic data 

Historical 0.36 0.75 0.41 0.12 0.42 0.38 

Shifted mean (µ) 1°C 0.37 0.78 0.43 0.13 0.45 0.41 

Shifted mean (µ) 5°C 0.39 0.89 0.54 0.15 0.56 0.52 

Incr. SD (σ) 0.38 0.81 0.47 0.14 0.48 0.45 

 Using Detroit (DTM) Climatic data 

Historical 0.34 0.68 0.32 0.09 0.33 0.29 

Shifted mean (µ) 1°C 0.35 0.70 0.34 0.10 0.36 0.32 

Shifted mean (µ) 5°C 0.37 0.79 0.43 0.13 0.46 0.41 

Incr. SD (σ) 0.36 0.36 0.36 0.11 0.11 0.34 

 

Impact of Air Temperature Change on Pavement Temperature and AC Layer Modulus 

The above sections presented the argument that the LCFs used in the state of 

Idaho were established in a manner that rendered the AC rutting transfer function 

relatively insensitive to temperature variations. However, all the analyses presented 

above were based on changes in air temperature as the primary reference. It is well-
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known that temperature-dependent behaviour of flexible pavements is governed by the 

pavement temperature and not the air temperature. Therefore, the next step in this 

research effort was to analyze the intermediate files generated during PMED simulations 

to investigate how the different temperature distributions representing future climatic 

conditions affected the pavement layer temperatures. Moreover, variations in the AC 

sublayer moduli were also studied. If the pavement layer temperatures, as well as the AC 

sublayer moduli are found to exhibit expected trends, then it would be clearly established 

that the only factors rendering Idaho simulation results insensitive to temperature 

variations, were the LCFs.  

The distress models inherent to M-E pavement design do not directly use the air 

temperature to predict pavement response and performance. Instead, the Enhanced 

Integrated Climatic Model (EICM) (Larson & Dempsey, 1997) uses air temperature as an 

input and generates the mean, standard deviation, monthly quintile temperature (dividing 

the monthly temperature distribution into five equal groups), and hourly pavement 

temperature as outputs, which then directly feed into the different PMED distress 

prediction models. The monthly mean, standard deviation, and quintile points are used by 

the permanent deformation and fatigue prediction models, whereas the hourly pavement 

temperature data of the bound layers is used by the thermal cracking prediction model. 

Details of pavement EICM output data, as well as the layer modulus calculation process 

of each pavement sublayer and PMED performance prediction methodologies have been 

discussed in chapter 3 of the NCHRP 1-37A final report (ARA. 2004)  and in chapter 5 of 

the MEPDG 3rd edition (AASHTO, 2020). 
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The current study evaluated the impact of the air temperature on pavement 

sublayer temperature as well as the AC sublayer modulus for two of the studied locations 

(Boise, and Denver). Note that the values for Detroit have been eliminated from this 

particular section for the sake of brevity. Also, as previously discussed, the PMED 

simulation results for Denver and Boise exhibited the highest and lowest temperature 

sensitivities, respectively. Therefore, close examination of the pavement temperature and 

AC sublayer modulus data for these two locations would provide the required 

information. It is expected that the values for Detroit would follow a similar pattern. The 

algorithms inherent to PMED assume the temperature data to be normally distributed and 

divides the data into five equal quintiles (each quintile comprising 20% of the data). The 

first quintile represents the lowest data points of the distribution, whereas the fifth 

quintile represents the highest data points. Note that the PMED intermediate files 

corresponding to only one of the simulation scenarios (where the mean temperature has 

been shifted by 5°C to represent extremely warm climates in the future) have been 

discussed here for the sake of brevity.   

Figure 3.5 compares the monthly fifth (5th) quintile temperature distributions for 

the historical and projected years for Boise and Denver. These temperature values were 

obtained from the respective PMED intermediate files named '_fatigue.dat.' This file 

records the monthly quintile pavement temperatures of each AC sublayer. It also reports 

the mean and standard deviation of each month's temperature data. Figures 3.5(a) and 

3.5(b) show the comparison between historical and projected quintile pavement 

temperatures for the AC surface and AC-bottom layers, respectively, corresponding to 

the Boise climatic data. For both layers, higher 5th quintile pavement temperatures were 



49 

 

observed for the future case compared to the historical case. This clearly establishes that 

the increased air temperatures generated in this study indeed results in increased 

pavement temperatures. A similar trend was observed for Denver as shown in Figures 

3.5(c) and 3.5 (d).  

 

(a) 
(b) 

(c) (d) 

Figure 3.5 Comparison between the Monthly 5th Quintile Pavement 

Temperature of the Historical and Projected Case: (a) Boise - AC Surface; (b) Boise 

- AC Bottom; (c) Denver - AC Surface; (d) Denver - AC Bottom 

Once it was established that the change in air temperature led to corresponding 

change in AC sublayer temperature, the next step was to investigate how these increased 

pavement temperatures affected the AC sublayer moduli. Generally, an increase in air 

temperature increases pavement temperature, and eventually, decreases the AC layer 

modulus. The "layermodulus.tmp" intermediate file, generated during PMED simulations 
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documents each AC sublayer modulus for each monthly quintile temperature. It also 

records the modulus values for the base, subbase, and subgrade layers at different depths. 

Figure 3.6 compares the AC sublayer modulus values between the historical and 

projected case at the surface and bottom of the AC layer, calculated for the 5th quintile 

pavement temperature. Figures 3.6 (a) 3.6(b) compare the AC surface and bottom 

sublayer moduli, respectively, for the Boise climatic data. It can be observed that the 

distribution of the AC layer modulus calculated corresponding to the 5th quintile 

temperature data is higher for the historical (base) case compared to the projected case. 

This is expected as increasing air temperature in the projected case would ultimately lead 

to reduced AC modulus. Similar data for Denver have been presented in Figures 3.6(c) 

and 3.6(d). It should be noted that a significant difference between the historical and 

projected AC sublayer moduli was observed for Denver, whereas the difference for Boise 

was not as significant.    
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(a) 
(b) 

(c) (d) 

Figure 3.6 Comparison between the AC Sublayer Modulus of the Historical and 

Projected case: (a) Boise - AC Surface (b) Boise - AC Bottom; (c) Denver - AC 

Surface (b) Denver - AC Bottom 

Another critical parameter to study from the intermediate data file was the hourly 

pavement temperature. The 'thermal.dat' intermediate files documents the hourly 

pavement temperature profile with respect to depth of the AC layer. Figure 3.7 shows the 

comparison between AC surface and bottom hourly temperature distributions 

corresponding to the historical and projected climatic cases; data for both Boise and 

Denver have been presented  
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(a) 

(b) 

(c) (d) 

Figure 3.7 Comparison between the Hourly Pavement Temperature at the End 

of Historical and Projected Case: (a) Boise - AC Surface; (b) Boise - AC Bottom; (c) 

Denver - AC Surface; (d) Denver - AC Bottom 

Figures 3.7(a) and 3.7(b) show that for Boise, the AC surface and bottom 

temperature changed significantly at the end of the pavement design life. This is expected 

as the projected air temperatures will be the highest at the end of the design period. 

Figures 3.7(c) and 3.7(d) present the same data for Denver, where the trends are identical 

to that for Boise. 

Overall, the results presented in this section confirmed that air temperature change 

has a significant impact on the pavement quintile temperatures, AC sublayer moduli, as 

well as hourly pavement temperature distributions within the AC layer. Findings from 

that parametric analysis established that PMED was able to adequately transfer the 
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increased air temperatures into increased pavement temperatures using the EICM. 

Accordingly, the relative insensitivity of Idaho simulation results to temperature increase 

is most likely due to the nature of the established LCF values. Before making a final 

conclusion regarding this, the final task was to investigate the temperature sensitivity of 

the dynamic modulus data for the asphalt mix used in the pavement section. This was 

done to eliminate the possibility that the base (historical) temperature for Boise lies in a 

“flat” region of the dynamic modulus curve, leading to insignificant change in AC 

modulus even when the temperature is increased by 5°C. Results from this investigation 

are presented in the following section.  

Impact of Air Temperature Change on Dynamic Modulus (E*) of Asphalt Mix 

As already mentioned, this task aimed at studying the change in dynamic modulus 

of the asphalt mix used in the pavement section when the temperature values were 

changed. The dynamic modulus data for the asphalt was obtained from a database 

established for ITD by Bayomy et al. (2018). The primary objective was to plot the 

dynamic modulus (E*) master curve for the particular asphalt mix against temperature. 

The E* value corresponding to the mean AC surface temperature from the historical 

temperature distribution was identified. Then this value was “shifted” by 5º C and the 

corresponding E* values were read for two different frequencies (0.1 Hz and 10 Hz). This 

exercise would give an idea about the temperature sensitivity of the E* data for the 

particular mix.  

Figure 3.8 shows the results from this exercise. For example, considering the E* 

vs. temperature curve corresponding to 0.1 Hz, the mean AC surface temperature of 59 

°F corresponding to the base condition yields an E* value of 445090 psi. However, when 
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the temperature is shifted by 5ºC (or 9°F), the E* value reduces to 239528 psi.  As the 

mean AC surface temperature increases by 5°C, the AC dynamic modulus decreases by 

205562 psi.  Similarly, for the modulus vs. temperature curve corresponding to 10 Hz, 

increasing the mean AC temperature by 5°C leads to a reduction in AC dynamic modulus 

by 350598 psi (from 1215832 psi to 865234 psi). Therefore, it can be summarized that 

the AC dynamic modulus (E*) of the mix used in this study shows significant 

temperature sensitivity. This temperature sensitivity should ultimately be reflected in the 

pavement performance predictions.  

 
Figure 3.8 Effect of Temperature Change on Dynamic Modulus (E*) of Asphalt 

Binder (PG 64-28) 

Using Generalized Climatic Models (GCMs) to Project Temperature Data 

The first part of the current research study focused on artificially shifting the 

historical temperature distribution to generate synthetic temperature distributions for the 

future. This temperature data was then used as input during PMED simulations to study 

the effect of varying temperatures on flexible pavement performance prediction. The 
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primary focus during the first part was to get an in-depth understanding of the PMED 

transfer functions, and how the temperature changes were captured by the transfer 

functions during pavement analysis and performance prediction. Once that objective was 

accomplished, the next task involved generating more realistic temperature distributions 

for the future using Global Climatic Models (GCMs). Twenty (20) GCMs of the Coupled 

Model Inter-Comparison Project-Phase 5 (CMIP5) (Taylor et. al., 2012) were collected 

from the Multivariate Adaptive Constructed Analogs (MACA) dataset (Abatzoglou 

& Brown, 2012). The MACA is a statistical downscaling procedure to downscale the 

GCMs. Further details on MACA statistical procedures can be obtained elsewhere 

(Abatzoglou & Brown, 2012). . Future climatic data for approximately 100 years (2005-

2100) were projected based on two different Representative Concentration Pathway 

(RCP) scenarios, e.g., RCP 4.5 and RCP 8.5.  

A total of four (4) different types of pathway scenarios (RCP 2.6, RCP 4.5, RCP 

6, and RCP 8.5) are available depending on the level of future green-house CO2 emission. 

In other words, RCP scenarios mainly depend on the mitigation measures that will be 

considered to prevent the effect of future climate change. For example, RCP 2.6 means 

stringent mitigation measures will be taken to avoid the impact of climate change, which 

eventually stops the CO2 emission in the mid of the 21st century. However, RCP 8.5 is an 

extreme scenario that considers no mitigation measures will be taken, and the CO2 

emission will continue in the 21st century and beyond (Pachauri et al., 2014). The RCP 

4.5 and RCP 6 are intermediate scenarios considering that some mitigation steps will be 

adopted in the future to lessen the CO2 emission and climate change effects. The range of 

global mean surface temperature change in mid- (2046-2065) and late- (2081-2100) 21st 
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century was predicted based on the different RCP scenarios. Pachauri et al. (2014) 

presented detailed information about the different RCP scenarios; detailed discussions on 

the different scenarios are beyond the scope of the current master’s thesis.  Note that both 

RCP 4.5 and RCP 8.5 scenarios were considered to project future temperature 

distribution data, that were subsequently used during PMED simulations. 

Downscaling of Daily GCM-Projected Temperature Data to Hourly Data  

All parameters in the GCM-projected climatic dataset are similar to those in the 

MERRA historical climatic database except for the percent sunshine (%). GCM dataset 

consists of solar radiation (%) instead of percent of sunshine (%). However, this is not 

significant in the present context as the primary focus of the current thesis research was 

to study the effect of temperature changes on flexible pavement performance. Even for 

cases where the future temperature was projected using the GCMs, all other climatic 

parameters were kept the same as the MERRA historical dataset.  

The first task before using GCM-projected temperature distributions with PMED 

was to downscale the data. The PMED software and the inherent Enhanced Integrated 

Climatic Model (EICM) require hourly climatic data as inputs. However, the GCM-

projected datasets consist of daily data for all climatic parameters, including daily 

maximum and daily minimum temperatures. Accordingly, the first step in this work 

involved downscaling of the temperature data from a "daily scale" to an "hourly scale". 

This was accomplished by using the "Modified Imposed Offset Morphing Method (M-

IOMM)" developed by Belcher et al. (2005). This specific method was taken from a 

similar study conducted by Gudipudi et al. (2017) where they used the same downscaling 

method.  Equation 3.2 shows the procedure for the modified morphing method, which 
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can produce hourly future temperature data (TiF) using the projected daily maximum and 

minimum values (TFMax and TFMin), as well as the available MERRA hourly historical 

data (TiB).  

 𝑇𝑖𝐹=
(𝑇𝐹𝑀𝑎𝑥−𝑇𝐹𝑀𝑖𝑛)

(𝑇𝐵𝑀𝑎𝑥−𝑇𝐵𝑀𝑖𝑛)
×(𝑇𝑖𝐵−𝑇𝐵𝑀𝑖𝑛)+𝑇𝐹𝑀𝑖𝑛 (3.2) 

As seen from the above equation, the modified morphing method assumes that the 

minimum base hourly temperature gets translated to the minimum future hourly 

temperature; the same is assumed for the maximum base hourly temperature. For 

example, if historical data indicates that the minimum temperature on a given day 

occurred at 2 AM, then the modified morphing method assumes that the minimum 

temperature in the future will also occur at 2 AM. The same is the case with the 

maximum temperature. It should be noted that this approach may not be "strictly correct" 

as far as climate change is concerned. It is quite possible that the temperature distribution 

within a day will change in the future. Therefore, the times associated with minimum and 

maximum temperature may also change. However, modelling of such complex patterns 

was beyond the scope of this study, and therefore, the modified morphing approach was 

adopted in the current study for downscaling of the GCM-projected temperature data.  

A MATLAB® script was developed to downscale the daily temperature data from 

all 20 GCM models using Equation 3.2 and generate the future hourly temperature 

distribution. The followings steps summarize the downscaling approach using the 

developed MATLAB® code: 

1. Load historical MERRA climatic data and extract hourly historical temp data (TiB) 

for the 20-year period (for e.g., the historical period in this analysis was from 

1985 till 2005); 
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2. Extract daily max (TBMax) and min (TBMin) values from the TiB data, and calculate 

( )BMax BMinT T- ;  

3. Load the GCM- projected climatic data (corresponding to RCP 4.5 or RCP 8.5 

scenarios); 

4. Extract daily max (TFMax) and min (TFMin) temperature data for the 20-year period 

of interest (the period of interest was set to 2046-2065 in the current study); 

5. Convert the unit of temperature from Kelvin (K) to degree Fahrenheit (°F); 

6.  Calculate the difference between GCM-projected daily max and daily min 

temperatures ( )FMax FMinT T- ; 

7. Use Equation 3.2 to calculate the hourly future temperature data (TiF); 

8. Replace the historical hourly temperature data (TiB) with the downscaled future 

hourly temperature data (TiF); 

9. Save the data as a new ".hcd" file for use with PMED. 

Although the projected temperature data for all 20 GCMs corresponding to both 

RCP 4.5 and 8.5 scenarios were downscaled, only four (4) models were randomly 

selected in this study (see Table 3.11) for PMED simulations. The projected temperature 

distributions for all 20 GCMs were quite similar to each other, and the selection of four 

models out of 20 was sufficient for purposes of the current study. Two of the selected 

models were developed in the US, whereas one was developed in the United Kingdom 

(UK), and the fourth was developed in China. Note that for the sake of simplicity, the 

model ID (M1 through M4) has been used in the current document during the 

discussions.  
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Table 3.11 Global Climate Models (GCMs) Selected in the Current Study for Use 

with PMED 

Model ID Model Name Developed by 

M1 BNU-ESM China 

M2 CCSM4 USA 

M3 GFDL-ESM2G USA 

M4 HadGEM2-ES365 UK 

Figure 3.9 compares the temperature distributions projected by the four selected 

GCMs for Boise at the end of the design period (year 2065). From the boxplots in Figure 

3.9 it can be seen that the median temperature values (indicated by the red horizontal 

lines) corresponding to the four models were very close to each other, and ranged 

between 50°F to around 55°F. The highest median value observed for Model M1. 

Similarly, a good correlation was observed between the 75th and 25th percentile 

temperature values from the four models. Besides, models M2 and M4 have wider range 

of projected temperature data compared to M1 and M3. Overall, no significant difference 

was observed between the projected temperature distributions from the four selected 

models.  
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Figure 3.9 Comparison of Temperature Distributions Projected by the Four 

Selected GCMs for Boise in the Year 2065  

Figure 3.9 clearly shows that the downscaled temperature data from the four 

selected models show a very high degree of correlation. For the sake of graphical 

representation, Figure 3.10 shows the projected temperature distribution for only one of 

the four models (M2-CCSM4) corresponding to the RCP 8.5 scenario. From Figure 3.10, 

the increase in frequencies corresponding to high temperatures in the Year 2065 can be 

observed for all three locations considered. This gives an idea of how temperature will be 

changing in the mid-21st century at the studied locations. It also clearly establishes that in 

the near future, pavement structures will be exposed to harsher temperature conditions. In 

light of this, the current practice of designing pavements assuming stationary climatic 

conditions is clearly inadequate.  
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(a) (b) 

 
(c) 

Figure 3.10 Comparison between the Temperature Frequency Distributions for 

Years 2005 and 2065 for: (a) Boise; (b) Denver; (c) Detroit 

Usually, the air temperatures become warmer during summer months, and the 

resulting high pavement temperatures make them more susceptible to the temperature-

sensitive distresses such as rutting. Although Figure 3.10 presented a picture of the 

overall temperature distribution for the two years being compared, a closer look at the 

temperature values on a smaller time scale would give a better idea regarding whether the 

temperatures are predicted to increase or decrease from 2005 to 2065. Accordingly, 

Figure 3.11 compares the summer temperatures in Boise, ID for the year 2005 

(historical), and 2065; the future temperatures were projected using M2-CCSM4 for the 

RCP 8.5 scenario. Similar to the case for manual shifting (see Figure 3.1), the 

temperatures for the two years were compared at three different scales (hourly, weekly, 
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and monthly). Figure 3.11 confirms that the pavement will be exposed to higher 

temperatures during the summer of 2065 compared to what it was subjected to during the 

summer of 2005. Similar trends were observed for the two other cities (Denver and 

Detroit). However, the graphical representations of those trends have been excluded from 

the current chapter for the sake of brevity.  

(a) (b) 

 

(c) 

Figure 3.11 Comparing the Temperatures for Boise in 2005 and 2065 at Different 

Time Scales: (a) Hours in a Day; (b) Days in a Week; (c) Days in a Month  
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Analysis of Temperature Sensitivity of PMED Distress Predictions using GCM-

Projected Data 

Comparison Between Historical and GCM-Projected Cases: Multiple Cities 

Similar to the case of manual shifting of temperature distribution, the GCM-

projected temperature distributions were also taken for three different locations (Boise, 

Denver, and Detroit), and corresponding PMED simulations were run to compare the 

pavement performance predictions. As already mentioned, only four (4) GCM models 

were used for this purpose. The analyses were performed between the time periods 2046 

to 2065 for both RCP 4.5 and RCP 8.5 scenarios.  

Table 3.12 compares the simulation results obtained for the historical and GCM-

projected temperature distribution scenarios. Just like the case for manual shifting, the 

results for Boise seem to have a very low sensitivity to temperature change in terms of 

AC rutting prediction. In contrast, with almost similar temperature conditions, Denver 

shows very high sensitivity to the temperature change at the end of the design life. 

Besides, for some projected cases of Detroit, the thermal cracking increases with an 

increase in temperature, which is definitely related to the pavement cooling rate and 

tensile strength of asphalt mix.  

Overall, the comparison of simulation results for RCP 4.5 and RCP 8.5 from 

Tables 3.12 clearly shows that the RCP 8.5 scenario has a higher impact on distress 

prediction than RCP 4.5 due to its extreme projection of temperature change. Finally, 

three of the GCMs were found to have a similar impact on pavement distress predictions 

except for Model 4, which showed the highest distresses. 
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Table 3.12 Summary of multiple cities GCM projected LCFs simulations results 

Model 

Total Pavement  

Rutting (in.) 
AC Rutting (in) 

AC Thermal  

Cracking (ft/mile) 

BOI DEN DTM BOI DEN DTM BOI DEN DTM 

Historical 

MERRA 0.37 0.75 0.32 0.13 0.42 0.29 721.90 2592.57 175.13 

Projected- RCP 4.5 

M1 0.38 0.82 0.42 0.14 0.49 0.40 216.20 2592.57 175.12 

M2 0.38 0.83 0.41 0.14 0.49 0.39 217.29 2592.57 175.12 

M3 0.38 0.80 0.40 0.14 0.47 0.37 350.67 2592.57 175.12 

M4 0.39 0.86 0.47 0.15 0.53 0.44 175.13 2592.57 356.50 

Projected- RCP 8.5 

M1 0.39 0.84 0.46 0.15 0.51 0.43 383.92 2592.57 356.50 

M2 0.38 0.84 0.45 0.15 0.51 0.42 175.12 2592.57 175.12 

M3 0.38 0.83 0.41 0.14 0.50 0.39 175.17 2592.57 175.12 

M4 0.40 0.90 0.53 0.16 0.57 0.50 356.50 2773.95 356.50 

 

Effect of LCFs on PMED Rutting Predictions due to GCM-Projected Temperature 

Distributions  

Just like the case for manual shifting of temperature distributions, the following 

three PMED GCM scenarios were simulated to evaluate the effect of LCFs on PMED 

rutting prediction.  

1. Use the GCM-projected climatic data for Boise with LCFs from the three 

different states (ID, CO, MI)  
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2. Use the GCM-projected climatic data for Denver with LCFs from the 

three different states (ID, CO, MI)  

3. Use the GCM-projected climatic data for Detroit with LCFs from the three 

different states (ID, CO, MI)  

Projected temperature data for two of the GCMs (M2 and M4) under RCP 8.5 

projected scenario were considered for the LCFs analysis. Table 3.13 summarizes the 

predicted rutting results from all the PMED simulations. Results confirm a similar trend, 

which was observed from the manual shifting simulations. As previously observed, the 

LCFs for Idaho were relatively insensitive to temperature increases while predicting 

pavement performance.     
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Table 3.13 Summary of Simulation Results obtained from Different LCFs and 

Same GCMs Climatic Data  

Climatic 

Condition 
Model 

Total Pavement 

Rutting (in.) 
AC Rutting (in) 

State LCF 

ID MI CO ID MI CO 

GCM-Projected Climatic Data for BOI 

Historical MERRA 0.37 0.78 0.44 0.13 0.45 0.42 

Projected- 

RCP 8.5 

M2 0.38 0.84 0.51 0.15 0.52 0.48 

M4 0.40 0.90 0.57 0.16 0.58 0.55 

  GCM-Projected Climatic Data for DEN 

Historical MERRA 0.36 0.75 0.41 0.12 0.42 0.38 

Projected- 

RCP 8.5 

M2 0.38 0.84 0.50 0.14 0.51 0.47 

M4 0.40 0.90 0.56 0.16 0.57 0.54 

  GCM-Projected Climatic Data for DTM 

Historical MERRA 0.34 0.68 0.32 0.09 0.33 0.29 

Projected- 

RCP 8.5 

M2 0.37 0.80 0.45 0.13 0.47 0.42 

M4 0.39 0.87 0.53 0.15 0.54 0.50 
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CHAPTER FOUR: SUMMARY, FINDINGS, AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

Summary and Findings 

This research study primarily focused on investigating how the Mechanistic-

Empirical Pavement Design approach implemented into AASHTOWare Pavement ME 

Design (PMED) accommodates the effect of climate change on flexible pavement 

performance. Only the effects of temperature change on flexible pavement performance 

was studied. Temperature distributions for the future were generated using two different 

approaches: (1) manual shifting of the historical temperature distribution, and (2) 

downscaling of temperature distributions projected by established global climatic models 

(GCMs). PMED simulations were run for the different temperature distribution scenarios, 

and the performance predictions were compared against the base case (where the 

historical temperature distribution was used assuming stationary climatic conditions). 

Initial analysis was performed only for Boise, ID, using both the Global Calibration 

Factors (GCFs) and Local Calibration Factors (LCFs). However, subsequent analysis was 

done by considering two more study locations, i.e., Denver, Colorado, and Detroit, 

Michigan. A comparative analysis of the predicted parameters for three states and 

different climatic scenarios were conducted to identify the variability in distress 

predictions due to different geographic conditions. Besides, this study also extensively 

analyzed the transfer functions of PMED performance models and the effect of Local 

Calibration Factors (LCF’s) in predicting the temperature sensitivity. Moreover, PMED-
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generated intermediate files were analyzed to study the impact of air temperature on 

pavement temperature and AC layer modulus at the end of the design life.  

The major findings of this study are as follows: 

1. The effect of changing air temperatures can be different for pavements 

constructed in different parts of the country. 

2. Temperature change was found to have no significant effect on bottom-up 

fatigue cracking predictions. 

3.  Rutting and thermal cracking predictions vary significantly based on the 

LCFs used by different state highway agencies. 

4.  LCFs established for Idaho, were the least sensitive in capturing the effect of 

temperature change on flexible pavement performance. This was directly 

attributed to the low value of β3 (temperature exponent) established for Idaho 

through the local calibration effort.  

5. Colorado’s LCF’s were found to have a very high sensitivity to the 

temperature change in predicting the pavement distresses. Once again, this 

was attributed to the highest value of β3 among the three locations being 

compared.  

6. Analysis of monthly quintile temperature and hourly temperature of the 

pavement AC layer as well as sublayer AC modulus showed expected trends 

due to changes in projected air temperatures. As the air temperature increased, 

the AC layer temperature increased, and the AC sublayer moduli decreased. 

7.  Simulations results for some projected scenarios indicated an increase in 

thermal cracking due to the increased temperatures. This was attributed to 
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high cooling rate of the pavement surface as well as reduced asphalt tensile 

strength at higher temperatures. However, inconsistent thermal cracking 

trends were also observed for some of the scenarios 

8. PMED simulations using GCM-projected temperature data confirmed all the 

observations made through the manual shifting 

Recommendation for Future Research 

Based on the research findings and knowledge gained from the different research 

tasks, the following recommendations for future research can be made: 

1. This study considered a new (hypothetical) pavement section for studying the 

temperature sensitivity of predicted performance. In future research, 

considering an existing pavement section at the studied location(s) would 

produce more realistic results. 

2. Similar analyses should be conducted on pavement sections with different AC 

layer thicknesses and material properties to assess how variations in the 

pavement structure and material properties affect the temperature sensitivity.  

3. The current study only focused on temperature changes while studying the 

effects of climate change on flexible pavement performance. Similar studies 

should be carried out to study the effects of precipitation as well as percent 

sunshine. Also, a separate study is required to study the effects of climate 

change on rigid pavement performance.  

4. Findings from this study indicated that the LCFs established for Idaho were 

relatively insensitive to temperature changes. This aspect should be further 
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investigated, and if necessary, some of the LCFs used in Idaho should be 

updated. 
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