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ABSTRACT 

Northern peatlands are a major terrestrial carbon (C) store, with an annual sink of 

0.1 Pg C yr-1 and a total storage estimate of 547 Pg C. Northern peatlands are also major 

contributors of atmospheric methane, a potent greenhouse gas. The microtopography of 

peatlands helps modulate peatland carbon fluxes; however, there is a lack of quantitative 

characterizations of microtopography in the literature. The lack of formalized schemes to 

characterize microtopography makes comparisons between studies difficult. Further, 

many land surface models do not accurately simulate peatland C emissions, in part 

because they do not adequately represent peatland microtopography and hydrology. The 

C balance of peatlands is determined by differences in C influxes and effluxes, with the 

largest being net primary production and heterotrophic respiration, respectively. Tree net 

primary production at a treed bog in northern Minnesota represented about 13% of C 

inputs to the peatland, and marks tree aboveground net primary production (ANPP) as an 

important pathway for C to enter peatlands. Tree species Picea mariana (Black spruce) 

and Larix Laricina (Tamarack) are typically found in wooded peatlands in North 

America, and are widely distributed in the North American boreal zone. Therefore, 

understanding how these species will respond to environmental change is needed to make 

predictions of peatland C budgets in the future. As the climate warms, peatlands are 

expected to increase C release to the atmosphere, resulting in a positive feedback loop. 

Further, climate warming is expected to occur faster in northern latitudes compared to the 
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rest of the globe. The Spruce and Peatland Responses Under Changing Environments 

(SPRUCE; https://mnspruce.ornl.gov/) manipulates temperature and CO2 concentrations 

to evaluate the in-situ response of a peatland to environmental change and is located in 

Minnesota, USA. In this dissertation, I documented surface roughness metrics for 

peatland microtopography in SPRUCE plots and developed three explicit methods for 

classifying frequently used microtopographic classes (microforms) for different scientific 

applications. Subsequently I used one of these characterizations to perform a sensitivity 

analysis and improve the parameterization of microtopography in a land surface model 

that was calibrated at the SPRUCE site. The modeled outputs of C from the analyses 

ranged from 0.8-34.8% when microtopographical parameters were allowed to vary within 

observed ranges. Further, C related outputs when using our data-driven parameterization 

differed from outputs when using the default parameterization by -7.9 - 12.2%. Finally, I 

utilized TLS point clouds to assess the effect elevated temperature and CO2 

concentrations had on P. mariana and L. laricina after the first four years of SPRUCE 

treatments. I observed that P. mariana growth (aboveground net primary production) had 

a negative response to temperature initially, but the relationship became less pronounced 

through time. Conversely, L. laricina had no growth response to temperature initially, but 

developed a positive relationship through time. The divergent growth responses of P. 

mariana and L. laricina resulted in no detectable change in aboveground net primary 

production at the community level. Results from this dissertation help improve how 

peatland microtopography is represented, and improves understanding of how peatland 

tree growth will respond to environmental change in the future. 

 

https://mnspruce.ornl.gov/
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CHAPTER ONE: INTRODUCTION 

Peatlands are wetland ecosystems that are characterized by large quantities of 

accumulated organic material called peat which are the remains of plants and animals that 

have not fully decomposed. Peatlands can broadly be defined as peat-covered terrain, but 

many definitions incur a minimum peat depth (e.g., 0.3-0.4m) to be classified as a 

peatland (National Wetlands Working Group, 1997; Joosten and Clarke, 2002; Rydin and 

Jeglum, 2013). The highest concentration of peatlands is in the northern latitudes 

covering 4 million km2, with tropical (368,500 km2) and southern peatlands (45,000 km2) 

being less common (Yu et al., 2010). Peatlands take on various forms depending on their 

morphology and hydrology. Two main types of peatlands are bogs and fens, which differ 

depending on whether they receive the majority of water and nutrients from precipitation 

(ombrotrophic bogs) or whether they receive water and nutrients from surface and/or 

groundwater (minerotrophic fen). 

Incomplete decomposition of peat is a result of saturated or partially saturated 

soils driven by water tables near the peat surface that lead to anoxic conditions and 

reduce the rate of decomposition. Additionally, many plants frequently found in 

peatlands have tissue that is resistant to decomposition. Sphagnum mosses are one such 

plant, and are an essential component of the plant community in most peatlands. 

Sphagnum mosses are able to tolerate the moist, cool, and low nutrient conditions 

common in peatlands. Sphagnum is not only able to thrive in acidic conditions 

characteristic of peatlands, they also contain chemical compounds that make them 
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resistant to decay and promote acidic, wet, and anoxic conditions (Rydin and Jeglum, 

2013). Due to the unique role Sphagnum plays in peatland development and their ability 

to maintain conditions which facilitate peat production, Sphagnum are often described as 

‘builders’, ‘engineers’, and ‘a keystone’ of peatland ecosystems (Rydin and Jeglum, 

2013; Rochefort, 2000; Norby et al., 2019). Sphagnum is also a major contributor of peat, 

accounting for about half of carbon (C) inputs into peatlands (Szumigalski and Bayley, 

1996; Rydin and Jeglum, 2013; Griffiths et al., 2017; Hanson et al. 2020). 

Like all bryophytes, Sphagnum mosses are non-vascular and must grow in wet or 

moist conditions. As a result, Sphagnum photosynthesis is related to water content 

(Rydin, 1985), and Sphagnum water content is related to peatland water table depth 

(Schipperges and Rydin, 1998). Tuitilla et al. (2004) performed a 4-year field study in 

which they measured Sphagnum gross primary production (GPP) in relation to water 

table depth and found that GPP increased by over 100% when the water table position 

moved up from -0.3m to -0.2m, and that the optimum water table depth for Sphagnum 

GPP was -0.12m. Small variations in elevation of the peatland surface modulate the depth 

to the water table, and therefore modulate Sphagnum GPP. This spatial variation in the 

elevation of the peatland surface is termed microtopography. 

In addition to Sphagnum GPP, peatland microtopography plays a major role in 

many other biogeochemical processes, and is a key driver of: decomposition rates 

(Johnson and Damman, 1991), plant species distributions (Andrus et al., 1983), plant 

productivity (Moore, 1989), and nutrient availability (Damman, 1978; Chapin et al., 

1979). The microtopography of peatlands is typically an undulating surface with 

depression-like areas that are at or near the water table and mound-like areas (~10’s of 
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cm tall) that have a greater depth to the water table. These depression and mound-like 

areas are often generalized into topographic classes referred to as microforms, where the 

depression-like areas are hollows and the mound-like areas are hummocks. Due to their 

morphological differences, hummocks and hollows exhibit differences in carbon flux, 

with hummocks typically exhibiting higher carbon dioxide (CO2) flux, while hollows 

comparatively exhibit higher methane (CH4) emissions (Kim and Verma, 1993; Bubier et 

al., 1993; Waddington and Roulet, 1996). Higher CO2 emissions in hummocks are largely 

a result of hummocks having higher temperatures and more aerobic conditions than 

hollows (Bubier et al., 1993). Water table position is highly correlated with CH4 flux 

(Bubier et al., 1993) and higher methane (CH4) emission in hollows is a product of higher 

moisture content (often inundation), which leads to anaerobic decomposition of organic 

material (Moore and Knowles, 1989; Bubier et al., 1993). 

Understanding the influence of environmental change on C storage in peatlands is 

necessary to make informed predictions and simulations of the future dynamics of the 

global C cycle. Due to slow decomposition in peatlands, the rate at which (C) enters 

peatlands through GPP is faster than the rate C leaves the system, primarily through 

respiration. This imbalance of incoming and outgoing C fluxes in peatlands causes peat 

(and C) to accumulate in peatlands, and is the reason peatlands are C sinks and represent 

a large C pool. Peatlands accumulate peat at typical rates of 20-30 g C m-2 yr-1 (Yu et al., 

2010), which translates to a total annual sink of 0.1 Pg C yr-1 for northern peatlands 

(Waddington and Roulet, 1996). This slow accumulation of C has been occurring for the 

last ~ 7,000-14,000 years (Yu, 2011; Morris et al., 2018) resulting in estimates of total 

northern peatland C storage of 547 (473 - 621) Pg C (Yu et al., 2010). The immense 
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amount of C currently stored in peatlands and their capability to continue to store C 

demonstrates their importance to the global C cycle. Additionally, anaerobic conditions 

in northern peatlands result in major emissions of CH4 to the atmosphere (Bubier et al., 

1993). This is important in the context of environmental change, as CH4 is the second 

most important greenhouse gas, and has a global warming potential 25-28 times stronger 

than CO2 at the 100-year time horizon (Boucher et al., 2009). It is estimated that 30 - 35 

Tg CH4 yr-1 are emitted from northern peatlands (Post et al., 1982; Gorham, 1991).  

While peatlands have been C sinks previously, the fate of the large quantities of C 

stored in peatlands is unclear as the climate warms. Recent warming studies have 

demonstrated that peatlands could switch from C sinks to C sources with warming 

(Hanson et al., 2020), and that warming resulted in a significant increase in CH4 

emissions (Wilson et al., 2016; Hopple et al., 2020). The influence of climate warming on 

northern peatlands is exacerbated by warming occurring faster in northern latitudes (3-8 

°C by 2100; Northeast Climate Impacts Assessment, 2006), which is the region of the 

globe with the highest density of peatlands. 

The Spruce and Peatland Under Changing Environments (SPRUCE; 

https://mnspruce.ornl.gov/) experiment measures how a northern peatland responds to 

environmental change via in-situ treatments of whole-ecosystem-warming and elevated 

CO2 concentrations. The SPRUCE experimental site is located in the Marcell 

Experimental Forest in Northern Minnesota, USA, within the S1 bog (47◦30.476 N; 

93◦27.162 W; 418 m above mean sea level), which is an 8.1 ha acidic (pore water pH ≈ 

3-4) ombrotrophic peat bog with average peat depths of 2.27m and the basal age of the 

deepest centimeter of peat ranging from 5,100 - 11,100 cal BP (Sebestyen et al., 2011; 

https://mnspruce.ornl.gov/
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Slater et al., 2012; Griffiths and Sebestyen, 2016; McFarlane et al., 2018). The study 

comprises 10 open-top octagonal enclosed plots (height = 7m; diameter = 12.8m; area = 

114.8 m2). The temperature treatments include deep-peat heating that uses heating 

elements extending ~3m into the peat (Hanson et al., 2017) combined with air warming 

achieved by blowing heated air 1m above the peat surface to achieve heating throughout 

the enclosed air space (Hanson et al., 2017). The target differential temperature 

treatments at SPRUCE are +0, +2.25, +4.5, +6.75, and +9 °C with two plots at each 

temperature treatment. One plot for each temperature treatment receives elevated CO2 

(eCO2) by injecting pure CO2 to a target concentration of +500 ppm above ambient 

(Hanson et al., 2017). 

The SPRUCE experiment uses a model-experimental coupling (MODEX) 

framework to incorporate understanding gained from experimental data into 

computational models. One such model is the land surface component (ELM) of the 

Energy Exascale Earth System Model (E3SM). A modified version of ELM, named 

ELM_SPRUCE, was developed and calibrated at the SPRUCE site to improve the ELM 

representation of peatlands. Most land surface models lack the representation of 

vegetated wetlands and peatlands, which is a major source of uncertainty for global 

estimates of terrestrial C (Tian et al., 2015). ELM_SPRUCE addressed this deficiency by 

representing the microtopography and hydrology of a perched peat bog, which resulted in 

a major improvement in the simulation of water table position (Shi et al., 2015). Further, 

Shi et al. (in review) developed a plant functional type (PFT) to represent the non-

vascular Sphagnum moss in ELM_SPRUCE. These modifications mark major advances 

towards more accurate simulations of peatland C dynamics in land surface models. 
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Initial data from the SPRUCE experiment suggests that the S1 bog is a C sink, but 

with the SPRUCE warming treatments the system switches to a C source (Hanson et al., 

2020). Hanson et al. (2020) quantified the pretreatment C budget at the SPRUCE site 

based on a recalculation of the estimate in Griffiths et al. (2017) and found that the net 

ecosystem exchange (NEE) was 81(±101) gC m-2 year-1. One of the fluxes that marks C 

entry into the system is tree aboveground net primary production (ANPP), which was 

estimated for Larix laricina (Du Roi) K. Koch (American larch) and Picea mariana 

(Mill.) B.S.P. (black spruce) by Hanson et al., (2020) at 51 (± 37) gC m-2 year-1. In 

addition to being an important component of the peatland C budget, these species are 

widely distributed across the boreal zone of North America, with their biomass 

constituting a large pool of C and their ANPP representing an important pathway that C 

enters boreal ecosystems in North America. Therefore, understanding how these tree 

species will respond to environmental change simulated by SPRUCE treatments is 

needed to make informed predictions of future peatland C budgets, and can provide 

insights into how these species will respond to environmental change throughout their 

geographic range. 

When terrestrial laser scanning (TLS) is used to scan trees, point clouds provide 

detailed digital representations of the tree canopy from which tree height and canopy 

volume can be calculated. Data collected through TLS utilizes light detection and ranging 

(lidar) to measure the flight time of laser pulses emitted from the scanner. TLS uses the 

laser pulse flight time, the speed of light, and the refractive index of the atmosphere to 

measure the distance from the scanner to the object which reflected the pulse with 

extreme accuracy (generally > 1cm). The vector along which the laser pulse traveled is 
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also recorded. The combination of the distance and this vector enable the precise location 

of the object which reflected the laser pulse to be calculated. Most laser scanners are 

capable of emitting hundreds of thousands of laser pulses per second, and thus build 

extremely dense datasets called point clouds. Point clouds are 3D representations of 

objects in the scanned location storing cartesian coordinates (e.g., x, y, z or latitude 

longitude and elevation) in addition to other attributes like the quantity of light returning 

to the scanner (intensity). 

The TLS point clouds have great potential to address the lack of quantitative 

methods for characterizing peatland microtopography. Methods that provide robust 

datasets for characterization of peatland microtopography are lacking, primarily because 

traditional approaches have a major tradeoff between sampling density and sampled area. 

Previous studies have largely measured peatland microtopography with transects 

(Almendiger et al., 1986; Ehrenfeld 1995; Pouliot et al., 2011), which are time and labor 

intensive and have sampling intervals as high as 1.0 m (Pouliot et al., 2011). Laser 

scanners have also been used to measure microtopography outside of peatlands (Huang et 

al., 1988; Huang and Bradford, 1990; Darboux and Huang, 2003). Scanners that use 

lasers and cameras to triangulate surfaces are limited by the distance they can sample, 

which is typically much lower than time-of-flight laser scanners (Boehler et al., 2002). 

Studies using triangulating laser scanners have only sampled a few meters from the 

sensor (e.g., Flanagan et al., 1995; Darboux and Huang, 2003). As a result, literature 

descriptions and definitions of hummocks and hollows are qualitative (e.g., Bubier et al., 

1993; Nungesser, 2003; Benscoter et al., 2005), likely resulting in discrepancies in how 

each microform is classified between studies. Such discrepancies have major implications 
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when measurements are taken in each microform (e.g., Damman, 1978; Johnson and 

Damman, 1991; Kim and Verma, 1993) and scaled to larger extents using the 

proportional areal coverage of each microform (e.g., Kim and Verma, 1993). Proportional 

areal coverage of microforms is also a parameter used in computational models 

simulating peatland C dynamics like ELM_SPRUCE and the Peatland Carbon Simulator 

(PCARS) (Frolking et al., 2002), which further demonstrates the need for methods that 

explicitly classify and characterize peatland microforms. 

The limited horizontal diameter of the SPRUCE experimental plots (~12 m wall 

to wall) makes the use of traditional tree height observations using clinometers or height 

poles difficult, because of the limited sight lines and a reduced range of acute angles to be 

interpreted, as well as uncertainty in location of the soil surface. This can make 

measuring tree growth response to SPRUCE treatments difficult. TLS provides a viable 

remote sensing alternative for traditional tree height measurements that does not suffer 

from the same limitations. Additionally, previous studies have demonstrated the ability of 

TLS data to predict both aboveground biomass (AGB) and leaf area index (LAI) 

(Greaves et al., 2015; Li et al., 2015; Olsoy et al., 2014a; Olsoy et al., 2014b), making 

TLS a method well suited for measuring tree growth responses at the SPRUCE 

experiment.  

Thesis Organization 

TLS point clouds act as the nexus of this dissertation. TLS is used to establish 

digital elevation models (DEM) for the characterization of microtopography, and the 

measurement of tree growth responses to SPRUCE treatments. Subsequent chapters of 

this dissertation provide data and its interpretation suited to answer the following 
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questions: 1) How can I best utilize TLS point clouds to improve how peatland 

microtopography is quantified and how microforms are classified? 2) How does 

microtopography influence C cycling in ELM_SPRUCE, and which microtopographical 

parameter is the C cycle most sensitive to? and 3) How will Picea mariana and Larix 

laricina growth respond to warmer temperatures and higher concentrations of 

atmospheric CO2 in the future?  

Following this introduction, the second chapter of this dissertation creates DEMs 

of the bog surface within SPRUCE plots, which are subsequently used to characterize 

peatland microtopography using geostatistics and metrics of surface roughness (Graham 

et al., 2020). Further, DEMs are used to develop three methods to classify hummock and 

hollow microforms, with each method targeted at a different scientific application. In 

chapter three, I utilize one of these classifications to calculate microtopographical 

parameters for ELM_SPRUCE, and compare the observed parameter values to the 

‘default’ parameter values that were determined heuristically. I also compared quantities 

of interest (QOI) related to the C cycle output by ELM_SPRUCE when using the 

‘default’ parameterization and the observed mean parameter values. Further, I perform an 

ensemble of 3,000 ELM_SPRUCE simulations in which parameters were allowed to 

randomly vary to perform a sensitivity analysis and evaluate the effect of each parameter 

on C pools and fluxes. The fourth chapter of this dissertation utilizes a combination of 

traditional measures of basal area and TLS measurements of tree height and canopy 

volume to evaluate the effect elevated temperature and CO2 concentrations have on tree 

growth after the first four years of SPRUCE treatments. Finally, chapter five summarizes 
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findings in chapters 2-4 and discusses how these results can be used to improve 

understanding of peatland C dynamics, and future work building off this dissertation.  
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CHAPTER TWO: CHARACTERIZING PEATLAND MICROTOPOGRAPHY USING 

GRADIENT AND MICROFORM-BASED APPROACHES 

This chapter has been published as:  

Graham, J. D., N. F. Glenn, L. P. Spaete, and P. J. Hanson. 2020. Characterizing 

peatland microtopography using gradient and microform-based approaches. 

Ecosystems pp. 1-17. 

Abstract 

Peatlands represent an important component of the global carbon cycle, storing 

180-621 Gt of carbon (C). Small scale spatial variations in elevation, frequently referred 

to as microtopography, influence ecological processes associated with the peatland C 

cycle, including Sphagnum photosynthesis and methane flux. Microtopography can be 

characterized with measures of topographic variability and by using conceptual classes 

(microforms) linked to function: most commonly hummocks and hollows. However, the 

criteria used to define these conceptual classes are often poorly described, if at all, and 

vary between studies. Such inconsistencies compel development of explicit quantitative 

methods to classify microforms. Furthermore, gradient-based characterizations that 

describe spatial variability without the use of microforms are lacking in the literature. 

Therefore, the objectives of this study were to 1) calculate peatland microtopographical 

elevation gradients and measures of spatial variability, 2) develop three microform 

classification methods intended for specific purposes, and 3) evaluate and contrast 

classification methods. Our results suggest that at spatial scales much larger than 
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microforms, elevation distributions are unimodal, and are well approximated with 

parametric probability density functions. Results from classifications were variable 

between methods and years, and exhibited significant differences in mean hollow areal 

coverages of a raised ombrotrophic bog. Our results suggest that the conceptualization 

and classification of microforms can significantly influence microtopographic structural 

metrics. The three explicit methods for microform classification described here may be 

used and built upon for future applications. 

Introduction 

Northern peatlands are an important component of the global carbon (C) cycle 

(Yu et al., 2010; Yu et al., 2011), typically storing C at rates in the range of 20-30 g C m-2 

yr-1 (Yu et al., 2011). Northern peatlands have been storing C for ~ 7,000 - 14,000 years 

(Yu, 2011; Morris et al., 2018), resulting in total storage estimates ranging from 180-621 

Gt C (Gorham, 1990; Yu et al., 2010; Yu, 2012). The most recent estimate of 547 (473-

621) Gt C from Yu et al. (2010) represents over one-third of global terrestrial C, when 

using soil organic carbon estimates of ~1,400 Gt C (Cao and Woodward, 1998; 

Scharlemann et al., 2014). Northern peatlands are also major contributors of atmospheric 

methane (CH4) (Fung et al., 1991). Methane emissions from Northern peatlands to the 

atmosphere (30 - 35 Tg CH4 yr-1; Post et al., 1982; Fung et al., 1991; Gorham, 1991) 

represent a significant source of atmospheric CH4, with these emissions estimated to 

account for up to ~7% of global CH4 emissions (Fung et al., 1991). 

The hummock-hollow complex dominates the microtopography of many 

peatlands and plays a major role in several ecological, hydrologic, and biogeochemical 

processes including C dynamics. Specifically, these include: an influence on greenhouse 
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gas emissions (Bubier et al., 2003; Hirano et al., 2009; Moore et al., 2011), rates of 

decomposition (Johnson and Damman, 1991), peat accumulation (Chaudhary et al., 

2018), plant community (Andrus et al., 1983; Chaudhary et al., 2018; Harris and Baird, 

2018; Arsenault et al., 2019; Malhotra et al., 2016), plant productivity (Moore, 1989), 

water chemistry (Arsenault et al., 2019), and nutrient availability (Chapin et al., 1979; 

Damman, 1978). The primary biophysical driver of these differences is changes in peat 

water and oxygen content, which are associated with water table depth. 

Water table depth is closely linked to multiple ecological processes associated 

with microtopography and biogeochemical cycling. The position of the water table 

controls where aerobic or anaerobic decomposition occurs in the peat column, which in 

turn influences carbon dioxide (CO2) and CH4 emissions (Moore and Dalva, 1993). 

Anaerobic conditions beneath the water table drive CH4 flux (Moore and Knowles, 1989; 

Bubier et al., 1993; Freeman et al., 1993; Moore and Dalva, 1993; Hirano et al., 2009; 

Moore et al., 2011; Munir and Strack, 2014), and the water table has been described as an 

‘on-off switch’ for CH4 emissions by Christensen et al. (2003). Furthermore, water 

content in non-vascular Sphagnum is linked to water table proximity (Rydin 1985), which 

modulates photosynthetic rates (Schipperges and Rydin, 1998). Walker et al. (2017) 

found water table depth to be a strong predictor of Sphagnum gross primary production 

(GPP) variability at the SPRUCE site (see below), due to the influence of water table 

depth on the vertical soil moisture gradient. 

The predominantly saturated conditions in hollows promote anaerobic 

decomposition of organic material, which drives higher CH4 emissions compared to 

hummocks (Moore and Knowles, 1989; Bubier et al., 1993). In contrast, hummocks 
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exhibit higher CO2 fluxes than hollows because they occupy a larger fraction of the peat 

column in aerobic conditions, and can experience warmer temperatures seasonally, 

influencing rates of CO2 emission (Moore and Knowles, 1989; Bubier et al., 1993). 

While the ratio of emitted CO2:CH4 differs between microforms, CO2 flux is higher than 

CH4 flux in both microforms (Kim and Verma, 1992; Bubier et al., 1993; Waddington 

and Roulet, 1996). 

Methods that provide robust datasets for characterizing peatland microtopography 

and classifying microforms were lacking until recently, resulting in descriptions ranging 

from qualitative (e.g., Bubier et al., 1993; Nungesser, 2003; Benscoter et al., 2005) to 

quasi-quantitative (e.g., Johnson et al., 1990; Weltzin et al., 2001; Pouliot et al., 2011). 

Examples of qualitative descriptors for hollows include elevation (low areas), slope (flat 

areas), and concavity (depressions). Ambiguous descriptions can confound classifications 

of microforms between studies. Moreover, explicit quantitative definitions provide clarity 

and allow for improved scaling and syntheses between studies. 

One reason for the lack of detailed quantitative characterizations of peatland 

microtopography was the previous inability to provide dense and highly accurate 

elevation data to measure microtopography over large areas (e.g., Almendiger et al., 

1986; Huang et al., 1988; Huang and Bradford, 1990; Ehrenfeld, 1995; Flanagan et al., 

1995; Darboux and Huang, 2003; Pouliot et al., 2011). Recently, however, remote 

sensing technologies including unmanned aerial systems (UAS) based structure from 

motion (SfM)  (Lucieer et al., 2014; Mercer and Westbrook, 2016; Smith et al., 2016; 

Nouwakpo et al., 2014; Smith and Warburton, 2018; Moore et al., 2019) and terrestrial 

laser scanning (TLS) (Barneveld et al., 2013; Brubaker et al., 2013; Nouwakpo et al., 
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2016) have been used to measure microtopography. Terrestrial laser scanning is a remote 

sensing technology that provides accurate and dense point clouds, providing a promising 

technique for characterizing peatland microtopography at fine scales over relatively large 

areas (e.g., 0.01 – 0.10 m resolution over 10s – 100s of meters). Stovall et al. (2019) used 

TLS to generate high-resolution digital elevation models (DEM) of wetland 

microtopography with high accuracy (root mean squared error; RMSE = 0.04 cm), and 

used a topographic segmentation algorithm to define hummock microforms. 

Additionally, Moore et al. (2019) used SfM to derive digital models of peatland 

microtopography and used Gaussian mixed models to characterize elevation distributions 

of microtopography. 

Considering the influence of microtopography on hydrologic and biogeochemical 

processes, proper representation of microtopography in land surface models is needed for 

accurate simulations of biogeochemical cycles (see Moore et al., 2019). Most land 

surface models do not accurately characterize C emissions from peatlands, partially 

because they don’t represent peatland microtopography or hydrology. However, several 

models have been made, or modified, to incorporate peatland microtopography (Frolking 

et al., 2002; Baird et al., 2011; Morris et al., 2011; Shi et al., 2015). Some models utilize 

simplistic approaches that represent discrete hummock and hollow microforms (Frolking 

et al., 2002; Shi et al., 2015), while DigiBog (Baird et al., 2011) provides a more 

sophisticated approach that is able to incorporate elevation gradients representative of 

peatland microtopography. 

The incorporation of microtopography in both field and modeling studies that 

investigate the hydrology, ecology, and biogeochemistry of peatlands compels the need 
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for accurate characterization of microtopography. Characterization of microtopography 

should include methods that retain high structural fidelity and resolution, in addition to 

quantitative microform classifications intended for implementation into applications 

using the hummock-hollow dichotomy. Therefore, the objectives of this study were to (1) 

calculate and analyze measures of microtopography with high structural fidelity (i.e., 

elevation distributions, surface roughness, and spatial variation), (2) develop and assess 

three application-specific microform classification methodologies, and (3) compare 

classification results using the three methods and discuss their utility for both modeling 

and field studies. To accomplish these objectives, I utilized TLS measured point clouds to 

derive high-resolution DEMs of the bog. I then calculated measures of surface roughness 

and model semivariograms, and finally performed quantitative microform classifications 

on the generated DEM to produce spatially explicit maps of microforms for comparison. 

Methods 

Study site 

The Spruce and Peatland Response Under Changing Environments project 

(SPRUCE; Hanson et al., 2017b) experiment is located at the S1 bog in the Marcell 

Experimental Forest, Northern Minnesota, USA. The S1 bog is an 8.1 ha ombrotrophic 

peat bog with a perched water table and little regional groundwater influence (Sebestyen 

et al., 2011). Mean annual air temperature at S1 was 3.4° C and mean annual 

precipitation was 780 mm between 1969 and 2009 (Sebestyen et al., 2011). S1 is acidic 

(near surface pore water pH ≈ 3-4) with an average peat depth of 2.27 m and basal age of 

the deepest centimeter of peat profiles ranging from 5,100 cal BP - 11,100 cal BP (Slater 
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et al., 2012; Griffiths and Sebestyen, 2016; McFarlane et al., 2018). Additional details 

about the study site can be found in Sebestyen et al. (2011). 

The undulating hummock hollow surface of the S1 bog was the basis for the 

analyses in this paper. Access to experimental plots (nominally 12 m diameter) 

throughout the S1 bog was provided by a network of boardwalks installed for the 

SPRUCE experiment (Hanson et al., 2017b). Twelve plots were selected for scanning 

using TLS. Ten of the SPRUCE plots were enclosed for warming treatments, and two 

were open ambient plots. Each plot was surrounded by an octagonal boardwalk that 

formed the stable base from which TLS scans were obtained. 

TLS Scans 

All scans were collected using a Riegl VZ-1000 terrestrial laser scanner, which 

utilizes a 1550 nm laser to produce a 3-dimensional representation of the surrounding 

area (point cloud; Figure 2.1A). Four TLS scans were taken per SPRUCE plot and 

subsequently registered together in RiSCAN PRO to produce a single point cloud for 

each SPRUCE plot (Graham et al., 2019a). The SPRUCE plots were scanned in April-

May of 2016, 2017, and 2018, with an angular resolution of 0.04 degrees. Scanning was 

performed early in the year following snowmelt so that the bog surface wasn’t obscured 

by later development of shrub-layer canopies of plant foliage.  

Surface Reconstruction 

Point clouds were processed to retain points within the boardwalk (~ 9 m edge-to-

edge) of each SPRUCE plot. Small areas within the scanned plot were occupied by large 

flux collars (Hanson et al., 2017a) that inhibited laser pulses from assessing the bog 

surface and were excluded from the analysis. To reconstruct the bog surface, the data 
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were filtered to extract the lowest return in a 2D grid, with grid cells measuring 0.1 x 0.1 

m. A surface mesh was created using the Poisson surface reconstruction (Figure 2.1B) 

(Kazhdan et al., 2006) plugin for CloudCompare v2.8 (CloudCompare, 2017), which is 

capable of reconstructing surfaces from noisy data. This mesh was sampled to discretize 

the surface and generate a DEM with 0.01 m grid cells (Graham et al., 2019b). DEMs in 

this study primarily represent the top of Sphagnum capitula. In locations where there was 

no Sphagnum coverage, DEMs represent the top of other low stature vegetation (e.g., 

feather mosses) or bare earth. 

Surface Roughness and Elevation Variability 

Quantitative characterizations of peatland microtopography in the literature are 

sparse, although model representations that can utilize detailed topographic data 

including elevation distributions, such as DigiBog, are currently in use (Baird et al., 

2011). Further, elevation distributions can be used in conjunction with measures of 

biogeochemical processes made along an elevation, or the associated water table depth, 

gradient (e.g., Moore and Knowles, 1989; Bubier et al., 1993; Bubier et al., 2003; Moore 

et al., 2011) to make spatial extrapolations of quantities of interest. Therefore, providing 

characterizations of microtopography that are related to elevation gradients and spatial 

variability will help improve model simulations of peatland dynamics and facilitate more 

accurate estimates of biogeochemical fluxes. In this study I provide four measures of 

microtopography in SPRUCE plots (for the 2017 dataset) that are based on elevation 

distributions, spatial variability, and surface roughness of peatland microtopography. 
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Elevation Distributions 

Elevation distributions were unimodal and fairly well approximated by normal 

distributions, however elevation distributions were typically skewed left and had positive 

kurtosis (Figure 2.2). Therefore, I utilized Pearsons Distributions (Pearson, 1895; 

Pearson, 1901; Pearson, 1916; Johnson, 1949) to represent elevation distributions to deal 

with skewness and kurtosis. The Pearson Distributions are a family of probability 

distributions which use 2-4 parameters to generate continuous probability density 

functions. The type of Pearson's Distributions and the Parameters were calculated using 

the “pearsonFitML” function in the Program R (R Core Team, 2017) package 

“PearsonDS”. Distributions were fit to the twelve SPRUCE plots individually and 

combined.  

Random Roughness 

Random roughness (RR) and its variants are among the simplest and most 

commonly used surface roughness metric which refer to measures of variation in 

elevation without consideration for the spatial arrangement of roughness elements. 

Previous studies have used both standard error (Allmaras et al., 1966; Currence and 

Lovely, 1970) and standard deviation (σ) (Kamphorst et al., 2000; Moreno et al., 2008; 

Vermang et al., 2013) as measures of variability. Here, I calculate RR as σ of elevation 

from the DEM cells for the twelve individual SPRUCE plots and plots combined. 

DEM Roughness Length 

Roughness length (z0) is a measure of surface roughness, which is used to 

characterize microtopography (Campbell et al., 2002; Brubaker et al., 2013), that is a 

representation of roughness elements and corresponds to the point at which the wind 
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speed is zero in the log wind profile. Therefore, z0 can be used to represent the influence 

of microtopography on turbulence and the resulting effect on surface mass and energy 

fluxes (Choudhury et al., 1979; Campbell et al., 2002). Studies using z0 have calculated 

the parameter in many ways, from calculating using RR and simple transect based 

approaches (Kuipers, 1957; Lettau, 1969), to more sophisticated DEM and point cloud 

approaches (Smith et al., 2016; Miles et al., 2017). Here I calculate z0 using the DEM 

method described in Smith et al. (2016) for each of the twelve SPRUCE plots. 

Model Semivariograms 

Semivariograms describe the spatial correlation of random data fields, and when 

applied to elevation can be used to describe topographic morphology and surface 

roughness (Darboux et al., 2002; Smith and Warburton, 2018). Empirical semivariograms 

plot the semivariance against the lag distance separating points (Figure 2.3), and the 

model semivariogram can be fit to the empirical semivariogram using three parameters: 

range (r), sill (s), and nugget (n). In this study, I fit exponential model variograms to 

empirical semivariograms consisting of 10,000 random samples from each SPRUCE plot. 

Our sampling intervals were sufficiently small and n appeared to be absent or extremely 

small in empirical semivariograms, therefore I set n in all model variograms to zero. 

Parameters s and r were calculated for each SPRUCE plot and combined. 

Microform Classification Methods 

Hollows can qualitatively be defined as low areas, or depressions within the 

peatland that are often in close proximity to the water table relative to the surrounding 

area. Hummocks are defined as higher mounds rising above the hollows, which results in 

perched peat/root complexes that are further from the water table. For applications that 
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utilize stratified sampling of each microform (e.g., Kim and Verma, 1992; Waddington 

and Roulet, 1996; Sullivan et al., 2008), such definitions may be sufficient because 

investigators can select areas to sample that most embody these qualitative definitions. 

However, subjective selection of sampling points in the most representative areas (i.e., 

extremes of both microforms, top of hummocks and bottom of hollows) is inadequate to 

quantitatively scale small-footprint measured data across the complete landform (see 

Moore et al. 2019). Further, these qualitative descriptions lack sufficient detail to classify 

microforms from a DEM. 

Modeling studies utilizing simplified two column approaches to microtopography, 

for example Shi et al. (2015) and Frolking et al. (2002), represent microforms as soil 

columns which are differentiated by elevation. In contrast, field investigators placing 

instrumentation may consider qualitative metrics in addition to elevation (e.g., mounds, 

depression-like, transitional slopes and flat or planar areas). This demonstrates that the 

conceptualization of microforms is application specific, and therefore, so should 

classification schemes.  

Microform classification schemes should target specific objectives and be 

explicitly defined, as to not confound analyses spanning multiple studies. Stovall et al. 

(2019) marks a major advance towards more useful methods to quantify wetland 

microforms, however the study used subjective manual delineations of hummocks as 

validation data. To address the need for explicit microform classification schemes, I 

developed quantitative methods to classify microforms for three purposes that differ in 

their conceptualize of microforms a) the Functional_Classification classifies microforms 

based on how the structure of microtopography interacts with ecological drivers to 
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determine ecological function; b) the ELM_Classification is designed to generate 

microtopographic parameters that are most consistent with the conceptualization of 

microtopography in a land surface model, ELM_SPRUCE (see below); and c) the 

Scaling_Classification is constructed to classify microforms in a manner consistent with 

the subjective placement of instrumentation in the field, and meant to be used to make 

spatial extrapolations. To accommodate each of these applications, classification 

methodologies were customized to be best suited for each individual application. For 

Functional_Classification, I incorporated water table depth data so that classifications 

using this method would be representative of ecological function, rather than simply 

reflect structure. To provide the best estimates of microtopographic model parameters, 

ELM_Classification only considers relative elevation, which is consistent with the 

representation of microtopography in the model. Scaling_Classification is intended to be 

used for scaling point, or small footprint, measurements to larger spatial extents. 

Therefore, it attempts to classify peatland microtopography in a manner most consistent 

with the placement of instrumentation by researchers in the field.  

Method 1: Functional_Classification 

I used depth to water table as a link to ecological function and as a classification 

metric because it is related to multiple ecological processes including Sphagnum 

photosynthesis and CH4 flux. Water table is measured at each SPRUCE plot. Thus, I used 

the plot-specific daily-mean warm-season median water table (WSMWT hereafter) and a 

tolerance for a classification threshold for microforms (Figure 2.4). The warm, or ice-

free, season was defined as the period when air temperatures remained above 0°C. This 

classification method differs from the two others because microform coverage can 
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change annually even if there is no change to the structure of the microtopography. This 

enables us to classify microforms to represent changes in ecosystem function incurred by 

changes in water table depth. For instance, increased evapotranspiration in the warmest 

SPRUCE plots (+9° C) may cause areas that would typically function in a hollow-like 

manner to function more like hummocks because of lower water tables due to drying. 

Microform class was determined by whether the elevation was above or below the 

WSMWT plus the tolerance, as shown in equation 1: 

Eqn 1. CF(𝑥, 𝑦) = {
𝐻𝑢, 𝑖𝑓  𝑧𝑥𝑦 ≥ (𝑧𝑤𝑡𝑝50 + 𝑇𝑜𝑙)

𝐻𝑜, 𝑖𝑓  𝑧𝑥𝑦 < (𝑧𝑤𝑡𝑝50 + 𝑇𝑜𝑙)
  

where x and y are geospatial coordinates (i.e., northing and easting), CF(x,y) is the 

Functional_Classification at location xy, Hu and Ho are hummock and hollow 

classifications respectively, zxy is the elevation at location xy, zwtp50 is the plot-specific 

WSMWT, and Tol is a tolerance in meters.  

The tolerance for elevations above WSMWT (0.10 m) was chosen based on 

desiccation levels of hollow-associated Sphagnum species relative to water table, and 

productivity relative to water content reported in Rydin (1985) and Schipperges and 

Rydin (1998), respectively. Rydin (1985) reports species of Sphagnum associated with 

hollows reach a water content of ≈ 750% (percent of dry weight) at a distance of ~ 0.10m 

from the water table, and this level of water content is associated with a sharp drop in 

Sphagnum photosynthesis (Schipperges and Rydin, 1998). This (0.1 m) is also the depth 

at which Christensen et al. (2003) suggested CH4 emission is “turned on” or off, based on 

data from Greenland, Iceland, Scandinavia and Siberia. While this “on-off switch” for 

CH4 emissions may not be representative of all peatlands, the 0.10 m from Christensen et 

al. (2003) is derived from five sites on multiple continents, and thus is likely 
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representative of northern peatlands over a broad geographic region. Therefore, a 0.10 m 

tolerance above the WSMWT represents an elevation threshold at which areas below 

should function ecologically like a hollow for at least half of the warm-season, and is 

used to classify microforms. 

Method 2: ELM_Classification 

Shi et al. (2015) have recently created a modified version of the Energy Exascale 

Earth System Model (E3SM) land model (ELM) that represent the hydrology and 

microtopography of peatlands. This modified version of ELM (referred to as 

ELM_SPRUCE) was created based on experiments at the SPRUCE site. ELM_SPRUCE 

uses a two-column approach to peatland microtopography, where one column is 

representative of hummocks and the other of hollows (similar to the representation in 

Frolking et al., 2002). These columns have identical soil and PFT properties, and only 

vary in elevation and water table depth. Modifications made by Shi et al. (2015) included 

the representation of near surface flow from hummock to hollow, lateral drainage to the 

lagg, and the glacial till acting as a barrier to vertical and lateral drainage. Shi et al. 

(2015) reported improved simulations of water table position but did not simulate 

biogeochemistry in ELM_SPRUCE. However, they state that peatland hydrology 

influences peatland C dynamics, and therefore these modifications to the hydrologic 

cycle will affect C cycling.  

The ELM_SPRUCE approach to microtopography uses three uncertain 

parameters in the representation of microtopography: hummock-hollow height 

differential (0.3 m), hummock-hollow horizontal separation (1.0 m), and proportional 

cover of each microform (25% hollow; Shi et al., 2015). The current default values for 
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these parameters were obtained heuristically, and therefore the accuracy and uncertainty 

of the values are largely unknown. In this paper I developed methods that facilitate 

quantitative evaluation of such representations of microtopography, and their parameters.  

A method using only information from the plot elevation distribution was used for 

a classification scheme to represent microtopography in a manner most consistent with 

how microtopography is represented in ELM_SPRUCE. Hummocks and hollows are 

represented in the model as soil columns that, other than elevation, have identical 

properties. Therefore, it is most consistent to classify microforms based on structure 

alone (elevation), and not include the water table position because it is simulated 

explicitly in ELM_SPRUCE. While similar techniques could be used for other models, I 

chose to focus on ELM_SPRUCE because it is configured based on the SPRUCE site and 

because it is able to couple to the Earth system model E3SM. 

An elevation threshold was used for classification as a vertical tolerance from the 

plot elevation 5th percentile, where any points below the elevation threshold were 

classified as hollow and points above were classified as hummock (Figure 2.4). 

Explicitly: 

Eqn 2. CELM(𝑥, 𝑦) = {
𝐻𝑢, 𝑖𝑓  𝑧𝑥𝑦 ≥ (𝑧𝑝5 + 𝑇𝑜𝑙)

𝐻𝑜, 𝑖𝑓  𝑧𝑥𝑦 < (𝑧𝑝5 + 𝑇𝑜𝑙)
  

where CELM(x,y) is the ELM_Classification at location xy, zp5 is the plot-specific 

elevation 5th percentile, and Tol is a tolerance in meters. The 5th percentile is intended to 

represent the elevation at the bottom of a ‘typical’ hollow, and was used instead of the 

plot minimum to mitigate any effect of extremely or erroneously low points. The 

tolerance used for the final classification was 0.10 m.   
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Method 3: Scaling_Classification 

I created an index to classify microforms (Hollow Index) based on elevation, 

concavity, and slope. Considering researchers in the field often do not have access to 

metrics like the MWSWT or the elevation 5th percentile, these metrics are meant to be 

the quantitative counterparts to qualitative descriptors used by field researchers to 

identify microforms. This method, therefore, is aimed to provide classifications 

consistent with researchers identifying microforms in the field and best suited for scaling 

stratified measurements. For example, if I took stratified measurements of CH4 flux in 

both hummocks and hollows, and wanted to make a bog-scale estimate of CH4 flux, I 

would need to know the areal coverage of each microform. The Scaling_Classification 

method is aimed to provide microform areal coverages best suited for spatial 

extrapolations of similar stratified field measurements.  

The Hollow Index is a product of the three metrics, after being passed through 

sigmoidal weighting functions (Figure 2.5). Sigmoid weighting functions are 

parameterized to accentuate “hollow-like” characteristics (i.e., low elevation, positive 

concavity, and relatively flat). The output of the Hollow Index is a continuous variable 

(Figure 2.6A&B), in which higher positive values correspond to the most hollow-like 

areas. Therefore, a threshold was applied to the Hollow Index to produce microform 

classification maps (Graham et al., 2019b). Thresholding for classifications can be 

application/user specific. Based on iterative thresholding I used 2.2 as our threshold 

(Figure 2.6C&D). Additional information and methods related to the parameterization of 

sigmoid weighting functions in the Hollow Index and Scaling_Classification can be 

found in the Supplemental Material. 
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Statistics 

To evaluate the variability in hollow percent cover for a given plot across the 

three years (e.g. inter-annual (intra-plot) variability), I calculated the σ of percent cover 

for hollows for the three years of the study in each plot. A Kruskal-Wallis test was used 

to determine if there were differences in inter-annual variability between methods. Non-

parametric tests were used because distributions were non-normal or heteroscedastic. 

Intra-annual (inter-plot) variability was defined as the variation in hollow percent cover 

of all plots within a given year, for each classification method, and was evaluated for 

each year of the study. Differences in intra-annual variability between methods was 

tested using Bartlett’s tests. All statistical tests were conducted using Program R (R Core 

Team 2017) at α = 0.05. 

Results 

Surface Reconstruction 

The use of four scanning locations per plot reduced the effect of laser occlusion 

by vegetation, and yielded point densities sufficient (mean > 10 points cm-1) for high 

quality surface reconstructions. The Poisson surface reconstruction (Kazhdan et al., 2006) 

performed well on the bog surface, and enabled accurate reconstructions and subsequent 

microform classifications, even when significant noise was present. The mean absolute 

error of reconstructed surfaces from 357 validation points was 0.057 m (for further details 

on DEM accuracy see the Supplemental Material). 
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Elevation Variation and Surface Roughness 

Microtopography in all SPRUCE plots occurred on the scale of ~0.5 - 0.6 m, with 

the lowest elevation from all plots being -0.48 m and the highest being +0.31 m, relative 

to the plot means (Figure 2.2). Standard deviations in DEMs elevations (i.e., RR) in 

SPRUCE plots ranged from 0.06 - 0.08 m, with a mean = 0.07 m. Elevation distributions 

were typically skewed left and had positive kurtosis, with the majority of SPRUCE plots 

having the best fit Pearson’s distribution be of type IV. Although type V and VI were 

also best fits for individual plots. Elevation distribution from all plots combined was best 

fit by a Pearson’s distribution IV. Pearson’s distribution type and associated parameters 

can be found in Table 2.1. The range parameter for plot semivariograms ranged from 

0.92 - 1.89 m (mean = 1.30 m; σ = 0.30 m) and sills ranged from 0.003 - 0.006 m (mean 

= 0.004 m; σ =  0.001 m). DEM roughness length (Z0) ranged from 0.004 - 0.005 m 

(mean = 0.004 m; σ = 0.0005 m). Semivariogram parameters and Z0 estimates can be 

found in Table 2.2. 

Microform Classifications 

The three classification methods in this study had significantly different hollow 

coverages for all years combined (χ2 = 47.55, df = 2, p < 0.001). The three year mean 

areal coverage of hollows from Functional_Classification was intermediate (15.8%), but 

hollow coverages were markedly more variable than the two other methods (Figure 2.7). 

ELM_Classification produced the highest three year mean hollow coverage (33.8%). 

Hollow coverages from Scaling_Classification were the lowest and least variable (Figure 

2.7) of the three methods, with a three year mean of 14.4%. Hollow coverages between 

methods were significantly different in all years and cases (p < 0.05), other than between 
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Scaling_Classification and Functional_Classification in 2017 (W = 68, df = 1, p = 0.84), 

Functional_Classification and ELM_Classification in 2018 (W = 41, df = 1, p = 0.08), 

and Functional_Classification and Scaling_Classification in 2018 (W = 96, df = 1, p = 

0.18). 

In general, the variability (inter and intra-annually) in hollow coverage between 

methods followed the pattern Functional_Classification >> ELM_Classification > 

Scaling_Classification (Table 2.3). Intra-annual variability was significantly different (p 

< 0.05) in all cases and years except ELM_Classification and Functional_Classification 

in 2016 (χ2 = 0.57, df = 1, p = 0.45). There was a significant difference in plot-specific 

inter-annual variability of hollow percent cover (Figure 2.8) between classification 

methods (χ2 = 17.21, df = 2, p < 0.001). Non-plot-specific hollow coverage between years 

was only significantly different for the Functional_Classification (χ2 = 10.35, df = 2, p = 

0.006), further demonstrating its higher inter-annual variability. 

The higher variability in the Functional_Classification was driven primarily by 

differences in MWSWT between plots and years (Figure 2.4A,E,I), rather than structural 

changes in the bog surface (Figure 2.4B,F,J), as was the case for ELM_Classification and 

Scaling_Classification. This is demonstrated by the lower variability in the plot elevation 

distributions 5th percentiles (used in the ELM_Classification) between years (Figure 

2.4B,F,J) compared to the relatively higher variability in MWSWT (Figure 2.4A,E,I). 

The Scaling_Classification and ELM_Classification both used only topographic data, 

however Scaling_Classification was less variable than the ELM_Classification because it 

incorporated multiple topographic metrics that are weighted based on plot distributions, 

and is therefore less affected by noise from surface reconstructions and plot minimum 

elevations. This may make Scaling_Classification a preferable choice for multi-year 

studies which desire interannual consistency in microform classifications. In this study, 
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the small changes in areal coverage of hollows between years using 

Scaling_Classification indicates small structural changes to the surface of the bog. 

Discussion 

To our knowledge, the only published studies that quantitatively classified 

peatland microforms with a DEM are Lovitt et al. (2018) and Stovall et al. (2019). Lovitt 

et al. (2018) used a moving window average as an elevation threshold to classify 

microforms (hummocks and hollows). However, our data demonstrate that elevation 

distributions are unimodal and not highly skewed (Figure 2.2). This indicates that the 

mean and median are similar, and therefore it is implicit that the proportion of hummocks 

and hollows will approximate 1:1 when using the local mean as a classification threshold. 

This is supported by the results in Lovitt et al. (2018) who report 51.8% percent cover for 

hollows (48.2% hummock) in undisturbed locations. Two of our classification methods 

(Functional_Classification and ELM_Classification) used elevation thresholds, similar to 

Lovitt et al. (2018). However, the elevation thresholds in this study were independent of 

plot elevation distributions and/or used a tolerance, which made classifications less prone 

to a bias towards a predetermined ratio of hummock:hollow. 

The unimodal nature of elevation distributions in this study does not support the 

notion of microforms based on topography alone (at scales larger than a few meters). 

These results differ from those in Moore et al. (2019), which reports plots exhibiting both 

multimodal and unimodal elevation distributions. However, the plot size in Moore et al. 

(2019) was much smaller (3.8 - 10.6 m2) than plots in this study (65.25 - 66.58 m2), and 

some plots were specifically selected to have a distinct hummock and a distinct hollow. 

The discrepancy in modalities between our study and Moore et al. (2019) suggest that 

elevation distributions may be multi-modal at small scales that approximate the size of a 



37 

 

 

combination of hummock and hollow, but that the elevation distribution at scales much 

larger than microforms is unimodal and resembles a normal distribution. This is likely a 

result of microtopography having variable morphology (e.g., hummock-hollow height 

difference and microform length/width) at the peatland level; in which elevation 

distributions are multi-modal at smaller scales, but when aggregated at larger scales 

approximate a normal distribution. This scale dependency of distribution modality is an 

important distinction to make for modeling applications, and highlights the need to 

characterize microtopography at multiple scales. Future studies that sample 

microtopography at multiple scales in different peatland types would help elucidate inter-

peatland variation and the scale-dependencies of elevation distributions.  

While our data do not support the conceptualization of microforms based on form 

alone (i.e., topography), non-linear responses of biogeochemical processes to water table 

depth (e.g., Rydin, 1985; Moore and Knowles, 1989; Schipperges and Rydin, 1998; 

Christensen et al., 2003) paired with variability in water table depth incurred by 

microtopography, may result in microforms that are differentiable by ecological function. 

Our Functional_Classification differentiated microforms by ecological function through 

the incorporation of water table in a manner that is representative of two nonlinear 

responses to water table depth. However, it should be noted that this classification likely 

is not representative of all relationships between biogeochemical processes and water 

table depth (see difference between CH4 and CO2 flux response to water table in Moore 

and Knowles, 1989), but could be modified to address specific processes. 

On annual timescales, classification results based purely on microform structure 

diverged from the Functional_Classification. This is demonstrated in Figure 2.4, where a 
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relatively low warm-season water table (2016; Figure 2.4A) resulted in low areal 

coverage of hollows from the Functional_Classification (Figure 2.4C), and a relatively 

high warm-season water table (2017; Figure 2.4E) resulted in much higher areal coverage 

of hollows (Figure 2.4G). During this year, elevation distributions and results from the 

ELM_Classification were largely unchanged. This constitutes a 3x increase in the areal 

coverage of hollows from the Functional_Classification in the same year that coverage 

from the ELM_Classification, based purely on structure, increased by only 1/10th. Large 

changes to areal coverage from Functional_Classification in the three years of this study 

and in the absence of major structural changes, can be used to explain interannual 

variability in peatland C fluxes driven by differences in water table depth. For instance, 

differences in Functional_Classification areal coverage between years could be used to 

contextualize higher temperature response Q10 values for large-collar CH4 flux 

measurements in 2017 and 2018 compared to 2016 from Hanson et al. (2017a).  

While I focused on demonstrating how areal coverage of hollows varied between 

classifications, other parameters (e.g., hummock height, hummock-hollow spacing, 

locations of hollows, etc.) also varied. This highlights the importance of parameterizing 

microtopography in models from data generated by classification schemes that are in 

accordance with the conceptualization of microforms in the model. The 

ELM_Classification method in this study provides a classification scheme that facilitates 

data-driven parameterization of the three microtopographic parameters used in 

ELM_SPRUCE and models using similar representations, like the Peatland Carbon 

Simulator (PCARS; Frolking et al., 2002). For models which do not use a microform 

based approach (e.g., DigiBog in Baird et al., 2011), the elevation distributions and 
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DEMs provided in this study can be utilized to optimize elevation frequencies used to 

represent microtopography. Further, DEMs and measures of surface roughness reported 

here can be used to improve model representation of the microtopographic influence on 

the hydrologic cycle (e.g., Jan et al., 2018) and wind profiles. 

This study provides data that facilitates spatial extrapolations for both 

measurements taken using the hummock-hollow dichotomy and along an elevation (or 

water table) gradient. Elevation distributions reported here, combined with relationships 

relating biogeochemical processes to elevation or water table depth can be combined to 

make estimates of fluxes that will be more accurate than those made using the much more 

generalized microform dichotomy. However, such relationships are not always available 

or feasible to build. Therefore, studies using the hummock-hollow dichotomy can use our 

Scaling_Classification to calculate, and threshold, the continuous Hollow Index to 

classify microforms consistent with their placement of instrumentation in the field. 

Modifying the parameters and classification threshold of the Hollow Index would enable 

investigators to account for application-specific sampling locations, or the inherent 

subjectivity of investigators placing field instrumentation prior to classification. Such 

actions would facilitate proper scaling of measurements, by using areal coverages 

representative of their sampling locations.  

Ideally, TLS sampling and microform mapping would occur before field 

measurements are taken to ensure that appropriate locations/microforms are sampled 

sufficiently. SfM using handheld cameras or UAS has been proven effective for 

producing point clouds and DEMs of peatland microtopography (Mercer and Westbrook, 

2016; Lovitt et al., 2018; Moore et al., 2019), and could be used as a lower-cost 
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alternative to TLS. Although, SfM is not without its own challenges, and UAS SfM 

would likely be best suited for peatlands that are treeless or have relatively low tree 

cover.  

The differences in hollow areal coverage and the variability between classification 

methods clearly demonstrates how an intended purpose or application drives the 

conceptualization of microforms, the resulting classification, and ultimately the areal 

coverage (and other metrics) of microforms. Considering the marked differences in 

hollow areal coverage, and variability between microform classifications in this study, it 

is evident how conclusions drawn from research utilizing microform classifications could 

vary widely. Using an appropriate classification is essential for producing accurate results 

and conclusions. 

I recognize that a single method for classifying microforms is likely not sufficient 

to accommodate all applications. Therefore, this study provides three quantitative and 

explicit microform classification schemes intended to be used for different applications. 

The applications discussed in this study primarily focus on the microtopography-water 

table depth relationship and associated processes affected by the resulting soil moisture 

gradient. These processes occur across environmental gradients (e.g., moisture, 

temperature, etc.) rather than in conceptual bins (hummocks and hollows), and when 

possible, should be represented as such. This study provides several measures of 

microtopography corresponding to elevation frequency distributions and spatial 

variability to be utilized by studies that treat microtopography as a gradient. However, 

quantifying these processes across gradients is not always possible, and thus requires 

investigators to bin or stratify their sampling. In such cases, clearly defined microforms 
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are a necessity for inter-study comparisons and proper scaling of stratified measurements. 

Therefore, it is imperative to clearly define what, exactly, defines each bin. 
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Table 2.1. Parameters for Pearson’s Distributions fit to SPRUCE plot elevation 

frequency distributions. When type = 4, Par3 = m and Par4 = nu; when type = 5, 

Par3 = Shape (no fourth parameter), when type = 6, Par3 = a and Par4 = b. 

Plot Type Location Scale Par3 Par4  

4 4 0.24 0.21 9.64 19.80  

6 6 0.40 -2.44 32.20 198.28  

7 5 -0.94 148.56 159.44 NA  

8 4 0.11 0.25 9.02 6.93  

10 4 0.11 0.23 7.66 6.64  

11 4 0.09 0.21 7.29 5.26  

13 4 0.12 0.31 12.12 9.01  

16 4 0.22 0.33 18.47 23.86  

17 4 0.12 0.31 10.72 7.44  

19 4 0.06 0.30 14.39 5.12  

20 4 0.03 0.36 16.81 2.76  

21 4 1.38 4.07 2602.59 1758.63  

Combined 4 0.07 0.24 7.90 3.95  
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Table 2.2. Summaries of roughness metrics from SPRUCE plots. RR = random 

roughness, SV_Sill = semivariogram sill, SV_Range = semivariogram range, Z0 = 

aerodynamic roughness length, Min_Elev = minimum plot elevation relative to the 

mean, Max_Elev = maximum plot elevation relative to the mean. 

Plot RR SV_Sill SV_Range Z0 Min_Elev Max_Elev 

  Meters 

4 0.078 1.34 0.0057 0.0042 -0.48 0.23 

6 0.076 1.22 0.0056 0.0045 -0.42 0.22 

7 0.075 0.97 0.0059 0.0049 -0.24 0.30 

8 0.069 1.44 0.0038 0.0035 -0.37 0.23 

10 0.072 1.36 0.0046 0.0038 -0.40 0.23 

11 0.066 1.25 0.0040 0.0036 -0.40 0.24 

13 0.072 1.78 0.0039 0.0043 -0.35 0.24 

16 0.068 1.52 0.0039 0.0033 -0.39 0.20 

17 0.076 1.59 0.0047 0.0038 -0.41 0.23 

19 0.061 0.95 0.0037 0.0033 -0.29 0.20 

20 0.066 1.04 0.0042 0.0037 -0.32 0.31 

21 0.060 1.13 0.0028 0.0034 -0.34 0.21 

Combined 0.070 1.30 0.0044 0.0039 -0.48 0.31 
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Table 2.3. Summary statistics for areal coverage of hollows in SPRUCE plots by 

year, and the duration of the study, for the all three classification methods. 

Year Statistic 
Classification Method (%) 

Functional ELM Scaling 

2016 

Mean 4.1 33.2 14.6 

Range 0.1 - 18.4 23.72 - 42.3 13.1 - 16.1 

Standard Deviation 5.2 6.7 1.1 

2017 

Mean 18.0 34.1 14.5 

Range 0.7 - 43.0 25.42 - 45 12.5 - 16.5 

Standard Deviation 15.9 5.9 1.3 

2018 

Mean 23.4 34.0 14.1 

Range 0.0 - 43.6 23.3 - 43.7 11.3 - 15.5 

Standard Deviation 14.7 5.7 1.3 

Years 

Combined 

Mean 15.8 33.7 14.4 

Range 0.0 - 43.6 23.3 - 45.0 11.3 - 16.5 

Standard Deviation 15.1 6.0 1.2 

  



45 

 

 

 
Figure 2.1. Workflow used to generate microform classification maps, starting 

with the terrestrial laser scanning point cloud (A; colored by intensity) used to 

generate the digital surface model (B; colored by elevation), and finally the 

microform classification map (C; colored by microform). SPRUCE plot 10 is used as 

an example. Additionally, an image of the mapped domain (D) showing one of the 

large flux collars that occluded laser scanner pulses and caused the “holes” in maps. 

Spatial scales between panes (A,B,C) are not exact; however, horizontal and vertical 

scales are 1:1 in individual panes. 
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Figure 2.2. Elevation distributions for individual SPRUCE plots; also displaying 

the distribution for all SPRUCE plots combined with fit normal and Pearson’s 

distributions. 
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Figure 2.3. Empirical semivariograms for individual SPRUCE plots, also 

displaying the empirical and associated model semivariogram. 
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Figure 2.4. Warm-season water table (A), plot of digital surface model elevation 

distribution (B), and maps of classified microforms resulting from the thresholds 

displayed in B for the Functional_Classification and ELM_Classification (C,D, 

respectively) for SPRUCE plot 8 in 2016. The same is displayed for 2017 (E-H) and 

2018 (I-L). To facilitate comparisons, plot elevation distributions (B,F,J) are 

displayed with elevation on the y-axes consistent with axes on warm-season water 

tables plots (A,E,I). 
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Figure 2.5. The upper panels (A-D) shows maps of SPRUCE plot 7 (2017) 

displaying Elevation, Concavity, Slope, and Hollow Index, respectively. The lower 

panel shows distributions of each variable (E-H) with the same X-axes as graphs of 

sigmoid weighting functions of each variable below (I,J,K), which are displayed on a 

background corresponding with map colorbars. An example grid cell is displayed 

on maps and on sigmoid weighting function plots, showing how variable values 

(elevation, concavity, slope) are used in weighting functions, and how the resulting 

weights are multiplied to calculate the Hollow Index. 04  
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Figure 2.6. A profile of a transect (A) and a map (B) from SPRUCE plot 7 (2017) 

colored by the Hollow Index. The same transect classified into microforms using 

various Hollow Index thresholds (C), with a red box around the 2.2 threshold used 

for Scaling_Classification in this study, and the resulting microform classification 

map (D). Arrows show the location and orientation of the transect (A,C) on maps 

(B,D). Note that horizontal and vertical scales are not 1:1 in both A and C (i.e., the 

lengths that represent 1m along the x and y axes are not equal in both panes). 
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Figure 2.7. Histograms displaying the areal coverage of hollows from each 

classification, in all plots, in all years. Vertical red lines display means. 
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Figure 2.8. Histograms of plot-specific inter-annual variability for classification 

methods in all plots, calculated as the standard deviation (σ) of areal coverage of 

hollows for a given plot during the three years of the study. 
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CHAPTER THREE: IMPROVING THE PARAMETERIZATION OF 

MICROTOPOGRAPHY AND QUANTIFYING THE RESULTING EFFECT ON THE 

CARBON CYCLE 

Abstract 

Northern peatlands are a major terrestrial carbon store, with an annual sink of 0.1 

Pg C yr-1 and a total storage estimate of 547 Pg C. Northern peatlands are also major 

contributors of atmospheric methane. As the climate warms, peatlands are predicted to 

increase carbon release to the atmosphere, resulting in a positive feedback loop. Most 

land surface models do not accurately represent peatland carbon emissions, likely 

because they do not represent the hydrologic cycle and/or microtopography adequately. 

Interactions between water table depth and microtopography in peatlands influence 

decomposition and modulate CO2 and CH4 fluxes. A modified version of ELM, the land 

surface component of Energy Exascale Earth System Model (E3SM), has been created to 

represent the microtopography and hydrology of a raised dome bog (ELM_SPRUCE). 

Three microtopographic parameters are used in ELM_SPRUCE: hummock height, 

hummock-hollow spacing, and percent hollow. Here we test the sensitivity of a suite of 

quantities of interest (QOI) associated with the carbon cycle to these microtopographic 

parameters. Our results suggest that carbon related QOI were typically the most sensitive 

to hummock height, and that QOI were sensitive to interactions between parameters. 



64 

 

 

Furthermore, net ecosystem exchange was the QOI most relatively influenced by 

microtopographic parameters in ELM_SPRUCE, varying by 26.9%. We found that 

increasing hummock height resulted in more C being stored in plant tissue and less in soil 

organic matter, which coincided with decreases in Sphagnum net primary production 

(NPP) and increases in Picea and shrub NPP. 

Introduction 

Northern Peatlands are an important component of the global carbon (C) cycle 

due to their ability to slowly accumulate C into substantial storage reservoirs. The ability 

of northern peatlands to store C is due to the unique environmental conditions that are 

characteristic of these ecosystems, which include shallow water tables, moist acidic soils, 

low nutrient content, and cool temperatures. These conditions, especially moist soils, 

slow microbial decomposition and reduce the rate at which C is released to the 

atmosphere through heterotrophic respiration (HR). The slow rate of microbial 

decomposition in peatlands leads to an imbalance in C inputs and outputs to the system, 

with C inputs slightly higher than C outputs resulting in a net C sink. While the rate of C 

storage is relatively small (20-30 g C m-2 yr-1; Yu et al., 2011), this storage has been 

occurring for the last ~ 7,000-14,000 years (Yu, 2011; Morris et al., 2018), which results 

in substantial quantities of C stored in peatlands globally. Estimates of global peatland C 

storage are as high as one third of global terrestrial C (Gorham, 1990; Cao and 

Woodward, 1998; Yu et al., 2010; Yu, 2012; Scharlemann et al., 2014) with estimates 

ranging from 180-621 Gt C (Gorham, 1990; Yu et al., 2010; Yu, 2012).  

The large quantity of C stored in peatlands, and the ability of peatlands to 

sequester more carbon, are at risk to environmental change. It is expected that peatlands 
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will have a positive feedback loop with environmental change, where warmer 

temperatures induce increased microbial decomposition and C release, with the potential 

to switch peatlands from C sinks to C sources (Hanson et al., 2020). Therefore, our 

ability to understand and simulate carbon dynamics in peatlands has implications for the 

global C cycle and predictions of future climatic conditions. Land surface models that 

represent peatland ecosystems and their C dynamics allow us to evaluate how changes in 

the peatland C cycle will influence atmospheric C concentrations in the future, however 

most global land surface C models don’t represent peatlands (Tian et al., 2015). 

Improving the representation of peatlands in land surface models relies on data from 

experiments measuring components of the C cycle and environmental factors that 

influence C fluxes. The spruce and peatland responses under changing environments 

(SPRUCE, https://mnspruce.ornl.gov/) is one such experiment in northern Minnesota, 

USA, aimed at improving the representation of peatlands in the Energy Exascale Earth 

System Model (E3SM) land surface model (ELM). 

The SPRUCE experiment uses whole-ecosystem warming and elevated CO2 

concentrations in ten open top enclosures to assess how peatlands will respond to 

environmental change (Hanson et al., 2017). In addition to advancing our understanding 

of peatland C dynamics, results from SPRUCE help to improve the simulation of the C 

cycle in ELM through data-driven calibrations and comparisons between observed and 

simulated C fluxes. A modified version of ELM was created in conjunction with 

SPRUCE (termed ELM_SPRUCE) to incorporate the hydrology and microtopography 

characteristic of bogs with perched water tables (Shi et al., 2015) and recently Shi et al. 

(in review) have developed a plant functional type (PFT) to represent the unique 

https://mnspruce.ornl.gov/
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physiology and hydrology of Sphagnum mosses. Simulations of the water table in 

ELM_SPRUCE compared well with observations (Shi et al., 2015), representing the first 

time, to our knowledge, a land surface model has included a fully prognostic calculation 

of water table level for a vegetated peatland that is independent of prescribed regional 

water tables. Further, Shi et al. (2015) represented the microtopography, or sub-grid 

topographic heterogeneity, characteristic of peatlands, which is known to influence 

peatland C cycling.  

The influence of microtopography on peatland C fluxes is well documented in the 

literature (Moore and Knowles, 1989; Waddington and Roulet, 1996; Sullivan et al., 

2008; Moore et al., 2011) and is largely driven by environmental gradients (e.g., soil 

moisture) that differ in their location in the peat column as a result of variation in depth to 

the water table. Peatland microtopography is often characterized by microforms: mound-

like areas referred to as hummocks and depression-like areas referred to as hollows. 

Hummocks exhibit a larger distance from their surface to the water table compared to 

adjacent hollows, and CO2 efflux linearly increases as the depth to water table increases 

in peatlands (Moore and Knowles, 1989). This generally translates to differences in 

respiration and net ecosystem exchange (NEE) between microforms (Waddington and 

Roulet, 1996; Sullivan et al., 2008). Due to the effect of soil moisture on microbial 

decomposition, CH4 fluxes in hollows can be over 45 times higher than hummocks 

(Waddington and Roulet, 1996; Moore et al., 2011). Additionally, microtopography 

influences Sphagnum net primary production (NPP) which can constitute half of peatland 

C inputs (Szumigalski and Bayley, 1996; Rydin and Jeglum, 2013; Griffiths et al., 2017; 

Hanson et al., 2020). Sphagnum photosynthesis is affected by microtopography due to its 
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lack of vascular tissue, and thus depth to the water table modulates Sphagnum water 

content and photosynthesis (Rydin, 1985; Schipperges and Rydin, 1998; Walker et al., 

2017). Because microtopography influences component C fluxes, microtopography plays 

a role in determining the NEE in peatlands.  

The magnitude of NEE in peatlands is small compared to the component fluxes, 

with NEE two orders of magnitude smaller than HR and NPP from the C budget estimate 

in Griffiths et al. (2017). The small magnitude of NEE compared to component fluxes 

(e.g., HR & NPP) and their variability causes challenges for quantifying C budgets in 

peatlands (see Griffiths et al., 2017). This demonstrates that relatively small changes in 

measured or simulated component fluxes can have a relatively large effect on NEE, and 

highlights the need to accurately represent peatland microtopography in land surface 

models like ELM_SPRUCE. 

ELM_SPRUCE uses a two column approach to represent microtopography, where 

one soil column represents hummocks and the other represents hollows.  Lateral flow 

between the columns maintains the water table at similar absolute elevations.  Other than 

their elevation and hydrology, the hummock and hollow soil columns are identical. 

ELM_SPRUCE uses three uncertain parameters to represent microtopography, which are 

hummock-hollow height differential (∆Z), hummock-hollow horizontal separation (HS), 

and percent coverage of hollows (Ho%). This is similar to the approach used in the 

peatland carbon simulator (PCARS; Frolking et al., 2002), indicating that estimates of 

these parameters would be useful to multiple modeling efforts. Initially, ELM_SPRUCE 

parameters were determined heuristically using cursory survey data and expert opinion, 

and were set at: ∆Z = 0.3m, Hs = 1.0m, and Ho% = 25%. However, it is unknown how 
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well this parameterization matches field observations and how the uncertainty in these 

parameters influences the C cycle in ELM_SPRUCE. The initial heuristic 

parameterization of microtopography in ELM_SPRUCE is an indication of the lack of 

quantitative characterizations of microtopography in the literature, and highlights the 

need for methodologies that quantify microtopography and explicitly define microforms, 

which have only recently been developed (e.g., Lovitt et al., 2018; Stovall et al., 2019; 

Graham et al., 2020). 

Sensitivity analyses (SA) are statistical approaches that quantify how uncertainty 

in the parameters of mathematical models propagate to uncertainty in model outputs, and 

thus helps determine which parameters are most influential for each model quantity of 

interest (QOI) representing a specific output. Polynomial chaos (PC) expansion is a 

popular technique used in global SA and uncertainty quantifications of computationally 

intensive models (Crestaux et al., 2009; Ricciuto et al., 2018). PC utilizes orthogonal 

polynomials to construct a surrogate model for each desired QOI in the computational 

model. Surrogate models emulate the behavior of QOIs within the range of parameter 

distributions, and Sobol sensitivity indices can be calculated from PC surrogate models. 

One of the major benefits of PC expansion is the ability to greatly reduce the number of 

model runs needed to calculate Sobol indices. The Sobol method (Sobol, 1993) is a 

variance-based decomposition approach to global SA that calculates indices related to 

first order, second order (interactions), and total sensitivity to uncertain parameters. Sobol 

indices represent the proportion of variation in the QOI that is incurred by variability in 

each parameter. Therefore, Sobol indices indicate how influential each parameter is in 

determining QOI variability.  

https://link.springer.com/article/10.1007/s10021-020-00481-z#ref-CR50
https://link.springer.com/article/10.1007/s10021-020-00481-z#ref-CR81
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In this study, we investigate how microtopography influences C cycling in 

ELM_SPRUCE, and which microtopographical parameters (parametersMicro) the C cycle 

is most sensitive to. To accomplish this, we used high-resolution digital elevation models 

(DEMs) in SPRUCE plots to classify the surface into hummock and hollow microforms. 

Microform maps were then used to estimate parametersMicro in SPRUCE plots. Finally, 

these parameter estimates are used in a sensitivity analysis which evaluated how 

uncertainty in parametersMicro translated to uncertainty in simulated C fluxes in 

ELM_SPRUCE. The objectives of this study were to 1) quantify empirical estimates of 

ELM_SPRUCE parametersMicro, 2) compare ‘default’ parameter values and the resulting 

model outputs (QOIDef) to observed distributions and model outputs using observed 

means (QOIRec), 3) quantify the sensitivities of C fluxes and pools to parametersMicro, and 

4) quantify the variability in C flux QOIs resulting from allowing parameters to vary 

within observed ranges. 

Methods 

Study Site 

ELM_SPRUCE parameter distributions were derived from DEMs representing 

the bog surface in 12 SPRUCE plots. The SPRUCE experiment is located at the S1-Bog 

in the Marcel Experimental Forest. This is a 890 ha experimental forest with a robust 

historical dataset comprising soil, hydrologic, nutrient, and climatic data, with hydrologic 

and climatic monitoring dating back to 1960. The S1-Bog is an 8.1ha ombrotrophic peat 

bog with a perched water table, with peat depths averaging 2.27m and peat as old as 

11,100 cal BP (Slater et al., 2012; McFarlane et al., 2018). The S1-Bog exhibits 

hummock-hollow microtopography with elevation in SPRUCE plots ranging from -
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0.48m - 0.31m relative to the plot mean elevation (Graham et al., 2020). Additional 

information on the Marcel Experimental Forest and S1-Bog can be found in Sebestyen et 

al. (2011).  

Terrestrial Laser Scanning and Microform Classification 

Terrestrial laser scanning (TLS) is a remote sensing technique that utilizes light 

detection and ranging (lidar) to measure the area surrounding the scanner, and represent it 

with a point cloud (Figure 1A). Point clouds are a digital representation of the scanned 

area, storing Cartesian coordinates (x,y,z) of scanned objects. Previous studies have 

demonstrated that TLS point clouds are able to generate accurate high-resolution DEMs 

of microtopography, and are thus well suited for classifying peatland microforms 

(Graham et al., 2019b, Graham et al. 2020; Stovall et al. 2019). In this study, point clouds 

derived from TLS within the 12 SPRUCE plots were used to generate DEMs of each 

SPRUCE plot, and DEMs were subsequently classified into hummock and hollow 

microforms to calculate parameters (Figure 3.1). 

TLS scans were made with a Riegl VZ-1000 (1550 nm laser) in the spring (April-

May) of each year from 2016-2019 from four locations on the interior boardwalk of each 

plot. The four scan positions per plot were co-registered into a single point cloud for each 

plot in each year (Graham et al., 2019a). TLS point clouds were used to generate DEMs 

of the bog surface within the interior boardwalk of SPRUCE plots with a mean absolute 

error of 0.057m based on 357 validation points (details on DEM production and accuracy 

can be found in Graham et al., 2019b and Graham et al., 2020). DEMs were classified 

into hummocks and hollows using the ELM_Classification method from Graham et al. 

(2020). This method classifies plot DEMs into hummock and hollow based on an 
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elevation threshold that is determined by the distribution of elevation in the plot. DEM 

grid cells were classified as hollows if its elevation was less than the plot elevation fifth 

percentile plus 0.1m:  

Eqn 3.1. 𝐶𝐸𝐿𝑀(𝑥, 𝑦) =  {
𝐻𝑢, 𝑖𝑓 𝑍𝑥𝑦 ≥ (𝑍𝑝5 + 𝑇𝑜𝑙)

𝐻𝑜, 𝑖𝑓 𝑍𝑥𝑦  < (𝑍𝑝5 + 𝑇𝑜𝑙)
 

where CELM(x,y) is the ELM_Classification at location xy, zp5 is the plot-specific 

elevation 5th percentile, and Tol is a tolerance of 0.1m (from Graham et al., 2020). The 

fifth percentile represents hollow bottoms and is used instead of the plot minimum to 

alleviate the effect of extremely low points. A tolerance of 0.1m was used because 

previous studies have found that Sphagnum species characteristic of hollows have 

optimal water content for photosynthesis when the water table is at a depth of 0.1m, and 

that methane production decreases substantially at this water table depth (Rydin, 1985; 

Schipperges and Rydin, 1998; Christensen et al., 2003). Therefore, if it is assumed that 

the water table is typically at or near the hollow surface, then this cutoff represents an 

important threshold for multiple C cycle processes. After performing this classification, 

DEMs are transformed into spatially explicit maps of hummock and hollow microforms 

(Figure 3.1D). These microform maps became the basis for parameters to use in 

ELM_SPRUCE.  

Parameter Estimation 

 The microtopographical parameters of microform height difference ∆Z, microform 

horizontal separation HS, and microform percent cover Ho% were calculated from 

microform maps in each of the twelve SPRUCE plots in each of the four years of the 

survey (n=48). Parameter estimates from microform maps were characterized and 
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compared to the ‘default’ ELM_SPRUCE parameter values to assess how well they 

represent empirical estimates. 

The ∆Z and Ho% parameters were straightforward to estimate from microform 

maps. The ∆Z parameter was calculated by subtracting the mean elevation of cells 

classified as hollow from the mean elevation of cells classified as hummock (Figure 

3.1E). This value represents the distance between the average hollow elevation and the 

average hummock elevation. Percent cover of hollows was calculated as the percent of 

microform map cells that were classified as hollows in SPRUCE plots.  

To estimate the HS parameter, we used the distance transform described in 

Felzenszwalb and Huttenlocher (2012) implemented in Open Computer Vision 

(OpenCV) (Bradski, 2000). The distance transform is an algorithm that takes a binary 

image as input and calculates the euclidean distance from each ‘on’ pixel (1) to the 

nearest ‘off’ pixel (0). Pixels in the microform classification map with the value 1 

represent hummocks and pixels with the value 0 represent hollows, and therefore the 

output is a map with pixel values representing the distance to the nearest hollow (0) pixel 

(Figure 3.1F). Hollow pixels have a distance of zero. To calculate the HS estimate for a 

SPRUCE plot, we took the mean of the distance transform from that plot after masking 

hollow pixels. 

Model Simulations 

Sensitivity Analysis 

A total of 3,000 ELM_SPRUCE simulations were used to perform the SA, with 

values for each run having parameters ∆Z, Hs, and Ho% set with random draws from a 

Gaussian joint probability density function constructed using means and standard 



73 

 

 

deviations from TLS data (Figure 2). We used the UQ Toolkit (Debusschere et al., 2015) 

to build polynomial chaos surrogate models and perform the SA. First order, second 

order, and total-effect Sobol indices were calculated for each uncertain parameter with 

respect to each QOI. The QOIs we chose to evaluate are C pools and fluxes that are likely 

influenced by microtopography, and which are listed in Table 3.1. All QOIs represent 

average values over the 2011-2018 period. 

Model Runs  

Transient simulations were performed from 1850-2018 using atmospheric CO2 

concentrations and N deposition in the nearest grid cell from a gridded dataset (Oleson et 

al., 2013) and continuously cycling the 2011-2018 site meteorology.  Elevated CO2 and 

warming associated with the experimental treatments are not considered in this study.  To 

simulate strip cuts that occurred at the S1-Bog in 1974, 99% of aboveground tree biomass 

was removed in this year. Model QOIs were saved for each simulation to build QOI 

distributions and evaluate how influential microtopographical parameterization was for 

each QOI under ambient conditions. In addition to the ensemble of 3,000 simulations 

used in the sensitivity analysis, we performed one simulation using the default 

parameterization and one simulation using the observed mean parameter values, our 

‘recommended’ parameterization. 

QOI Variability 

The influence of microtopographical parameterization on QOIs was assessed in 

three ways. First, to quantify uncertainty in QOIs resulting from parameter uncertainty, 

we divided the QOI range from the ensemble of 3,000 ELM_SPRUCE simulations by the 
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QOI value simulated using observed mean parameter values (Eqn 3.2), which we termed 

‘relative variation’.  

Eqn 3.2. Relative Variation =  (
𝑀𝑎𝑥(𝑄𝑂𝐼𝐸𝑛𝑠) − 𝑀𝑖𝑛(𝑄𝑂𝐼𝐸𝑛𝑠)

QOIRec
) ∗ 100 

Where QOIEns represents the 3,000 QOI values from the ensemble of 3,000 simulations, 

QOIRec is the QOI output when using the observed mean parameter values. Second, to 

quantify the effect of the default parameterization on QOIs we calculated the ‘relative 

difference’, calculated as the difference between QOIs using the default parameters and 

the recommended parameters divided by the QOI value from the recommended 

parameterization (Eqn 3.3). 

Eqn 3.3. Relative Difference =  (
QOIRec−QOIDef

QOIRec
) ∗ 100 

Where QOIDef is the QOI output when using the default parameterization. Finally, we 

correlated parameter values used in the ensemble of 3,000 ELM_SPRUCE simulations 

with the resulting QOI outputs. Considering that all of the variability in QOI is a result of 

varying parametersMicro, it was expected that there would be significant correlations 

between parametersMicro and QOI. However, the strength of these relationships buttress 

the results of the sensitivity analysis, and the direction (+ or -) of these correlations 

provide the overarching influence of each parameter on QOIs. Further, plotting these 

correlations facilitates identification of non-linear relationships between parameters and 

QOIs.  
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Results 

Parameter Distributions 

The Ho% parameter was the only parameter to have its default value within the 

observed range (Figure 2). The mean estimate of Ho% from SPRUCE plots was 34.5% 

which was higher than the default value (25%), although the default value was within the 

observed range (23.3 - 45.0%). In contrast Hs and ∆Z parameters were well outside 

observed ranges. The default value for ∆Z (0.3m) was over twice the observed mean 

(0.13m), and the difference between maximum observed value and the default value 

(0.13m) was larger than the observed range of 0.06m (0.11-0.17m). Similarly, the mean 

estimate of Hs (0.43m) was less than half of the default value (1.0m), and the observed 

range (0.35-0.63m) was lower than the difference between the maximum estimate and the 

default value (0.37m). All combinations of parameters exhibited significant (p < 0.001) 

correlations (Figure 2). The strongest relationship (negative) was between ∆Z and Ho%, 

which had a coefficient of determination (R2) of 0.50. The weakest relationship 

(negative) was between Hs and Ho% (R2 = 0.25). There was a positive relationship 

between Hs and ∆Z (R2 = 0.45). 

Parameter Sensitivities 

 There was a consistent pattern of QOIs being most sensitive to ∆Z, followed by 

Ho% and least sensitive to Hs (Figure 3.3). NEE was the exception, which was the most 

sensitive to Ho%. Sobol main effect indices for ∆Z ranged from 0.030-0.341 (mean = 

0.232), 0.006- 0.229 (mean = 0.084) for Ho%, and 0.002-0.023 (mean = 0.013) for Hs. 

The largest single sensitivity was total carbon in vegetation (TOTVEGC) to ∆Z (main 

effect = 0.341). The generally low main effect indices indicate that interactions between 
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parametersMicro were important for most QOIs (Figure 4). As with main-effects, 

sensitivities to interactions including ∆Z were the largest. The sensitivity of NEE to 

individual parameters was much lower than NEE sensitivity to interactions. 

QOI Variability  

Relative variation in QOIs ranged from 4.11% (CH4_Flux) to 26.9% (NEE) with 

a mean of 10.9% (Figure 5). Relative differences resulting from the use of default 

parameter values compared to the recommended parameter values ranged from -27.6% 

(NPP_Sphag) to 8.4% (NEE) and had a mean of -5.4%. NEE was the only QOI in which 

QOIDef fell within the range of QOIEns. As would be expected, all parametersMicro were 

significantly (p < 0.001) correlated with all QOIs (Figure 6), though the strength of the 

correlation was highly variable. Further, the strength of some correlations are due to the 

fact that parameters are correlated with each other, and parameter combinations were 

drawn from a joint distribution. The strongest correlation was between ∆Z and 

TOTVEGC (R2 = 0.77), which exhibited a positive correlation. Other strong correlations 

(i.e., R2 > 0.6) were between ∆Z and HR (negative; R2 = 0.69), TOTVEGC and Ho% 

(R2  = 0.66), and ∆Z and NPP_Sphag (negative; R2 = 0.70). 

Discussion 

 To our knowledge, this study is the first to provide calculations of parametersMicro 

used in land surface models and models that simulate peatland C dynamics directly from 

observed data. We found that the default values used for parameters ∆Z and HS in 

ELM_SPRUCE were well outside of the observed ranges, which caused QOIsDef, with 

the exception of NEEDef, to fall outside the range of QOIsEns. For both ∆Z and Hs, the 

default values were just over twice the observed mean. We initially calculated HS using 
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the range parameter of modeled semivariograms, which represents the distance at which 

elevation is no longer auto-correlated, and when fit to a sine wave (as microtopography is 

often conceptualized) the range parameter corresponds to the peak-to-trough distance, 

and therefore representative of the maximum separation. When we calculated HS using 

semivariogram ranges, the mean was 1.5m (range = 0.9-2.6m). Interestingly, these 

estimates were much closer to the default value of HS (1.0m) and may indicate that the 

reason for the high default value was because HS was initially conceptualized as a peak-

to-trough distance (sine wave) and might better represent the maximum hummock-hollow 

spacing, rather than the mean. In contrast, the distance transform we used enables the 

explicit calculation of the mean distance from each hummock cell to the nearest hollow 

from classification maps.  

Similarly, the default ∆Z better represents the distance from the top of the 

hummock to the bottom of hollows in our data, rather than the mean difference between 

areas classified as each microform. This is corroborated by elevation distributions from 

DEMs, in which the difference between the 95th and 5th quantile of elevation is on 

average 0.26m (range = 0.21-0.39m), and indicates that the default ∆Z value (0.3m) 

represents the typical peak-to-trough relief of microtopography. Only recently have 

quantitative microform classification schemes been developed, and maps of microform 

classifications that facilitated the direct calculation of parameters in this study were not 

available at the time ELM_SPRUCE was created, which highlights the importance of 

studies mapping microforms using DEMs (e.g., Lovitt et al., 2018; Stovall et al., 2019; 

Graham et al., 2020). 
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Two of the three parametersMicro used in ELM_SPRUCE (∆Z and Ho%) are also 

used in the Peatland Carbon Simulator (PCARS) (Frolking et al., 2002). The PCARS 

model simulates the C balance of a peatland, with representation of processes including 

photosynthesis, autotrophic respiration, vegetation phenology, and aerobic and anaerobic 

decomposition. Therefore, the parameterMicro distributions and recommended (mean) 

values reported here could be used to parameterize the PCARS model. Further, the 

methodology we used for producing microform classifications from Graham et al. (2020) 

and the methods for estimating parameter values in this study can be used to calculate 

parametersMicro, which would provide insight into inter-peatland variation in these 

parameters that is valuable for users of both models. 

 In our ensemble of 3,000 ELM_SPRUCE simulations, CH4 flux had a negative 

relationship with ∆Z and a positive relationship with Ho%, which is consistent with 

experimental studies. Previous studies collecting empirical data have demonstrated that 

hollows have larger CH4 fluxes compared to hummocks (Bubier et al., 1993; Waddington 

and Roulet, 1996) due to the greater prevalence of anaerobic conditions, which leads to 

greater CH4 production (Bubier et al., 1993). Further, larger ∆Z values result in a larger 

fraction of the peat column existing in aerobic conditions that facilitate methanotrophy. 

Our sensitivity analyses found that CH4 flux was most sensitive to ∆Z and that ∆Z had the 

strongest correlation with CH4 flux, which is contrary to what would be expected based 

on results from Bubier et al. (1993). Bubier et al. (1993) found that the primary driver of 

higher CH4 emissions from hollows was higher rates of production from methanogens, 

and that methanotrophy in the hummock peat column was a secondary control. This 

would indicate that Ho% would have a larger influence on CH4 flux than ∆Z. The reason 
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for this discrepancy is unclear, but may be related to the fact that areal coverage of 

hummocks is about twice that of hollows. 

 The strong negative correlation between ∆Z and HR is somewhat unanticipated, as 

one would expect that HR would increase as the fraction of the peat profile of hummocks 

in aerobic conditions increases. Field and laboratory studies have demonstrated that CO2 

efflux increases as the depth to water table increases (Moore and Knowles, 1989; Bubier 

et al., 2003; Sullivan et al., 2008). Therefore, it is intuitive that there would be a positive 

correlation between HR and ∆Z. The reason we did not observe this relationship is likely 

due to an overall reduction in NPP, shifts in C storage in vegetation, and PFT-specific 

shifts in NPP (Figure 7). 

 As ∆Z increased, we found divergent responses in PFT-specific NPP. The PFT 

representing black spruce and shrubs increased while NPP in the Sphagnum PFT 

decreased. This is consistent with experimental studies that observed increased black 

spruce growth and decreased Sphagnum growth with a deeper water table (Lieffers and 

Rothwell, 1987; Lieffers and Macdonald, 1989; Weltzin et al., 2001; Norby et al., 2019), 

which occurs in the hummock column when ∆Z is increased. Increasing NPP in black 

spruce and shrub PFTs explain the strong increase in the C content of vegetative biomass. 

Further, reductions in Sphagnum NPP (and overall NPP) caused modest reductions in the 

C content of soil organic matter, as Sphagnum is responsible for ~50% of peatland C 

inputs (Szumigalski and Bayley, 1996; Rydin and Jeglum, 2013; Griffiths et al., 2017; 

Hanson et al., 2020). The amalgamation of these responses to increasing ∆Z was a slightly 

stronger C sink (more negative NEE) and higher total ecosystem C content (Figure 7). 

Increases in ecosystem C and the strength of the C sink are largely due to increases in 
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tree biomass that are enhanced due to tree regeneration following the strip cut. Therefore, 

these increases would likely be subtler for undisturbed wooded peatlands. 

Summary 

 Data and results from this study provide parametersMicro distributions that are 

useful for multiple models which simulate peatland C dynamics, and yield insight into 

how these parameters influence different components of the C cycle. The relationships 

we observed between CH4 flux and parametersMicro aligned with previous field and 

laboratory studies. We also observed interesting shifts in productivity between plant 

functional types as a result of increasing ∆Z that were corroborated by experimental 

studies, and translated to shifts in the C stored in vegetative biomass and soil organic 

matter. The influence of any single parameter on the overall C budget (NEE) was 

relatively small, but there were strong interactions between parametersMicro that resulted 

in large relative variations of NEE. Constraining parametersMicro will reduce uncertainty 

in modeled NEE and help elucidate what level of warming will switch the system from C 

sink to C source, as indicated by results from Hanson et al. (2020). This study 

demonstrates the importance of how microtopography is parameterized in land surface 

models on both C fluxes and pools, and field based estimates of parametersMicro are 

needed to constrain these parameters to observed values. A logical extension of this work 

would be exploring the capability of airborne and satellite sensors to detect and 

characterize microtopography across larger geographic extents, which would enable the 

calculation of parametersMicro in different regions and across multiple peatland types.  
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Table 3.1. Quantities of interest (QOI) from the ELM_SPRUCE model related 

to the C cycle that were evaluated in the sensitivity analysis. 

QOI Description Units 

HR Heterotrophic respiration gC m-2 yr-1 

NPP Net primary production gC m-2 yr-1 

NPP_Sphag NPP of the Sphagnum PFT gC m-2 yr-1 

TOTVEGC Total C in vegetation gC m-2 

NEE Net ecosystem exchange* gC m-2 yr-1 

CH4_NET_FLUX Methane flux* mol m-2 yr-1 

* Negative values = atmosphere to land; positive = atmosphere to land  
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Figure 3.1. Diagram showing the workflow for creating digital elevation models 

(DEM) (B) from terrestrial laser scanning point clouds (A) representing the interior 

of a SPRUCE plot (C). The DEM was classified into hummock (tan) and hollow 

(green) microforms (D), from which hollow percent cover (Ho%) and microform 

height difference (∆Z) were calculated. Panel E displays the microform map 

generalized to display hummocks with elevations represented by ∆Z. A map of the 

distance transform (F) used to calculate microform horizontal separation (Hs), with 

yellow representing short distances and red representing longer distances to the 

nearest hollow. A map of microtopography within the SPRUCE plot displayed as it 

is represented in ELM_SPRUCE (G), with the two colors representing hummock 

(gold) and hollow (green) soil columns, and the proportion of green area 

representing Ho%. The gold color of hummocks represents the average distance to 

the nearest hollow (from E), and ∆Z displayed as the difference between soil column 

elevations. 
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Figure 3.2. Distributions of ELM_SPRUCE microtopographical parameters 

estimated from SPRUCE plot DEMs, also displaying the observed means and 

‘default’ parameter values as vertical lines (A,B,C). Plots showing the correlations 

between ELM_SPRUCE microtopographical parameters with lines displaying 

linear models (D,E,F). All correlations were significant (p < 0.001). Parameter 

samples drawn from a joint probability density function used in the ensemble of 

3,000 ELM_SPRUCE simulations used for the sensitivity analysis, default 

parameter values are displayed with red stars (G,H,I). 
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Figure 3.3.  Sobol main-effect indices for quantities of interest: heterotrophic 

respiration (HR), net primary production (NPP), net primary production of the 

Sphagnum plant functional type (NPP_Sphag), total carbon in vegetation 

(TOTVEGC), net ecosystem exchange (NEE), and methane flux (CH4_Flux). Sobol 

sensitivity indices were calculated from an ensemble of 3,000 ELM_SPRUCE 

simulations using random parameter combinations drawn from a joint probability 

distribution. 
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Figure 3.4. Sobol second-order indices (interactive terms) for quantities of 

interest: heterotrophic respiration (HR), net primary production (NPP), net 

primary production of the Sphagnum plant functional type (NPP_Sphag), total 

carbon in vegetation (TOTVEGC), net ecosystem exchange (NEE), and methane 

flux (CH4_Flux). Sobol sensitivity indices were calculated from an ensemble of 3,000 

ELM_SPRUCE simulations using random parameter combinations drawn from a 

joint probability distribution. 
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Figure 3.5. Distributions of ELM_SPRUCE carbon model outputs showing the 

variation in model outputs resulting from allowing microtopographical parameters 

to vary randomly in 3,000 simulations. Additionally, red vertical lines display the 

model output value when using the ‘default’ parameter values and dashed vertical 

black lines represent model outputs when using the observed mean parameter 

values (i.e., ‘Recommended’) from SPRUCE plots. R.D. is relative difference and 

R.V. is relative variation. Quantities of interest: heterotrophic respiration (HR), net 

primary production (NPP), net primary production of the Sphagnum PFT 

(NPP_Sphag), total carbon in vegetation (TOTVEGC), net ecosystem exchange 

(NEE), and methane flux (CH4_Flux). 
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Figure 3.6. Correlations between microtopographical parameters and 

ELM_SPRUCE carbon related quantities of interest. All correlations were highly 

significant (p < 0.001), regression lines are colored by the coefficient of 

determination (R2), with low R2 in blue and high in red. Quantities of interest: 

heterotrophic respiration (HR), net primary production (NPP), net primary 

production of the Sphagnum PFT (NPP_Sphag), total carbon in vegetation 

(TOTVEGC), net ecosystem exchange (NEE), and methane flux (CH4_Flux). 
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Figure 3.7. Correlations between ∆Z and selected ELM_SPRUCE carbon pools 

and fluxes, showing PFT-specific NPP responses and associated shifts in the 

vegetation carbon pool and heterotrophic respiration. All correlations were highly 

significant (p < 0.001), regression lines are colored by the coefficient of 

determination (R2), with low R2 in blue and high in red. Quantities of interest: net 

primary production (NPP),  black spruce PFT net primary production 

(NPP_Pic),  shrub PFT net primary production (NPP_Shrub),  Sphagnum PFT net 

primary production (NPP_Sphag), total carbon in vegetation (TOTVEGC), net 

ecosystem exchange (NEE), and heterotrophic respiration (HR). 
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CHAPTER FOUR: PICEA MARIANA AND LARIX LARICINA GROWTH RESPONSES 

TO ELEVATED TEMPERATURE AND CO2: A FOUR YEAR SYNTHESIS FROM 

THE SPRUCE EXPERIMENT 

Abstract 

Picea mariana and Larix laricina are widely distributed across the North 

American boreal region, including peatlands, and are thus significant mediators of 

biogeochemical, hydrological and energy exchanges with the atmosphere. Climate 

warming is expected to occur faster in the high latitudes, which will extend the growing 

season and is hypothesized to disproportionately impact tree growth in the boreal region. 

Peatlands store up to one third of global terrestrial carbon. Therefore, understanding how 

these tree species will respond to warming and atmospheric change is important for 

estimating the carbon balance of these northern ecosystems. The Spruce and Peatland 

Responses Under Changing Environments (SPRUCE) experiment uses whole-ecosystem 

warming up to +9°C with and without elevated CO2 (+500 ppm) to evaluate how a 

peatland ecosystem responds to a range of warming and elevated CO2 treatments. Here I 

report on SPRUCE Picea and Larix growth response after four years of SPRUCE 

treatments. I assessed the effect of SPRUCE treatments on 1) tree height, 2) canopy 

volume, 3) basal area, and 4) tree mass change. Picea mass showed a negative response 

to temperature initially, but the response weakened over time. Conversely, Larix mass 

showed no temperature response 
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initially, but developed a positive relationship over time. The divergent species-specific 

trends resulted in no detection of a temperature response at the community level. Picea 

height responded to eCO2, but this did not translate to a response in mass. Results from 

this study suggest that Larix and Picea will have divergent responses to environment 

change.  

Introduction 

The prevalence and capacity by Picea mariana (Mill.) B.S.P. (black spruce) and 

Larix laricina (Du Roi) K. Koch (American larch) to sequester carbon (C) as 

aboveground biomass (AGB) makes changes in ABG of these species an important 

component of the C budget of boreal forests and peatlands in a substantial portion of 

North America. However, it is unclear changes in ABG in these species will be affected 

by increasing CO2 concentrations and temperatures, and exacerbated by warming 

occurring faster (3-8 °C by 2100) in the region these species occupy (Northeast Climate 

Impacts Assessment, 2006). Therefore, understanding the influence of environmental 

change on the C pool stored in the ABG of these species is necessary to make informed 

predictions and simulations of future C dynamics in North America. 

P. mariana is a cold tolerant species that occupies regions with long cold winters 

and relatively short growing seasons (Viereck and Johnston, 1990), and is the dominant 

cover type for large portions of the boreal zone in North America (Little, 1971; Viereck 

and Johnston, 1990; ACIA, 2005). Stands dominated by P. mariana cover approximately 

55% of Alaska, the majority of Northern Canada, and parts of Southern Canada (ACIA, 

2005). P. mariana forests store higher quantities of carbon (C) (biomass and soil C stocks 

of 11 - 17 kg C m-2 Kane and Vogel, 2009) compared to other forest types found in the 
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same biome (Gower et al., 1997), with above ground net primary production (ANNP) 

estimates of 1440 - 1660 kg C ha-1 yr-1 (Gower et al., 1997). 

 L. laricina is a deciduous coniferous species with a similar distribution to P. 

mariana, and is most often associated with P. mariana when found in mixed species 

stands (Johnston, 1990). Both species are frequently found in peat bogs and wetlands 

(Johnston, 1990; Viereck and Johnston, 1990), especially in the southern extent of their 

range (Johnston, 1990; Fryer, 2014). Peatlands are characterized by moist, nutrient-poor, 

organic peat soils where heterotrophic respiration (HR) is lower than net primary 

production (NPP). This imbalance results in a net ecosystem exchange (NEE) leading to 

slow accumulations of C at rates of 20-30 g C m-2 yr-1 (Yu et al., 2011) over the last ~ 

7,000-14,000 years (Yu, 2011; Morris et al., 2018). Slow accumulation of C in peatlands 

results in total storage estimates of 180-621 Gt C (Gorham, 1990; Yu et al., 2010; Yu, 

2012) worldwide, which represents approximately one-third of global terrestrial C (Cao 

and Woodward, 1998; Yu et al., 2010; Scharlemann et al., 2014). L. laricina and P. 

mariana are able to tolerate the nutrient-poor and poorly drained soils that are 

characteristic of peatlands (Fryer, 2014).  

The results of experiments measuring the response of tree growth to CO2 

enrichment, like Free Air CO2 Enrichments (FACE; Hendrey and Kimball, 1994) studies, 

show both positive and no response to CO2 enrichment, depending on the study, species, 

and location (Hoosbeek et al., 2001; Korner et al., 2005; Norby et al., 2005; Asshoff et 

al., 2006; Dawes et al., 2011; Jiang et al., 2020). Differing results in CO2 enrichment 

studies have been attributed to differences in physiology, phenology, and environmental 

drivers (Hoosbeek et al., 2001; Dawes et al., 2011). For instance, Hoosbeek et al. (2001) 
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found that CO2 enrichment had no effect on vascular and nonvascular plants in peatlands, 

and attributed the lack of response to CO2 enrichment to the nutrient-poor nature of 

peatlands. This demonstrates that plant growth may have unexpected responses to 

elevated temperature and CO2 if growth is limited by other factors. 

P. mariana trees are known to be temperature sensitive, with studies showing that 

higher temperatures can result in both increased and decreased growth and productivity in 

temperate forests of North America (Brooks et al., 1998; ACIA, 2005; Juday and Barber, 

2005; Wilmking and Myers-Smith, 2008; Grant et al., 2009; Mamet and Kershaw, 2011; 

Nishimura and Laroque, 2011; Walker and Johnstone, 2014; Girardin et al., 2016). Most 

studies measuring the response of C storage to temperature in P. mariana and L. laricina 

have been conducted in controlled environments (e.g., Way and Sage, 2008a; Way and 

Sage, 2008b) or based on large scale assessments of tree rings that typically examine the 

effect of monthly temperatures rather than the effect of constant warming throughout the 

year or growing season (Brooks et al., 1998; Girardin et al., 2001; ACIA, 2005; Juday 

and Barber, 2005; Wilmking and Myers-Smith, 2008; Mamet and Kershaw, 2011; 

Nishimura and Laroque, 2011; Walker and Johnstone, 2014). Bronson and Gower (2010) 

used ecosystem warming (soil and air) to evaluate the effect warming (+5 °C) had on P. 

mariana, but ensured that plots with elevated temperatures maintained the same soil 

moisture as ambient plots through the use of daily irrigation. Bronson and Gower (2010) 

found that elevated temperatures alone had no effect on photosynthesis or aboveground 

respiration in P.. However, many studies that find negative correlations between growth 

and temperature attribute the decrease in growth to reductions in soil moisture resulting 

from warming (Brooks et al., 1998; Wilmking and Myers-Smith, 2008, Walker and 
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Johnstone, 2014; Girardin et al., 2015). This highlights the importance of understanding 

both the direct effect of warming on tree growth and indirect effects that may occur, like 

water limitation from drying. 

The Spruce and Peatland Response Under Changing Environments experiment 

(SPRUCE; Hanson et al., 2017) provides a unique opportunity to study the in-situ 

response of tree growth and C assimilation to environmental change by means of whole-

ecosystem warming and elevated CO2 concentrations while experiencing natural 

precipitation, sunlight, and soil drying resulting from warming. The SPRUCE experiment 

evaluates how peatland ecosystems respond to whole-ecosystem warming and elevated 

CO2 concentrations by simulating future environmental change in 10 open-top octagonal 

enclosures (Figure 4.1). Data and results from the SPRUCE experiment are helping to 

elucidate how peatland species will respond to environmental change, and aid inference 

into future C dynamics in the system. Initial results suggest that the site which is 

traditionally a C sink (Griffiths et al., 2017), but will likely switch to a C source with 

warming (Hanson et al., 2020). Understanding how each component of the C cycle will 

respond to environmental change is key to our ability to predict and simulate future C 

dynamics. This study investigates how P. mariana and L. laricina growth will respond to 

environmental change, and leverages data from the SPRUCE experiment to improve 

understanding of future C dynamics in systems containing these species. Here I utilize 

both manual measurements and terrestrial laser scanning (TLS) data to evaluate the 

response of P. mariana and L. laricina growth to SPRUCE treatments over the first four 

years of the experiment (2016-2020). In this study, I quantified and discussed the effect 
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of SPRUCE treatments on tree growth using the following metrics: (1) tree height, (2) 

canopy volume, (3) basal area (BA) at breast height (1.3m), and (4) tree mass. 

Methods 

Study Site 

The SPRUCE experimental site is located in the Marcell Experimental Forest in 

Northern Minnesota, USA within the S1 bog (47◦30.476 N; 93◦27.162 W; 418 m above 

mean sea level), which is an 8.1 ha acidic (pore water pH ≈ 3-4) ombrotrophic peat bog 

with average peat depths of 2.27m and the basal age of the deepest centimeter of peat 

ranging from 5,100 - 11,100 cal BP (Sebestyen et al., 2011; Slater et al., 2012; Griffiths 

and Sebestyen, 2016; McFarlane et al., 2018). The S1 bog has a perched water table with 

little groundwater influence, and from 1969-2009 the mean annual air temperature was 

3.4°C and mean annual precipitation was 780mm (Sebestyen et al., 2011). The peatland 

soil is the Greenwood series, a Typic Haplohemist (http://websoilsurvey.nrcs.usda.gov) 

with average peat depths to the Wisconsin glacial-age lake bed of 2 to 3 m (Parsekian et 

al., 2012). 

The S1-Bog is dominated by P. mariana with contributions to the forest canopy 

from L. laricina. With respect to past land use history, the S1-Bog trees were harvested in 

strip cuts in 1969 and 1974 to test the effects of seeding on the natural regeneration of P. 

mariana. All re-generation following the strip cut events occurred through natural 

vegetative processes or seeding events (three to four successful events since 1969). After 

46 years of regrowth since 1974, the tree-layer of the experimental peatland plots is still 

largely represented by an open canopy. All saplings greater than 1 cm diameter at 1.3 m 

above the Sphagnum surface are defined as trees for the SPRUCE study. Vegetation 
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within the S1-Bog is dominated by the two tree species, various ericaceous shrubs, a 

limited number of herbaceous species, and is supported by a bryophyte layer dominated 

by Sphagnum spp. mosses. The belowground peat profile and geochemistry are described 

in Tfaily et al. (2014). 

SPRUCE Treatments 

The study comprises 10 open-top octagonal enclosed plots (height = 7m; diameter 

= 12.8m; area = 114.8 m2). The temperature treatments include deep-peat heating that 

uses heating elements extending ~3m into the peat (Hanson et al., 2017) combined with 

air warming achieved by blowing heated air 1m above the peat surface to achieve heating 

throughout the enclosed air space (Hanson et al., 2017). SPRUCE target differential 

temperature treatments are +0, +2.25, +4.5, +6.75, and +9 °C with two plots at each 

temperature treatment. The zero-energy-added plots (+0 treatments) provide the reference 

temperature for the other treatments in the regression design for this study. In addition, 

one plot for each temperature treatment receives elevated CO2 (eCO2) by injecting pure 

CO2 to a target concentration of +500 ppm above ambient (Hanson et al., 2017). Deep 

peat heating was initiated in June 2014 and air warming started in August 2015 (Hanson 

et al., 2017) after growth processes were completed in 2015. Elevated CO2 treatments 

began in June 2016.  Data presented here cover tree growth through the first four years of 

both elevated temperatures and eCO2 treatments (2016, 2017, 2018 and 2019). 

Growth Measurements 

Terrestrial Laser Scanning  Point Cloud Measurements 

 Terrestrial laser scanning (TLS) point clouds were collected in SPRUCE plots 

during peak biomass (late summer) in each year from 2015-2019. TLS scans were 
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collected using a Riegl VZ-1000 terrestrial laser scanner from the interior boardwalk 

within SPRUCE plots. The Riegl VZ-1000 uses a 1550 nm laser to measure the distance 

to surrounding objects, and sends out millions of laser pulses to measure and digitally 

represent the physical structure surrounding the scanner (≈5-10 million points per 

SPRUCE plot). The resulting point clouds (Figure 4.1) can be used to measure objects 

(i.e., tree sizes and shapes) in the scan. TLS scans were taken from four locations in the 

boardwalk to achieve coverage of tree canopies from multiple angles. Scans in each plot 

were co-registered together in RiSCAN PRO to make a single TLS point cloud per plot, 

per year (Graham et al., 2019a). Point clouds were used to estimate tree height and 

community canopy volume in SPRUCE plots. 

Tree Height -- Tree height was measured using TLS point clouds of SPRUCE 

plots (Figure 4.1). TLS provides measurements of physical structure with subcentimeter 

accuracy, and thus provides a method well suited for remote measurements of tree height 

and crown characteristics. The limited horizontal diameter of SPRUCE plots (~12 m wall 

to wall) makes the use of traditional height observations using clinometers or height poles 

difficult, because of the limited sight lines and a reduced range of acute angles to be 

interpreted, as well as uncertainty in location of the soil surface. Tree height was 

calculated by subtracting the elevation of the highest TLS return of the tree crown from 

the elevation of the bog surface below the tree, using TLS reconstructions of the bog 

surface (Graham et al., 2019b; Graham et al., 2020). In some SPRUCE plots dense 

clusters of trees make it difficult to identify the top of individual trees for determination 

of their height. These trees and a small number of other trees (21 of the total 143 trees) 

were not available for inclusion in growth assessments on individual trees. 
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 Canopy Volume -- Canopy volume for the tree community (Picea and Larix 

combined) in SPRUCE plots was calculated as a voxel (volumetric pixel) volume derived 

from TLS point clouds. I calculated canopy volume at the community level because 

overlapping tree crowns make isolating crowns in TLS point clouds difficult and 

inconsistent between years, which would confound a species-specific analysis. Further, if 

there are species-specific responses community canopy volume would allow us to 

assess  how the tree community as a whole responds to warming and eCO2. The ability 

for voxel volume to predict metrics like aboveground biomass (AGB) and leaf area index 

(LAI) is well documented in the literature (e.g., Greaves et al., 2015; Li et al., 2015; 

Olsoy et al., 2014a; Olsoy et al., 2014b), and thus I use voxel volume in SPRUCE plots 

as an alternative independent measure of tree community AGB. Calculations of voxel 

volumes were achieved by first manually extracting trees and tree clusters from TLS 

point clouds using CloudCompare v2.8 (CloudCompare, 2017). Once trees were isolated 

from the rest of the point cloud (e.g., shrub understory and instrumentation), trees were 

voxelized by breaking point cloud domains into regular 0.05x0.05x0.05m 3-D cartesian 

grids along the x, y, and z axes (grid cell volume = 0.00125m3). Voxel volume was then 

calculated by enumerating the number of voxels that contained at least one TLS return 

(Figure 4.1).  

 The decision to use 0.05x0.05x0.05m voxels (0.05m voxels hereafter) was based 

on an iterative assessment in which voxel size was varied between 0.001-0.25m and 

canopy volume was calculated for seven trees from each species (n=14 total) that were 

destructively sampled for AGB estimates. TLS canopy voxel volumes were correlated 

with empirical biomass estimates to determine the optimal voxel size (Figure 4.2). The 

https://link.springer.com/article/10.1007/s10021-020-00481-z#ref-CR19
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result of this assessment was an asymptotic relationship where the coefficient of 

determination (R2) increases from 0.001-0.05m and has fairly similar values from 0.025-

0.25m. Therefore, I selected a voxel size of 0.05m, because it had the strongest 

correlation (R2 = 0.92) with AGB and was better suited for change detection than larger 

voxel sizes. 

Traditional Measurements 

Basal Area -- Basal area (BA) estimates were derived from measured bole 

circumference at 1.3m collected annually in late February or early March, with the 

assumption that all stems had a circular cross section. To ensure consistency between 

years, a laser leveling system (Spectra LL400) was used in combination with a tripod to 

mark trees at 1.3m for the location of the circumference measurements (Hanson et al., 

2018). Once established, the marks were replaced annually to enable re-measurements at 

the same locations. Circumference measurements were taken at the 1.3m marked location 

with steel DBH measuring tapes, taken to the nearest 0.001m. 

Annual measurements of BA were combined with end-of-season TLS height 

measurement from the previous season (e.g., tree heights measured in September 2019 

are matched with BA estimates from March 2020). I assumed no change in growth in 

stem circumference and tree height over this dormant period. The mid-winter period for 

circumference measures provided a stable period between years when access to all trees 

could be accomplished without damaging the bog surface. Annual growth increments 

represent the difference between growth assessments for each year (e.g., the growth 

metrics for 2017 represent the difference between February 2018 and February 2017 

assessments). 
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 Tree Mass --Tree mass change in C units was calculated from an allometric 

relationship derived from measurements of destructively sampled trees from both species 

at the S1 bog. The relationship comes from a simple linear model built using 44 

destructively harvested trees (22 from each species); these data comprise the trees 

contained in the Hanson et al. (2012) dataset plus the 14 trees harvested and used to 

correlate tree mass with voxel volume. The allometric equation uses BA (at 1.3m) times 

tree height as the independent variable to estimate total tree dry mass, shown in equation 

2. 

Equation 2: TDM = 1,265 + (BA*H) * 416,286 

where TDM is tree dry mass (g), BA is basal area at 1.3m (m), and H is tree height (m). 

This relationship explains 91% of the variation in tree dry mass (Figure 4.3). From tree 

dry mass, tree C content was calculated assuming that 48% of dry mass is C. 

Statistical Analyses 

 Tree growth is often proportional to tree size, therefore I explored the use of 

relative instead of absolute growth as the metric used in regression models. To determine 

whether to use relative growth when assessing temperature and CO2 treatments, I created 

linear models for tree growth as a function of tree size for all metrics individually. Linear 

models were species-specific except the voxel volume metric, in which species were 

combined. When these linear models had a slope parameter that was significantly 

different from zero, I used relative growth when assessing treatment responses. Relative 

growth was calculated for individual trees by dividing the increment by the initial value 

(e.g., mass increment from 2017-2018 is divided by the 2017 mass). 
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Annual growth for each metric (height, voxel volume, basal area, and mass) was 

calculated by subtracting the value for the current year from the previous year, and 4-year 

cumulative growth was calculated as the metric in the last year subtracted from the metric 

in the first year. I used a regression approach to evaluate the effect of warming and eCO2 

on annual and cumulative growth. The basis for the warming regression dependent 

variable was selected as the mean air temperature at 2 m (Hanson et al., 2016) from May 

to September in each year (2016, 2017, 2018 and 2019) to reflect the temperatures 

encompassing the full ‘growing season’. CO2 enrichment was treated as a factor in 

regression analyses because treatment was binary. To evaluate the effect treatments had 

on growth I created five linear models for each growth metric, and performed a model 

selection process to find the best supported model based on Akaike Information Criterion 

(AIC) (Akaike, 1973; Akaike, 1974, Akaike, 1981) score and model complexity. I 

considered models with ∆AIC > 2 (∆AIC = minimum AIC - AIC) to have substantial 

support compared to other models (Sakamoto et al., 1986; Burnham and Anderson, 

1998), and therefore the best supported model was chosen as the most parsimonious 

model with a  ∆AIC < 2. This process was repeated for each metric by combining growth 

data from all years (termed annual growth), as the 4-year cumulative growth (termed 

cumulative growth), and for each year individually. The five candidate models 

comprised: 1) null - growth as a function of 1 (intercept), 2) simple CO2 - growth as a 

function of CO2, 3) simple temperature - growth as a function of temperature, 4) complex 

- growth as a function of temperature and CO2, and 5) interaction - growth as a function 

of temperature, CO2, and their interaction. I also made non-linear models allowing for an 

optimal growth temperature, however these models were not selected as the best 
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supported model for any metric in either species, and therefore will not be discussed. 

After I selected the best supported model, I characterized parameters at two significant 

levels (p < 0.05) and (p < 0.001) and reported the effect of treatment on growth as the 

slope parameters from the best supported model. All statistics and tests were produced 

using Program R (R Core Team, 2017). 

Results 

 A total of 124 trees (96 P. mariana and 28 L. laricina) were used to assess tree 

growth response to SPRUCE treatments, with an average of 10 P. mariana trees per plot 

(range: 3 - 17 trees) and 3 L. laricina trees per plot (range: 1 - 5 trees). Tree growth was 

generally higher in P. mariana than L. laricina (Table 4.1). Picea BA increment was 

significantly correlated with initial (start of year for annual and start of first year for 

cumulative) Picea BA (annual p < 0.001, R2  = 0.18; cumulative p < 0.001, R2 = 0.32). 

Similarly, Larix BA increment was significantly correlated with initial BA (annual p < 

0.001, R2 = 0.11; cumulative p = 0.027, R2 = 0.17). Tree mass increment was also 

significantly correlated with initial mass for both Picea (annual p < 0.001, R2 = 0.42; 

cumulative p < 0.001, R2 = 0.53) and Larix (annual p < 0.001, R2 = 0.23; cumulative p = 

0.002, R2 = 0.30). In contrast, the relationship between height increment and initial height 

was non-significant for Picea (annual p = 0.069; cumulative p = 0.295) and Larix (annual 

p = 0.771; cumulative p = 0.460). Community canopy volume did not correlate with 

initial volume (annual p = 0.818; cumulative p = 0.055). Significant correlations between 

growth and tree size indicate that growth is proportional to size (Figure 4.4 & Figure 4.5), 

and therefore I assessed tree growth responses as relative growth for BA and mass 

increments, and as absolute growth for height increment and community volume.  
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Absolute Height Growth 

Height increment of Picea was negatively influenced by both temperature and 

eCO2 treatments (Table 4.2), and showed an interaction between temperature and CO2. 

The best supported models for annual height increment of Picea was the most complex 

model (interaction), which includes temperature, CO2, and a temperature-CO2 interaction 

term. Temperature was highly significant (p < 0.001) while the CO2 and interaction terms 

were significant (p < 0.05) for annual height. Temperature had a negative effect (-0.019m 

year-1 °C-1) on Picea height increment, as did eCO2 (-0.333m year). However, the 

interaction term was positive (0.013m year-1 °C-1), which indicates that temperature was 

less influential on height increment when trees were grown in eCO2 (Figure 4.6). The 

best supported model for cumulative Picea height increment was the complex model 

containing a term for temperature and CO2. The temperature term was highly significant 

(p < 0.001) and had a negative effect (-0.051m C-1), while the CO2 term was not 

significant (p = 0.056) and also had a negative effect (-0.124m). For individual years, the 

best supported model in each year contained terms for either temperature, CO2, or both. 

The best supported models for individual years were: 2016 simple temperature, 2017 

simple CO2, 2018 complex, and 2019 interaction. Details on the best supported yearly 

models can be found in Table 4.3 cumulative and annual height increments were not 

affected by temperature or eCO2. For annual and cumulative Larix height increment, the 

best supported model was the null model, which suggests neither temperature nor CO2 

had an effect on height increment. For annual height increment, the simple model 

including temperature had a lower AIC than the null model but the ∆AIC was 0.47, 

resulting in the selection of the null model. The model with the lowest AIC for 
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cumulative Larix height increment was also the simple model including temperature, but 

the ∆AIC of the null model was 1.11 and therefore the null model was selected as the best 

supported model. In individual years the best supported models were: 2016 null, 2017 

simple CO2 (though the CO2 term was nonsignificant), 2018 null, and 2019 simple 

temperature. 

Relative Basal Area Growth 

Picea BA increment was not influenced by temperature or eCO2. The model of 

Picea BA increment containing only a term for CO2 treatment had the lowest AIC, 

however the null model had a ∆AIC of 1.16, and was therefore chosen as the best 

supported model. The null model was the best supported model for cumulative Picea BA 

increment, followed by the model including only temperature (∆AIC = 1.44) and the 

model including only CO2 (∆AIC = 2.00). The best supported yearly models of Picea BA 

increment were: 2016 simple temperature, 2017 simple CO2, 2018 null, and 2019 null. 

 Annual BA increment of Larix was not influenced by temperature or eCO2, but 

cumulative BA increment was positively influenced by temperature. The model of annual 

Larix BA increment with the lowest AIC was the simple model with a term for 

temperature, however the null model was selected as the best supported model because its 

∆AIC was 1.57. The best supported model for cumulative BA increment was the simple 

model including a temperature term. This model had the lowest AIC, with the next lowest 

coming from the most complex model with temperature-CO2 interaction (∆AIC = 1.00). 

The effect of temperature on cumulative BA increment from this model (p = 0.038) was 

2.708% °C-1 (as a percentage of the starting BA). Larix BA increment best supported 

models were: 2016 null, 2017 null, 2018 null, and 2019 simple temperature. 
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Relative Mass Growth 

Picea mass increment was negatively influenced by temperature annually, but 

cumulative mass increase was not influenced by temperature or eCO2. The model with 

the lowest AIC for Picea annual mass increment was the model including terms for both 

temperature and CO2 but not the interaction. However, the simple model containing only 

a term for temperature had a ∆AIC of (0.20) and was chosen as the best supported model, 

which exhibited a significant negative effect of temperature on Picea annual mass 

increment. For Picea cumulative mass increase, the null model had the lowest AIC 

followed by the simple model including temperature (∆AIC = 1.25). The best supported 

yearly models for Picea mass increment were: 2016 simple temperature, 2017 null, 2018 

null, and 2019 null.  

 Temperature positively influenced both Larix annual mass increment (Figure 4.6) 

and cumulative mass increment (Figure 4.7). The simple model containing a term for 

temperature had the lowest AIC for both annual and cumulative mass increment and was 

selected as the best supported model in both cases. Models containing temperature and 

CO2 terms were the next best candidate model for both annual (∆AIC = 1.69) and 

cumulative (∆AIC = 2.00) mass increase. The temperature term in the best supported 

models were significant for annual (p = 0.043) and cumulative (p = 0.016) mass increase, 

exhibiting negative effects on mass increase (annual = 0.454% year-1 °C-1 ; cumulative = 

2.189% °C-1, as percentage of starting mass). For individual years, the best supported 

models of Larix mass increment were: 2016 null, 2017 null, 2018 null, and 2019 simple 

temperature. 
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Absolute Canopy Volume Growth 

Neither temperature or eCO2 had an effect on annual or cumulative community 

canopy volume increase (Figure 4.8). The model of annual volume increase with the 

lowest AIC was the null model, followed by the model including a CO2
 (∆AIC = 1.80). 

Similarly, the null model for cumulative volume increase had the lowest AIC, but was 

followed by the most complicated model which includes a temperature-CO2 interaction 

term (∆AIC = 1.13). In each individual year, the best supported model for community 

volume increment was the null model for all years. 

Discussion 

Our results provide evidence that Picea and Larix growth will respond to 

increasing air temperatures, but the response differs in magnitude and direction. The 

divergent responses of Picea (- response) and Larix (+ response) growth to temperature 

resulted in no overall growth response to temperature in community canopy volume. The 

lack of tree growth response to temperature as a community in this study suggests that 

tree AGB may not respond to temperature because opposing species-specific responses 

largely offset one another. This is similar to findings from a Girardin et al. (2016), which 

used a robust dendrochronological analysis to measure the effect of environmental 

change on tree growth in Canada’s boreal forest. Girardin et al. (2016) found that while 

there were significant trends in growth, they varied spatially and between species, with 

positive and negative trends compensating for each other and resulting in no overall 

growth stimulation over the boreal zone.  

The negative growth response to warming observed in Picea in this study is 

consistent results from Jensen et al. (2019). Jensen et al. (2019) used ELM_SPRUCE, a 
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land surface model parameterized at the SPRUCE site, to simulate tree growth responses 

to SPRUCE treatments. Data from Jensen et al. (2019) suggest that there is an interaction 

between temperature and eCO2 that influences Picea growth, in which the negative effect 

of temperature on NPP is reduced in the presence of eCO2. Interestingly, I see this 

interactive response in Picea height increment, though this interaction is not detectable in 

our mass increment data. While our results for Picea generally agree with those from 

Jensen et al. (2019), our results for Larix are less consistent. Modeled Larix NPP from 

Jensen et al. (2019) decreased with warming and ambient CO2, and exhibited small 

increases in NPP with eCO2. This is contrary to our results, in which Larix growth was 

unresponsive to eCO2 and increased with temperature.  

The species-specific growth responses to temperature observed in this study are 

corroborated by measurements of gas exchange in Picea and Larix at the SPRUCE site 

(Dusenge et al., In Review). Our finding of a negative growth response to warming in 

Picea is supported by Dusenge et al. (In Review), which observed that warming led to 

reduced stomatal conductance, decreased intercellular CO2 concentrations inducing 

stomatal limitations for carbon gain, and increased respiration in Picea. Additionally, 

warmer leaf temperatures induced slight increases in Larix stomatal conductance and net 

CO2 assimilation rate, did not influence intercellular CO2 concentrations, and warming 

resulted in a smaller increase in respiration compared to Picea, all of which further 

buttress our observation of increased Larix growth with warming. Based on their 

findings, Dusenge et al. (In Review) suggested that Larix prioritized C uptake and growth, 

while Picea prioritized water retention in response to warming and the associated 

increase in vapor pressure deficit, which are conclusions further supported by our results. 
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The connection between warmer temperatures, water limitations, and negative growth 

responses of Picea to temperature has also been described in previous studies (Wilmking 

and Myers-Smith, 2008; Walker and Johnstone, 2014). 

 Conflicting results between our study and that of Bronson and Gower (2010) are 

likely due to differences in the manner in which soil moisture was treated. In contrast to 

our study, Bronson and Gower found that ecosystem warming did not affect P. mariana 

photosynthesis or aboveground autotrophic respiration. However, Bronson and Gower 

(2010) controlled for soil moisture with daily irrigation, ensuring that trees growing with 

the elevated temperatures had the same soil moisture as trees grown with ambient 

temperature. In contrast, I did not add water to the system and allowed soil to dry 

naturally through evapotranspiration in response to temperature treatments. The 

combination of these results provides evidence to suggest that Picea growth is not 

reduced when temperature is raised while increasing water supply, but warming without 

additional water in the system results in reductions in Picea growth. Therefore, the ability 

to predict how Picea growth will respond to environmental changes will depend on the 

ability to simulate and project trends in precipitation, as well as temperature. 

Other than Picea height increment, eCO2 had little effect on tree growth. The 

eCO2 treatments in this study did not influence annual or cumulative growth in any other 

metric. The only metric besides Picea height that eCO2 had a significant effect on was 

Picea BA increment in 2017, in which eCO2 had a positive effect on growth. These 

results are consistent with results from a peatland FACE site (Hoosbeek et al., 2001). 

Hoosbeek et al. (2001) found no response to elevated CO2 in vascular and nonvascular 
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plants at a FACE study in peatlands, and suggested that the reason for the lack of CO2 

fertilization was the inherently low nutrient levels in peatlands.  

There is evidence to suggest that both species acclimated to our experimental 

treatments over the four years of this study. While Picea height increment responded to 

treatments in all years, BA and mass only had significant correlations with temperature in 

the first year. The deterioration of the relationship between temperature and Picea mass 

increment over time can be observed in plots of individual years (Figure 4.9). 

Acclimation of Picea photosynthesis, Picea respiration, and Larix respiration to warmer 

growing temperatures have been observed in previous studies (Tjoelker et al., 1999; Way 

and Sage, 2008). Way and Sage (2008) demonstrated that the thermal optimum for net 

CO2 assimilation was higher for Picea grown in elevated temperatures compared to those 

at lower growth temperatures, which may explain why the only year Picea mass 

correlated with temperature was the first year of the study. Interestingly, Larix response 

to temperature over time appeared to do the opposite of Picea, where all Larix growth 

metrics only correlated with temperature in the last year. Further, the relationship 

between Larix mass and temperature appears to strengthen throughout the study (Figure 

4.9). However, it is difficult to assess whether both species thermally acclimated, or 

whether Picea growth responded less negatively to warming and Larix responded more 

positively to warming over time because there were more nutrients available for uptake. 

Increased nutrient uptake would be a result of accelerated nutrient cycling induced by 

warming, and is supported by leaf nitrogen concentrations increasing with warming in 

both Picea and Larix at SPRUCE (Dusenge et al., In Review). 
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Summary 

 While ANPP in both P. mariana and L. laricina responded to SPRUCE 

treatments, the manner in which they responded differed, with L. laricina showing an 

increase in annual ANPP as a result of elevated temperatures and P. mariana showing a 

reduction. Data from the early years of SPRUCE warming and eCO2 provide evidence to 

suggest that Picea growth will decrease in response to environmental change, but the 

response to temperature may weaken over time. In contrast, our data provide evidence to 

suggest that Larix growth will increase in response to environmental change and growth 

may become more responsive to temperature over time. Therefore, whether systems 

containing Larix and Picea increase C inputs in response to environmental change will be 

dependent on the proportion of each species in the system (77% Picea & 23% Larrix 

here). This could have a meaningful effect on peatland C budgets, considering tree ANPP 

contributes 13% of carbon inputs to the S1 bog (Griffiths et al., 2017). Since NEE is a 

balance of positive and negative C fluxes, and the net C sink in peatlands is much smaller 

in magnitude than component fluxes, small changes in a component flux can have a 

relatively large effect on NEE. Our results help improve understanding of how C inputs 

from these species will respond to environmental change, which is important for studies 

that quantify boreal forest and peatland C budgets and how they will respond to future 

climatic conditions (e.g., Hanson et al., 2020). Further, data and conclusions from this 

study can be used to help inform modeling efforts that simulate how carbon dynamics 

will respond to future climatic conditions. 
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Table 4.1. Summaries of tree sizes and growth metrics for Picea and Larix 

species. 

Species Growth Metric 
Value Annual Growth 

Mean Min Max Mean Min Max 

Picea 

Height (m) 5.09 1.59 8.37 0.17 -0.08 0.56 

Basal Area (cm2) 27.8 2.1 70.7 1.5 -3 10.2 

Tree Mass (kg C) 3.80 0.68 12.12 0.26 -0.16 1.64 

Larix 

Height (m) 4.21 1.88 7.33 0.13 -0.08 1.09 

Basal Area (cm2) 19.1 2.4 81.5 0.8 -1.6 5.7 

Tree Mass (kg C) 2.66 0.70 12.33 0.13 -0.15 1.48 

Combined Vox. Volume (m3) 15.10 5.61 29.73 1.51 -0.65 8.84 
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Table 4.2. Details for the best supported models for all growth metrics for Picea 

and Larix for annual and cumulative increments. N = null model, T = model with 

temperature term, T+C is the model with temperature and CO2 terms, and T+C+I = 

model with CO2 and interaction term. BA is basal area. 

 

  Species Metric Best Model Parameter Value p R2 

A
n

n
u

a
l 

Picea Height T+C+I Intercept** 0.602 0.000  

   Temp** -0.019 0.000  

   CO2* -0.333 0.002  

      Temp x CO2* 0.013 0.005 0.105 

Picea BA N Intercept** 6.344 0.000 0.000 

Picea Mass T Intercept** 13.597 0.000  

      Temp* -0.284 0.003 0.024 

Larix Height N Intercept** 0.134 0.000 0.000 

Larix BA N Intercept** 6.272 0.000 0.000 

Larix Mass T Intercept -5.309 0.302  

      Temp* 0.454 0.043 0.037 

Combined Volume N Intercept** 1.505 0.000 0.000 

4
-Y

ea
r 

C
u

m
u

la
ti

v
e
 

Picea Height T+C Intercept** 1.878 0.000  

   Temp** -0.051 0.000  

      CO2 -0.124 0.056 0.202 

Picea BA N Intercept** 9.795 0.000 0.000 

Picea Mass N Intercept** 10.240 0.000 0.000 

Larix Height N Intercept** 0.535 0.000 0.000 

Larix BA T Intercept -47.934 0.106   

      Temp* 2.708 0.038 0.155 

Larix Mass T Intercept -38.654 0.059   

      Temp* 2.189 0.016 0.203 

Combined Volume N Intercept* 1.044 0.009 0.000 
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Table 4.3. Details for the best supported models for all growth metrics for Picea 

and Larix in individual years. N = null model, T = model with temperature term, C 

= model with CO2 term, T+C is the model with temperature and CO2 terms, and 

T+C+I = model with CO2 and interaction term. BA is basal area. 

Year Species Metric 

Best 

Model Parameter Value p R2 

2016 Picea Height T Intercept** 0.534 0   

        Temp* -0.014 0.015 0.061 

2017 Picea Height C Intercept** 0.206 0   

        CO2** -0.083 0 0.145 

2018 Picea Height T+C Intercept** 0.605 0   

    Temp** -0.02 0  

        CO2* 0.052 0.017 0.215 

2019 Picea Height T+C+I Intercept** 0.926 0   

    Temp** -0.035 0  

    CO2** -0.76 0  

        Temp x CO2** 0.033 0 0.419 

2016 Picea BA T Intercept* 17.68 0.001   

        Temp* -0.453 0.046 0.042 

2017 Picea BA C Intercept** 3.578 0   

        CO2* 2.906 0.011 0.066 

2018 Picea BA N Intercept** 5.421 0 0 

2019 Picea BA N Intercept** 7.838 0 0 

2016 Picea Mass S Intercept** 23.578 0   

        Temp** -0.664 0.001 0.115 

2017 Picea Mass N Intercept** 6.011 0 0 

2018 Picea Mass N Intercept** 6.347 0 0 

2019 Picea Mass N Intercept** 8.074 0 0 

2016 Larix Height N Intercept** 0.094 0.001 0 

2017 Larix Height C Intercept** 0.114 0   

        CO2 -0.067 0.12 0.09 

2018 Larix Height N Intercept** 0.113 0.001 0 

2019 Larix Height T Intercept -0.704 0.085   

        Temp* 0.043 0.023 0.183 

2016 Larix BA N Intercept* 4.214 0.017 0 

2017 Larix BA N Intercept* 3.975 0.002 0 

2018 Larix BA N Intercept** 6.396 0 0 

2019 Larix BA T Intercept -26.859 0.133   

        Temp* 1.693 0.039 0.154 

2016 Larix Mass N Intercept** 3.012 0.001 0 

2017 Larix Mass N Intercept** 2.999 0 0 

2018 Larix PctDC N Intercept** 4.784 0 0 

2019 Larix Mass T Intercept -27.163 0.059   

        Temp* 1.664 0.012 0.218 
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2016 Combined Growth N Intercept* 0.635 0.006 0 

2017 Combined Growth N Intercept** 3.614 0.001 0 

2018 Combined Growth N Intercept 0.728 0.058 0 

2019 Combined Growth N Intercept* 1.044 0.009 0 

* Significant (p < 0.05); ** highly significant (p < 0.001)  
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Figure 4.1. Aerial image of the 10 SPRUCE plots containing the trees in this 

study (A), image of the interior of a SPRUCE plot (B), point clouds of an example 

tree for the five measurements made for this study (C), terrestrial laser scanning 

point cloud of a SPRUCE plot (D), and an example of a point cloud of a tree (left) 

and the 0.05m voxelized version (right) of the same tree (E). 
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Figure 4.2. Coefficient of determination for regressions of voxel count and tree 

dry mass at different voxel sizes (A), and a plot of voxel volume for the chosen voxel 

size (0.05m voxels) correlated with tree dry mass for species combined (B). The 

bolded symbol in (A) reflects the relationship displayed in (B). 
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Figure 4.3. Allometric relationship used to estimate tree dry mass. 
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Figure 4.4. Species-specific correlations between annual growth for all years 

(2016, 2017, 2018, & 2019) and the tree size at the start of the year for all metrics, 

significant correlations were used to normalize growth metrics. Significant 

correlations are marked with bold axes and a dashed blue regression line, 

correlations with p values between 0.05 and 0.15 are marked with dotted blue lines. 

Plots with no regression line had p values > 0.15. 
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Figure 4.5. Species-specific correlations between 4-year cumulative growth from 

2016 through 2020 and tree size for all metrics, significant correlations were used to 

normalize growth metrics. Significant correlations are marked with bold axes and a 

dashed blue regression line, correlations with p values between 0.05 and 0.15 are 

marked with dotted blue lines. Plots with no regression line had p values > 0.15. 
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Figure 4.6. Correlations between growing season mean temperature and annual 

tree growth for Picea mariana height increase (A), basal area (B), tree mass (C), and 

Larix laricina height increase (D), basal area (E), and tree mass (F). Bolded axes on 

plots denote growth metrics for which the best supported model was not the null 

model, coloration of points marks metrics that had a CO2 term in the best supported 

model, a single regression line marks metrics for which the best supported model 

was the simple linear model of growth as a function of temperature, and multiple 

regression lines indicate that the best supported model included both temperature 

and CO2.  
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Figure 4.7. Correlations between mean growing season temperature and 4-year 

cumulative tree growth for Picea mariana change in height (A), basal area (B), tree 

mass (C), and Larix laricina change in height (D), basal area (E), and tree mass (F). 

Black dots represent trees grown in ambient CO2 concentrations and red dots 

represent trees grown with CO2 enrichment. Bolded axes on plots denote growth 

metrics for which the best supported model was not the null model, coloration of 

points marks metrics that had a CO2 term in the best supported model, a single 

regression line marks metrics for which the best supported model was the simple 

linear model of growth as a function of temperature, and multiple regression lines 

indicate that the best supported model included both temperature and CO2.  
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Figure 4.8. Annual voxel volume increase as a function of growing season 

temperature (A) and four-year cumulative voxel volume increase (B). 
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Figure 4.9. Correlations between growing season temperature and mass 

increment for Picea and Larix as a percentage of the tree mass at the start of each 

year. Significant correlations (p < 0.05) are displayed with bolded axes and dashed 

blue regression lines, correlations with p values between 0.05 and 0.15 have dotted 

blue lines showing the regression line.  
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CHAPTER FIVE: CONCLUSIONS 

 This dissertation explored how TLS data can be used to help improve simulations 

and understanding of the C cycle in peatlands. This was achieved by using TLS data to 

improve how peatland microtopography is measured and represented in a land surface 

model and measuring tree growth responses to simulated environmental change. In 

chapter two, I filled a gap in the scientific literature by providing standardized methods 

for quantifying microtopography that were used in the modeling work presented in 

chapter three. In addition the standardized methods I present will aid future studies 

wishing to take measurements along elevation or depth to water table gradients (e.g., 

Bubier et al., 1993; Tuitilla et al., 2004). Such studies can use the elevation distributions 

reported in chapter two to scale these measurements to larger extents. Alternatively, said 

studies could derive elevation distributions at their study site using the methodology I 

developed using TLS point clouds, or apply the workflow to point clouds generated from 

unmanned aircraft systems (UAS) lidar or structure from motion (SfM) (e.g. Lucieer et 

al., 2014; Lovitt et al., 2018). Further, studies that wish to stratify microtopography and 

sample microforms (e.g., Bubier et al., 1993; Norby et al., 2019) can use, and modify, our 

Functional_Classification or Scaling_Classification to choose sampling locations. This 

would provide consistency between sites and studies and improve inter-study 

comparisons by explicitly defining what constitutes hummock or hollow sampling
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locations. Whether investigators treat microtopography as a continuous variable 

(elevation) or generalize to stratified classes (microforms), quantifying the 

microtopography at their site will facilitate selecting sampling sites based on quantitative 

data, rather than the heuristic selection of sites by the investigator. This chapter has been 

published in Ecosystems (Graham et al., 2020). Additionally, data from this chapter was 

used in Jan et al. (2018) and available through the public dataset Graham et al. (2019b). 

 The notion that peatland studies can be improved using the methodologies 

developed in chapter two is instantiated in chapter three. The third chapter of this 

dissertation used the ELM_Classification developed in chapter two to calculate 

ELM_SPRUCE microtopographical parameter values from empirical data, values which 

had previously been set heuristically. This analysis revealed that two of the three 

heuristically determined parameter values were larger and well outside the range of 

values calculated from empirical data. This demonstrates the importance of high-

resolution microtopographical data that has only recently become available, and 

highlights the potential inaccuracies that can occur in the absence of such data. Our 

investigation quantified the influence of microtopographical parameters on the C cycle in 

ELM_SPRUCE, and found that uncertainty in microtopographical parameters resulted in 

relatively large uncertainty in NEE (range =  35% of the mean). Constraining 

microtopographical parameters and using representative values from empirical data will 

reduce uncertainty in simulated NEE and yield insight into model structural fidelity. 

Furthermore, as peatland systems shift from C sinks to C sources with ecosystem 

warming (Hanson et al., 2020), reducing uncertainty in simulated NEE and component 
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fluxes will help elucidate what degree of warming will tip these systems from sink to 

source. This chapter is under peer review for publication. 

 The fourth chapter quantified how two tree species (Picea mariana & Larix 

laricina) commonly found in peatlands and widely distributed across the North American 

boreal zone responded to simulated environmental change. This was achieved by 

measuring tree growth through the first four years of the SPRUCE experiment with a 

combination of traditional and TLS derived growth metrics. I found that P. mariana and 

L. laricina had divergent and dynamic responses to elevated temperatures, in which P. 

mariana had a negative growth response in the initial year which deteriorated in 

subsequent years. Conversely, L. laricina had no growth response to temperature in the 

first two years of the study, but in the final year of this study, L. laricina exhibited a 

significant positive correlation with temperature, which was the strongest growth 

response I observed. I found minimal effect of eCO2 on tree growth, which is consistent 

with previous studies measuring the growth response of peatland vegetation to eCO2 

(Hoosbeek et al., 2001). While eCO2 was determined to influence the height of P. 

mariana, this did not translate to an effect on tree mass. Conclusions drawn from this 

study can be used to make inferences into how P. mariana and L. laricina will respond to 

environmental change across their range and the effect this will have on the C budget of 

northern peatlands and boreal forests. Further, these results can be compared to modeling 

efforts that evaluate how P. mariana and L. laricina will respond to environmental 

change (e.g., Jensen et al., 2019) to investigate discrepancies between simulated and 

observed growth responses, and improve future simulations. This study is under peer-

review for publication, and data from this chapter was used in Malhotra et al. (2020). The 
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TLS point clouds used in this study can be found in the public dataset (Graham et al., 

2019a). 

 Overall, this dissertation advances peatland research and directly supports the 

efforts of the robust warming and eCO2 experiment SPRUCE, and developed novel 

approaches for processing TLS point clouds to characterize microtopography. Through 

this dissertation, I improved how a key component of peatland ecosystems that drives 

multiple biogeochemical processes is measured and represented in models. Further, I add 

to the body of literature which evaluates how tree growth will respond to environmental 

change with empirical results from in-situ manipulations of temperature and eCO2. More 

broadly, data and conclusions from this dissertation help improve peatland studies 

evaluating biogeochemical cycles and their response to environmental change. 
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DEM Accuracy Assessment: Methods 

Validation Data 

During the spring of 2017 ground truth elevation data were collected in each plot 

by placing dowels in plot prior to TLS scanning. The top ~0.025 m of dowels were 

wrapped in highly reflective tape, which allowed for easy extraction from the point cloud. 

Dowels were marked 0.5 m from the top and inserted to the mark, ensuring the top of the 

reflective tape was a known 0.5 m from the bog surface. Thirty ground truth points per 

plot were placed in a transect-like fashion along ladders inside plots that allow access to 

the interior of the plot without disturbing the surface. Three of the total 360 reference 

points could not be reliably extracted from point clouds, and thus 357 reference points 

were used for the accuracy assessment. 

Surface Accuracy 

The location of the bog surface at reference points was compared with the digital 

elevation model (DEM) to evaluate the accuracy of the surface reconstruction. This was 

achieved by extracting points from the DEM that were the closest (XY plane, typically < 

0.01 m) to reference points, and calculating the vertical distance between the extracted 

surface points and their respective reference points. If the surface reconstruction was 

perfect, the distance between all reference points and their associated DEM elevation 

would be exactly 0.5 m. Therefore, the difference between the calculated distance and 0.5 

represents the error of the DEM at reference points.  

I explored potential sources of DEM error by deriving metrics from TLS point 

clouds, DEM, and reference point elevations and correlating them with surface 

reconstruction errors. If metrics derived from point clouds or DEM explain a portion of 
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the variation in errors, statistical models could be used to improve the accuracy of the 

reconstructed model because these metrics can be calculated for every cell in the DEM. 

Conversely, metrics derived from reference points cannot be used to improve DEM 

accuracy (because they can only be generated at reference locations), but can elucidate 

possible sources of error and what type of locations are typically associated with positive 

or negative errors. 

The TLS point cloud metric used was voxel (volumetric pixel) volume in a 1.0 m 

radius from reference points. This was performed by voxelizing the SPRUCE plot point 

cloud using 0.01 m voxels and calculating the number of occupied voxels that were 

within 1.0 m (xy plane) of reference points. Voxel volume correlates well with vegetation 

metrics including biomass and leaf area index (Olsoy et al., 2014; Greaves et al., 2015; 

Olsoy et al., 2016), and was therefore chosen as a proxy for the amount of material 

(vegetation or instrumentation) in close proximity to reference points that could cause 

laser occlusion. 

I used two metrics derived from the DEM; the first metric was the normalized 

elevation of the DEM at the reference location, and the second was the distance to the 

boardwalk in SPRUCE plots where TLS scans were taken. DEM elevations were 

normalized by subtracting the plot mean elevation because the S1 bog has a raised dome, 

and the average elevation is not uniform. I used DEM elevation to explore whether there 

was a systematic error associated with the DEM (e.g., if higher elevations had large 

positive errors). I used distance to SPRUCE boardwalks because our scanner does not 

collect data in a 30° cone below the scanner (near the boardwalk) and scanner orientation 
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is less optimal at locations near the boardwalk, so these locations are not as well sampled 

as areas near the middle of plots. 

The metric derived from reference points that I used was the normalized true 

elevation of the bog surface. This metric is similar to the DEM elevation, and was 

normalized using the same method as DEM elevations. However, normalized true 

elevation differs in the fact that this information is only available at reference points, not 

at all locations of the DEM. Therefore, this metric cannot be used to improve surface 

reconstructions through statistical relationship, but may provide insight into systematic 

errors. 

Results 

Surface Reconstruction 

DEMs had a mean absolute error (MAE) of 0.057 m, with 84% of errors having 

magnitudes less than 0.1 m and 2% having errors with magnitudes larger than 0.2 m 

(Sup. Figure 1). DEM errors ranged from -0.128 - 0.292 m with positive errors (DEM 

elevation higher than actual bog surface) occurring more frequently (n = 218) than 

negative errors (n = 139). Further, the magnitude of positive errors (mean = 0.070 m) 

were also higher than negative errors (mean = 0.036 m; W = 21,027, p < 0.001), resulting 

in a bias (mean error) of 0.029 m. 

Errors in DEMs were not correlated with elevations from DEMs (p = 0.81; R2 < 

0.001), but were negatively correlated with reference point elevations (p <  0.001; R2 = 

0.49), which had the strongest correlation of any metric (Sup. Figure 2). Distance to the 

boardwalk was also negatively correlated with errors (p <  0.001; R2 = 0.08) and 

explained 8% of the variation in errors.  
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Contrary to expectations, voxel volume was not correlated with DEM errors (p = 

0.07; R2 = 0.006). However, I still suggest vegetation cover resulting in laser occlusion 

was a major source of error. I chose to use a voxel volume (0.01 m voxels) in a 1.0 m 

radius with the idea that this voxel volume would be a proxy for the amount of laser 

occlusion caused by material in close proximity, however this may not effectively capture 

the relationship between laser occlusion and DEM errors. 

Discussion 

Surface Accuracy 

The produced DEMs were sufficiently accurate for calculating roughness metrics, 

in addition to classifying peatland microforms. Errors in DEMs from this study (0.057 m 

MAE) were smaller than the 0.14 - 0.42 m MAE from Lovitt et al. (2017). Lovitt et al. 

(2017) reported that accuracy was dependent on vegetation cover and surface complexity, 

with vegetation cover being a main source of error. Although it was not supported by our 

voxel volume metric, I also believe laser occlusion caused by surrounding vegetation 

(and instrumentation in SPRUCE plots) was a major source of error in our TLS derived 

DEM. 

The study site in Lovitt et al. (2017) was very similar to our site, and therefore our 

data provide evidence to suggest the accuracy of DEM of peatland microtopography are 

higher for TLS than UAS SfM. The higher accuracy of TLS comes at the cost of either 

limited spatial coverage or time and labor intensive field campaigns, however, UAS lidar 

may provide a method with accuracy similar to TLS along with the ability to cover larger 

spatial extents. Although, studies comparing the three methods are needed to elucidate 

the efficacy of UAS lidar for characterizing peatland microtopography. 
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Our voxel volume metric may not have represented the relationship between 

vegetation cover, laser occlusion, and DEM errors for several reasons. First, in areas 

where accuracy is affected by laser occlusion, the laser occlusion may occur further away 

from the location than 1.0 m. In such cases, the voxel volume in the 1.0 m radius would 

be reduced because the laser was occluded before reaching the target material. It is also 

possible that a voxel volume at a different scale (larger/smaller radii, constraining z 

component in which voxel volume was calculated, larger/smaller voxels, etc.) would 

correlate with errors, which would indicate the 1.0 m radius and 0.01 m voxels were not 

the appropriate scale for the relationship. However, a cursory exploration of this 

explanation did not support this notion. 

Errors in our DEM were correlated with reference point elevations (true elevation 

of the bog surface) but not with the elevation of the DEM (Sup. Figure 2), which implies 

the presence of systematic errors in the DEM. Specifically, areas above the plot mean 

elevation were associated with negative errors, indicating the reconstructed elevation was 

lower than the true elevation. Inversely, locations below the plot mean exhibited both 

more frequent positive errors and positive errors with larger magnitudes than areas near 

or above the mean elevation, which suggests the DEM was higher in areas with low 

elevations. Systematic errors of this nature likely result from higher occlusion of laser 

pulses at the bottom of depressions.  

Scaling_Classification Continued 

Methods 

Matrices representing elevation from the DSM were utilized to calculate slope 

and concavity from image convolutions with the Open Source Computer Vision Library 
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(OpenCV; Bradski, 2000). Areas outside the boardwalk and inside the large flux collars 

were imputed with the plot elevation midpoint, so there were no missing values for 

convolutions. The Sobel operator (Shrivakshan and Chandrasekar, 2012) was used to 

calculate elevation gradient (slope; Graham et al., 2019b). 

The Laplacian of Gaussian (LoG) is a convolution kernel that combines a 

Laplacian and a Gaussian kernel into a single convolution kernel, and is an 

approximation of the second spatial derivative (concavity) (Gunn, 1999). The LoG 

approximates concavity at a scale defined by the standard deviation (σ) of the Gaussian, 

and thus is a tool that can be used to identify mound-like or depression-like areas at the 

scale I expect to observe microforms. I convolved matrices representing 

microtopographic elevations with a LoG kernel to produce approximations of the second 

order spatial derivative at each point (Graham et al., 2019). The window size of LoG 

kernels was four times σ. I used a σ of 0.2 m because it smoothed high frequency 

undulations in elevation that occur on smaller spatial scales than I expect the hummock-

hollow complex to occur. This was based on field observations and visual inspection of 

maps after convolutions. 

Weighting Function Parameterization 

Sigmoidal weighting functions were used to reduce the effect of outliers and 

enable the manipulation of how each value is weighted relative to where it falls in the 

distribution of that variable, and relative to other variables. Sigmoid weighting functions 

use four parameters and are defined as: 

Eqn A.1 F(x) = 
𝐿

1+ 𝑒−𝑘∗(x0−𝑥) +  T 
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where F(x) is the weighted value, L defines the range of possible weights and whether the 

relationship is inverted (i.e., whether L is positive or negative), x0 is the x midpoint, k 

defines the steepness of the weighting curve, and T is the translation of F(x). These 

parameters allowed us to dictate how much each variable influences the microform 

classification by modifying the range of possible weights (L and T), and how quickly 

weighting approaches the horizontal asymptotes (k) as it moves further from x0. 

Parameterizations of weighting functions (Table A.1) were determined by 

iteratively modifying parameters based on visualizations of weighting functions 

superimposed on variable distributions (Figure 2.5) and inspection of the resulting values 

of the Hollow Index displayed in 3D (similar to Figure 2.1B&C). The elevation 

weighting function is parameterized in a manner that dictates whether the Hollow Index 

at areas will be suppressed (weight < 1.0) or amplified (weight > 1.0). The curve of the 

elevation weighting function (k) is parameterized based on the plot standard deviation 

(σ), so that values between the 5th and 95th percentiles are weighted relatively linearly, 

and weights assigned outside that range experience a progressively increasing 

diminishing return further toward extremes (Figure 2.5E). 

The LoG weighting function is parameterized such that locations with a positive 

LoG (i.e., concave up, depressions) receive values > 1.0 and negative LoG are weighed < 

1.0 (Figure 2.5F). This parameterization results in the Hollow Index at concave up 

locations being amplified, and concave down locations being suppressed. The slope of 

the weighting function (k) is dictated by the plot σ, similar to the elevation weighting 

function.  
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The fixed range for possible values of slope (i.e., 0 - 90°) precludes the ability of 

extreme values to dominate the Hollow Index. Therefore, a static value was used for the 

parameter k defining the slope and degree of diminishing return weights received (Sup. 

Table 1). The parameterization of the slope weighting function results in areas with 

slopes > 45° receiving a weight < 1.0, resulting in the Hollow Index being suppressed. 

Conversely, locations with slopes < 45° receive a weight > 1.0 and the Hollow Index is 

amplified (Figure 2.5G).  

Using this set of parameters and a Hollow Index classification threshold of 2.2, 

the Scaling_Classification can be defined at any location using equations A.2-A.6: 

Eqn A.2. CS(𝑥, 𝑦) = {
𝐻𝑢, 𝑖𝑓  𝐻𝐼(𝑥, 𝑦) ≤ 2.2

𝐻𝑜, 𝑖𝑓  𝐻𝐼(𝑥, 𝑦) > 2.2
  

where CS(x,y) is the Scaling_Classification at location xy and HI(x,y) is the Hollow Index 

at location xy, defined by: 

Eqn A.3. HI(x,y) = WE(x,y) * WC(x,y) * WS(x,y) 

in which WE(x,y) is the elevation weighted value, WC(x,y) is the concavity weighted 

value, and WS(x,y) is the slope weighted value at location xy. Weighting functions are 

defined as: 

Eqn A.4. WE(x,y) = 
−2

1+ 𝑒
−(

1
𝜎𝑧

)∗(µ𝑧−𝑧𝑥𝑦)
+  2 

where σz is the plot-specific standard deviation in elevation from DEM and μz is the plot-

specific mean elevation, 

Eqn A.5. WC(x,y) = 
2

1+ 𝑒
−(

1
𝜎

𝛻2
)∗(0−𝛻2

𝑥𝑦)
+  0 
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where σ∇2 is the plot-specific standard deviation in concavity and ∇2
xy is the concavity at 

location xy, and  

Eqn A.6. WS(x,y) = 
−1

1+ 𝑒−0.04∗(45−𝑆𝑥𝑦) +  1.5 

where Sxy is the slope (in degrees) at location xy. 

Considering that the Scaling_Classification identifies locations that I have high 

confidence as hollows in the field, it is assumed that any area not classified as hollow is a 

hummock. This assumption will influence scaling results. If one were to use this 

classification scheme to scale field measurements, it would be wise to provide a similar 

estimate for areas that are highly likely to be classified as hummock. One way to achieve 

this would be to invert (i.e., change the sign of L) the elevation and LoG weighting 

functions in the Hollow Index and adjust weighting parameters accordingly. This would 

create a “Hummock Index”, thresholded in the same manner as the Hollow Index. The 

combination of these two indices provide estimates of areas that represent each 

microform, and the remaining areas could be treated as uncertainty in the classification, 

or intermediate microforms (e.g., lawns) functioning along the hummock-hollow 

continuum. In this study, weighting functions for elevation and concavity were based on 

distributions of each variable in SPRUCE plots, future studies would need to define a 

spatial scale constituting a ‘plot’ that will define these parameters. 
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Table A.1. Parameter values used in sigmoid weighting functions for calculating 

the Hollow Index. σ = standard deviation. 

Parameter 

Metric 

Elevation (m) 

Concavity  

(m m-2) Slope (°) 

L -2 2 -1 

k 1 / Plot σ 1 / Plot σ 0.04 

x0 Mean 0 45 

t 2 0 1.5 
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Figure A.1. Histogram of errors from 357 reference points in reconstructed 

surfaces with mean error displayed with a vertical red line. 
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Figure A.2. Correlations of errors with elevations from the reconstructed surface 

(A), elevation of the bog at reference points (B), distance to the boardwalk (C), and 

voxel volume in a 1.0 m radius (D). 
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The scripts and software created in association with this dissertation can be found in 

the GitHub repository:  

 

https://github.com/JakeGraham/GRAHAM_DISSERTATION.git 


