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ABSTRACT 

The energy-water nexus poses an integrated research challenge, while opening up 

an opportunity space for the development of energy efficient technologies for water 

remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that 

uses a small applied voltage applied across electrodes to electrophoretically remove 

dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions 

are stored in the electric double layer of the electrodes. Reversing the polarity of applied 

voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. 

Simultaneous materials recovery and water reclamation makes CDI energy efficient and 

resource conservative, with potential to scale it up for industrial applications. The 

efficiency of the technology depends on the architectural design of the CDI cell, control of 

operating conditions, and the nature of the electrodes used. In this project we report on the 

performance of Ti3C2Tx MXenes flow electrodes in a CDI cell design. MXenes are a novel 

class of two-dimensional (2D) transition metal carbides, nitrides and carbonitrides with the 

general formula Mn+1XnTx where M is an early transition metal, X is carbon and/or 

nitrogen, Tx represents the surface terminations. Ti3C2Tx MXenes synthesized at Boise 

State, were employed as a flow electrode solution in an established CDI cell for targeted 

and selective ion removal. Performance metrics of achieved adsorption capacity, ion 

removal efficiency, regeneration efficiency, energy consumption, and charge efficiency, 

exceed those of currently prevalent electrode systems. In addition, rheological properties 

of the Ti3C2Tx MXenes colloidal solution were evaluated. This work establishes the 
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deionization performance of Ti3C2Tx MXene based flow electrodes while providing further 

insight towards understanding the effect of structure and surface functionalization on the 

resultant deionization efficiency. 
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

Originating in the Himalayan Plateau, the mighty Indus River and its tributaries are 

the lifelines of my home country, Pakistan.  The region is primarily an agrarian economy 

[1]. The water quality in the Indus river basin has a direct impact on national food and 

economic security [2]. Similarly, the U.S. food system is one of the pillars of the U.S. 

economy. Food and agriculture industries contributed $1.053 trillion to the nation’s gross 

domestic product (GDP) in 2017 alone [3]. The state of Idaho’s economy is also heavily 

agriculture reliant. Agricultural production accounts for nearly 20% of the state’s annual 

gross state product [4]. However, this productivity comes at an environmental cost. 

According to the U.S. Environmental Protection Agency (EPA), agriculture is the primary 

contributor to rising lake and river pollution [5]. Agricultural runoff is often the cause of 

water quality issues. It is typically loaded with phosphorous, ammonia, and nitrates due to 

animal waste and abundant use of fertilizers [6]. Orthodox agricultural practices lead to 

agricultural runoff accumulating in natural water sources, reducing water quality and 

disrupting aquatic ecosystems. 

To ensure food and economic security, it is therefore imperative that agricultural 

waste is curtailed, and/or pre-treated before releasing into natural environments. Since most 

of agricultural waste is in the form of wastewater runoffs, the efficient pre-treatment of 

nutrient laden wastewater is a pressing research challenge.  
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1.2. Research Goals 

Currently prevalent agricultural wastewater treatment technologies are physical or 

biological in nature [7]. The practices within the industry primarily focus on pollutant 

mitigation to abide by the Clean Water Act (CWA) [8]. While there have been some efforts 

to reclaim and reuse agricultural wastewaters, the area remains largely untapped. There are 

no industrially widespread practices that simultaneously account for nutrient recovery 

alongside wastewater reclamation. This is a cause of concern as agricultural wastewaters 

are often laden with valuable nutrients, including but not limited to ammonia and nitrates. 

On the flip side, recovery technologies are often limited to being some variation of physical 

or chemical filtration, which is both time and resource-intensive. Hence, the wide aim of 

this project was the development of a resource and energy conservative technique that can 

target nutrient recovery alongside water reclamation. Extensive literature review revealed 

that capacitive deionization is an emerging technique that fits our widespread research 

goals, and was hence the area of focus in this project. This is further discussed in Chapter 

2. 
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CHAPTER TWO: BACKGROUND 

2.1. Capacitive Deionization 

The concept of Capacitive Deionization (CDI) was first brought to light in the early 

1960s [9]. The proof of concept paper by Blair and Murphy outlined the application of low 

voltage to electrophoretically remove dissolved ions from brackish water. However, the 

limited availability of high surface area, electrically conductive materials halted the 

progress of technology. The physical isolation of graphene in 2004 by Konstantin 

Novoselov and Andre Geim [10] led to a vigorous interest in carbon materials within the 

scientific community. Carbon in its various forms, including but not limited to graphite, 

carbon aerogels, carbon nanotubes, and graphene exhibit an unusual combination of 

attractive properties like high surface area, high electrical conductivity, surface sensitivity, 

and good mechanical strength [11]. Owing to these properties, research in carbon-based 

electrode materials piqued. Unsurprisingly, the first patent for membrane CDI (MCDI) was 

filed later in 2004 by Andelman and Walker [12]. This leads evidence to the fact that the 

development and progress of CDI technology is heavily reliant on the availability of 

suitable electrode materials.   

A CDI system consists of an oppositely charged pair of porous electrodes that trap 

and store dissolved ions upon the application of an electrical voltage. Capacitive adsorption 

of ions is the primary mode of separation. This allows it to operate at voltages below the 

reduction potential of water (1.23 V), resulting in very low energy consumption. This is in 

direct contrast with technologies that involve chemical reactions [13]. The system operates 
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in two steps which are shown schematically in Fig. 2.1. [14]. The charging step involves 

the application of electrical voltage for the harvesting and storage of ions to yield purified, 

deionized water. The discharging step involves the switching of applied voltage polarity 

following the saturation of electrodes. This releases the adsorbed ions, which are collected 

in a separate concentrated stream. This makes CDI optimal for not only removal but also 

recovery of dissolved nutrients.  

 

Flow-by CDI, as represented in Fig. 2.1. is the quintessential CDI setup. However, since 

its inception in the early 1960s, many different cell architectures have been explored. The 

timeline for the development of various cell architectures is shown in Fig. 2.2. [15]. 

 

Figure  2.1. Schematic representation of the CDI process [14].  
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The Flow Electrode Capacitive Deionization (FE-CDI) cell was first developed in 

2013 [16] as a modification of the MCDI style cell. It differed from all previously pioneered 

cell designs in the fact that stationary electrodes were replaced by two sets of particle 

suspension slurries that recirculated through the serpentine channels carved into the current 

collectors of the cell. This setup is schematically shown in Fig. 3.1. A conventional CDI 

system runs deionizing cycles until the stationary electrodes are saturated and have reached 

their maximum adsorption capacity. At the saturation point, the cell operation is halted and 

the applied potential is reversed (or removed) to allow electrode regeneration. Hence, 

during switching, conventional CDI runs the risk of cross-contamination between purified 

and concentrated streams, which overall reduces the purification efficiency. In addition, 

the mechanical switching of the cell potential curtails its effluent productivity. At a given 

time, the cell can either be purifying or concentrating. On the other hand, an FE-CDI system 

can run over several identical cycles as adsorption and regeneration can occur 

simultaneously. As shown in Fig. 2.3. [17], an applied operational CDI setup contains two 

identical cells that are oppositely biased. The electrode effluent from the cathode channel 

Figure 2.2. Timeline for the development of various cell architectures 

[15]. 
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of the first cell forms the influent into the anode channel of the second cell (and vice versa), 

hence allowing the suspension to recirculate continuously. The inclusion of ion exchange 

membranes prevent the cross mixing of the electrode streams with the inlet water streams. 

The two operating cells generate purified and concentrate streams concurrently with no 

risk of cross contamination. Hence increasing overall productivity of the system.  

 

CDI cell performance is evaluated by analyzing the changing ion concentration as a 

function of time. Several monovalent salt solutions, including NaCl, KCl, and NH4Cl, 

exhibit a linear relationship between solution conductivity and ionic concentration. For this 

reason, effluent solution conductivity can be used as a stand-in for the changing ionic 

concentration. The later can be measured through a single-pass (SP) experiment or batch-

mode (BM) experiment as shown in Fig. 2.4. [18]. As is apparent by the name, in an SP 

Figure 2.3. Two cell FE-CDI setup in continuous operation [17]. 
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experiment, the wastewater is passed through the cell only once and the effluent  

conductivity is measured at the outlet. It reaches a minimum and steadily rises again as 

electrodes are saturated and no more adsorption occurs (Fig. 2.4.a). In a BM experiment,  

the wastewater is circulated through the CDI cell until a low-minimum is reached and 

maximum ions have been adsorbed. In an FE-CDI cell, the electrodes are never completely 

saturated because the adsorption-desorption occurs simultaneously. Hence, SP style is 

infeasible and for this project, BM style experimental setup was used (Fig. 3.1. a). 

 

A CDI cell is meant to be operated continuously. Hence performance metrics are 

evaluated once dynamic equilibrium (DE) has been reached.  In DE, each charge-discharge 

cycle is identical to the last one. This is similar to the cyclic operation of batteries, and 

supercapacitors. Ideally, once DE has been achieved, the system should be able to operate 

continuously ad infinitum.  

Figure 2.4. Schematic of two common experimental designs for CDI [18].  
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While CDI debuted as a desalination technology, its application are far-reaching 

and widespread (Fig. 2.5. [19]).  This project demonstrates that CDI is a novel, adaptable, 

and versatile technology that can be used for applications beyond the facile treatment of 

brackish water. This also demonstrates that there is significant room for further research 

and development in the area. 

 
Figure 2.5. Different applications of CDI technology [19]. 
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2.2. Electrochemical Energy Storage 

The technology of CDI draws inspiration from electrochemical capacitors  that 

are also referred to as electric double-layer capacitors (EDLC) due to their primary 

charge storage mechanism. Charges in electrical devices (batteries, conventional 

capacitors etc.) are accumulated by either one or a combination of the mechanisms 

outlined in Fig. 2.6. [20]. EDLC storage (Fig. 2.6.a) exploits the directional electrostatic 

interactions that develop at the electrolyte/electrode interface. The polarized ions 

aggregate at the charged electrode/electrolyte boundary. Opposite ions in the electrolyte 

solution migrate towards the first layer aggregated ions to maintain charge neutrality. The 

concentration of the held charges decreases exponentially with increasing distance from 

the surface, as described by the Gouy-Chapman theory [21]. The mechanism of electrical 

double layer adsorption is facilitated by lattice morphology, as well as the nature of the 

electrolyte [22]. Hence, it is observed that EDL interfaces are highly prevalent in systems 

and materials that have a large surface area to volume ratio [22]. Therefore, charge 

accumulation via EDL storage can be characterized as a surface phenomenon.  

 

 

 
Figure 2.6. Three classes of charge storage mechanisms [20]. 
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The charge storage capacity can be enhanced via Faradaic or redox reactions. 

Functional groups on the charge storage material surfaces facilitate usable electrochemical 

activity. Electron charge transfer between the solvated electrolyte ions and the electrode 

surface (or ions in case of aqueous media) induces the formation of dynamic double layers 

within the electrolyte or at the interface surface. The charge transfer is rapid and vigorous. 

Ideally, no chemical bonding or reaction takes place. Faradaic charge storage (referred as 

pseudocapacitance) occurs in conjunction with EDL storage and is affected by the surface 

groups on the electrode materials and the affinity of solvated ions to the electrode material. 

In addition, in an aqueous media, Faradaic reactions can induce hydroxide (OH-) ions 

which can increase total capacitance via hydrogen bonding storage.  

The intercalation charge storage varies from the other two mechanisms that it 

utilizes the bulk of the electrode material instead of just the surface. It refers to the 

reversible insertion of a molecule or solvated ion into the interlayer spacing in layered 

materials. Development of intercalation based charge storage devices is still in the research 

and development (R&D) phase. Research efforts are concentrated towards the development 

and employment of a layered crystal structure material that offers rapid two-dimensional 

(2D) ion transport pathways.  

Intercalation of ions in layers of a surface sensitive, redox-active material can allow 

for all three charge storage mechanisms to be in play simultaneously. Hence leading to 

charge storage systems that promise high power density, energy density, and long 

cyclability.  
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2.3. MXenes 

Ever since the isolation of graphene in 2004 [10], the world of layered and 2D 

materials has grown exponentially. This increased interest is fueled by the distinctive 

combination of thermal, optical, electrical, and magnetic properties brought out by the 

unique morphology of the lateral size being several times larger than the material thickness 

[23]. Since then many different 2D materials including hexagonal boron nitride (hBN), 

MoS2, borophene, black phosphorous, silicone, and transition metal dichalcogenides 

(TMDs) have been discovered and extensively researched [23].  MXenes were first 

discovered in 2011 and are a novel class of 2D transition metal carbides, nitrides, or carbo-

nitrides that exhibit a combination of unusual properties like high metallic conductivity, 

high surface area layered morphology, and hydrophilicity [24]. They have the general 

formula M n+1X nT x where M is an early transition metal, X is either carbon, nitrogen, or 

both while Tx represents the surface termination group [25]. As shown in Fig. 2.7. [25], 

various different combinations of MXenes are possible, allowing for material development 

tailored for specific applications. MXenes are characterized by their layered atomic 

structures. Each layer has a sandwich-like structure, where each transition metal (M) atom 

bonds with C or N (or both) atoms in the central layer of atoms. 

Ti3C2Tx was the first MXene to be discovered and was our material of choice for 

this project [25]. Experimental and theoretical investigation of Ti3C2Tx have uncovered 

several desirable properties that align with desired properties needed in CDI electrode 

materials. These include ecological safety, hydrophilicity, high electrical conductivity, 

colloidal stability, high capacitance, and scalability. In addition, the use of Ti3C2Tx in 

capacitors is well documented and they exhibit volumetric capacitance as high as 786 F/g 
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[26]. This allowed us to hypothesize that Ti3C2Tx would be a high performing material for 

FE-CDI. 

MXenes are synthesized by selectively etching the A-layer (corresponding to an A 

group element) form the precursor MAX phases. The MAX phases belong to space group 

P63/mmc and are comprised of a layered hexagonal structure. The A element layers are 

inserted in between the closely packed M-layers which have octahedral sites occupied by 

the X element atoms. In other comparable layered materials such as TMD’s, weak van der 

Waals interactions are primarily responsible for holding the layers together. However, in 

MXenes, the M-X bonds is covalent/ionic (material dependent) in nature, while the M-A 

bond is metallic. If for a particular MAX phase, the M-A bond is weaker than the M-X 

bond, the phenomenon of relative bond energies can be used to selectively etch the A 

element by the use of strong acids or molten salts without disrupting the M-X bonds. It is 

important to note that the M-X bond strength is not greater than the M-A bond strength in 

all MAX phases and hence those MAX phases cannot be converted to MXenes. MAX 

phases with equivalent M-A and M-X bond strengths (e.g. Cr2AlC) also do not respond to 

acid etching. However, in Ti3AlC2, the M-A bond is indeed weaker (0.98 eV) than the M-

X bond (1.21 eV) , allowing it to be successfully exfoliated via acid etching [27]. 

In 2011, Naguib et al. [28] etched Ti3AlC2 using hydrofluoric acid to form Ti3C2 

MXenes. The method has since been modified to what is currently known as the minimally 

intensive layer delaminated (MILD) method which produces in-situ HF. Shown in Fig. 2.8. 

[29] the MILD method is the most prevalent synthesis route because of it eliminates the 

need for a separate delamination step, is relatively safer, and has been shown to be scalable 

without loss of properties [30]. 
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 Some studies have shown successful etching using alternate routes [31] but the 

process suffers from extremely low yield and is not viable.  Reaction parameters such as 

the size of MAX phase powder, etching time, temperature, and HF concentration can 

vary the yields, etching times and quality of the produced MXenes. As shown in Fig. 2.8. 

[29], the non-single step clay method yields multi-layer (ML) MXenes while the 

prevalent MILD method gives few-layer (FL) MXenes. The end application must be in 

sight when selecting the suitable synthesis route. For this application as CDI electrode, 

MILD method was selected because of few layer MXenes have higher surface area which 

is desirable in this case.  

 

Figure 2.7. Periodic table showing various combinations of MXenes [25]. 

Figure 2.8. Etching routes for Ti3C2Tx MXenes [29]. 
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The MILD method for selective etching follows the given steps:  

I. 1.6 g of LiF salt is added to previously measured 20 mL of HCl in a 

polytetrafluoroethylene (PTFE) container housing a Teflon coated magnetic stir 

bar. The mixture is stirred for 2-3 minutes at 200 rpm until the salt has visibly 

dissolved. 

II. 1 g of Ti3AlC2 is added to the salt mixture in five increments over the course of ten 

minutes.  

III. The reaction is allowed to run at 300 rpm for 24 hrs at room temperature and 

pressure. 

IV. The mixture is carefully poured into a centrifuge tube and 30 mL of deionized (DI) 

water is added to it.  

V. The solution is centrifuged at 3500 rpm for 5 minutes. 

VI. Following the centrifugation, the MXenes “clay” would have settled at the bottom. 

The supernatant is decanted and its pH is measured. Then fresh DI water is added 

before resdispersing the clay.  

VII. Step V and VI are repeated until the pH of the supernatant is neutral (~ 7) and the 

supernatant is black in color. The dark supernatant indicates that MXenes have 

delaminated.  

VIII. The dark supernatant is decanted into a glass container. The unreacted MAX at the 

bottom of the centrifuge tube is discarded. 

IX. The supernatant solution can be vacuum filtered and vacuum dried to obtain MXene 

powder. 
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Delaminated MXenes form a stable colloidal solution and no surfactants are 

necessary. Spontaneous delamination occurs during the MILD etching process because the 

Li+ ions intercalate between the layers along with hydration shells of H2O. The two weaken 

the bonding between the flakes and hence facilitate the delamination process.  

The size of the obtained MXene flakes can be controlled via adjusting the speed 

and time during centrifugation. However, it is more convenient to do a particle size analysis 

following synthesis and then alter the size distribution by probe sonicating under argon. 

Since MXenes are prone to oxidation, they are stored in a controlled environment like a 

glove box. 

The etching of Ti3AlC2 is believed to proceed as follows [28]: 

I. Ti3AlC2 + 3HF = AlF3 + 3/2H2 + Ti3C2  

II. Ti3C2 + 2H2O = Ti3C2 (OH)2 + H2  

III. Ti3C2 + 2HF = Ti3C2F2 + H2  

To confirm the successful synthesis of MXenes, XRD is the most common 

technique employed. The conversion of MAX phase to multilayer MXene changes the 

characteristic XRD pattern. Ti3AlC2 MAX phase shows all crystallographic peaks a 

expected from the p63/mmc structure. Hydrated Ti3C2Tx (delaminated with water 

intercalated, as mentioned earlier) exhibit highly broadened (00l) peaks. It is also 

common that higher ordered peaks representative of peaks representative 

of a lattice reflections disappear. Delaminated MXene will give only (00l) peaks. The 

most characterstic is the (002) peak, as it is indicative of the c-lattice parameter. Due to 

the layered nature, the interlayer spacing will readily change to accommodate 

intercalants. Hence the location of the (002) peak can inform about the thickness of 
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the MXene sheet. If intercalation is of interest, the change in interlayer spacing can help 

determine the storage mechanism and the amount of ions stored in between the 

layers. Typically, XRD is done to confirm the successful synthesis of MXenes, by 

observing the (00l) peaks. The following equation derived from Bragg’s Law is used to 

determine interlayer spacing in MXenes [32]: 

1

𝑑2
=

4

3
(

ℎ2 + ℎ𝑘 + 𝑘2

𝑎2
) +

𝑙2

𝑐2
 

The etching can also be confirmed by observing the obtained samples under 

Scanning Electron Microscope (SEM) and Transmission Electron Microscope (SEM). 

The classic accordion like structure of etched can be observed in an SEM images as 

pointed out by the arrows in Fig. 3.2.d. The exfoliation is evident when contrasting 

against the SEM image of the Ti3AlC2 MAX phase (Fig. 3.2.d. inset). The TEM 

micrographs (Fig. 3.2.c), confirm that the Ti3C2Tx stacks are formed of electronically 

transparent few layers (as marked by the arrows). 

2.4. Hypothesis 

Due to the colloidal stability, higher number of surface sites, and layered structure 

that facilitates intercalation, we hypothesized that Ti3C2Tx Mxene solution would achieve 

higher adsorption capacity compared to prevalent carbon electrode materials in flow 

electrode CDI systems. Our hypothesis was supported by the high affinity of NH3 gas on 

Ti3C2Tx Mxene as shown in gas sensor studies [33]. In addition, Ti3C2Tx Mxenes had 

shown excellent ion storage capacity in pseudocapacitor application studies [34].  

 

 



17 

 

 

 

CHAPTER THREE: MANUSCRIPT 

3.1.Abstract 

Flow electrode CDI systems (FE-CDI) have recently garnered attention because of 

their ability to prevent cross contamination, and operate in uninterrupted cycles ad 

infinitum. Typically, FE-CDI electrodes suffer from low conductivity, which reduces 

deionization performance. Higher mass loading to combat low conductivity leads to poor 

rheological properties, which prevent the process from being continuous and scalable. 

Herein, Ti3C2Tx MXenes were introduced as 1 mg/mL slurry electrodes in an FE-CDI 

system for the removal and recovery of ammonia from stimulated wastewater. The 

electrode performance was evaluated by operating the FE-CDI system with a feed solution 

of 500 mg/L NH4Cl running in batch mode at a constant voltage of 1.2 and -1.2 V in 

charging and discharging modes respectively. Despite low loading compared to activated 

carbon solution, Ti3C2Tx flowing electrodes showed markedly improved performance by 

achieving 60% ion removal efficiency in a saturation time of 115 minutes, and an 

unprecedented adsorption capacity of 460 mg/g. The system proved to be a green 

technology by exhibiting satisfactory charge efficiency of 58-70% while operating at a 

relatively low energy consumption of 0.45 kWh/kg when compared to the current industry 

standard nitrification-denitrification ammonia stripping process. A 92% regeneration 

efficiency showed that the electrodes were stable and suitable for long term and scalable 

usage. The results demonstrate that MXenes hold great potential in improving the FE-CDI 

process for energy-efficient removal and recovery of ammonium ions from wastewater. 



18 

 

 

 

3.2. Introduction 

Energy and water exist in a complex symbiotic relationship; energy production has 

a water footprint, while water remediation and supply efforts exert a strain on the power 

resources. Nuclear and coal power plants require between 20 to 60 gallons of freshwater 

for every kilowatt-hour (kWh) of energy generated [35]. Correspondingly, water 

remediation and recovery efforts consume 2% of the total energy generated in the United 

States [36], [37]. Environmental efficiency and economics encourage conservation of both 

resources. Water itself is an abundant resource but only 2.5% is readily accessible as 

freshwater, and there are already countries that rely on remediation efforts to obtain their 

water supply [38]. As the global population continues to rise, energy and water 

consumption will increase while existing natural sources will continue to be depleted. In 

its annual 2019 report, the International Energy Agency (IEA) predicts an 85% increase in 

energy related water usage in the upcoming years [37]. In light of this projection [37], it is 

imperative that versatile, cost-effective, and energy-efficient water technologies are 

developed. Wastewater reclamation is one step in a multi-stage solution to solve the 

looming freshwater availability crisis. Wastewater reclamation is environmentally as well 

as fiscally relevant because it can yield purified effluent, as well as recover embedded 

resources. 

Ammonia is one of the most common contaminants found in domestic and 

industrial wastewaters. Yet, due to its importance in the agricultural industry, ammonia is 

one of the most industrially produced chemicals, with over 14 million metric tons produced 

in the United States alone in 2019 [39], [40]. The production of ammonia requires copious 

amounts of both energy and water. While ammonia is undeniably a valuable building block 



19 

 

 

 

in the modern food production, excessive exposure is a valid concern, due to its toxicity 

[39], [41]. The release of ammonia rich wastewater to into aquatic ecosystems can cause 

eutrophication, leading to disruptions in delicate ecological balances [42]. Owing to these 

detrimental effects, the Clean Water Act (CWA) prohibits industrial facilities from 

releasing nitrogen (as ammonia) rich wastewater to waterbodies [8]. Considerable effort 

has been devoted to developing efficient ammonia removal methodologies [43]. Despite 

that, biological nitrification remains the most widespread method for treating ammonia 

wastewater [44]. Aside from being cumbersome and slow, it also wastes embedded 

ammonia, which is otherwise a valuable product. In pursuit of sustainability, product 

conservation directly translates to energy conservation. Hence, there remains room for a 

technology that is energy, water, and resource efficient.  

Prevalent water remediation technologies such as reverse osmosis, multiple effect 

distillation, and multistage flash distillation require anywhere from 2-58 kWh/m3 of direct 

energy input [45]. Reverse Osmosis (RO) is the most common technique, and typically 

uses 2-10 kWh/m3 of power [46]. Among purification technologies, capacitive deionization 

(CDI) has been a promising contender. It is an electrophoretic technique that uses a small 

voltage (~ 1.2 V) applied across two high surface area electrodes to induce charge 

separation. Similar to a supercapacitor, the charges are stored in the electric double layer 

of the electrodes. Even though there has been increasing research interest in CDI [47], the 

unavailability of adequate electrode materials acts as a bottleneck for the technology. Since 

voltage reversal (or removal), causes desorption of the immobilized ions, the technique can 

be used for purification as well as retrieval. Several studies report high water recovery (80-

90%) and low energy utilization (0.6 kWh/m3) for desalination using CDI [48]–[50].  
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As a result of an increased research activity around CDI [47], several different cell 

architectures have been developed including inverted-, hybrid-, ultrafiltration-, flow-by-, 

desalination battery, membrane-, flow-through-, cation intercalation desalination, and 

flow-electrode CDI (FE-CDI) [15]. Apart from FE-CDI, all of these cell architectures 

utilize stationary electrodes and hence require an additional regeneration step for ion 

desorption, leading to non-continuous operation [15], [51]. Additionally, the regeneration 

step can cause cross-contamination between the effluent streams, resulting in lower water 

recovery [52]. This step negatively affects the fundamental motivators for CDI technology: 

cost, time, and energy efficiency. Due to the ability to regenerate electrodes 

simultaneously, FE-CDI is a pioneering electrochemical technology that promises 

continuous, infinite remediation even for high concentration feed waters [53]. The 

adsorption capacity of the system is controlled by regulating the flow rate, channel design, 

and the nature and loading of the electrode material.  

Carbon and its derivatives such as graphene sponge, graphene oxide, carbon 

nanotubes (CNTs), and various composites have been investigated as CDI electrodes [54]. 

Carbon serves as an excellent prototype material due to its high surface area, electrical 

conductivity, and electrochemical stability [54]. While carbon materials have been shown 

to perform well in stationary electrode cell architectures [55], they suffer from low 

electrical conductivity in a slurry electrode systems [56]. In prior studies, and in our 

experimental experience, remediating the conductivity problem by increasing carbon 

content (> 15 wt.%) leads to clogged flow channels, halting operation. 

MXenes are a class of two-dimensional (2D) transition metal carbides, nitrides and 

carbonitrides with the general formula Mn+1XnTx where M is an early transition metal (Ti, 
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V, Nb, etc.), X is carbon and/or nitrogen, Tx represents the surface terminations (=O, -F, -

Cl, and -OH), and n = 1-4 [57]. The family of materials is highly conductive, hydrophilic, 

and can be scalably produced with no loss of properties [30], [58]. MXenes have already 

been proposed as materials useful for environmental remediation, including heavy metal 

adsorption, pollutant adsorption, desalination, amongst others [59], [60]. Ti3C2Tx was the 

first MXene discovered and is the most widely studied [28]. Furthermore, Ti3C2Tx was 

shown to pose no ecological risk to aquatic ecosystems [61]. Recently this material has 

been applied to conventional CDI owing to high surface area and electrical properties [62]–

[66]. 

Many studies have shown that Ti3C2Tx is a promising pseudocapactive anode for 

supercapacitors [24], [67]–[69]. Ideal materials for aqueous electrochemical energy storage 

should have high specific capacitance, charge efficiency, and electrochemical stability at 

water electrolysis potential (~ 1.23V) [70], [71]. These features are also required in high 

performance CDI electrodes, suggesting that Ti3C2Tx will be appropriate for CDI systems. 

Wang et al. demonstrated the use of aerogel-like Ti3C2Tx MXene electrodes in a 

conventional desalination CDI cell to report an unprecedented salt adsorption capacity of 

45 mg/g [72]. In a recent publication, Ma et al. used binder free pristine Ti3C2Tx films to 

achieve a salt adsorption capacity of 68 mg/g [62]. However, conventional CDI cells 

invariably experience co-ion expulsion, which reduces their charge efficiency [73]. The 

necessity of a regeneration step in conventional CDI invariably increases energy 

consumption [51], [52]. For CDI to be considered a green technology, it is necessary to 

account for the operating energy. The use of ion exchange membranes in the cell reduces 

co-ion expulsion. High charge efficiency leads to low operating energy. With energy, 
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water, and resource conservation, FE-CDI holds the promise to surpass the limitations of 

the preceding water remediation technologies including the widespread RO systems.  

In the present study, we aim to evaluate the de-ammonification performance of 

Ti3C2Tx flow electrodes in an FE-CDI system. This has been schematically shown in Fig. 

3.1. This work demonstrates the suitability of Ti3C2Tx MXenes as high performance, low 

loading flow electrodes. It also opens avenues for further exploration in using other 

MXenes in CDI technology.  

  

  

Figure 3.1. Schematic illustration for (a) FE-CDI module for deionization 

testing, and (b) CDI unit cell assembled with: i) Titanium Current Collectors ii) 

Vitreous Carbon iii) Carbon Cloth  iv) Rubber Gaskets v) Anion and Cation 

Exchange Membranes vi) Spacer vii) Polyester Filter Felt. 
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3.3 Experimental 

3.3.1. Preparation of Activated Carbon Flow Electrodes 

The 10 wt.% control flow electrodes were prepared by mixing 1.2 g of 80 mesh 

activated carbon (AC) powder (Cabot Norit® A Ultra E 153) in 12 mL of nanopure water 

and stirring for 2 hours. The mixture was probe sonicated for 1 hour at 55 W to reduce the 

particle size by breaking up agglomerates, increasing the flowability. During cell operation, 

the electrodes were continuously stirred using a magnetic stir bar to prevent sedimentation 

of the carbon particles.  

3.3.2. Preparation of Ti3C2Tx Flow Electrodes 

Ti3C2Tx MXenes were etched from commercially obtained Ti3AlC2 MAX Phase 

(2D Semi-Conductors) using the minimally intensive layer delamination (MILD) synthesis 

method 38]. This method was selected because of its reduced toxicity, and the ability to 

produce low defect, larger MXene flakes [74], [75]. 20 mL of 9 M hydrochloric acid (HCl, 

Alfa Aesar) was stirred with 1.6 g of Lithium Fluoride (LiF, 99.85% Alfa Aesar) using a 

Teflon magnetic bar at 300 rpm for 10 minutes prior to addition of the MAX. 1 g of Ti3AlC2 

was added to the in-situ synthesized HF solution in four increments to prevent overheating 

of the solution. The reaction was allowed to run for 24 hours at room temperature and 

ambient pressure (RTP). The resultant mixture was then washed using nanopure water via 

centrifugation at 3500 rpm until the acidic supernatant became neutral (pH 5-6). The 

presence of lithium ions (Li+) with the etching solution causes simultaneous 

etching/delamination resulting in an electrostatically stable colloidal solution. The stable 

supernatant was vacuum filtered with a glass microfiber filter (0.45 µm, Whatman) to 

separate the MXene clay. To prepare the flow electrode solution, the MXene residue was 
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re-dispersed in nanopure water via manual shaking to obtain a solution with concentration 

of 1 mg/mL (0.1 wt.%).  

3.3.3. Characterization of Ti3C2Tx 

To evaluate the morphology and structure of the samples, several characterization 

techniques were employed. X-ray diffraction (XRD) was conducted on a Rigaku Smartlab 

equipped with a Cu Kα source, a step size of 0.03°, and a holding time of 0.5 s from 3-90°. 

The characteristic expanded structure of the MXenes was observed via scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) imaging on the FEI 

Teneo Field Emission SEM and JEOL JEM-2100 HR analytical TEM respectively. 

Microscopic imaging was also used to map out lateral size of the flakes, which was further 

confirmed by dynamic light scattering (DLS) performed on a Brookhaven NanoBrook 

Omni. The obtained measurement is the hydrodynamic diameter, where the particle is 

assumed to be spherical in nature. It is a function of diffusion co-efficient according to the 

Stokes-Einstein relation. The measurement is an effective average, and hence can deviate 

from actual lateral flake size. The tool was also used to measure electrophoretic mobility 

of the colloidal suspension. All measurements were taken at RTP (25 °C, 1 atm) and at 7 

pH. The viscosity of the colloidal suspension was measured on a RheoSense μVisc 

Viscometer with 300 μL of solution to obtain five repeated measurements. Raman spectra 

was obtained using a 532 nm He−Cd laser on a Horiba LabRAM HR Evolution Raman by 

drop casting the electrode solution on a glass slide.  

3.3.4. Capacitive Deionization Experiments 

To evaluate the performance of the electrodes, a self-assembled CDI unit with 

titanium current collectors of dimensions 6.35 cm x 6.35, carved with serpentine flow 
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channels, was operated in batch mode in constant voltage (1.2 V) cycle in both charging 

and discharging stages. The power was sourced from a Biologic SP-50 potentiostat. The 

effective contact area was 10 cm2. As shown in Fig. 3.1.a, the cell was assembled with 

vitreous carbon (Duocel Reticulated Vitreous Carbon 100 ppi), carbon cloth (AvCarb 1071 

HCB), rubber gaskets (Neoprene, 1.5 mm), along with pre-treated anion and cation 

exchange membranes (Fumasep FAA-3-PK-130 and Nafion™ 115 respectively). These 

were separated by a non-conductive porous spacer (Nylon 3/64”) with a polyester filter felt 

(50 μm) that allowed the feed water to pass through. 20 mL of 0.5 mg/L ammonium 

chloride (NH4Cl) solution was prepared by dissolving analytical grade NH4Cl (99.99% 

Sigma Aldrich) in deionized water (18 MΩ-cm). The solution was circulated through the 

cell at a flow rate of 2 mL/min while a conductivity meter (HACH H1440d Benchtop 

Meter) monitored the conductivity of the NH4Cl solution. 6 mL each of the two electrode 

solutions were circulated in the cell channels at a flow rate of 3 mL/min. 

3.3.5. Performance Metrics 

To evaluate the performance of Ti3C2Tx MXene (and AC) electrodes in the FE-CDI 

cell, the following equations were used to calculate the given metrics [76]: 

I. Conductivity ratio,
 𝐶𝑓

𝐶𝑜
⁄  =

𝐶𝑜−𝐶𝑓

𝐶𝑜
  

II. Deionization efficiency =  
𝐶𝑜−𝐶𝑓

𝐶𝑜
 × 100 %  

III. Deionization capacity, Γ =
(𝐶𝑜−𝐶𝑓)(𝑉𝑜𝑙)

𝑚
 𝑚𝑔 𝑔⁄   

IV. Adsorption rate =  
(𝐶𝑜−𝐶𝑓)(𝑉𝑜𝑙)

𝐴𝑡𝑎𝑑𝑠𝑜𝑟𝑏
 𝑚𝑔 𝑚𝑖𝑛/𝑐𝑚2⁄  

V. Charge Efficiency, ᴧ =  
(𝐹)(𝛥𝑀)

𝑄𝑖𝑛
 % 

VI. Coulombic efficiency loss, η𝑐𝑜𝑢𝑙 =
𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
× 100% 
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VII. Electrode regeneration efficiency, η𝑟 =
Γn

Γi
× 100% 

VIII. Energy Consumption =  
(𝑉)(𝑄𝑖𝑛)

3600(𝐶𝑜−𝐶𝑓)
𝑎𝑑𝑠𝑜𝑟𝑏

(𝑉𝑜𝑙)
 𝑘𝑊ℎ 𝑘𝑔⁄  

IX. Energy Recovery =

(𝑉)(𝑄𝑜𝑢𝑡)

3600(𝐶𝑜−𝐶𝑓)
𝑑𝑒𝑠𝑜𝑟𝑏

(𝑉𝑜𝑙)

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
⁄

 × 100% 

Where,  

Co = Initial concentration of effluent solution (mg/L) 

Cf = Final concentration of effluent solution (mg/L) 

Vol = Volume of feed solution (L) 

m = Mass of particle loading in electrode slurry (g) 

A = Contact area between electrode flow channel and ion-exchange membranes (cm2) 

t = Time of adsorption cycle (min) 

ΔM = Moles of NH4Cl removed (mol) 

F = Faraday’s constant (96485 C/mol) 

Qin = Charge uptake during adsorption (C)  

Qout = Charge release during desorption (C) 

Γ𝑛 = Deionization capacity of the final cycle (mg/g)  

Γi = Deionization capacity of the initial cycle (mg/g) 

V = Voltage applied across the cell (V)  
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3.4. Results and Discussion 

3.4.1 Material Characterization 

 

 

XRD results shown in Fig. 3.2.a confirms successful etching of Aluminum (Al) 

from the Ti3AlC2 MAX phase by the shift in the (002) peak from 9.60° to 7.17°. In the 

MILD method, etching and delamination simultaneously, with delamination occurring 

through intercalation of water (H2O), and lithium ions (Li+). The ion removal mechanism 

in FE-CDI is dependent on the type of electrode material used [47]. Carbon electrodes 

operate through ion adsorption on the charged surface of the particles, while MXenes 

function by allowing ion insertion between the individual sheets [77]. Hence, the interlayer 

spacing has a pronounced effect on the charge storage and the ionic transport properties of 

MXenes [78]. The etched Ti3C2Tx has a total interlayer spacing of 4.40 Å, due to the 

Figure 3.2. (a) XRD spectra of Ti3AlC2/ Ti3C2Tx before and after etching; (b) 

Raman spectra of Ti3C2Tx flow electrodes at 532 nm; (c) TEM image of etched and 

delaminated Ti3C2Tx showing separated layers.; (d) SEM image of etched and 

delaminated Ti3C2Tx (inset) SEM image of Ti3AlC2; (e) SEM image of AC powder 

particle 
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intercalated water and lithium ions coupled with successful etching. The interlayer spacing 

determines if charge storage can occur via interaction. The ammonium ion has a diameter 

of 3.50 Å, hence making it viable for it to intercalate. This results in the characteristic 

expanded structure of MXenes, as shown in Fig. 3.2.d.  

The Raman spectra in Fig. 3.2.b shows four distinct characteristic peaks at 200, 

384, 570, and 726 cm-1. The A1g peak at 200 cm-1 and the Eg peak at 384 cm-1 correspond 

to vibrations due to surface groups on titanium.  [79]. While the Eg and A1g peaks observed 

at 570 cm-1 and 726 cm-1 respectively, can be attributed to carbon variations. [79]. The 

absence of sharp Eg1 peak (at 144 cm-1) and positive shifting of the spectra can be attributed 

to the nanosized structure of the flakes [28], [79]. Line broadening and merging in the 

spectra is indicative of exfoliation and delamination and is hence consistent with the XRD 

data.  

TEM image in Fig. 3.2.c shows stacked multilayer MXene sheets that are thin and 

electron transparent. The morphology and surface structure of the electrode particle 

materials have a significant effect on the ion adsorption capacity. The highly accessible 

surface, characterized by the expanded and open interlayer structure, allow for rapid ion 

adsorption within the MXene sheets [34]. The porous structure of AC is clearly observed 

in Fig. 3.2.e. The figure also exhibits the irregular block morphology of AC, with particle 

size ranging in a few microns. This is consistent with DLS particle size analysis (Fig. 3.3.a). 

The characteristic fanned out basal planes of etched MXenes can be seen in Fig. 3.2.d. It 

can be witnessed visually that the spread out, open structure of MXenes has significantly 

more intercalating space than the porous structure of AC. Moreover, the unfurled 
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morphology is evidence for successful etching of Ti3AlC2 (Fig. 3.2.d-inset) and is hence in 

agreement with the aforementioned XRD and Raman results.  

3.4.2. Flow Electrode Slurry Characterization 

 

 

The flow electrode is the most important component of the FE-CDI cell. The 

rheological properties and followability of the electrode contribute towards the 

deionization capacity, stability, and cyclicality of the system. Due to homogeneity, stable 

colloidal slurries perform better as flow electrodes. For colloidal suspensions, rheological 

properties are a function of the size and concentration of the added dispersant [80]. Fig. 

3.3.a shows particle size profiles of the 10 wt.% AC slurry and the Ti3C2Tx electrodes. It is 

evident that the average particle size is lower for MXene electrodes (1.2 μm) than AC (4.5 

μm). In addition, the AC profile exhibits a wider distribution and longer tail end, indicating 

particle flocculation. For this reason, the AC slurry was continuously stirred during the 

experiment to prevent sedimentation. Furthermore, the viscosity of a suspension has a 

strong correlation with particle size. Higher viscosity contributes to poor followability and 

Figure 3.3. (a) Particle size analysis of 10 wt% AC slurry electrodes and 

Ti3C2Tx flow electrodes; (b) Viscosity measurements of 1. DI Water, 2. Ti3C2Tx 

flow electrodes, and 3. 10 wt% AC slurry electrodes; (c) Surface potential 

measurements of 1. 10 wt% AC slurry before sonication, 2. 10 wt% AC 

electrodes after sonication, and 3. Ti3C2Tx flow electrodes. 
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dispersion of the slurry. Fig. 3.3.b shows that the Ti3C2Tx solution has a viscosity very 

close to deionized (DI) water (1.483 mPa-s and 1.382 mPa-s respectively). Experimentally, 

this resulted in excelled followability and zero hindrance during the cell operation. This 

can be attributed to the presence of hydrophilic functional groups on the surface of MXene 

layers which result in electrostatic repulsion that leads to a stable colloidal solution not 

prone to flocculation [58]. Comparatively, the third sample, AC slurry had a higher 

viscosity. Combined with larger particle size (Fig. 3.3.a); it led to poor followability and 

frequent clogging of the narrow cell channels in our conductor design. Zeta (ζ) potential is 

an important guide to determine stability of suspensions. AC forms lyophobic colloids, 

which is reflected in its high (less negative) ζ-potential value of -5 mV, as shown in Fig. 

3.3.c. Sample 1 was prepared from as received 80 mesh AC powder, while sample 2 was 

probe sonicated for 1 hour to yield the particle size distribution given in Fig. 3.3.a. The two 

samples did not exhibit any considerable difference in ζ-potential, as it is independent of 

particle size [80]. However, as aforementioned, reducing particle size had a positive impact 

on fluid flow. As apparent in Fig. 3.3.c, the Ti3C2Tx solution had a considerably lower 

(more negative) ζ-potential value of -27 mV, which resulted in electrode stability 

throughout the CDI operation.  
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3.4.3. Deionization Performance Test 

 

 

Fig. 3.4.a shows the change in conductivity ratio of the effluent solution as a 

function of time when the system was operated in batch mode. The observed cyclic 

conductivity change is representative of the ion capture and release steps during the 

regenerating operation. In this study, the 10 wt.% AC slurry was used as control electrodes 

to evaluate the performance of Ti3C2Tx. The conductivities of both deionization systems 

show a significant decrease with the application of 1.2 V external voltage. The open 

structure and intercalation capture mechanism in Ti3C2Tx MXenes resulted in a shorter 

saturation time of 115 minutes compared to AC (233 minutes), and other previously 

reported studies [18], [81], [82]. Due to the shorter charge-discharge times, Ti3C2Tx 

delivered 10 stable long-term cycles during the ~ 30 hour run time. This manifested in 

Figure 3.4. (a) Effluent conductivity showing electrosorption-desorption 

cycles; (b) Electrode regeneration efficiency of 1. Ti3C2Tx before stabilization 2. 

Ti3C2Tx after stabilization, and 3. AC; (c) Electrode adsorption capacity at each 

regenerative cycle; (d) Adsorption rate at each regenerative cycle.  
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twice the number of cycles as AC (5 cycles). As saturated electrosorption is achieved, the 

charging (ion capture) profile for Ti3C2Tx plateaus at an average conductivity ratio of 

0.4070, which is lower than the obtained value for AC (0.5008). It is interesting to note 

that the conductivity ratio of the first run in cycle with Ti3C2Tx MXenes is markedly lower 

(0.2413) than the following cycles. In the first cycle, the system has not yet achieved 

dynamic equilibrium and the increased deionization is possibly a result of permanent 

chemical interactions on the defect sites on the MXene flakes [83]. These ions are not 

desorbed upon voltage reversal (or removal). Hence, the first cycle is not representative of 

the electrode performance. This is reflected in Fig. 3.4.b which shows electrode 

regeneration efficiency (ηr). After achieving dynamic equilibrium (sample 2), ηr is upwards 

of 92%. If we take the first cycle into account, ηr drops to 69.5% which is evident of the 

suggestion that after the initial cycle, some adsorption sites are permanently occupied by 

chemical interactions. It is imperative to note that ηr for AC is slightly higher at 96%. This 

can be attributed to the oxidative and aqueous degradation of Ti3C2Tx MXenes over time 

[84]. However, researchers have been working to increase oxidative stability of MXenes 

[85]. In addition, the use of MXenes in non-aqueous solvents as flow electrodes can be 

explored in the future [86].  

Deionization capacity is an integral criterion to evaluate the electrode performance 

in a FE-CDI cell. The average deionization capacities exhibit great disparity between the 

two electrode systems. The average removal capacity for Ti3C2Tx is 460 mg/g, or more 

than 2 orders of magnitude higher than AC, with average removal capacity of 4.2 mg/g. 

The values for each charge-discharge cycle are shown in Fig. 3.4.c. It can clearly be seen 

that deionization capacity decreases after the first cycle but then eventually stabilizes and 
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remains nearly constant in the subsequent cycles. However, for Ti3C2Tx the lowest 

adsorption capacity (10th cycle) can still achieve a value of 439 mg/g, suggesting excellent 

regeneration stability (Fig. 3.4.b). In aqueous environments, the solvated ammonium 

(NH4
+) ions have an average radius of 0.331 nm [85], which is smaller than interlayer 

spacing (0.44 nm) of MXene sheets. The smaller hydrated radius can easily intercalate 

between the layers without kinetic limitation. Furthermore, with each cycle, the interlayer 

spacing is likely to increase to a higher value as the lithium ions are removed, which 

accounts for the increasing adsorption rate (Fig. 3.4.d). The removal of lithium ions lowers 

site competition making it easier for ammonia to intercalate. The significantly higher value 

of ammonia adsorption capacity follows the trend of previous studies [82], [87], where 2D 

materials, particularly graphene, show enhanced adsorption for ammonia compared to 

sodium chloride (NaCl) desalination. Graphene and graphene oxide (GO) possess similar 

structural features as MXenes but they lack surface functional groups and the natural 

hydrophilicity present in all MXenes. It has been established that ammonia interacts via a 

combination of physisorption and chemisorption [88]. The presence of the –OH and –O 

functional groups on the Ti3C2Tx surface facilitate surface reactions with the NH4
+ ions. 

The surface chemistry and functional groups affect reactive adsorption as well as physical 

adsorption mechanisms [88]. In this study, we used a relatively high concentration (500 

mg/L) feed solution as a stand-in for wastewater. Higher initial ionic concentrations 

enhance adsorption capacity [89]. In addition, the use of high concentration feed solution 

increases current response in the system, which was observed at 30 mA (Fig. 3.5.a). High 

response current reduces overlap effect and causes an increase in the rate of ion transfer, 

which positively impacts the capacitance behavior and deionization capacity [90]. First 
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principle calculations on adsorption behaviors have revealed that NH3 has a very small 

(more negative) adsorption energy (Eads) of -0.078 eV/atom, which results in strong 

interactions with Ti3C2Tx MXenes [33]. The calculations also show high charge transfer 

(Ct – 0.153 e) between NH3 and Ti3C2Tx, hence solidifying the hypothesis that the high 

adsorption capacity is a consequence of chemisorption [33]. Further work is required to 

understand the kinetics of ammonia adsorption on Ti3C2Tx MXenes. 

The adsorption rate values for the run are shown in Fig. 3.4.d. The average 

adsorption rate for AC is significantly lower (0.0021 mg/min/cm2) than Ti3C2Tx (0.00545 

mg/min/cm2) owing to the lower plateau time and higher deionization efficiency of the 

later. It is interesting to note that the adsorption rate for AC changes very little across 

cycles, but it shows an upward trend for Ti3C2Tx (not including the first cycle). This is a 

consequence of decreasing plateau times for Ti3C2Tx electrodes. In batch system operation, 

Co for each subsequent cycle is different. The value of Co affects the kinetic accessibility 

of the dissolved ions, and hence has an effect on the adsorption rate. As discussed earlier, 

the regeneration efficiency of AC electrodes is marginally higher than Ti3C2Tx electrodes 

(Fig. 3.4.b). This manifests as consistent Co and resultant adsorption rate for AC.  
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The change in the current of the system is consistent with the change in the 

conductivity of the effluent solution. As shown in Fig. 3.5.a, the cell current decreases and 

total charge increases as ions are removed from the feed solution. During the discharging 

step, the current gradually rises back to its initial value, as partial charge is recovered. The 

charge efficiency (ᴧ) and total Coulombic loss (ηcoul) in the system (Eq. 5, 6) are shown in 

Fig. 3.5.b. The values for ᴧ range from 58 to 70% over the course of the CDI test, while 

Figure 3.5. For each adsorption-desorption cycle: (a) Variation in current 

and charge; (b) Charge efficiency and Columbic efficiency loss; (c) Energy 

consumption and recovery.  
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roughly increasing with each subsequent cycle. This is consistent with the observed trend 

of increasing adsorption rate for each cycle (Fig. 3.4.d), as ᴧ varies with varying Co [91]. 

The reported values align well with results reported in literature [92]. A ᴧ value of 100% 

has never been reported. It has been theorized that the relatively low ᴧ values are an 

inherent consequence of pseudocapacitive behavior because of the presence of co-ion 

repulsion and counter-ion adsorption [92]. Some efforts have been made to increase the 

charge efficiency in CDI systems [93]. However, further work is needed in the area. The 

charge recovered during the discharging step is lower than the charge transferred during 

the charging step, resulting in a ηcoul increasing from 8 to 21 % (Eq. 6, Fig. 3.5.b). This is 

a consequence of leakage current and is typical for supercapacitors and CDI systems. It 

should also be noted that current increases with each cycle (Fig. 3.5.a), which leads to more 

pronounced electrode polarization and hence results in an increase in ηcoul with each cycle 

[62]. Pronounced electrode polarization is also responsible for decreasing deionization 

capacity (Fig. 3.4.c) [62]. Barring the first cycle, the energy consumption and recovery 

trends (Fig. 3.5.c) agree with ηcoul and ᴧ. This is in line with theoretical studies [93]. Energy 

recovery is defined as the ratio of recovered energy to consumed energy (Eq. 9). Over the 

course of ten cycles, 8 to 21% of energy was not recovered by the system. The profile 

closely resembles ηcoul. The average energy consumption for the system was 0.45 kWh/kg. 

This is higher than the 0.24 kWh/kg obtained by Ma et al. [62] using Ti3C2 films in flow-

by CDI for NaCl removal. However, the deionization capacity achieved in this work is 

significantly higher. Hence, compensating for the marginally higher energy consumption. 

For comparison, commercial wastewater treatment plants require 4.6 kWh/kg of energy for 
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ammonium ion removal [94]. This process requires ten times less energy, hence cementing 

the position of CDI as a green technology.  

As shown in Table 3.1., materials such as activated carbon, graphite, and graphene 

have been studied for ammonia removal in FE-CDI systems [95], [82], [87], [96]. The 

deionization capacity shows several orders of magnitudes of improvement over 1.5 wt.% 

graphite [87]. It is apparent that Ti3C2Tx MXenes show markedly higher performance for 

ammonia removal when compared with previously researched electrode materials and 

systems.  

 

 
 

3.5. Conclusions 

In this study, we demonstrated an FE-CDI system with remarkable ammonia 

removal performance based on flow electrodes consisting of Ti3C2Tx MXene. A high 

average adsorption capacity of 460 mg/g along with a low energy consumption of 0.45 

Table 3.1. Comparison of performance metrics of different CDI technologies 
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kWh/kg was witnessed. The results reinforce the strong dependence of FE-CDI 

performance on the characteristics of the electrode material. Owing to its high conductivity, 

colloidal stability, high surface area, and unique surface chemistry Ti3C2Tx is a promising 

candidate for ammonia removal and recovery from industrial and commercial wastewaters.  

While the results presented are promising, further research, including theoretical 

modelling of the ammonium ion interaction, kinetic analysis, and testing different MXenes 

is needed to further improve the process. Due to the nonuniform surface chemistry on 

MXene surfaces, it is important to consider how different etching approaches will change 

the adsorption process. Finally, MXenes have been shown as viable for many adsorption 

processes, but the studies are still in their infancy, Ti3C2Tx and other MXenes should be 

tested for adsorption of more pollutants. However, based on these results, Ti3C2Tx is among 

the most promising environmental remediation materials for ammonia removal from 

wastewater systems. We expect that the demonstrated work will open new avenues for 

realizing high performance, energy-efficient, large scale ammonia removal systems. 
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CHAPTER FOUR: CONLUSIONS 

4.1. Outreach 

The manuscript in Chapter 3, titled “Removal and Recovery of Ammonia from 

Wastewater using Ti3C2Tx MXene in Flow Electrode Capacitive Deionization” is planned 

for submission in Royal Society of Chemistry’s journal Energy and Environmental Science 

(http://arxiv.org/abs/2007.02853). 

An abstract of the results in Chapter 3 was submitted and accepted at the 

International Conference on Diamond and Carbon Materials 2020. 

U.S. Patent Application Serial No. 62/944,176 was filed based on this work. 

4.2. Summary 

The research goal of this study was to develop an FE-CDI system with 0.1 wt% 

Ti3C2Tx MXene electrodes for the removal and recovery of ammonium ions from 

wastewater. A comparative study between 0.1 wt% Ti3C2Tx MXenes and 10 wt% AC slurry 

electrodes was conducted. Comparison between performance parameters of adsorption 

capacity, ion removal efficiency, regeneration efficiency, energy consumption, and charge 

efficiency between the two electrode systems, allowed us to confirm our initial hypothesis 

that higher electrical conductivity, hydrophilicity, colloidal stability, and higher surface 

area of Ti3C2Tx MXenes would likely result in markedly improved performance 

deionization performance in an FE-CDI system.  

Key findings include: 

I. Average adsorption capacity achieved was 460 mg/g 

http://arxiv.org/abs/2007.02853
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II. Average energy consumption was 0.45 kWh/kg 

III. System recovered 79% of the initial energy 

IV. Electrodes demonstrated a regeneration stability of 92% 

V. Ti3C2Tx MXenes demonstrate a high affinity for ammonia 

VI. Ti3C2Tx MXenes in a 1 mg/mL suspension exhibited satisfactory 

rheological performance when compared against 10 wt% AC suspension. 

4.3. Limitations 

4.3.1. Ti3C2Tx MXenes Oxidation 

MXene flakes readily oxidize in the presence of air and moisture. Even though the 

detailed kinetics of the oxidation process are yet to be unveiled, studies have established 

that the atomic defects on the Ti3C2 basal planes act heterogeneous growth sites for 

conversion to titanium dioxide (TiO2) [97]. The carbon atoms present at titanium 

vacancies oxidize to form amorphous carbon aggregates. The oxidation of titanium 

cations occurs at the sites with atomic steps and edges [97]. Uninterrupted exposure of 

thirty days ends in irreversible degradation to disordered carbon and anatase.  

On a macro scale, the rapid oxidation can be visually witnessed by the 

degradation in color of the black MXene colloidal solution. Studies conducted using UV-

Vis spectroscopy demonstrated a correlation between the MXene concentration and 

visible degradation in an aqueous solution [98]. As oxidation proceeds, the solution also 

starts to lose its colloidal stability owing to the presence of anatase TiO2.  

There have been some research efforts to improve the shelf life of Ti3C2Tx 

MXenes by modifying synthesis processes and/or changes in storage conditions [85]. 
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However, an in-depth understanding of the kinetics of the process is imperative to ensure 

oxidation resistant Ti3C2Tx MXenes.  

4.3.2 Toxic Synthesis Route 

As outlined in Chapter 2.3., the MILD method is a relatively safer route for 

synthesis. However, it still involves the formation of in-situ HF. In addition, MAX phases 

are prepared from highly flammable powders (e.g. aluminum powder). The presence and 

use of small, high surface area to volume ratio also increases inhalation and explosion 

risk. The involves risks make it imperative that only highly trained personnel are allowed 

to handle the materials and perform the reaction. 

4.3.3. Mono-ionic System 

 The adsorption studies in this work were performed using simulated wastewater 

consisting of a single pollutant at constant concentration. While this allows for ease in 

laboratory comparisons, it is not representative of real life. Wastewater from any source 

is usually an amalgamation of various organic and inorganic compounds that vary in 

concentration over the course of release. The synergistic effects of these compounds on 

the performance of the system are not yet understood. 

4.3.4. Economic Analysis 

The economics of innovation and market viability are factors that loom over the 

prospect of large-scale applications of any technology. The lack of a techno-economic 

analysis limits a practical comparison of this technology against prevalent water 

remediation techniques.  
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4.4. Future Work 

4.4.1. Charge Storage Mechanism in Ti3C2Tx MXenes 

In our hypothesis, we speculated that high capacitance (other studies) and 

exemplary adsorption capacity (this work) of Ti3C2Tx MXenes is a result of a combined 

effect of the three charge storage mechanism discussed in chap 2.2. While the presence of 

EDL storage in MXenes is well documented because of their use in pseudocapacitors, the 

other two charge mechanisms have not been experimentally researched. Hence, the next 

logical step would be to study the intercalation mechanism via post-operational XRD 

analysis. If the NH4
+ ions are primarily intercalating between the layers, it would be 

observable through an increase in interlayer spacing.  

In addition, a cyclicvoltammetry analysis to study the electrochemical 

performance of the electrode slurry will give information about the faradaic reactions, 

chemisorption, and capacitance mechanism of the electrodes.  

Furthermore, a BET analysis will render information about the total surface area 

of the obtained flakes while an XPS analysis will uncover details about the present 

surface functional groups. Both of these material properties have a significant role in 

electrical double layer formation and strength.   

4.4.2. Multi-ionic System and Scalability 

As discussed earlier, a mono-ionic wastewater stream cannot serve as a stand in 

for actual wastewater. It has been theorized that CDI can be used for targeted ion removal 

from multi-ionic streams by modifications to ion exchange membranes [99]. Even in their 

current state, the selectivity of ion exchange membranes is a well understood 

phenomenon that can be manipulated to only allow the desired ions to pass through [99]. 
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It can be hypothesized that several FE-CDI cells operating in succession can categorically 

remove (and concentrate) subsequent dissolved impurities. However, it is important to 

keep note of the fact that a multi-ionic, industrial scale system will readily alter the total 

charge in the cell which will in turn effect the current in the system [18]. This challenge 

leads us to believe that a theoretical modeling of the system should be performed before 

tweaks are made to system design. We plan to use COMSOL electrochemistry and 

computational fluid dynamics modules to gain a better understanding of the behavior of a 

comparable industrial scale system. 

4.4.3. MXene Compositions 

This preliminary study was conducted using the most commonly and widely 

studied Ti3C2Tx MXenes. However, there are nearly 30 different MXenes that have been 

physically synthesized so far. In particular, niobium (Nb) and Vanadium (V) based 

MXenes are of particular interest efficient charge-carrier transfer on surfaces and exposed 

terminal metal sites which promise strong Faradaic/redox activity [100]. In addition, 

V3C2 and Nb3C2 have been studied via DFT analysis to show that their low activation 

energy barriers make them promising candidates for nitrogen capture and fixation [100]. 

These exciting studies lead us to hypothesize that V and Nb based MXenes will achieve 

high adsorption capacity with NH4
+ ion systems. Hence, the next viable step for this work 

would be the development of scalable synthesis proctocols for the V and Nb based 

MXenes and their application as FE-CDI electrodes. A comparative study between the 

more exotic MXenes and the current work on Ti3C2Tx MXenes would be of heightened 

interest. 
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