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ABSTRACT 

Vultures are the only obligate vertebrate scavengers, and as such provide crucial 

services as keystone species and support the health and function of ecosystems in which 

they live. African vultures are a diverse group, with nine species found throughout Sub-

Saharan Africa, many with overlapping distributions. Unfortunately, African vultures are 

faced with numerous threats throughout their range that have led to significant population 

declines, some greater than 90%, in only three generations. Four of these species are 

currently listed as critically endangered, and three as endangered. 

Despite the significant perils faced by African vultures, there are still significant 

knowledge gaps and, until recently, very little was known about vultures in Mozambique, 

a large country that falls within the distribution of six of these species. Our research in 

Gorongosa National Park, Mozambique, focused on movement data collected from 10 

White-backed Vultures (Gyps africanus) and 12 White-headed Vultures (Trigonoceps 

occipitalis), one of Africa’s rarest vulture species. 

We first focused on estimating White-headed Vulture monthly home ranges and 

core ranges with continuous-time movement models. We assessed the relationship 

between ranging behavior and extrinsic (environmental characteristics) and intrinsic 

(individual characteristics) predictor variables using Bayesian generalized linear mixed 

effects models. We also explored the degree of White-headed Vulture home range and 

core range overlap with Gorongosa National Park and its buffer zone. We found that 

breeding individuals had smaller home ranges and could maintain these into the non-
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breeding season or abandon them. These small breeding and non-breeding home ranges 

were representative of central place foraging and averaged 239 km2 and 131 km2, 

respectively, 80-90% smaller than the average 1180 km2 non-breeding, non-central place 

foraging home range. Home ranges of birds that used resources outside of the park and its 

buffer zone were approximately 2.5 times larger than of birds that stayed within park 

boundaries, suggesting an increase in search effort required to locate less abundant 

resources. Excursions outside of the park and its buffer zone were rare. Only 15 of the 

149 monthly home ranges suggested that birds used resources outside the park; the 

remaining 134 monthly home ranges fell within 10 km of the edge of the park buffer 

zone.  

Additionally, we explored differences in White-headed Vulture and White-backed 

Vulture movement characteristics. We used Bayesian generalized linear models to 

determine the effect of species as a predictor for flight altitude, flight speed, onset of 

movement on two scales (>100 m and >1000 m), and onset of flight at altitude, and the 

effect of species and hour predictors on hourly activity levels. We found that White-

headed Vultures flew at lower altitudes and slower speeds, and initiated movement and 

flight at altitude earlier than White-backed Vultures. All of these findings correspond 

with flight less reliant on strong thermals and suggest that the White-headed Vulture is 

more likely a pioneer than follower. 

These findings expand on our understanding of both space use by White-headed 

Vultures and their place within the avian scavenging guild. They also demonstrate the 

critical importance of protected areas for the survival of the White-headed, and probably 

other, African Vultures.
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CHAPTER ONE: HOME RANGE AND USE OF PROTECTED AREAS BY WHITE-

HEADED VULTURES TRIGONOCEPS OCCIPITALIS 

Abstract 

The White-headed Vulture Trigonoceps occipitalis is an uncommon, critically 

endangered African vulture species, and many aspects of its basic ecology are still 

unknown. An understanding of ranging behavior has the potential to shape conservation 

planning that effectively takes important ecological processes into account. We used 

continuous-time movement models to estimate the size of 149 monthly home ranges and 

core ranges for 12 White-headed Vultures tracked in and around Gorongosa National 

Park, Sofala province, Mozambique. We then explored covariates that influenced ranging 

behavior and reliance on the protected area. White-headed Vulture home ranges averaged 

1261 km2 per month (SE  137.2; n = 149 bird-months) and ranged from 10.8 km2 to 

10179 km2. Breeding and non-breeding individuals that foraged around a central place 

had home ranges that were 80-90% smaller than those of non-breeding, non-central place 

foraging individuals. Home ranges that suggested vultures used space outside of the 

national park buffer zone were 2.5 times larger than those constrained to the park buffer 

zone. The majority of tracked individuals had monthly home ranges >90% contained by 

the Gorongosa National Park boundary, and 134 of the 149 fell within 10 km of the park 

buffer zone. We show there is large variation in ranging behavior that is dependent on 

breeding status and use of a central place. These data imply that protected areas are vital 

to the longevity of the species. 



2 

 

 

 

Introduction 

The White-headed Vulture Trigonoceps occipitalis is one of Africa’s rarest 

vulture species. The species’ global population has declined by 60% to 97% over recent 

decades (Ogada et al., 2016), and a recent estimate suggests only 5,500 individuals 

remain (Murn & Botha, 2016). This population trajectory led, in 2015, to the rapid up-

listing of the species by the International Union for Conservation of Nature (IUCN) from 

vulnerable to critically endangered (BirdLife International, 2017). Although seven of 

Africa’s nine resident vulture species are facing a similar trend (Ogada et al., 2016), this 

apparent decline in the White-headed Vulture population is particularly concerning due to 

our extremely limited understanding of the species’ life history, habitat requirements, 

movements, and threats (Botha et al., 2017; Murn & Botha, 2016; Murn et al., 2016). 

Whereas poisoning is considered the largest threat to African vultures throughout their 

distribution (Ogada et al., 2016), specific drivers of this observed decline of White-

headed Vultures are still unclear. 

The White-headed Vulture is a solitary species and adults are thought to be 

territorial. These traits do not support high population densities (Mundy, Butchart, 

Ledger, & Piper, 1992; Murn & Holloway, 2016). The species’ current distribution 

appears largely limited to protected areas (Herremans & Herremans-Tonnoeyr, 2000; 

Hustler & Howells, 1988; Monadjem, 2004; Murn et al., 2016; Virani, Kendall, Njoroge, 

& Thomsett, 2010), and the species exists at densities thought to be well below potential 

carrying capacity outside of protected areas (Herremans & Herremans-Tonnoeyr, 2000). 

Given their imperiled status, we need greater knowledge of foundational aspects of 

White-headed Vulture ecology, such as their movements and space use relative to biotic 
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and abiotic conditions. This knowledge would further our understanding of space 

requirements and use of protected areas. 

Animal movements can be influenced by age, sex, or breeding status and can 

reflect aspects of ecology such as foraging method, diet, and territoriality (Demšar et al., 

2015; Krüger, Reid, & Amar, 2014; Margalida, Pérez-García, Afonso, & Moreno-Opo, 

2016). Resource availability and distribution can vary throughout the year, leading to 

variations in the size and spatial distribution of an individual’s movements (McLoughlin 

& Ferguson, 2000). An animal’s home range can be a useful proxy for exploring these 

variations (McLoughlin & Ferguson, 2000; Mitchell & Powell, 2004); an understanding 

of home range and the movements that shape it can guide better conservation action for 

this species.  

Whereas there has been increased focus on the White-headed Vulture in recent 

years, its movements remain largely unknown (Murn & Holloway, 2014). It is difficult to 

target conservation efforts and place value on certain protected areas as strongholds for 

the species without an understanding of its movement ecology and spatial requirements. 

Here we estimate home ranges of White-headed Vultures in central Mozambique from 

tracking data obtained via satellite telemetry. First, we explore extrinsic (environmental 

characteristics) and intrinsic (individual characteristics) variables that might affect the 

size of the White-headed Vulture home range. We observed that location data from some 

bird-months was representative of central place foraging, where an individual’s 

movements appeared centered around a hub of activity. We hypothesized that the 

apparent difference in range sizes between vultures that foraged around a central place 

and those that did not could be facilitated by a shift in foraging method or diet. Second, 
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we investigate the extent to which White-headed Vultures are constrained to Gorongosa 

National Park – the main protected area in the region. We predicted that individuals 

would maintain home ranges within the park, and that significant shifts in home range 

size or spatial distribution would be associated with forays across park boundaries.  

Methods 

Study Area 

Gorongosa National Park (Gorongosa) is located at the southern end of the Rift 

Valley in central Mozambique (Figure 1.1). The core area of Gorongosa encompasses 

3,788 km2 of diverse landscape and vegetation types, the most salient being the Rift 

Valley dominated by Acacia-Combretum savannah (Stalmans & Beilfuss, 2008). 

Gorongosa is part of the greater Gorongosa Ecosystem, which also contains the 

Marromeu Complex to the East. 

The Mozambican Civil War (1977-1992) and subsequent years of unrest led to a 

>90% decline in wildlife biomass density in Gorongosa by the early 21st century 

(Stalmans, Massad, Peel, Tarnita, & Pringle, 2019). Gorongosa has undergone a 

significant recovery since restoration efforts were initiated in 2004, but while biomass 

density has rebounded to ~95% of pre-war estimates, species composition has seen a 

major shift (Stalmans et al., 2019). Today, waterbuck (Kobus ellipsiprymnus) are the 

most abundant of eight ungulate species counted during aerial surveys in the park; while 

they constituted approximately 4% of pre-war biomass density, the species currently 

makes up 74% of total wildlife biomass density (Stalmans et al., 2019). Other species are 

recovering at varying rates and levels of success. The predator guild is still recovering 

with hyena (Crocuta crocuta), leopard (Panthera pardus), and jackal (Canis aureus) 
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having been recorded only occasionally since restoration efforts began and lion 

(Panthera leo) populations steadily growing from a very small population only 15 years 

ago (Bouley, Poulos, Branco, & Carter, 2018; Stalmans et al., 2019).  

Gorongosa is Mozambique’s flagship National Park and sees significant law 

enforcement and anti-poaching efforts. A 5,402 km2 buffer zone surrounds the core area 

and contains a population of ~200,000 people residing in rural settlements (Bouley et al., 

2018; Pringle, 2017; Stalmans et al., 2019). The Marromeu Complex lies 25 km to the 

east of Gorongosa (Figure 1.1) and comprises a 11,270 km2 mosaic of two forestry 

reserves, four privately-leased hunting concessions, commercial agricultural land, 

community land, and the Marromeu Reserve (Beilfuss, Bento, Haldane, Ribaue, & ..., 

2010). The Marromeu Complex is recognized by the Ramsar Convention as a Wetland of 

International Importance (Pritchard, Bamba, & Rilla, 2009), but its broad range of land 

management types lends varied levels of protection to the species that exist within its 

boundaries (Beilfuss et al., 2010). Outside Gorongosa and the Marromeu Complex 

wildlife densities decline significantly, limiting food resource biomass for vultures 

(Stalmans et al., 2019). 
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Figure 1.1 The ~3,800 km2 Gorongosa National Park (dark gray, solid line) is 

encompassed by the ~5,400 km2 buffer zone (gray, dashed line). To the east, the 

Marromeu Complex (light gray, dotted lines) consists of four large “coutadas” 

(hunting concessions), the Marromeu Reserve, and a mosaic of other land use types. 

We captured and tagged White-headed Vultures at locations within the core road 

network (gray points). Inset map shows Mozambique (bold borders) and the study 

area map bounding box. 

Vulture Movement Data Collection 

We trapped and tagged White-headed Vultures within Gorongosa during field 

work in May and June of 2016 - 2018. Trapping locations were restricted to suitable sites 

along the road network located in the southern portion of the national park (Figure 1.1). 

We trapped White-headed Vultures using noose-lines arranged around goat meat or 

ground beef. We aged and sexed White-headed Vultures using plumage characteristics: 

adult plumage is readily distinguished from that of immatures, and adults can be sexed by 
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their sexually dimorphic plumage (Mundy et al., 1992). We fitted each bird with a solar-

powered 70 g Argos/GPS satellite transmitter (PTT-100, Microwave Telemetry, Inc., 

Columbia, MD) using a backpack-style harness made of 8mm Teflon ribbon (Bally 

Ribbon Mills, Bally, PA). We programmed transmitters to collect GPS location data 

hourly from 0400 to 1900 hours Central Africa Time. We collected morphometric data 

and looked for the presence of a brood patch on both sexes when trapping to determine 

whether or not a bird was breeding (Mundy et al., 1992; Murn & Holloway, 2014). 

Inspection of the movement data allowed us to identify potential nest locations. 

We ground-truthed these locations in 2017 and 2018 to determine whether or not 

individuals were breeding. Because of logistical and financial constraints, we could not 

assess breeding activity via field observation in 2019. For that year, we used information 

from prior years (known nest locations and patterns of space use associated with them) to 

characterize nesting behavior.  

Processing Vulture Movement Data 

We downloaded data for each bird from Movebank (Wikelski & Kays, 2019) and 

cleaned them in R version 3.5.2 (R Core Team, 2018) prior to analysis following the 

steps outlined below. We used data collected between 1 July 2016 and 31 October 2019. 

We created monthly subsets of locations for each individual and filtered out months with 

< 25 days of data to ensure consistent comparison of home range estimates across time 

and individuals. We chose to explore range use on a monthly scale to better understand 

variation across the annual cycle. We classified bird-months by age (adult, subadult, and 

juvenile) and a combination of breeding status and whether or not locations appeared 

distributed around a central place (breeding, non-breeding central place, non-breeding 
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non-central place). We defined breeding individuals as those that made near daily 

visitation to nests within the breeding season (June-early November). We defined an 

individual as non-breeding either during months outside of the breeding season 

(December-May) or when it did not frequent a nest during the breeding season. We 

considered that a non-breeding individual could be caring for dependent young outside of 

the breeding season. 

We visually inspected raw location data to determine whether movements from 

each bird-month reflected central place foraging behavior. If locations from a month were 

distributed around one primary patch, we classified the month as having a central place. 

If locations from a month were distributed around multiple patches, we classified the 

month as not having a central place. Breeding individuals always utilized a central place 

and we observed that non-breeding individuals could either be associated with a central 

place or not, regardless of season. 

Home Range Estimation 

We estimated monthly home range size using the autocorrelated kernel density 

estimator (AKDE) in R package ctmm (Fleming & Calabrese, 2019; R Core Team, 2018). 

Following the ctmm workflow outlined by Calabrese et al. (2016), we defined a 

distribution of minimum speeds that would support displacement between subsequent 

locations and then we removed locations associated with outlier speeds. We defined 

outliers as those that were greater than 30 m/s. White-headed Vultures are capable of 

flying at speeds greater than 30 m/s, but we would not expect them to sustain such speeds 

over extended distances. We then estimated measurement error using five days’ worth of 

locations collected by a transmitter that remained in a static location after falling off a 
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bird and added the estimate to our GPS data to ensure a more accurate home range 

estimation.  

We plotted error-corrected monthly location data as variograms, which are plots 

of semi-variance in position as a function of the range of time lags in a dataset, and 

visually inspected these for autocorrelation structure (Fleming et al., 2014). We 

determined whether individuals exhibited range-residency, non-uniform use of space and 

use of a restricted range through time (Martinez-Garcia, Fleming, Seppelt, Fagan, & 

Calabrese, 2020), by the presence of an asymptote in variograms, a prerequisite for home 

range analysis following ctmm methods. This trait is reflective of a constant variance at 

longer time lags that is associated with discrete space use. 

We fit continuous-time movement models using maximum likelihood estimation 

for each bird-month. These models account for different types of autocorrelation present 

in the data (Calabrese, Fleming, & Gurarie, 2016). The independent identically 

distributed (IID) model assumes that there is no autocorrelation structure in the data; the 

Brownian motion (BM) model assumes regular diffusion without autocorrelation in 

velocity (directional persistence) or space use (range-residency); the Ornstein-Uhlenbeck 

(OU) model accounts for range-residency without directional persistence; the integrated 

Ornstein-Uhlenbeck (IOU) model accounts for directional persistence without range-

residency; the Ornstein-Uhlenbeck Foraging (OUF) model accounts for both range-

residency and directional persistence. We selected best-fit models using AICc and used 

these best-fit models to estimate monthly home range (95%) and monthly core range 

(50%) AKDEs along with 95% confidence intervals for each bird-month. 
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Preliminary analysis indicated that three individuals had more than one distinct 

area of range-residency per month. This use of multiple areas of range-residency within 

one month led to variograms without asymptotes (Figure 1.2) and artificially increased 

AKDE estimates. In cases where birds did not have only one distinct area of range 

residency, we segmented the location data for these months and repeated the ctmm 

workflow outlined in the methods to create multiple within-month AKDEs (Figure 1.2) 

(Calabrese et al., 2016). We then averaged these to produce a single monthly AKDE 

estimate. 

Home Range and Core Range NDVI 

We quantified average Normalized Difference Vegetation Index (NDVI) for each 

monthly home and core range using Sentinel-2 imagery (Drusch et al., 2012). We 

consider NDVI as a proxy for potential available carrion biomass. An increase in NDVI 

reflects an increase in vegetation productivity (Pettorelli et al., 2005), which implies 

greater forage availability and quality. Following Kendall et al. (2014), we expect that 

ungulate mortality rates unrelated to predation decline under these conditions leading to 

less predictable food resources for vultures and therefore larger home ranges. We 

obtained imagery collected over the course of the study period, masked clouds, created a 

composite image with an appended NDVI band for each month, and reduced monthly 

composite images to corresponding monthly home range and core range polygons. We 

averaged NDVI values within each polygon and exported data for further analysis in 

program R. We processed NDVI data using Google Earth Engine (Gorelick, Hancher, 

Ilyushchenko, Thau, & Moore, 2017). 
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Assessing Home Range and Core Range Variation 

To assess variation in home range and core range size, we fit Bayesian gamma-

distributed generalized linear mixed models to determine the effect on ranging behavior 

(home and core range size) of extrinsic temporal and seasonal predictor variables (month 

represented by Julian day; year; NDVI), intrinsic predictor variables (breeding/central 

place status; age), and a use of protected area predictor (whether or not a home range 

AKDE was constrained to the park buffer zone). We included individual as a random-

intercept to account for repeated range estimates from the same bird. Month and NDVI 

parameters were centered around their respective means to ensure that continuous 

variables were similarly distributed.  

We estimated parameter coefficients using Bayesian Markov chain Monte Carlo 

(MCMC) sampling with 4 chains for 2000 iterations each with a 1000 iteration burn-in 

period (Goodrich, Gabry, Ali, & Brilleman, 2018). We used weakly informative priors 

for all parameters. We assessed model and parameter convergence using the posterior 

predictive distribution and the Gelman-Rubin statistic, respectively, and ensured that 

minimum effective sample size requirements were met (Gelman & Donald, 1992). If the 

95% posterior uncertainty intervals did not overlap 0, we considered the parameter to 

have an important effect on ranging behavior (i.e., Chanthorn et al. 2013). We present 

marginal effects and their 95% uncertainty interval for each important parameter. We 

performed all modelling with packages rstanarm and stan in program R (Carpenter et al., 

2017; Goodrich et al., 2018).  
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Degree of Overlap with Protected Area 

To answer our second research question, how much does the White-headed 

Vulture rely on a protected area, we quantified the percent of each monthly home range 

and core range AKDE that was contained by either (A) Gorongosa National Park only, or 

(B) both the park and its buffer zone. We report the average percent overlap of both home 

range and core range and these boundaries as well as the range of observed percent 

overlap. Through this process we also aimed to identify where individuals were traveling 

outside of the park and its buffer. We used the Overlap analysis tool in QGIS (QGIS.org, 

2020) to quantify the percent overlap of home range and core range AKDEs with the 

boundaries of interest. 

Results 

Home Range and Core Range Size 

We analyzed data from 12 White-headed Vultures, 8 adults and 4 immatures, 

tracked for durations of three to 39 months (Appendix A.1). Over the course of the study 

period (July 2016 – October 2019), we collected 77,972 GPS locations, of which 74,613 

met our criteria for inclusion in home range analysis. We estimated home ranges and core 

ranges for a total of 149 bird-months (Appendix A.2). 

All 149 bird-months, including those that were segmented to account for multiple 

within-month ranges, exhibited range-residency, as evidenced by asymptotes in 

variograms. The OU anisotropic continuous-time movement model was the top 

performing model for 132 bird-months (confirming range-residency). The remaining 17 

bird-months were fit to other range-residency models with parameters representing 

autocorrelation in position or velocity (Table A.2). 
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Monthly home range size for White-headed Vultures in Gorongosa National Park 

averaged 1261 km2 (SE  137.2; n = 149 bird-months) and ranged from 10.8 km2 to 

10179 km2 (Figure 1.3). Monthly core range size averaged 271.3 km2 ( 29.9; 149 bird-

month) and ranged from 1.2 km2 to 2092 km2. Non-breeding, non-central place birds 

exhibited monthly home ranges averaging 2319 km2 (± 425; n = 9 birds), breeding birds 

163 km2 (± 86; n = 5 birds), and non-breeding, central place birds 243 km2 (± 154; n = 5 

birds; Table 1.1; Figure 1.4).  

 
Figure 1.3 All 149 White-headed Vulture (A) Non-breeding non-central place, 

(B) breeding, and (C) non-breeding central place monthly home ranges overlaid on 

Gorongosa National Park (solid), park buffer zone (dashed), and Marromeu 

Complex (dotted) borders. The black rectangle in map A defines the bounding box 

for (B) breeding and (C) non-breeding central place home range maps. 

 

 

 

 

 

 

B.  A. C. 
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Table 1.1 Summary of White-headed Vulture home range (HR) and core range 

(CR) AKDE estimates grouped by breeding status. Global means and standard 

errors for both home range and core range estimates are presented along with 

ranges for each AKDE metric. Sample size for each group is the number of 

individuals. Breeding: B; Non-breeding central place: NC; Non-breeding non-

central place: NN. 

Breeding 

Status n 

Mean HR km2 

(±SE) HR Range 

Mean CR km2 

(±SE) CR Range 

B 5 163 (±86) 18-500 17 (±9) 3-52 

NC 5 243 (±154) 39-847 39 (±26) 6-141 

NN 9 2319 (±425) 169-5101 476 (±68) 41-812 

 

 

 
Figure 1.4 White-headed Vulture monthly home range size for (A.) non-breeding 

non-central place, (B.) breeding, and (C.) non-breeding central place individuals. 

We estimated monthly home range size using the 95% AKDE. The number of home 

range estimates for each month is noted on the x-axis. 

B.  A. 

C. 
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Assessing Home Range and Core Range Variation 

We found that non-breeding birds that were not central place foragers had larger 

home ranges and core ranges than did breeders and non-breeders that were central-place 

foragers. The posterior prediction for the average non-breeding bird that was not a central 

place forager with monthly home ranges contained within the park was 1180 km2 (95% 

credible interval (CI) 248-5918). The posterior prediction for a breeding bird with 

monthly home ranges contained within the park averaged 239 km2 (95% CI 49-1313). 

Non-breeding birds that were central place foragers and had monthly home ranges within 

the park averaged 131 km2 (95% CI 28-653. Breeding and non-breeding birds that were 

central place foragers had monthly core ranges 11% (95% CI 4-33) and 8% (95% CI 3-

20) of the size of non-breeding birds that were not central place foragers, respectively 

(Figure 1.5). 
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Figure 1.5 Coefficient estimates for models predicting White-headed Vulture 

home range (black) and core range (gray) size. Points represent coefficient mean 

effects and bars the 95% credible intervals. Coefficients with 95% credible intervals 

not overlapping zero were considered important. Important predictors for both 

models included breeding status/central place use and foraging range extent. 

Breeding: B; Non-breeding central place: NC; outside buffer zone: Out Buff. 

Birds that left the park generally used more space than birds that stayed within the 

park. Home ranges extending beyond outside the park buffer zone were approximately 

2.5 times larger than home ranges contained within the park buffer zone (95% CI 1.64-

3.85). We found that the average 1180 km2 home range of a non-breeding bird that was 

not a central place forager and remained within the park grew to approximately 2931 km2 

(95% CI 634-14733) when it included space use outside of the park boundary. Likewise, 

the average 223 km2 non-breeding non-central place core range also grew by a factor of 

2.5 to approximately 573 km2 (95% CI 115-2888) when associated home ranges extended 

outside of the park buffer zone (Figure 1.5). 
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Average home range and core range NDVI was 0.379 and 0.361 and ranged from 

0.131-0.626 and 0.0904-0.641, respectively. We found that home range and core range 

NDVI values were least in the months of September and October, and greatest in January 

(Figure 1.6). We did not find that NDVI, age, month, or year had an effect on home range 

or core range size (Figure 1.5).  

 
Figure 1.6 Monthly White-headed Vulture (A) home range and (B) core range 

NDVI. Observed NDVI ranged from 0.131 to 0.626 with lowest home range and core 

range NDVI values occurring in the months of October and September, 

respectively, and highest NDVI values in January. 

Two individuals exhibited noticeably different movement behavior than others in 

their age/breeding status categories, and this was evident in the random effect estimates 
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for both home range and core range models. These individuals had smaller than average 

monthly home ranges than the population level estimates (Figure 1.7). An adult female 

had consistently smaller monthly home ranges than any other breeding or non-breeding 

central-place individual and a subadult of unknown sex foraged exclusively at a single 

spot – a waterbird colony. 

 
Figure 1.7 Individual-level White-headed Vulture variation from the population-

level mean. Point estimates and their 95% uncertainty intervals show the effect of 

individual in both home range (dark) and core range (light) models. Individual 

effects with 95% uncertainty intervals overlapping zero (dotted line) are not 

considered important. 

Degree of Overlap with Protected Area: 

Although only 4 of 12 birds had all monthly home ranges >90% within park 

boundaries, all monthly home ranges of 7 of 12 birds were >90% within the park buffer 

zone. Similarly, 46% of all monthly home ranges fell entirely within the park boundary 

and 71% of all monthly home ranges fell entirely within the park and its buffer zone 

(Table 1.2).  
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Table 1.2 White-headed Vulture monthly home range (HR) and core range 

(CR) overlap estimates with the Gorongosa National Park boundary. We present 

average overlap estimates with standard errors and the range exhibited by each 

individual. 

INDIVIDUAL 

AVERAGE % 

HR/PARK 

OVERLAP 

(±SE) 

% HR/PARK 

OVERLAP 

(RANGE) 

AVERAGE % 

CR/PARK 

OVERLAP 

(±SE) 

% CR/PARK 

OVERLAP 

(RANGE) 

WH88_16 90 (±2) 49-100 99 (±1) 86-100 

WH24_17 100 (±0) 100-100 100 (±0) 100-100 

WH25_17 88 (±4) 77-97 100 (±0) 100-100 

WH37_17 53 (±22) 29-98 54 (±25) 13-100 

WH41_17 67 (±9) 51-94 89 (±6) 73-100 

WH42_17 94 (±4) 70-100 100 (±0) 100-100 

WH44_17 67 (±17) 0-99 71 (±18) 0-100 

WH27_18 100 (±0) 100-100 100 (±0) 100-100 

WH29_18 100 (±0) 99-100 100 (±0) 100-100 

WH31_18 88 (±5) 28-100 96 (±3) 52-100 

WH41_18 100 (±0) 100-100 100 (±0) 100-100 

WH24_18 95 (±3) 80-100 96 (±2) 84-100 

 

Nine individuals exhibited core ranges at least 90% contained within the buffer 

zone; five birds had core ranges entirely within the park boundary. 83% (123 of 149) of 

monthly core ranges fell completely within the park boundary, and 93% (139 of 149) 

within the park and its buffer zone. Only two individuals exhibited core ranges that 

extended outside of the park buffer zone. Both these birds spent time within the 

Marromeu Complex.  
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Figure 1.8 (A) Six of the twelve tagged White-headed Vultures utilized resources 

outside of Gorongosa National Park and its buffer zone in 15 of 149 bird-months. 

Three individuals moved between the park and the Marromeu. Two individuals 

foraged within an area of concentrated cattle bomas. One moved outside of the park 

to utilize locations in an area without any discernable resources. (B) 134 of 149 

White-headed Vulture bird-months from 7 individuals were almost entirely 

contained by Gorongosa National Park and its buffer zone. 

Movements outside of the buffer zone were made by six individuals in 15 of the 

149 monthly home ranges to utilize resources at three distant locations (Figure 1.8). Five 

of these individuals utilized two known resources: two traveled to an area with a high 

concentration of cattle corrals approximately 38-48 km south of the park boundary and 

three made movements between the park and Marromeu Complex. The sixth individual 

utilized an area without any discernable concentrated or anthropogenic resources 

approximately 25 km northeast of the buffer zone. 

The remaining 134 monthly home ranges that did not involve use of distant 

resources correlated with the park and its buffer zone (Figure 1.8). Of these 134 home 

ranges, 28 included small proportions just outside the buffer zone boundary; none were 

more than 10 km from the boundary. 

A. B. 
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Discussion 

Our results suggest that the local White-headed Vulture population is strongly tied 

to Gorongosa National Park and its buffer zone, and that movements outside of the 

protected area are associated with foraging opportunities provided by predictable food 

resources. Both home range size and core range size responded to breeding status and use 

of a central place. Breeding and non-breeding individuals that utilized a central place had 

home ranges 10-24% of the size of non-breeding individuals that did not utilize a central 

place. Home range sizes also grew by a factor of 2.5 when they included resource use 

outside of the park buffer zone. 

Many vulture species are capable of making large movements, either migratory or 

nomadic (Beuchley et al., 2017; Bittel, 2018; Phipps, Willis, Wolter, & Naidoo, 2013), 

and so can utilize a multitude of spatially discrete home ranges through time. The relative 

lack of movement to areas outside of the greater Gorongosa and Marromeu Complex 

landscape suggests that the White-headed Vulture is far more dependent on habitat 

quality or characteristics supported by or only within a protected area with a few 

exceptions (Herremans & Herremans-Tonnoeyr, 2000; Hustler & Howells, 1988; Murn et 

al., 2016). This is further supported by the fact that the majority (134 of 149) of White-

headed Vulture monthly home ranges correlated with the boundary of the park and its 

buffer zone (Figure 1.8B). Although we do not understand the underlying causes, our 

findings correspond with the observation that White-headed Vultures appear largely 

confined to protected areas. 

Our model showed that both home range and core range size are most affected by 

the combination of breeding status and use of a central place. The White-headed 
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Vulture’s capacity to constrict its space use in such a dramatic way suggests that the 

species is potentially territorial during certain life-stages and is capable of utilizing food 

resources within a localized area, a finding that supports and quantifies previous 

observations (Hustler & Howells, 1988; Mundy et al., 1992). Our observations of 

breeding adults maintaining small monthly home ranges into the next breeding season is 

also in line with previous observations of site fidelity (Murn & Holloway, 2014). While 

we could not confirm whether breeding attempts were successful, this continued 

constricted range use outside of the breeding season could be associated with an extended 

post-fledging dependence period (Mundy et al., 1992; Murn & Holloway, 2014; 

Pennycuick, 1976). 

The difference in home range size between birds that used a central place and 

those that did not is interesting for a number of reasons. First, many vulture species 

require a large foraging range to adequately exploit spatiotemporally ephemeral resources 

(Kane, Jackson, Monadjem, Colomer, & Margalida, 2015; Kane et al., 2016; Rivers et al., 

2014). Some of these species have been shown to modify foraging behavior during the 

breeding season by decreasing foraging trip frequency while still doing so over large 

areas (Spiegel, Harel, Getz, & Nathan, 2013); we did not observe this behavior in this 

study. Second, smaller home ranges might be correlated with spatiotemporal 

predictability of food resources (Maher & Lott, 2000). Following central place foraging 

theory, home range size should increase with less predictable food or lower quality 

resources, and vice versa (Ford, 1983; Mitchell & Powell, 2004). White-headed Vultures 

have been observed hunting and preying upon small mammals and reptiles (Mundy et al., 

1992; Murn, 2014). Though we didn’t have the opportunity to witness that here, we 
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suggest that this observed predatory behavior could be more strongly associated with 

individuals utilizing a central place. Finally, we would typically expect to find that 

individuals not associated with nests would range more widely. We found that non-

breeding central place individuals had slightly smaller home ranges than breeding 

individuals. We suggest that this may be reflective of an extensive post-fledging 

dependence period (Murn, 2013; Murn & Holloway, 2014), during which a smaller home 

range is maintained while caring for a fledged juvenile bird. A home range might be 

smaller during this stage because of the decreased mobility of the juvenile bird. 

Quantifying the effect of ranging behavior outside of the park buffer zone on 

home range and core range size provides a means of understanding how these birds use 

the landscape outside of protected areas. The fact that home range size increases greatly 

with foraging ranges outside of the buffer zone suggests that resources outside of these 

protected areas are extremely limited (Stalmans et al., 2019). Habitat loss and land use 

change has the potential to shape resource availability, and in turn species distribution; 

this affects different species in different ways. For example, White-backed Vultures Gyps 

africanus exhibit the potential to cope with limited resources by adopting a nomadic 

lifestyle that can span entire landscapes, countries, and even portions of continents 

(Phipps et al., 2013). The need to further define variables that limit White-headed Vulture 

movement is critical. 

White-headed Vultures with either large or small home ranges could be subject to 

stressors related to resource availability. Resource availability could shape the 

demographics of a population if this observed difference in range size is facilitated by 

foraging method and diet. Assuming predatory behavior is more strongly associated with 
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individuals using a central place, an ecosystem might not support a sustainable breeding 

population if there are not sufficient densities of suitable prey species. An ecosystem or 

habitat with a greater abundance of large-bodied “prey” species that generate carcasses 

across the landscape might favor a population of nonbreeders, whereas an ecosystem 

supporting diversity in species size might more effectively support a breeding population. 

We expect that resource availability would also have a quantifiable effect on home range 

size and breeding success regardless of foraging method. We stress the need to 

investigate White-headed Vulture diet in an attempt to understand whether the species 

does in fact modify foraging strategy and to explore how resource diversity and 

availability influence breeding home range size and breeding success. We cannot be sure 

that a given population is sustainable without an understanding of the underlying 

variables that facilitate these shifts in range size. 

Our study relied on small sample sizes of subadult and juvenile individuals. We 

suggest that future investigations of White-headed Vulture movements seek to better 

understand how immature home ranges change as these individuals age. One of the most 

important questions related to long-term sustainability of the greater metapopulation is 

whether, and to what extent, White-headed Vultures disperse between regional 

populations. Our results suggest that there is limited to no movement outside of these 

localized populations, but continued monitoring is required to understand both whether 

this pattern holds locally and throughout the species’ greater range. 
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CHAPTER TWO: COMPARING MOVEMENT PATERNS OF WHITE-HEADED 

VULTURES TRIGONOCEPS OCCIPITALIS AND WHITE-BACKED VULTURES 

GYPS AFRICANUS IN GORONGOSA NATIONAL PARK, MOZAMBIQUE 

Abstract 

There is significant overlap in the distribution of the 9 vulture species found 

throughout Sub-Saharan Africa. Niche-partitioning and ecological interactions between 

these species have long been a point of interest for researchers studying these important 

birds. Many studies have focused on observations in the field, but movement data 

provides us with another means of quantifying differences in African vultures. We 

focused on 4 trajectory characteristics to explore differences in movement ecology of 

White-headed Vulture and White-backed Vulture. We found that White-headed Vultures 

flew at lower altitudes and slower speeds, and initiated movement and high-altitude flight 

earlier in the day than White-backed Vultures. These findings suggest White-headed 

Vulture flight behavior requires less intense thermal uplift and support the hypothesis that 

the White-headed is likely a more efficient searcher, making it a pioneer in the African 

avian scavenger guild. 

Introduction 

Scavengers perform critical ecosystem services and are integral to the maintenance of 

healthy ecosystem functions. Vultures, the only obligate vertebrate scavengers on the planet 

(Buechley & Sekercioglu, 2016), play a significant role in this important guild throughout the 

various ecosystems in which they occur (Houston, 1986). They are extremely efficient and 
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effective in providing services that slow and eradicate the spread of disease (Devault et al., 2016; 

Ogada, Torchin, Kinnaird, & Ezenwa, 2012), which benefits not only wild systems but also those 

in which humans are included (Moleón et al., 2014).  

African vultures are in peril, and populations of some species have undergone 

declines greater than 90% in three generations (Ogada et al., 2016). These rapid declines 

have warranted the listing of four of the nine African species as critically endangered and 

three as endangered (BirdLife International, 2017). Unfortunately, there are large gaps in 

our ecological understanding of these species and we are racing to learn how to 

effectively conserve them. 

There can be considerable overlap in the ranges of African vulture species; for 

example, there are seven breeding vulture species found in Ethiopia and six in 

Mozambique (Mundy et al., 1992). While these species all share a similar ecological role 

and can be considered as competing for similar resources, they likely coexist through 

niche-partitioning (Kendall, 2013; Kendall, Virani, Kirui, Thomsett, & Githiru, 2012; 

Spiegel, Getz, & Nathan, 2013). Researchers have long sought to disentangle methods of 

niche-partitioning among vultures, and many have focused on morphological 

characteristics that define feeding behavior (Hertel, 1994; Kruuk, 1967; Moreno-Opo, 

Trujillano, Arredondo, González, & Margalida, 2015) and consider body size or group 

size as means of exerting dominance over competitors (Kendall et al., 2012). Other 

studies have investigated the temporal segregation of food resource use, often in the 

context of searcher and scrounger game theory, referring to relative search efficiency 

and reliance on social information transmitted through the sky network (Cortés-

Avizanda, Jovani, Donázar, & Grimm, 2014; Kane & Kendall, 2017; Spiegel, et al., 
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2013). We consider White-headed and White-backed Vultures in the context of this 

theory and classify species as either pioneer or follower. The sky network refers to the 

transmission of social information through the sky as individuals cue in to behavior of 

conspecifics and other species. Movement data collected from multiple species within the 

same system allow us to gain insight into these processes. 

The White-backed Vulture Gyps africanus is the most abundant and wide-ranging 

of the sub-Saharan African vultures and is relatively well studied (Bamford, Monadjem, 

& Hardy, 2009; Murn & Botha, 2017; Phipps et al., 2013). We know that the White-

backed Vulture is an obligate scavenger that competes for resources with and feeds 

among large groups of conspecifics (Mundy et al., 1992). They are considered one of the 

followers in the avian scavenger group, relying on other species that serve as pioneers 

that are more effective at searching for and locating carrion (Kruuk, 1967). Thus, this 

species most often arrives at carcasses after other avian scavengers (Kruuk, 1967). White-

backed Vultures often cover large distances in the effort to locate food resources that are 

spatially and temporally ephemeral (Ruxton & Houston, 2004). 

While there is comparatively little known about the much less numerous White-

headed Vulture Trigonoceps occipitalis, the species appears to fill a slightly different 

niche (Monadjem, 2004). Field observations suggest that, in addition to scavenging, this 

species also preys on small mammals and reptiles (Murn, 2014), and is typically observed 

singly or in small numbers when at carcasses (Mundy et al., 1992; Murn, 2013; Murn & 

Holloway, 2014). Portugal et al. (2017) found White-headed Vulture visual 

characteristics align more closely with those of diurnal hunting raptors than obligate 

scavengers, with binocular vision better suited for a pioneer. Where present, the White-
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headed Vulture is often one of the first vultures to arrive at carrion despite the 

significantly lower densities in which it occurs (Kruuk, 1967; Mundy et al., 1992). 

Movement data show that, unlike White-backed Vultures, adult White-headed Vultures 

can maintain a small territory throughout the breeding season and into the nonbreeding 

season, showing they are capable of foraging successfully within a relatively small area 

(Chapter 1). 

In our urgency to further understand these imperiled species, we need to continue 

exploring how each species’ ecology supports its coexistence with other vulture species 

that share similar resources. A deeper understanding of the ecology of these species could 

inform a conservation model that works for all or most. Whereas Pennycuick (1972), 

Kruuk (1967), and Mundy et al. (1992) all note differences in African vulture flight 

characteristics, relatively few contemporary studies have considered empirical measures 

of ranging behavior as derived from movement data. 

Here we use movement data derived from satellite transmitters to compare basic 

aspects of White-headed and White-backed Vulture movements by exploring trajectory 

characteristics. We focus on 4 trajectory characteristics – average flight altitudes and 

speeds, daily onset of activity, and distribution of hourly activity – and explore these by 

subdividing movement data into daily trajectories. We expected that White-headed 

Vultures would generally move at slower speeds and lower altitudes and initiate activity 

earlier in the day than White-backed Vultures, reflecting higher search efficiency and 

ability to use weaker thermals because of their lower wing loading (Mundy et al., 1992; 

Pennycuick, 1972). We also expected that the distribution of White-headed Vulture 

hourly activity levels would remain relatively uniform throughout the day, also reflective 
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of a foraging method less reliant on thermals. Conversely, we expected that White-

backed Vultures, reliant on other species to locate carcasses and strong thermals for 

efficient soaring flight, would fly at greater speeds and higher altitudes, initiate activity 

later, and that the distribution of hourly activity levels would be centered around a peak 

from late morning through early afternoon during the onset of optimal soaring flight 

conditions (Avery et al., 2011). 

Methods 

Study Area 

Gorongosa National Park (Gorongosa) is located at the southern end of the Rift 

Valley in central Mozambique (Figure 2.1). The core area of Gorongosa encompasses 

3,788 km2 of diverse landscape and vegetation types, the most salient being the Rift 

Valley dominated by Acacia-Combretum savannah (Stalmans & Beilfuss, 2008). 

The Mozambican Civil War (1977-1992) and subsequent years of unrest led to a 

>90% decline in wildlife biomass density in Gorongosa by the early 21st century 

(Stalmans et al., 2019). Gorongosa has undergone a significant recovery since restoration 

efforts were initiated in 2004, but while wildlife biomass density has rebounded to 

approximately 95% of pre-war estimates, species composition has seen a major shift ( . 

Whereas, waterbuck (Kobus ellipsiprymnus) constituted approximately 4% of pre-war 

large-herbivore biomass, the species currently makes up an astounding 74% of large-

herbivore biomass in the park (Stalmans et al., 2019). Today, waterbuck are the most 

abundant of eight ungulate species counted during aerial surveys in the park. Other 

species are recovering at varying rates. The predator guild is still recovering with hyena 

(Crocuta crocuta), leopard (Panthera pardus), and jackal (Canis aureus) having been 
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recorded only occasionally since restoration efforts began and lion (Panthera leo) 

populations steadily growing from a very small population only 15 years ago (Bouley et 

al., 2018; Stalmans et al., 2019).  

 
Figure 2.1 (A) The ~3,800 km2 Gorongosa National Park (dark gray, solid line) 

is encompassed by the ~5,400 km2 buffer zone (light gray, dashed line). We 

captured and tagged White-backed and White-headed Vultures at locations within 

the core road network (dark gray points). (B) Mozambique (bold borders) and 

bounding box (gray) for plot (A). 

Gorongosa is Mozambique’s flagship National Park and sees significant law 

enforcement and anti-poaching efforts. A 5,402 km2 buffer zone surrounds the core area 

and contains a population of roughly 200,000 people residing in rural settlements (Bouley 

et al., 2018; Pringle, 2017; Stalmans et al., 2019). Outside Gorongosa’s boundaries, 

wildlife densities decline significantly, limiting food resource biomass for vultures 

(Stalmans et al., 2019). 
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Satellite Transmitter Deployment  

We trapped and tagged 12 White-headed Vultures and 9 White-backed Vultures 

within Gorongosa during field work in May and June of 2016 - 2018. Trapping locations 

were restricted to easily accessible sites along the road network located in the southern 

portion of the national park (Figure 2.1). We trapped vultures using noose-lines arranged 

around bait items consisting of either goat meat or ground beef. We fitted each bird with 

a solar-powered 70 g Argos/GPS satellite transmitter (PTT-100, Microwave Telemetry, 

Inc., Columbia, MD) using a backpack-style harness made of 8mm Teflon ribbon (Bally 

Ribbon Mills, Bally, PA). We programmed transmitters to collect GPS location, altitude 

above sea level, and instantaneous speed data hourly from 0400 to 1900 Central Africa 

Time. Data were collected on or very close to the hour. 

Processing Vulture Movement Data 

We associated each location with the ground elevation above sea level at that 

point on the ASTER ASTGTM2 Global 30-m digital elevation model 

(NASA/METI/AIST/Japan Spacesystems, 2009) using the env-DATA annotation service 

in Movebank (Wikelski & Kays, 2019) and downloaded the data for manipulation and 

analysis in program R (R Core Team, 2018). We excluded any 2D fixes without height or 

altitude data from analysis. We created a trajectory for each day’s locations by defining 

start and end times to each trajectory as 0400 and 1900, respectively, using R package 

adehabitatLT (Calenge, 2015). Whereas White-backed Vultures frequently utilized 

resources outside of Gorongosa, White-headed Vulture movements were largely 

constrained to the protected area (Chapter 1). Daily trajectories with locations outside of 

the park could be initiated either inside the park or outside the park. Because we wanted 
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to compare onset of activity and flight characteristics under similar environmental 

conditions and within shared habitat, we clipped location data to the extent of Gorongosa 

by filtering out any daily trajectories not entirely contained by the park boundary using R 

package sf (Pebesma, 2018). We removed any trajectories with fewer than 16 daily 

locations (the maximum number of possible locations collected during the pre-

programmed hours) to ensure we were not considering days with large gaps that might 

skew results. 

Trajectory characteristics 

Altitude Correction and Classification 

We corrected raw altitude data recorded at each GPS location to obtain height 

above ground level (AGL) following established methods (Poessel, Duerr, Hall, Braham, 

& Katzner, 2018). First, we obtained geoid undulation values using the 2008 Earth 

Gravitational Model (Pavlis, Holmes, Kenyon, & Factor, 2012) and subtracted these from 

the raw altitude data to obtain altitude above sea level. We then subtracted the digital 

elevation model from the corrected altitude data to obtain altitude above ground level for 

each GPS location. Some negative altitudes above ground level are to be expected due to 

error associated with GPS and elevation data (Poessel et al., 2018). We filtered out 

extreme negative altitudes following a thresholding method (Katzner et al. 2012, Poessel 

et al. 2018). We removed locations with associated altitudes less than -60 m AGL, the 

sum of GPS error (c. 18 m), digital elevation model error (10 – 25 m), and the digital 

elevation model interpolation error equal to the resolution of the data (30m). We assumed 

minimal digital elevation model error because of the relatively homogenous topography 

of Gorongosa National Park.  
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Speed Classification 

By plotting the distributions of instantaneous speeds as recorded by the GPS, we 

determined that speed data for both White-headed Vulture and White-backed Vulture fit 

bimodal distributions, with lower modes centered around approximately 1 m/s and upper 

modes centered around approximately 18 m/s and 20 m/s, respectively (Figure 2.2). We 

decided the bimodal distribution was reflective of speeds that either could or could not 

sustain prolonged flight. We chose 5 m/s and 2.5 m/s as the thresholds for White-headed 

Vultures and White-backed Vultures, respectively, by locating the antimode of these 

bimodal distributions. While these thresholds are below Pennycuick’s (1972) estimates of 

a 9 m/s minimum gliding speed and 13 m/s optimal glide ratio for White-backed 

Vultures, we wanted to ensure inclusion of lower horizontal speeds associated with 

sinking motion, flapping flight, or initiation of flight. We classified locations with speeds 

above the threshold as flighted and below it as grounded (or perched). Some of the 

locations classified as grounded were associated with altitudes greater than 100 m. Given 

the altitudinal error of ±60 m (outlined above), and the maximum tree height in 

Gorongosa, approximately 30 – 40 m AGL (Tinley, 1977), we reclassified these locations 

as flighted to account for the potential for little to no horizontal speed during thermaling 

behavior. Mundy et al. (1992) estimated the average rate of climb in thermals for vultures 

as 3 m/s, and Akos et al. (2010) estimated that rate of climb associated with weak 

thermals could be as little as 0.4 m/s. The instantaneous horizonal speed associated with a 

slow rate of climb is likely below the level of accuracy of our satellite transmitters. 
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Figure 2.2 Bimodal distributions of observed instantaneous speeds for White-

headed Vultures (WH) and White-backed Vultures (WB). Lower modes for both 

species were approximately 1 m/s (solid line) and upper modes were approximately 

18 (dashed line) and 20 m/s (dotted line), for White-headed Vulture and White-

backed Vultures, respectively. 

Day Period 

We classified locations as either night or day by determining sunrise and sunset 

times for each daily trajectory using R package maptools (Bivand & Lewin-Koh, 2019). 

Sunrise times fell between 0551 and 0615 hours, and sunset times between 1716 and 

1735 hours. Daylight hours were defined as 0600-1800 hours. We classified night 

locations that were also classified as perched as roost locations and night locations also 

classified as flighted were visually checked; we would not expect to see high-altitude 

soaring behavior during the hours between sunset and sunrise. 

Onset of Movement and Flight at Altitude 

We considered the hour of first location of each day associated with step lengths 

(Euclidian distance of between locations at times t and t+1) of either 100 m (hereafter 
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“short-distance movements”) or 1 km (hereafter, “long-distance movements”) as the 

onset of daily movement on two scales. We considered the hour of first location of each 

day associated with an altitude greater than 100 m AGL (hereafter “high-altitude flight”) 

as the onset of flight behavior. 

Proportion of Hourly Activity 

Given the coarse sampling interval of our data, we relied on two lines of evidence 

to identify periods of activity. These were (1) step lengths greater than 100 m and (2) 

whether a location was associated with flight. We then determined the level of activity 

within each daylight hour from 0600-1800 (13 possible locations during this time span) 

by grouping observations by hour and calculating the proportion of locations that were 

classified as active within each hour. We followed this process for each individual to 

obtain an estimate of activity level for each daylight hour. 

Data Analysis 

We fit a series of Bayesian generalized linear models for our two study species, 

White-headed Vulture and White-backed Vulture. We used gamma distributed models to 

determine the effect of species as a predictor for differences in the means of flight 

altitudes and speeds; we used Poisson distributed models to determine the effect of 

species as a predictor for differences in the timing of onset of short and long-distance 

movements, and high-altitude flight; and we used a beta distributed model to determine 

the effect of species and hour (cubic) predictors on timing of peak activity levels and 

proportion of locations classified as active. We only considered location data classified as 

flighted for models comparing vulture flight speeds and altitudes. 



37 

 

 

 

We estimated parameter coefficients using Bayesian Markov chain Monte Carlo 

(MCMC) sampling with 4 chains for 2,000 iterations each with a 1,000 iteration burn-in 

period (Goodrich et al., 2018). We used weakly informative priors for all parameters. We 

assessed model and parameter convergence using the posterior predictive distribution and 

the Gelman-Rubin statistic, respectively, and ensured minimum effective sample size 

requirements were met. We considered there was a difference in the two species’ 

trajectory characteristics if the 95% posterior credible interval for the species predictor 

did not overlap 0 (Gelman & Donald, 1992). We performed all modelling with packages 

brms and stan in program R (Carpenter et al., 2017; Goodrich et al., 2018).  

Results 

We used a total of 91,784 locations to create 5,568 daily trajectories that included 

space use both inside and outside of the Gorongosa boundary. These daily trajectories 

included 1,500 from White-backed Vultures and 4,068 from White-headed Vultures. We 

removed daily trajectories that included space use outside of Gorongosa, resulting in 

4,910 daily trajectories entirely contained within the Gorongosa boundary, 1,082 (72% of 

the species total) from 9 White-backed Vultures and 3,828 (95% of the species total) 

from 12 White-headed Vultures (Figure 2.3; Table B.1). 
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Figure 2.3 Locations from White-headed Vulture (left) and White-backed 

Vulture (right) daily trajectories involving use of Gorongosa National Park, 

Mozambique. The upper plots show daily trajectories completely within Gorongosa 

boundaries. The lower plots show daily trajectories involving space use both inside 

and outside of the park boundaries (bottom). White-backed Vultures daily 

trajectories (right) included substantial use of outside resources, whereas White-

headed Vulture daily trajectories (left) were largely confined to Gorongosa. 

Approximately 10% of the total number of locations were associated with 

negative altitudes, with a minimum of -59.7 m AGL (Figure 2.4). We analyzed trajectory 
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characteristics during daylight hours using 50,741 (74%) of the total number of locations 

from daily trajectories limited to Gorongosa. On average, 50% (SD: 0.1) of each 

individual’s locations during daylight hours were classified as active. 

 
Figure 2.4 Density distributions of empirical height data less than 100 m AGL 

for White-headed (top) and White-backed Vultures (bottom) in Gorongosa National 

Park, Mozambique. The distributions for both species were centered around a mean 

of approximately 17 m AGL. Approximately 10% of all recorded heights fell below 

0 (dashed line) after removal of heights below the -60 m threshold. 

Trajectory Characteristics 

White-headed Vultures flew at lower altitudes than did White-backed Vultures 

(315 vs. 380 m AGL). Ninety-eight percent of White-headed Vulture and 75% of White-

backed Vulture flight altitudes were below 1,000 m AGL, and we found flight altitudes 

up to 2,859 and 2,477 m AGL, respectively. Both species flew at altitudes within a 

similar range; 95% of White-headed Vulture flight altitudes fell between 24 m and 997 m 
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AGL, and 95% of White-backed Vulture flight altitudes fell between 27 and 1,126 m 

AGL (Figure 2.5). 

On average, White-headed Vultures flew slower than White-backed Vultures (14 

vs. 23 m/s). Again, we found a large amount of overlap in the overall range of 

instantaneous flight speeds; ninety-five percent of the time White-headed Vultures flew 

at speeds between 5 and 32 m/s, whereas White-backed Vultures flew at speeds between 

10 and 40 m/s (Figure 2.6). We found a maximum flight speed of 58 m/s for White-

headed Vultures and 75 m/s for White-backed Vultures 

 
Figure 2.5 Posterior distributions and mean point estimates with 50% (thick bar) 

and 95% (thin bar) credibility intervals for White-headed Vulture (WH) and White-

backed Vulture (WB) flight altitude in Gorongosa National Park, Mozambique.  
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Figure 2.6 Posterior distributions and mean point estimates with 50% (thick bar) 

and 95% (thin bar) credibility intervals for White-headed Vulture (WH) and White-

backed Vulture (WB) flight speed in Gorongosa National Park, Mozambique. 

White-headed Vultures initiated short-distance movements earlier than White-

backed Vultures (0700 vs. 0800 hours; Figure 2.7). White-headed Vultures also initiated 

long-distance movements earlier than White-backed Vultures (0830 vs. 0900 hours; 

Figure 2.7). Just as White-headed Vultures were less reliant on development of flight 

conditions to initiate daily movement, they also initiated high-altitude flight earlier than 

White-backed Vultures (1030 vs. 1100 hours; Figure 2.8). 

We found a minimal difference in timing of peak activity for White-headed 

Vultures and White-backed Vultures – both species were most active in the 1100 hour. 

We also found a minimal difference in the proportion of active locations within the 1100 

hour – 73% and 68% for White-headed Vultures and White-backed Vultures, respectively 

(Figure 2.9).  
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Figure 2.7 Histograms of posterior predictions for the hour for onset of short-

distance and long-distance movement (step length >100 m and >1000 m, 

respectively) for (A & C) White-headed Vultures and (B & D) White-backed 

Vultures in Gorongosa National Park, Mozambique. Model predicted averages are 

noted below each histogram. 

A. B. 

C. D. 
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Figure 2.8 Histograms of posterior predictions for the hour of onset of soaring 

behavior for (A) White-headed Vultures and (B) White-backed Vultures in 

Gorongosa National Park, Mozambique. The onset of soaring behavior was centered 

around a mean (dashed line) of approximately 1030 and 1100 hours for White-

headed and White-backed Vultures, respectively. Model predicted averages are 

noted below each histogram. 

A

. 
B. 
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Figure 2.9 Posterior predictive fit curves for the proportion of active locations by 

hour for White-headed Vultures (A) and White-backed Vultures (B) in Gorongosa 

National Park, Mozambique. Observed proportions of activity for each hour are 

shown with overlaid points. Peak activity was observed in the 1100 hour (dashed 

line). 

 

Discussion 

Kane & Kendall (2017) found White-backed Vultures and White-headed Vultures 

in the Masai Mara, Kenya, arrived at experimental carcasses at the same median arrival 

order, third, along with the Lappet-faced Vulture (Torgos tracheliotos) and Hooded 

Vulture (Necrosyrtes monachus), following the Tawny Eagle and Bateleur (Terathopius 

ecaudatus). Their study was carried out in an ecosystem with a healthy Tawny Eagle 

population – this is not the case in Gorongosa. We believe that whereas a species like the 

Tawny Eagle serves as the primary pioneer in a system like the Masai Mara, the White-

headed Vulture might play a significant part in Gorongosa where Tawny Eagles are 

currently rare to nonexistent. Our field observations of vulture arrival times at carcasses 

A. B. 
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in Gorongosa support this – White-headed Vultures were typically the first vulture 

species to arrive at carcasses, often preceded by the Bateleur, and followed by one of the 

other resident vulture species (T. Scott, pers. obs.). 

Our model predictions for flight altitude largely mirrored the empirical data but 

were more conservative when considering maximum flight altitude. The highest recorded 

vulture flight altitude of approximately 11,000 meters AGL (Laybourne, 1974) is likely 

an extreme outlier, and both our model and empirical data suggest the estimate of a 

typical maximum thermaling altitude of 800 m AGL for White-backed Vultures by both 

Pennycuick (1972) and Mundy et al. (1992) is low. Whereas only 5% of predicted White-

headed Vultures flight altitudes were greater than 800 m, we found that 32% of White-

headed flight altitudes were above this previous estimate of maximum thermaling 

altitude. We found vultures do occasionally fly at altitudes higher than 1,000 m AGL, 

including extremes greater than 2,000 m AGL.  

Our findings for flight speed are slightly greater than but support previous 

estimates for the White-backed Vulture by Pennycuick (1972) and Mundy et al. (1992). 

Pennycuick (1972) estimated a median speed of approximately 18 m/s, 5 m/s slower than 

both our model predicted median and empirical median. The higher speeds predicted by 

our model are similar to the 33 and 39 m/s diving speeds mentioned by Mundy et al. 

(1992), but both the model and our empirical data support the potential for higher flight 

speeds by both species, with outliers greater than 50 m/s. 

The earlier onset of movement and flight at altitude for White-headed Vultures is 

likely largely attributed to their lower wing loading, allowing them to move throughout 

their home ranges with less reliance on thermals. An earlier onset of movement also 
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supports the notion that White-headed Vultures could play the role of primary pioneer. 

That being said, the two species’ distributions of hourly activity level largely overlap, 

suggesting that both species take advantage of similar conditions during hours of peak 

activity. The coarse sampling interval of our data and significant amount of error 

associated with our 3D data potentially masks much of the lower flight altitudes we 

expected to find with White-headed Vultures. It would be valuable to build on these 

findings with higher resolution tracking data. 

Both species exhibited a peak in activity around the expected onset of suitable 

thermaling conditions. Generally, the hourly activity level of White-headed Vultures was 

slightly higher and dropped off at a slower rate over the course of the day than that of 

White-backed Vultures. This suggests that White-headed Vultures are more consistently 

active over the course of the day, perhaps reflective of a foraging method more reliant on 

smaller prey items. Conversely, White-backed Vulture hourly activity levels had a well-

defined peak possibly associated with foraging behavior that quickly drops off after 

discovery of carrion. Again, tracking data with a higher resolution sampling interval or 

integration of additional data collected via biologgers (i.e., acceleration and heart rate) 

could vastly increase our understanding of behaviors associated with varied levels of 

activity over the course of the day. 

Finally, though we had a significantly larger sample of daily trajectories for 

White-headed Vultures, 4,068 of 5,568 (73%), we found a much lower number of 

instances in which they ventured outside of Gorongosa to utilize resources. This finding 

furthers our understanding of the importance of protected areas to the survival and well-

being of this imperiled species.  
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The fact that White-headed Vultures fly at lower altitudes and speeds, and initiate 

activity earlier, coupled with our recent findings of intensive range-residency (Chapter 1) 

imply that the White-headed Vulture fills a similar niche among African vultures as the 

Lappet-faced Vulture. Spiegel et al. (2013a) suggest that the Lappet-faced Vulture, a 

pioneer demonstrating heightened search efficiency, plays an important role in sustaining 

the fitness of White-backed Vultures, and note that the species is at greater risk of local 

extinction due to low occurrence densities. 

Our findings suggest White-headed Vultures use a foraging method capable of 

exploiting a wider range of food resources through increased vigilance and a higher 

intensity search over a smaller area. These support the hypothesis that the White-headed 

Vulture is more likely a pioneer than a follower (Houston, 1975). As we strive to 

conserve these and other species at risk of extinction, we need to continue building on our 

knowledge of intraspecific ecological relationships; with so much overlap in species 

occurrence, this is particularly important for African vultures. Conservation decisions 

shape the many protected areas crucial to the longevity of these species, and to be 

effective these decisions need to take species interactions into account.



48 

 

 

 

LITERATURE CITED 

Ákos, Z., Nagy, M., Leven, S., & Vicsek, T. (2010). Thermal soaring flight of birds and 

unmanned aerial vehicles. Bioinspiration & Biomimetics, 5(4). 

Avery, M. L., Humphrey, J. S., Daughtery, T. S., Fischer, J. W., Milleson, M. P., 

Tillman, E. A., … Walter, W. D. (2011). Vulture flight behavior and implications 

for aircraft safety. Journal of Wildlife Management, 75(7), 1581–1587. 

https://doi.org/10.1002/jwmg.205 

Bamford, A., Monadjem, A., & Hardy, I. C. W. (2009). Nesting habitat preference of the 

African White-backed Vulture Gyps africanus and the effects of anthropogenic 

disturbance. Ibis, 151(1), 51–62. https://doi.org/10.1111/j.1474-

919X.2008.00878.x 

Beilfuss, R. D., Bento, C. M., Haldane, M., Ribaue, M., & ... (2010). Status and 

distribution of large herbivores in the Marromeu Complex of the Zambezi Delta, 

Mozambique. World Wildlife Foundation, Maputo, (March 2010). Retrieved from 

http://www.biofund.org.mz/wp-content/uploads/2015/03/Aerial-Survey-Report-

Marromeu-2010-Beilfuss-et-al-2.pdf 

Beuchley, E. R., Oppel, S., Beatty, W. S., Nikolov, S. C., Dobrev, V., Arkumarev, V., … 

Sekercioglu, C. H. (2017). Identifying critical migratory bottlenecks and high-use 

areas for an endangered migratory soaring bird across three continents, 1–30. 

https://doi.org/10.1002/mnfr.201700389 

BirdLife International. (2017). One in eight of all bird species is threatened with global 

extinction. Downloaded from http://www.birdlife.org on 02/06/2020. 

Bittel, J. (2018). This Vulture Flew 1,000 Miles in Record-Breaking Flight. 

Bivand, R., & Lewin-Koh, N. (2019). maptools: Tools for Handling Spatial Objects. 

Botha, A., Andevski, J., Bowden, C., Gudka, M., Safford, R., Tavares, J., & Williams, N. 



49 

 

 

 

(2017). Multi-species Action Plan to Conserve African-Eurasian Vultures . CMS 

Raptors MOU Technical Publication No. 5. CMS Technical Series No. xx, (5). 

Bouley, P., Poulos, M., Branco, R., & Carter, N. H. (2018). Post-war recovery of the 

African lion in response to large-scale ecosystem restoration. Biological 

Conservation, 227(February), 233–242.  

Buechley, E. R., & Sekercioglu, C. H. (2016). Vultures. Current Biology, 26(13), R560–

R561. 

Calabrese, J. M., Fleming, C. H., & Gurarie, E. (2016). Ctmm: an R Package for 

Analyzing Animal Relocation Data As a Continuous-Time Stochastic Process. 

Methods in Ecology and Evolution, 7(9), 1124–1132. 

Calenge, C. (2015). Analysis of animal movements in R: the adehabitatLT package. 

Office National de La Chasse et de La Faune Sauvage. 

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … 

Riddell, A. (2017). Stan: A probabilistic programming language. Journal of 

Statistical Software, 76. 

Chanthorn, W., Caughlin, T., Dechkla, S., & Brockelman, W. Y. (2013). The relative 

importance of fungal infection, conspecific density and environmental 

heterogeneity for seedling survival in a dominant tropical tree. Biotropica, 45(5), 

587–593.  

Cortés-Avizanda, A., Jovani, R., Donázar, J. A., & Grimm, V. (2014). Bird sky networks: 

How do avian scavengers use social information to find carrion? Ecology, 95(7), 

1799–1808. 

Demšar, U., Buchin, K., Cagnacci, F., Safi, K., Speckmann, B., Weghe, N. de, … 

Weibel, R. (2015). Analysis and visualisation of movement: An interdisciplinary 

review. Movement Ecology, 3(1), 1–24.  

Devault, T. L., Beasley, J. C., Olson, Z. H., Moleón, M., Carrete, M., Margalida, A., & 

Sánchez-zapata, J. A. (2016). Ecosystem Services Provided by Avian Scavengers. 

USDA National Wildlife Research Center - Staff Publications, Paper 1836. 



50 

 

 

 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., … 

Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for 

GMES Operational Services. Remote Sensing of Environment, 120, 25–36. 

Fleming, Chris H., Calabrese, J. M., Mueller, T., Olson, K. A., Leimgruber, P., & Fagan, 

W. F. (2014). From Fine-Scale Foraging to Home Ranges: A Semivariance 

Approach to Identifying Movement Modes across Spatiotemporal Scales. The 

American Naturalist, 183(5), E154–E167.  

Fleming, Christen H., & Calabrese, J. M. (2019). ctmm: Continous-Time Movement 

Modeling. Retrieved from https://github.com/ctmm-initiative/ctmm 

Ford, R. G. (1983). Home Range in a Patchy Environment: Optimal Foraging 

Predictions. American Zoologist, 23(2), 315–326. 

Gelman, A., & Donald, B. R. (1992). Inference from Iterative Simulation Using Multiple 

Sequences. Statistical Science, 7(4), 457–511. 

Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2018). rstanarm: Bayesian applied 

regression modeling via Stan. R Package Version 2.17.4. 

Gorelick, N., Hancher, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google 

Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of 

Environment, 202, 18–27. 

Herremans, M., & Herremans-Tonnoeyr, D. (2000). Land use and the conservation status 

of raptors in Botswana. Biological Conservation, 94(1), 31–41.  

Hertel, F. (1994). Diversity in Body Size and Feeding Morphology within Past and 

Present Vulture Assemblages. Ecology, 75(4), 1074–1084. 

Houston, D. C. (1975). Ecological isolation of African scavenging birds. Ardea, 63(1–2), 

55–64. 

Houston, D. C. (1986). Scavenging Efficiency of Turkey Vultures in Tropical Forest. The 

Condor, 88(3), 318–323. 

Hustler, K., & Howells, W. W. (1988). Breeding Biology of the Whiteheaded Vulture in 

Hwange National Park, Zimbabwe. Ostrich, 59(1), 21–24. 



51 

 

 

 

Kane, A., Jackson, A. L., Monadjem, A., Colomer, M. A., & Margalida, A. (2015). 

Carrion ecology modelling for vulture conservation: Are vulture restaurants 

needed to sustain the densest breeding population of the African white-backed 

vulture? Animal Conservation, 18(3), 279–286. 

Kane, Adam, & Kendall, C. J. (2017). Understanding how mammalian scavengers use 

information from avian scavengers: cue from above. Journal of Animal Ecology, 

86(4), 837–846. 

Kane, Adam, Wolter, K., Neser, W., Kotze, A., Naidoo, V., & Monadjem, A. (2016). 

Home range and habitat selection of Cape Vultures Gyps coprotheres in relation 

to supplementary feeding. Bird Study, 63(3), 387–394.  

Katzner, T. E., Brandes, D., Miller, T., Lanzone, M., Maisonneuve, C., Tremblay, J. A., 

… Merovich, G. T. (2012). Topography drives migratory flight altitude of golden 

eagles: Implications for on-shore wind energy development. Journal of Applied 

Ecology, 49(5), 1178–1186.  

Kendall, C. J. (2013). Alternative strategies in avian scavengers: How subordinate 

species foil the despotic distribution. Behavioral Ecology and Sociobiology, 

678(3), 383–393. 

Kendall, C. J., Virani, M. Z., Hopcraft, J. G. C., Bildstein, K. L., & Rubenstein, D. I. 

(2014). African vultures don’t follow migratory herds: Scavenger habitat use is 

not mediated by prey abundance. PLoS ONE, 9(1), 1–8.  

Kendall, C., Virani, M. Z., Kirui, P., Thomsett, S., & Githiru, M. (2012). Mechanisms of 

Coexistence in Vultures: Understanding the Patterns of Vulture Abundance at 

Carcasses in Masai Mara National Reserve, Kenya. The Condor, 114(3), 523–

531.  

Krüger, S., Reid, T., & Amar, A. (2014). Differential range use between age classes of 

Southern African bearded vultures Gypaetus barbatus. PLoS ONE, 9(12), 1–18.  

Kruuk, H. (1967). Competition for food between vultures in East Africa. Ardea, 55(3–4), 

171–193. 

Laybourne, R. C. (1974). Collision between a vulture and an aircraft at an altitude of 



52 

 

 

 

37,000 feet. The Wilson Bulletin, 86(4), 461–462. 

Maher, C. R., & Lott, D. F. (2000). A Review of Ecological Determinants of 

Territoriality within Vertebrate Species. The American Midland Naturalist, 

143(1), 1–29. 

Margalida, A., Pérez-García, J. M., Afonso, I., & Moreno-Opo, R. (2016). Spatial and 

temporal movements in Pyrenean bearded vultures (Gypaetus barbatus): 

Integrating movement ecology into conservation practice. Scientific Reports, 

6(October), 1–12.  

Martinez-Garcia, R., Fleming, C. H., Seppelt, R., Fagan, W. F., & Calabrese, J. M. 

(2020). How range residency and long-range perception change encounter rates. 

Journal of Theoretical Biology, 498, 110267.  

McLoughlin, P. D., & Ferguson, S. H. (2000). A hierarchical pattern of limiting factors 

helps explain variation in home range size. Écoscience, 7(2), 123–130. 

Mitchell, M. S., & Powell, R. A. (2004). A mechanistic home range model for optimal 

use of spatially distributed resources. Ecological Modelling, 177(1–2), 209–232.  

Moleón, M., Sánchez-Zapata, J. A., Margalida, A., Carrete, M., Owen-Smith, N., & 

Donázar, J. A. (2014). Humans and scavengers: The evolution of interactions and 

ecosystem services. BioScience, 64(5), 394–403.  

Monadjem, A. (2004). White-headed Vulture Trigonoceps occipitalis. In In: Monadjem 

A, Anderson MD, Piper SE, Boshoff AF (eds), The vultures of southern Africa – 

Quo vadis? Proceedings of a workshop on vulture research and conservation in 

southern Africa. Birds of Prey Working Group, Johannesburg (pp. 34–39). 

Moreno-Opo, R., Trujillano, A., Arredondo, Á., González, L. M., & Margalida, A. 

(2015). Manipulating size, amount and appearance of food inputs to optimize 

supplementary feeding programs for European vultures. Biological Conservation, 

181, 27–35.  

Mundy, P., Butchart, D., Ledger, J., & Piper, S. (1992). The Vultures of Africa. Acorn 

Books. 



53 

 

 

 

Murn, C. (2013). Ecology of the White-headed Vulture Trigonoceps occipitalis. 

University of Reading. 

Murn, C. (2014). Observations of Predatory Behavior by White-headed Vultures. Journal 

of Raptor Research, 48(3), 297–299. 

Murn, C., & Botha, A. (2016). Assessing the accuracy of plotless density estimators 

using census counts to refine population estimates of the vultures of Kruger 

National Park Assessing the accuracy of plotless density estimators using census 

counts to refine population estimates of th. Ostrich, 6525(September), 1–6.  

Murn, C., & Botha, A. (2017). A clear and present danger: impacts of poisoning on a 

vulture population and the effect of poison response activities. Oryx, 1–7.  

Murn, C., & Holloway, G. J. (2014). Breeding biology of the White-headed Vulture 

Trigonoceps occipitalis in Kruger National Park, South Africa. Ostrich, 85(2), 

125–130.  

Murn, C., & Holloway, G. J. (2016). Using areas of known occupancy to identify sources 

of variation in detection probability of raptors: taking time lowers replication 

effort for surveys. Royal Society Open Science, 3(October), 160368.  

Murn, C., Mundy, P., Virani, M. Z., Borello, W. D., Holloway, G. J., & Thiollay, J.-M. 

(2016). Using Africa’s protected area network to estimate the global population of 

a threatened and declining species: A case study of the Critically Endangered 

White-headed Vulture Trigonoceps occipitalis. Ecology and Evolution, 6(4), 

1092–1103.  

NASA/METI/AIST/Japan Spacesystems,  and U. S. /Japa. A. S. T. (2009). ASTER 

Global Digital Elevation Model [Data set]. NASA EOSDIS Land Processes 

DAAC. Accessed from https://doi.org/10.5067/ASTER/ASTGTM.002. 

Ogada, D. L., Shaw, P., Beyers, R. L., Buij, R., Murn, C., Thiollay, J.-M., … Sinclair, A. 

R. E. (2016). Another Continental Vulture Crisis: Africa’s Vultures Collapsing 

toward Extinction. Conservation Letters, 9(2), 89–97.  

Ogada, D. L., Torchin, M. E., Kinnaird, M. F., & Ezenwa, V. O. (2012). Effects of 

Vulture Declines on Facultative Scavengers and Potential Implications for 



54 

 

 

 

Mammalian Disease Transmission. Conservation Biology, 26(3), 453–460.  

Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and 

evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of 

Geophysical Research: Solid Earth, 117(4), 1–38.  

Pebesma, E. (2018). Simple Features for R: Standardized Support for Spatial Vector 

Data. The R Journal, 10(1), 439–446. 

Pennycuick, C. J. (1972). Soaring behavior and performance of some East African birds, 

observed from a motor-glider. Ibis, 114(2), 178–218. 

Pennycuick, C. J. (1976). Breeding of the lappet-faced and white-headed vultures 

(Torgos tracheliotus and Trigonoceps occipitalis) on the Serengeti Plains , 

Tanzania. African Journal of Ecology, 14(1), 67–84. 

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. 

(2005). Using the satellite-derived NDVI to assess ecological responses to 

environmental change. Trends in Ecology and Evolution, 20(9), 503–510.  

Phipps, W. L., Willis, S. G., Wolter, K., & Naidoo, V. (2013). Foraging Ranges of 

Immature African White-Backed Vultures (Gyps africanus) and Their Use of 

Protected Areas in Southern Africa. PLoS ONE, 8(1).  

Poessel, S. A., Duerr, A. E., Hall, J. C., Braham, M. A., & Katzner, T. E. (2018). 

Improving estimation of flight altitude in wildlife telemetry studies. Journal of 

Applied Ecology, 55(4), 2064–2070.  

Portugal, S. J., Murn, C. P., & Martin, G. R. (2017). White-headed Vulture Trigonoceps 

occipitalis shows visual field characteristics of hunting raptors. Ibis, 159(2), 463–

466.  

Pringle, R. M. (2017). Upgrading protected areas to conserve wild biodiversity. Nature, 

546(7656), 91–99.  

Pritchard, D., Bamba, A., & Rilla, F. (2009). Ramsar Advisory Missions - No. 62: 

Marromeu Complex Ramsar Site, Mozambique (2009), (62). 

QGIS.org. (2020). QGIS Geographic Information System. Retrieved from http://qgis.org 



55 

 

 

 

R Core Team. (2018). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. Retrieved from 

https://www.r-project.org/ 

Rivers, J. W., Johnson, J. M., Haig, S. M., Schwarz, C. J., Burnett, L. J., Brandt, J., … 

Grantham, J. (2014). An analysis of monthly home range size in the critically 

endangered California Condor Gymnogyps californianus. Bird Conservation 

International, 24(4), 492–504.  

Ruxton, G. D., & Houston, D. C. (2004). Obligate vertebrate scavengers must be large 

soaring fliers. Journal of Theoretical Biology, 228(3), 431–436.  

Spiegel, O., Getz, W. M., & Nathan, R. (2013). Factors Influencing Foraging Search 

Efficiency: Why Do Scarce Lappet-Faced Vultures Outperform Ubiquitous 

White-Backed Vultures? The American Naturalist, 181(5), 102–115.  

Spiegel, O., Harel, R., Getz, W. M., & Nathan, R. (2013). Mixed strategies of griffon 

vultures’ (Gyps fulvus) response to food deprivation lead to a hump-shaped 

movement pattern. Movement Ecology, 1(1), 5.  

Stalmans, M., & Beilfuss, R. (2008). Landscapes of the Gorongosa National Park. 

Gorongosa Research Center, Gorongosa National Park, Mozambique. Retrieved 

from https://www.gorongosa.org/sites/default/files/research/051-

gorongosalandscapes_stalmans.pdf 

Stalmans, M., Massad, T., Peel, M., Tarnita, C., & Pringle, R. (2019). War-induced 

collapse and asymmetric recovery of large-mammal populations in Gorongosa 

National Park, Mozambique. PLoS ONE, 14(3), 1–18.  

Tinley, K. (1977). Framework of the Gorongosa Ecosystem. University of Pretoria. 

Virani, M. Z., Kendall, C., Njoroge, P., & Thomsett, S. (2010). Major declines in the 

abundance of vultures and other scavenging raptors in and around the Masai Mara 

ecosystem, Kenya. Biological Conservation, 144(2), 746–752.  

Wikelski, M., & Kays, R. (2019). Movebank: archive, analysis and sharing of animal 

movement data.



56 

 

 

 

APPENDIX A 

Home range Supplemental Information 



  

  

57 

A
.1

 
S

u
m

m
a
ry

 o
f 

ta
g
 d

u
ra

ti
o
n

s 
a
n

d
 i

n
tr

in
si

c 
cl

a
ss

if
ie

rs
 f

o
r 

th
e 

1
2
 W

h
it

e-
h

e
a
d

ed
 V

u
lt

u
re

s 
in

cl
u

d
ed

 i
n

 t
h

is
 s

tu
d

y
. 
W

e 
ta

g
g
e
d

 

a
n

d
 t

ra
ck

ed
 a

ll
 b

ir
d

s 
in

 G
o
ro

n
g
o
sa

 N
a
ti

o
n

a
l 

P
a

rk
, 
M

o
za

m
b

iq
u

e,
 i

n
 t

h
e 

2
0
1
6

-1
7
, 
2
0
1
7
-1

8
, 
a
n

d
 2

0
1
8

-1
9
 f

ie
ld

 s
ea

so
n

s.
 S

ta
rt

 a
n

d
 

en
d

 d
a
te

s 
a
re

 i
d

en
ti

fi
ed

 b
y
 m

o
n

th
 a

n
d

 y
ea

r.
 S

o
m

e 
in

d
iv

id
u

a
ls

 t
ra

n
si

ti
o
n

ed
 b

et
w

ee
n

 m
u

lt
ip

le
 a

g
e 

a
n

d
 b

re
ed

in
g
 s

ta
tu

s 
ca

te
g
o
ri

es
 

a
s 

d
a
ta

 c
o
ll

ec
ti

o
n

 p
ro

g
r
es

se
d

. 
B

re
ed

in
g
/c

en
tr

a
l 

p
la

ce
 s

ta
tu

s 
is

 s
u

m
m

a
ri

ze
d

 b
y
 y

ea
r.

 W
e 

co
u

ld
 n

o
t 

a
ss

ig
n

 s
ex

 t
o
 j

u
v
en

il
e 

a
n

d
 

y
o
u

n
g
er

 s
u

b
a
d

u
lt

 b
ir

d
s 

b
y
 p

lu
m

a
g
e 

a
sp

ec
t.

 B
re

ed
in

g
: 

B
; 

N
o
n

-b
re

ed
in

g
 c

en
tr

a
l 

p
la

ce
: 

N
C

; 
N

o
n

-b
re

ed
in

g
 n

o
n

-c
en

tr
a
l 

p
la

ce
: 

N
N

. 

B
IR

D
 

S
T

A
R

T
 

E
N

D
 

D
U

R
A

T
IO

N
 

(M
O

N
T

H
S

) 
A

G
E

 

B
R

E
E

D
IN

G
/C

E
N

T
R

A
L

 P
L

A
C

E
 

S
T

A
T

U
S

 
 

2
0
1
6
 

2
0
1
7
 

2
0
1
8

 
2
0
1
9
 

S
E

X
 

W
H

8
8
_
1

6
 

2
0
1
6
-0

7
 

2
0
1
9
-1

0
 

4
0
 

Ju
v
.,
 S

u
b
ad

. 
N

N
 

N
N

 
N

N
 

N
N

 
U

n
k
. 

W
H

2
4
_
1

7
 

2
0
1
7
-0

7
 

2
0
1
8
-0

3
 

9
 

Ju
v
.,
 S

u
b
ad

. 
--

 
N

N
 

N
N

 
--

 
U

n
k
. 

W
H

2
5
_
1

7
 

2
0
1
7
-0

7
 

2
0
1
7
-1

1
 

5
 

S
u
b
ad

. 
--

 
N

N
 

--
 

--
 

M
 

W
H

3
7
_
1

7
 

2
0
1
7
-0

7
 

2
0
1
7
-0

9
 

3
 

A
d
u
lt

 
--

 
N

N
 

--
 

--
 

M
 

W
H

4
1
_
1

7
 

2
0
1
7
-0

7
 

2
0
1
7
-1

0
 

4
 

A
d
u
lt

 
--

 
N

N
 

--
 

--
 

F
 

W
H

4
2
_
1

7
 

2
0
1
7
-0

7
 

2
0
1
8
-0

3
 

9
 

A
d
u
lt

 
--

 
B

 
N

C
;N

N
 

--
 

F
 

  



  

  

58 

A
.1

 C
o
n

ti
n

u
ed

 

B
IR

D
 

S
T

A
R

T
 

E
N

D
 

D
U

R
A

T
IO

N
 

(M
O

N
T

H
S

) 
A

G
E

 

B
R

E
E

D
IN

G
 T

E
R

R
IT

O
R

IA
L

 

S
T

A
T

U
S

 
 

2
0
1
6
 

2
0
1
7
 

2
0
1
8

 
2
0
1
9
 

S
E

X
 

W
H

4
4
_
1

7
 

2
0
1
7
-0

7
 

2
0
1
8
-0

1
 

7
 

S
u
b
ad

. 
--

 
N

N
 

N
 

--
 

U
n
k
. 

W
H

2
7
_
1

8
 

2
0
1
8
-0

7
 

2
0
1
9
-1

0
 

1
6
 

A
d
u
lt

 
--

 
--

 
B

;N
C

 
N

C
 

M
 

W
H

2
9
_
1

8
 

2
0
1
8
-0

7
 

2
0
1
9
-1

0
 

1
6
 

A
d
u
lt

 
--

 
--

 
B

;N
C

 
N

C
 

M
 

W
H

3
1
_
1

8
 

2
0
1
8
-0

7
 

2
0
1
9
-1

0
 

1
6
 

A
d
u
lt

 
--

 
--

 
N

N
 

N
N

 
M

 

W
H

4
1
_
1

8
 

2
0
1
8
-0

7
 

2
0
1
9
-1

0
 

1
6
 

A
d
u
lt

 
--

 
--

 
B

;N
C

 
N

C
 

F
 

W
H

2
4
_
1

8
 

2
0
1
8
-0

7
 

2
0
1
9
-0

2
 

8
 

A
d
u
lt

 
--

 
--

 
B

;N
C

 
N

C
;N

N
 

M
 

  
 



  

  

59 

A
.2

 
E

m
p

ir
ic

a
l 

A
K

D
E

 m
o
d

e
l 

re
su

lt
s 

fo
r 

a
ll

 1
4
9
 W

h
it

e
-h

ea
d

ed
 V

u
lt

u
re

 b
ir

d
-m

o
n

th
s 

w
it

h
 a

ss
o
ci

a
te

d
 m

o
d

el
 c

o
v
a
ri

a
te

 v
a
lu

es
. 

W
it

h
in

-i
n

d
iv

id
u

a
l 

b
ir

d
-m

o
n

th
s 

a
r
e 

d
is

ti
n

g
u

is
h

ed
 b

y
 t

a
b

le
 s

h
a
d

in
g
. 
1
3
2
 b

ir
d

-m
o
n

th
s 

A
K

D
E

 w
er

e 
fi

t 
to

 t
h

e 
O

rn
st

ei
n

-U
h

le
n

b
ec

k
 

(O
U

) 
co

n
ti

n
u

o
u

s-
ti

m
e 

m
o
v

e
m

en
t 

m
o
d

el
. 
T

h
e 

r
e
m

a
in

in
g
 1

7
 b

ir
d

-m
o
n

th
s,

 n
o
te

d
 b

y
 a

n
 a

st
er

is
k

, 
w

er
e 

fi
t 

to
 v

a
ri

a
ti

o
n

s 
o
f 

th
e 

O
U

 

m
o
v

e
m

en
t 

m
o
d

el
 t

h
a
t 

in
cl

u
d

e 
p

a
ra

m
et

er
s 

a
cc

o
u

n
ti

n
g
 f

o
r 

a
u

to
co

rr
el

a
ti

o
n

 i
n

 v
el

o
ci

ty
, 
tr

a
ck

s 
o
f 

sh
o
rt

 d
u

ra
ti

o
n

, 
a
n

d
 o

sc
il

la
to

ry
 

m
o
v

e
m

en
t 

a
cr

o
ss

 a
 r

a
n

g
e.

 B
re

ed
in

g
: 

B
; 

N
o
n

-b
re

ed
in

g
 c

en
tr

a
l 

p
la

ce
: 

N
C

; 
N

o
n

-b
re

ed
in

g
 n

o
n

-c
en

tr
a
l 

p
la

ce
: 

N
N

; 
ju

v
e
n

il
e:

 J
U

V
; 

su
b

a
d

u
lt

: 
S

A
; 

a
d

u
lt

: 
A

D
. 

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

2
4
_
1
7

 
1
9
.7

 (
1
2
-2

9
.3

) 
3
 (

1
.8

-2
2
.7

) 
0
7
 

2
0
1
7

 
N

 
JU V

 
0
.3

3
 

0
.4

1
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
7

 
1
4
.5

 (
1
2
.3

-1
6
.8

) 
1
.2

 (
1
-1

5
.2

) 
0
8
 

2
0
1
7

 
N

 
S

A
 

0
.3

6
 

0
.3

8
 

1
0
0
 (

1
0

0
) 

W
H

2
4
_
1
7

 
1
0
2
.5

 (
8
1
.3

-1
2
6
) 

2
4
.2

 (
1
9
.2

-1
1
0
.2

) 
0
9
 

2
0
1
7

 
N

 
S

A
 

0
.2

6
 

0
.2

9
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
7

 
1
5
6
.9

 (
1
1
0
.6

-2
1
1
.1

) 
3
7
.5

 (
2
6
.5

-1
7
4
.2

) 
1
0
 

2
0
1
7

 
N

 
S

A
 

0
.1

7
 

0
.1

8
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
7

 
1
4
3
.4

 (
7
8
.9

-2
2
6
.8

) 
3
0
.2

 (
1
6
.6

-1
6
9
) 

1
1
 

2
0
1
7

 
N

 
S

A
 

0
.4

 
0
.4

5
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
7

 
2
6
6
.9

 (
1
9
2
-3

5
4
) 

6
1
 (

4
3
.9

-2
9
4
.9

) 
1
2
 

2
0
1
7

 
N

 
S

A
 

0
.4

6
 

0
.5

 
1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
7

 
4
0
7
.3

 (
2
9
9
-5

3
2
) 

9
8
.7

 (
7
2
.5

-4
4
7
.4

) 
0
1
 

2
0
1
8

 
N

 
S

A
 

0
.4

5
 

0
.4

8
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
7

 
3
3
0
.7

 (
1
9
5
.1

-5
0
1
.5

) 
8
8
.9

 (
5
2
.5

-3
8
3
.7

) 
0
2
 

2
0
1
8

 
N

 
S

A
 

0
.3

8
 

0
.3

1
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
7

 
7
8
.4

 (
4
2
.2

-1
2
5
.7

) 
2
0
.4

 (
1
1
-9

2
.9

) 
0
3
 

2
0
1
8

 
N

 
S

A
 

0
.3

6
 

0
.4

6
 

1
0
0
 (

1
0
0
) 

 
 



  

  

60 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

2
4
_
1
8

 
1
8
.2

 (
1
6
.4

-2
0
.2

) 
2
.6

 (
2
.3

-1
8
.9

) 
0
7
 

2
0
1
8

 
B

 
A

D
 

0
.3

9
 

0
.3

3
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
8

 
3
1
.3

 (
2
7
.6

-3
5
.1

) 
6
.5

 (
5
.8

-3
2
.5

) 
0
8
 

2
0
1
8

 
N

C
 

A
D

 
0
.3

 
0
.2

7
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
8

 
4
7
.9

 (
4
2
-5

4
.1

) 
1
0
.4

 (
9
.1

-4
9
.9

) 
0
9
 

2
0
1
8

 
N

C
 

A
D

 
0
.2

5
 

0
.2

5
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
8

 
5
5
8
.4

 (
4
3
0
.1

-7
0
3
) 

7
4
.5

 (
5
7
.4

-6
0
5
.4

) 
1
0
 

2
0
1
8

 
N

N
 

A
D

 
0
.2

8
 

0
.2

5
 

1
0
0
 (

1
0
0
) 

W
H

2
4
_
1
8

 
1
2
3
6
.5

 (
9
4
6
.4

-

1
5
6
4
.8

) 
2
8
1
.5

 (
2
1
5
.4

-1
3
4
3
.1

) 
1
1
 

2
0
1
8

 
N

N
 

A
D

 
0
.2

4
 

0
.2

4
 

9
9
 (

1
0
0
) 

W
H

2
4
_
1
8

*
 

2
1
4
3
.8

 (
1
5
4
7
.7

-

2
8
3
5
.6

) 
5
6
9
.8

 (
4
1
1
.4

-2
3
6
5
.9

) 
1
2
 

2
0
1
8

 
N

N
 

A
D

 
0
.4

7
 

0
.4

2
 

9
1
.2

 (
9
3
.6

) 

W
H

2
4
_
1
8

*
 

2
4
8
6
.9

 (
1
8
7
5
.3

-

3
1
8
3
.4

) 
5
7
0
.8

 (
4
3
0
.4

-2
7
1
2
.3

) 
0
1
 

2
0
1
9

 
N

N
 

A
D

 
0
.5

9
 

0
.6

1
 

8
7
.7

 (
9
3
.9

) 

W
H

2
4
_
1
8

 
1
8
0
2
.2

 (
1
2
6
8
.9

-

2
4
2
7
.4

) 
3
5
9
.9

 (
2
5
3
.4

-2
0
0
2
) 

0
2
 

2
0
1
9

 
N

N
 

A
D

 
0
.5

4
 

0
.5

8
 

8
0
 (

8
3
.5

) 

W
H

2
5
_
1
7

 
3
1
2
3
.4

 (
1
3
4
1
.7

-

5
6
4
4
.8

) 
8
9
2
.3

 (
3
8
3
.3

-3
8
7
1
.9

) 
0
7
 

2
0
1
7

 
N

N
 

sa
 

0
.3

6
 

0
.2

9
 

7
6
.5

 (
1
0
0
) 

W
H

2
5
_
1
7

 
3
2
3
4
.3

 (
1
6
5
5
.6

-

5
3
3
2
.7

) 
8
6
7
.2

 (
4
4
3
.9

-3
8
7
1
.7

) 
0
8
 

2
0
1
7

 
N

N
 

sa
 

0
.2

8
 

0
.2

7
 

8
1
 (

9
9
.8

) 



  

  

61 

A
.2

 C
o

n
ti

n
u

ed
 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

2
5
_
1
7

 
2
5
1
8
.9

 (
1
3
0
5
.2

-

4
1
2
4
.8

) 
6
2
1
.2

 (
3
2
1
.9

-3
0
0
7
.5

) 
0
9
 

2
0
1
7

 
N

N
 

sa
 

0
.2

4
 

0
.2

2
 

9
6
.6

 (
1
0
0
) 

W
H

2
5
_
1
7

 
1
8
4
1
.3

 (
1
0
5
7
.2

-

2
8
3
9
.3

) 
5
5
9
.1

 (
3
2
1

-2
1
4
9
.6

) 
1
0
 

2
0
1
7

 
N

N
 

sa
 

0
.1

5
 

0
.1

3
 

8
8
.3

 (
1
0
0
) 

W
H

2
5
_
1
7

 
4
3
5
.6

 (
1
9
7
.7

-7
6
5
.8

) 
1
2
1
.9

 (
5
5
.4

-5
3
4
.3

) 
1
1
 

2
0
1
7

 
N

N
 

sa
 

0
.4

1
 

0
.4

 
9
7
.3

 (
1
0
0
) 

W
H

2
7
_
1
8

 
1
3
5
5
.2

 (
9
7
4
.1

-

1
7
9
8
.2

) 
1
7
9
.1

 (
1
2
8
.7

-1
4
9
7
.2

) 
0
7
 

2
0
1
8

 
B

 
A

D
 

0
.3

7
 

0
.3

5
 

9
9
.9

 (
1
0
0
) 

W
H

2
7
_
1
8

 
1
4
8
5
 (

1
1
3
8
.7

-

1
8
7
6
.6

) 
1
5
1
.9

 (
1
1
6
.5

-1
6
1
2
.2

) 
0
8
 

2
0
1
8

 
B

 
A

D
 

0
.3

5
 

0
.3

2
 

9
9
.6

 (
1
0
0
) 

W
H

2
7
_
1
8

 
2
4
.1

 (
2
1
.8

-2
6
.5

) 
4
.4

 (
4
-2

4
.9

) 
0
9
 

2
0
1
8

 
B

 
A

D
 

0
.2

2
 

0
.1

4
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
8
2
.1

 (
7
3
.6

-9
1
.1

) 
9
.7

 (
8
.7

-8
5
.2

) 
1
0
 

2
0
1
8

 
B

 
A

D
 

0
.2

4
 

0
.2

1
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
1
1
1
.1

 (
9
4
-1

2
9
.7

) 
1
5
.5

 (
1
3
.1

-1
1
7
.3

) 
1
1
 

2
0
1
8

 
N

C
 

A
D

 
0
.2

3
 

0
.2

3
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
3
2
 (

2
8
.6

-3
5
.6

) 
5
.2

 (
4
.7

-3
3
.2

) 
1
2
 

2
0
1
8

 
N

C
 

A
D

 
0
.4

7
 

0
.4

5
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
3
7
.4

 (
3
2
.7

-4
2
.5

) 
6
.3

 (
5
.5

-3
9
.1

) 
0
1
 

2
0
1
9

 
N

C
 

A
D

 
0
.6

 
0
.6

4
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
2
9
.7

 (
2
6
-3

3
.6

) 
5
.6

 (
4
.9

-3
1
) 

0
2
 

2
0
1
9

 
N

C
 

A
D

 
0
.5

6
 

0
.5

4
 

1
0
0
 (

1
0
0
) 



  

  

62 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

2
7
_
1
8

*
 

1
8
 (

1
6
.5

-1
9
.6

) 
2
.6

 (
2
.4

-1
8
.5

) 
0
3
 

2
0
1
9

 
N

C
 

A
D

 
0
.4

8
 

0
.4

2
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
1
8
.3

 (
1
6
.4

-2
0
.4

) 
3
.2

 (
2
.9

-1
9
) 

0
4
 

2
0
1
9

 
N

C
 

A
D

 
0
.5

3
 

0
.5

2
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
2
8
.9

 (
2
5
.9

-3
2
.1

) 
4
.8

 (
4
.3

-3
0
) 

0
5
 

2
0
1
9

 
N

C
 

A
D

 
0
.4

8
 

0
.4

6
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
3
3
.2

 (
2
9
.6

-3
7
) 

4
.5

 (
4
-3

4
.5

) 
0
6
 

2
0
1
9

 
B

 
A

D
 

0
.4

5
 

0
.4

1
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
3
9
4
.3

 (
3
2
4
.4

-4
7
0
.9

) 
2
6
.1

 (
2
1
.5

-4
1
9
.5

) 
0
7
 

2
0
1
9

 
B

 
A

D
 

0
.4

 
0
.3

8
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
6
9
0
 (

5
6
5
.4

-8
2
6
.8

) 
5
3
.7

 (
4
4
-7

3
5
) 

0
8
 

2
0
1
9

 
B

 
A

D
 

0
.3

 
0
.2

8
 

9
9
.9

 (
1
0
0
) 

W
H

2
7
_
1
8

 
1
7
1
.3

 (
1
4
5
.1

-1
9
9
.7

) 
1
3
.5

 (
1
1
.4

-1
8
0
.7

) 
0
9
 

2
0
1
9

 
B

 
A

D
 

0
.1

7
 

0
.1

8
 

1
0
0
 (

1
0
0
) 

W
H

2
7
_
1
8

 
2
6
5
.6

 (
2
2
6
.7

-3
0
7
.6

) 
2
3
.5

 (
2
0
-2

7
9
.6

) 
1
0
 

2
0
1
9

 
B

 
A

D
 

0
.2

4
 

0
.2

4
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
5
6
.5

 (
4
8
.7

-6
4
.8

) 
1
0
.8

 (
9
.3

-5
9
.3

) 
0
7
 

2
0
1
8

 
B

 
A

D
 

0
.3

8
 

0
.3

9
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
1
6
5
.8

 (
1
4
2
.5

-1
9
0
.9

) 
1
0
 (

8
.6

-1
7
4
.2

) 
0
8
 

2
0
1
8

 
B

 
A

D
 

0
.3

5
 

0
.3

2
 

9
8
.7

 (
1
0
0
) 

W
H

2
9
_
1
8

 
9
5
.5

 (
8
2
.7

-1
0
9
.1

) 
6
.3

 (
5
.5

-1
0
0
) 

0
9
 

2
0
1
8

 
B

 
A

D
 

0
.3

1
 

0
.2

8
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
4
0
 (

3
6
.4

-4
3
.8

) 
3
.4

 (
3
.1

-4
1
.3

) 
1
0
 

2
0
1
8

 
B

 
A

D
 

0
.3

1
 

0
.2

9
 

9
9
.1

 (
1
0
0
) 

 



  

  

63 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A
R

 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

2
9
_
1
8

 
1
2
7
 (

1
0
9
.9

-1
4
5
.2

) 
1
0
.9

 (
9
.5

-1
3
3
) 

1
1
 

2
0
1
8

 
N

C
 

A
D

 
0
.3

 
0
.2

5
 

9
9
.9

 (
1
0
0
) 

W
H

2
9
_
1
8

 
2
7
0
.5

 (
2
2
8
.4

-3
1
6
) 

2
0
.6

 (
1
7
.4

-2
8
5
.6

) 
1
2
 

2
0
1
8

 
N

C
 

A
D

 
0
.4

2
 

0
.4

8
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
2
7
.6

 (
2
3
.6

-3
2
) 

5
.4

 (
4
.6

-2
9
.1

) 
0
1
 

2
0
1
9

 
N

C
 

A
D

 
0
.5

6
 

0
.5

9
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
1
8
.8

 (
1
6
.4

-2
1
.3

) 
4
.5

 (
3
.9

-1
9
.6

) 
0
2
 

2
0
1
9

 
N

C
 

A
D

 
0
.5

3
 

0
.5

5
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
1
9
.5

 (
1
7
.1

-2
2
) 

4
.1

 (
3
.6

-2
0
.3

) 
0
3
 

2
0
1
9

 
N

C
 

A
D

 
0
.4

7
 

0
.5

4
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
1
0
.8

 (
9
.6

-1
2
.1

) 
2
.8

 (
2
.5

-1
1
.2

) 
0
4
 

2
0
1
9

 
N

C
 

A
D

 
0
.4

2
 

0
.4

9
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
1
5
.4

 (
1
3
.6

-1
7
.4

) 
4
 (

3
.5

-1
6
.1

) 
0
5
 

2
0
1
9

 
N

C
 

A
D

 
0
.3

7
 

0
.4

1
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
1
6
.8

 (
1
4
.7

-1
8
.9

) 
3
.5

 (
3
.1

-1
7
.5

) 
0
6
 

2
0
1
9

 
N

C
 

A
D

 
0
.3

8
 

0
.3

9
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
7
0
 (

5
6
.6

-8
4
.8

) 
1
0
.3

 (
8
.3

-7
4
.8

) 
0
7
 

2
0
1
9

 
N

C
 

A
D

 
0
.3

8
 

0
.3

8
 

1
0
0
 (

1
0
0
) 

W
H

2
9
_
1
8

 
2
1
7
 (

1
7
6
.8

-2
6
1
.2

) 
1
8
.6

 (
1
5
.2

-2
3
1
.5

) 
0
8
 

2
0
1
9

 
B

 
A

D
 

0
.3

1
 

0
.3

1
 

9
9
.6

 (
1
0
0
) 

W
H

2
9
_
1
8

 
6
8
.4

 (
5
6
.9

-8
0
.9

) 
7
.1

 (
5
.9

-7
2
.5

) 
0
9
 

2
0
1
9

 
B

 
A

D
 

0
.2

8
 

0
.2

6
 

1
0
0
 (

1
0
0
) 



  

  

64 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A
R

 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

2
9
_
1
8

 
1
4
3
.5

 (
1
1
4
.4

-1
7
5
.8

) 
1
3
.5

 (
1
0
.8

-1
5
4
.1

) 
1
0
 

2
0
1
9

 
B

 
A

D
 

0
.3

8
 

0
.4

 
9
9
 (

1
0
0
) 

W
H

3
1
_
1
8

*
 

2
5
5
6
.3

 (
1
7
4
5
.8

-

3
5
1
8
.9

) 
6
2
2
 (

4
2
4
.8

-2
8
6
2
.2

) 
0
7
 

2
0
1
8

 
N

N
 

A
D

 
0
.3

9
 

0
.3

6
 

8
8
 (

9
7
.3

) 

W
H

3
1
_
1
8

*
 

1
0
1
7
9
.4

 (
8
1
4
6
.7

-

1
2
4
3
5
.2

) 

2
0
9
2
.3

 (
1
6
7
4
.5

-

1
0
9
1
8
.1

) 
0
8
 

2
0
1
8

 
N

N
 

A
D

 
0
.4

3
 

0
.4

2
 

2
7
.5

 (
5
2
.2

) 

W
H

3
1
_
1
8

 
2
7
5
6
 (

1
6
0
6
.7

-

4
2
1
0
.4

) 
7
1
6
.6

 (
4
1
7
.8

-3
2
0
6
.3

) 
0
9
 

2
0
1
8

 
N

N
 

A
D

 
0
.2

7
 

0
.2

8
 

8
0
.9

 (
9
4
.8

) 

W
H

3
1
_
1
8

 
2
3
8
4
.9

 (
1
4
9
9
-

3
4
7
3
.3

) 
5
9
1
 (

3
7
1
.4

-2
7
2
6
) 

1
0
 

2
0
1
8

 
N

N
 

A
D

 
0
.2

6
 

0
.3

1
 

9
4
 (

1
0
0
) 

W
H

3
1
_
1
8

 
2
5
5
3
.6

 (
1
3
3
4
.7

-

4
1
6
1
.4

) 
6
8
8
.9

 (
3
6
0
.1

-3
0
4
3
.4

) 
1
1
 

2
0
1
8

 
N

N
 

A
D

 
0
.2

5
 

0
.2

2
 

9
4
.6

 (
1
0
0
) 

W
H

3
1
_
1
8

 
3
7
4
3
.6

 (
2
3
3
4
.9

-

5
4
7
9
.5

) 
7
7
1
.5

 (
4
8
1
.2

-4
2
8
6
.9

) 
1
2
 

2
0
1
8

 
N

N
 

A
D

 
0
.5

 
0
.4

6
 

7
3
.9

 (
9
7
.2

) 

W
H

3
1
_
1
8

 
1
8
8
7
.1

 (
1
2
6
2
.1

-

2
6
3
5
.8

) 
5
3
1
.8

 (
3
5
5
.6

-2
1
2
4
.2

) 
0
1
 

2
0
1
9

 
N

N
 

A
D

 
0
.5

7
 

0
.5

5
 

1
0
0
 (

1
0
0
) 

 



  

  

65 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

3
1
_
1
8

 
1
7
2
0
.2

 (
1
1
9
3
.3

-

2
3
4
1
.8

) 
4
2
6
.9

 (
2
9
6
.1

-1
9
1
8
.3

) 
0
2
 

2
0
1
9

 
N

N
 

A
D

 
0
.5

4
 

0
.5

2
 

9
9
.1

 (
1
0
0
) 

W
H

3
1
_
1
8

 
4
2
8
.1

 (
3
1
2
.2

-5
6
2
) 

5
9
.4

 (
4
3
.3

-4
7
1
.1

) 
0
3
 

2
0
1
9

 
N

N
 

A
D

 
0
.3

9
 

0
.4

3
 

1
0
0
 (

1
0
0
) 

W
H

3
1
_
1
8

 
4
6
6
.8

 (
3
3
4
.7

-6
2
0
.7

) 
9
3
 (

6
6
.7

-5
1
6
.1

) 
0
4
 

2
0
1
9

 
N

N
 

A
D

 
0
.4

 
0
.4

6
 

1
0
0
 (

1
0
0
) 

W
H

3
1
_
1
8

 
7
9
3
.7

 (
5
4
9
.8

-1
0
8
1
.7

) 
1
2
3
.4

 (
8
5
.5

-8
8
5
.5

) 
0
5
 

2
0
1
9

 
N

N
 

A
D

 
0
.4

2
 

0
.4

4
 

9
6
.4

 (
1
0
0
) 

W
H

3
1
_
1
8

 
7
4
6
.9

 (
5
0
6
.5

-1
0
3
3
.3

) 
1
2
7
.5

 (
8
6
.4

-8
3
7
.8

) 
0
6
 

2
0
1
9

 
N

N
 

A
D

 
0
.4

7
 

0
.4

9
 

9
1
 (

1
0
0
) 

W
H

3
1
_
1
8

 
3
5
2
.5

 (
2
7
7
.9

-4
3
5
.9

) 
7
1
.7

 (
5
6
.5

-3
7
9
.8

) 
0
7
 

2
0
1
9

 
N

N
 

A
D

 
0
.4

8
 

0
.4

4
 

9
8
.5

 (
1
0
0
) 

W
H

3
1
_
1
8

 
2
4
5
9
.6

 (
1
5
5
7
.4

-

3
5
6
4
.5

) 
7
3
4
 (

4
6
4
.8

-2
8
0
6
.2

) 
0
8
 

2
0
1
9

 
N

N
 

A
D

 
0
.3

4
 

0
.3

3
 

7
9
.8

 (
9
6
.9

) 

W
H

3
1
_
1
8

 
2
0
9
4
.3

 (
1
2
3
1
.4

-

3
1
8
2
.7

) 
5
9
1
.6

 (
3
4
7
.8

-2
4
3
1
.8

) 
0
9
 

2
0
1
9

 
N

N
 

A
D

 
0
.2

2
 

0
.2

1
 

8
8
.3

 (
9
9
.9

) 

W
H

3
1
_
1
8

 
2
3
2
4
.2

 (
1
5
9
6
.4

-

3
1
8
6
.5

) 
5
7
8
.8

 (
3
9
7
.6

-2
5
9
8
.5

) 
1
0
 

2
0
1
9

 
N

N
 

A
D

 
0
.3

 
0
.2

4
 

9
6
.3

 (
1
0
0
) 



  

  

66 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

3
7
_
1
7

*
 

7
5
7
.9

 (
5
5
1
-9

9
7
.2

) 
9
4
.9

 (
6
9

-8
3
4
.8

) 
0
7
 

2
0
1
7

 
N

N
 

A
D

 
0
.5

2
 

0
.5

8
 

9
7
.8

 (
1
0
0
) 

W
H

3
7
_
1
7

*
 

9
0
5
7
 (

5
9
4
5
.9

-

1
2
8
1
2
.4

) 

1
6
7
7
.8

 (
1
1
0
1
.5

-

1
0
2
4
2
.4

) 
0
8
 

2
0
1
7

 
N

N
 

A
D

 
0
.4

5
 

0
.4

5
 

2
9
.1

 (
4
8
.9

) 

W
H

3
7
_
1
7

*
 

5
4
8
8
.4

 (
4
3
4
8
.3

-

6
7
5
9
.2

) 
6
6
2
 (

5
2
4
.5

-5
9
0
3
.7

) 
0
9
 

2
0
1
7

 
N

N
 

A
D

 
0
.3

 
0
.3

1
 

3
2
.8

 (
1
3
) 

W
H

4
1
_
1
7

*
 

2
3
3
1
.6

 (
1
3
9
6
.5

-

3
5
0
2
.4

) 
4
4
2
.1

 (
2
6
4
.8

-2
6
9
5
.6

) 
0
7
 

2
0
1
7

 
N

N
 

A
D

 
0
.4

1
 

0
.3

2
 

6
4
.1

 (
9
2
.4

) 

W
H

4
1
_
1
7

 
3
6
9
5
.6

 (
2
2
3
3
.1

-

5
5
2
0
.6

) 
7
4
5
.7

 (
4
5
0
.6

-4
2
6
3
.9

) 
0
8
 

2
0
1
7

 
N

N
 

A
D

 
0
.3

4
 

0
.3

1
 

5
0
.5

 (
7
2
.5

) 

W
H

4
1
_
1
7

 
3
0
0
9
.2

 (
1
9
6
3
.2

-

4
2
7
5
) 

6
3
6
.4

 (
4
1
5
.2

-3
4
0
8
.3

) 
0
9
 

2
0
1
7

 
N

N
 

A
D

 
0
.2

8
 

0
.3

 
5
9
.5

 (
8
9
.2

) 

W
H

4
1
_
1
7

 
5
2
1
.2

 (
3
9
0
.5

-6
7
0
.6

) 
9
7
.6

 (
7
3
.1

-5
6
9
.5

) 
1
0
 

2
0
1
7

 
N

N
 

A
D

 
0
.2

1
 

0
.2

2
 

9
3
.5

 (
1
0
0
) 

W
H

4
1
_
1
8

 
8
1
.3

 (
7
3
.3

-8
9
.7

) 
5
.8

 (
5
.2

-8
4
.1

) 
0
7
 

2
0
1
8

 
B

 
A

D
 

0
.3

3
 

0
.2

3
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
9
6
.2

 (
8
7
.4

-1
0
5
.4

) 
7
.8

 (
7
.1

-9
9
.3

) 
0
8
 

2
0
1
8

 
B

 
A

D
 

0
.2

9
 

0
.2

 
1
0
0
 (

1
0
0
) 



  

  

67 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g

e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

4
1
_
1
8

 
8
2
.1

 (
7
5
-8

9
.6

) 
4
.5

 (
4
.1

-8
4
.6

) 
0
9
 

2
0
1
8

 
B

 
A

D
 

0
.2

1
 

0
.1

3
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
1
2
2
.6

 (
1
1
1
-1

3
4
.8

) 
1
0
.7

 (
9
.7

-1
2
6
.7

) 
1
0
 

2
0
1
8

 
B

 
A

D
 

0
.2

2
 

0
.1

4
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
9
7
.2

 (
8
7
.3

-1
0
7
.6

) 
1
2
.9

 (
1
1
.6

-1
0
0
.6

) 
1
1
 

2
0
1
8

 
N

C
 

A
D

 
0
.2

 
0
.1

5
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
4
9
.3

 (
4
4
.6

-5
4
.2

) 
7
.8

 (
7
.1

-5
0
.9

) 
1
2
 

2
0
1
8

 
N

C
 

A
D

 
0
.5

1
 

0
.4

7
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
5
5
.5

 (
5
0
.1

-6
1
.1

) 
7
.6

 (
6
.9

-5
7
.3

) 
0
1
 

2
0
1
9

 
N

C
 

A
D

 
0
.6

3
 

0
.6

1
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
7
4
.9

 (
6
6
.4

-8
4
) 

8
.9

 (
7
.9

-7
7
.9

) 
0
2
 

2
0
1
9

 
N

C
 

A
D

 
0
.5

6
 

0
.5

7
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
2
7
.6

 (
2
5
.1

-3
0
.2

) 
4
.4

 (
4
-2

8
.4

) 
0
3
 

2
0
1

9
 

N
C

 
A

D
 

0
.5

4
 

0
.5

6
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
3
1
.8

 (
2
8
.8

-3
5
) 

6
.2

 (
5
.6

-3
2
.9

) 
0
4
 

2
0
1
9

 
N

C
 

A
D

 
0
.5

3
 

0
.5

 
1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
3
4
.5

 (
3
1
.4

-3
7
.7

) 
6
.1

 (
5
.6

-3
5
.6

) 
0
5
 

2
0
1
9

 
N

C
 

A
D

 
0
.4

3
 

0
.4

1
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
4
5
.9

 (
4
1
.4

-5
0
.5

) 
6
.9

 (
6
.3

-4
7
.4

) 
0
6
 

2
0
1
9

 
B

 
A

D
 

0
.4

 
0
.3

5
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
4
0
.3

 (
3
6
.7

-4
4
) 

2
.4

 (
2
.2

-4
1
.5

) 
0
7
 

2
0
1
9

 
B

 
A

D
 

0
.3

5
 

0
.3

 
1
0
0
 (

1
0
0
) 

 



  

  

68 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

4
1
_
1
8

 
6
4
.6

 (
5
8
.5

-7
1
) 

5
.3

 (
4
.8

-6
6
.7

) 
0
8
 

2
0
1
9

 
B

 
A

D
 

0
.2

9
 

0
.2

 
1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
4
4
.1

 (
3
9
.7

-4
8
.7

) 
4
.1

 (
3
.7

-4
5
.7

) 
0
9
 

2
0
1
9

 
B

 
A

D
 

0
.1

6
 

0
.0

9
 

1
0
0
 (

1
0
0
) 

W
H

4
1
_
1
8

 
1
5
4
.7

 (
1
3
8
.6

-1
7
1
.7

) 
1
2
.2

 (
1
1
-1

6
0
.4

) 
1
0
 

2
0
1
9

 
B

 
A

D
 

0
.2

4
 

0
.2

1
 

1
0
0
 (

1
0
0
) 

W
H

4
2
_
1
7

 
7
1
.3

 (
6
4
-7

9
.1

) 
1
1
.6

 (
1
0
.4

-7
3
.9

) 
0
7
 

2
0
1
7

 
B

 
A

D
 

0
.2

9
 

0
.2

2
 

1
0
0
 (

1
0
0
) 

W
H

4
2
_
1
7

 
9
5
.8

 (
8
6
.5

-1
0
5
.6

) 
1
0
.2

 (
9
.3

-9
9
.1

) 
0
8
 

2
0
1
7

 
B

 
A

D
 

0
.2

2
 

0
.1

4
 

1
0
0
 (

1
0
0
) 

W
H

4
2
_
1
7

 
1
9
5
.9

 (
1
7
3
.9

-2
1
9
.2

) 
1
9
.4

 (
1
7
.2

-2
0
3
.7

) 
0
9
 

2
0
1
7

 
B

 
A

D
 

0
.1

9
 

0
.1

5
 

9
8
.6

 (
1
0
0
) 

W
H

4
2
_
1
7

 
9
4
.8

 (
8
5
-1

0
5
.1

) 
8
 (

7
.2

-9
8
.2

) 
1
0
 

2
0
1
7

 
B

 
A

D
 

0
.1

3
 

0
.1

1
 

1
0
0
 (

1
0
0
) 

W
H

4
2
_
1
7

 
6
9
.2

 (
6
0
.5

-7
8
.5

) 
1
1
.3

 (
9
.8

-7
2
.3

) 
1
1
 

2
0
1
7

 
B

 
A

D
 

0
.4

 
0
.4

4
 

1
0
0
 (

1
0
0
) 

W
H

4
2
_
1
7

 
1
4
5
.1

 (
1
1
7
.6

-1
7
5
.4

) 
2
9
 (

2
3
.5

-1
5
5
) 

1
2
 

2
0
1
7

 
N

C
 

A
D

 
0
.5

7
 

0
.5

7
 

1
0
0
 (

1
0
0
) 

W
H

4
2
_
1
7

*
 

1
1
2
2
.7

 (
7
9
7
.8

-

1
5
0
2
.3

) 
1
2
3
.2

 (
8
7
.5

-1
2
4
4
.2

) 
0
1
 

2
0
1
8

 
N

C
 

A
D

 
0
.5

9
 

0
.6

1
 

7
8
.1

 (
1
0
0
) 

W
H

4
2
_
1
7

 
1
2
7
2
.8

 (
7
7
9
.3

-

1
8
8
5
.3

) 
2
7
2
 (

1
6
6
.6

-1
4
6
3
.9

) 
0
2
 

2
0
1
8

 
N

C
 

A
D

 
0
.4

8
 

0
.5

3
 

9
5
.8

 (
1
0
0
) 

 



  

  

69 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A
R

 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

4
2
_
1
7

*
 

2
7
7
2
.2

 (
1
7
5
0
-

4
0
2
5
.8

) 
4
3
0
.2

 (
2
7
1
.6

-3
1
6
5
.3

) 
0
3
 

2
0
1
8

 
N

N
 

A
D

 
0
.5

6
 

0
.5

6
 

7
0
.1

 (
1
0
0
) 

W
H

4
4
_
1
7

 
3
1
4
.5

 (
2
4
1
.7

-3
9
6
.8

) 
6
8
.4

 (
5
2
.6

-3
4
1
.2

) 
0
7
 

2
0
1
7

 
N

N
 

S
A

 
0
.3

3
 

0
.2

6
 

9
6
.4

 (
1
0
0
) 

W
H

4
4
_
1
7

 
2
4
0
.8

 (
1
8
0
.3

-3
0
9
.9

) 
5
4
.4

 (
4
0
.7

-2
6
3
.1

) 
0
8
 

2
0
1
7

 
N

N
 

S
A

 
0
.3

3
 

0
.3

1
 

9
9
 (

1
0
0
) 

W
H

4
4
_
1
7

 
1
1
5
5
.7

 (
6
6
9
.9

-

1
7
7
1
.9

) 
2
1
5
.4

 (
1
2
4
.8

-1
3
4
6
.3

) 
0
9
 

2
0
1
7

 
N

N
 

S
A

 
0
.2

9
 

0
.2

9
 

8
3
.8

 (
9
9
) 

W
H

4
4
_
1
7

 
2
5
5
0
.3

 (
1
1
5
7
.4

-

4
4
8
4
) 

7
1
6
.4

 (
3
2
5
.1

-3
1
2
8
.3

) 
1
0
 

2
0
1
7

 
N

N
 

S
A

 
0
.1

8
 

0
.1

8
 

9
3
.9

 (
1
0
0
) 

W
H

4
4
_
1
7

 
1
8
3
5
.3

 (
1
0
0
9
.3

-

2
9
0
4
.2

) 
4
3
4
.3

 (
2
3
8
.9

-2
1
6
3
.4

) 
1
1
 

2
0
1
7

 
N

N
 

S
A

 
0
.4

1
 

0
.3

6
 

9
5
.8

 (
1
0
0
) 

W
H

4
4
_
1
7

 
1
7
9
9
.4

 (
1
0
6
6
.3

-

2
7
2
1
.1

) 
4
7
5
.9

 (
2
8
2
-2

0
8
5
.5

) 
1
2
 

2
0
1
7

 
N

N
 

S
A

 
0
.4

6
 

0
.4

7
 

0
 (

0
) 

W
H

4
4
_
1
7

 
6
2
0
8
.5

 (
2
5
2
2
.2

-

1
1
5
2
6
.1

) 

1
4
9
9
.8

 (
6
0
9
.3

-

7
7
7
6
.4

) 
0
1
 

2
0
1
8

 
N

N
 

S
A

 
0
.5

7
 

0
.6

 
0
 (

0
) 

W
H

8
8
_
1
6

 
1
0
8
8
.1

 (
8
2
1
.8

-

1
3
9
1
.2

) 
2
2
4
.2

 (
1
6
9
.3

-1
1
8
6
.2

) 
0
7
 

2
0
1
6

 
N

N
 

JU V
 

0
.3

7
 

0
.3

 
9
9
.4

 (
1
0
0
) 



  

  

70 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A
R

 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

8
8
_
1
6

 
1
0
9
4
.6

 (
8
4
2
.6

-

1
3
7
9
.1

) 
2
6
0
.5

 (
2
0
0
.5

-1
1
8
7
) 

0
8
 

2
0
1
6

 
N

N
 

JU V
 

0
.3

1
 

0
.3

5
 

9
1
.6

 (
1
0
0
) 

W
H

8
8
_
1
6

*
 

2
0
7
8
.8

 (
1
5
5
9
.9

-

2
6
7
1
.1

) 
5
4
1
.2

 (
4
0
6
.1

-2
2
7
0
.3

) 
0
9
 

2
0
1
6

 
N

N
 

JU V
 

0
.1

9
 

0
.2

 
8
8
.8

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
6
6
3
.5

 (
1
1
8
6
-

2
2
2
0
.5

) 
3
8
0
 (

2
7
0
.9

-1
8
4
1
.9

) 
1
0
 

2
0
1
6

 
N

N
 

JU V
 

0
.2

4
 

0
.2

6
 

9
4
.5

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
5
5
6
.3

 (
1
0
6
6
.2

-

2
1
3
7
.6

) 
4
1
4
.1

 (
2
8
3
.7

-1
7
4
1
.2

) 
1
1
 

2
0
1
6

 
N

N
 

JU V
 

0
.2

5
 

0
.1

8
 

9
9
.1

 (
1
0
0
) 

W
H

8
8
_
1
6

 
2
2
7
9
 (

1
7
0
1
.6

-

2
9
3
9
.4

) 
5
5
6
.5

 (
4
1
5
.5

-2
4
9
2
.3

) 
1
2
 

2
0
1

6
 

N
N

 
JU V

 
0
.3

6
 

0
.3

5
 

8
7
.5

 (
9
9
.8

) 

W
H

8
8
_
1
6

 
1
2
7
8
.7

 (
9
2
3
.6

-

1
6
9
0
.6

) 
3
2
2
.9

 (
2
3
3
.2

-1
4
1
1
) 

0
1
 

2
0
1
7

 
N

N
 

JU V
 

0
.5

3
 

0
.4

3
 

1
0
0
 (

1
0
0
) 

W
H

8
8
_
1
6

 
8
5
9
.9

 (
6
2
1
.3

-1
1
3
6
.7

) 
1
6
5
.8

 (
1
1
9
.8

-9
4
8
.8

) 
0
2
 

2
0
1
7

 
N

N
 

JU V
 

0
.5

 
0
.4

9
 

1
0
0
 (

1
0
0
) 

W
H

8
8
_
1
6

 
2
2
7
.2

 (
1
7
2
.1

-2
8
9
.7

) 
3
4
.1

 (
2
5
.8

-2
4
7
.4

) 
0
3
 

2
0
1
7

 
N

N
 

JU V
 

0
.4

8
 

0
.5

2
 

1
0
0
 (

1
0
0
) 

 



  

  

71 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g

e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

8
8
_
1
6

*
 

9
3
0
.8

 (
6
9
4
.3

-1
2
0
1
.5

) 
1
6
1
.7

 (
1
2
0
.6

-1
0
1
8
.3

) 
0
4
 

2
0
1
7

 
N

N
 

JU V
 

0
.5

3
 

0
.4

8
 

1
0
0
 (

1
0
0
) 

W
H

8
8
_
1
6

 
1
5
7
9
.4

 (
9
3
6
.7

-

2
3
8
7
.3

) 
3
2
7
 (

1
9
3
.9

-1
8
3
0
.2

) 
0
5
 

2
0
1
7

 
N

N
 

JU V
 

0
.5

4
 

0
.4

 
9
3
.4

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
3
9
9
.2

 (
9
1
1
.1

-

1
9
9
0
.4

) 
2
2
6
.8

 (
1
4
7
.7

-1
5
8
5
.5

) 
0
6
 

2
0
1
7

 
N

N
 

JU V
 

0
.4

6
 

0
.3

5
 

9
9
.2

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
0
6
8
.4

 (
7
1
5
-1

4
9
1
.8

) 
2
1
2
 (

1
4
1
.9

-1
2
0
2
.5

) 
0
7
 

2
0
1
7

 
N

N
 

JU V
 

0
.3

3
 

0
.3

2
 

9
8
.6

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
4
2
2
.6

 (
9
9
3
.3

-

1
9
2
7
.7

) 
2
9
1
.3

 (
2
0
3
.4

-1
5
8
3
.8

) 
0
8
 

2
0
1
7

 
N

N
 

S
A

 
0
.3

2
 

0
.3

 
8
7
.1

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
2
0
5
.9

 (
8
9
5
.8

-

1
5
6
1
.5

) 
1
6
2
.5

 (
1
2
0
.7

-1
3
2
0
.7

) 
0
9
 

2
0
1
7

 
N

N
 

S
A

 
0
.2

8
 

0
.2

8
 

9
8
.7

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
3
1
3
.5

 (
8
0
8
-1

9
3
9
.9

) 
3
2
6
.9

 (
2
0
1
.1

-1
5
0
9
.1

) 
1
0
 

2
0
1
7

 
N

N
 

S
A

 
0
.1

8
 

0
.1

8
 

8
9
.8

 (
9
8
.3

) 

W
H

8
8
_
1
6

*
 

1
1
9
5
.6

 (
7
9
8
.7

-

1
6
7
1
.2

) 
2
9
1
.9

 (
1
9
5

-1
3
4
6
.2

) 
1
1
 

2
0
1
7

 
N

N
 

S
A

 
0
.4

1
 

0
.3

9
 

9
4
.6

 (
1
0
0
) 

 



  

  

72 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

8
8
_
1
6

 
1
5
5
7
.2

 (
1
0
9
7
.9

-

2
0
9
5
.4

) 
3
1
2
.3

 (
2
2
0
.2

-1
7
2
9
.2

) 
1
2
 

2
0
1
7

 
N

N
 

S
A

 
0
.5

2
 

0
.4

7
 

9
6
 (

1
0
0
) 

W
H

8
8
_
1
6

 
1
5
3
5
 (

1
1
7
7
.8

-

1
9
3
8
.8

) 
3
7
9
.8

 (
2
9
1
.4

-1
6
6
6
.1

) 
0
1
 

2
0
1
8

 
N

N
 

S
A

 
0
.5

4
 

0
.4

4
 

9
8
.5

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
0
3
9
.8

 (
6
3
6
.1

-

1
5
4
1
.1

) 
2
1
4
 (

1
3
0
.9

-1
1
9
6
.2

) 
0
2
 

2
0
1
8

 
N

N
 

S
A

 
0
.4

2
 

0
.3

8
 

9
8
.5

 (
1
0
0
) 

W
H

8
8
_
1
6

 
6
0
1
.8

 (
4
6
0
.2

-7
6
2
) 

9
5
.1

 (
7
2
.7

-6
5
3
.8

) 
0
3
 

2
0
1
8

 
N

N
 

S
A

 
0
.4

6
 

0
.4

1
 

1
0
0
 (

1
0
0
) 

W
H

8
8
_
1
6

*
 

3
7
1
3
.2

 (
2
6
3
2
.5

-

4
9
7
6
.9

) 
6
2
0
.8

 (
4
4
0
.1

-4
1
1
7
.5

) 
0
4
 

2
0
1
8

 
N

N
 

S
A

 
0
.5

1
 

0
.4

 
6
7
.3

 (
1
0
0
) 

W
H

8
8
_
1
6

*
 

4
0
0
6
.7

 (
2
5
5
6
.2

-

5
7
7
7
.8

) 
6
1
2
.1

 (
3
9
0
.5

-4
5
6
3
) 

0
5
 

2
0
1
8

 
N

N
 

S
A

 
0
.5

2
 

0
.4

1
 

6
5
.2

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
8
4
7
.3

 (
1
3
3
3
.8

-

2
4
4
3
.2

) 
2
4
1
 (

1
7
4
-2

0
3
8
.6

) 
0
6
 

2
0
1
8

 
N

N
 

S
A

 
0
.4

8
 

0
.3

9
 

8
6
.3

 (
1
0
0
) 

W
H

8
8
_
1
6

 
7
6
7
.9

 (
5
1
6
.7

-1
0
6
8
.1

) 
1
9
6
.8

 (
1
3
2
.4

-8
6
3
.1

) 
0
7
 

2
0
1
8

 
N

N
 

S
A

 
0
.4

1
 

0
.3

9
 

9
8
 (

1
0
0
) 

  



  

  

73 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

8
8
_
1
6

 
2
2
2
1
.8

 (
1
4
8
5
.1

-

3
1
0
4
.6

) 
4
8
8
.4

 (
3
2
6
.5

-2
5
0
1
.4

) 
0
8
 

2
0
1
8

 
N

N
 

S
A

 
0
.3

7
 

0
.3

8
 

8
3
.8

 (
1
0
0
) 

W
H

8
8
_
1
6

 
2
1
6
4
.6

 (
1
4
3
1
.4

-

3
0
4
6
.9

) 
5
9
2
.2

 (
3
9
1
.6

-2
4
4
3
.4

) 
0
9
 

2
0
1
8

 
N

N
 

S
A

 
0
.2

6
 

0
.2

6
 

9
7
.7

 (
1
0
0
) 

W
H

8
8
_
1
6

 
1
7
0
.5

 (
1
4
0
-2

0
3
.9

) 
2
1
.6

 (
1
7
.7

-1
8
1
.5

) 
1
0
 

2
0
1
8

 
N

N
 

S
A

 
0
.3

2
 

0
.3

4
 

1
0
0
 (

1
0
0
) 

W
H

8
8
_
1
6

 
1
5
1
2
 (

1
0
3
9
.1

-

2
0
7
2
.2

) 
3
8
1
.5

 (
2
6
2
.2

-1
6
9
0
.2

) 
1
1
 

2
0
1
8

 
N

N
 

S
A

 
0
.2

4
 

0
.2

 
9
5
.8

 (
1
0
0
) 

W
H

8
8
_
1
6

 
3
0
4
3
.3

 (
2
1
3
3
.2

-

4
1
1
2
.6

) 
8
5
0
 (

5
9
5
.8

-3
3
8
4
.7

) 
1
2
 

2
0
1
8

 
N

N
 

S
A

 
0
.5

 
0
.4

1
 

8
3
.6

 (
1
0
0
) 

W
H

8
8
_
1
6

*
 

1
2
1
7
.7

 (
9
1
1
.7

-

1
5
6
7
.2

) 
2
4
4
.6

 (
1
8
3
.2

-1
3
3
0
.7

) 
0
1
 

2
0
1
9

 
N

N
 

S
A

 
0
.5

5
 

0
.4

7
 

9
9
.7

 (
1
0
0
) 

W
H

8
8
_
1
6

 
5
3
9
.5

 (
3
8
2
.6

-7
2
2
.9

) 
1
4
4
.5

 (
1
0
2
.5

-5
9
8
.1

) 
0
2
 

2
0
1
9

 
N

N
 

S
A

 
0
.4

9
 

0
.5

 
1
0
0
 (

1
0
0
) 

W
H

8
8
_
1
6

 
7
5
1
 (

3
7
2
.4

-1
2
6
0
) 

1
7
9
.7

 (
8
9
.1

-9
0
4
.9

) 
0
3
 

2
0
1
9

 
N

N
 

S
A

 
0
.3

7
 

0
.3

4
 

1
0
0
 (

1
0
0
) 

W
H

8
8
_
1
6

 
3
3
3
2
.1

 (
2
1
8
6
.6

-

4
7
1
4
.9

) 
7
0
0
 (

4
5
9
.4

-3
7
6
8
.5

) 
0
4
 

2
0
1
9

 
N

N
 

S
A

 
0
.4

8
 

0
.3

1
 

8
3
.7

 (
1
0
0
) 

 



  

  

74 

A
.2

 C
o
n

ti
n

u
ed

 

B
IR

D
 

9
5
%

 A
K

D
E

 (
k

m
2
) 

(9
5
%

 C
I)

 

5
0
%

 A
K

D
E

 (
k

m
2
) 

(5
0
%

 C
I)

 

M O
 

Y
E

A

R
 

B
R

 

S
T

A
T

U

S
 

A
g
e
 

N
D

V
I 

(9
5
%

 

A
K

D
E

) 

N
D

V
I 

(5
0
%

 

A
K

D
E

) 

9
5
%

 

A
K

D
E

/P
a
rk

 

o
v
er

la
p

 (
%

) 

(5
0
%

 A
K

D
E

) 

W
H

8
8
_
1
6

*
 

3
1
0
0
.6

 (
2
3
3
3
.6

-

3
9
7
5
) 

6
3
7
.1

 (
4
7
9
.5

-3
3
8
3
.5

) 
0
5
 

2
0
1
9

 
N

N
 

S
A

 
0
.4

3
 

0
.3

9
 

6
0
.6

 (
8
6
.1

) 

W
H

8
8
_
1
6

*
 

2
5
3
8
.7

 (
1
8
2
0
.8

-

3
3
7
4
.1

) 
4
7
8
.4

 (
3
4
3
.1

-2
8
0
6
.6

) 
0
6
 

2
0
1
9

 
N

N
 

S
A

 
0
.4

6
 

0
.5

1
 

8
0
.7

 (
8
6
.9

) 

W
H

8
8
_
1
6

*
 

5
6
5
5
.9

 (
4
0
0
7
.3

-

7
5
8
4
) 

1
2
8
3
.3

 (
9
0
9
.2

-

6
2
7
2
.7

) 
0
7
 

2
0
1
9

 
N

N
 

S
A

 
0
.4

3
 

0
.4

2
 

5
5
 (

9
7
.4

) 

W
H

8
8
_
1
6

 
6
9
7
2
.4

 (
4
2
1
7
.5

-

1
0
4
0
8
.5

) 

1
5
5
4
.3

 (
9
4
0
.2

-

8
0
4
2
.4

) 
0
8
 

2
0
1
9

 
N

N
 

S
A

 
0
.3

3
 

0
.3

5
 

4
9
.3

 (
9
9
.2

) 

W
H

8
8
_
1
6

 
3
4
2
2
.8

 (
2
1
9
4
.9

-

4
9
1
9
.2

) 
9
8
6
.6

 (
6
3
2
.6

-3
8
9
3
.3

) 
1
0
 

2
0
1
9

 
N

N
 

S
A

 
0
.3

 
0
.2

9
 

8
6
.1

 (
1
0
0
) 

W
H

8
8
_
1
6

 
3
4
5
1
.2

 (
2
3
1
4
.6

-

4
8
1
1
.3

) 
6
8
8
.2

 (
4
6
1
.5

-3
8
8
2
.1

) 
0
9
 

2
0
1
9

 
N

N
 

S
A

 
0
.2

2
 

0
.2

2
 

8
0
.8

 (
1
0
0
) 

  
 



  

  

75 

A
.3

 
S

u
m

m
a
ry

 o
f 

W
h

it
e-

h
ea

d
ed

 V
u

lt
u

re
 h

o
m

e 
ra

n
g
e 

(H
R

) 
a
n

d
 c

o
re

 r
a
n

g
e 

(C
R

) 
A

K
D

E
 e

st
im

a
te

s 
fo

r 
ea

ch
 i

n
d

iv
id

u
a
l.

  

A
v
er

a
g
es

 a
n

d
 s

ta
n

d
a
rd

 e
rr

o
rs

 f
o
r 

b
o
th

 h
o
m

e 
ra

n
g
e 

a
n

d
 c

o
re

 r
a
n

g
e 

es
ti

m
a

te
s 

a
r
e 

p
re

se
n

te
d

 a
lo

n
g
 w

it
h

 r
a
n

g
es

 f
o
r 

ea
ch

 A
K

D
E

 

m
et

ri
c.

 

IN
D

IV
ID

U
A

L
 

N
 (

M
O

N
T

H
S

) 
M

E
A

N
 H

R
 (

±
S

E
) 

H
R

 R
A

N
G

E
 

M
E

A
N

 C
R

 (
±

S
E

) 
C

R
 R

A
N

G
E

 

W
H

2
4
_
1
7

 
9
 

1
6
9
 (

±
4
6
) 

1
5
-4

0
7
 

4
1
 (

±
1
2
) 

1
-9

9
 

W
H

2
4
_
1
8

 
8
 

1
0
4
1
 (

±
3
5
9
) 

1
8
-2

4
8
7
 

2
3
5
 (

±
8
7
) 

3
-5

7
1
 

W
H

2
5
_
1
7

 
5
 

2
2
3
1
 (

±
5
1
3
) 

4
3
6
-3

2
3
4
 

6
1
2
 (

±
1
3
9
) 

1
2
2
-8

9
2
 

W
H

2
7
_
1
8

 
1
6
 

2
9
9
 (

±
1
1
9
) 

1
8
-1

4
8
5
 

3
2
 (

±
1
4
) 

3
-1

7
9
 

W
H

2
9
_
1
8

 
1
6
 

8
6
 (

±
2
0
) 

1
1
-2

7
1
 

9
 (

±
1
) 

3
-2

1
 

W
H

3
1
_
1
8

 
1
6
 

2
3
4
1
 (

±
5
7
9
) 

3
5
2

-1
0
1
7
9
 

5
5
1
 (

±
1
2
2
) 

5
9
-2

0
9
2
 

W
H

3
7
_
1
7

 
3
 

5
1
0
1
 (

±
2
4
0
4
) 

7
5
8
-9

0
5
7
 

8
1
2
 (

±
4
6
3
) 

9
5
-1

6
7
8
 

W
H

4
1
_
1
7

 
4
 

2
3
8
9
 (

±
6
8
2
) 

5
2
1
-3

6
9
6
 

4
8
1
 (

±
1
4
2
) 

9
8
-7

4
6
 

W
H

4
1
_
1
8

 
1
6
 

6
9
 (

±
1
0
) 

2
8
-1

5
5
 

7
 (

±
1
) 

2
-1

3
 

W
H

4
2
_
1
7

 
9
 

6
4
9
 (

±
3
0
9
) 

6
9
-2

7
7
2
 

1
0
2
 (

±
5
0
) 

8
-4

3
0
 

W
H

4
4
_
1
7

 
7
 

2
0
1
5
 (

±
7
6
7
) 

2
4
1
-6

2
0
9
 

4
9
5
 (

±
1
9
0
) 

5
4
-1

5
0
0
 

W
H

8
8
_
1
6

 
4
0
 

1
9
3
5
 (

±
2
2
3
) 

1
7
1
-6

9
7
2
 

4
2
0
 (

±
5
1
) 

2
2
-1

5
5
4
 

 



76 

 

 

 

APPENDIX B 

Movement Patterns Supplemental Information 



77 

 

B.1 Summary of number of daily trajectories included in analyses and tracking 

start and end dates for individual White-headed Vultures (WH) and White-backed 

Vultures (WB) from Gorongosa National Park, Mozambique. 

SP ID 

DAILY 

TRAJECTORY 

COUNT 

START 

DATE END DATE 

WH WH88_16 805 2016-07-01 2020-04-10 

WH WH25_17 64 2017-07-01 2017-12-04 

WH WH37_17 23 2017-07-01 2017-08-18 

WH WH41_17 26 2017-07-01 2017-10-27 

WH WH42_17 178 2017-07-01 2018-04-12 

WH WH44_17 40 2017-07-02 2017-11-27 

WH WH24_17 118 2017-07-03 2018-04-16 

WH WH24_18 143 2018-07-01 2019-03-14 

WH WH29_18 415 2018-07-01 2020-04-07 

WH WH41_18 420 2018-07-01 2020-01-02 

WH WH27_18 580 2018-07-02 2020-04-08 

WH WH31_18 502 2018-07-02 2020-04-07 

WB WB43_16 36 2016-07-01 2016-10-14 

WB WB40_16 78 2016-07-03 2017-02-02 

WB WB32_16 143 2016-07-08 2018-07-27 

WB WB36_16 103 2016-07-12 2017-08-11 

WB WB90_16 33 2016-07-15 2016-11-02 

WB WB30_18 165 2018-07-02 2019-12-22 

WB WB36_18 24 2018-07-09 2018-10-04 

WB WB39_18 187 2018-09-01 2020-02-18 

WB WB40_18 107 2019-09-10 2020-03-21 




