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ABSTRACT 

Landscapes are rapidly changing. To understand these changes and how they may 

influence coexisting herbivores, it is critical that we improve the ways in which we 

monitor changes in plant species, populations, and functional phenotypic traits over space 

and time. Near infrared spectroscopy (NIRS) is proving to be a valuable tool when it 

comes to this goal. NIRS is noninvasive and can provide high-resolution temporal 

information, including structural and chemical characteristics, on objects that are 

otherwise expansive, inaccessible, or imperceptible. We used the threatened sagebrush-

steppe ecosystem, which spans over 43 million hectares of the Western United States, as 

a case study to test the accuracy in which NIRS can measure and classify functional 

phenotypic traits of sagebrush (Artemisia spp.) populations. Sagebrush habitats are 

known to have extreme levels of genetic and chemical heterogeneity and plasticity. Yet, 

our results showed that NIRS can classify species of sagebrush within a site, populations 

of sagebrush within a species across sites, and phenology (both seasonally and annually) 

of sagebrush within a population. These taxonomic, geographic, and phenological 

phenotypes are functionally important in many ways, including determining species 

composition and distribution, identifying developmental stages of individual plants, 

potentially detecting past and present anthropogenic and environmental stressors, and 

predicting interactions with herbivores. Even so, habitat use by coexisting herbivores is 

not always explained by these relatively crude phenotypes. Specifically, herbivores make 

foraging decisions based on specific concentrations of chemical phenotypes that have 
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functional consequences for herbivores. Our research further demonstrated that NIRS can 

predict concentrations of individual chemical compounds and classes of compounds, in 

the forms of both nutrients and toxins, in sagebrush plants across species and populations. 

As such, we further tested if NIRS could directly predict browsing by coexisting 

sagebrush herbivores, in the form of bite marks on plants. Although NIRS was not able to 

predict herbivore foraging behavior, it shows promise for predicting foraging behavior 

indirectly through predicted concentrations of phytochemicals and directly with finer 

tuned field validation and model calibration. To monitor the threats of climate and 

anthropogenic disturbances on ecosystems, it is essential we find better ways to quantify 

the functional phenotypes that mediate interactions among plants, herbivores, and the 

environment. We show that NIRS can be a powerful tool in achieving this aim. 
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GENERAL INTRODUCTION 

Landscapes are under threat from pervasive changes occurring across all 

biological scales. The biotic and abiotic features of landscapes are changing in structure, 

composition, distribution, and function due to increased human disturbance and climate 

change, creating adverse consequences for ecological communities. Human disturbance 

has led to degradation and erosion of land cover and habitats (Curtis et al., 2018; Watson 

et al., 2018; Roopsind et al., 2019), decreased landscape connectivity (Ehrlich and 

Pringle, 2008; Correa Ayram et al., 2017; Gubili et al., 2017; Carter et al., 2020), 

diminished biomass and primary production (Allen et al., 2015; Popkin, 2019; Komatsu 

et al., 2019), impaired fitness and fecundity of plants and wildlife (Carnicer et al., 2011; 

Requena‐ Mullor et al., 2019; Komatsu et al., 2019), and lower biodiversity (McRae et 

al., 2016; Watson et al., 2018; Semper-Pascual et al., 2019). Climate change, often 

incited by human activities, has exacerbated these changes through increased and 

intensified natural disasters (Millennium Ecosystem Assessment and World Resources 

Institute, 2005; Field et al., 2012), warming temperatures (Breshears et al., 2005; 

Overpeck and Udall, 2010), extensive drought (Breshears et al., 2005; Allen et al., 2010, 

2015), and fluctuations in biological and chemical cycles that decrease ecosystem 

resilience to stress (Millennium Ecosystem Assessment and World Resources Institute, 

2005; Field et al., 2012; McRae et al., 2016). These effects compromise the life-

sustaining functions of ecosystems by destabilizing their provisional (e.g., food and 

water), regulatory (e.g., climate and disease control), and supporting (e.g., oxygen 
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production) services (Millennium Ecosystem Assessment and World Resources Institute, 

2005). To manage these ecosystem changes, we first need to be able to accurately and 

efficiently monitor the composition of species.  

Monitoring the composition of plant communities is especially important. Human 

and climatic disturbances change the age class structure of a plant community (e.g., 

remnant stands versus new growth, recruitment; Klanderud, 2005; Caughlin et al., 2014, 

2016; Roopsind et al., 2018). Shifts in microclimates affect the phenology (i.e., timing of 

emergence and senescence of leaves) of plants across communities (Xu et al., 2018; 

Andresen et al., 2018; Wang et al., 2018). All of these changing phenotypes, in turn, 

influence the herbivores that rely on plants for survival. Changes in the structure, 

composition, and function of plant communities directly impact the distribution, 

movement, habitat use, and demographic rates of wild and domestic herbivores. For 

example, plant distribution and size affect the cover and occupancy of herbivore species 

(Eber and Brandl, 2003; Haynes et al., 2007; Forister and Wilson, 2013; Eby et al., 2014; 

Anderson et al., 2016). Phenology of plant communities impacts the movement and 

fitness of migratory species (e.g., migration with the green wave; van der Graaf et al., 

2006; Thein et al., 2008), domestic herbivore grazing (Pfister et al., 1988; Frank, 1996), 

and phenological mismatch (Hogrefe et al., 2017; Xie et al., 2018; Boelman et al., 2019), 

which has bottom-up cascading trophic effects (Wang et al., 2018). Plant distribution 

(Shipley et al., 1998; Lanan, 2014), composition (Robinson and Holmes, 1984), size 

(e.g., out of reach for browsing; Shipley et al., 1998; Peterson et al., 2003; Jager et al., 

2009), and quality (e.g., functional chemical traits; Dearing et al., 2005; DeGabriel et al., 

2009; Frye et al., 2013) influence habitat use by herbivores. Current methods to monitor 
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suitability of plants for habitat use by herbivores, such as species occurrence or plant 

structural traits, are time intensive and limited in spatial and temporal scope. Moreover, 

plant quality is more than just abundance and structure, especially for foraging 

herbivores. The quality of plants can be measured in nutrients and toxins (i.e., 

phytochemicals). The concentrations and diversity of these phytochemicals, or functional 

traits, direct the foraging activity of associated herbivore species (Sorensen et al., 2005b; 

Shipley et al., 2006; Forbey and Foley, 2009; Nobler et al., 2019). Without stable and 

nutritious plant communities, the health, fitness, and diversity of associated herbivore 

species are at risk of decline (Fauchald et al., 2017; Parikh et al., 2017; Schrempp et al., 

2019) and even extirpation (Connelly et al., 2000; Larrucea and Brussard, 2008; Knick 

and Connelly, 2011). 

Monitoring changes in the functional diversity of plant communities is essential if 

we hope to maintain suitable lands for native and domestic herbivores, restore and 

monitor post-disturbance succession, or gain baseline conditions of a community. 

Assessing functional diversity requires that we both classify species and quantify the 

functional traits of those species. However, classification of plants in a community can be 

challenging due to complex and changing morphology and phenology (Tzionas et al., 

2005; Xu et al., 2018), species hybridizations (Rieseberg and Carney, 1998), and habitat 

restoration practices that include reseeding with non-native taxa (Jones, 2003; Tanner and 

Gange, 2013). Even when species can be accurately classified, the functional role of 

plants within a community is dependent on functional traits such as phytochemical 

properties. As such, the functional diversity of plant communities cannot be fully 

captured by standard morphometric (e.g., line-point intercepts and quadrats; Pilliod and 
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Arkle, 2013), genetic (Donaldson and Lindroth, 2007), or chemical (e.g., lab-based 

assays; Kelsey et al., 1982; DeGabriel et al., 2008) measurements. Moreover, these 

standard approaches provide only a brief snapshot of information over space and time 

because they are time-consuming, expensive, and often require convergence among 

researchers with diverse expertise (e.g., ecology, chemistry, geoscience, conservation, 

etc.). We need better tools to monitor the coupled diversity and functionality of plants 

present on a landscape because they are indicators of the health, dynamics, and quality of 

the habitat. Finding a more efficient means of classifying plants and assessing functional 

traits of plants at greater spatial and temporal resolutions remains critical. 

Alternative methods to effectively classify plant species and monitor functional 

traits of plants across landscapes are growing in use. These emerging technologies 

involve the collection of imagery or spectral fingerprints of objects through the use of 

remote sensing techniques, which do not require direct contact with the objects (Rast and 

Painter, 2019). This is especially useful in places that are inaccessible (e.g., deep sea 

exploration; Platt et al., 1988; Klemas and Yan, 2014), imperceptible (e.g., inside 

geological features; van der Meer et al., 2012; Liang et al., 2014), or expansive (e.g., 

global snow cover; Bormann et al., 2018). These remote sensing technologies come in a 

variety of forms, allowing for specificity of the data desired. Platforms for collecting 

spectral data include, but are not limited to, handheld or ground-based, unmanned aerial 

systems, manned aerial systems, and satellites (Rast and Painter, 2019). Each platform, in 

conjunction with one or more sensors, can collect spectral information along different 

regions and lengths of the electromagnetic spectrum and at different spatial and temporal 
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resolutions. The spectral data can then be linked to geophysical, chemical, or biological 

information associated with the objects. 

Near infrared spectroscopy (NIRS), collected from handheld and airborne 

systems, is one popular technique for collecting biochemical and phenotypic information 

in plant communities. The agricultural industry has been using this technology for 

decades by measuring nitrogen content in domestic feed, both commercially and privately 

(Abrams et al., 1987; Shenk and Westerhaus, 1994; Corson et al., 1999; Mnisi and 

Mlambo, 2017; Saha et al., 2018). NIRS has also been used to predict phytochemicals in 

agriculture in the forms of fruits (Baranska et al., 2004; Sinelli et al., 2008), hops (Garden 

et al., 2000), and wines (Urbano-Cuadrado et al., 2004; Cozzolino et al., 2008). More 

recently, NIRS has been used in wild systems to aid wildlife and habitat conservation in 

tropical rainforests (Asner and Martin, 2009; Asner et al., 2011, 2012; Féret and Asner, 

2014), eucalyptus (Foley et al., 1998; Youngentob et al., 2012) and bamboo forests 

(Wiedower et al., 2009), grasslands (Griggs et al., 1999), savannas (Brunet et al., 2007), 

arid shrublands (Mitchell et al., 2012b; Olsoy et al., 2016), and sub-arctic taiga (Stolter et 

al., 2006). However, this methodology is still new and studies are often limited to large 

spatial scales (e.g., forest canopies; Asner and Martin, 2009; Asner et al., 2011), 

relatively homogeneous ecological systems (e.g., wheat and poplar in agricultural 

systems; Maranan and Laborie, 2008; Rincent et al., 2018), or the measurement of 

specific chemicals or traits (e.g., nitrogen; Abrams et al., 1987; Saha et al., 2018) or 

greenness (e.g., NDVI; Wylie et al., 2003; Wilson et al., 2017; Hogrefe et al., 2017) in 

plants. As informative as these broad resolutions or discrete traits are, they do not convey 

the full range of functional traits of plants. Most plants consist of a myriad of chemicals 



 

 

6 

that are responsible for ecological dynamics including growth, competition, reproduction, 

and interactions with herbivores. NIRS offers the potential to rapidly and 

comprehensively assess the full range of functional chemical traits in complex and 

dynamic systems. 

The semiarid sagebrush-steppe serves as a model ecosystem for remotely sensing 

complex functional traits because of its chemical and phenotypic diversity (Kelsey et al., 

1982; McArthur et al., 1988; McArthur and Sanderson, 1999; Rosentreter, 2005; Welch, 

2005). Colloquially known as the sagebrush sea, this semiarid ecosystem is distributed 

across more than 43 million hectares of the Western United States. It provides a 

patchwork of sagebrush (Artemisia spp.) species, subspecies, and hybridizations that 

support multiple services, including forage and shelter for generalist and specialist 

herbivores (Welch, 2005), adaptive evolution of plants (Huynh et al., 2015), genetic and 

chemical diversity (Kelsey et al., 1982; McArthur et al., 1988; McArthur and Sanderson, 

1999; Graham et al., 2001; Richardson et al., 2012; Jaeger et al., 2016), and medicinal 

uses by native people (Kelley et al., 1992). Most importantly, this ecosystem is under 

severe threat, ecologically and economically, from anthropogenic disturbances, fire, 

disease, invasive species, and climate change. Historically, up to 50% of its distribution 

has already been lost (Welch, 2005; Miller et al., 2011). Efficient monitoring of this 

rapidly changing landscape is critical. Efforts have been made to more effectively 

monitor the plant communities in the sagebrush-steppe (Wylie et al., 2003; Streutker and 

Glenn, 2006; Mitchell et al., 2012; Olsoy et al., 2014; Glenn et al., 2016; Olsoy et al., 

2016; Pandit et al., 2019), but no efforts have been made to optimize monitoring the 
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functional traits, including taxa, morphology, and nutritional and chemical quality, that 

are critical for the conservation of associated wildlife. 

The purpose of this research is to explore and champion the use of NIRS to assess 

functional traits in sagebrush-steppe ecosystems. The layout of this thesis serves as a case 

study to demonstrate how NIRS can be applied in a threatened and chemically complex 

shrub, sagebrush. Chapter 1 investigates the use of NIRS in classifying taxonomic and 

phenological phenotypes across sagebrush-steppe habitats. We investigated if NIRS 

could accurately classify species, populations within a species, and temporal variation 

within a population, as well as detect herbivory (e.g., browsed versus not browsed plants) 

by a mammalian herbivore that specializes on sagebrush. Chapter 2 investigates the use 

of NIRS in predicting concentrations of functional chemical traits in sagebrush that 

influence foraging by specialist vertebrate herbivores. We investigated if NIRS could 

accurately predict the concentrations of nutritional and potentially toxic chemicals 

present in different sagebrush species and populations at increasing chemical resolution 

(i.e., from classes of compounds to individual compounds) as well as predict the extent of 

herbivory (e.g., number of bite marks) by a mammalian herbivore that specializes on 

sagebrush. 

Anthropogenic activities and climate change will continue to alter the threatened 

sagebrush-steppe ecosystem and its interactions with species at all trophic levels. Land 

managers need tools that allow for effective and continuous monitoring of these changes. 

Remote sensing, in the form of NIR spectra, is a novel and efficacious way of monitoring 

these precipitous changes that could be used to detect and manage the repercussions of 
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human activity. Furthermore, NIRS can be used to inform management of functional 

roles of sagebrush communities to better establish conservation and restoration efforts. 
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CHAPTER ONE: USING NIRS TO CLASSIFY TAXONOMIC AND 

PHENOLOGICAL PHENOTYPES OF PLANTS ACROSS SAGEBRUSH-STEPPE 

HABITATS 

 

Abstract 

Plant communities are composed of complex phenotypes that not only differ 

among taxonomic groups and habitats but also change over time within a species or 

habitat. Each phenotype serves an important and measurable function of an individual 

plant within a community. Phytochemical phenotypes (hereafter, chemotypes) play a 

particularly important role in plant communities because they serve as a link across all 

other phenotypes. Chemotypes are genetically determined and can explain resistance to 

biotic and abiotic stressors, yet can change through interactions with neighboring plants, 

microbial communities, and herbivores. Near infrared spectroscopy (NIRS) operates by 

measuring organic bonds and can be used to detect unique chemotypes that characterize 

plant species, populations, and individual plants. We used the sagebrush-steppe 

ecosystem as a case study to test the accuracy in which NIRS can measure and classify 

variation in taxonomic, phenological, and trophic interactions in plants that likely reflect 

distinct chemotypes. Sagebrush taxa are known to have extreme levels of genetic and 

chemical heterogeneity and plasticity, yet, our results demonstrated that NIRS can 

classify species of sagebrush within a population, populations of sagebrush within a 

species, and phenology (both seasonally and annually) of sagebrush within a population 
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with accuracies ranging between 75-99%. However, accuracy dropped when 

classifications were spectrally determined at a field site where morpho- and chemotypic 

variation was extremely high. These results suggest that larger sample sizes or better 

taxonomic identification in the field may be required for NIRS to classify taxa within 

phenotypically heterogeneous populations of sagebrush. Results also suggest that NIRS 

has the potential to detect genetic diversity associated with unique hybrid zones or post-

disturbance sites where non-native sources of seed may have been used for restoration. 

We also used NIRS to classify interactions with herbivores, in the form of browsed 

versus non-browsed plants. NIRS did not reliably classify browsed state of sagebrush by 

herbivores. This suggests that subtle, yet important, differences exist between plants 

browsed and non-browsed by herbivores and suggests a need for more in-depth 

investigations of the chemotypes mediating these interactions. The taxonomic and 

phenological phenotypes detected by NIRS are functionally important in determining 

species composition and distribution, identifying timing of life stages of individual 

plants, predicting forage quality of plants for herbivores, and determining the functional 

quality of habitats for translocation or restoration of herbivores dependent on sagebrush. 

Our research reveals that NIRS can be used to classify and monitor these phenotypes 

across habitats and could help land managers and researchers detect the health of plant 

populations over space and time. 

 

Introduction 

Plant communities are complex and not only differ among taxonomic groups and 

habitats but also change over time within a species or habitat. Nested within a species, 
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population, and individual plant there can be numerous smaller communities of traits, i.e., 

phenotypes. Plant phenotypes are often dependent on genotypes (e.g., genetic makeup, 

ploidy level, species) and can be represented by quantifiable morphotypes (e.g., size, 

structure, age) and chemotypes (e.g., chemical composition). Each phenotype serves an 

important and measurable function in the success of a plant in its habitat. However, 

chemotypes play particularly important roles. Chemotypes are defined as the chemical 

makeup or profile of a plant, including both primary and secondary compounds. 

Chemotypes vary within, among, and across plants in an ecological community. 

Furthermore, chemotypes are genetically determined (Hayashi et al., 2005; Desjardins, 

2008; Karban et al., 2014; Cook et al., 2018), yet can change through interactions with 

neighboring plants (Shiojiri et al., 2009; Karban et al., 2016b, 2016a; Germino et al., 

2019; Zaiats, 2019), soil or leaf microbial communities (Phelan et al., 2012; Rosentreter 

and Root, 2019; Barnard et al., 2019; Benedek et al., 2019), and herbivores (Shiojiri et 

al., 2009; Karban et al., 2016b, 2016a). In addition, chemotypes can explain resistance to 

external biotic (e.g., herbivores) and abiotic (e.g., drought) stressors. In this way, 

chemotypes serve as an important link among genotypes interacting with the environment 

and resultant phenotypes. For example, chemotypes influence population genetics and 

genetic adaptation (Zytynska et al., 2019), plant demographic rates (e.g., population 

structure, community, distribution; Ehlers and Thompson, 2004), phenology (e.g., green-

up; Thoss et al., 2007; Welker et al., 2007; Usano-Alemany et al., 2014), and interactions 

with herbivores (e.g., foraging behavior and diet selection; Sorensen et al., 2005b; Moore 

and Foley, 2005; Dearing et al., 2005; DeGabriel et al., 2009; Frye et al., 2013; Ulappa et 

al., 2014; Bedoya-Pérez et al., 2014; Nobler et al., 2019). 
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Spectra, in the form of near infrared spectroscopy (NIRS), can detect chemotypic 

changes in plants (Vance et al., 2016) and potentially even predict habitat use by 

associated herbivores (Moore et al., 2010). The static and dynamic organic bonds that 

comprise plants can be both unique to each plant taxa and influenced by climate, soil, 

size, structure, age class, and herbivory. NIRS can detect these organic bonds. NIRS 

operates by measuring the reflectance of electromagnetic energy in objects from 

wavelengths ranging between 350-2500 nm. This electromagnetic range is particularly 

well-known for reflecting organic bonds (Curran, 1989; Youngentob et al., 2012), 

establishing NIRS as a great proxy for chemical determination. Because NIRS detects 

chemotypes, it can classify genotypes (Amar et al., 2009; Gebreselassie et al., 2017), 

including hybrids (Hicks et al., 2002; Humphreys et al., 2008) and ploidy levels (Rincent 

et al., 2018), morphotypes (e.g., size, structure, age class; Viana et al., 2009; Hetta et al., 

2017; Martínez-Valdivieso et al., 2018), and foraging behavior of herbivores (McIlwee et 

al., 2001; Siitari et al., 2002; Moore et al., 2010). 

The semiarid sagebrush-steppe of the Western United States serves as an ideal 

system to demonstrate how NIRS can monitor the phenotypic, and more specifically, the 

chemotypic diversity representing distinct plant genotypes and stages of phenology. The 

dominant shrub in this system, sagebrush (Artemisia spp.), has complex and changing 

morphotypic and chemotypic diversity (Kelsey et al., 1982; Rosentreter and Kelsey, 

1991; Winward, 2004; Rosentreter, 2005; Welch, 2005), which is shown to be genetically 

determined (Jaeger et al., 2016). Sagebrush is associated with often unique and long-

standing ecological and evolutionary relationships with other plants (Casper and Jackson, 

1997), soil microbes (Cundell, 1977; Morris and Allen, 1994; Rosentreter and Root, 
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2019; Condon et al., 2019), insects and reptiles (Winward, 1991; Welch, 2005), 

pronghorn (Antilocapra americana; Hansen et al., 2001; Jacques et al., 2006), mule deer 

(Odocoileus hemionus; Wambolt, 1996), pygmy rabbits (Brachylagus idahoensis; Ulappa 

et al., 2014; Nobler, 2016; Utz et al., 2016), sage sparrows (Artemisiospiza nevadensis; 

Paige and Ritter, 1999), sage thrashers (Oreoscoptes montanus; Paige and Ritter, 1999), 

and sage-grouse (Centrocercus urophasianus; Ulappa, 2011; Frye et al., 2013; Fremgen-

Tarantino et al., 2020). Some of the associated species are sagebrush obligates, including 

the threatened vertebrate herbivores, pygmy rabbits and greater sage-grouse, with 

sagebrush comprising about 50% of their diet in the summer and up to 100% of their diet 

in the winter (Wallestad and Eng, 1975; Green and Flinders, 1980). As threats from 

anthropogenic and climatic stressors increase, timely monitoring of stress responses by 

sagebrush is necessary for successful conservation and restoration of this system. 

However, monitoring and managing the functional traits of sagebrush that other species 

depend on remains difficult. For instance, standard techniques for ecological sampling 

within plant communities include structure (e.g., line-point intercepts) and composition 

(e.g., quadrats) measurements that do not provide adequate information on functional 

traits, especially over time. Some research has employed more advanced techniques such 

as true color (Booth et al., 2005) and multispectral image analysis (Wylie et al., 2003; 

Glenn et al., 2016), light detection and ranging (LiDAR) surveys (Streutker and Glenn, 

2006), terrestrial laser scanning (TLS; Olsoy et al., 2014b, 2014a), NIRS (Mitchell et al., 

2012b; Olsoy et al., 2016), and ecosystem demography modeling (Pandit et al., 2019) to 

assess these functional traits. However, results remain largely focused on individual traits 

and do not capture the complex interactions of all the functional chemical traits in plants. 
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Ascertaining a more efficient method for quantifying functional phenotypes remains of 

significant importance if the goal is to better assess and monitor changing plants and 

associated herbivores. 

We investigated the accuracy of NIRS to classify plants with distinct taxonomic, 

phenological, and trophic interaction phenotypes within and among sagebrush 

populations. Specifically, we used NIRS data from sagebrush to ask the following 

questions (Table 1.1): 

i. Can NIRS classify species within a sagebrush site? 

ii. Can NIRS classify sagebrush populations within a species? 

iii. Can NIRS classify phenology (i.e., years and seasons) within a sagebrush 

population? 

iv. Can NIRS classify herbivore foraging behavior (i.e., browsed versus non-browsed 

plants) within a sagebrush population? 

 

Methods 

Sagebrush Field Sites 

Samples were collected at four field sites across four different counties in Idaho, 

USA (Figure 1.1). These include Magic Reservoir in Blaine County (43° 14’ N, 114° 19’ 

W, hereafter Magic), Cedar Gulch in Lemhi County (44° 41’ N, 113° 17’ W), Craters of 

the Moon in Minidoka and Blaine Counties (42° 57’ N, 113° 23’ W, hereafter Craters), 

and Raft River in Cassia County (42° 9’ N, 113° 24’ W). These field sites were 

predominantly sagebrush (Artemisia spp.) and included variation in phenotypic diversity 

and environmental conditions (i.e., species, morphology, terrain, elevation, climate, etc.) 
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and in the samples and data collected and measured (i.e., year, season, species, 

microhabitat, plant chemicals, etc.; Table 1.1). However, all field sites included NIRS 

scans of sagebrush plants and were inhabited by one of two threatened herbivores that are 

heavily reliant upon and selective about the sagebrush consumed, pygmy rabbits (Ulappa, 

2011; Utz, 2012; Nobler, 2016) and Greater sage-grouse (Ulappa, 2011; Frye, 2012; 

Fremgen, 2015). 

Phenotype Selection 

Phenotypes measured at each field site were those shown to influence foraging 

and habitat use by herbivore populations and are parameters that land managers can 

monitor and, at times, manipulate. The taxonomic phenotypes included sagebrush 

species, which was the broadest classification unit, and geographically distinct 

populations within a single species. The phenological phenotypes included year of 

sampling, which represents a different set of leaves and environmental conditions, and 

season of sampling, which represents different leaf types (i.e., persistent and ephemeral in 

summer and only persistent in winter; Miller and Shultz, 1987) and environmental 

conditions within a plant. The trophic interaction phenotype was herbivory (i.e., presence 

of foraging) within a season and population, which was the narrowest classification unit. 

Sagebrush species were identified using plant morphology, type of environment (e.g., 

elevation and soil type and depth; Rosentreter, 2005), and chemotype (e.g., pattern of 

individual leaf chemicals).  

Detection of Herbivory 

Sagebrush samples were deemed browsed or non-browsed according to the 

presence or absence of bite marks by pygmy rabbits on plants within similar distance to 
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an active pygmy rabbit burrow. Bite marks were identified for pygmy rabbits by a clean 

45-degree cut in a woody stem and can be differentiated from other lagomorph species by 

the diameter of the clipping (Crowell et al., 2018) and the lack of leafy material left 

below the shrub (Figure 1.2). Fresh bite marks were identified by a wetter green or bright 

brown stem interior, as opposed to a dry dull brown color.   

Sample Collection and Analysis 

Sagebrush plants were selected for sampling according to browsed state of plant 

(i.e., browsed versus non-browsed). At the Magic and Cedar Gulch sites, browsed and 

non-browsed plants by pygmy rabbits were clipped for about 2 g of wet weight (ww) or 

no more than 25% of the overall biomass of the plant and stored in labeled plastic bags, 

respectively, on ice. At the Craters and Raft River sites, leaves were collected from plants 

browsed (n = 3) and non-browsed (n = 3) by sage-grouse as described in Fremgen (2015). 

Briefly, browsed plants had at least 10 fresh bite marks by sage-grouse on leaves and 

non-browsed plants had no more than one fresh bite mark by sage-grouse. Plants within a 

patch were combined to form one composite browsed sample and one composite non-

browsed sample, which were stored in labeled plastic bags, respectively, on ice. All 

samples were stored continuously on ice until transferred to Boise State University. 

Samples from pygmy rabbit sites (Magic and Cedar Gulch) included both stems and 

leaves, whereas samples from sage-grouse sites (Craters and Raft River) included only 

leaves. For NIRS analysis, samples were ground (~2 mm) and dried at 60°C for 48 hours. 

NIRS Analysis 

The ASD FieldSpec® 4 spectroradiometer was used to measure continuous near 

infrared wavelength reflectance from 350 nm to 2500 nm in all of the sagebrush samples. 
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Each ground dried sagebrush sample was placed in a sealed clear plastic bag and spread 

homogeneously on a black countertop with no countertop surface visible through the 

biomass. After calibrating and optimizing the ASD FieldSpec® 4 to a pure white 

reflectance according to standard protocol in the user manual, it was then used to measure 

the reflectance of each sagebrush sample (Figure A.1). Thirty replicate scans were 

collected for each sample. The instrument was recalibrated and optimized every 15 

samples. The NIRS replicate reflectance scans were exported for each sample, where they 

were then imported into Camo Analytics Unscrambler® software and checked for 

outliers using Unscrambler® outlier detection and review of raw values to justify 

removal. Samples were then averaged to one spectral profile per sample. Each spectrum 

was converted to absorbance values using a log10(1/R) transformation, where R is 

reflectance (Figure A.2). Spectral absorbance values were transformed by taking a 1st gap 

derivative every 1 nm and then truncated from 450 nm to 2350 nm (Figure A.3). 

Statistical Analysis 

All phenotype categorical response variables (i.e., species, population, season, 

herbivory) and the predictor numerical variable (i.e., NIR spectra) were joined for each 

sagebrush sample and imported into Camo Analytics Unscrambler® chemometric 

software. Unscrambler® was then used to perform support vector machine (SVM) 

analyses to classify phenotypes (i.e., response variables) using transformed NIR spectral 

values (i.e., predictor variables). The SVM type used was C-SVC, with a linear kernel 

and C value of 1.0 (i.e., large margin). Each model was independently calibrated and 

validated using leave-one-out cross validation (LOOCV) of 10 segments. The resulting 

confusion matrix from the support vector machine analysis was used to evaluate the 
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overall accuracy of NIRS to classify phenotypes. Further accuracies were then calculated 

to differentiate the proportion of phenotypes on the ground that were accurately classified 

by NIRS (also known as producer’s accuracy) versus the proportion of phenotypes 

classified by NIRS that were actually present on the ground (also known as user’s 

accuracy). 

The criteria for inclusion for the phenotypic classifications tested using NIRS 

were established according to the following: 

i. Can NIRS classify species within a sagebrush site? 

a. All species identified at each field site (Table 1.1) were included in the 

field site analysis. These species included Wyoming big (A. t. 

wyomingensis), three-tip (A. tripartita), black (A. nova), low (A. 

arbuscula), and “dwarf” sagebrush. Dwarf sagebrush were identified as a 

generic dwarf sagebrush classification in the field according to relatively 

smaller morphological size and location of collection (i.e., micro-

topographically unique patches) but without clear morphological features 

of specific dwarf species (A. nova and A. arbuscula). Each field site 

analysis also included all other phenotypic data (i.e., consecutive seasons 

and/or years of collection, microhabitat of collection, browsed state of 

plant) when available (Table 1.1). 

ii. Can NIRS classify sagebrush populations within a species? 

a. Wyoming big sagebrush was used as the species of interest across all field 

sites because of its consistently large sample size per site (Table 1.1), 

ubiquitous distribution (Table 1.1; Turi et al., 2014), and functional 
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relevancy (e.g., selective use in foraging and occupancy by herbivores; 

Frye, 2012; Utz, 2012; Fremgen, 2015; Nobler, 2016). The analysis also 

included all other phenotypic data (i.e., consecutive seasons and/or years 

of collection, microhabitat of collection, browsed state of plant) when 

available (Table 1.1). 

iii. Can NIRS classify phenology (i.e., years and seasons) within a sagebrush 

population? 

a. Wyoming big sagebrush at the Magic field site was the only population 

analyzed due to it having the largest collection of repeated temporal 

measurements (both annually and seasonally) of plants (Table 1.1). This 

analysis controlled for species, but for the annual temporal analysis season 

was not controlled due to smaller seasonal sample sizes within one annual 

collection (i.e., 2012-2013; Table 1.1). All other phenotypic data (i.e., 

microhabitat of collection, browsed state of plant) were included when 

available (Table 1.1). 

iv. Can NIRS classify herbivore foraging behavior (i.e., browsed versus non-browsed 

plants) within a sagebrush population? 

a. Wyoming big sagebrush at the Magic field site during the 2012-2013 

collection was the only population and year analyzed due to it having the 

largest sample size and highest homoscedasticity of browsed and non-

browsed samples (Table 1.1). This analysis controlled for species but not 

for season due to its smaller sample size. All other phenotypic data (i.e., 

microhabitat of collection) was included when available (Table 1.1). 
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Results 

Accuracy of NIRS to Classify Species Within Sagebrush Sites 

For the Magic field site, the overall accuracy of the training dataset was 95.90% 

and the leave-one-out cross validation (LOOCV) dataset of 10 segments was 95.15% 

(Table 1.2). Wyoming big (A. t. wyomingensis) sagebrush (n = 807) was predicted 99% 

correctly, dwarf sagebrush (n = 112) was 79% correct, and three-tip (A. tripartita) 

sagebrush (n = 8) was 0.0% correct. 

For the Cedar Gulch field site, the overall accuracy of the training dataset was 

77.01% and the LOOCV validation dataset of 10 segments was 75.92% (Table 1.3). 

Wyoming big sagebrush (n = 336) was predicted 100% correctly, dwarf sagebrush (n = 

100) was 1.0% correct, and black (A. nova) sagebrush (n = 25) was 72% correct. 

For the Craters field site, the overall accuracy of the training dataset was 94.57% 

and the LOOCV dataset of 10 segments was 93.48% (Table 1.4). Wyoming big 

sagebrush (n = 66) was predicted 92% correctly and three-tip sagebrush (n = 26) was 

100% correct. 

For the Raft River field site, the overall accuracy of the training dataset was 

75.19% and the LOOCV dataset of 10 segments was 75.19% (Table 1.5). Wyoming big 

sagebrush (n = 65) was predicted 0.0% correctly and low (A. arbuscula) sagebrush (n = 

197) was 100% correct. 

Accuracy of NIRS to Classify Sagebrush Populations Within a Species 

When using NIRS to classify sagebrush populations within the Wyoming big 

sagebrush species, the overall accuracy of the training dataset was 96.12% and the 

LOOCV dataset of 10 segments was 95.99% (Table 1.6). Wyoming big plants from 
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Magic (n = 1089) were predicted 98% correctly, Cedar Gulch (n = 625) was 100% 

correct, Craters (n = 94) was 44% correct, and Raft River (n = 263) was 98% correct. 

Accuracy of NIRS to Classify Phenology (i.e., Years and Seasons) Within a Sagebrush 

Population and Species 

At the Magic field site, two independent years of sample collection occurred, 

2012-2013 and 2014-2015. NIRS classified years of collection within Wyoming big 

sagebrush at this single site with an overall training accuracy of 91.95% and LOOCV 

accuracy of 10 segments of 91.95% (Table 1.7). 2012-2013 collections (n = 486) were 

predicted 89% correctly and 2014-2015 collections (n = 321) were 96% correct. When 

controlling for season (i.e., winter only) the accuracy to predict year decreased to 77.87% 

(Table B.1). 

At the Magic field site, sagebrush samples were also collected seasonally, during 

winter 2012 and spring 2013. NIRS classified seasons within individual Wyoming big 

sagebrush plants at this single site with an overall training accuracy of 99.0% and 

LOOCV accuracy of 10 segments of 99.0% (Table 1.8). Winter collections (n = 92) were 

predicted 100% correctly and spring collections (n = 394) were 99% correct. 

Accuracy of NIRS to Classify Herbivory (i.e., Browsed versus Non-browsed Plants) 

Within a Sagebrush Population and Species 

At the Magic field site during the 2012-2013 sample collection, Wyoming big 

sagebrush were sampled according to differing browse states, i.e., browsed versus non-

browsed by pygmy rabbits. NIRS classified herbivory of Wyoming big sagebrush at this 

single site with an overall training accuracy of 60.08% and LOOCV accuracy of 10 

segments of 57.20% (Table 1.9). Browsed samples (n = 212) were predicted 24% 
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correctly and non-browsed samples (n = 274) were 88% correct. When controlling for 

season (i.e., winter vs. spring) one at a time, every plant was consistently classified as 

non-browsed except for one (Tables B.2-B.3). 

 

Discussion 

Our research has shown that not all sagebrush is created chemically equal and that 

NIRS can detect some functional inequalities in sagebrush species and populations that 

may not be obvious from morphological traits. Overall, our results suggest that NIRS has 

relatively good accuracy in classifying sagebrush species within a site (i.e., 

geographically distinct habitat), geographically distinct populations within a species, and 

temporal changes within a geographically distinct population within a single species. 

However, NIRS has generally poor accuracy at detecting browsing within a species and 

population. These classification errors are likely related to sample size, poor 

classification of species in the field, and complex phytochemistry within and among taxa. 

We offer evidence for each of these potential sources of error in classification via NIRS. 

Furthermore, we discuss how overcoming these errors will allow NIRS to be a powerful 

tool in monitoring plant populations, directing restoration efforts and success, and 

predicting suitable habitats for threatened herbivores in the sagebrush-steppe.  

NIRS classification results suggest that larger sample sizes can improve the 

ability to accurately predict sagebrush species within a site or populations within a 

species, particularly when chemotypic variation within a species is low but high between 

species (Au et al., 2020). At the Magic field site, most plants in this population were 

categorized as Wyoming big sagebrush (A. t. wyomingensis), with Wyoming predicted 
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accurately 99% of the time (i.e., producer accuracy). In contrast, “dwarf” species 

(identified morphotypically in the field as a dwarf sagebrush taxon and, hereby, known 

simply as dwarf) were predicted accurately 79% of the time and three-tip (A. tripartita) 

was never predicted accurately (Table 1.2). This is likely due to Wyoming big sagebrush 

having the largest sample size (n = 807), followed by dwarf (n = 112) and then three-tip 

(n = 8). Misclassifications of three-tip can ultimately be attributed to a very small sample 

size within this site. In support of this, classification of three-tip at the Craters site was 

100% accurate where there was a sample size of 26 plants (Table 1.4). At the Cedar 

Gulch field site, 100% of the Wyoming big plants (n = 336) were classified correctly, 

whereas all but one of the dwarf plants (n = 100) were classified as Wyoming (i.e., 1.0% 

accuracy) and 72% of the black (A. nova) sagebrush plants (n = 25) were predicted 

accurately (Table 1.3). These results indicate that when chemistry is distinct among 

species (e.g., Wyoming big vs. three-tip; Fremgen, 2015; Fremgen-Tarantino et al., 2020; 

Figure C.1), large sample sizes may not be required for NIRS to correctly determine 

species.  

When predicting source populations within a species (i.e., Wyoming big 

sagebrush), the least accurately predicted field site was also the field site with the lowest 

sample size. Craters (n = 94) was only classified 44% correctly, whereas Magic (n = 

1089) was 98% correct, Cedar Gulch (n = 625) was 100% correct, and Raft River (n = 

263) was 98% correct (Table 1.6). Large and evenly distributed sample sizes are ideal for 

ecological analyses. However, in the case of phenotype classification by NIRS, a large 

sample size may not be required if the phenotypes (i.e., chemotypes) of interest are 
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chemically distinct (Au et al., 2020). This may require a baseline analysis of chemistry at 

the site, simple trial and error, or a preliminary overestimation of sample size. 

Even with large sample sizes, misclassified results may be due to possible errors 

in proper identification of species (or in this case, subspecies) in the field (i.e., user 

accuracies). At the Cedar Gulch field site, although there was a small sample size of 

black sagebrush (n = 25), classification was highly accurate (100% user accuracy) 

because of distinct morphological characteristics that allowed for better identification in 

the field, such as a greenish color, sticky leaves, and unique black glands on the leaf 

tissue (Rosentreter, 2005). In contrast, there were 100 dwarf sagebrush plants collected at 

this site, but only one of the dwarf plants was categorized correctly as the dwarf taxa, 

which resulted in too few samples for proper user accuracy. Misclassification of dwarf 

species also occurred at the Magic field site, although not to the same extent (with a 79% 

producer accuracy and 94% user accuracy). Errors in classifying dwarf taxa could be due 

to the dwarf plants simply being small or young Wyoming big sagebrush instead of an 

actual different sagebrush species with a distinct chemotype. Classifying sagebrush 

species in the field remains a challenging and elusive task for researchers. Sagebrush 

morphology is highly variable and vulnerable to change. For instance, sagebrush 

morphology within and among species can vary from soil type and depth (Rosentreter 

and Kelsey, 1991; Rosentreter, 2005; Barnard et al., 2019), elevation (Rosentreter and 

Kelsey, 1991; Rosentreter, 2005), climate (Rosentreter, 2005; Germino et al., 2019; 

Lazarus et al., 2019), herbivory (Kessler et al., 2006; Karban, 2011; Ulappa et al., 2014; 

Karban et al., 2016a), and even chemical interactions (Karban et al., 2006, 2014; Zaiats, 

2019), ploidy level (Richardson et al., 2012) or hybridizations with neighbors (McArthur 
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et al., 1988; McArthur and Sanderson, 1999; Graham et al., 2001; Richardson et al., 

2012; Jaeger et al., 2016). Even a strong baseline knowledge of habitat, morphology, and 

use of chemical traits such as ultraviolet reflectance (Rosentreter, 2005) may not be 

enough to properly identify sagebrush in the field. We argue that inclusion of existing 

measures of chemistry, such as ultraviolet reflectance (Stevens and McArthur, 1974), 

coupled with advances in handheld NIRS can further aid in correct identification of 

species in the field. 

Even when meticulous and deliberate identifications were made in the field, some 

species were still classified poorly using NIRS, such as the Wyoming big sagebrush (n = 

65) at Raft River, with 0.0% producer accuracy (Table 1.5). The user accuracy was 100% 

(Table 1.5), however this was unreliable due to lack of predicted samples. Notably, the 

ability for sagebrush to hybridize has been shown between Wyoming big and black 

species (Garcia et al., 2008), Wyoming big and low species (Winward and McArthur, 

1995; Garcia et al., 2008), and Wyoming big and three-tip species (Schlatterer, 1973). 

We propose that errors in NIRS classifications may indicate hybridization at these sites. 

Our results reflect potential errors in field identification of sagebrush species, but 

they also demonstrate that NIRS could be used as a tool to verify predicted taxonomy or 

even detect unique environmental or historical conditions or phytochemical diversity. For 

example, Magic and Cedar Gulch included sagebrush we simply classified as a “dwarf” 

species based on morphology and phenology. Lower accuracy of dwarf classifications at 

both of these sites suggests that some, if not most, of the dwarf samples actually differed 

in taxonomy from dwarf sagebrush species. Alternatively, these plants could be a dwarf 

species but could also have unique chemistry due to hybridization (McArthur et al., 1988; 
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Richardson et al., 2012; Jaeger et al., 2016), unique environmental conditions, such as 

soil type and depth, or history of herbivory, which can cause variation in the reflectance 

of chemical compounds measured via NIRS. 

To illustrate the potential power of NIRS for revealing unique taxonomic, 

phytochemical, or environmental diversity, we first focus on the Cedar Gulch and Raft 

River field sites. The dwarf species at Cedar Gulch were consistently classified as 

Wyoming big sagebrush and, in addition, turned out to be relatively homogeneous in 

chemistry with the Wyoming big plants at this field site (Olsoy et al., 2020). These results 

suggest that most of the dwarf sagebrush species at Cedar Gulch are likely small or 

young Wyoming big sagebrush with different morphology due to environmental 

conditions or history of herbivory. These results could suggest diverse age classes of 

Wyoming big sagebrush at Cedar Gulch. Similarly, the seven black sagebrush plants at 

Cedar Gulch categorized as Wyoming big could be potential hybrids (Garcia et al., 2008) 

or also have unique chemistry than the other black sagebrush plants due to environmental 

conditions or history of herbivory. When looking at the Raft River field site, the 

sagebrush population had extremely high heterogeneous diversity in its morphotypes and 

chemotypes (Fremgen, 2015; Figure C.1) – the mechanisms of which are still unknown. 

This diversity could be due to elevational gradients (Lay and Etcheverry, 2004), soil 

types and depth (Lay and Etcheverry, 2004), hybridizations (McArthur et al., 1988), or 

unknown history of fire (Morris, 2006) or herbivory (Fremgen, 2015), and, subsequently, 

attribute to the misclassifications by NIRS. For example, the sagebrush patches at Raft 

River used by sage-grouse consisted of more unique morphotypes than random patches 

(unpublished, Forbey personal communication). The Magic and Craters field sites offer 
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similar evidence for identifying unique environmental or historical conditions. When 

looking at the accuracy of NIRS to classify sagebrush populations within a species (i.e., 

Wyoming big sagebrush), the population with the least accurate classifications was 

Craters (44%), where over half of this population was classified as a population from 

Raft River and to a lesser extent Magic. It is important to note that the user accuracy at 

Craters was high (98%), indicating an NIRS classification error rather than a field or lab 

classification error. Craters has very unique terrain and climate (Withey et al., 2014; 

Fremgen, 2015; Fremgen-Tarantino et al., 2020), as well as a regular and recent fire 

history (Withey et al., 2014; Fremgen, 2015; Fremgen-Tarantino et al., 2020). These 

traits may indicate that Craters has undergone unique post-fire succession (Fremgen, 

2015; Fremgen-Tarantino et al., 2020) or even was restored with seed collected from 

foreign, non-local, populations. Ultimately, unexplained results or outliers detected by 

NIRS classifications could direct researchers to identify species hybrids or novel 

chemical profiles as well as distinct environmental or historical conditions. 

When species (i.e., Wyoming big sagebrush) and populations (i.e., Magic field 

site) were held constant, NIRS could detect temporal changes between years and between 

seasons within a year. At the Magic field site, plants collected in 2012-2013 were 

accurately classified 89% of the time (i.e., producer accuracy) and plants within 2014-

2015 were accurately classified 96% of the time (Table 1.7). When species (i.e., 

Wyoming big sagebrush) and individual plants (i.e., repeat sampling of the same plant 

from one season to the next) were held constant within the 2012-2013 collection, winter 

samples were accurately classified 100% of the time and spring samples were accurately 

classified 99% of the time (Table 1.8). These results suggest that individual sagebrush 
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plants within the same species can be differentiated by season (i.e., phenology) using 

NIRS. The year and season in which sagebrush is collected or assessed is ecologically 

important. Annually, age and biotic and abiotic stressors direct the timing of leaf growth, 

senescence, or survival of plants (Wilt and Miller, 1992; Shiojiri and Karban, 2008; Gull 

et al., 2019). Seasonally, plant and leaf morphology changes through the emergence and 

senescence of inflorescence stalks for reproduction (Rosentreter, 2005) and ephemeral 

leaves for rapid growth and development during spring and summer (Rosentreter, 2005). 

As these temporal and phenological changes occur, so does the chemistry of the 

sagebrush (Wilt and Miller, 1992). As a result, NIRS can be used to measure and monitor 

these chemical changes over time, which can inform the phenological stage and condition 

of a sagebrush plant or population. If NIR spectra remains relatively constant temporally, 

a population is likely to be somewhat stable, whereas if NIR spectra is unstable, it could 

suggest a population is undergoing biotic or abiotic stress. For example, winter sagebrush 

has only persistent (i.e., chemically stable) leaves, whereas summer sagebrush has both 

persistent and ephemeral (i.e., chemically variable) leaves. However, individual plants 

may vary in their investment in ephemeral leaves due to heavy winter herbivory or 

atypical weather. Moreover, in restored landscapes, variation observed in NIRS within a 

season, presumed species, and site may suggest variation in the sources of seed used for 

the restoration, which could create a mismatch not only in investment in ephemeral 

leaves but also in timing of inflorescence stalks for reproduction. The ability for NIRS to 

detect variation in vegetative forms within sagebrush could help identify if there are 

mismatches for flowering times and predict the potential for hybridization among newly 

seeded and remnant sagebrush plants.  
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As individual plant traits change over time, spatial variation in these traits 

develops across populations, which can lead to differential habitat use by herbivores. 

Plant traits such as protein and toxins can influence the growth, development, 

metabolism, and energy budgets of herbivores (Sorensen et al., 2005a; Dearing et al., 

2005; DeGabriel et al., 2009; Frye et al., 2013; Utz et al., 2016). It is not enough to 

simply assess if food is available to an herbivore population, the quality of the food must 

be investigated if the goal is to manage healthy herbivore populations. Furthermore, the 

quality of plants in a habitat is highly dynamic, making the assessment of forage quality 

for herbivores challenging. Standard ecological measurements that researchers have 

developed to describe landscapes that include distribution and abundance of classified 

species and phenology cannot fully capture the complex dietary traits important to 

herbivores within a system. Because of this, it can be beneficial to directly measure the 

traits of plants that influence foraging by herbivores to direct land management decisions 

for herbivores. Insomuch, we tested how NIRS could classify the browsing of sagebrush 

plants by a specialist mammalian herbivore, the pygmy rabbit (Figure 1.2).  

NIRS was not able to accurately classify herbivory. At the 2012-2013 Magic field 

site, paired browsed and non-browsed Wyoming big sagebrush samples were collected 

across both winter and spring seasons. When including both seasons in the analysis, 

results indicate that NIRS cannot reliably discriminate which plants have been browsed 

by pygmy rabbits, with the majority of the samples categorized as non-browsed. Browsed 

samples (n = 212) were classified accurately 24% of the time and non-browsed samples 

(n = 274) were classified accurately 88% of the time (Table 1.9). When controlling for 

one season at a time, the accuracy declined, where every sample except for one was 
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predicted as non-browsed for both seasons (Tables B.2-B.3), likely due to smaller sample 

sizes (i.e., winter (n = 91), spring (n = 394)). The misclassification of browse type could 

be due to the need for a spatially and temporally larger sample size. Misclassification 

could also be due to very subtle differences in chemistry between browsed and non-

browsed plants, which do not differ in chemical profiles but do differ in concentrations of 

specific chemicals (Nobler et al., 2019). Herbivores make decisions based on fine-scale 

mixtures and concentrations, or doses, of the chemicals comprising the plant (Forbey et 

al., 2013b; Nobler et al., 2019; Patey et al., 2020). Therefore, identifying these mixtures 

and concentrations may provide a more effective, albeit indirect, way to predict browsing 

by herbivores than entire chemotypic profiles. We propose that NIRS can be used to 

predict browsing not through classification, but by predicting concentrations of chemicals 

in sagebrush plants and populations (see Chapter 2) that direct browsing above specific 

thresholds (Frye, 2012; Fremgen, 2015; Melody, 2017; Nobler et al., 2019; Figures D.1-

D.4). 

Overall, when using NIRS to classify phenotypes of sagebrush, results 

demonstrate that predictions are most reliable when chemistry is consistent within a 

group (i.e., site, taxa, year, season), but disparate between groups. Given that NIRS is 

directly measuring chemical bonds in the compounds constituting the sagebrush plants, 

discriminating plants that differ chemistry is not particularly surprising. However, as the 

chemistry of these phenotypes become more similar, from species and populations, which 

are more chemically distinct, to foraged state, which share profiles but have only subtle 

differences in chemical concentrations, the ability of NIRS to discriminate the 

phenotypes becomes less reliable. 
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The capacity to efficiently scale research is becoming increasingly important as 

our globe continues to change at broader and faster rates. Spectral sensors with increased 

electromagnetic ranges and resolutions are progressively more available, along with 

increased spatial and temporal scales from unmanned aerial systems and satellites. 

Although spectral, spatial, and temporal tradeoffs exist that must be considered when 

scaling, these different resolutions can lend further insight and capacity into 

discriminating phenotypes, especially when working in conjunction. For example, our 

NIRS classification results can be used to inform phenotype predictions made from 

hyperspectral imagery collected from unmanned aerial systems at our same field sites, 

which can in turn inform satellite imagery predictions. Integration of similar spectral 

traits across instruments can minimize the loss of resolution associated with scaling up 

spatially and temporally (Xiao et al., 2019) and help isolate and potentially remove 

inherent terrestrial (Dashti et al., 2019) and atmospheric interference (Thompson et al., 

2018). 

Sagebrush landscapes are rapidly changing and the only way to understand these 

changes and how they may influence herbivores is to improve the ways in which we 

monitor changes in species and functional traits over space and time. NIRS is proving to 

be a valuable tool when it comes to discriminating among taxonomical and phenological 

phenotypes. These phenotypes are functionally useful in many ways, including 

delineating species composition and distribution (Bálint et al., 2016), informing size-

structured population models (Kirkpatrick, 1988), identifying phenological stages of 

populations and potential for phenological mismatch with other trophic levels 

(Richardson et al., 2018), predicting forage quality of plants for herbivores (Fremgen-
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Tarantino et al., 2020), detecting past and present anthropogenic and environmental 

stressors (Withey et al., 2014), and restoring quality habitats for locally adapted 

herbivores (Oh et al., 2019). It is essential to monitor these functional phenotypes, and we 

show how NIRS can be a powerful tool to measure them. Misclassifications identified by 

NIRS, especially in large datasets, might help formulate specific hypotheses related to 

genetic mixing due to land management practices (Milton et al., 1999). For example, 

NIRS has the potential to identify post-disturbance sites where diverse non-native sources 

of seed may have been used for restoration. In this case, we hypothesize that NIR spectra 

would appear diverse and inconsistent compared to undisturbed remnant populations. We 

propose this might be the case between our fire-disturbed Craters field site and 

undisturbed Cedar Gulch field site. Additionally, even more complex (and less predicted) 

NIRS results could be used to test hypotheses about hybridization. We propose this to be 

the case at our Raft River field site where multiple phenotype classification analyses 

failed. Finally, although NIRS cannot reliably classify browsed states of sagebrush by 

herbivores, it suggests there are subtle yet important differences between browsed and 

non-browsed plants that herbivores use for diet selection that are likely independent of 

taxonomic classifications, which call for more in-depth investigations (see Chapter 2). 

NIRS, especially in combination with standard and emerging monitoring tools, can help 

to better monitor critical and threatened sagebrush systems through the measurement of 

functional phenotypes in the plants that comprise them. 
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Figures 

 

Figure 1.1 Field sites where individual sagebrush (Artemisia spp.) samples were 

collected that are important to herbivore populations of conservation concern in 

Idaho, USA. Samples were collected between the years of 2012-2015. 
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Figure 1.2 Indication of pygmy rabbit (Brachylagus idahoensis) browsing on a 

sagebrush shrub. It can be identified by a clean 45-degree bite mark and can be 

differentiated from other lagomorph species by the diameter of the clipping 

(Crowell et al., 2018) and the lack of leafy material left below the shrub. Fresh bite 

marks were identified by a wetter green or bright brown stem interior, as opposed 

to a dry dull brown color. Photo provided by Nobler (2016). 
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CHAPTER TWO: NIRS PREDICTS CONCENTRATIONS OF PLANT CHEMICAL 

TRAITS IMPORTANT TO SPECIALIST HERBIVORES  

 

Abstract 

Interactions between herbivores and plants shape the distribution and density of 

plant populations, which has cascading effects across other trophic levels. The abundance 

and composition of the chemicals in plants influences habitat use, demographics, 

population dynamics, and evolution of herbivores. The combination of these chemical 

traits (i.e., chemotypes) act as visual, olfactory, and gustatory cues to herbivores. 

Moreover, chemical traits are dynamic and vary within, among, and across individuals, 

populations and species of plants. Both the type of chemical (i.e., nutrients and toxins) as 

well as the concentration affects herbivore foraging decisions. The dose of the chemical 

determines the pharmacological effect on the herbivore, further informing their foraging 

decisions. However, identifying and quantifying these chemicals is time intensive, 

expensive, and requires specialized expertise and instrumentation. Alternatively, near 

infrared spectroscopy (NIRS) operates by measuring organic bonds and can offer a rapid, 

inexpensive, and relatively low-tech option to detect and quantify chemical traits in 

plants. We used the sagebrush-steppe ecosystem as a case study to test the accuracy in 

which NIRS can predict concentrations of chemicals in plants. Sagebrush habitats are 

rapidly declining due to biotic and abiotic landscape changes. Moreover, sagebrush is 

known to have high levels of chemical heterogeneity and plasticity compared to many 
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other plant species and systems. We found that NIRS can accurately predict both nutrient 

and toxin concentrations in sagebrush. NIRS predicted nitrogen content, a direct indicator 

of crude protein, with an 80-95% accuracy at all sagebrush field sites except our most 

phenotypically complex site. Predictions remained reliable when combining field sites to 

form a global predictive equation. NIRS predicted individual and classes of toxins in 

sagebrush with a range of accuracies. Monoterpenes were predicted the best, with total 

monoterpenes predicted 61-79% accurately at all field sites except our most 

phenotypically complex site. The highest predicted individual monoterpenes ranged in 

accuracy between 50-71%. Total phenolics were predicted moderately well at all field 

sites, with accuracies ranging between 42-58%. Total coumarins, a subclass of phenolics, 

were only predicted well at a single field site, with 77% accuracy. We then tried to 

bypass predicting chemical concentrations and used NIRS to directly predict foraging 

behavior by herbivores in the form of number of bites on plants. NIRS was not reliable in 

predicting browsing, with the best accuracy being 31%. Chemical traits explain how 

herbivores interact with and use individual plants and populations in their habitats. 

Finding better ways to monitor and measure these chemical traits is paramount. NIRS can 

be used to predict chemical concentrations in sagebrush, which can help inform land 

managers and researchers on ways to detect which plant populations may be the most 

palatable for herbivores over space and time. 

 

Introduction 

Predicting the interactions between plants and herbivores is important. What 

herbivores eat and where they forage shapes the distribution of plant populations 



66 

 

 

(Poelman and Kessler, 2016; Anderson et al., 2016), which in turn influences herbivore 

distribution and habitat use (Viswanathan et al., 2005; von Zeipel et al., 2006; Anderson 

et al., 2016). One prominent mechanism driving these interactions is the diversity, 

composition, and concentration of chemicals in plants. These chemical traits, observed as 

chemotypes, include both primary (e.g., nutrients) and secondary (e.g., defensive toxins) 

metabolites. Moreover, chemotypes vary within, among, and across plants and can 

change through interactions with neighboring plants (Casper and Jackson, 1997; McCall 

and Fordyce, 2010; Keddy and Cahill, 2012), microbial communities (Phelan et al., 2012; 

Rosentreter and Root, 2019; Barnard et al., 2019; Benedek et al., 2019), and herbivores 

(Shiojiri et al., 2009; Karban et al., 2016b, 2016a). Specifically, chemical traits explain 

how herbivores interact with and use individual plants and populations (Sorensen et al., 

2005b; Moore and Foley, 2005; Dearing et al., 2005; DeGabriel et al., 2009; Frye et al., 

2013; Ulappa et al., 2014; Bedoya-Pérez et al., 2014; Nobler et al., 2019). The abundance 

and composition of chemical traits in plants act as visual, olfactory, and gustatory cues, 

alongside physiological feedback loops, to direct habitat use by herbivores (Siitari et al., 

2002; Honkavaara et al., 2002; Sorensen et al., 2005a, 2005c; Dearing et al., 2005; 

DeGabriel et al., 2009; Bedoya-Pérez et al., 2014; McArthur et al., 2019). 

The pharmacological effects of chemical traits on herbivores is mediated by the 

dose of the compound (Sorensen et al., 2006; McLean et al., 2007; Forbey and Foley, 

2009; Forbey et al., 2013; Patey et al., 2020). Just as humans differentially react to 

varying doses of any substance they consume, so do herbivores. Chemicals can be both 

deleterious or therapeutic depending on the dose consumed and the physiology of the 

herbivore (Sorensen et al., 2006; Patey et al., 2020). Consequentially, it is these dose-
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dependent responses (Frye et al., 2013; Fremgen, 2015; Melody, 2017; Nobler et al., 

2019) that produce selection thresholds by herbivores. For example, herbivores generally 

select to forage on plants with higher nutritional and lower toxin content more than 

available, both within and among taxa (Frye et al., 2013; Ulappa et al., 2014; Fremgen-

Tarantino et al., 2020). However, the potential noxious effects of phytochemicals through 

energetically-costly detoxification, central nervous system depression, and inhibition of 

nutrient uptake (Sorensen et al., 2005c; Kohl et al., 2015, 2016; Wing and Messmer, 

2016), are often not detected until certain concentration thresholds have been reached 

(Figures D.1-D.4). To better predict and manage plant-herbivore interactions across 

landscapes, we need more efficient ways to detect chemical traits and their concentrations 

in plants. 

Pioneering technologies are providing quicker and easier ways of measuring 

nutritional and toxic chemical traits in plants. Specifically, spectra, in the form of near 

infrared spectroscopy (NIRS), can detect chemical traits in plants, potentially offering an 

herbivore-eye view of plant traits (Moore et al., 2010). NIRS operates by measuring the 

reflectance of electromagnetic energy in objects from wavelengths ranging between 350-

2500 nm. This electromagnetic range is particularly well-known for reflecting organic 

bonds (Curran, 1989; Youngentob et al., 2012), establishing NIRS as a great proxy for 

detecting and quantifying organic chemicals such as nutrients and toxins. Research in the 

agricultural industry has shown that NIRS can be used to quantify nitrogen (i.e., crude 

protein; Robbins, 1993) and phytochemical content in domestic feed (Abrams et al., 

1987; Shenk and Westerhaus, 1994; Corson et al., 1999; Mnisi and Mlambo, 2017; Saha 

et al., 2018), fruits (Baranska et al., 2004; Sinelli et al., 2008), and wines (Urbano-
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Cuadrado et al., 2004; Cozzolino et al., 2008). NIRS has also begun to be used in wild 

systems for conservation efforts, including jungles (Foley et al., 1998; Asner and Martin, 

2009; Wiedower et al., 2009; Asner et al., 2011, 2012; Youngentob et al., 2012; Féret and 

Asner, 2014), grasslands (Griggs et al., 1999; Brunet et al., 2007), deserts (Russell et al., 

2012; Vaknin and Mishal, 2017), and taiga (Stolter et al., 2006). However, only a small 

amount of research has shown that NIRS can predict fine-scale chemical changes that 

mediate interactions with herbivores in complex wild systems (Moore et al., 2010; 

Mitchell et al., 2012b; Olsoy et al., 2016).  

The semiarid sagebrush-steppe of the Western United States serves as the perfect 

system to demonstrate how NIRS can detect and quantify chemical traits that influence 

foraging by generalist and specialist herbivore species. This system encompasses 

complex and changing chemotypic diversity (Kelsey et al., 1982; Rosentreter and Kelsey, 

1991; Winward, 2004; Rosentreter, 2005; Welch, 2005), shown to be genetically 

determined (Jaeger et al., 2016). Additionally, there are specific and unique longstanding 

ecological and evolutionary (Oh et al., 2019) relationships between sagebrush and 

associated specialist herbivores. This includes the aroga moth (Winward et al., 1985), 

certain populations of mule deer (Wambolt, 1996), pronghorn (Hansen et al., 2001; 

Jacques et al., 2006), sage-grouse (Ulappa, 2011; Frye et al., 2013; Oh et al., 2019; 

Fremgen-Tarantino et al., 2020), pygmy rabbits (Ulappa et al., 2014; Nobler, 2016; Utz et 

al., 2016), and more. Subsequently, the threatened vertebrate herbivores, greater sage-

grouse (Centrocercus urophasianus) and pygmy rabbits (Brachylagus idahoensis), rely 

nearly entirely on sagebrush for food in the winter (Wallestad and Eng, 1975; Green and 

Flinders, 1980). However, habitat use and diet selection of these specialist herbivores is 
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dependent on concentrations of both protein and toxins (Ulappa, 2011; Frye, 2012; Utz, 

2012; Fremgen, 2015; Nobler, 2016). As a threatened ecosystem from anthropogenic and 

climatic stressors, timely monitoring of the chemical traits that mediate habitat use by 

threatened herbivores is necessary for successful management of conservation and 

restoration of the sagebrush steppe. However, the challenges of measuring chemical traits 

in sagebrush remains daunting, expensive, and time intensive. Ascertaining a more 

efficient means of quantifying functional chemical traits is of significant importance if 

the goal is to better assess, monitor, and predict how sagebrush and obligate sagebrush 

herbivores will respond to changing socioecological systems. 

We propose using NIRS to predict functional chemical traits in sagebrush plants. 

We investigated the accuracy of NIRS to predict concentrations of individual chemicals 

and classes of chemicals, in the forms of nitrogen (i.e., crude protein) and phytochemicals 

(i.e., defensive toxins), in sagebrush plants within and among populations across the 

sagebrush-steppe ecosystem (Table 2.1). In addition, because NIRS can simultaneously 

detect chemical mixtures and their concentrations, we investigated if NIRS could predict 

intensity of browsing by herbivores on sagebrush plants. We used NIRS data from 

sagebrush to ask the following questions: 

i. Can NIRS predict concentrations of nitrogen within and among sagebrush species 

and populations? 

ii. Can NIRS predict concentrations of total classes and individual phytochemicals in 

sagebrush plants? 

iii. Can NIRS predict intensity of browsing, in the form of the number of bite marks, 

by specialist herbivores foraging on sagebrush plants? 
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Methods 

Sample Collection 

Sagebrush plants were selected for sampling by finding patches across four field 

sites in Idaho, USA (Figure 2.1) where herbivores had access to varying diversity of 

sagebrush species (Table 2.1) but were selective about the specific plants consumed. 

Pygmy rabbits (Brachylagus idahoensis) were the herbivores of interest at the Magic 

Reservoir, hereby known as Magic, and Cedar Gulch field sites, where they generally 

selected for higher nutrient and lower toxin content (Ulappa et al., 2014; Nobler, 2016). 

Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse) were the 

herbivores of interest at the Craters of the Moon, hereby known as Craters, and Raft 

River field sites, where they generally selected for higher nutrient and lower toxin content 

(Fremgen, 2015; Fremgen-Tarantino et al., 2020). Browsed and non-browsed plants were 

identified within used foraging patches at each site. At the Magic and Cedar Gulch sites, 

browsed samples were defined by the presence of pygmy rabbit bite marks (Figure 2.2; 

see paragraph below) and often seen in conjunction with fresh fecal pellets below and 

around the plant. Non-browsed samples were identified as the nearest plant to the 

browsed plant with fresh feces or tracks that were not browsed. Once browsed and non-

browsed plants were detected, sprigs from plants were clipped using pruning shears and 

placed in labeled plastic bags on ice. All plant samples were clipped for about 2 g of wet 

leaf and stem biomass or no more than 25% of the overall biomass of the plant. At the 

Craters and Raft River sites, browsed samples were defined by the presence of sage-

grouse bite marks (Figure 2.3; see paragraph below) and often seen in conjunction with 

fresh fecal pellets and tracks below and around the plant. Non-browsed samples were 
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identified as plants nearest to (and within 0.5 m of) the browsed plants with fresh feces or 

tracks that were not browsed. Once browsed and non-browsed plants were detected, 

leaves and stems were collected from three browsed and three non-browsed plants within 

the foraging patch and pooled to form one browsed composite sample and one non-

browsed composite sample. Each composite sample contained equal amounts of the three 

individual plant collections. All samples were stored on ice in the field until return to 

Boise State University where they were stored at -20°C. 

Intensity of Herbivore Browsing 

Sagebrush samples that were deemed browsed according to our sample collection 

protocol were also assessed for intensity of browsing prior to biomass collection. 

Intensity of browsing was quantified as the number of bite marks on the browsed plant. 

Bite marks were identified according to methods stated in Chapter 1. Briefly, pygmy 

rabbit bite marks had a clean 45-degree cut and differed from other lagomorph species by 

lack of leafy material left below the shrub and the diameter of the clipping (Figure 2.2). 

Sage-grouse bite marks were identified by a clean bite mark on the leafy material, leaving 

the sprig stems intact (Figure 2.3). Fresh bites were identified by a wet green or bright 

brown stem interior for pygmy rabbits and wet green leftover leaf material for sage-

grouse.  

Sample Preparation 

Sagebrush samples were removed from a -20°C freezer and individually ground 

to a coarse powder (~2 mm) in liquid nitrogen using a ceramic mortar and pestle to 

minimize loss of leaf volatiles. Samples were ground differently per herbivore species. 

Whole sprigs (stems and leaves) of samples were ground from the pygmy rabbit sites 



72 

 

 

because the rabbits consume both leaves and stems (Figure 2.2; Nobler, 2016; Crowell et 

al., 2018). Only leaves of samples were ground from the sage-grouse sites because sage-

grouse consume only leaves (Figure 2.3; Fremgen, 2015). For the sage-grouse samples, 

leaves were separated from the stems using dry ice to freeze the sprigs and then gently 

tapped until all of the leaves had fallen off. A subset of 100 mg wet weight (ww) of each 

ground sample was weighed into a 20 mL clear glass headspace vial for gas 

chromatography analysis to separate monoterpenes based on size and volatility and to 

determine concentrations of total and individual monoterpenes. A subset of 50 mg ww of 

each ground sample was weighed into a 1.5 mL microcentrifuge tube for extraction to 

determine phenolic and coumarin content. All samples were kept on ice throughout the 

entirety of processing. 

Chemical Analysis 

Nitrogen 

Nitrogen content, measured in the form of detectable nitrogen, was obtained by 

outsourcing the assay to Dairy One Forage Laboratory (Ithaca, NY, USA) for analysis. At 

least 1.0 g ww of each ground sample was placed in a labeled paper coin envelope and 

dried at 60°C for 48 hours. The dry sagebrush samples were shipped to Dairy One Forage 

Laboratory where total nitrogen values were acquired through the nitrogen combustion 

method. Final values were reported as total nitrogen (%) dry weight (dw) content. 

Monoterpenes 

The separation and concentration of individual and total monoterpenes was 

determined through the use of headspace gas chromatography (Agilent 7694 Headspace 

Sampler, Agilent, Santa Clara, CA, USA; Agilent 6890N Series Gas Chromatograph, 
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Agilent, Santa Clara, CA, USA). A J&W DB-5 capillary column (30 m x 250 μm x 0.25 

μm) was used in which 1.0 mL of headspace gas was injected into for compound 

separation and analyzed through flame ionization detection. The operating conditions for 

the headspace autosampler included oven temperature of 100°C, loop temperature of 

110°C, transfer line temperature of 120°C, vial equilibrium time of 20 min, pressurization 

time of 0.20 min, loop fill time of 0.50 min, loop equilibrium time of 0.20 min, and 

injection time of 0.50 min. The operating conditions for the gas chromatograph included 

splitless injector temperature of 250°C, flame ionization detector temperature of 300°C, 

and oven temperature of 40°C for 2 min, then increased 3°C/min to 60°C, 5°C/min to 

120°C, 20°C/min to 300°C, and held at 300°C for 7 min. The makeup gas was nitrogen 

and the carrier gas was helium. The inlet pressure was 80 KPa with a flow rate of 1.0 

mL/min. We quantified all individual monoterpenes that were detected prior to the 

retention time of 24 min. After 24 min no more monoterpene compounds were reliably 

detected. Using external standards, we were able to identify the compounds 1,8-cineole 

(CAS # 470-82-6), 3-carene (CAS # 13466-78-9), α-phellandrene (CAS # 99-83-2), α-

pinene (CAS # 1686-14-2), β-pinene (CAS # 18172-67-3), borneol (CAS # 464-45-9), 

camphene (CAS # 79-92-5), camphor (CAS # 76-22-2), p-cymene (CAS # 99-87-6), and 

terpinolene (CAS # 586-62-9). We also quantified total monoterpene content and the total 

number of compounds (i.e., peaks) detected per sample. Quantifications were calculated 

as areas under the curve (AUCs) for each separated chemical, identified by retention time 

of the peak. For each sample, peaks less than 1% of the total AUC were thrown out. All 

samples were standardized for their dry weight for final units of AUC/mg dw. 
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Phenolics 

Ground sagebrush material was extracted in HPLC-grade methanol (CAS # 67-

56-1) at a tissue-to-solvent ratio of 50 mg/1.0 mL, vortexed for 10 sec, then placed in a 

sonicating water bath for two separate 3 min sessions. Samples were then centrifuged at 

13,000 g for 5 min at room temperature (20ºC) and the resulting supernatant filtered 

through glass wool to remove particulates. Total phenolic content was then assayed using 

a modified version of the Folin-Ciocalteu reagent method (Ainsworth and Gillespie, 

2007). Gallic acid (CAS # 5995-86-8) diluted in HPLC-grade methanol was used as a 

standard, ranging from 0 to 5 mM. Each sagebrush sample was diluted at a ratio of 1:2.5 

or 1:5 to fit within the standard curve. Each diluted standard and sample (20 μL) was 

pipetted in triplicate into clear flat-bottomed 96-well plates. Next, 100 μL of 10% Folin-

Ciocalteu reagent (MP Biomedicals Inc. # 0219518690) was added to each well, followed 

by 80 μL of 700 mM (7.5%) sodium carbonate (CAS # 497-19-8), and the reaction was 

mixed gently. Plates were incubated for two hours at room temperature as color change 

occurred. Color intensity was then measured on a spectrophotometric BioTek Synergy 

MX multi-mode plate reader (BioTek, Winooski, VT, USA) set to read absorbance at 

wavelength 765 nm. The gallic acid standard curve was used to quantify phenolic content 

for each sagebrush sample in milligrams. All samples were standardized for their dry 

weight for final units of mg gallic acid equivalents/g dw. 

Coumarins 

Total coumarin content was measured from each filtered methanol extract 

(described above) using a colorimetric assay. Scopoletin (CAS # 92-6-15) diluted in 

HPLC-grade methanol was used as a standard, ranging from 0 to 80 μM. Each sagebrush 
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sample and standard (50 μL) was pipetted in triplicate into a clear flat-bottomed 96-well 

plate where it was run on a spectrophotometric BioTek Synergy MX multi-mode plate 

reader (BioTek, Winooski, VT, USA) set to measure fluorescence at an excitation 

wavelength of 350 nm and emission wavelength of 469 nm (Figure F.7). A standard 

curve of scopoletin was used to quantify coumarin content for each sample in 

micromoles. All samples were standardized for their dry weight for final units of µmol 

scopoletin equivalents/g dw. 

NIRS Analysis 

The same methods from Chapter 1 were followed. Briefly, an ASD FieldSpec® 4 

spectroradiometer was used to measure continuous near infrared wavelength reflectance 

from 350 to 2500 nm in all of the sagebrush samples. Ground dried samples placed in 

clear plastic bags were scanned on a black countertop. Standard calibration and 

optimization methods were applied according to the ASD user manual. Thirty replicate 

reflectance scans were collected for each sample (Figure A.1) and exported for outlier 

analysis and spectral averaging. Spectra were converted to absorbance values using a 

log10(1/R) transformation, where R is reflectance (Figure A.2) and then derived (1st gap 

derivative) and truncated to 450-2350 nm (Figure A.3). 

Statistical Analysis 

All categorical (i.e., field site) and numerical (i.e., chemical concentrations, NIR 

absorbances) variables were joined for each sagebrush sample and imported into Camo 

Analytics Unscrambler® chemometric software. Distributions of response variables were 

checked for normalcy. Unscrambler® was then used to perform partial least squares 

regressions (PLSR) between NIR spectral values (i.e., predictor variables) and chemistry 
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and herbivory values (i.e., response variables) to produce NIRS-predicted chemistry and 

herbivory values. Each model was independently calibrated and validated using leave-

one-out cross validation (LOOCV) of 20 segments and nonrelevant spectral wavelengths 

were downweighted (i.e., given lesser weight relative to other wavelengths) to prevent 

overfitting of the models. 

 

Results 

Predicting Nitrogen Concentrations Using NIRS 

The results of the partial least squares regression (PLSR) show that NIRS can 

predict nitrogen concentration in sagebrush plants at all field sites except one (Table 2.2). 

Magic (n = 585) predicted nitrogen with a coefficient of determination (R2) of calibration 

of 0.86 (standard error of calibration (SEC) = 0.09; Figure 2.4) and leave-one-out cross 

validation (LOOCV) R2 of 0.83 (standard error of cross-validation (SECV) = 0.10). Cedar 

Gulch (n = 619) predicted nitrogen with a calibration R2 of 0.80 (SEC = 0.14; Figure 2.5) 

and LOOCV R2 of 0.77 (SECV = 0.15). Craters (n = 93) predicted nitrogen with a 

calibration R2 of 0.95 (SEC = 0.07; Figure 2.6) and LOOCV R2 of 0.92 (SECV = 0.09). 

Raft River (n = 190) did not predict nitrogen well, with a calibration R2 of 0.03 (SEC = 

0.24; Figure 2.7) and was not able to calculate a LOOCV R2 due to poor calibration 

results (SECV = 0.25). The global model that combined Magic, Cedar Gulch, Craters, and 

Raft River (n = 1983) sites predicted nitrogen with a calibration R2 of 0.78 (SEC = 0.17) 

and LOOCV R2 of 0.77 (SECV = 0.18; Figure 2.8). When Raft River was removed from 

the multi-site analysis, the global model predicted nitrogen with a calibration R2 of 0.84 

(SEC = 0.15; Figure 2.9) and LOOCV R2 of 0.83 (SECV = 0.15). 
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Predicting Concentrations of Total Classes and Individual Phytochemicals With NIRS 

The results of the PLSR show that NIRS can be used to predict total monoterpene 

concentrations in sagebrush plants across different populations (Table 2.3). The best 

prediction of total monoterpenes was at Magic (n = 569) with a calibration R2 of 0.79 

(SEC = 147.75; Figure 2.10) and LOOCV R2 of 0.77 (SECV = 153.97). Cedar Gulch (n = 

618) predicted monoterpenes with a calibration R2 of 0.61 (SEC = 102.05; Figure 2.11) 

and LOOCV R2 of 0.56 (SECV = 108.57). Craters (n = 94) predicted monoterpenes with a 

calibration R2 of 0.70 (SEC = 126.10; Figure 2.12) and LOOCV R2 of 0.55 (SECV = 

156.38). Raft River (n = 262) did not predict monoterpenes well, with a calibration R2 of 

0.02 (SEC = 175.41) and was not able to calculate a LOOCV R2 due to poor calibration 

results (SECV = 183.44). 

The results of the PLSR show that NIRS can also be used to predict certain 

individual monoterpene concentrations in sagebrush plants (Table 2.4). At Magic (n = 

586) camphor was best predicted with a calibration R2 of 0.71 (SEC = 99.78; Figure 2.13) 

and LOOCV R2 of 0.70 (SECV = 102.66). Other individual monoterpenes were predicted 

moderately well at Magic: camphene with a calibration R2 of 0.66 (SEC = 37.36) and 

LOOCV R2 of 0.65 (SECV = 38.28), 1,8-cineole with a calibration R2 of 0.57 (SEC = 

50.55) and LOOCV R2 of 0.55 (SECV = 51.52), and ⍺-Pinene with a calibration R2 of 

0.52 (SEC = 9.48) and LOOCV R2 of 0.50 (SECV = 9.68). Cedar Gulch (n = 621) 

predicted “unknown 20.1 minutes” the best with a calibration R2 of 0.54 (SEC = 14.40; 

Figure 2.14) and LOOCV R2 of 0.52 (SECV = 14.69). β-Pinene was also predicted 

moderately well at Cedar Gulch with a calibration R2 of 0.51 (SEC = 33.56) and LOOCV 

R2 of 0.49 (SECV = 34.34). Craters (n = 94) predicted ⍺-Pinene the best with a calibration 
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R2 of 0.70 (SEC = 16.53; Figure 2.15) and LOOCV R2 of 0.66 (SECV = 17.77). 

Camphene was also predicted well at Craters with a calibration R2 of 0.69 (SEC = 43.63) 

and LOOCV R2 of 0.64 (SECV = 47.13). Raft River (n = 262) did not predict any 

individual monoterpene well, with the best being camphene (calibration R2 of 0.03 (SEC 

= 34.64; Figure 2.16) and no LOOCV R2 calculated (SECV = 36.19)). 

The results of the PLSR show that NIRS was able to predict total phenolics 

concentrations in sagebrush plants moderately well at some sites, but not all (Table 2.5). 

Magic (n = 523) predicted phenolics the best with a calibration R2 of 0.58 (SEC = 3.23; 

Figure 2.17) and LOOCV R2 of 0.52 (SECV = 3.47), similar to predictions at Raft River 

(n = 250; calibration R2 of 0.58 (SEC = 19.53; Figure 2.18) and LOOCV R2 of 0.53 

(SECV = 20.76)). This was followed by Craters (n = 87; calibration R2 of 0.50 (SEC = 

9.63) and LOOCV R2 of 0.42 (SECV = 10.41)) and Cedar Gulch (n = 601; calibration R2 

of 0.42 (SEC = 3.05) and LOOCV R2 of 0.40 (SECV = 3.10)). 

The results of the PLSR show that NIRS was able to predict total coumarin 

concentrations in sagebrush plants moderately well at some sites, but not all (Table 2.6). 

Magic (n = 546) predicted coumarins with a calibration R2 of 0.77 (SEC = 0.37; Figure 

2.19) and LOOCV R2 of 0.75 (SECV = 0.38), but the predictive capacity for coumarins 

was much lower at the other sites. Coumarins were poorly predicted at Cedar Gulch (n = 

576; calibration R2 of 0.34 (SEC = 0.19) and LOOCV R2 of 0.30 (SECV = 0.19)), Craters 

(n = 94; calibration R2 of 0.04 (SEC = 5.05) and LOOCV R2 of 0.01 (SECV = 5.17)), and 

Raft River (n = 255; calibration R2 of 0.01 (SEC = 0.33) and no LOOCV R2 determined 

due to poor calibration results (SECV = 0.33)). 
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Predicting Intensity of Browsing by Herbivores With NIRS 

The results of the PLSR show that NIRS cannot reliably predict intensity of 

browsing as determined by the number of bite marks by herbivores on sagebrush plants 

(Table 2.7). The best predictor of browsing intensity was at Magic (n = 30) with a 

calibration R2 of 0.31 (SEC = 20.62; Figure 2.20) and LOOCV R2 of 0.06 (SECV = 

25.33). Browsing was not well predicted with NIRS at Cedar Gulch (n = 43; calibration 

R2 of 0.09 (SEC = 34.14) and LOOCV R2 of 0.04 (SECV = 35.78)), Craters (n = 28; 

calibration R2 of 0.05 (SEC = 21.57) and no LOOCV R2 results (SECV = 23.58)), and 

Raft River (n = 81; calibration R2 of 0.04 (SEC = 18.06) and LOOCV R2 of 0.02 (SECV = 

18.54)). Combining all field sites (n = 390) did not improve predictions of bite marks 

(calibration R2 of 0.09 (SEC = 25.47) and LOOCV R2 of 0.07 (SECV = 25.82)). 

 

Discussion 

Our research shows that NIRS can be used to predict concentrations of some, but 

not all chemicals, and did not predict extent of herbivory in sagebrush populations. In 

general, nitrogen was best predicted for sagebrush regardless of site, followed by 

relatively strong predictions for monoterpenes, moderate predictions for phenolics, 

relatively low predictions for coumarins and poor predictions for intensity of browsing at 

all sites. The Magic field site generally had better predictions of all chemical traits than 

the other sites, whereas Raft River had the worst predictions. This research is one of the 

first evaluations of NIRS to predict multiple chemical traits, including primary and total 

and individual secondary metabolites, and herbivore responses across a natural and 

complex biogeographic gradient. Other work in this field has focused on single 
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chemicals, such as nitrogen in agricultural (Saha et al., 2018) and wild systems 

(Wiedower et al., 2009) or limited numbers of individual phytochemicals in agricultural 

(Cozzolino et al., 2008) and wild systems (McIlwee et al., 2001) or a single class of 

chemicals (Au et al., 2020). Furthermore, all but one of these previous studies (Au et al., 

2020) were conducted across smaller biogeographical ranges. Only one (Moore et al., 

2010) involved using NIRS to predict herbivore responses, but in this study only one 

herbivore, compared to two in our study, was observed within a fenced nature reserve, 

compared to a complex socioecological system in our study. Our results support recent 

work in another natural system (Au et al., 2020) showing that global NIRS predictive 

models may be complicated by chemical variation that exists across extensive 

biogeographical and temporal ranges and gradients. As in other studies (Foley et al., 

1998; Stolter et al., 2006; Saha et al., 2018), plant chemicals, such as nitrogen, that have 

consistent organic bonds performed relatively well within individual sites and in global 

models regardless of taxonomic and chemical diversity. This was not the case for 

phytochemicals, which vary not only in concentration but also in composition within a 

chemical class. We offer potential sources of variation that could explain predictive 

accuracy of NIRS, including heterogeneity of plant population taxonomy and geography 

(Table 2.1), range of concentrations of plant chemicals (Figures H.1-H.10), timing of 

plant leaf emergence and senescence, environmental disturbances, and the way in which 

samples were collected. We also describe how results could be used to understand plant-

herbivore interactions in a changing and threatened ecosystem.  

Overall, the Magic site predicted phytochemicals by NIRS better than other sites. 

Our previous work indicates that Magic has fairly homogeneous taxonomic and chemical 
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diversity (Nobler, 2016; Olsoy et al., 2020), with most of its samples shown chemically 

and spectrally to be Wyoming big sagebrush (A. t. wyomingensis) (see Chapter 1; Table 

1.2). Moreover, the lower and smaller range of elevation (Table 2.1), consistent weather 

patterns (Minshall, 1977; Western Regional Climate Center, 2005), and lack of known 

recent biotic or abiotic stressors (Minshall, 1977; Buhidar, 2001) suggest a relatively 

stable environment. The relatively low chemical and environmental variation at Magic 

likely explained our relatively high NIRS predictions of phytochemicals at this site. In 

contrast, Cedar Gulch has more heterogeneous diversity across the site than Magic with 

the presence of another species, black sagebrush (A. nova), increased chemical 

complexity (Olsoy et al., 2020), and a rougher terrain (Western Regional Climate Center, 

2005; Olsoy et al., 2020), alongside being at the highest elevation of all of the sites 

(Table 2.1). The relatively more dynamic environment at Cedar Gulch may explain the 

lower accuracy of NIRS to predict phytochemicals at this site. However, the extent of 

dynamic environments is not the only factor influencing NIRS accuracy to predict 

phytochemicals. Craters had two species with distinct chemotypes (Wyoming big and 

three-tip (A. tripartita) sagebrush) and a regular and recent fire history (Fremgen, 2015; 

Fremgen-Tarantino et al., 2020). Despite this complexity, predictions at the Craters site 

yielded the best results for nitrogen (Table 2.2; Figure 2.6) and had relatively high 

predictions for individual monoterpenes compared to other sites (Tables 2.3-2.4; Figure 

2.12; Figure 2.15), even with a small sample size (n = 94). It is also important to note that 

all of our analyses included all species collected at each field site. Some of the field sites 

were dominated by a single species, such as Magic and Cedar Gulch (i.e., Wyoming big 

sagebrush) and Raft River (i.e., low sagebrush). Future analyses should test how 
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controlling for taxa or other classifications might improve predictions (Au et al., 2020). 

This would reduce sample size but may still provide a cleaner range of variability and 

stronger predictions. 

In addition to environmental conditions, the fashion in which samples were 

collected may influence NIRS predictions. At Craters, samples were only collected 

during one season (i.e., winter) instead of being collected across multiple seasons like at 

Magic and Cedar Gulch. However, a post hoc analysis of Magic samples from a single 

season (i.e., spring only (n = 402)) did not improve NIRS predictions of nitrogen 

(calibration R2 of 0.78 and validation R2 of 0.74) compared to inclusion of all years and 

seasons (Table 2.2; Figure 2.4). Instead, the fashion in which samples were collected 

could have influenced NIRS predictions. At Craters, the study design included an 

herbivore directed collection method (i.e., used versus random sagebrush patches) versus 

a strategized random design used at Magic and Cedar Gulch. However, Raft River 

samples also used an herbivore-directed collection method yet failed to accurately predict 

any chemical traits. We attribute the poor predictive power of NIRS at the Raft River site 

to highly heterogeneous diversity in regard to taxonomy and chemistry (i.e., high 

probability of hybridization). Our Raft River results indicated that taxonomic and 

chemical complexity constrained predictions of chemical traits (Tables 2.2-2.6). 

Furthermore, the climate (Western Regional Climate Center, 2005), broad elevation 

gradient (Table 2.1; Lay and Etcheverry, 2004), and geographic size (Lay and 

Etcheverry, 2004) of Raft River could also influence phytochemical diversity and, thus, 

reliability of NIRS predictions.  
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Overall, the capacity for NIRS to predict nitrogen content within and among 

sagebrush populations and taxonomic groups proved extremely robust. Nitrogen is a 

direct indicator of crude protein (Robbins, 1993), which is essential to the growth, 

reproduction, and survival of herbivores (Mattson, 1980). In sagebrush systems, during 

spring and summer, nitrogen is available in the forms of grasses, forbs, and shrubs that 

grow across the arid landscape, which are main sources of food for most generalist and 

specialist sagebrush herbivores (Welch, 2005). During the winter, sagebrush is one of the 

only reliable sources of nitrogen for sagebrush herbivores, especially specialists 

(Wallestad and Eng, 1975; Green and Flinders, 1980). As such, increased ability to 

predict concentrations of nitrogen from NIRS could more rapidly and efficiently locate 

suitable habitats and determine palatability of forage for both domestic (i.e., browsers and 

grazers) and wild herbivores. When we combined all of the field sites to determine a 

global NIRS model to predict nitrogen across geographically disparate populations 

(Figure 2.1) results were promising (R2 = 0.78; Table 2.2; Figure 2.8). When removing 

our poorly predicted field site, Raft River, results improved (R2 = 0.84; Table 2.2; Figure 

2.9). Results were best at sites with lower taxonomic diversity, but more importantly with 

lower chemical complexity. While a quantitative assessment of this diversity is 

challenging, the support for this is observed in comparing the means and ranges of 

chemical diversity among sites (Table G.1; Figures H.1-H.10), chemical (i.e., 

monoterpene) profiles of taxa among sites (Table 2.1; Figure C.1), and generally simpler 

chemical makeup of taxa in some sites (Table 2.1; Turi et al., 2014). 

Our ability to predict nitrogen in sagebrush compares relatively well to similar 

studies done in other ecological systems. For example, NIRS predicts nitrogen in 
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eucalyptus differentially foraged on by greater gliders and possums (R2 = 0.96; McIlwee 

et al., 2001), bamboo by pandas (R2 = 0.93-0.97; Wiedower et al., 2009), willows by 

moose (R2 = 0.97-0.99; Stolter et al., 2006), seagrass by dugongs (R2 = 0.99; Lawler et 

al., 2006), and herbs by gorillas (R2 = 0.95; Rothman et al., 2009). Finally, our results 

compare to other NIRS instruments used in specific fields such as agriculture or food 

science, where nitrogen is assessed for forage quality of domestic livestock (Abrams et 

al., 1987; Shenk and Westerhaus, 1994; Corson et al., 1999; Mnisi and Mlambo, 2017; 

Saha et al., 2018). In these fields, NIRS analysis is often outsourced to labs, such as 

Dairy One Forage Laboratory (Ithaca, NY, USA), where analyses are conducted under 

highly controlled laboratory conditions, which allows for strong predictive models (e.g., 

R2 > 0.97). This establishes them as golden standards in the field for NIRS chemical 

analysis. With this awareness, we sent a subset of our Magic sagebrush samples (n = 489) 

to Dairy One Forage Laboratory to measure nitrogen content on their advanced FOSS™ 

instrumentation and developed a calibration equation using their in-house WinISI™ 

software. Dairy One analysis determined a calibration R2 of 0.93 (SEC = 0.07; Figure 

E.1) compared to our ASD FieldSpec® 4 NIRS results of calibration R2 = 0.86 (SEC = 

0.09). These results demonstrate that our in-house NIRS is a comparable predictor of 

nitrogen in wild plants and populations. 

Just as crucial as nitrogen is to herbivore foraging decisions and health, so are 

phytochemicals (i.e., toxins). Phytochemicals directly affect the physiological condition 

and even survival of herbivores through energetically-costly detoxification, CNS 

depression, and inhibition of nutrient uptake (Sorensen et al., 2005c; Kohl et al., 2015, 

2016; Wing and Messmer, 2016). However, it is the dose of the phytochemical that 
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mediates the pharmacological response of the herbivore (Figures D.1-D.4). 

Unfortunately, measuring these compounds in the lab are difficult, time-intensive, and 

require specific expertise. Finding more efficient ways to quantify these doses, or 

concentrations, of phytochemicals in sagebrush would provide an invaluable tool to land 

managers who want to prioritize conservation and management of quality forage for 

threatened herbivores. Our research shows that NIRS can be used to predict certain 

concentrations of classes of phytochemicals and individual phytochemicals in sagebrush 

populations. 

We first assessed total monoterpene concentrations. This is a class of 

phytochemicals abundantly and diversely present in sagebrush (Kelsey et al., 1982; Turi 

et al., 2014) and known for acting as CNS depressants (Sorensen et al., 2005c; McLean et 

al., 2007). Therefore, it is important to know the overall (and additive) concentrations of 

these compounds. Magic predicted total monoterpenes the best (R2 = 0.79; Table 2.3; 

Figure 2.10), likely due to its homogeneous taxonomic and chemical diversity and large 

sample size. Predictions generally declined with increasing degrees of heterogeneity at 

each field site: Craters (R2 = 0.70; Table 2.3; Figure 2.12), Cedar Gulch (R2 = 0.61; Table 

2.3; Figure 2.11), and Raft River (R2 = 0.02; Table 2.3). Raft River was unable to predict 

total monoterpene content, similar to nitrogen. This continues to confirm the phenotypic 

complexity present at Raft River. Other literature using NIRS to predict total 

monoterpene concentrations in wild systems have shown similar results, however most of 

these systems have significantly less diversity and abundance of monoterpenes overall. 

For example, in sagebrush, numbers of individual monoterpenes range from 10 to 120 

(Figure H.5) depending on the species, with as many as 8 compounds dominating the 
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overall monoterpene concentration (Figure C.1). In many populations, 3-5 compounds 

generally dominate the overall concentration, with one compound in particular, camphor 

(Figure C.1 around minute 21.0; Figure H.6), often predominating. This is in contrast to 

other studies that have predicted total and subclasses of monoterpenes using NIRS, such 

as in common sage (Salvia officinalis, R2 = 0.49-0.86; Elementi et al., 2006), which has 

about 10 monoterpene compounds and is dominated by 2-3 individuals (Elementi et al., 

2006), and several citrus fruits (R2 = 0.92-0.99; Schulz et al., 2002), which have about 10 

monoterpene compounds and are all highly dominated (50-99%) by 1 individual 

chemical (limonene; Schulz et al., 2002; Chidambara Murthy et al., 2012). However, 

some other studies have accomplished predicting monoterpenes in wild complex plants, 

including wild lavender (Lavandula angustifolia, R2 = 0.87-0.92; Smigielski et al., 2018), 

which is known to have more than 40 compounds and can be dominated by as many as 8 

individual compounds (Boeckelmann, 2008). This may, though, be due to highly 

conserved biosynthesis gene pathways and structural characteristics of monoterpenes 

among lavender species, hybrids, and cultivars (Boeckelmann, 2008), whereas sagebrush 

is known to have highly complex genotypes, hybrids, and ploidy levels (Richardson et 

al., 2012; Jaeger et al., 2016). 

We next assessed individual monoterpene concentrations. Each monoterpene is 

known for inducing unique metabolic and physiological responses, from general CNS 

depression to vasorelaxation (Santos et al., 2011). Every sagebrush population had 

different top predictors, however, similar monoterpenes appeared in the top models of 

most populations, including β-Pinene (Figure H.8), camphene (Figure H.7), 1,8-cineole 

(Figure H.9), and camphor (Figure H.6). This can likely be explained by these 
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monoterpenes being ubiquitous and representing the most abundant monoterpenes in 

most sagebrush species, particularly those present at our field sites. These specific 

monoterpenes are not only important to the sagebrush ecosystem but also to the broader 

natural and anthropogenic world. β-Pinene is present across many plant species, 

especially pine (Pinus spp.), fir (Abies spp.), and spruce (Picea spp.; Geron et al., 2000), 

and is used by humans as an essential oil and in products such as turpentine, pesticides, 

and disinfectants (Duke, 1992). It is also used in traditional medicine to treat 

inflammation (Chen et al., 2016; Salehi et al., 2019). Camphene is prevalent at lower 

levels in pines, hemlock (Tsuga spp.), fir, birch (Betula spp.), and desert shrubs (Geron et 

al., 2000). It is also used in some essential oils, as well as in fragrances and as a food 

additive (Duke, 1992). 1,8-cineole, also known as eucalyptol, is present in eucalyptus 

(Eucalyptus spp.), wormwood (Artemisia absinthium), rosemary (Salvia rosmarinus), and 

common sage (Duke, 1992). It is used in flavorings, fragrances, cosmetics, insecticides, 

and repellents, but at low levels due to its higher degree of toxicity (Duke, 1992). It is 

also known to be a cough suppressant in traditional medicines (Juergens et al., 2003; 

Chen et al., 2016). Camphor is prevalent in laurel trees (Laurus spp.), rosemary, 

wormwood, common sage, and desert shrubs (Duke, 1992). It is used in fragrances, 

plastics, pesticides, repellents, and embalming fluids (Duke, 1992). Traditionally, 

camphor has been used as a mild local analgesic and cough suppressant (Chen et al., 

2013, 2016). Camphor is known to be highly toxic in relatively high doses (Duke, 1992). 

Non-oxygenated monoterpenes, including β-Pinene and camphene, are easily emitted 

from plants due to their high degrees of volatility (Grosjean et al., 1993; Geron et al., 

2000). This can be deleterious to most life forms because these emissions react with 



88 

 

 

atmospheric gases to create ozone (O3) in the troposphere, a compound that serves as a 

potent respiratory hazard and pollutant to organic life at high enough concentrations 

(Grosjean et al., 1993; Geron et al., 2000). Oxygenated monoterpenes, such as 1,8-

cineole and camphor, are also found in ambient air but to a lesser extent and are much 

less reactive (Geron et al., 2000). Measuring and monitoring these compounds in plants 

and the atmosphere can, therefore, serve as biomarkers of atmospheric chemistry, carbon 

cycles, and climatic conditions and assist in management of emissions through modified 

tree planting (Simpson and McPherson, 2011). In regard to sagebrush habitats, these 

monoterpenes are well-known to have deleterious pharmacological effects on herbivores 

through CNS, vascular, and metabolic poisoning at high doses (Kohlert et al., 2000; 

Sorensen and Dearing, 2003; McLean et al., 2007; Bedoya-Pérez et al., 2014; Karban et 

al., 2016a). In view of this, pygmy rabbits are selective about each of these monoterpenes 

when given options in captivity to forage on differing doses and mixtures (Nobler, 2016; 

Nobler et al., 2019). In the wild, pygmy rabbits, selected to avoid 1,8-cineole and β-

Pinene (Utz, 2012; Nobler, 2016). Similarly, sage-grouse avoided 1,8-cineole (Frye et al., 

2013) and β-Pinene (Fremgen, 2015; Fremgen-Tarantino et al., 2020). To better predict 

quality habitat and foraging decisions of these threatened herbivores we need more 

efficient ways to measure these compounds. NIRS has shown relative success in 

predicting specific individual monoterpenes in sagebrush (R2 = 0.51-0.71; Table 2.4; 

Figures 2.13-2.15) depending on the site. Other literature using NIRS to predict 

individual monoterpene concentrations in domestic and wild systems have shown similar 

results, including in rosemary (Rosmarinus officinalis), basil (Ocimum basilicum), pepper 

(Piper nigrum), marjoram (Origanum majorana), spearmint (Mentha spicata), and ginger 
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(Zingiber officinale, R2 = 0.95-0.99; Ercioglu et al., 2018), blue (Eucalyptus globulus) 

and shining (Eucalyptus nitens) gum (R2 = 0.55-0.90; Humphreys et al., 2008), common 

sage (R2 = 0.43-0.97; Elementi et al., 2006), citrus fruits (R2 = 0.87-0.99; Steuer et al., 

2001; Schulz et al., 2002), and eucalyptus (R2 = 0.88-0.95; McIlwee et al., 2001). The 

ability to predict monoterpene concentrations allows for identification and distribution of 

potentially noxious plants that may be lethal to domestic herbivores. Additionally, our 

models would allow us to supplement growing research on the potential contribution of 

volatile organic compound emissions from plants that are negatively influencing our 

atmosphere. 

We also assessed total phenolic concentrations, which are a class of 

phytochemicals known for antiseptic, endocrine, and nutrient-inhibiting properties 

(Acamovic and Brooker, 2005; Turi et al., 2014; Marsh et al., 2017). They encompass a 

diverse group of compounds and are highly prevalent in plant life (Acamovic and 

Brooker, 2005) and are known for having both noxious and therapeutic effects 

(Acamovic and Brooker, 2005). While total phenolics was best predicted at Magic (R2 = 

0.58; Table 2.5; Figure 2.17), predictive results were relatively consistent across the 

sagebrush sites (Table 2.5). This might be due to phenolics containing an extremely 

broad class of compounds that are relatively conserved in chemical structure (Marsh et 

al., 2017). That so, NIRS would pick up total phenolic reflectance fairly equivalently 

across sagebrush taxa and populations. It is important to note that this is the only 

chemical class where Raft River had a functional prediction above R2 of 0.04 (R2 = 0.58; 

Table 2.5; Figure 2.18). This is expectedly due to the dominant species of sagebrush at 

that field site, low sagebrush (A. arbuscula), which is known for increased types, 
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numbers, and concentrations of phenolics compared to other Artemisia species (Figure 

C.1; Figure H.3; Turi et al., 2014). It might also be attributed to the unique and diverse 

phenotypes present at this field site (Fremgen, 2015). Even though studies in the 

sagebrush-steppe have shown that total phenolic content does not always influence 

herbivore foraging behavior (Frye et al., 2013; Ulappa et al., 2014), preliminary studies 

show that differing concentrations and mixtures of individual phenolic compounds do 

influence selection by herbivores (unpublished data; Figure F.1), and some of these 

individual phenolic compounds can be predicted by NIRS (unpublished data; Figures F.2-

F.5). Other literature using NIRS to predict total and individual phenolic concentrations 

in domestic and wild systems have shown similar and even better results. For example, 

individual and classes of phenolics were predicted in holm oak (Quercus ilex, tocopherol 

(R2 = 0.78-98) and total phenolics (R2 = 0.92); Pintó-Marijuan et al., 2013), willows 

(Salix phylicifolia, total tannins (R2 = 0.89) and total phenolics (R2 = 0.98); Stolter et al., 

2006), blackberries (Rubus fructicosus, total phenolics (R2 = 0.86); Toledo-Martín et al., 

2018), potatoes (Solanum tuberosum, total phenolics (R2 = 0.88); López et al., 2014), and 

ruminant forage (total tannins (R2 = 0.89) and total phenolics (R2 = 0.98); Bomfim, 

2013). However, most of these systems have less diversity and abundance of phenolics 

overall compared to sagebrush. Very few studies have used NIRS to predict complex 

wild threatened plant-herbivore systems. 

Finally, we assessed total coumarin concentrations as a subclass of phenolics that 

are known for antibacterial, antifungal, and anticoagulant properties (McArthur et al., 

1988; Wilt and Miller, 1992; Shultz, 2012). Coumarins show brilliant blue fluorescence 

under UV-light and have been used to classify sagebrush species (Stevens and McArthur, 
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1974; McArthur et al., 1988; Rosentreter, 2005) and predict palatability, specifically for 

the sage-grouse (Figure F.6). Measuring coumarins with a black light is growing as a 

field technique to classify species (Stevens and McArthur, 1974; Rosentreter, 2005; 

Jaeger et al., 2016) and palatability (Figure F.6) of sagebrush and can also be quantified 

colorimetrically in the lab (Figure F.7). Despite the importance of coumarins for 

taxonomic classification, coumarin content was only reliably predicted at Magic (R2 = 

0.77; Table 2.6; Figure 2.19) likely due to distinct patches of dwarf sagebrush species 

inhabiting this population (Table 2.1), including low sagebrush (A. arbuscula) and 

possibly early sagebrush (A. longiloba), which are known to contain high concentrations 

of coumarins (Rosentreter, 2005). In contrast, although Raft River was dominated by low 

sagebrush (Table 2.1), NIRS did not predict coumarins at this site potentially due to the 

overall lower range of coumarin concentrations at this site (Table G.1; Figure H.2). To 

our knowledge, there are no studies using NIRS to predict total or individual coumarin 

concentrations. Increasing our capacity to quantify coumarins would allow for more 

reliable species identification of sagebrush, currently a challenging task, and identify sites 

and plants more palatable to certain sagebrush herbivores. 

By and large, results of phytochemical predictions suggest that NIR spectra can 

reliably determine certain classes of phytochemicals and individual phytochemicals in 

certain species and populations of sagebrush. The variability is most likely explained by 

the organic properties of the diverse compounds comprising the sagebrush chemotypes in 

each population and, consequently, how well they reflect light across the NIR spectrum 

(Curran, 1989; Youngentob et al., 2012). This, in turn, governs the differential spectral 

profiles seen in sagebrush among field sites (Figure A.4) and the ensuing spectral 
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variables (i.e., weighted beta regression coefficients) that most influence the chemical 

predictions by NIRS (Figures A.5-A.11). Although nitrogen is consistently predicted at 

distinct wavelengths in the NIR range (910, 1690, 1980, 2172, 2180, 2300 nm in 

Youngentob et al., 2012; Figures A.5-A.7), phytochemicals contain organic bonds that 

emit light across numerous and diverse ranges of the electromagnetic spectrum (e.g., 

coumarins reflect light strongly in the UV and blue ranges; Stevens and McArthur, 1974; 

Figure A.11), which might create variable interference with nitrogen bonds. Therefore, 

observing both the spectral profiles and weighted beta regression coefficients of samples 

can reveal deviations that potentially inform unexpected outcomes, such as those at Raft 

River, where reflectance spectra align similarly with other field sites (Figure A.4) but the 

large variation in phenolics (Figure H.3) may explain why weighted coefficients are 

distinctive (Figure A.8). Distinct reflectance spectra or weighted coefficients may suggest 

that sensors with different electromagnetic ranges or higher sensitivity are needed to 

predict specific phytochemicals. Moreover, the phytochemicals that were predicted with 

slopes that deviated from a 1:1 reference line suggest that NIRS is underestimating or 

overestimating concentrations. This could indicate concentrations measured above or 

below limits of detection in lab equipment. For example, plateauing concentrations of 

camphor could be due to an overwhelming abundance of camphor in sagebrush (Figure 

C.1 around minute 21.0) that likely oversaturated detection in our gas chromatograph 

instrument, leading to an underestimation of actual camphor concentrations. Deviation 

from the regression line could also be used to identify individual plants within a site or 

population of sagebrush that are chemically or genetically unique, due to climate or 

socioecological disturbances, hybridizations, or other disturbances and management 
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practices. Ultimately, this is one of few studies demonstrating the use of NIRS to predict 

concentrations of a diversity of phytochemicals in a complex wild system. 

Quantifying nutrients and phytochemicals in plants is important in explaining 

herbivore habitat use and informing conservation efforts. Herbivores make foraging 

decisions based on their immediate circumstances, sensory systems, and feedback loops. 

Due to this, when working to conserve habitats important to herbivores, it can be 

beneficial to bypass measuring these arbitrary chemical traits and concentrations and 

directly measure markers of habitat use by herbivores. In this way, we aimed to predict 

markers of herbivory, in the form of the number of bite marks on plants by vertebrate 

herbivores, using NIRS. We did this for two herbivores of conservation concern: pygmy 

rabbits and sage-grouse (Figures 2.2-2.3). Magic predicted pygmy rabbit bite marks the 

best, although still poorly (R2 = 0.31; Table 2.7; Figure 2.20). The other field sites did not 

predict bite marks (Table 2.7). When combining all of the field sites, bite marks of all 

herbivores were predicted poorly (R2 = 0.09; Table 2.7). These results suggest that NIR 

spectra cannot yet reliably be used to predict herbivory, in the form of bite marks, on 

individual sagebrush plants. The only sagebrush population with marginal predictive 

capacity was Magic. This site had one of the smallest sample sizes (n = 30), yet still 

produced the highest predictive result. This could be due to NIRS actually predicting 

another parameter that is correlated to bite marks, the simpler phenotypic diversity at this 

site, or the fact that Magic generally had the widest ranges of chemical values (Table G.1; 

Figures H.4, H.6-H.10). Other studies, including food intake by koalas, ringtail possums, 

and greater gliders on eucalyptus (Foley et al., 1999; Moore et al., 2010), demonstrate 

that NIRS can indirectly predict habitat use in complex wild plant-herbivore systems. 
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These rather revolutionary outcomes make replicating the results in the sagebrush system 

promising. Foley et al. (1999) and Moore et al. (2010) differed from our methods by 

quantifying and predicting foliage intake (g dry matter) in captive koalas relative to 

specific phytochemicals, and then using predictions of phytochemical concentrations 

from NIRS to indirectly predict use of trees in the field. This integrated approach inspires 

the need for similar investigations in the sagebrush-steppe system. Moreover, the more 

controlled conditions in captivity that are translated to the field may strengthen predictive 

capacity, as compared to our entirely in natura assessment. We also measured bite counts 

instead of intake due to the inability to quantify intake in wild animals. Other sources of 

error could be too small of a sample size (Figure 2.7), too small or bimodal of a range of 

bite mark numbers (Figure 2.20), or the unique dynamics of sagebrush chemistry 

responding to browsing at different time scales (Karban et al., 2006; Karban, 2011). The 

chemical composition and abundance of sagebrush changes after browsing by herbivores 

(Karban, 2011). Browsed plants emit volatile signals that can then be detected by nearby 

sagebrush plants, which respond accordingly (Karban et al., 2006). These dynamic 

responses in sagebrush chemistry post-browsing may actually be the traits reflected in the 

NIR spectra and what is predicted rather than the actual cues that influence browsing 

(i.e., a delayed time effect may be occurring). Regardless, these early results suggest that 

NIRS has the potential to indirectly predict herbivore use in sagebrush habitats through 

predicting phytochemical concentrations and directly predicting herbivore use through 

more refined methods. 

Using NIRS to quantify concentrations of chemicals and herbivory in sagebrush 

populations is beneficial to protecting shrub-steppe ecosystems. Our results demonstrate 
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that NIR spectra can reliably predict certain functional chemical traits, in the forms of 

nutrient and toxin concentrations, in individual sagebrush plants and populations. Quickly 

and accurately quantifying chemicals in sagebrush can direct efforts in conserving and 

restoring forage necessary to domestic and wild herbivore survival. For example, 

predicting concentrations of chemical constituents in sagebrush in relation to foraging 

behavior and dose-dependent selection by associated herbivores could help locate sources 

of plants that are palatable to these herbivores, for conservation, translocation, and 

reintroduction purposes. Moreover, quantifying chemical concentrations in sagebrush 

could identify species composition and distribution of restored lands post-disturbance, as 

well as foster bioprospecting in sagebrush, a practice observed by native peoples for 

centuries (Kelley et al., 1992). Although NIRS has not yet been shown to reliably predict 

herbivory—albeit results show room for improvement—threatened herbivores in the 

sagebrush landscape make foraging decisions based on doses (i.e., concentrations) of 

chemicals in the sagebrush they are exposed to (Frye et al., 2013; Fremgen, 2015; Nobler 

et al., 2019). Research also shows the concentration thresholds at which these herbivores 

are making foraging decisions (Frye et al., 2013; Olsoy et al., 2020; Figures D.1-D.4). 

Because of this, NIRS provides an efficacious means of quantifying these threshold 

concentrations across sagebrush habitats and, therefore, indirectly identifying suitable 

habitats or seed sources that could sustain herbivore populations. In addition, sagebrush 

populations that have experienced stressors or disturbances, such as drought or fire, might 

be monitored more effectively using technologies such as NIRS to measure changes in 

chemicals that are indicators of stress. For example, nitrogen is shown to decrease in 

leaves and increase in stems in water-stressed sagebrush (Dina and Klikoff, 1973). In 
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view of these advantages, we recommend employing NIRS in monitoring concentrations 

of phytochemicals in sagebrush with specific focus on those chemicals that respond to 

human interference (e.g., nitrogen concentrations in plants and habitats after a fire) and 

elicit responses by wildlife (e.g., induced chemical defenses in plants after browsing). 
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Figures 

 

Figure 2.1 Field sites where individual sagebrush (Artemisia spp.) samples were 

collected that are important to herbivore populations of conservation concern in 

Idaho, USA. Samples were collected between the years of 2012-2015. 
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Figure 2.2 Indication of pygmy rabbit (Brachylagus idahoensis) browsing on a 

sagebrush shrub. It can be identified by a clean 45-degree bite mark and can be 

differentiated from other lagomorph species by the diameter of the clipping 

(Crowell et al., 2018) and the lack of leafy material left below the shrub. Fresh bite 

marks were identified by a wetter green or bright brown stem interior, as opposed 

to a dry dull brown color. Photo provided by Nobler (2016). 
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Figure 2.3 Indication of greater sage-grouse (Centrocercus urophasianus) 

browsing on a sagebrush shrub. Bites by sage-grouse can be identified by a clean 

bite mark on the leafy material, leaving the sprig stems intact. Photo provided by 

Frye (2012). 
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Figure 2.4 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured nitrogen concentrations (% dw) in individual 

sagebrush (Artemisia spp.) at Magic Reservoir, Idaho, USA. The dotted line 

represents a 1:1 ratio. 
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Figure 2.5 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured nitrogen concentrations (% dw) in individual 

sagebrush (Artemisia spp.) at Cedar Gulch, Idaho, USA. The dotted line represents 

a 1:1 ratio. 
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Figure 2.6 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured nitrogen concentrations (% dw) in individual 

sagebrush (Artemisia tridentata wyomingensis, A. tripartita) at Craters of the Moon, 

Idaho, USA. The dotted line represents a 1:1 ratio. 
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Figure 2.7 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured nitrogen concentrations (% dw) in individual 

sagebrush (Artemisia arbuscula, A. tridentata wyomingensis) at Raft River, Idaho, 

USA. The dotted line represents a 1:1 ratio. 
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Figure 2.8 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured nitrogen concentrations (% dw) in individual 

sagebrush (Artemisia spp.) at four field sites in Idaho, USA, including Raft River. 

The dotted line represents a 1:1 ratio. 
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Figure 2.9 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured nitrogen concentrations (% dw) in individual 

sagebrush (Artemisia spp.) at three field sites in Idaho, USA, excluding Raft River. 

The dotted line represents a 1:1 ratio. 
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Figure 2.10 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured total monoterpene concentrations (AUC/mg dw) in 

individual sagebrush (Artemisia spp.) at Magic Reservoir, Idaho, USA. The dotted 

line represents a 1:1 ratio. 
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Figure 2.11 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured total monoterpene concentrations (AUC/mg dw) in 

individual sagebrush (Artemisia spp.) at Cedar Gulch, Idaho, USA. The dotted line 

represents a 1:1 ratio. 
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Figure 2.12 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured total monoterpene concentrations (AUC/mg dw) in 

individual sagebrush (Artemisia tridentata wyomingensis, A. tripartita) at Craters of 

the Moon, Idaho, USA. The dotted line represents a 1:1 ratio. 
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Figure 2.13 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured individual monoterpene concentrations (AUC/mg 

dw), with camphor shown as the best predicted model, in individual sagebrush 

(Artemisia spp.) at Magic Reservoir, Idaho, USA. The dotted line represents a 1:1 

ratio. 
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Figure 2.14 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured individual monoterpene concentrations (AUC/mg 

dw), with unidentified monoterpene “20.1 min” shown as the best predicted model, 

in individual sagebrush (Artemisia spp.) at Cedar Gulch, Idaho, USA. The dotted 

line represents a 1:1 ratio. 
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Figure 2.15 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured individual monoterpene concentrations (AUC/mg 

dw), with α-Pinene shown as the best predicted model, in individual sagebrush 

(Artemisia tridentata wyomingensis, A. tripartita) at Craters of the Moon, Idaho, 

USA. The dotted line represents a 1:1 ratio. 
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Figure 2.16 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured individual monoterpene concentrations (AUC/mg 

dw), with camphene shown as the best predicted model, in individual sagebrush 

(Artemisia arbuscula, A. tridentata wyomingensis) at Raft River, Idaho, USA. The 

dotted line represents a 1:1 ratio. 
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Figure 2.17 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured total phenolic concentrations (mg/g dw) in 

individual sagebrush (Artemisia spp.) at Magic Reservoir, Idaho, USA. The dotted 

line represents a 1:1 ratio. 
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Figure 2.18 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured total phenolic concentrations (mg/g dw) in 

individual sagebrush (Artemisia tridentata wyomingensis, A. arbuscula) at Raft 

River, Idaho, USA. The dotted line represents a 1:1 ratio. 
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Figure 2.19 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict lab-measured total coumarin concentrations (µmol/g dw) in 

individual sagebrush (Artemisia spp.) at Magic Reservoir, Idaho, USA. The dotted 

line represents a 1:1 ratio. 
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Figure 2.20 Partial least squares regression using near infrared spectroscopy 

(NIRS) to predict the intensity of browsing, in the form of bite mark counts by 

pygmy rabbits (Brachylagus idahoensis), on individual sagebrush (Artemisia spp.) at 

Magic Reservoir, Idaho, USA. The dotted line represents a 1:1 ratio. 
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GENERAL CONCLUSION 

As climate change and anthropogenic disturbances continue to alter landscapes 

across our globe (Millennium Ecosystem Assessment and World Resources Institute, 

2005), it is imperative that we find improved ways of measuring and monitoring these 

drastic changes. New technological advances are needed to rapidly detect these changes. 

One such technology is that of near infrared spectroscopy (NIRS), a form of remote 

sensing that provides unique spectral fingerprints of objects. Moreover, it does not 

require immediate contact with the objects, permitting comprehensive looks into 

expansive (e.g., global snow cover; Bormann et al., 2018), inaccessible (e.g., deep sea 

exploration; Platt et al., 1988; Klemas and Yan, 2014), and imperceptible places (e.g., 

inside geological features; van der Meer et al., 2012; Liang et al., 2014). NIRS has 

demonstrated to be a profound and robust tool in measuring a myriad of environmental 

parameters (Asner and Martin, 2008; Viana et al., 2009; Hogrefe et al., 2017), especially 

those that define the functional traits of plants across landscapes (Moore et al., 2010; 

Olsoy et al., 2016; Vance et al., 2016). Moreover, because NIRS can be done non-

destructively, it can be repeated on the same plant to monitor changes in functional traits. 

NIRS is already being used in numerous domestic and wild systems to measure, 

monitor, and restore habitats important to humans and wildlife. On a global scale, 

satellites equipped with NIR sensors are traveling around the planet on a regular basis 

and providing nitrogen, greenness (i.e., NDVI), and other biogeochemical and 

productivity measurements and imagery from jungles (Eckert, 2012; Bi et al., 2015), 
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forests (Martin et al., 2008; Magney et al., 2019), grasslands (Kennedy, 1989; Zhou et al., 

2019), deserts (St-Louis et al., 2009; Glenn et al., 2016), the arctic (Winther et al., 1999; 

Raynolds et al., 2008), and the atmosphere (Thompson et al., 2018, 2019). Temporal 

assessments have also been conducted using global NIRS data, such as 50 years’ worth of 

terrestrial carbon cycling (Xiao et al., 2019) that informs large-scale long-term ecosystem 

changes. Regionally and locally, manned and unmanned aerial vehicles are doing the 

same at finer resolutions, including measuring spatiotemporally changing nitrogen 

content (Asner and Martin, 2009), nitrous oxide emissions (Soper et al., 2018), and 

biodiversity (Asner and Martin, 2009; Féret and Asner, 2014) in rainforests, monitoring 

health of horticultural crops (Griffel et al., 2018; Tu et al., 2018), mapping forage quality 

for domestic and wild herbivores in savannas (Skidmore et al., 2010), and detecting 

invasive weed encroachment (Lass et al., 2005). At population scales, low flying 

unmanned and terrestrial NIR sensors are being used in the field to monitor finer-scale 

habitat changes across parallel parameters, including species diversity (Mitchell et al., 

2012a), chemical diversity (Aasen et al., 2018), and forage quality for wild herbivores 

(Olsoy et al., 2020).  

Additionally, handheld NIR instruments in the lab are being used on samples 

collected across these spatiotemporal gradients to acquire high-resolution measurements 

in the associated systems (Au et al., 2020). This is seen through moisture content in leaf 

litter important to decomposition and biogeochemical cycles (Kim et al., 2017), root 

growth and production in regard to changing temperatures and carbon supplies (Wang et 

al., 2018), soil properties and organic matter determinant of soil quality for agricultural 

and biological systems (Romsonthi et al., 2018; Ludwig et al., 2018), and nutrient and 
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toxin loads in forage important to wild herbivores (Vance et al., 2016). However, as 

important and informative as all of these NIRS applications are, they do not always 

reflect the entire picture by limiting species involved or focusing on model organisms, 

trading off between geographic or temporal scale and resolution, or simply missing the 

actual ecologically functional parameters that represent interacting species within 

communities across landscapes. Few studies have used NIRS to measure functional traits 

in habitats, such as changing phenotypes in relation to use by associated organisms. 

These measurements are not only functionally important to the dynamics and health of a 

habitat but represent the combination of all of the parameters, such as biogeochemical 

cycling and biodiversity, measured in the studies listed above. Assessing functional traits 

allows for the measurement of myopic or arbitrary parameters to be bypassed and can 

directly measure the phenotypes relative to our changing planet and interacting 

organisms. And understanding these interactions is particularly pressing in complex 

socioecological systems. The sagebrush-steppe ecosystem is one of those systems in peril 

due to a rapidly changing world and is in need of more efficient ways to measure and 

monitor functional traits that define species interactions. 

The sagebrush-steppe ecosystem, spread across 43 million hectares of the 

Western United States, remains a highly threatened biome, with over 50% of its lands lost 

historically (Welch, 2005). The chemically, structurally, and functionally diverse 

phenotypes across this ecosystem house a multitude of vertebrate and invertebrate 

herbivores (Welch, 2005), including those with rapidly declining and threatened 

populations, such as pygmy rabbits (Brachylagus idahoensis; Ulappa et al., 2014; Utz et 

al., 2016; Nobler et al., 2019) and greater sage-grouse (Centrocercus urophasianus; 
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Ulappa, 2011; Frye et al., 2013; Fremgen-Tarantino et al., 2020). These two species rely 

on sagebrush wholly for occupancy and reproduction and for about 50% of their diet in 

summer and up to 100% in winter (Wallestad and Eng, 1975; Green and Flinders, 1980). 

However, they select specific sagebrush species for nesting (Severson et al., 2017; Zabihi 

et al., 2019) and feeding, and even select within species for specific concentrations of 

phytochemicals (Frye et al., 2013; Ulappa et al., 2014; Utz et al., 2016; Nobler et al., 

2019; Fremgen-Tarantino et al., 2020). Therefore, procuring better ways to measure and 

monitor these complex and diverse phenotypes, specifically chemotypes, remains 

paramount to successful management of these threatened herbivores. 

Our research reveals the proficiency of NIRS to classify and predict diverse, 

functional, and critical phenotypes across the sagebrush-steppe. Results indicate that 

NIRS can accurately classify sagebrush taxonomic and phenological phenotypes. As the 

chemical similarity of sagebrush phenotypes increased from species and geographically 

distinct populations within a species to subtle foraging decisions by herbivores between 

individual plants within a population, discrimination among phenotypes became less 

clear until, at times, indistinguishable. One exciting outcome is that identification of 

misclassifications from NIRS may indicate hybridizations, histories of disturbance, or 

unique climatic conditions at a site that offers important insight when monitoring 

habitats. Additionally, our results demonstrate that NIRS can effectively predict 

concentrations of nutrients and phytochemicals, in the forms of both classes and 

individual compounds, in sagebrush. Detecting and quantifying these chemical mixtures 

and concentrations can determine sagebrush patches and populations suitable to herbivore 

species known to be selective about the chemical types and doses they consume 
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(Sorensen et al., 2006; Nobler et al., 2019; Patey et al., 2020). However, when assessing 

the capacity for NIRS to predict herbivory, in the form of categorical browsing (i.e., yes 

or no) or intensity of browsing (i.e., bite marks), NIRS models were not reliable. This can 

likely be attributed to sample size (Au et al., 2020), range of measured values (Au et al., 

2020), or spatiotemporal dynamics of sagebrush chemistry in relation to browsing 

(Karban et al., 2016b). Despite this limitation, NIRS predictions can benefit land 

managers and researchers in measuring and monitoring sagebrush habitats important to 

both humans and wildlife by providing baseline assessments of habitat conditions and 

quality, taxonomic and chemical compositions, distributions, and abundances, and past or 

present biotic and abiotic stressors. NIRS can also direct land managers and researchers 

to plants and populations palatable to herbivores, with distinctive and noteworthy 

phenotypic traits, or high chemical, structural, and potential genetic diversity (Welch, 

2005; Richardson et al., 2012; Turi et al., 2014; Jaeger et al., 2016). Moreover, NIRS can 

be used to help restore disturbed habitats by identifying unique phenotypic traits in 

remnant stands versus new growth and reseeding habitats with these traits. 

Finally, although known to be precise and reliable, remote sensing is not without 

its flaws. Sources of error exist at each stage of the process that must be taken into 

consideration when analyzing and interpreting results. Sources of error can stem from 

sample and spectral collections, data storage and manipulation, and data processing and 

analysis. To ensure results are grounded in reality, it is important to establish confidence 

in the reliability of the data at each step by assessing proper instrument calibration and 

reproducibility, visualizing spectral scans and frequency distributions of variables, and 

performing outlier analyses. For example, we tested each of these areas as potential 
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explanations for the lack of predictive accuracy at Raft River. We determined sample 

collection was not an issue because samples were collected similarly by the same 

researcher to those at Craters, which produced highly effective predictions. We verified 

NIRS instrument calibration and reproducibility by comparing spectral scans and 

transformations with other field sites, and inspections of means and variation were 

consistent with other populations (Figure A.4). Tests of frequency distributions and 

means of chemical variables, alongside outlier analyses, also resulted in similar outcomes 

between Raft River and other field sites (Table G.1; Figures H.1-H.2, H.4-H.10), except 

for total phenolics (Figure H.3), which was the only chemical that NIRS was able to 

predict relatively well at Raft River. The only other dissimilarity between Raft River and 

the other field sites was observed upon inspection of the spectral variables that most 

influence NIRS predictions (Figure A.8). Further investigations of these dissimilarities 

may help to explain some of our unreliable or inaccurate predictions at Raft River. 

However, if similar error tests corroborate reliability of the data, surprising or 

inexplicable analysis outcomes may be due to biotic or abiotic conditions—such as insect 

galls, microbes, fungi, or moisture—masking phytochemical detection in plant material. 

Therefore, these confounding factors must also be taken into account when interpreting 

and explaining remote sensing outcomes. 

Our aim was to explore and champion a pioneering technology, NIRS, in 

monitoring plant and animal populations in a changing landscape, and our research 

demonstrates the capacity for which it can be done. Moreover, it is not enough to just 

monitor these changes, we need to understand the mechanisms by which the changes are 

occurring, and NIRS can measure some of the functional mechanisms underlying 
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changing plant communities. NIRS has been shown to determine functional phenotypes, 

as directed by chemical composition, in an extremely complex and dynamic wild 

system—individual sagebrush plants and populations—important to both wildlife 

(Welch, 2005) and humans (Kelley et al., 1992). NIRS remains a powerful, reliable, and 

expeditious technology in discriminating, describing, and predicting components of 

sagebrush crucial to the effective management of sagebrush-steppe landscapes. 

Furthermore, integrating NIRS outcomes with traditional (e.g., morphology), advanced 

(e.g., metabolomics and genomics), and combinatorial methods will further illuminate 

and help monitor the novel chemical interactions responsible for the morphology, 

physiology, and demographics of plant and animal communities. If we hope to effectively 

manage the changing trajectories of our natural lands facing rampant climate change and 

anthropogenic disturbance, we must find and employ new tools that better allow us to 

monitor these changes. This is already being done in other systems where NIRS is being 

used to measure changing terrestrial carbon cycles (Xiao et al., 2019), soil properties and 

organic matter (Romsonthi et al., 2018; Ludwig et al., 2018), root growth and production 

(Wang et al., 2018), horticultural crop health (Griffel et al., 2018; Tu et al., 2018), and 

nitrous oxide emissions (Soper et al., 2018). The synthesis of these studies and our results 

provides powerful promise of the functional and invaluable use of NIRS in monitoring 

global landscape change. 
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Near Infrared Spectra, Transformations, and Regression Coefficients Within and 

Among Field Sites 
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Near Infrared Spectra, Transformations, and Regression Coefficients Within and 

Among Field Sites 

Near infrared spectroscopy (NIRS) uses electromagnetic energy from organic and 

inorganic bonds in objects to measure reflectance values, which result in unique spectral 

profiles for objects (Rast and Painter, 2019). The NIR electromagnetic spectrum ranges 

from 350 to 2500 nm, which is particularly suited for detecting organic bonds (Curran, 

1989; Youngentob et al., 2012). This substantiates NIRS as a reliable proxy for chemical 

determination in natural objects, such as plants and shrubs (Vance et al., 2016). NIRS has 

been shown, through the detection of chemotypes, to classify genotypes (Amar et al., 

2009; Gebreselassie et al., 2017), morphotypes (Viana et al., 2009; Hetta et al., 2017; 

Martínez-Valdivieso et al., 2018), and foraging behavior of herbivores (McIlwee et al., 

2001; Siitari et al., 2002; Moore et al., 2010). NIRS can also quantify concentrations of 

chemicals in natural objects. Research has demonstrated NIRS measuring nitrogen and 

phytochemical content in domestic feed (Abrams et al., 1987; Mnisi and Mlambo, 2017; 

Saha et al., 2018), fruits (Baranska et al., 2004; Sinelli et al., 2008), wines (Urbano-

Cuadrado et al., 2004; Cozzolino et al., 2008), and wild systems, including jungles (Foley 

et al., 1998; Wiedower et al., 2009; Féret and Asner, 2014), grasslands (Griggs et al., 

1999; Brunet et al., 2007), deserts (Russell et al., 2012; Vaknin and Mishal, 2017), and 

taiga (Stolter et al., 2006). Our research used NIRS to classify chemotypes of sagebrush 

in different species and sites in Idaho, along with quantifying concentrations of chemicals 

within sagebrush. 

To develop the models for NIR spectra to classify and predict these chemotypes, 

we incorporated standard spectral and mathematical transformations to the spectra. Raw 
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spectral profiles, collected from an ASD FieldSpec® 4 spectroradiometer, were measured 

in reflectance units (Figure A.1). These values were then converted to absorbance units 

via a log transformation, log10(1/R), where R was reflectance (Figure A.2). Absorbance 

spectra then underwent a standard first gap derivative transformation (Figure A.3). 

Resulting spectra were truncated to 450-2350nm to remove noise from the NIR sensor. 

Classification and predictive models on sagebrush chemotypes were then performed 

using these transformed spectra. Differences in spectral profiles can be seen among 

sagebrush field sites (Figure A.4). Variables that most contributed to explaining the 

models can also be seen for each chemical class across some of the field sites (Figures 

A.5-A.11). 
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Figure A.1 Example of near infrared reflectance values of sagebrush samples 

collected using an ASD FieldSpec® 4 spectroradiometer and visualized on Camo 

Analytics Unscrambler®. The X-axis is the electromagnetic spectrum from 450-2350 

(nm) and the Y-axis is the proportion of reflectance out of 1.0, where 1.0 is 100% 

reflectance. 
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Figure A.2 Example of near infrared absorbance values (log10(1/R) 

transformation of reflectance (R)) of sagebrush samples collected using an ASD 

FieldSpec® 4 spectroradiometer and visualized on Camo Analytics Unscrambler®. 

The X-axis is the electromagnetic spectrum from 450-2350 (nm) and the Y-axis is 

absorbance units (-log10R). 
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Figure A.3 Example of standard first derivative reflectance calculated on near 

infrared absorbance values of sagebrush samples collected using an ASD 

FieldSpec® 4 spectroradiometer and visualized on Camo Analytics Unscrambler®. 

The X-axis is the electromagnetic spectrum from 450-2350 (nm) and the Y-axis is 

the first derivative of absorbance units (-log10R). 
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Figure A.4 Example of variation in near infrared reflectance values of sagebrush 

samples across four field sites and two years in Idaho, USA, collected using an ASD 

FieldSpec® 4 spectroradiometer. Solid black lines represent means and color 

ribbons represent confidence intervals. The year listed in parentheses after “Magic” 

represents year of sample collection. 
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Figure A.5 Relative influence of spectral variables from the partial least squares 

regression (PLSR) analysis predicting nitrogen at Magic Reservoir, Idaho, USA 

during 2014-2015. The x-axis is the electromagnetic spectrum (nm) and the y-axis is 

the relative influence of the weighted beta regression coefficients. The higher the 

black bar, the greater the influence that spectral variable has in explaining nitrogen 

in the model. Bars above the zero line represent positive predictive relationships and 

bars below the zero line represent negative predictive relationships. 
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Figure A.6 Relative influence of spectral variables from the partial least squares 

regression (PLSR) analysis predicting nitrogen at Cedar Gulch, Idaho, USA. The x-

axis is the electromagnetic spectrum (nm) and the y-axis is the relative influence of 

the weighted beta regression coefficients. The higher the black bar, the greater the 

influence that spectral variable has in explaining nitrogen in the model. Bars above 

the zero line represent positive predictive relationships and bars below the zero line 

represent negative predictive relationships. 
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Figure A.7 Relative influence of spectral variables from the partial least squares 

regression (PLSR) analysis predicting nitrogen at Craters of the Moon, Idaho, USA. 

The x-axis is the electromagnetic spectrum (nm) and the y-axis is the relative 

influence of the weighted beta regression coefficients. The higher the black bar, the 

greater the influence that spectral variable has in explaining nitrogen in the model. 

Bars above the zero line represent positive predictive relationships and bars below 

the zero line represent negative predictive relationships. 
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Figure A.8 Relative influence of spectral variables from the partial least squares 

regression (PLSR) analysis predicting nitrogen at Raft River, Idaho, USA. The x-

axis is the electromagnetic spectrum (nm) and the y-axis is the relative influence of 

the weighted beta regression coefficients. The higher the black bar, the greater the 

influence that spectral variable has in explaining nitrogen in the model. Bars above 

the zero line represent positive predictive relationships and bars below the zero line 

represent negative predictive relationships. 
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Figure A.9 Relative influence of spectral variables from the partial least squares 

regression (PLSR) analysis predicting total monoterpenes at Magic Reservoir, 

Idaho, USA during 2014-2015. The x-axis is the electromagnetic spectrum (nm) and 

the y-axis is the relative influence of the weighted beta regression coefficients. The 

higher the black bar, the greater the influence that spectral variable has in 

explaining nitrogen in the model. Bars above the zero line represent positive 

predictive relationships and bars below the zero line represent negative predictive 

relationships. 
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Figure A.10 Relative influence of spectral variables from the partial least squares 

regression (PLSR) analysis predicting total phenolics at Magic Reservoir, Idaho, 

USA during 2014-2015. The x-axis is the electromagnetic spectrum (nm) and the y-

axis is the relative influence of the weighted beta regression coefficients. The higher 

the black bar, the greater the influence that spectral variable has in explaining 

nitrogen in the model. Bars above the zero line represent positive predictive 

relationships and bars below the zero line represent negative predictive 

relationships. 
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Figure A.11 Relative influence of spectral variables from the partial least squares 

regression (PLSR) analysis predicting total coumarins at Magic Reservoir, Idaho, 

USA during 2014-2015. The x-axis is the electromagnetic spectrum (nm) and the y-

axis is the relative influence of the weighted beta regression coefficients. The higher 

the black bar, the greater the influence that spectral variable has in explaining 

nitrogen in the model. Bars above the zero line represent positive predictive 

relationships and bars below the zero line represent negative predictive 

relationships. 
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APPENDIX B 

Additional Phenotype Classifications Using NIRS 
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Additional Phenotype Classifications Using NIRS 

Near infrared spectroscopy (NIRS) was tested for the accuracy by which it could 

classify phenotypes (i.e., chemotypes) of sagebrush species and field sites across years 

and seasons, as well as categorical representation of herbivore browsing (i.e., browsed vs. 

non-browsed) at one field site in Idaho, USA, by pygmy rabbits (Brachylagus 

idahoensis). Results in Chapter 1 suggest a general reliability of NIRS to classify 

sagebrush phenotypes at these scales of increasing similarity, however relevant and more 

thoroughly controlled analyses were conducted that were not discussed in Chapter 1 and 

are presented here. The first analysis included the classification of phenology (both years 

and seasons) within sagebrush populations and species. Measuring phenology is 

important because it represents the timing of emergence and senescence of sagebrush 

leaves, which affects the habitat use and survival of associated herbivores. At our Magic 

Reservoir field site, when controlling for species (i.e., Wyoming big sagebrush, A. t. 

tridentata), years of sample collection were classified accurately 91.95% of the time 

(Table 1.7). However, samples included both winter and spring/summer collections, so 

when controlling for season (i.e., winter only) and species, results decreased to 77.87% 

(Table B.1). This is likely attributed to sample size. At our Magic Reservoir field site, we 

also assessed the accuracy by which NIRS could classify herbivore browsing, which is a 

highly relevant indicator of herbivore habitat use and quality of habitat. When controlling 

for species (i.e., Wyoming big sagebrush), browsing was classified accurately 60.08% of 

the time (Table 1.9). However, samples included both winter and spring collections, so 

when controlling for season (i.e., winter vs. spring) one at a time, every plant was 
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consistently classified as non-browsed except for one (Tables B.2-B.3). Results indicate 

that being more inclusive, which also increased the samples size, provided better results. 
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APPENDIX C 

Representative Chromatograms for Sagebrush Taxa and Hybridizations 
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Representative Chromatograms for Sagebrush Taxa and Hybridizations 

The sagebrush field sites that were investigated for how well NIRS could classify 

and predict chemotypes in sagebrush had varying degrees of taxonomic and chemical 

diversity. Chromatograms from gas chromatography serve as an excellent visualization 

for this diversity. Gas chromatography operates by separating volatile compounds in 

samples and quantifying their relative concentrations. Sagebrush is known to have a high 

abundance and diversity of volatile compounds known as monoterpenes (Turi et al., 

2014), which are often identifiers of speciation and herbivore use (Frye et al., 2013; Turi 

et al., 2014; Olsoy et al., 2020). We used the output chromatograms from this chemical 

analysis technique to demonstrate chemical variation within and among sagebrush 

species found in varying compositions at each field site. Each peak in the chromatogram 

represents a different compound and the size of the peak, also known as the area under 

the curve (AUC), represents the relative concentration. Each sagebrush sample was 

quantified accordingly and standardized for by its dry weight (dw). The chemical (i.e., 

monoterpene) profiles for Wyoming big (A. t. tridentata), three-tip (A. tripartita), black 

(A. nova), and low (A. arbuscula) sagebrush are displayed in Figure C.1 from bottom to 

top, respectively. Our results indicate that NIRS could serve as an identifier of 

taxonomically and chemically complex sagebrush plants and sites in Idaho. 

 

References 

Frye, G. G., J. W. Connelly, D. D. Musil, and J. S. Forbey. 2013. Phytochemistry predicts 

habitat selection by an avian herbivore at multiple spatial scales. Ecology 94:308–

314. 

Olsoy, P. J., J. S. Forbey, L. A. Shipley, J. L. Rachlow, B. C. Robb, J. D. Nobler, and D. 

H. Thornton. 2020. Mapping foodscapes and sagebrush morphotypes with 



176 

 

 

unmanned aerial systems for multiple herbivores. Landscape Ecology 35:921–

936. 

Turi, C. E., P. R. Shipley, and S. J. Murch. 2014. North American Artemisia species from 

the subgenus Tridentatae (Sagebrush): A phytochemical, botanical and 

pharmacological review. Phytochemistry 98:9–26. 

 

 



177 

 

 

 

Figure C.1 Representative monoterpene profiles from gas chromatography for 

Wyoming big (Artemisia tridentata wyomingensis; Magic Reservoir, Cedar Gulch, 

Craters of the Moon, Raft River), three-tip (Artemisia tripartita; Magic Reservoir, 

Craters of the Moon), black (Artemisia nova; Cedar Gulch), and low (Artemisia 

arbuscula; Raft River) sagebrush (Table 1.1), from bottom to top, respectively, from 

Idaho, USA. X-axis is retention time (min) and Y-axis is the relative abundance of 

the compounds (pA). These chemical profiles demonstrate the chemical diversity 

among sagebrush taxa.  
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APPENDIX D 

Dose-Dependent Selection Thresholds of Plant Compounds by Herbivores 
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Dose-Dependent Selection Thresholds of Plant Compounds by Herbivores 

Herbivores respond differentially to chemicals just as humans do. And the 

pharmacological effect of the chemical is mediated by the dose the herbivore consumes 

(Sorensen et al., 2006; Forbey and Foley, 2009; Patey et al., 2020). The chemicals that 

herbivores consume from plants can be both noxious and therapeutic to their health 

(Sorensen et al., 2006; Patey et al., 2020). Due to this, herbivores are selective not only 

about the types of chemicals they consume but also the dose (Sorensen et al., 2006; 

Forbey and Foley, 2009; Patey et al., 2020). These selective responses produce dose-

dependent thresholds at which herbivores make foraging decisions (Frye et al., 2013; 

Melody, 2017; Nobler et al., 2019). For example, greater sage-grouse (Centrocercus 

urophasianus) positively select to forage on sagebrush with increasing nutritional content 

(Figure D.1), however they do not avoid sagebrush with a particular toxin, 1,8-cineole, 

until it reaches a certain threshold (Figure D.2). The same can be seen in pygmy rabbits 

(Brachylagus idahoensis) in regard to the tradeoff between nutrient and toxin (e.g., 

monoterpene) content (Olsoy, 2019; Figure D.3). Understanding these dose-dependent 

selection thresholds and tradeoffs coupled with using NIRS to rapidly predict those doses 

in sagebrush (Chapter 2) will better allow us to manage plant-herbivore interactions 

across landscapes. 
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Figure D.1 The dose-dependent selection threshold of crude protein (% dw) by 

greater sage-grouse (Centrocercus urophasianus) in Southern Idaho, USA (taken 

from Frye (2012)). The difference in crude protein content is calculated using paired 

browsed and non-browsed sagebrush (Artemisia spp.) samples as a function of mean 

crude protein content within foraging patches. The fitted black line and 95% 

confidence intervals were derived from generalized additive models. The zero line 

represents crude protein concentrations at which no selection by sage-grouse is 

occurring. Values above the zero line indicate higher crude protein content in plants 

browsed by sage-grouse than those not browsed (i.e., selection for crude protein) 

and values below the zero line indicate higher content in non-browsed plants (i.e., 

selection against crude protein).  
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Figure D.2 The dose-dependent selection threshold of the phytochemical, 1,8-

cineole (AUC/100 µg dw), by greater sage-grouse (Centrocercus urophasianus) in 

Southern Idaho, USA (taken from Frye (2012)). The difference in cineole content is 

calculated using paired browsed and non-browsed sagebrush (Artemisia spp.) 

samples as a function of mean cineole content within foraging patches. The fitted 

black line and 95% confidence intervals were derived from generalized additive 

models. The zero line represents cineole concentrations at which no selection by 

sage-grouse is occurring. Values above the zero line indicate higher cineole content 

in plants browsed by sage-grouse than those not browsed (i.e., selection for cineole) 

and values below the zero line indicate higher content in non-browsed plants (i.e., 

selection against cineole). 
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Figure D.3 The dose-dependent selection threshold of the phytochemical, 

Unknown 21.5 min (AUC/100 µg dw), by greater sage-grouse (Centrocercus 

urophasianus) in Southern Idaho, USA (taken from Fremgen (2015)). The difference 

in Unknown 21.5 content is calculated using paired browsed and non-browsed 

sagebrush (Artemisia spp.) samples as a function of mean Unknown 21.5 content 

within foraging patches. The fitted black line and 95% confidence intervals were 

derived from generalized additive models. The zero line represents Unknown 21.5 

concentrations at which no selection by sage-grouse is occurring. Values above the 

zero line indicate higher Unknown 21.5 content in plants browsed by sage-grouse 

than those not browsed (i.e., selection for Unknown 21.5) and values below the zero 

line indicate higher content in non-browsed plants (i.e., selection against Unknown 

21.5). 
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Figure D.4 The dose-dependent selection threshold of phytochemicals in the form 

of increasing concentrations of total monoterpenes (AUC/mg dw) against increasing 

concentrations of crude protein (% dw) by pygmy rabbits (Brachylagus idahoensis) 

in Magic Reservoir, Idaho, USA (Olsoy, 2019). Probability of pygmy rabbit use 

increases with higher crude protein content but lower total monoterpene content in 

sagebrush (Artemisia spp.). 
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APPENDIX E 

External Near Infrared Spectroscopy Analysis 
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External Near Infrared Spectroscopy Analysis 

In agriculture and food sciences, near infrared spectroscopy (NIRS) analyses are 

often outsourced to professional labs, such as Dairy One Forage Laboratory in Ithaca, 

NY, USA. NIRS analyses are then conducted under highly controlled laboratory 

conditions using advanced instrumentation, such as FOSS™ NIRS instruments. These 

conditions are conducive to developing strong predictive models (e.g., R2 > 0.97), 

establishing Dairy One as a golden standard in the field for NIRS chemical analysis. To 

compare our in-house NIRS nitrogen predictions to this golden standard, we sent all of 

our Magic Reservoir sagebrush samples to Dairy One to measure nitrogen content on 

their equipment and receive a calibration equation from their internal WinISI™ software. 

Their analysis produced an R2 of 0.93 (SEC = 0.07; Figure E.1), as compared to our ASD 

FieldSpec® 4 NIRS results of R2 = 0.86 (SEC = 0.09). This demonstrates comparable 

predictions of nitrogen in wild plant systems using our in-house equipment and protocol. 
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Figure E.1 Nitrogen predicted values and calibration equation of individual 

sagebrush samples scanned at Dairy One Forage Laboratories (Ithaca, NY, USA). 

Samples were collected from Magic Reservoir, Idaho, USA in 2014-2015 and 

prepped according to methods listed in Chapter 2, then shipped to Dairy One and 

scanned on their FOSS NIRS™ System II instrument. Resulting spectra were log 

transformed and the 2nd derivative was taken, and calibration equations (n = 489, R2 

= 0.9283, SEC = 0.0728) were developed using the FOSS WinISI™ 4 chemometric 

calibration software. 
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APPENDIX F 

Measuring Individual Phenolics and Coumarin Content for Herbivore Palatability 
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Measuring Individual Phenolics and Coumarin Content for Herbivore Palatability 

Phenolics are a class of phytochemicals known for antiseptic, endocrine, and 

nutrient-inhibiting properties (Acamovic and Brooker, 2005; Turi et al., 2014; Marsh et 

al., 2017). They comprise a large and diverse group of compounds that are highly 

prevalent in plant life (Figure F.1; Acamovic and Brooker, 2005). They can produce both 

noxious and therapeutic effects in consumers (Acamovic and Brooker, 2005). Plant-

herbivore research across many systems has shown that total and individual phenolic 

content in plants influences herbivore foraging decisions. However, we have yet to show 

that total phenolic content significantly influences foraging by specialist herbivores, 

pygmy rabbits (Brachylagus idahoensis) and greater sage-grouse (Centrocercus 

urophasianus), in sagebrush systems. This could be due to the diverse ranges and 

mixtures of phenolics found in sagebrush (Turi et al., 2014) that could be counteracting 

each other and, therefore, not evoking physiological responses in herbivores after 

consumption. However, our research has shown that some individual phenolics do in fact 

elicit responses by these herbivores (Figure F.1). Because of this, we tried to use NIRS to 

predict individual phenolics in sagebrush at one field site where we had assayed these 

individual compounds, Craters of the Moon, Idaho, USA, and produced promising results 

(R2 = 0.53-0.82; Figures F.2-F.5). 

Coumarins are another class of phytochemicals nested within the phenolics class 

that are known for antibacterial, antifungal, and anticoagulant properties (McArthur et al., 

1988; Wilt and Miller, 1992; Shultz, 2012). They tend to be highly polar (Figure F.1) and 

fluoresce a bright blue color under UV-light. This fluorescent nature has been exploited 

to aid in sagebrush classification (Stevens and McArthur, 1974; McArthur et al., 1988; 
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Rosentreter, 2005), as well as predict sagebrush palatability for the greater sage-grouse 

(Figure F.6) and other herbivore species using field (Figure F.6) and lab-based (Figure 

F.7) colorimetric tests. Although both phenolics and coumarins are yet to be predicted in 

sagebrush with great reliability using NIRS, they are compounds that are important to 

measure given their effects on herbivores, as well as species identification. This indicates 

that further research and fine-tuning of methods need to be done to better predict total 

and individual phenolics and coumarins in sagebrush systems. 
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Figure F.1 Concentrations (mAU) of 13 individual phenolics of interest (not 

correlated with other peaks and showing initial quantitative differences between 

browsed types or species) detected in high (H) and low (L) browsed black (Artemisia 

nova, Nova) and Wyoming big (Artemisia tridentata wyomingensis, Wyoming) 

sagebrush by greater sage-grouse (Centrocercus urophasianus) from Idaho, USA. 

Letters represent significant differences among means using a Tukeys HSD test with 

A having higher concentrations than B (unpublished data). Peaks at lower retention 

times represent more polar phenolics that include coumarins (Figures F.5-F.6) and 

peaks with higher retention times represent less polar phenolics. 
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Figure F.2 Partial least squares regression using near infrared spectroscopy to 

predict individual phenolic, unknown “C”, concentrations (mAU) in individual 

sagebrush (Artemisia spp.) at Craters of the Moon, Idaho, USA. Unknown “C” 

eluted around 11 min (of 45 total min) using high performance liquid 

chromatography and was one of the most polar compounds. 
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Figure F.3 Partial least squares regression using near infrared spectroscopy to 

predict individual phenolic, unknown “A”, concentrations (mAU) in individual 

sagebrush (Artemisia spp.) at Craters of the Moon, Idaho, USA. Unknown “A” 

eluted around 8 min (of 45 total min) using high performance liquid 

chromatography and was one of the most polar compounds. 
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Figure F.4 Partial least squares regression using near infrared spectroscopy to 

predict individual phenolic, unknown “K”, concentrations (mAU) in individual 

sagebrush (Artemisia spp.) at Craters of the Moon, Idaho, USA. Unknown “K” 

eluted around 22 min (of 45 total min) using high performance liquid 

chromatography and was one of the intermediate polar compounds. 
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Figure F.5 Partial least squares regression using near infrared spectroscopy to 

predict individual phenolic, unknown “H”, concentrations (mAU) in individual 

sagebrush (Artemisia spp.) at Craters of the Moon, Idaho, USA. Unknown “H” 

eluted around 17 min (of 45 total min) using high performance liquid 

chromatography and was one of the intermediate polar compounds. 
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Figure F.6 Coumarin concentrations (nmol scopoletin equivalents/g dw) in 

relation to browsing by specialist sagebrush herbivore, greater sage-grouse 

(Centrocercus urophasianus), in Idaho, USA. Black sagebrush (Artemisia nova) is 

selectively foraged on more than available by greater sage-grouse (Frye et al., 2013). 
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Figure F.7 Representative fluorescence analysis of coumarin concentrations 

(nmol scopoletin equivalents/g dry weight) on a spectrophotometric plate reader to 

assess sagebrush palatability for specialist herbivores according to in-house lab 

protocol. 

 



199 

 

 

APPENDIX G 

Summary Statistics of Chemical and Herbivory Values 
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Summary Statistics of Chemical and Herbivory Values 

Not all sagebrush is created equal. The following table (Table G.1) displays the 

summary statistics for chemical and herbivory values measured at four sagebrush field 

sites in Idaho, USA. The list is organized by constituent and demonstrates the variability 

of chemical compositions and abundances and herbivore use among sagebrush species 

and sites. 
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APPENDIX H 

Box Plots of Chemical Values by Field Site 
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Box Plots of Chemical Values by Field Site 

Variation in concentrations of phytochemicals comprising sagebrush differ among 

four field sites in Idaho, USA. The figures demonstrate spatiotemporal variation among 

sagebrush populations that may influence capacity for NIRS classifications and 

predictions. 
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Figure H.1 Variation in nitrogen content (% dw) in sagebrush plants among four 

field sites and two years in Idaho, USA. The year listed in parentheses after “Magic” 

represents year of sample collection. 
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Figure H.2 Variation in coumarin content (µmol/g dw) in sagebrush plants 

among four field sites and two years in Idaho, USA. The year listed in parentheses 

after “Magic” represents year of sample collection. 
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Figure H.3 Variation in phenolic content (mg/g dw) in sagebrush plants among 

four field sites and two years in Idaho, USA. The year listed in parentheses after 

“Magic” represents year of sample collection. 
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Figure H.4 Variation in total monoterpene content (AUC/mg dw) in sagebrush 

plants among four field sites and two years in Idaho, USA. The year listed in 

parentheses after “Magic” represents year of sample collection. 

 



214 

 

 

 

Figure H.5 Variation in number of monoterpene compounds found in sagebrush 

plants among four field sites in Idaho, USA. The year listed in parentheses after 

“Magic” represents year of sample collection. 
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Figure H.6 Variation in individual monoterpene, camphor, content (AUC/mg dw) 

in sagebrush plants among four field sites and two years in Idaho, USA. The year 

listed in parentheses after “Magic” represents year of sample collection. 
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Figure H.7 Variation in individual monoterpene, camphene, content (AUC/mg 

dw) in sagebrush plants among four field sites and two years in Idaho, USA. The 

year listed in parentheses after “Magic” represents year of sample collection. 
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Figure H.8 Variation in individual monoterpene, β-pinene, content (AUC/mg dw) 

in sagebrush plants among four field sites and two years in Idaho, USA. The year 

listed in parentheses after “Magic” represents year of sample collection. 
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Figure H.9 Variation in individual monoterpene, 1,8-cineole, content (AUC/mg 

dw) in sagebrush plants among four field sites and two years in Idaho, USA. The 

year listed in parentheses after “Magic” represents year of sample collection. 
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Figure H.10 Variation in individual monoterpene, borneol, content (AUC/mg dw) 

in sagebrush plants among four field sites and two years in Idaho, USA. The year 

listed in parentheses after “Magic” represents year of sample collection. 

 




