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ABSTRACT 

In this dissertation, memristor-based spiking neural networks (SNNs) are used to 

analyze the effect of radiation on the spatio-temporal pattern recognition (STPR) capability 

of the networks. Two-terminal resistive memory devices (memristors) are used as synapses 

to manipulate conductivity paths in the network. Spike-timing-dependent plasticity (STDP) 

learning behavior results in pattern learning and is achieved using biphasic shaped pre- and 

post-synaptic spikes. A TiO2 based non-linear drift memristor model designed in Verilog-

A implements synaptic behavior and is modified to include experimentally observed effects 

of state-altering, ionizing, and off-state degradation radiation on the device. The impact of 

neuron “death” (disabled neuron circuits) due to radiation is also examined. 

In general, radiation interaction events distort the STDP learning curve undesirably, 

favoring synaptic potentiation. At lower short-term flux, the network is able to recover and 

relearn the pattern with consistent training, although some pixels may be affected due to 

stability issues. As the radiation flux and duration increases, it can overwhelm the leaky 

integrate-and-fire (LIF) post-synaptic neuron circuit and network does not learn the pattern. 

On the other hand, in the absence of the pattern, the radiation effects cumulate and the 

system never regains stability. Neuron-death simulation results emphasize the importance 

of non-participating neurons during the learning process, concluding that non-participating 

afferents contribute to improving the learning ability of the neural network. Instantaneous 

neuron death proves to be more detrimental for the network compared to when the afferents 

die over time thus, retaining network’s pattern learning capability.
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CHAPTER 1: INTRODUCTION 

The human brain’s ability to learn and adapt is a hallmark for intelligence. It can 

process multiple streams of information simultaneously while using very little energy. The 

average human brain has billions of neurons and trillions of synaptic connections [1]. It is 

extremely difficult to model the vastness and complexities of the human brain partially 

because its operation is still not completely understood and partially because our 

computing technology is not advanced enough. Presently, the fastest supercomputer, 

OLCF-4, developed by IBM for Oak Ridge National Lab is capable of operating at 200 

petaFLOPS (1015) and the human brain is postulated to operate at 1 exaFLOPS (1018) [2]. 

That said, researchers, today are working to mimic the behavior of complex biological 

networks using electronic artificial neural networks. 

Artificial neural networks (ANNs) are densely connected computing systems 

inspired by the topology of biological neural networks. ANNs are adept at processing 

massive amounts of information in parallel and have the ability to derive meaning from 

complicated or imprecise data by recognizing complex patterns and trends. ANNs can 

adapt based on the inputs such that they can independently determine the action they need 

to take. ANNs also have the ability to learn new functions without help based on the inputs 

and deduce reasonable output. A trained ANN can perform visual recognition [3], character 

recognition [4], voice-activated assistance [5], stock market forecasting [6], and are used 

in self-driving cars [7]. Presently, multilayer/deep ANNs (having multiple hidden layers of 

neurons between input and output layers) are designed using complicated algorithms. Any 
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successful hardware implementation of ANNs with a computer becomes a complex task, 

as they require higher processing speed and system memory. Custom-designed hardware 

can reduce the implementation cost, increase the processing speed, and simplify the whole 

network [8]. 

A memristor is a non-linear passive two-terminal electrical component relating 

electric charge and magnetic flux (see Section 0). They are nonvolatile analog memories 

that are programmable, consume relatively low power, are manufactural at the nanoscale, 

have high density, and function very similar to biological synapses [9], [10]. Due to all 

these properties, memristors have been emerging as viable candidates for electronic spiking 

ANNs. Memristors are widely expected to be used in future electronic spiking neural 

network implementations.  

Industry pioneers are designing neural networks that can also be used in solar 

radiation forecasting, object classification and matching, event filtering, facial recognition, 

combat automation, target identification, and weapon optimization [11]–[15]. Future 

systems are expected to be even more deeply biologically inspired, using pulses or spikes 

to transfer data between elements as opposed to continuous variables and activation 

functions. Customized hardware implementations will enable these spiking neural 

networks (SNNs) to be not only highly efficient but also incredibly robust and fault-

tolerant. Therefore, SNNs will find numerous applications in harsh, radiation-filled 

environments such as space or at nuclear and military installations to carry out a wide 

variety of missions. Presently, shielding and hardening are common practices to protect 

devices and circuits from radiation, but these techniques are unable to block all particles 

from interacting with underlying electronics [16], [17]. It is therefore important to observe, 
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model, and simulate the effects of radiation on electronic SNNs so that more robust 

networks can be designed for these applications. 

This dissertation explores resistive memory devices and models that could be used 

as electronic synapses. Further, radiation effects on the memristive devices are studied and 

a behavioral model is modified to include these effects. The memristor model is used to 

design a feed-forward fully connected neural network for spatio-temporal pattern 

recognition. Learning in the network is achieved using spike-timing-dependent plasticity 

(STDP) learning behavior. The effects of the radiation on the STDP learning rule, system 

stability, and pattern learning ability of the spiking neural network are reported in this 

dissertation. Lastly, the effect of the neuron death on SNN is also discussed. 

This chapter will provide a detailed background and the literature review on 

biological brain anatomy, neural networks, electronic synapses, memristive devices, and 

radiation basics. These basic components provided the necessary motivation for the 

approaches used in this research. Section 0 will summarize the highlights of the research 

and overview of the following chapters. 

1.1 Biological Neural Networks 

The core component of the human nervous system is the brain, which contains cells 

known as neurons. Neurons are electrically excitable and communicate with each other by 

electro-chemical signaling through synapses, which form at the connection points. The 

human brain consists of more than 100 billion neurons and each neuron is connected to as 

many as 20,000 synapses (Purkinje cell in the cerebellum) [1].  

A neuron, as illustrated in Figure 1.1, consists of three basic parts: soma (cell body 

containing the nucleus), dendrites (branches extending away from the soma forming a 
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“dendritic tree”) and a single axon (nerve fiber extending from the soma and much longer 

than other dendrites). 

 
Figure 1.1 llustration of a typical neuron structure and its common anatomical 

features. The figure is adapted from 

https://commons.wikimedia.org/wiki/File:Neuron-nl.svg. 

The neuron sends out spikes of electrical activity through the axon but collects 

signals from other neurons through dendrites. Neurons maintain a voltage gradient across 

their membrane with the help of sodium, potassium, chloride, and calcium ions. Due to the 

change in concentration of these ions, the voltage gradient may change significantly, 

depolarizing the neuron [18]. In such a case, the nucleus will generate an electrochemical 

pulse called an action potential, similar to one in Figure 1.2, which travels down its axon. 

A neuron requires a threshold of about −30 to −50 mV to initialize an action potential, 

throughout the firing process the membrane potential reaches about 40 mV in humans. A 

neuron may take about 1 ms of the refractory period to reach its resting state after reaching 

action potential [1], [19].  

https://commons.wikimedia.org/wiki/File:Neuron-nl.svg
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Figure 1.2 Approximation of an action potential generated by a neuron [20]. The 

figure is published under the Create Commons license and is adapted from 

https://commons.wikimedia.org/wiki/File:Action_potential.svg. 

Myelin sheath (found in long-range never connections) is sometimes wrapped 

around the axon, as shown in Figure 1.1, facilitates the flow of the action potential across 

the axon by providing electrical insulation. The Nodes of Ranvier refreshes the action 

potential as it travels down the long distance, as they are the centers of voltage-gated 

sodium channels [1], [19]. A typical neuron may fire anywhere from five to fifty times 

every second. As action potential reaches the axon terminal, as in Figure 1.1, it is ready to 

be transmitted to another neuron via a connection called a synapse. 

A synapse is a junction between two neurons that facilitates transmission of the 

action potential between two neurons, and this transmission is the synaptic connection. A 

synaptic cleft is a small gap between two neurons, as seen in Figure 1.3. Synapses are about 

20 to 40 nm wide but they can vary in size, structure, and shape. Synapses are mostly 

unidirectional and are most commonly observed between the axon-dendrite, as shown in 

Figure 1.3, but there are a few found between dendrite-dendrite, axon-axon, or dendrite-

axon [21]. 

https://commons.wikimedia.org/wiki/File:Action_potential.svg
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Figure 1.3 Illustration of the anatomy of a chemical synapse axon to dendrite 

communication. During an action potential, the synaptic vesicle releases the 

neurotransmitters defining synaptic weight. Neurotransmitters received by the post-

synaptic dendrite contribute to simulate the action potential in the post-synaptic 

neuron [22]. The illustration is published under the Create Commons license and is 

adapted from https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg. 

The pre-synaptic neuron’s axon terminals contain multiple membrane-bound 

synaptic vesicles filled with neurotransmitter molecules (like the amino acids glutamate, 

adrenaline, and GABA) as shown in Figure 1.3. When the neuron generates an action 

potential, Ca2+ ion channels open, increasing the ion concentration inside the cell that leads 

to the release of neurotransmitters into the synaptic gap between neurons. These 

neurotransmitters diffuse across the gap and bind to the receptors attached to the dendrites 

of the post-synaptic neuron. This changes the permeability of the receptor neuron 

membrane and as a result, the ion concentration inside the cell increases. Thus, the post-

synaptic neuron sees the potential change. This process takes just a few milliseconds [21], 

[23].  

1.2 Artificial Neural Networks 

Artificial neural networks (ANNs) are systems that are inspired by biological neural 

networks like the brain. Today, we desire our ANNs to have the ability to derive meaning 

https://commons.wikimedia.org/wiki/File:SynapseSchematic_en.svg
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from complicated or imprecise data. Contrary to biological neural networks, spiking ANNs 

have to be trained to perform every task from scratch, using a fixed topology chosen for 

the set task. The learning process takes more iterations and an ANN can be usually trained 

for one or only a few specific tasks. On the other hand, ANNs are 10 million times faster 

than biological networks and are over a million times less prone to error than the human 

brain. The human brain is slower but unlike ANNs, has massive parallel computing ability, 

and can work with multiple receptors on skin, ear, eyes, mouth, and skin at a time [24]. 

Even though the ANNs are still in their infancy, their development will be a significant 

step forward for humankind and will undoubtedly advance both neuroscience and 

engineering. 

In literature, ANNs are designed by either using non-spiking neural networks (non-

SNNs) or spiking neural networks (SNNs). Unlike non-SNNs, SNNs use the shape and 

size of the pulses to change the conductivity of the synapse similar to spike-timing-

dependent plasticity (STDP). STDP is a biological process that changes the strength of the 

connection between neurons in the brain based on the pre- and post-synaptic neuron firing 

time. Non-SNNs can either be software-based deep learning networks implemented using 

software like Python, MATLAB, or TensorFlow, or they can be designed using hardware, 

these are true analog networks that use voltage signals and systems to implement their 

software counterparts. Similarly, SNNs can be software-based or hardware-based 

(electronic spiking neural networks). The following section compares the hardware and 

software-based spiking neural networks. 

Compared to most ANNs, SNNs are more biologically realistic and potentially 

powerful [25]. They are designed using spiking neurons that transfer information via 
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precise timing or sequences of neural action potentials [26]. Neurons in biological neural 

networks are electrically excitable and communicate with each other by electrochemical 

signaling via synaptic connections. The strength of the connections between biological 

neurons is referred to as the synaptic weight, which changes over time depending on the 

pre- and post-synaptic neuron activity. Spike-timing-dependent plasticity (STDP) is one 

biological process that alters the weight depending on the pre- and post-synaptic neuron 

firing time. One way to implement STDP in electronic SNNs is to modify the time, shape, 

and magnitude of the action potentials appropriately. 

1.2.1 Software-Based SNNs 

In software-based SNNs, weight change, topology, and learning are defined using 

software algorithms implemented using a digital, or von Neumann architecture. The time 

difference between pre- and post-synaptic neurons is detected and synaptic weights are 

modified accordingly using the STDP rule. Many multi-layer SNN algorithms have been 

successfully implemented in software to solve practical problems like speech recognition 

[27], face recognition [28], handwriting recognition [29], and robot control [30].  

Software-based SNNs lead to a tradeoff among accuracy, memory, and processing 

speed. The need for non-volatile synaptic weight storage becomes a concern because 

continuous updates and fetch-decode-execute cycles require significant power 

consumption. Another concern is the implementation of multilayer networks that need a 

readout of synaptic weights in each epoch. These are complicated to implement and add 

mismatches and communication errors into the network [10], [31], [32]. 
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1.2.2 Hardware-Based or Electronic SNNs (ESNNs) 

On the other hand, the physical realization of synapses using memristors is 

becoming a reality because they have the potential to solve many of the above-mentioned 

issues [33], [34]. Memristors are non-volatile and do not lose their state, thus eliminating 

the need for readout of synaptic weights and reducing communication overhead across the 

network. Unlike other non-volatile memories, memristors do not need to be refreshed to 

maintain their state, and this decreases the power consumption of the system. Hardware 

implementation of SNNs will not require complex algorithms and their scalability will 

solve the issue of chip area [10]. 

1.3 History of Electronic Synapses 

In literature, electronic synapses are implemented using various electrical circuits 

and components. Past studies focus mainly on CMOS synapses, floating gate transistor 

synapses, and the memristive synapses that are discussed in this section. Since our brain 

has over a quadrillion synapses, a circuit that can mimic one synapse might not be very 

useful when scaled to a larger scale. Thus, lower density makes an electrical system very 

desirable as an electrical synaptic device because it will decrease power consumption and 

it will be more manageable and understandable. 

1.3.1 CMOS Synapses 

In 2003 Chicca et al. [35] designed a CMOS circuit where each synapse is 

represented using 14 transistors and two capacitors covering about 55 or145 µm × 31 µm 

in a 0.8 µm CMOS process. Later, in 2007, the Douglas team implemented the CMOS 

synaptic circuit on a chip with neurons in an array [36]. Using a 0.8 µm CMOS process the 

team successfully implemented a network of 32 neurons and 256 synapses in an area of 



10 

 

 

 

1.6mm2. They were also expecting to implement a network of 32 neurons and 8000 

synapses using .32 µm CMOS technology using a 10 mm2 Si chip space [36]. 

 In 2004 Asai et al. [37] implemented a synaptic circuit where they were able to 

significantly decrease the number of transistors to 5 with no capacitor required, as shown 

in Figure 1.4. This layout decreased the total area of each synapse to 35 µm × 36 µm with 

a 1.5 µm scalable CMOS rule. Unfortunately, they were not able to implement their 

synapses with a larger neural network because of the large values of parasitic capacitances 

across the wafer. 

 
Figure 1.4 CMOS synaptic circuit with five transistors and no capacitor, thus 

decreasing the chip area considerably. Unfortunately, the circuit did not make it to 

the larger neural networks due to the presence of a large parasitic capacitor [37]. © 

2005, 1EEE. 

Implementation of CMOS synapse with a tunable pair-based STDP learning rule 

has been simulated in [38]. This design achieved a more biologically realistic STDP 

response while using fewer components than the energy-efficient synaptic circuit presented 

in  [39]. 
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It is very complicated if not impossible to design large neuromorphic circuits (~1015 

synapses) where each CMOS synapse is implemented using multiple transistors and 

capacitors. Thus, scalability and extremely high density is the biggest concern in the case 

of CMOS synapses. On the other hand, a single floating gate transistor can represent one 

synapse, thus floating gate transistors were a more desirable representation of a synapse 

than CMOS transistors. 

1.3.2 Floating Gate Transistor Synapses 

Floating gate transistors work very similarly to flash memory cells and can be 

designed to store a range of charge states in the floating gate. The biggest advantage of 

using floating gate synapses was that their area can be scaled down. 

 
Figure 1.5 (a) Schematic of a two-terminal floatation gate transistor operating in 

memristive operation mode. Control gate (CG) and Source (S) are grounded while 

drain (D) sees the bias change. Bulk is kept at minimum voltage to avoid shorting 

with drain. (b) The pinched I-V characteristic of the said schematic [40]. The figure 

is reprinted from M. Pierce, Journal of Applied Physics 114, 194506 (2013), with the 

permission of AIP Publishing. 

In 1996, Diorio et al. [41] designed a floating gate synapse. This synaptic transistor 

was nonvolatile, bidirectional, dependent on stored memory, compact, and operated off of 

a single polarity supply with low power consumption. To change the state of the device, 
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bias is applied to the Control Gate (CG as in Figure 1.5 (a)) that will inject the hot electrons 

to the Floating Gate, and Fowler–Nordheim tunneling is used to remove those electrons 

[41], [42]. 

By 2013, the Ziegler group [40] was able to design a synaptic floating gate 

transistor, its characteristics are depicted in Figure 1.5 (b) and are very similar to 

memristors. The resistance or conductance of the device is determined by the amount of 

charge stored on the floating gate capacitor. These devices had higher cycling capacity, 

better switching control, silicon technology compatibility, and were able to follow the 

Hebbian learning rule successfully. The floating gate had finite capacitance, which 

introduced a saturation limit for the synaptic weight [40]. 

Many more groups developed floating gate transistor synaptic arrays and circuits 

[43]–[47]. Unfortunately floating gate suffers from a SiO2 trapping issue, making the 

devices unreliable and leading to a slower weight update [40]–[44]. 

1.3.3 Memristor Synapses 

Memristors (discussed in detail in Section 0) are very similar to the synapses in our 

brains. In the brain, synapses facilitate communication between the neurons. Synaptic 

weight defines the strength of the connection between neurons, which is believed to enable 

our biological system to remember, forget, and function [36], [48], [49]. A memristor 

behaves similarly to synapse for it can store past state, giving it a characteristic hysteresis, 

as presented in Figure 1.8. Similar to synapses, memristors are the connections between 

the electronic neurons. Memristors can change their conductivity to make the connection 

between two electrical neurons more or less resistive based on the pre- and post-synaptic 

activity. Unlike most memristors, synapses are unidirectional and are chemically driven. 
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Synapses designed using multiple memristors are also studied in the literature, like 

memristor-based differential pair synapse [50], memristor-based bridge synapse [9], and 

multi-memristive synapse [51]. Multi-memristive synapses are used to increase the 

dynamic range and resolution of the synapses, differential pair synapse includes both short- 

and long-term synaptic plasticity, and bridge synapses improve the linearity of memristor 

over the synaptic weight range.  

 
Figure 1.6 The schematic of memristor-based bridge synapse. Vin changes the 

weight of the memristors set-up as a voltage-divider circuit. The total synaptic 

weight across terminal A and B is converted to current by the three transistor 

differential amplifier added to the left [9], [10]. © 2012, 1EEE. 

In 2011, Kim with Chua [9] introduced the concept of the memristor-based bridge 

synapse, as in Figure 1.6. The weight of the memristors is changed by varying in the input 

voltage “Vin” which will have the memristor set-up as a voltage-divider circuit. When Vin 

is positive, memristance of M1 and M4 will decrease but M2 and M3 will see the increase in 

memristance. In this case, the voltage at Node A will increase and represent the increase in 

synaptic weight. This synaptic weight is converted to current by the three transistor 

differential amplifier added to the left of the synaptic bridge circuit in Figure 1.6. This 

circuit was simulated with the neuron circuit to implement a 2-D image-processing task. 
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Each memristor size is projected to be less than 5 nm thus decreasing the synaptic area and 

the power consumed considerably less compared to the CMOS or the floating gate synapse 

(discussed in Section 0 and 0 [9]. 

In 2012, Adhikari et al. [10] went a step further and used the memristor bridge 

synapse to simulate a multilayer neural network and presented its learning behavior. The 

networks were successfully able to learn and solve the real-world problem of car detection. 

This simulation presented the possibility of using a memristor-synapse based neural 

network in real-world applications with the benefits of simpler architecture, reduced chip 

area, weight evolution linearity, and reduced power consumption [10]. 

A memristor has been successfully implemented as a synapse in literature in 

multiple other studies and multiple neural networks also supported the use of memristors 

as a synapse [52]–[56].  

1.4 Memristors 

Chua postulated the memristor in 1971 [57]; he defines it as the fourth basic circuit 

element along with the resistor, capacitor, and inductor.  The four basic variables of 

voltage, charge, current, and flux associate the four basic circuit elements, as shown in 

Figure 1.7. The Ideal resistor is defined by the relationship between the current (i) and 

voltage (v) as v = iR. Similarly, the capacitor is defined by the charge (q) and voltage (v) 

as dv = dq/C(q). The ideal inductor relates magnetic flux (φ) and current (i) as dφ = L(i) 

di. Chua postulated a memristor as a memory resistor defined by the relationship between 

flux (φ) and charge (q) as dφ = M(q) dq [57]. He further expanded on this theory in 

references [57]–[63]. 
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Figure 1.7 Four basic circuit elements and their relationship with each other via 

basic electrical variables [57]. The figure is adapted from [64]. 

 
Figure 1.8 Memristor I-V characteristics resulting from 650 mV peak-to-peak 

sine pulse. Characteristics show a hysteresis loop pinched at zero, the area of 

hysteresis decreases with increasing frequency and becomes a straight line at very 

high frequency [65]. 

Chua [57]–[63] and many other researchers [65]–[68] show the electrical properties 

of the memristors. Figure 1.8 shows the I-V characteristics of a memristor from the 

behavioral memristor model used in this dissertation. For any device to be a memristor, it 
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should exhibit the following three characteristics [65]; a pinched hysteresis loop when a 

periodic signal is applied, the hysteresis lobe area must decrease monotonically as input 

frequency increases, and the pinched hysteresis loop must reduce to a line as frequency 

tends to infinity, as shown in Figure 1.8.  

 A typical memristor will change its resistance state when the desired bias is applied 

across it and will maintain this new resistance state until another set of sufficient bias 

changes it. A low resistance state is the set-state and the high resistance state is the reset-

state. This property enables the memristor device to be used as a memory element. The 

memristive device can also show multiple intermediate states depending on the material 

and the switching mechanism of the device. The following section explains different types 

of memristors, see Figure 1.9 and their physical switching mechanisms. 

 
Figure 1.9 Classification of memristors based on their switching mechanism. 

1.4.1 Metal Ion (Conductive Bridging RAM) 

Conductive Bridging Random Access Memory (CBRAM) devices have a Metal-

Insulator-Metal (MIM) structure [69]. The device structure is asymmetric, with one 

electrode as an active metal like Ag or Cu. Positive voltage oxidizes the active metal atoms 
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into ions, which migrate through the insulator layer under the applied electric field. The 

metal filament continues to grow until it reaches the other electrode. At this point, the 

connection completes and the device resistance decreases significantly, putting it in the set-

state as shown in Figure 1.10 (a). A negative voltage is applied to reset the device, which 

reverses the electrochemical process and leads to retraction of the filament thus putting the 

device in the high resistance state as in Figure 1.10 (b) [69]–[71]. 

 
Figure 1.10 Illustration of CBRAM memristive device MIM structure. (a) The 

device is in low resistance state as the conductive active metal filament connects the 

top and the bottom electrode. (b) The metal filament is retracted to the top 

electrode, putting the device in a high resistance state. The figure is adapted from 

[72]. 

CBRAM devices are fabricated by multiple researchers, as in [73]–[81]. Typically 

Ag and Cu are the active metal for these devices due to their high ion mobility. It is 

observed in the previous research that the characteristics of CBRAM devices are mainly 

dependent on the active metal ion mobility, active metal oxidation rate and the supply of 

the ions forming the metal filament [69], [71], [82]. CBRAM devices are scalable, have 

fast switching time, low current, and high ON/OFF ratio. The CMOS compatibility study, 

however, indicates device variability and endurance issues with these devices [69], [71], 

[73], [75], [77], [80], [81]. 
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1.4.2 Oxygen-Vacancy (RRAM) 

In resistive random access memory (RRAM) devices, atoms reduced to anions 

migrate across the active layer. Most devices use oxygen-vacancies (VO) in the migration 

process. Oxygen-vacancy memristors are also MIM devices, but unlike CBRAM, RRAM 

uses inert top and bottom electrodes and the oxygen ions are native to the active/switching 

layer. There is a built-in asymmetry in the device, as one of the oxide electrode interfaces 

will have a higher VO concentration depending upon the metals used. As an electric field 

is applied, the concentration of VO increases and diffuses through the active layer, forming 

a channel. This conductive channel can set and reset the device depending upon the bias 

applied across the device [69], [71], [83], [84]. 

Successful fabrication of RRAM devices is reported in [83]–[90]. Switching in 

these devices is the result of Joule heating, ionic motion and electrochemical reactions 

driven by the electric field [69], [71], [84], [86], [89]–[92]. RRAM devices show desirable 

characteristics like excellent scaling, multilevel switching (desirable for neuromorphic 

computing), high endurance and fast switching, but are usually accompanied by high 

programming current, device variability, low power efficiency and low on/off ratio [69], 

[71], [85], [87]–[89], [93].  

1.4.3 Phase Change Memory (PCM) 

PCM devices change their phases from amorphous to crystalline or vice-versa to 

change their resistive state. The amorphous phase presents the high resistance or reset-state 

and the crystalline state is the low resistance or set-state. To change the state of the device, 

bias is applied to melt the active layer, and then the device is quenched fast into the 

amorphous state or cooled slowly into the nucleation and growth state, thus crystallizing 
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the active layer. Thus, set and reset input pulses for PCM devices look very different [69], 

[94]–[96]. 

Many groups have successfully fabricated PCM devices as in [97]–[102]. As PCM 

is the first of the memristive devices, they are one of the most refined memristive devices 

and are in production by IBM, Micron, and Intel. PCM devices are observed to have low 

voltage unipolar switching and multilevel switching but are observed to have lower 

endurance, and higher current, thus higher power consumption and require relatively larger 

feature size [97], [102]–[105]. 

1.4.4 Self-Directed Channel (SDC) 

SDC memristive devices are ion-conducting devices that change resistance as Ag+ 

moves into channels within its active layer. Permanent conductive channels formed in 

Ge2Se3 active layer via metal-catalyzed reaction contain Ag agglomerate sites. The Ag 

concentration determines the resistive state of the device. SDC device looks similar to the 

CBRAM that also uses Ag or Cu ions to change its resistance. However, SDC fabrication, 

structure (as in Figure 1.11), and working mechanisms are significantly different. SDC 

devices use Ge-rich chalcogenide glass and do not require photo-doping or thermal 

annealing. The Ag source and the active layer are separated by the SnSe layer thus avoiding 

Ag ion migration at high temperature [106]. 

In the first forming cycle, Sn ions generated from SnSe are forced into the active 

Ge2Se3 layer. Sn ions facilitate an energetically favorable substitution of Ag for Ge on the 

Ge-Ge bond, thus, creating Ag-Ge sites in the active layer that work as Ag agglomeration 

sites. The device resistance can be changed by adding or removing Ag from the 

agglomeration sites, without necessarily forming a metallic filament [106]. SDC devices 
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are observed to work well over a wide range of temperatures, have fast and multilevel 

switching, and provide low voltage switching thus low power consumption [106]. 

 
Figure 1.11 Layered structure of an SDC memristive device showing the 

separation Ge2Se2 active layer and Ag metal layer, thus making the device operable 

to higher temperatures. Layer thicknesses not to scale [106]. The figure is adapted 

from the article published under the Create Commons license, 

https://doi.org/10.1016/j.mejo.2016.11.006. 

1.4.5 Intercalated Ions  

Recently, in 2017, references [107] and [108] used Li and an organic polymer, 

respectively, to create a synaptic device for neuromorphic computing and a synaptic 

transistor for low power analog computing. These devices have great retention and low 

programming power, but both lag in switching speed, energy efficiency, and drive current. 

In 2018 [109] presented a three-terminal electrochemical graphene memristor and [110] 

designed a two-terminal monolayer MoS2 device for synaptic computation. These devices 

have lower power consumption, good endurance, and show multilevel switching, but 

further improvements are required to improve energy efficiency and switching speed. 

In three-terminal memristive devices [109], Li-ions intercalate between multi-layer 

graphene when current is applied at the reference electrode, shown in Figure 1.12 (b). The 

intercalated Li-ions make the graphene layer more conductive similar to the biological 

https://doi.org/10.1016/j.mejo.2016.11.006
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synapse shown in Figure 1.12 (a). Thus, the resistivity of the graphene layer can be changed 

by changing the concentration of intercalated Li ions in the graphene as seen in Figure 1.12 

(c).  Li is chosen because it has been well characterized and has a high diffusion coefficient 

(7 x10−5 cm2s−1) in a graphene bilayer, leading to fast switching speed [111], [112]. These 

memristive devices are compatible with CMOS and may find applications in flexible 

electronics [113], [114]. 

 
Figure 1.12 Intercalated Li-ion in graphene memristive device structure. (a) 

Schematic of a biologic synapse compared with (b) schematic of the graphene 

synapse, applying current at reference electrode changes the synaptic weight. Pink 

arrows zoom into the illustration of the intercalated Li ions into graphene. (c) The 

purple arrow indicates the de-intercalation of Li-ion out of graphene and the pink 

arrow shows the intercalation of Li ions moving into graphene [109]. © 2018 Wiley. 

Used with permission from Mohammad Taghi Sharbati, Yanhao Du, Jorge Torres, 

Nolan D. Ardolino, Minhee Yun, and Feng Xiong, Low‐ Power, “Electrochemically 

Tunable Graphene Synapses for Neuromorphic Computing”, Advanced Materials, 

John Wiley and Sons. 

1.5 Radiation 

Radiation is the energy emitted as an unstable atom undergoes radioactive decay. 

Sources of radiation range from stars in space, to nuclear warheads, nuclear power plants, 

and nuclear accidents on earth. Radiation can be non-ionizing (have enough energy to 

vibrate the atoms in a molecule) or ionizing (can remove electrons from the atoms), which 
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can be detrimental to living things and electronic devices and circuits. Ionizing radiation 

can be in the form of fast-moving energy particles (alpha, beta, and neutrons) or 

electromagnetic rays (gamma and x-rays). The electromagnetic spectrum is presented in 

Figure 1.13. 

 
Figure 1.13 Electromagnetic spectrum. All radiation frequencies above ultraviolet 

are ionizing due to their higher energy [115]. The figure is courtesy of 

https://sites.duke.edu/missiontomars/the-mission/radiation/what-is-radiation/ 

Alpha particles are charged particles; they have very limited penetration ability and 

a sheet of paper can block them. Beta particles are similar to electrons (lighter than alpha). 

They can travel a few feet in the air and they can penetrate the skin, but plastic or a 

woodblock can stop them. Neutron, gamma, and x-rays can penetrate much deeper and can 

ionize the material making them radioactive. Electronics and living things require more 

careful shielding from this radiation [116].  

In electronic circuits, radiation can cause bit or state flip (in the case of a single 

radiation event) or total ionization. The total ionizing dose (TID) depends on the exposure 

dose and time, as it is an accumulating effect. The ionizing dose can be a cause of leakage 

current or can destroy the transistors completely because it can generate an excess number 

of e−h+ pairs [17], [117]. Tungsten and lead shielding is an effective way to shield the 

https://sites.duke.edu/missiontomars/the-mission/radiation/what-is-radiation/
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circuits from radiation but it makes the design, installation, and replacement a complex and 

expensive task. Memristors are being studied as strong candidates for radiation prone 

applications due to their tolerance of higher total ionizing doses and displacement damage 

from radiation. Phase change and oxide-based memristors like  TiO2, TiOx, and HfO2 

devices are studied for radiation tolerance [118], [119].  

1.6 Summary  

This chapter explained the motivation behind the following research work and 

discussed the literature and background needed to understand the presented material. Major 

work in this dissertation is based on neural networks, thus, software and artificial neural 

networks are compared for their advantages and disadvantages. This dissertation uses pulse 

shaping to mimic the synaptic spike-timing-dependent plasticity (STDP) rule that 

facilitates the spatio-temporal pattern recognition (STPR) in the memristors-based spiking 

neural networks. Thus, the chapter also talked about the different potential electronic 

candidates used in literature to mimic synaptic behavior. Since this dissertation uses a 

memristor as the potential candidate to mimic synaptic mechanisms in a hardware-based 

neural network, thus, the working mechanisms of different kinds of memristors with their 

properties were also reviewed. 

1.6.1 Research Summary 

In this research, memristor-based spiking neural networks are designed to learn 

spatio-temporal patterns representing 25 and 100-pixel characters. Two-terminal resistive 

memory devices (memristors) are used as synapses to manipulate conductivity paths in the 

network. Spike-timing-dependent plasticity (STDP) learning behavior results in pattern 

learning and is achieved using biphasic pre- and post-synaptic spikes. A TiO2 based non-
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linear drift model designed in Verilog-A is used to implement memristor behavior and is 

modified to include experimentally observed state-altering and ionizing radiation effects 

on the device. Effects of state-altering radiation on the STDP learning rule, system stability, 

and pattern learning ability of the spiking neural network are observed. 

Radiation events distort the spike-timing-dependent plasticity (STDP) learning 

curve undesirably, making the connection between afferents stronger by increasing the 

conductance of synapses overall. At lower flux, the network can recover and relearn the 

pattern. As the radiation flux increases, it can overwhelm the leaky integrate-and-fire (LIF) 

post-synaptic neuron circuit and make the network less stable. In the absence of patterns, 

the radiation effects accumulate in the system and the network never regains stability.  

The impact of neuron “death” (disabled neuron circuits) due to radiation is also 

examined. Neuron-death simulation results emphasize the importance of non-participating 

neurons during the learning process, concluding that non-participating afferents contribute 

to improving the learning ability of the neural network. Instantaneous neuron death proves 

to be more detrimental for the network compared to when the afferents die over time thus, 

retaining the network’s pattern learning capability. 

1.6.2 Overview of the Dissertation 

Chapter 2 discusses the TiO2 memristor device model in detail, as this is the model 

used throughout the dissertation for the neural network simulations. The non-linear 

window is discussed in detail and explains the non-linearity achieved in the model to mimic 

the actual device behavior. The behavioral model is designed in Verilog-A and the 

simulations representing the model behavior are also presented. This chapter also discusses 

the three-terminal intercalated ion devices mentioned in Section 0. The behavior is modeled 
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including both drift and diffusion characteristics of the device and the resulting simulations 

are presented. Model verification characteristics are published in [120]. 

Chapter 3 discusses the experimental studies of the effects of radiation on various 

memristive devices. In literature, radiation is prominently observed to alter the given state 

of the memristive device, generate ionizing current in the circuit, or change the off-

resistance of the memristive device. The three experimental observations are discussed in 

detail in this chapter. The chapter also discusses the modifications made in the behavior of 

the memristor model to include all three effects of radiation. Later in the chapter, the 

designed model is simulated to verified designed behavior with the given experimental 

results. The contributions from this chapters are published in [120]. 

In Chapter 4, the design and topology of the different neural networks used in the 

dissertation are laid out. This chapter talks about the design of the post-synaptic neuron, 

which is a leaky integrate-and-fire neuron that generates the desired biphasic spike when a 

certain threshold is reached. The post-synaptic spike aids synaptic memristors in realizing 

STDP and helps the neural network in spatio-temporal pattern learning. The chapter 

continues with the simulating pair-based STDP and discusses the factors that affect the 

shape of the STDP learning curve. The factors that are observed to affect STDP are the 

initial state and threshold of the memristive device and the shape and pulse width of the 

pre- and post-synaptic afferent. A later section of the chapter discusses the spatio-temporal 

pattern learning behavior of the neural network and the related simulations. The 

contributions from this chapters are published in [120], [121]. 

Chapter 5 analyzes the effect of radiation on the spatio-temporal pattern learning 

ability of the memristor-based spiking neural network. The radiation effects discussed in 
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Chapter 3 are simulated on the neural network discussed in Chapter 4. The chapter starts 

with analyzing the effects of radiation on the spike-timing-dependent plasticity (STDP) 

curve by observing the changes in the learning rule. A pulsed neural network is used to 

simulate the cumulative effects of the long-term radiation on the network in the absence of 

the pattern. Later parts of the chapter analyze the effect of radiation on the spiking neural 

network when subjected to short-term radiation under varying flux for varying durations 

of time. The chapter also discusses the changes in network behavior when it is learning in 

the presence of constant radiation. Changes in network stability are also statistically 

analyzed. The contributions from this chapters are published in [120]–[122] and are under 

journal review. 

Chapter 6 discusses the effects of neuron death on the learning behavior of the 

neural network. The chapter discusses the design and topology of the network used to 

simulate the neuron death in the spiking neural network. Later in the chapter, the simulated 

results are analyzed to compare the pattern learning ability of the network in case of 

instantaneous neuron death (due to radiation flare or strong radiation event) and gradual 

neuron death (in case of low but continuous radiation events, like in war zones, or post-

nuclear accident sites). The contributions from this chapter are in process for publication. 

Lastly, the implications of radiation effects and neuron death results are discussed 

in Chapter 7. This chapter also talks about the prospects of the work presented in this 

dissertation. 
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CHAPTER 2: RESISTIVE MEMORY MODELING 

The literature shows that extensive effort has been made to physically implement 

memristors, but significant progress has been made in modeling these devices as well [64], 

[123]–[136]. Modeling not only helps better understand the working principles and the 

performance of the device but also facilitates the simulation of the devices in larger and 

more complicated circuits. The presently available models in the literature can be 

categorized into either physical or mathematical models. The mathematical SPICE models 

like TEAM [124], Simmons Tunneling [126], and Yakopcic [125] have a minimal (if any) 

physical explanation for the relatively large number of input parameters used (up to 13). 

The mathematical models have many parameters to choose from and represent their 

respective device characteristics very closely, but their accuracy is limited. It is thus 

difficult to use pulse shaping reliably because the input parameters need to be modified for 

each given shape and frequency of the input [125], [126], [137]. On the other hand, most 

of the physical memristor models presented in literature depend on the ionic drift behavior 

for TiO2 memristive devices presented by Strukov et al. [64]. This chapter discusses and 

presents the simulation results of the TiO2 based non-linear ionic drift memristor model 

and the intercalated-ion memristor model. The intercalated-ion memristor model is based 

on a three-terminal low-power, electrochemically tunable graphene synaptic device 

revealed recently, in 2018 [109]. TiO2 based model verification characteristics are 

published in [120].  
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2.1 Memristor Models 

Many models are studied in the literature, the most explored ones are the linear ion 

drift model by Strukov et al. [64], the non-linear ion drift model by Laiho et al. [33], the 

Simmon tunneling barrier model by Pickett [127], the Yakopcic model by Yakopcic et al. 

[138] and the TEAM model by Kvatinsky et al. [124].  Both the linear and the nonlinear 

drift models are based on the theory that memristors are represented by a circuit with two 

resistors, the high resistance coming from the non-conductive (oxide) region and the low 

resistance from the conductive region, discussed in detail in Section 0. The Laiho et al.’s 

non-linear drift model assumes non-linear dependencies between the voltage and the state 

variable (
w

D
), which is a normalized parameter. The Simmons model assumes that the ions 

in the devices present exponential dependence, thus the model has exponential and 

symmetric switching behavior between the current and the state variable. The TEAM 

model assumes the polynomial dependence between the memristor current and the state 

variable. Other models are also presented in the literature for SDC devices [106], where an 

empirical compact model is used to match the SDC device I-V characteristics [139]. 

This work uses a TiO2 based ionic drift memristor model, which is discussed in 

Section 0. The model simulations are a close representation of oxide-based device 

characteristics at multiple frequencies, pulse shapes, and sizes. Another reason this model 

is chosen is because multiple radiation studies have already been performed on TiO2 

memristive devices [118], [140], [141]. The model is also voltage controlled, has an 

explicit I-V relationship, includes non-linearity, has a normalized state variable (
w

D
), and 

the model is not purely mathematical. The model has lower accuracy but has been widely 
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used in simulations and comparison studies like Chua et al. for designing memristor bridge 

synapse base neural networks and by other references [10], [125], [142]–[145]. 

The memristor models are accompanied by a window function that is used to add 

non-linearity to the model, which is specific to the device. The window function also forces 

the physical boundary (0 ≤
w

D
≤ 1) of the device in the model. Multiple window functions 

compatible with the ion-drift model are used in the literature by Joglekar and Wolf [66], 

Biolek et al. [146], Prodromakis et al. [145], and piecewise by Yu at al. [147]. All of the 

window functions can induce non-linear drift in the model and can only provide 

symmetrical window functions (except the piecewise function which could induce 

asymmetry). Symmetrical Joglekar and asymmetrical modified piecewise window 

functions are shown in Figure 2.1.  

 
Figure 2.1 The evolution of a window function (f(x)) with normalized synaptic 

weight ( 
𝐰

𝐃
 ) is plotted. The symmetric Joglekar window function shows the sharp 

change near the boundary conditions, thus limiting the physical boundary of the 

device such that 0 ≤ w ≤ D. Asymmetrical modified PWL function shows the 

asymmetry of the function. PWL does not end sharply as 
𝐰

𝐃
  reaches one but still 

limits the physical boundary of the function as 0 ≤ w ≤ D.  
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2.2 The TiO2 Memristor Model  

The TiO2 based non-linear ionic drift memristor model was proposed by Strukov et 

al. in 2008 [64]. Since then, the model has been widely adopted in the literature, and has 

been used extensively in simulations and comparison studies, like Chua et al., for designing 

memristor bridge synapse base neural networks [10], [125], [142]–[145]. 

 
Figure 2.2 Representation of a memristor as suggested by Strukov. (a) 

Memristive device of thickness “D” represented as a combination of doped (low 

resistance) and undoped (high resistance) regions. (b) Circuit representation of two 

variable resistors, the total device resistance is Ron when 
𝐰

𝐃
 =1, and Roff when  

𝐰

𝐃
 =0 

[64]. Reprinted by permission from Macmillan Publishers Ltd: Nature, [64], 

copyright (2008) 

The ionic drift model effectively treats the instantaneous total resistance of a 

memristive device Rmem as two variable resistors connected in series, as represented in 

Figure 2.2 (a). One of these resistors represents a conductive region of thickness w inside 

a device with physical thickness D. The other resistor corresponds to a less conductive 

region of thickness D−w. When w is almost equal to the device thickness, D, the device is 

in its lowest resistance state, with the resistance value Rmem equal to Ron. The device is in 
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a high resistance state, with Rmem equal to Roff, when w is much less than the total device 

thickness D. 

The total resistance of this memristive device is called the memristance (Rmem) and 

has units of Ohms. The I-V relationship of the two variable resistance system represented 

in Figure 2.2 (b) can be given by Ohm’s Law, where Rmem is a state-dependent resistance. 

Thus, the memristance can be written mathematically as:  

Rmem = Ron

w

D
+ Roff (1 −

w

D
) =  Roff − (Roff − Ron)

w

D
 (2.1) 

From Equation (2.1) at w ≈ D, the Rmem ≈ Ron (low resistance state) and at w ≈ 0, 

the Rmem ≈ Roff  (high resistance state). The ratio 
w

D
 is referred to as the state variable of the 

device and is physically bounded 0 < 
w

D
 < 1, 0 being the more resistive state and 1 being 

the more conductive state. Change in the state variable is a function of time and depends 

on the mobility of dopant ions (μ) drifting under a uniformly applied electric field as:  

dw

dt
=

Ron μ

D
Imem (2.2) 

In Equation (2.2), 
Ron

D
Imem, is the electric field in the conductive region of length 

w. The equivalent circuit, as suggested by Biolek et al. [146], is represented in Figure 2.3 

(a) and consists of dependent voltage source Emem and resistance Roff in series. Thus, the 

circuit equation is: 

Vmem = RmemImem = RoffImem + Emem (2.3) 

Comparing Equation (2.1) and Equation (2.3): 

Emem  =  −Imem(Roff − Ron)
w

D
 (2.4) 
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Equation (2.4) shows that Emem is a dependent voltage source that is controlled by the state 

variable ( 
w

D
 ) of the device (from the auxiliary circuit in Figure 2.3 (b)) and, current (Imem) 

at a given time.  

 
Figure 2.3 Schematic representation of the memristor model as suggested by 

Biolek [146]. (a) Implementation of the memristive circuit with dependent source 

Emem and resistance Roff. (b) Auxiliary circuit with Imem dependent current source Gx 

and 1 F capacitor Cx. The voltage across Cx controls Emem. The figure is adapted 

from an article published under the Create Commons license, 

https://www.radioeng.cz/fulltexts/2009/09_02_210_214.pdf. 

The auxiliary circuit, shown in Figure 2.3 (b), which sources Emem, contains a 

dependent current source, Gx, connected to a large 1 F capacitor (Cx). The voltage across 

the capacitor, Cx, feeds the Emem in the memristor circuit shown in Figure 2.3 (a). Imem 

drives the current source (Gx) as: 

Gx =
Ron μ Imem

D2
 (2.5) 

Thus, using the relation I = C 
dV

dt
 we get, 

dVc

dt
= Gx f(x),                 if 0 <

w

D
< 1,   f(x) = 1 

                                                                 else, f(x) = 0    
(2.6) 

Where f(x) is the window function, explained in the next section. 

https://www.radioeng.cz/fulltexts/2009/09_02_210_214.pdf
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2.2.1 Non-Linear Window Function 

The ionic drift model does not address the non-linearity observed in many physical 

memristive devices, making it useful for very limited applications. However, non-linearity 

can be introduced in the device by using an appropriate non-linear window function, f(x). 

In Figure 2.3 (b), the current source is multiplied by the window function, f(x). This 

window function handles the non-linear dopant drift in w when it is near the physical 

boundaries, which occur when 
w

D
 ≈0 or 

w

D
 ≈1. It also helps keep 

w

D
 bounded in the appropriate 

range between 0 and 1. The window function used in this work is from Joglekar and Wolf 

[66] and is given as: 

f(x) = 1 − (2x − 1)8 (2.7) 

Thus, using the relation,  I = C 
dV

dt
 , we get: 

dVc

dt
= Gx f(x) (2.8) 

The window function in Equation (2.7) is symmetric about zero voltage, but 

different window functions can be used, that change depending on the polarity of the 

applied voltage, to model asymmetry in the I-V characteristics [125]. Other parameters 

used in the model are Ron = 10 kΩ, Roff = 100 kΩ (when not changing due to radiation), 

μ = 10 fm2/V  and D = 10 nm, to mimic the characteristics of the HP Labs memristor as 

estimated in [146]. 

2.2.2 Simulation Results for the Memristor Model 

The memristor behavioral model is implemented in Verilog-A (APPENDIX A) and 

the simulations are done using Cadence Virtuoso Spectre. The simulated current versus 
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voltage characteristics of the model results are shown in Figure 2.4 (a). The plot displays 

all of the three characteristic fingerprints of a memristor [57], [60], [65]. The hysteresis 

curve is pinched at the center, the area of the hysteresis is decreasing with increasing 

frequency, and finally, it ends in a straight line at higher frequencies of 100 Hz and 1 kHz. 

These results demonstrate the same results from the ionic memristor model with window 

function represented by Equation (2.7). In this case, the memristor model has no threshold, 

thus, even at smaller voltages, the device forces the change in the conductivity as observed 

in Figure 2.4 (a). 

 
Figure 2.4 (a) I-V characteristics of the memristor model used in the study. (b) 

The current and voltage plot in time shows the increase in Imem as a train of a 

positive pulse is applied across the device. Similarly, the resistance increases, and 

the current decreases as a train of negative pulses is applied. Only the current 

measurements during the read cycle are presented here for clarity. 

The change in the memristor current Imem with applied voltage Vmem is plotted in 

Figure 2.4 (b), where Vmem is a train of write (1.25 V) and read (0.2 V) pulses followed 

with erase (−1.25 V) and read (0.2 V) pulses followed again with random voltage 

write/erase and read pulses starting at 2.5 s. The positive voltage pulses increase Imem due 

to decreases in memristance. On the other hand, the negative voltage pulses lead to a 

decrease in the current flowing through the device, due to an increase in the memristance. 
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The random pulses show similar behavior in proportion. Figure 2.4 shows the gradual and 

controlled change in the state of the device. Similar experimental results are reported in 

[106]. 

 
Figure 2.5 The memristor device shows a non-linear change in conductance and 

synaptic weight (
𝐰

𝐃
) when a train of 125 +1 V pulses followed with 125 −1 V pulses 

are applied (Pulse Width = 0.9 ms, Pulse Period = 1 ms). (a)  Conductance and 
𝐰

𝐃
 

versus pulse count plot. (b) Conductance and 
𝐰

𝐃
 versus device current plot. 

Figure 2.5 shows the electrical characteristics of the memristor model when the 

threshold voltage of 0.6 V is included in the behavioral model. To analyze the non-linearity 

in the device, a train of 125 +1 V pulses followed with 125 −1 V pulses, are applied with 

a pulse period of 1 ms and a pulse width of 0.9 ms. Figure 2.5 (a) and (b) plot the 

conductivity and synaptic weight (
w

D
) of the memristor versus the pulse count and device 

current, respectively. Non-linearity is obvious in Figure 2.5 (a) when the device reaches 

the off-state (lowest conductivity) and the slight change in the linearity of 
w

D
 is also present 

as the device reaches the on-state (highest conductivity). A similar pattern can be observed 

in Figure 2.5 (b) where a logarithmic change in conductance vs current is almost linear, 

representing a logarithmic change in conductance with the device current.  

Figure 2.6 (a) and (b) show the I-V characteristics of the device when a 0.6 V 

sinusoidal and triangular periodic voltage is applied to the memristive device at the varying 



36 

 

 

 

frequencies (respectively). At a higher device threshold of 0.5 V in Figure 2.6 (b), the 

memristor could not change the state completely as the frequency increases. In Figure 2.6 

(a), at a lower threshold of 0.25 V, the device switches state completely before reaching 

the threshold at higher frequencies. Figure 2.6 (a) and (b) also show the stability of the 

model at different resistance states. Note that the I-V curve displays a pinched hysteresis 

loop and that the hysteresis lobe area decreases as the input frequency increases, finally 

reducing to a line at a higher frequency. These are necessary characteristics of the I-V curve 

of a memristive device [63]. Model verification characteristics are published in [120]. 

 
Figure 2.6 The I-V characteristics of the memristor as (a) 0.6 V sine input is 

applied with 0.25 V threshold and (b) 0.6 V triangle input applied with a 0.5 V 

threshold, showing the characteristic decrease in the pinched hysteresis lobe area as 

the frequency increases. 

2.3 Intercalated-Ion Model 

Section 0 discussed the organic polymer and intercalated-ion memristive devices 

published recently, in 2018. In the three-terminal memristive devices [109], [148], when 

current is applied at the reference electrode as shown in Figure 2.7 (b) and (c), Li-ions drift 

towards the graphene and get intercalated in the graphene structure. The intercalated Li-

ions make the graphene layer more conductive, similar to a synapse as shown in Figure 2.7 

(a). Over time, Li-ions intercalated in the graphene structure start to diffuse exponentially 
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out of the graphene layer, depending upon the length and width of the graphene synapse. 

This characteristic is similar to biological synapse. 

 
Figure 2.7 The graphene intercalated Li-ion memristive device structure. (a) 

Schematic of biologic synapse compared with (b) schematic of the graphene synapse, 

where applying current at the reference electrode changes the synaptic weight. Pink 

arrows zoom into the illustration of the intercalated Li ions into graphene. (c) Blue 

arrow indicates the de-intercalation of Li-ion out of graphene and pink shows 

intercalation of Li ions moving into graphene [109]. © 2018 Wiley. Used with 

permission from Mohammad Taghi Sharbati, Yanhao Du, Jorge Torres, Nolan D. 

Ardolino, Minhee Yun, and Feng Xiong, Low‐ Power, “Electrochemically Tunable 

Graphene Synapses for Neuromorphic Computing”, Advanced Materials, John 

Wiley and Sons. 

2.3.1 Experimental Results 

Figure 2.8 shows the published experimental results obtained from the graphene 

intercalated Li-ion device from Sharbati et al. [109]. Figure 2.8 (a) and (b) represents the 

synaptic behavior of the device. In Figure 2.8 (a), a 50 pA current pulse is applied at the 

reference electrode for 10 ms to potentiate the device. This drifted the Li-ions into the 

graphene, resulting in a 30 Ω decrease in resistance, but diffusion recovered 20 Ω, and the 

resulting change was -10 Ω. In Figure 2.8 (b) a depressive −50 pA current pulse is applied 

at the reference electrode for 10 ms, showing similar characteristics for drift and diffusion 

resulting in the 10 Ω gain in resistance. Figure 2.8 (c) shows the change in conductance of 

the device as repeated sets of 250 positive pulses followed by 250 negative pulses, are 
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applied at a higher frequency. The resistance of the device subsequently swings between 

880 Ω (1136 μS) and 7.78 kΩ (128 μS). 

 
Figure 2.8 Synaptic behavior of the device. (a) potentiation, (b) depression (c) 

change in conductance [109]. © 2018 Wiley. Used with permission from Mohammad 

Taghi Sharbati, Yanhao Du, Jorge Torres, Nolan D. Ardolino, Minhee Yun, and 

Feng Xiong, Low‐ Power, “Electrochemically Tunable Graphene Synapses for 

Neuromorphic Computing”, Advanced Materials, John Wiley and Sons. 

2.3.2 Model Design 

The memristor model is implemented in Cadence Virtuoso using Verilog-A 

(APPENDIX B), shown as the greyed-out part of Figure 2.9. The model for the graphene 

intercalated Li-ion devices is designed while keeping in mind that at any given time the 

resistance of the device depends on the number of Li ions intercalated in the graphene 

layer. The number of Li ions intercalated in the graphene layer depends on the drift and 

diffusion occurring in the device over time. Thus, the resistance of the device at any given 

time is the sum of the drift resistance (Rdrift) and the diffusion resistance (Rdiff) as shown in 

the schematic in Figure 2.9 and is given by the equation: 

Rmem = Rdrift + Rdiff (2.9) 

2.3.3.1 Drift  

Li-ions present in the device drift towards (away) from the graphene when a current 

pulse is applied at the reference electrode. For every electron (e−) flowing into (out) of the 
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graphene in the external circuit in Figure 2.7 (c), a corresponding Li-ion enters (leaves) the 

graphene through the electrolyte. Thus, the charge transferred into/out of the graphene will 

depend on the magnitude and length of the current pulse on the reference electrode (Q = 

I*t). At any given point, the voltage across a 1 F capacitor is equal to the charge on it (Q = 

CV and if C = 1 F, Q = V). The voltage across a 1 F capacitor will be Vdrift and reflect the 

amount of charge transferred by a reference electrode current pulse. Thus, Vdrift will be the 

voltage drop across the variable resistor Rdrift, as represented in the model schematic in 

Figure 2.9. 

 

 

Figure 2.9 Schematic representation of the model developed for graphene 

intercalated Li-ion devices. The auxiliary circuit connected to the reference 

electrode current source controls drift resistance (Rdrift). Three RC delay circuits 

controlled by Vdrift modify the diffusion resistance (Rdiff). 

2.3.3.2 Diffusion 

Diffusion starts right after the input reference pulse or as the drift ends. Diffusion 

in the device was observed to be exponential and was speculated to depend on three factors: 

the width of the graphene synapse, the length of the graphene synapse, and the diffusion 

process from the reference electrode to the graphene [109]. Thus, three independent RC 

delay circuits represent the diffusion voltage (Vdiff) and control the diffusion resistance 
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(Rdiff), as presented by the model schematic in Figure 2.9. The diffusion was modeled such 

that the device will see the change in conductance due to diffusion for 1.5 s after the last 

drift. 

2.3.3 Simulation Results 

The Spectre transient simulation tool was used in Cadence to generate all the 

following waveforms. The simulated synaptic behavior from the designed model is 

presented in Figure 2.10. Figure 2.10 (a) shows that the input depression (−50 pA) and 

potentiation (50 pA) current pulse are applied at the reference electrode for 10 ms at an 

interval of 2 s. Figure 2.10 (b) shows the resulting change in the resistance of the device 

over time due to both drift and diffusion. Drift resulted in a ±30 Ω change in resistance, 

but diffusion recovered ∓20 Ω, and the resulting change was ±10 Ω respectively. Figure 

2.10 (c) and (d) show the zoomed-in depression and potentiation pulse resulting in an 

instantaneous increase and decrease in resistance due to drift. The simulation results are 

very similar to the actual device characteristics, as represented in Figure 2.8 (a) and (b). 

 
Figure 2.10 Synaptic behavior (a) depression and potentiation current pulse (b) 

drift resulted in ±30 Ω change in resistance but diffusion recovered ∓20 Ω. (c) 

Potentiation pulse resulting in an instantaneous decrease in resistance due to drift 

(d) Depression pulse resulting in an instantaneous increase of resistance due to drift. 
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The model was further verified by the simulation represented in Figure 2.11. For 

this simulation, the reference current pulses of ±50 pA and10 ms duration were applied at 

a frequency of 74 Hz. A pulse train of 250 positive pulses followed by 250 negative pulses 

was repeated for 3,500 pulses and the resulting resistance vs pulse count plot is presented 

in Figure 2.11. Similar to the experimental data, the conductance of the device swings 

between 1,136 μS (880 Ω) and 128 μS (7.78 kΩ), but the model is missing the change in 

slope that happens in the device resistance as it reaches closer to maximum or minimum 

resistance. The simulated model has symmetrical depression and potentiation, whereas that 

is not the case with the experimental data.  These effects are still under study and will be 

added to the model in the future when more experimental data is available.  

 
Figure 2.11 Behavior of the experimental device and the designed model as a pulse 

train of 250 positive pulses followed by 250 negative pulses is repeated for 3500 

pulses. Similar to the experimental data, the conductance of the device swings 

between 1136 μS (880 Ω) and 128 μS (7.78 kΩ). © 2018 Wiley. Used with permission 

from Mohammad Taghi Sharbati, Yanhao Du, Jorge Torres, Nolan D. Ardolino, 

Minhee Yun, and Feng Xiong, Low‐ Power, “Electrochemically Tunable Graphene 

Synapses for Neuromorphic Computing”, Advanced Materials, John Wiley and 

Sons. 

2.4 Conclusion 

The academic literature presents a wide range of memristor models [124], [126], 

[138], many of which are still under development. Some of the models are more 
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mathematical, with many parameters to choose from, making them input and application 

limited. This dissertation uses the non-linear drift model, which is motivated by TiO2 

memristive devices, and is also used in multiple studies, including Chua et al. in their 

memristor bridge synapses [9], [10]. A window function is used to implement non-linearity 

in the model. This model captures the non-linearity presented by memristive devices, while 

still using the physical characteristics of the device. The exact model parameters used, the 

simulated characteristics and the nonlinearities observed in the model were laid out in detail 

in this chapter.  

The intercalated-ion model was also discussed in this chapter. It is a physical model 

based on the organic polymer and intercalated-ion three-terminal memristive devices 

published recently in 2018 [109]. Due to the lack of the availability of the detailed 

experimental results, the model was not extremely well calibrated but does serve as a 

starting point. It is not used in the remainder of the dissertation, but possibly will be used 

for future collaborative research. 
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CHAPTER 3: RADIATION EFFECTS ON A MEMRISTOR 

It is important to model the effects of radiation on the memristive devices to 

understand the response of systems deployed in harsh environments, such as those 

experienced during certain military and space missions. Further, smaller dimensions 

change the way radiation interacts with devices, often making them more susceptible to 

radiation events [17].  In this chapter, Section 0 discusses the effects of various types of 

radiation on different types of oxide-based memristive devices with different active 

materials and structures.  Section 3.2 shows the design of the model developed that is added 

to the memristor model discussed in Section 0 and used in this dissertation. The 

contributions from this chapter are published in [120]. 

3.1 Experimental Results of Radiation on Memristors 

Multiple studies have experimentally examined the radiation effects on oxide-based 

memristive devices. Reference [141] discusses the effects of proton and neutron radiation 

on TiO2 memristive devices. No significant changes in the device characteristics were 

observed when exposed to 3x1014 14.1-MeV neutrons/cm2. On the other hand, 7.75x1016 

350-keV proton/cm2 irradiation is estimated to induce 1.7% additional vacancies in TiO2 

leading to an increase in conductivity of the device in the off-state [141].  A similar 

conclusion is drawn in [149] post proton exposure of their TiO2 memristive devices. 

Another experimental study on TiO2 memristive devices in [118] observes the 

significant change in the on-state of the device post alpha radiation (1014 1-MeV 

alphas/cm2) although other kinds of irradiation events did not affect the device on-state. 
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Gamma, neutron, and bismuth ion radiation did not affect the off-state of the device, but 

when exposed to protons and alpha particles the device conductivity increased as noted in 

Figure 3.1 (a) [118].  

 
Figure 3.1 State change in oxide-based memristive devices due to radiation 

events. (a) comparing pre and post alpha and proton irradiation, alpha radiation 

(1015 cm-2 1-MeV) changes the TiO2 device state more than proton radiation [118], © 

2013, IEEE. (b) X-ray irradiation changed the state of the TaOx device, making it 

more conductive. (c) Proton irradiation affects the TaOx device similarly and 

changes the device state to more conductive [150]. © 2012, IEEE. 

The effects of radiation on the electrical characteristics of TaOx memristive 

memories are experimentally assessed in [150]. Switching from high resistance to low 

resistance and complete failure of a few devices due to a cumulative dose of 10 keV x-ray 

irradiation is experimentally observed, plotted in Figure 3.1 (b). Reference [150] also 

shows that a 220 60Co gamma radiation source radiating at a dose rate of 53 rad(Si)/s did 

not affect the TaOx device samples. A 4.5 MeV protons source up to a dose of 5 Mrad(Si) 

did not affect the state of the devices, but when irradiated with protons of energy 105 MeV, 

the off-state resistance of the devices generally decreased with increasing proton fluence, 

indicating cumulative device degradation, as plotted in Figure 3.1 (c). 800 keV Si ions 

bombardment created oxygen vacancies in the device, which lead to reduced resistance 

similar to the results observed in TiO2 devices in [150]. 
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Proton-based total-dose irradiation effects on Cu-doped-HfO2-based resistive-

random-access-memory (ReRAM) devices are experimentally studied in [151]. Results 

show positive shifts in the set, reset and on-resistance after proton irradiation, possibly due 

to induced electron trap changes in the HfO2 layer. The effects are observed to enhance 

almost linearly when the dose increases from 1.5 to 3 to 5 Giga-rad[Si] at a constant dose 

rate of 237 ± 1.8 krad[Si]/s. Proton irradiation also decreased the off-resistance of the 

device, by creating more defects and thus increasing the device leakage current [151]. 

 
Figure 3.2 Off-resistance change in memristive device post-radiation exposure. 

(a) All four TaOx devices under test saw the decrease in Roff post-irradiation with 

DUT 10 being affected the most, from [152] at the dose rate of rad (Si)/s and a pulse 

width of 500 ns. © 2014, IEEE. (b) Plots the decreasing Roff with increasing 

radiation dose (c) Comparing Ron and Roff change due to radiation. Radiation does 

not affect on-resistance as much it changes off-resistance. Plots (b) and (c) from 

[153] saw electron radiation with 10 μA programming current. © 2014, IEEE. 

Reference [152] also experimentally investigates the effects of high dose rate 

ionizing radiation and total ionizing dose on TaOx memristors. Data shows that the dose 

rate of 1x108 rad(Si)/s, with a radiation pulse width of 1 μs, did not affect the off-resistance 

of the device. On the other hand, when exposed to a higher dose rate of 4.3x108 rad(Si)/s 

for 500 ns, the off-resistance of the devices decreased as plotted in Figure 3.2 (a) [152]. In 

the case of X-ray irradiation (dose rate of 4.3x108 rad(Si)/s), the lack of a discharge path 

due to the floating terminal setup leads to a decrease in the off-resistance of the device 
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(pointing to circuit setup dependencies) [152]. Paper [152] also uses a 60Co proton source 

to evaluate total ionizing dose-response, the state change was observed at the dose rate of 

4x108 rad(Si)/s but not at 1x108 rad(Si)/s. The study indicates that the irradiation response 

was dependent on the irradiation conditions, bias configuration, and varied from device to 

device [152]. 

The impact of the proton, gamma, and alpha irradiation on the retention and 

endurance of Ag filament-based resistive RAMs (with amorphous Ge30Se70 (photo doped 

with silver) as an active layer) is experimentally studied in [153]. It is noted that devices 

were able to retain their states until 2.8 Mrad of gamma radiation from 60Co. Figure 3.2 (b) 

and (c) show the cumulative distribution of on- and off-resistance of the devices post 100 

keV electron exposure. On-resistance does not seem to vary with irradiation (Figure 3.2 

(c)) but off-resistance decreases as the total ionizing dose become higher than 1000 krad 

(Figure 3.2 (b)). This characteristic was noticed in all the cases when the device was 

programmed at 10 μA, 50 μA, and 100 μA pre-exposure [153].  

Figure 3.3 shows the cumulative distribution gathered from the same Ge30Se70 

ReRAMs devices when exposed to a 50 MeV proton irradiation from the front and the 

backside of the device [153]. On-resistance remained mostly unaffected in both cases of 

front and back exposure, Figure 3.3 (a) and (b). Off-resistance seems to be affected more 

strongly when the device is proton irradiated from the backside, Figure 3.3 (a) and (b) 

[153]. The exposed from the back protons move through the Si, SiO2, and Ni layers before 

interacting with the active Ge30Se70 active layer, which may result in displacement and 

ionization damage in the layers due to recoiled nuclei on the way. On the other hand, during 
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the front exposure, the protons are incident directly on the active layer, passing through it 

with minimal interaction [153]. 

 
Figure 3.3 Irradiation direction affecting the impact of proton irradiation on the 

memristive device. Cumulative probabilities of HRS and LRS states of Ag-Ge30Se70 

RRAMs exposed to 50 MeV protons. (a) Devices irradiated from the front did not 

significantly change state. (b) A similar device irradiated from the back shows 

considerable Roff changes for the same programming current of 50 μA[153]. © 2014, 

IEEE. 

In all the studies mentioned above, the devices were able to recover their states after 

a few cycles and no permanent damage was observed. Studies show that memristors have 

excellent resistance to damage from certain types of irradiation, but are susceptible to 

others to a certain extent, and might be a suitable candidate for radiation-hardened 

electronic networks.  

There are multiple ways radiation can affect a memristive device. Device structure, 

radiation-type, dose, duration, bias, area, and direction appear to play a major role in the 

response of memristor memory to irradiation. This section groups the observed behavior 

of the memristors (under radiation) in three different categories: interaction events that only 

change the state, those that cause ionization, and events that alter the Roff (off-state 

resistance) value of a memristor. The radiation model detailed in the latter part of the 

chapter is motivated by these three observed behaviors. 
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3.1.1 State-Altering Radiation  

In this case, a radiation event will change the programmed conductive state of the 

device. Such radiation effects have been experimentally observed in most of the oxide-

based devices. Proton irradiation in TiO2 [141], alpha irradiation in TiO2 [118], [149], 

proton irradiation in TaOx [150], proton irradiation in HfO2 [151] and alpha and proton 

irradiation in Ge30Se70 ReRAMs [153] all showed the decrease in resistance post-radiation 

when set in the off-state. 

3.1.2 Ionization Radiation  

This is the case when a radiation event will deliver the total ionization dose to the 

device. This happens in the case of gamma radiation exposure and memristive devices are 

noted to be unaffected by this irradiation [118], [150], [153]. Experimental study on TiO2 

memristors noticed no degradation in states of the device when exposed to 45 Mrad(Si) of 

1 MeV gamma radiation [140]. 

3.1.3 Off-Resistance Change 

It is also noted that radiation event changes the off-resistance (Roff) of the device 

without influencing the on-resistance, thus changing the read window of the device [118], 

[140], [141], [150]–[153]. Although, devices are observed to recover their initial value of 

off-resistance when cycled.  
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3.2 Adding Radiation to the Memristor Model 

3.2.1 Modeling Radiation 

The memristor model with radiation effects is implemented in Cadence Virtuoso 

using Verilog-A. The greyed-out part of the model represented in Figure 3.4 is 

implemented in Verilog-A (APPENDIX C). In the model, Iradsc i.e. a state-altering 

radiation current (as discussed in Section 3.1.1) is added to the auxiliary circuit (Figure 

3.4) so that the current can effectively change the state of the device. Note that Iradsc must 

be added in parallel to Gx, such that both currents sum before being multiplied by the 

window function f(x). This will still keep the state variable 
w

D
 bounded within limits of zero 

and one.  

 
Figure 3.4 Memristor model with radiation effects is implemented in Cadence 

Virtuoso using Verilog-A. Ionization (Iradeh) radiation is added in parallel with the 

source, thus adding to Imem directly without affecting the state variable. State 

Change (Iradsc) is added to the auxiliary circuit so it can modify the state of the 

device instantaneously. Roff is modified as a variable in Verilog-A. The portion 

inside the grey box is coded using Verilog-A (APPENDIX C). 

Thus, in the radiation model, as shown in Figure 3.4, Equation (2.6) becomes: 

dVc

dt
= (Gx + Irad_sc) f(x), 

if 0 <
w

D
< 1,      f(x) = 1 

else, f(x) = 0 

(3.1) 
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On the other hand, Iradeh i.e. an ionization radiation current (as discussed in Section 

3.1.2) is added to the main memristive circuit, as shown in Figure 3.4, so it can add up to 

the Imem directly without affecting the state variable of the device. The resulting schematic 

is shown in Figure 3.4. 

3.2.2 Quantifying Radiation 

Current sources Iradsc and Iradeh artificially induce radiation in the circuit using 

pulses of 1 ms duration. The current pulse train magnitude follows a random Gaussian 

distribution with mean μ and standard deviation σ, and time intervals follow a Poisson 

process similar to radiation patterns observed in real sources. In the model, one current 

pulse does not necessarily represent one radiation particle or interaction event.  

In the literature, experimental studies using memristors have observed 30% [141], 

77% [118], [149], 90% [154],  and 95% [150] change in resistance (from off-state) when 

bombarded with radiation of a total fluence of  7.7x1015 350-keV proton/cm2, 1.4x1011 1-

MeV alpha/cm2, 4.9x1012 14.1-MeV neutrons/cm2, and 7.75x1016 10-keV x-rays/cm2 

respectively. Similar changes can be induced in the designed memristor model when 10, 

20, 25, and 30 Iradsc current pulses of magnitude μ = 25 μA and σ = 12.5 μA are applied.  

Thus, the model results are comparable to the experimental studies performed on 

TiO2 memristors. For this work, simulation of the networks is performed at different 

radiation flux or intensity, obtained by modifying the pulse interval (following a random 

Poisson distribution) and the magnitude [120]. Synaptic weight change (Δ
w

D
) of memristive 

synapses increases as the mean magnitude and frequency (flux) of state-altering radiation 

current increases. Flux calculations in the study are based on an assumed 100 nm x 100 nm 

interaction size for the memristive devices. 
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3.2.3 Simulating Radiation 

This section presents the device simulation results as the state-altering, ionizing, 

and off-state changing radiation current interacts with the designed circuit. All the 

simulations are captured in Cadence Virtuoso Spectre.  

3.2.3.1 Radiation-induced state alteration 

State-altering radiation current (Iradsc) is applied, under different device initial 

conditions and changes in the synaptic weight (Δ
w

D
  =  

w

D
(initial) − 

w

D
(final)) are plotted in Figure 

3.5. Application of positive Iradsc increases 
w

D
 and thus the Δ

w

D
 ratio moves in a positive 

direction. Negative Iradsc moves the Δ
w

D
 ratio in a negative direction. The state variable 

w

D
 

is normalized and limited from zero to one by the window function f(x). In the case when 

the device is initialized at 
w

D
 = 0.25, Δ

w

D
 is varying from +0.75 to −0.25 as expected. 

Similarly, in the case of initial 
w

D
 = 0.5, Δ

w

D
 is varying from +0.5 to −0.5, and in the case of 

initial 
w

D
 = 0.75, Δ

w

D
 is varying from +0.25 to −0.75 as expected. The initial values of 0.25, 

0.5, and 0.75 were chosen simply for equal spacing between the bounds of 
w

D
.  

Figure 3.5 also plots the simulated effects of change in the pulse width of state-

altering radiation current (Iradsc). In the case of initial 
w

D
 = 0.25 higher pulse width (longer 

duration of radiation Iradsc) of 1.5 ms, the device reaches its limit at a very small Iradsc of 

less than 5 mA. On the other hand, at a smaller pulse width of 0.5 ms, higher Iradsc of more 

than 15 mA is needed to achieve saturation. Other initial conditions display similar pulse 

width behavior. Thus, we can conclude that the change in the state of the device is affected 

by both the magnitude and the duration of the radiation current Iradsc. Δ
w

D
 and Iradsc pulses 
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are varied to capture the typically observed changes. Similar experimental results were 

reported in TiOx and TaOx based memristive devices [118], [150]. Δ
w

D
 will also be affected 

by the initial state of the device although most experimental studies present in literature are 

done on devices in the off-state [118], [150]. 

 
Figure 3.5 Change in the state (

𝐰

𝐃
 ratio) of the device when exposed to Iradsc of 

different magnitude and duration. The device is studied under multiple initial 

conditions. The initial values of 0.25, 0.5, and 0.75 were chosen simply for equal 

spacing between the bounds of 
𝐰

𝐃
. 

 
Figure 3.6  (a) Input voltage applied (Vmem) is a train of −500 mV pulses with 

width 150 ms. The effect of radiation that leads to device (b) state change and (c) 

ionization on (d) 𝐰

𝐃
 ratio. (e) The corresponding Imem and (f) memristor current 

(IRoff). 
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Figure 3.6 and Figure 3.7 illustrate the effect of Iradsc on 
w

D
 and Imem in a transient 

simulation. Figure 3.6 (a) shows the input Vmem pulse train of −500 mV with the pulse 

width of 150 ms, Figure 3.6  (b) shows the Iradsc spiking to 3 mA for 1 ms at 0.8 s, 2.6 s 

and 4.4 s and Figure 3.6 (c) shows Iradeh, which is discussed in next section. Observe in 

Figure 3.6 (d), every time Iradsc occurs the state of the device switches immediately. At 0.8 

s when the first Iradsc pulse appeared, the device was in the off-state so the state of the 

device changed immediately. Imem in Figure 3.6  (e) did not increase until the device is 

turned on again at 0.9 s, whereas when the next Iradsc radiation pulse appears at 2.6 s, the 

device was in the on-state, so the state (
w

D
) and Imem changes simultaneously. The 

w

D
  

achieved for Iradsc pulse at 0.8 s is higher than at 4.4 s because right before the 4.4 s device 

was in much lower 
w

D
 state than right before 0.8 s pulse. Thus, for the same magnitude of 

radiation current pulse, the initial state of the device will affect the final magnitude of the 

state change due to the non-linearity of the memristive device. Further Iradsc radiation in 

itself will not be the source of any current in the device.  

 
Figure 3.7 (a) Input voltage applied (Vmem) is a pulse train of 40 mV with a 

pulse width of 150 ms. The low negative voltage is chosen to see the changing state 

over time. The effect of radiation that leads to device (b) state change and (c) 

ionization on (d) 
𝐰

𝐃
 ratio, (e) Imem, and (f) IRoff. 
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Iradsc shows a similar effect in Figure 3.7, where an input Vmem pulse train of 40 

mV with a pulse width of 150 ms in Figure 3.7 (a). In Figure 3.7 (d) 
w

D
 saturates to one very 

quickly after just two events of Iradsc radiations. This is because the radiation current 

(Iradsc) and positive Vmem pulse train forces the device state ( 
w

D
) towards saturation and 

thus high Imem is observed through the device in Figure 3.7 (e). 

3.2.3.2 Effect of ionizing radiation 

The behavior of the memristor in the presence of an ionizing radiation current pulse 

(Iradeh) is also presented in Figure 3.6 and Figure 3.7. In Figure 3.6 (c) ionizing radiation 

(at 3 mA for 1 ms) hits the circuit at 1.3 s, 3.1 s, and 4.9 s. Both Imem in Figure 3.6 (e) and 

IRoff in Figure 3.6 (f) are not equal when Iradeh arrives. The active voltage source 

compensates for the increase in Iradeh thus, IRoff observes no change due to the ionization 

event, i.e. Iradeh does not affect the state or the current passing through the device. Iradeh 

shows a similar effect in Figure 3.7, where the input Vmem pulse train is positive in  Figure 

3.7 (a). Even after 
w

D
 saturates in  Figure 3.7 (d), Iradeh radiation does not affect the IRoff 

device in Figure 3.7 (f).  

Similar results are experimentally recorded in [118] where no detectable effect of 

ionization is observed on the device itself. On the other hand, the experimental results in 

[152] indicate no changes in memristive devices at the lower x-ray radiation dose, but a 

higher dose rate changed the off-resistance of the device, which might be due to changes 

in physical structure. More simulation results for off-resistance change are presented in the 

following section. 



55 

 

 

 

3.2.3.3 Change in off-state resistance  

Alpha radiation experimentally leads to a state change in TiO2 devices in [140], but 

no change in Roff or Ron are reported in their devices, contrary to alpha radiation studies 

done on TiO2 devices in [149], which shows the change in Roff due to device deterioration. 

Thus, we concluded the radiation event may lead to change in both Roff and the state of the 

devices at the same time, as simulated in Figure 3.8.  

 
Figure 3.8 (a) Input voltage applied (Vmem) is a pulse train of  −500 mV with a 

pulse width of 150 ms. Voltage is chosen as such to see the effect of changing Roff on 

the device. (b) The state-altering radiation pulse (IRad_sc) that changes the off-

resistance of the device. (c) The 
𝐰

𝐃
 ratio versus time. (d) Memristor current Imem as 

radiation hits the device. (e) The decrease in the Roff following a radiation event. 

One such event is depicted in Figure 3.8, whereas as soon as the Iradsc radiation 

event occurs, the Roff of the device which was set to 100 kΩ is decreased to 50 kΩ in the 

model. The input (Vmem) in Figure 3.8 (a) is a pulse train of −500 mV with a pulse width of 

150 ms. It is chosen as such to observe the effect of change of resistance more clearly. In 

Figure 3.8 (b) Iradsc enters the device after 2.4 s producing 5.6 mA of current for 1 ms (the 

device is in off-state at 2.4 s). This instantaneously lowers the off-resistance of the device 

from 100 kΩ to 50 kΩ, as shown in Figure 3.8 (e). In Figure 3.8 (c), initial 
w

D
 = 0.75 at 0 s 
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and as Iradsc hits the device at 2.4 sec, the 
w

D
 instantaneously switches back to the initial 

value of 0.75 (Iradsc was chosen as such). Further, even though the 
w

D
 value is the same in 

the simulation both at 0 s and 2.5 s, but in Figure 3.8 (d) the current Imem is almost twice as 

much at 2.5 s. That is because the Roff decreases (to half from 100 kΩ to 50 kΩ) as a result 

of radiation. Thus, the device is letting through higher current even in the higher resistive 

state. Also, Figure 3.8 (d) demonstrates that the Δ
w

D
 has changed considerably due to 

radiation event, going from 0.56 = 0.75 − 0.19) pre-radiation to 0.744 = 0.75 − 0.006 post-

radiation for identical input pulses applied. This indicates that the read window has 

decreased for the device post-radiation. Similar results can be observed in experimental 

studies performed in references [149], [151]–[153]. 

 
Figure 3.9 Shows the sample distribution of the radiation current spikes for 10 s 

at a frequency of 5.6123 Hz. The current pulse magnitude follows the random 

Gaussian distribution and the pulse interval follows the random Poisson 

distribution. 
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3.2.3.4 Stochastic radiation effects  

Characteristically energy of emitted radioactive particles follows random Gaussian 

distribution and the pulse interval follows the random Poisson distribution [155], [156]. 

Figure 3.9 presents the radiation current spikes following Gaussian and Poisson 

distribution. In the example, in Figure 3.9, the memristive device will see the radiation 

current spikes at 5.6123 Hz frequency.  

Figure 3.10 (a) plots the histogram showing the spike interval between two 

consecutive spikes from Figure 3.9. The histogram shows the desired Poisson distribution 

with λ = 0.25 s. The histogram in Figure 3.10 (a) plots the current magnitude distribution 

of each radiation current pulse. The histogram shows the Gaussian distribution of the 

magnitude. In this case, the mean and standard deviation of the current magnitude is 0.5 

mA and 0.25 mA respectively. Throughout this dissertation, radiation frequency is kept at 

an average of 5 Hz with a standard deviation of 1 Hz, although mean and standard deviation 

are modified to simulate the desired effect. The radiation effects on the network are 

discussed in 0  
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Figure 3.10 Histograms show the radiation current (a) spike interval distribution 

and (b) spike magnitude distribution. The pulse magnitude follows random 

Gaussian distribution and the pulse interval follows the random Poisson 

distribution. 

In Figure 3.11, the effects of Iradsc and Iradeh are simulated when they are occurring 

simultaneously due to radiation but do not change the off-resistance of the device. The 

Iradsc in Figure 3.11 (c) and Iradeh in Figure 3.11 (d) are generated such that the current 

magnitude follows random Gaussian distribution and the pulse interval follows the random 

Poisson distribution.  
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Figure 3.11 (a) Input Vmem applied at −650 mV amplitude and 150 ms pulse width. 

(b) Iradsc, state change radiation, and (c) Iradeh, ionization radiation. Both  Iradsc 

and Iradeh are generated randomly, with Gaussian distributed magnitude and 

Poisson’s distributed interval (d) 
𝐰

𝐃
 ratio changes accordingly and reached to the 

maximum often but stays in the limit. (e) Imem balances Iradeh and (f) Iradsc modifies 

the state of the device and IRoff in proportion to its magnitude and state of the device 

right before the event. 

Input (Vmem) in Figure 3.11 (a) a pulse train of −650 mV with a pulse width of 150 

ms is applied to the device. The result obtained follows the similar behavior observed in  

Figure 3.6 and Figure 3.7. Imem balances Iradeh during each event, so device current or state 

are not affected. On the other hand, Iradsc modifies the state of the device in proportion to 

its magnitude and the state of the device right before the event. Similar results can be 

observed in [118], [140], [150].  
w

D
 reached a maximum value of one at multiple places such 

as at 2.5 s, 4.9 s, and around 6 s but always stays bound within the limits of 0 < 
w

D
  < 1.  

3.3 Conclusion 

To conclude, radiation interactions that generate a current which alters the state of 

the device would change the current flowing through the device when the device turns on, 

or immediately if a radiation event occurs when the device is in the on-state. On the other 

hand, radiation that results in ionization only does not stimulate change in the state of the 

device. Radiation events that change the off-resistance of the device also decrease the read 
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window of the device as the rate of change of 
w

D
 changes considerably. Thus, post-radiation 

more current passes through the device as compared to pre-radiation for the same voltage 

across it in the same state. 

The modified memristor model presented in this chapter was able to mimic the 

experimental behavior of the memristors under radiation. The transient simulations 

included waveforms generated during the events that would change the state of the 

memristive device or increase the current in the device or both at the same instance. 

Instantaneous changes in memristor current and resistance state and behavior of the model 

in the presence of stochastic radiation events were also demonstrated in this chapter. 
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CHAPTER 4: NEURAL NETWORK DESIGN 

This chapter discusses the design, structure, and components of the memristor-

based neural networks used in this dissertation. Neural networks have three basic 

components: pre-synaptic neurons, post-synaptic neurons, and memristive synapses, 

connecting afferents to the output layer. Memristive synapses modeled in Verilog-A have 

been discussed in detail in CHAPTER 2:. For simulation purposes, piecewise linear 

independent voltage supplies are used to mimic the pre-synaptic neuron behavior. The post-

synaptic neuron was designed using a leaky integrate-and-fire (LIF) circuit to simulate the 

biphasic spiking behavior similar to the pre-synaptic neurons. 

The LIF circuit used in this dissertation is discussed in the first section of the 

chapter. This study uses two types of network topologies that are both feed-forward and 

fully connected, also discussed in this chapter. Both networks follow spike-timing-

dependent plasticity (STDP), biological Hebbian learning, where the conductivity of the 

memristive synapse (the connection between two neurons) is modified interdependently, 

due to the presence of pre- and post-synaptic neuron firing time.  The chapter also presents 

the simulations discussing the factors that affect the pair-based STDP learning rule in the 

network. Later parts of the chapter discuss the learning capabilities of the network. The 

effect of radiation on the learning abilities of the memristor-based neural networks is 

discussed in 0. The contributions from this chapters are published in [120], [121].  
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4.1 The Leaky Integrate-and-Fire (LIF) Post-Synaptic Neuron 

The post-synaptic neuron used in the biphasic spiking neural network is designed 

in Verilog-A (APPENDIX D) and represents a leaky integrate-and-fire (LIF) circuit 

behavior governed by the Hodgkin-Huxley equations. The LIF neuron behavior is 

implemented in the literature using a single opamp and MOSFETS [157]–[159]. This 

dissertation uses the behavioral model of the LIF designed in Verilog-A (APPENDIX D) 

to increase the speed and efficiency of the simulated circuit. The LIF circuit fires a 

bidirectional biphasic spike toward the dendritic and axonic synapses when a certain 

threshold is reached. The schematic depiction of the LIF circuit is presented in Figure 0.1 

(a). The input of the circuit, VPostIn, is the node connected to the output of all the memristors 

in the fully connected network presented in Figure 0.3. VPostIn changes with the change in 

the conductivity of the memristors and the spike timing of the pre-synaptic afferents in the 

neural network.  

 
Figure 0.1 (a) Leaky integrate-and-fire (LIF) post-synaptic neuron circuit. The 

circuit is designed in Verilog-A. The voltage source Vfire produces the desired shape 

of post-synaptic biphasic spike. CLIF, Rcharge, and Rdischarge are responsible to mimic 

the leakiness of the biological synapse. (b) The plot shows the increase in the voltage 

across capacitor CLIF as the circuit sees the input spikes over time (VPostIn). Vfire 

sends out the output spike as VC reaches threshold voltage VCth (= 0.5 V in this case). 
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In Figure 0.1 (a), the switches S1 and S2 are initially connected to Rcharge (1 GΩ), 

thus charging CLIF. If at any point, VPostIn is less than the voltage across CLIF, S2 flips and 

CLIF starts discharging via Rdischarge at 20 GΩ for a slow leak. As soon as VPostIn is larger 

than the voltage across CLIF, S2 flips back and CLIF starts charging again via Rcharge at 1 GΩ. 

At times when the voltage across CLIF becomes greater than a certain threshold (discussed 

in Section 0), S2 connects to Rdischarge and S2 connects to Vfire and the circuit fires a desired 

biphasic spike, designed in the Verilog-A code. In this condition, Rdischarge is at 1 GΩ for 

quick CLIF discharge or reset, and Vfire produces a biphasic spike traveling toward the 

memristors (axonic synapses), thus updating their weight via the STDP learning rule. The 

charging and discharging states of the capacitor are shown in Figure 0.1 (b). As the input 

spike arrives the capacitor charges and discharges slowly in the absence of a positive spike. 

The charging and discharging process continues until just before 40 ms, in Figure 0.1 (b), 

when the capacitor reaches a threshold (VCth = 0.5 V in this case). At this point, Vfire fires 

a bidirectional biphasic spike, which is sent towards the present and the next layer of 

memristors (dendritic synapse) in the network (not used in this dissertation). The capacitor 

discharges rapidly during the time Vfire is firing the biphasic spike, as shown in Figure 0.1 

(b). Please see the Verilog-A code in APPENDIX D. 

The threshold (VCth) for the voltage across CLIF in Figure 0.1, which would lead to 

the post-synaptic afferent fire, depends on various factors. These factors include and are 

not limited to the number of afferents used in the network, the charging, and discharging 

time constants, the pre-synaptic pulse width, the frequency, and the amplitude. Too low of 

a threshold may make the network unstable by changing the weights too fast. On the other 
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hand at too high of a threshold, the network weights may not change much or at all and 

thus the network would be unable to learn. 

4.2 Neural Network Topology 

This work uses two types of network topologies, as shown in Figure 0.2 and Figure 

0.3. Both memristor-based neural networks are fully connected, where all the pre-synaptic 

afferents are connected to all the post-synaptic afferents via memristors. The networks are 

also unsupervised and are feed-forward i.e. the connections between the nodes are not 

cyclic, unlike recurrent neural networks. The networks also use multiple memristors acting 

as synapses. Each pre-synaptic afferent is connected to each post-synaptic afferent via one 

memristor. The synaptic memristors define the conductivity of the connection between the 

two afferents. The conductivity of the synapse follows STDP, which is modified 

continuously depending on the activities noted by the two connected afferents. 

 
Figure 0.2 The memristor-based electronic Pulsed Neural Network used in this 

dissertation. Three pre-synaptic neurons are each connected to two post-synaptic 

neurons via memristors used as synapses. This network uses randomly occurring 

digital square pulses to modify the synaptic weights. 

The pulsed neural network shown in Figure 0.2 has all three pre-synaptic neurons 

(N1, N2, and N3) electrically connected to two post-synaptic neurons (N4 and N5) via six 
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memristors (M1 to M6). This network uses square digital pulses as the action potentials and 

is used for preliminary simulations.  

The second topology is represented by a spiking neural network in Figure 0.3 and 

is a single layer perceptron network with either 25 or 100 pre-synaptic afferents (N1 to 

N25/100), each connected to a single post-synaptic neuron (LIF post N) via single memristors 

(M1 to M25/100). This network is used in this dissertation to learn the desired 25-pixel or 

100-pixel pattern. 

 
Figure 0.3 The memristor-based electronic Spiking Neural Network used in this 

dissertation for spatio-temporal pattern recognition. 25 or 100 pre-synaptic neurons 

are connected to one post-synaptic leaky integrate-and-fire (LIF) neuron via single 

memristors. The network uses biphasic shaped pulses to achieve pair-based STDP 

for pattern learning. 

4.3 Neural Network Simulations 

This section discusses the simulations performed using the two neural networks 

that were discussed in the last section. All networks and experimental conditions are 

simulations and captured in Cadence Virtuoso Spectre. No radiation effects are discussed 

in this chapter. 
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4.3.1 Pair Based STDP 

As mentioned in Section 0, STDP is a biological process that changes the strength 

of the connection between two neurons based on pre- and post-synaptic neuron firing time. 

STDP is also deemed responsible for the brain’s ability to form memories, locate sounds, 

and respond to threats [160], [161]. Many varieties of STDP are biologically observed in 

different areas of the brain in different species. The STDP followed in this research is 

closest to one observed in the neocortex layer of the hippocampus region in the human 

brain [160], [161]. In memristive devices, different shapes of pre- and post-synaptic neuron 

spikes can be used to obtain the desired STDP shape [162]–[165] Often, a simple pair-

based STDP implementation is used, although frequency-dependent effects are typically 

observed in neuroscience experiments, as in [166]. This section discusses the effects of 

various factors on the STDP learning curve. 

 
Figure 0.4 The two terminals of a Memristor are connected to the pre- and post-

synaptic neuron inputs. Spike trains in (a) show the pre-synaptic neuron spike 

produced and (b) shows the post-synaptic neuron spike observed by the memristor 

terminal. The magnitude and shape of both are the same, except there is a difference 

in their arrival times. Due to the difference in arrival time, the memristor observes 

the voltage given in (c) across it. Thus, the synaptic weight change would be 

different at each pre-post pairs’ arrival, resulting in the STDP curve. 
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Figure 0.4 shows the test structure used to capture the spike-timing-dependent 

plasticity (STDP) curve. The memristor is connected to a source of pre-synaptic and post-

synaptic biphasic spikes entering into the two terminals. The pre- and post-synaptic 10 ms 

biphasic spikes arrive at different time intervals as in Figure 0.4 (a) and (b). Due to this 

time difference, the memristor sees varying potential across it as shown in Figure 0.4 (c). 

This varying potential across the memristor, combined with the memristor threshold 

(discussed in later sections) changes its conductivity. Therefore, every pre-post pair 

arriving within a certain time window (called learning window) leads to the change in the 

magnitude of the synaptic weight.  

4.3.1.1 Initial 
w

D
 and pulse-shape 

STDP in Figure 0.5 (a) is obtained using an exponential biphasic spike, and Figure 

0.5 (b) uses a triangular biphasic spike, as shown in the respective insets. It can be noted 

in Figure 0.5, the magnitude of change in synaptic weight (Δ
w

D
) at any given time will 

depend on the initial synaptic state of the device and the shape of the pre- and post-synaptic 

pulses.  

 
Figure 0.5 Different STDP shapes obtained using (a) exponential and (b) 

triangular biphasic pulses as seen in the respective insets. The magnitude of change 

in synaptic weight (Δ
𝐰

𝐃
) also increases if the device was initially in the lower 

conductive state that is due to the non-linearity of the memristor model. 
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In Figure 0.5 when the device was initially in a less conductive state, i.e at lower 
w

D
 

(10%), it saw about a six to ten times larger change in synaptic weight when compared to 

when the device was initially at 90% 
w

D
, i.e. in a highly conductive state. This was due to 

the non-linearity present in the device, as discussed in CHAPTER 2:. Also, the difference 

in the shape of the STDP curve can be noted in Figure 0.5 (a) and Figure 0.5 (b). The 

triangular spikes in Figure 0.5 (b) give more distinct and sharper changes in the Δ
w

D
. On the 

other hand, the exponential input in Figure 0.5 (a) provides a gradual larger change in Δ
w

D
 

with up to 6% as compared to 2% due to the triangular spikes. This is due to non-linearity 

in the potentiation of the exponential curve. 

4.3.1.2 Memristor threshold  

The STDP curve in Figure 0.6 is collected using exponential biphasic spikes, as 

shown in the inset. In this case, the threshold, Vth, of the synaptic memristor device is 

changed from 0.25 V to 1 V, observing the change in STDP. In the case when the threshold 

is set to 0.5 V, the memristor will not change its state until the voltage drop across it is 

equal to or greater than 0.5 V (the threshold). 

In Figure 0.6, as the magnitude of Vth decreases, the read window increases for the 

same 100 ms pulse. The read window is the duration where a memristive device will see 

the change in the weight (Δ
w

D
 > 0) due to the arrival of pre- and post- synaptic spike. In the 

case of Vth equal to the 0.5 V, the learning window is 120 ms because Δ
w

D
 is not zero for 

−60 ms < Δt > 60 ms. On the other hand, in the case of Vth equal to the 1 V learning window 

is only 70 ms because Δ
w

D
 is not zero for −35 ms < Δt > 35 ms. 
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Lower threshold (Vth) values result in a larger read window and the magnitude of 

the Δ
w

D
 is severely affected. In Figure 0.6, at Δt = 10 ms, if the device Vth is set at 0.25 V it 

observes 50% less change in 
w

D
  (Δ

w

D
 = 1%) as compared to when device Vth is set at 0.75 

V (Δ
w

D
 = 2%). At 0.25 Vth, the network will be unable to distinguish between the pre- and 

post-synaptic pair arriving between 5 ms and 40 ms (−5 ms and −40 ms). Thus, the network 

would be unable to lower or increase the synaptic weights correctly and will not learn any 

certain pattern. 

 
Figure 0.6 Change in the STDP learning rule as the threshold of the memristor 

changes. Input spikes, in this case, are 100 ms, 1V exponential biphasic pulses, as 

shown in the inset. As the threshold decreases, the learning window increases, but 

the magnitude of change in the synaptic weight (Δ
𝐰

𝐃
) decreases and becomes 

undesirably flat. 

4.3.1.3 Effect of pulse width 

The STDP curve in Figure 0.7 is collected using exponential and triangular biphasic 

spikes, as shown in the inset. In this case, the width of the triangular and the exponential 

spikes is changed to observe the change in STDP.  
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Similar to Figure 0.5, Figure 0.7 also shows that the change in the synaptic weight 

(Δ
w

D
) is higher in the case of the exponential spikes when compared to their triangular 

counterparts. Figure 0.7 also shows that as the pulse width decreases, the read window 

decreases. The read window for 50 ms pulse width spikes is about 60 ms, and the read 

window for 100 ms pulse width spikes is about 120 ms. The read window is independent 

of the pulse shape. The decrease in the read window with pulse width is simply due to the 

reason that the duration of the spike is small. If the 50 ms pre-synaptic spike will arrive 60 

ms before or after the 50 ms post-synaptic spike, they will be too far apart to add up to pass 

the desired threshold to make any change in the STDP (as depicted by earlier spikes in 

Figure 0.4). 

 
Figure 0.7 Change in the STDP learning rule as the shape and width of the input 

biphasic spike changes. Input spikes, in this case, are either a triangular or an 

exponential biphasic pulse of 50 ms or 100 ms, as shown in the inset. As the pulse 

width decreases, the learning window decreases. It is also noted that the magnitude 

of change in synaptic weight (Δ
𝐰

𝐃
) decreases with a decrease in pulse width and pulse 

shape.  
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4.3.2 Pattern Learning 

Pre-synaptic afferents (N1 to N25/100), in the biphasic spiking neural network in 

Figure 0.3, are firing at an average rate of 5 Hz for the 100 s simulation time. Afferents 

that are part of the pattern (a 10-pixel ‘B’), as shown by  Figure 0.8 (b) (light color), are 

firing mutually correlated spikes at a regular interval, as shown in Figure 0.8 (a), N12 and 

N13 [167], [168]. Conversely, non-participating afferents in Figure 0.8 (b) (dark color), fire 

uncorrelated spikes with Poisson distributed intervals as shown by N14 and N15 in Figure 

0.8 (a). This same firing pattern is used in generating a 100-pixel ‘B’ pattern in the larger 

100 afferent networks of the next chapter.  

Pre- and post-synaptic afferents fire a biphasic triangular spike for 10 ms, which 

potentiates to a peak voltage of +1 V and the depression tail reaches a maximum of −0.25 

V, as shown in the inset in Figure 0.9. All of the memristors in the spiking neural networks 

are initially kept in a conductive state with a resistance distribution varying from 20 kΩ 

and 35 kΩ, as can be noted in Figure 0.8 (b) (Initial State). 

Figure 0.8 (b) shows the synaptic weight evolution of all the memristors (M1 to 

M25) as the network tries to learn a 25-pixel letter ‘B’. Starting around 30 s, the network 

was able to depress most of the uncorrelated neurons by decreasing the conductivity of 

their corresponding memristors and the desired pattern is very recognizable. At 60 s, the 

network is in a stable state with post-synaptic neurons firing at a constant rate, as the un-

correlated neurons are completely depressed and thus not contributing any current to the 

LIF circuit of the post-synaptic neuron. Figure 0.8 (c) shows the synaptic weight 

distribution of the memristor and a decrease in the weight of the uncorrelated synapses can 

be noted at 30 s.  
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Figure 0.8 (a) Scatter plot of the spike times of two correlated afferents N12 and 

N13 (participating in the pattern) and two non-participating, uncorrelated afferents 

(N14 and N15). (b) The initial synaptic weight distribution and evolution of the 

pattern over time as the system is in the process of learning a 25-pixel letter ‘B’. (c) 

A histogram of the synaptic weight distributions in weight bins that are 0.05 wide. 

After 30 s, uncorrelated neurons are separated and moved to a lower weight. 

 
Figure 0.9 STDP plot obtained from weight changes due to nearest-neighbor 

pairs in the 100 s simulation of the network with 25 pre-synaptic biphasic spiking 

neurons of Figure 0.3. Inset shows the pre- and post-synaptic neuron inputs used. 

STDP has much stronger depression than potentiation, generally leading to faster 

learning in the network. 

The STDP learning curve in Figure 0.9 shows changes in the synaptic weights of 

all 25 memristors for 100 s as a function of the time difference between post- and pre-

synaptic spike firing. When a post-synaptic neuron fires after a pre-synaptic neuron (time 

difference > 0 ms), the network considers them correlated and the synaptic weight of the 

respective memristor increases, making the synaptic connection more conductive (and 

vice-versa). The STDP curve shows much stronger depression than potentiation, meaning 
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the network can depress the uncorrelated afferents faster. Asymmetrical STDP curves are 

obtained using different potentiation for pre- and post-synaptic spikes, as shown in the inset 

in Figure 0.9. 

4.4 Conclusion 

This chapter discussed the design, topology, and learning behavior of the 

memristor-based spiking neural networks, which are used in the next chapter to investigate 

radiation effects. The leaky integrate-and-fire (LIF) circuit that was used as a post-synaptic 

neuron in the spatio-temporal pattern learning neural network was discussed in detail. The 

pulsed neural network and the spiking neural network were discussed which were using 

the pair-based STDP learning rule. 

Factors that affect the neural network’s learning ability were discussed in this 

chapter. It was demonstrated that overall STDP was affected by multiple factors such as 

memristor threshold, input spike pulse shape, pulse width, and the initial conductive state 

of the network. STDP, in turn, affects the learning ability of the network. The number of 

afferents used in a network, LIF charging and discharging time constants, pre-synaptic 

pulse width, frequency, and amplitude are a few other factors that affected the network’s 

learning ability. 
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CHAPTER 5: NEURAL NETWORK UNDER RADIATION 

In this chapter, memristor-based spiking neural networks are used to analyze the 

effect of radiation on the spatio-temporal pattern recognition (STPR) capability of the 

networks. The radiation effects discussed in CHAPTER 3: are simulated on the memristor-

based neural networks discussed in 0; the modified non-linear memristor drift model used 

is discussed in CHAPTER 2:. All the simulations are captured in Cadence Virtuoso 

Spectre. 

Networks with 5, 25, and 50 neurons are simulated to observe the effect of radiation 

at different intensities, flux, and duration. The chapter starts by discussing the effects of 

state-altering radiation on the spike-timing-dependent plasticity (STDP) curve, thus 

observing the effects of radiation on the expected learning rule. In the pulsed neural 

network, in the absence of any pattern, the cumulative effect of radiation events is observed 

leading to an unstable network. Later sections of the chapter discuss the effects of radiation 

on the spatio-temporal pattern learning ability of the network. Changes in network learning 

capability and system stability are statistically analyzed as well. The contributions from 

this chapters are published in [120]–[122] and are under peer review. 

5.1 Radiation and STDP 

Figure 0.1 shows the test structure used to capture the spike-timing-dependent 

plasticity (STDP) curve. It is similar to the STDP test structure discussed in Section 0. The 

memristor is connected to a source of pre-synaptic and post-synaptic biphasic spikes which 

are 10 ms biphasic spikes arriving at different time intervals as shown in Figure 0.1 (a) and 
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(b). Due to this time difference, the memristor sees varying potential across it as shown in 

Figure 0.1 (c). As mentioned in Section 0, varying the potential in combination with the 

memristor threshold of 1 V leads to the desired STDP shape. In this case, state-altering 

radiation current at different magnitude is induced in the memristor before the arrival of 

the pre- and post-synaptic pulses, and the change in the synaptic state is noted. Radiation 

interaction leads to a change in the STDP curve. 

 
Figure 0.1 The two terminals of the memristor are connected to the pre- and 

post-synaptic neuron inputs. Spike trains in (a) show the pre-synaptic neuron spike 

produced and (b) show the post-synaptic neuron spike observed by the memristor 

terminal. Both are the same in magnitude and shape except there is a difference in 

their arrival times. Due to the difference in arrival time, the memristor observes the 

voltage given in (c) across it. Thus, the synaptic weight change would be different at 

each pre-post pairs’ arrival, resulting in the changes to the STDP curve. The 

radiation effect is observed by the added radiation current pulse to the network 

before the pre-post pairs’ arrival (marked by red arrows). 

Figure 0.2 shows the change in the STDP learning curve as the memristive device 

is exposed to an event of state-altering radiation before the pre- and post-synaptic afferent 

biphasic pulses arrive. Figure 0.2 (a) shows the STDP curve resulting from the exponential 
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biphasic spike and Figure 0.2 (b) results from a triangular biphasic spike, as shown in their 

respective insets. Radiation is observed to shift the whole curve upward, making it 

asymmetric. Thus, the system will undesirably favor a stronger correlation and might make 

the system unstable. The STDP curve is noted at the varying intensities of the state-altering 

radiation current, the curve shifts more as the radiation intensity increases, indicating that 

the neural network will be overwhelmed at a higher magnitude of radiation current. 

 
Figure 0.2 STDP plot after a state-altering radiation event for (a) exponential 

and (b) triangular biphasic pulses. The STDP curve shifts upward due to radiation 

that brings asymmetry into the STDP curve and thus tends to favor an increase in 

synaptic weight. 

5.2 Radiation Effects on the Pulsed Neural Network: without a Pattern 

This section discusses the effects of state-altering radiation current on a memristor-

based pulsed neural network discussed in Section 0. The network is not in the process of 

learning any pattern. In this case, the pre-and post-synaptic neurons are not firing any 

specific pattern, the spikes just present randomly distributed Poisson noise. 

The network shown in Figure 0.2 is used to study the effect of radiation events on 

the pulsed neural network. In Figure 0.2, N1, N2, and N3 are pre-synaptic neurons (afferents) 

and N4 and N5 represent post-synaptic (output) afferents. Memristors (M1 to M6) in the 

network represent the synapses electrically connecting neurons, with the numbering 



77 

 

 

 

scheme shown in Figure 0.2. For simulation purposes, five independent voltage sources 

mimic the behavior of the neurons. Each voltage source generates 500 mV pulses such that 

the pulse interval follows the random Poisson distribution as shown in Figure 0.3 (a). Due 

to the presence of these pre- and post-synaptic voltage pulses, the state or weight (
w

D
) of all 

six memristive devices will changes interdependently, as shown in Figure 0.3 (b). 

 
Figure 0.3 Simulation of the network in Figure 0.2 (a). Randomly Poisson 

distributed voltage pulses depicting the behavior of randomly spiking neurons. (b) 

Synaptic weight evolution with no radiation. The network is exposed to randomly 

Poisson (interval) and Gaussian (amplitude) distributed radiation events, and then 

the synaptic weight of each memristor is observed. (c) Low radiation, μ = 1.5 μA, 

and σ = 0.75 μA. (d) Low radiation increased the weights, making the devices more 

resistive. (e) Medium radiation, μ = 7.5 μA, and σ = 3.75 μA. (f) Medium radiation 

increases the weights further and (g) higher radiation, μ = 15 μA, and σ = 7.5 μA. (h) 

At higher radiation levels the neuromorphic effect is almost negligible and the 

radiation events drive the weights considerably higher, making the devices more 

conductive. 

Each synaptic memristive device is exposed to a different state-altering radiation 

pattern. The radiation current Iradsc pulse interval follows the random Poisson’s 

distribution and the magnitude follows the random Gaussian distribution with mean μ and 



78 

 

 

 

standard deviation σ. Figure 0.3 (c), (e) and (g) represent the radiation pattern used on the 

memristors, but at different intensities. These radiation events follow the same pattern, but 

their mean is 1.5 μA, 7.5 μA, and 15 μA and the standard deviation is 0.75 μA, 3.75 μA 

and 7.5 μA for Figure 0.3 (c), (e) and (g) respectively. Plots in Figure 0.3 (d), (f), and (h) 

respectively represent the resulting weights of the memristor during the three radiation 

events.  

It is noted that at the stronger radiation flux, the synaptic weights deviate farther 

away from their ideal values, making synapses more and more conductive.  In Figure 0.3 

(g) stronger radiation almost overtakes the effect of the input from the neurons, contrary to 

the Figure 0.3 (d) effect which saw much less intense radiation flux, and thus still follows 

the input of the neuron with much less deviation. For an expected memristor device size of 

100 nm x 100 nm, the radiation flux in this example is 4.685 x 1010 cm−2 s−1. This is a large 

value, but certainly, one that is observable in many different situations. 

Figure 0.4 represents the simulation results obtained using the same fully connected 

pulsed neural network shown in Figure 0.2. Each afferent in the network generates a train 

of 500 mV (1 ms) square pulses at Poisson distributed interspike intervals representing 

pure noise (no patterns or correlations). The system is also irradiated for the first 10 s with 

state-altering radiation of different magnitude (μ = 1 μA to 100 μA, and σ = 0.5 μA to 50 

μA) and flux (up to 5x1010 cm−2s−1). Figure 0.4 plots the 
w

D
 of each memristor (M1 to M6) 

after 50 s of simulation. Although the system is irradiated only for the first 10 s, the 

radiation effects accumulate over time, and at higher radiation intensity, the weights have 

considerably diverted. Some will even saturate, as is the case of M4, M5, and M6 at the 
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higher flux of 5x1010 cm−2s−1. This cumulating behavior of the effect of radiation could 

lead to pattern learning and recognition challenges in neural networks [120]. 

 
Figure 0.4 The synaptic weight (

𝐰

𝐃
) of memristor (M1 to M6) of the fully 

connected pulsed neural network represented in Figure 0.2. The network is 

simulated using 0.5 V, 1 ms square pulses, radiated for 10 s with state-altering 

radiation of different mean magnitude and flux, with 
𝐰

𝐃
 values noted after 50 s of 

simulation. The radiation effects seem to accumulate over time, especially from 

stronger radiation events. 

5.3 Radiation Effects on the Spiking Neural Network: with a Pattern 

This section discusses the effects of state-altering radiation current on a memristor-

based neural network, which is in the process of learning a pattern. In this case, few of the 

pre-synaptic neurons that are firing at specific intervals are part of the given pattern. On 

the other hand, the pre-synaptic neurons that are not part of the pattern present randomly 

distributed Poisson noise. 

The network shown in Figure 0.3 is used to study the effect of radiation in this 

section. In Figure 0.3, N1 to N25/100 are pre-synaptic afferents and the post-synaptic afferent 

is represented by a leaky integrator circuit, as noted in Section 0. Memristors (M1 to M25/100) 

in the circuit represent the synapses electrically connecting the pre-synaptic neurons with 

the post-synaptic LIF neuron. For simulation purposes, voltage sources mimic the behavior 

of the pre-synaptic afferents generating biphasic spikes. 
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5.3.1 Subjected to Radiation with Limited Duration 

In this section, the memristor-based neural network that has partially learned the 

pattern is exposed to the state-altering radiation for a limited duration such as 10 to 40 s. 

The network's ability to keep learning or recovering the pattern post radiation is analyzed. 

5.3.1.1 Changing the flux of radiation exposure 

Figure 0.5 shows the change in the state of the 25-memristive devices in the neural 

network. The network is exposed to the state-altering radiation for 10 s after 30 s of learning 

the pattern representing the 25-pixel letter ‘B’. The memristors were exposed to radiation 

flux of (b) 1x1010 cm−2s−1, (c) 3x1010 cm−2s−1 and (d) 5x1010 cm−2s−1 at a magnitude μ = 25 

μA and σ = 12.5 μA for 10 s.  

 
Figure 0.5 Memristors were exposed to 10 s of state-altering radiation 

(magnitude of 50 μA) at different flux after 30 s of learning is complete. As the flux 

increased, the pattern distorts and more saturation was observed in (d) at 40 s. The 

network was able to resolve the pattern but took a long time to stabilize at higher 

flux. 
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In Figure 0.5, the synaptic weight distribution is recorded right at the end of the 

radiation events (at 40 s) and at 70 s and 100 s as learning continued. It is observed that as 

the flux increases to 5x1010 cm−2s−1, the pattern completely disappears (at 0 s post-

radiation). As pattern learning continues after the end of radiation, the system was able to 

relearn the pattern even in the case of intense radiation flux (Figure 0.5 (d)). Although it did 

take much longer for the system to depress the non-participating afferents, the difference in 

synaptic weight distribution can be noted at 70 s and 100 s.  At the end of the radiation 

events (at 40 s) most of the synaptic weight seems to be biased towards 
w

D
 = 1 (more in Figure 

0.5 (d) than Figure 0.5 (b)) but as learning progresses at 70 s and 100 s the network was 

successfully able to depress the non-participating afferents and the system stabilizes again. 

 
Figure 0.6 Evolution of the average synaptic-weight of all memristors at different 

flux. The network was exposed to state-altering radiation (magnitude 50 μA) for 10 

s (grey area) after 30 s of learning. Post-radiation weights evolve toward the non-

radiated weight curve as the network tries to resolve the pattern. 

The evolution of the average synaptic weight of all 25 memristors is plotted in 

Figure 0.6. the simulated irradiation of the system for 10 s starts at 30 s (grey region) at 

different flux with a mean magnitude μ = 25 μA and σ = 12.5 μA. As expected, during the 
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radiation events, the weights were climbing towards 
w

D
 = 1. At higher flux of 5x1010 cm−2s−1, 

all weights saturate post-radiation and the network is unable to recognize the pattern, as 

seen in Figure 0.5 (d) at 40 s. At the end of radiation at 40 s, the mean weights start to 

evolve towards the non-radiated trace as the network tries to relearn the pattern. This 

indicates that the system is stabilizing itself by decreasing the average conductivity of the 

network, which was artificially increased due to the state-altering radiation event. 

Figure 0.7 shows the synaptic weight distribution and pattern evolution, as the 

spiking neural network is in the process of learning a 100-pixel spatio-temporal pattern 

letter ‘B’. Again, the network is exposed to 10 s of state-altering radiation (magnitude μ = 

25 μA and σ = 12.5 μA, starting at 30 s) at increasing flux.  

It is observed that as the flux increases, the pattern distortion also increases. This is 

because radiation is changing the state of the memristive synaptic devices and forcing them 

to be more conducive, as indicated by the STDP curve in Section 0. As the weights move 

toward more conductive states, the LIF post-synaptic neuron observes a stronger 

correlation and the system becomes unstable. For a neural network to be stable, synaptic 

weight distributions should look more like Figure 0.7 (a) at 100 s, where the correlated 

weights are not completely saturated and therefore not over-simulating the LIF post-

synaptic neurons, but contributing to the pattern. 

 At 40 s, after the end of the 10 s state-altering radiation event, the system tries to 

relearn the pattern, but the recovery does not necessarily result in the same pattern or a 

stable system. In the case of Figure 0.7 (d), at 5x1010 cm−2s−1 at 40 s, the pattern is 

indistinguishable and post-radiation recovery left the system with a slightly different 

pattern and a relatively unstable synaptic weight balance.  
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Figure 0.7 The synaptic weight distribution and pattern evolution over time as 

the system is exposed to 10 s (starting at 30 s) state-altering radiation (magnitude μ 

= 25 μA and σ = 12.5 μA) at increasing flux. The spiking neural network is in the 

process of learning a 100-pixel spatio-temporal pattern letter ‘B’. As the flux 

increases, pattern distortion also increases. At 5x1010 cm−2s−1 flux, the pattern is 

completely indistinguishable at 40 s. Although the system tries to relearn the pattern 

after the end of radiation exposure, the recovery does not result in the same pattern 

or a stable system. 

Figure 0.8 shows a detailed analysis of data obtained from the 100 pre-synaptic 

neuron network simulation. Figure 0.8 (a) plots the average synaptic weight evolution of 

all correlated and uncorrelated synapses separately over the 100 s period. During the 

radiation event (salmon color), uncorrelated synapses saw more deviation than correlated 

synapses. This effect is due to the non-linearity of the device as discussed in Section 0 and 

Figure 2.4. When it is less conductive, there is a larger change in synaptic weight compared 

to a highly conductive state.  

It is also observed that the system became stable only after the average weight 

(calculated using Equation (0.1)) of the uncorrelated afferents slid lower than 0.1 
w

D
 (note 
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dashed vertical lines in Figure 0.8 (a)). Due to this, all the correlated synapses do not 

average out at the same value and result in a slightly different pattern as noted in Figure 

0.7 at 100 s. This observation is clearer in Figure 0.8 (b) where the cumulative variance 

(calculated using the Equation (0.2)) in a change of synaptic weight of correlated synapses 

stabilized after the vertical dashed lines confirming the system stability. As expected, the 

cumulative variance in weight change is higher for uncorrelated synapses at higher flux.  

 
Figure 0.8 Network stability analysis of the simulation in Figure 0.7. (a) Average 

and (b) Cumulative variance in the change of synaptic weight evolution of all 

correlated and uncorrelated synapses over 100 s period. In (a) during the radiation 

event (salmon color), uncorrelated synapses saw more deviation than correlated 

synapses and the system became stable only after the average weight of uncorrelated 

afferent slid lower than 0.1 value of 
𝐰

𝐃
 (dashed vertical lines). This observation can 

be made more clearly in (b) where the cumulative variance in synaptic weight of 

correlated synapses stabilized after the vertical dashed lines. 

The formulas used in the calculations are given as: 

Average weight(n) =
1

n
∑ ((

w

D
 )i)

n

i = 1

 (0.1) 

Cumulative Variance of  
d(

w
D)

dt
 (n) = ∑ (| (

w

D
)

i
−  (p)i|)

n

i = 1

 (0.2) 
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Mean Squared Error (n) =
1

n
∑ ((

w

D
 )i −  (p)i)

2

n

i = 1

 (0.3) 

where n is the total number of synaptic memristors under analysis (uncorrelated, 

correlated or all) and p is the desired weight of the corresponding synaptic device. 

 
Figure 0.9 Error analysis of the network from the simulation in Figure 0.7. Box 

plot of mean squared error post-radiation (after 40 s) of uncorrelated, correlated, 

and all synaptic weights. Note the increase in the average MSE and spread, as the 

radiation flux increases. The spread is more notable in uncorrelated synapses. 

A box plot of mean squared error (MSE) of the post-radiation data (after 40 s) 

obtained from the same memristor-based 100 pre-synaptic Neuron network simulation is 

plotted in Figure 0.9. The MSE is calculated using Equation (0.3). The plot presents the 

simulations at different radiation flux for the synaptic weight of uncorrelated, correlated, 

and all memristors (M1 to M100). As expected, the average MSE increases as the radiation 

increases, and the box-whisker spread are significantly noticeable in the uncorrelated data 

set because it saw the most deviation during radiation, as seen in Figure 0.8 (a). Notably, 

the median of the radiated correlated data set is much closer to zero because this data set 

did not see much deviation during radiation due to the STDP 
w

D
 non-linearity. 
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5.3.1.2 Changing the duration of radiation exposure 

Figure 0.10 represents the behavior of the 25 pre-synaptic neurons neural network 

when irradiated for a longer period (20 s and 40 s, starting at time 30 s) with Gaussian 

distributed pulses of average magnitude μ = 5 μA and σ = 2.5 μA at 3x1010 cm−2s−1 flux. 

The weight distribution was recorded right at the end of radiation events (at 50 s/70 s) and 

after 30 s (at 80 s/100 s).  

Figure 0.5 (d) at 40 s shows more distortion in the pattern than Figure 0.10 (c) at 

70 s even though Figure 0.10 (c) saw a longer period of exposure. That distortion is due to 

the lower flux radiation used in Figure 0.10 (c) simulation. Thus, the network depressed 

the synapses and relearned the pattern more rapidly. 

 
Figure 0.10 The left column shows the synaptic weight distribution after the end 

of the state-altering radiation event (3x1010 cm−2s−1 flux, magnitude μ = 5 μA and σ 

= 2.5 μA) for (b) 20 s and (c) 40 s, after 30 s of uninterrupted learning. The right 

column shows the weight distribution 30 s after the end of radiation. In (c), the 

network is still in an early stage of learning as radiation effects accumulated over 

time and delay the learning process. 

Figure 0.11 plots the evolution of average synaptic weight when the system is 

irradiated for longer periods (colored region) with pulse magnitude μ = 5 μA and σ = 2.5 
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μA each at 3x1010 cm−2s−1 flux.  After the end of the radiation events, the mean weights 

start to evolve towards the non-irradiated trace. Even when exposed to radiation for 40 s, 

the weights do not saturate, unlike the effect observed in Figure 0.5 at higher flux. Once 

again representing the ability of the continually evolving and learning neural network to 

recover from the lower intensity and flux radiation. 

 
Figure 0.11 Average synaptic-weight evolution of all memristors as state-altering 

radiation (3x1010 cm−2s−1 flux, magnitude μ = 5 μA and σ = 2.5 μA) time increases 

from 10 s to 40 s (colored area). After the end of the radiation event as the network 

tries to relearn the pattern, the average synaptic weight of radiated memristors 

evolves towards the non-radiated weight curve. 

5.3.2 Learning in the Presence of Constant Radiation 

The simulation results shown in this section demonstrate the learning ability and 

the average synaptic weight evolution of the network in the presence of radiation of pulse 

magnitude μ = 0.5 μA and σ = 0.25 μA at different flux intensities. In these cases, radiation 

events started at 0 s when the network weight distribution was in its initial state as seen in 

Figure 0.8 (b). The goal of this experiment was to determine if the network can learn a 

pattern at all in the presence of radiation, or whether the weight evolutions are inevitably 

altered. 
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Figure 0.12 shows that until 40 s there was no major disruption in the network’s 

ability to learn the pattern. Figure 0.12 (b) at a lower flux of 1x1010 cm−2s−1 shows no 

change in the pattern recognition capability of the network at 100 s. It can be observed 

from Figure 0.12 (c, d, and e) that as radiation flux increases, the network quickly becomes 

unstable sooner as radiation accumulates. It is interesting to note that in both Figure 0.12 

(d) and Figure 0.12 (e), the network consistently and stably starts recognizing a different 

pattern again at 80 s (several pixels are incorrect).  

  
Figure 0.12 Memristors were exposed to state-altering radiation (flux magnitude 

μ = 0.5 μA and σ = 0.25 μA) throughout the learning process (for 100 s starting at 0 

s). In each case, the network was able to resolve the pattern in 40 s. Although, at 

higher flux (c), (d), and (e), the network became unstable at 80 s, 60 s, and 50 s. The 

network maintained stability in (b) at the lower flux value. 

A similar evolution can be noted in Figure 0.13, which plots the total average 

weight (calculated using Equation (0.1)) of all the synapses versus time. In this plot, the 
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weight evolution is similar until the flux reaches over 1x1010 cm−2s−1. Here, the flux weight 

evolution is similar to the no radiation curve, but higher flux causes a sudden decrease in 

total weight after 70 s, 50 s, and 40 s in the case of 3x1010 cm−2s−1, 4x1010 cm−2s−1, and 

5x1010 cm−2s−1 state-altering radiation flux. As observed in Figure 0.12 (d) and (e), Figure 

0.13 also notes the stable evolution of weight after 70 s in both cases when the flux is at 

4x1010 cm−2s−1, and 5x1010 cm−2s−1.  

  

Figure 0.13 The average synaptic-weight evolution of all memristors as the 

network tries to learn the pattern in presence of state-altering radiation (for 100 s 

starting at 0 s) at different flux (pulse magnitude with μ = 0.5 μA and σ = 0.25 μA). 

The network tries to resolve the pattern but becomes unstable sooner as the flux 

increases. At a lower flux network was successfully able to recognize the pattern 

throughout the time. 

Figure 0.14 shows the synaptic weight distribution and pattern evolution, as the 

spiking neural network is the process of learning the 100-pixel spatio-temporal pattern 

letter ‘B’. The network is exposed to state-altering radiation (magnitude μ = 0.5 μA and σ 

= 0.25 μA) at increasing flux up to 5x1010 cm−2s−1  throughout the learning process of 100 

s. It can be noted in Figure 0.14 at 5x1010 cm−2s−1 flux at 100 s, correlated weights are 

pushed to the extreme, 
w

D
= 1. Thus, LIF post-synaptic neuron starts over firing and the 
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system becomes unstable and does not recognize the expected pattern. On the other hand, 

at 0.5x1010 cm−2s−1 flux, the system is very stable as the correlated weights are not saturated 

(LIF post-synaptic neuron is not over-stimulated) and the changes due to radiation are 

absorbed by the network. 

.  

Figure 0.14 Synaptic weight distribution and pattern evolution over time as the 

system is exposed to state-altering radiation (magnitude μ = 0.5 μA and σ = 0.25 μA) 

at increasing flux throughout the learning process of 100 s. The spiking neural 

network is in the process of learning a 100-pixel spatio-temporal pattern letter ‘B’. 

As the flux increases, the system instability increases but at lower flux, the system 

was able to maintain stability. 

Figure 0.15 shows the detailed analysis of data obtained from the network 

simulation shown in Figure 0.14. Figure 0.15 (a) plots the average synaptic weight 

evolution of all correlated synapses over the 100 s period. At higher radiation, a deflection 

point can be observed (represented by the dotted horizontal black line). As the average 

correlated synaptic weight evolves to this point, the system becomes unstable. This 

observation can also be verified when the cumulative variance (calculated using Equation 

(0.2)) in the change of synaptic weight of the correlated afferent is plotted in Figure 0.15 
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(a). Note that the cumulative variance in weight keeps increasing after the deflection-point 

even though the system was relatively stable for flux 3x1010 cm−2s−1 and 4x1010 cm−2s−1 

before the deflection. 

 
Figure 0.15 Stability analysis of simulated data captured in Figure 0.14. (a) 

Average synaptic weight and (b) Cumulative variance in the change of the synaptic 

weight of correlated synapses over 100 s period. In (a) at higher radiation, a 

deflection point can be observed around 
𝐰

𝐃
= 𝟎. 𝟖𝟒, represented by the dotted 

horizontal black line, where the system becomes unstable. This observation is 

clearer in (b) where the cumulative variance in weight of correlated synapses 

destabilizes after the vertical dashed lines representing the respective deflection-

points. 

The MSE of 
w

D
 data obtained from the network simulation in Figure 0.14 is plotted 

in Figure 0.16 at different radiation flux for synaptic weights of uncorrelated, correlated, 

and all memristors. Figure 0.16 plots the evolution of MSE overtime calculated using 

Equation (0.3). As discussed in Section 0, all synapses are initialized to a high conductance, 

thus the uncorrelated synapses (Figure 0.16 (a)) started with the most error (MSE = 0.7) 

and as the network suppressed them the MSE approached zero. On the other hand, 
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correlated synapses (Figure 0.16 (c)) started with nearly zero MSE that increased over time 

as the system depressed and potentiated a few of the correlated synapses to attain stability. 

On average (Figure 0.16 (b)), MSE decreased from 0.35 to 0.5 stably at lower radiation 

flux. On the other hand, as radiation flux increased, correlated synapses became unstable 

and MSE increased (Figure 0.16 (c)).  

 
Figure 0.16 Mean Squared Error (MSE) analysis of network from the simulated 

data captured in Figure 0.14. MSE of (a) uncorrelated afferents, (b) all afferents, 

and (c) correlated afferents that are part of the pattern. On average MSE decreases 

at lower radiation flux but as radiation flux increases correlated synapses became 

unstable and MSE increases. 

Figure 0.17 compares the distribution of MSE as the state-altering radiation flux 

increases from no radiation to 5x1010 cm−2s−1. As expected, the MSE increases as the 

radiation increases, and the box-whisker spread is significantly noticeable at 4x1010 cm−2s−1 

and 5x1010 cm−2s−1 as the system becomes more unstable due to weight saturation and LIF 

over-simulation. Notably, the mean of the radiated correlated data set is almost stable until 
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3x1010 cm−2s−1, meaning the system was able to absorb the effects of radiation for 100 s 

until that flux. 

 
Figure 0.17 Box plot of MSE for 100 s of uncorrelated, correlated, and all synaptic 

weights of the network from the simulated data captured in Figure 0.14. Note the 

average MSE does not increase for the lower flux and the spread increases only at 

much higher radiation flux. 

5.4 Conclusion 

In this chapter, networks with 5, 25, and 100 neurons were simulated to observe the 

effect of radiation in different conditions like intensity, flux, and period. Although 

networks with only one or a few output neurons and two layers are not generally useful, 

the results are broadly relevant. In particular, these results can provide insight into the 

operation and response of filters within hidden layers of deep convolutional neural 

networks to radiation [169]. 

It was observed that radiation events bring asymmetry to the STDP curve, 

artificially forcing the network to favor a stronger correlation between the afferents. If the 

network was exposed to higher state-altering radiation flux, 4x1010 cm−2s−1, or 5x1010 

cm−2s−1 for example, even for a shorter period such as 10 s, the network destabilized and 
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took a long time to stabilize and relearn the pattern. In such cases, the system suppressed a 

few of the correlated synapses, thus resulting in a slightly different learned pattern. When 

exposed to smaller flux (1x1010 cm−2s−1), the system was very quickly (within 20 to 30 s) 

able to relearn the expected pattern and cope with the effect of radiation. In the absence of 

a pattern (input is random Poisson noise), radiation effects accumulate over time and the 

network was never able to overcome them. At the same time, the system was able to learn 

and separate the uncorrelated afferents when a pattern was presented but the network was 

subjected to state-altering radiation at low flux.  

Thus, the primary result was that when the network was not undergoing training, 

the effects of radiation build up because the deposited energy was not dissipated and the 

network becomes less stable. On the other hand, the network could overcome larger 

amounts of radiation exposure when undergoing continuous on-line training. 
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CHAPTER 6: NEURON DEATH IN SPIKING NEURAL NETWORKS 

Neuron death occurs in biological neural networks (the brain) due to various 

reasons like aging, natural death during migration and differentiation, head injuries, spinal 

cord injuries, or neurodegenerative diseases.  The cognitive function of the human brain 

gradually declines with age, leading to memory loss, learning slowdown, motor 

incoordination, and attention impairment [170], [171]. Neurodegenerative diseases also 

cause a considerable decline in neuron numbers. Parkinson’s and Huntington’s diseases 

lead to neuron death in the basal ganglia region of the brain and Alzheimer’s affects the 

neurons in the neocortex and the hippocampus parts of the brain [170], [172], [173]. It 

generally takes about 60 years before people notice any measurable memory loss or 

become susceptible to develop neurodegenerative diseases [172]. Thus, the human brain 

demonstrates a remarkable ability to compensate for neuron losses over time, forestalling 

any noticeable effect until the losses become profound [171], [174]. According to one study 

from 1998, about 11 million people in the US experienced a stroke, of whom only 

approximately 0.77 million (7%) were symptomatic [175]. A vast majority of strokes are 

‘silent’, although they can kill large numbers of cells rapidly [175]. Presently, the network-

level effects of neuron death in electronic circuits is not addressed in the literature. This 

chapter contributes to filling that gap in the neuromorphic computing literature by 

analyzing the effect of neuron death in spiking neural networks (SNNs).  

Industry pioneers are implementing neural networks for solar radiation forecasting, 

object classification and matching, event filtering, facial recognition, combat automation, 
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target identification, and weapon optimization [11]–[15]. In the future, SNNs are expected 

to use pulses or spikes instead of analog signals to communicate and transfer information. 

Customized hardware implementations will make these spiking neural networks (SNNs) 

highly efficient, robust, and fault-tolerant. SNNs are expected to find applications in harsh, 

radiation-filled environments such as space or at nuclear and military installations. 

Presently, shielding and hardening are common practices to protect devices and circuits 

from radiation, but these techniques are unable to block all particles from interacting with 

underlying electronics [16], [17].  Radiation in such cases can lead to neuron death due to 

circuit failure (CMOS threshold shift, oxide breakdown, gate rupture, displacement 

damage [176], [177]) in the SNN.  

In this chapter, a memristor-based SNN is designed to learn a spatio-temporal 

pattern. The changes in the learning ability of the networks due to the death of the neurons 

are analyzed. In the neural network, synapses are realized using a memristor behavioral 

model. Although the presented network uses a single layer, the results can provide insight 

into the operation and response of the hidden layers within deep convolutional neural 

networks [169]. 

Section 0 in the chapter discusses the SNN design and topology of the neural 

networks used. This section also discusses the experimental setup used to analyze neuron 

death. Section 0 details the results obtained from the simulations. Section 0 concludes the 

report and discusses the significance of the results and the future implications and 

applications of the work.   
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6.1 Simulating Neuron Death 

The configuration of the network design used for simulations of neuron death is 

detailed in Section 0. Section 0 describes the experimental setup used to analyze neuron 

death. 

6.1.1 Network Design 

 
Figure 0.1 The memristor-based electronic Spiking Neural Network used in this 

work for spatio-temporal pattern recognition. 25 or 100 pre-synaptic neurons are 

connected to one post-synaptic leaky integrate-and-fire (LIF) neuron, each via a 

single memristor. The network uses biphasic shaped pulses to achieve pair-based 

STDP for pattern learning. Random neuron death is simulated by disconnecting 

pre-synaptic neurons after 30 s of partial learning. 

The neural network shown in Figure 0.1 consists of multiple pre-synaptic neurons, 

a post-synaptic neuron, and memristive synapses, similar to one discussed in 0. The 

synapses act as the memory element and create a connection between the initial and the 

final layer of the network. This network mimics a single-layer perceptron network with 

100 pre-synaptic afferents (N1 to N100), each connected to a single post-synaptic afferent 

via a single memristor (M1 to M100), (Figure 0.1). The network uses biphasic shaped pulses 

to achieve pair-based spike time-dependent plasticity (STDP) for pattern learning. Neuron 

death in the network is imitated by disabling pre-synaptic neurons randomly during the 
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learning process.  The memristor design was discussed in CHAPTER 2: and the LIF post-

synaptic neuron circuit design was discussed in 0. 

6.1.2 Experimental Setup  

The network analyzed in this chapter uses 100 pre-synaptic afferents, that have 60 

participating/correlated (forming the part of letter B, brighter pixel, firing correlated spikes) 

and 40 non-participating/uncorrelated (not the part of letter B, darker pixel, firing 

uncorrelated spikes) afferents. Different percentages (up to 50%) of participating, non-

participating, or random pre-synaptic neurons are turned off (killed) during the training to 

analyze the learning ability of the network. 

In the initial setups, three neuron death cases are designed. The first case 

(“participating neuron dead”) observes the changes in the pattern learning ability of the 

network when the random neurons that fail are all from the set of 60 participating neurons. 

The second (“non-participating neuron dead”) is the case when the random neurons that 

fail are all from the set of 40 non-participating neurons. In the third case (“random neuron 

dead”) failed neurons are picked randomly from the set of all 100 neurons. Neuron death 

is initiated at 30 s (instantaneous neuron death) when the network is in a partially trained 

state as discussed in Section 0. In each case, five sets of randomly chosen afferents are 

killed to improve the statistical validity of the conclusion. 

Section 0 discusses the specific cases of “random neuron dead”. It compares the 

differences in the learning ability of the network in the case when a given percentage of 

neurons die instantaneously at 30 s (instantaneous neuron death) vs slowly over time 

(gradual neuron death). Instantaneous death would occur in the case when a strong 

radiation flare may kill certain afferents all at the same time. On the other hand, if the 
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radiation events are not strong but are distributed over time like in the case of war zones 

and radiation accidents, the afferent will fail slowly and randomly for 30 s. 

6.2 Neuron Death Simulation Results 

The following section presents the simulated characteristics of the neural network 

and changes in its learning ability in the case of neuron death. Section 0 discusses the 

spatio-temporal pattern learning ability of the neural network in the absence of any neuron 

death. Section 0 discusses the changes in the pattern learning ability of the network as a 

certain percentage of neurons die instantaneously during learning. Section 0 compares the 

learning ability of the network in the case of instantaneous vs gradual neuron death. 

 
Figure 0.2 Scatter plot of the random behavior of the 40 non-participating 

afferents. (a) A 20 s snapshot of firing times of 40 afferents. (b) Random distribution 

of firing frequency of each of the 40 uncorrelated afferents with mean of 5 Hz. (c) 

Firing frequency of all 40 non-participating afferents over 100 s of stimulation, 

frequency is measured over 1 s period (bin size). 
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6.2.1 No Neuron Death 

The neural network used for this dissertation has 100 pre-synaptic neurons with 60 

participating (firing mutually correlated spikes) and 40 non-participating (firing Poisson 

distributed uncorrelated spikes) afferents. Figure 0.2 shows the spiking characteristics of 

the 40 uncorrelated/non-participating pre-synaptic afferents individually and collectively 

over time. Figure 0.2 (a) represents the firing times of 40 afferents for the first 20 s, random 

distribution is notable here. Figure 0.2 (b) shows the random distribution of firing 

frequency of each 40 uncorrelated afferents with a mean of 5 Hz. Figure 0.2 (c) captures 

the firing frequency of all 40 non-participating over 100 s of stimulation, the frequency is 

measured over 1 s period (bin size).  

 
Figure 0.3 (a) Frequency distribution 40 non-participating afferents as they as 

fire Poisson distributed noise. (b) The frequency distribution of 60 participating 

afferents is not random as they are firing mutually correlated spikes. (c) Frequency 

distribution of the whole network over 100 s of the simulation. 
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Figure 0.3 presents the firing frequency of the network over 100 s of stimulation. 

In this case, the frequency is measured over reduced 100 ms bins to observe the finer 

distribution. 40 non-participating afferents in Figure 0.3 (a) show random frequency 

distribution as they are firing Poisson distributed noise. On the other hand, the frequency 

distribution of 60 participating afferents in Figure 0.3 (b) is not random because they are 

firing mutually correlated spikes at 5 Hz but just starting randomly as shown by N12 and 

N13 in Figure 0.8 (a). Figure 0.3 (c) shows the frequency distribution of the whole network 

over 100 s of the simulation. It can be noted that on average, the afferents are firing at a 

rate of 5 Hz. 

 
Figure 0.4 (a) The post-synaptic afferent is firing periodically every 0.2 s after 30 

s except at a few misses (b) frequency response of the post-synaptic afferent over 100 

s of simulation with a bin size of 5 s presenting the stabilized network over time to 

about 5 Hz, as non-participating afferents are suppressed. 

Figure 0.4 shows the response of the post-synaptic LIF neuron during the 100 s 

learning period. As can be seen in Figure 0.4 (a) the post-synaptic afferent is firing 

periodically every 0.2 s after 30 s except at a few misses of 0.3 s, 0.5 s, and 0.6 s. Figure 
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0.4 (b) shows the frequency response over 100 s of simulation with a bin size of 5 s. 

Initially, the post-synaptic LIF neuron was overexcited due to high synaptic connectivity, 

but stabilized over time to about 5 Hz, as the network suppresses the non-participating 

afferents. 

6.2.2 Instantaneous Neuron Death 

 
Figure 0.5 The post-synaptic neuron Interspike Interval (ISI) over the learning 

period. (a) ISI is about 0.2 s and 0.4 s in the case when no neuron death occurs. (b), 

(c) and (d) show the ISI when one neuron (in each case non-participating, 

participating and random) failed, but the network shows no degradation. (e), (f) and 

(g) present the ISI overtime when 50% of randomly selected afferents are dead and 

the network presents no post-synaptic neuron activity, thus resulting in complete 

network failure. 

Figure 0.5 (a) shows the Interspike Interval (ISI), i.e. time between two spikes fired 

by the post-synaptic neuron, in the case when no neuron death occurs; the ISI is about 0.2 

s and 0.4 s. Figure 0.5 (b), (c) and (d) show the ISI when one neuron in each case of non-

participating, participating, and random failed. ISI is still about 0.2 s and 0.4 s in each of 

the cases and no change in the pattern learning behavior of the network is observed. Figure 
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0.5 (e), (f), and (g) presents the ISI overtime when 50% of randomly selected afferents 

failed in each case of the non-participating, participating, and random. After the neuron 

death at 30 s, no spiking in the post-synaptic neuron is noted and the network was not able 

to learn the pattern in any of the cases. 

 
Figure 0.6 Post-synaptic neuron Interspike Interval (ISI) over the learning 

period. (a), (b), and (c) show the ISI when 5% of randomly selected neurons (in each 

case of the non-participating, participating, and random). The network was able to 

recover in the case of (a) and (b) but in the case of the random death, (c), the 

network recovery was not successful. (d), (e) and (f) presents the ISI overtime when 

10% of the randomly selected afferents are dead. (d), (e), and (f) ((g), (h), and (i)) 

presents the ISI overtime when 10% (25%) of the randomly selected afferents are 

dead. The increase in network instability increases as the afferent death percentage 

increases, although random neuron death adds the most instability to the network.  

Figure 0.6 (a), (b), and (c) shows the ISI when 5% of the afferents in each case of 

the participating, non-participating, and random failed. Interestingly both Figure 0.6 (a) 

and (b) where participating and non-participating neurons failed did not destabilize the 

system like a random failure in Figure 0.6 (c), where the network instability is notable. 
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Figure 0.6 (d), (e), and (f) show the ISI when 10% of the afferents in each case of the 

participating, non-participating, and random failed. It is observed that in Figure 0.6 (e), the 

non-participating afferent death keeps the system relatively stable. In the case of random 

neuron death, in Figure 0.6 (f), after 30 s, the post-synaptic neuron is not learning the 

pattern as the system becomes unstable and the ISI is randomly distributed. Similarly, 

Figure 0.6 (g), (h) and (i) shows the ISI of a post-synaptic neuron when 25% of the pre-

synaptic afferents in each case of the participating, non-participating, and random failed. 

Random neuron death shows the most instability in this case too. In each case, 5 different 

sets of randomly selected afferents are disabled (set 1 to set 5). 

 
Figure 0.7 Normalized average synaptic weight evolution of all the 100 synaptic 

memristors in the network. (a) In the case of random afferent death, 10%, 25%, and 

50% death cases show the deviation from the no-death case. (b) In the case of 

participating afferent death, 25% and 50% death cases show deviation from the no-

death case. (c) In the case of non-participating afferent death, only a 50% death case 

shows deviation from the no-death case, and 25% recovers after an initial deviation, 

as the system tries to recover and regain stability. 

Figure 0.7 shows the normalized average synaptic weight evolution of all the 100 

synaptic memristors in the network. The deviation of weights was observed in the case of 

random afferent death (Figure 0.7 (a)) as all 10%, 25%, and 50% evolutions show deviation 

from the no-death case. On the other hand, non-participating afferent death (Figure 0.7 (c)) 
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seems to destabilize the system the least, since even the 25% death marker evolves towards 

the more stable state to relearn the desired pattern. 

6.2.3 Comparing Instantaneous and Gradual Neuron Death 

 
Figure 0.8 (a) Post-synaptic afferent interspike interval (ISI) over time. As the % 

of dead neurons increases, the network loses the pattern recognition capabilities. (b) 

The number of true positive and false positives recognized by the network, the 

network stops recognizing the pattern, and the post-synaptic afferent stops firing as 

neuron death increases. (c) Scatter plot showing the time of afferent death. All 

afferents are dead instantaneously at 30 s. (d) The distribution of dead participating 

and non-participating afferents in each of the five sets in each case. 

Figure 0.8 shows the analysis of the network when random neurons die at the same 

time after 30 s of learning. Figure 0.8 (a) presents the post-synaptic afferent inter spiking 

interval over time, and as expected, as the percentage of dead neurons increases the network 

loses the pattern recognition capabilities. Figure 0.8 (b) presents the number of true positive 

and false positives recognized by the network. As expected, as the percentage of dead 

neurons increases the network stops recognizing the pattern, and the post-synaptic afferent 
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stops firing. Figure 0.8 (c) shows that the afferents are dead at 30 s and Figure 0.8 (d) shows 

the distribution of dead participating and non-participating afferents in each of the five sets 

in each case. 

 
Figure 0.9 (a) Post-synaptic afferent interspike interval (ISI) over time. As the % 

of dead neurons increases the network loses the pattern recognition capabilities. (b) 

The number of true positives and false positives recognized by the network. The 

network stops recognizing the pattern and post-synaptic afferent stops firing as 

neuron death increases. (c) Scatter plot showing the timing of afferent death. 

Afferents are dying randomly between 60 s and 30 s. (d) The distribution of dead 

participating and non-participating afferents in each of the five sets in each case. 

Figure 0.9 shows a similar analysis of the network as Figure 0.8 except in this case 

the pre-synaptic neuron death time is randomly occurring, starting at 30 s until 60 s, as 

shown in Figure 0.9 (c). Figure 0.9 (a) presents the post-synaptic afferent inter spiking 

interval over time and similarly shows the loss in the pattern recognition capabilities of the 

network as the percentage of dead neurons increases. Figure 0.9 (d) shows the distribution 

of dead participating and non-participating afferents in each of the five sets in each case. 
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Figure 0.9 (b) presents the number of true positive and false positives recognized by the 

network.  

 Unlike in Figure 0.8, where instantaneous afferent death completely disabled the 

network, in Figure 0.9 a few sets (marked by red arrows) were able to recover even in the 

case of high neuron death. Figure 0.9 (b) shows a 10% neuron death, the network spiked 

well for set 3 and set 4, and even at 25% neuron death set 2 and set 5 did not harm the 

network strongly. On the other hand, in Figure 0.8 (b), the network did not perform well in 

the case of any of the simulated sets. Overall, the network learning performed better when 

the afferents failed gradually as compared to sudden death. 

6.3 Conclusion 

This chapter discussed the pattern learning ability of a memristor-based electronic 

spiking neural network as the afferents in the network failed/died due to radiation, circuit 

failure, or other unforeseen events. A feed-forward perception network with 25 to 100 pre-

synaptic neurons were connected to a post-synaptic LIF neuron via 25 to 100 memristors. 

The memristor acted as a synaptic bridge between the initial and the outer layer afferents, 

enforcing the STDP learning rule implemented using the biphasic pulses generated by the 

neurons. 

The simulations were designed to observe the effect on the learning ability of the 

network for three cases when selectively only participating neurons were affected, non-

participating neurons were disabled, or random/non-selective neuron death occurred after 

30 s into learning in the network. As expected, the network learning ability was least 

affected in the case when the non-participating afferents were disabled selectively. In this 

case, the network shows the capacity to recover even when 25% (10) of the non-
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participating afferents were disabled. On the other hand, when random/non-selective 

neuron death occurred in the network, the pattern learning ability degraded rapidly as 10% 

(10) of the total afferents were disabled and the network becomes unstable at 5% (5) neuron 

death. The chapter also simulated the case when neuron death is occurred gradually 

(instead of instantaneously at 30 s) between 30 s and 60 s of learning. The comparison 

shows that the network’s learning ability was not as seriously deteriorated in the case of 

gradual neuron death as in the case of instantaneous death at 30 s. As the simulations show, 

in some of the cases of the gradual neuron death, the network was not affected by the 

neuron death. On the other hand, when all afferents die simultaneously at 30 s, the network 

did not recover. 

The results conclude that the non-participating afferents contribute to improving 

the learning ability of the network even when partial learning is completed, emphasizing 

the importance of the non-participating neurons during the learning process. Instantaneous 

neuron death (due to radiation flare or a strong radiation event) will degrade the network’s 

pattern recognition capability more than gradual neuron death (in the case of low but 

continuous radiation events, like in war zones, or post-nuclear accident sites). Thus, the 

electronic spiking networks do present the capability to recover/retain their learning 

capability even in the case of random neuron death. Such cases of neuron death can be 

observed in radiation prone areas like space and war zones when electronic neurons might 

experience a failure due to one or more radiation events.
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CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 

This chapter outlines the conclusions derived from the body of work discussed 

throughout this dissertation. The chapter also talks about the implications of the work and 

suggests future studies and directions for the research. 

7.1 Synaptic Modifications 

A synaptic modification happens in the electronic SNNs when a radiation 

interaction event modifies the state of the memristive synapse. The effects of synaptic 

modification on the spatio-temporal pattern learning ability of the network are primarily 

discussed in 0. 

The STDP rule governs the learning capability of SNNs and is influenced by factors 

such as memristive synaptic device threshold, the initial state of the synaptic device, and 

the shape, size, and magnitude of the biphasic pulse across the memristor. Radiation events 

add asymmetry to the STDP curve forcing stronger potentiation and thus, adding instability 

in the network. It was concluded that when the network was not undergoing training, the 

radiation effects build up and accumulates in the network over time. On the other hand, the 

network can overcome the radiation effects when in the learning/training phase. Thus, 

hardware-based SNNs that are continuously learning such as in [178]–[180] will survive 

better when exposed to radiation. The SNNs discussed in this dissertation consist of one 

layer, designed to learn one feature. They are observed to be radiation resilient with 

minimal (if any) feature loss at the stronger flux of 3x1010 cm−2s−1 or higher. The larger 

multilayer deep neural networks that convolve multiple features and do not rely completely 
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on one feature for object classification and identification should be more resilient to the 

effects of radiation, such as pixel upsets. Thus, future studies involving application-specific 

deep neural networks will help to understand the radiation effects in more detail. Further 

studies on different network architectures and topology will also provide more insight into 

the effects of radiation events on SNNs  

7.2 Neuron Death 

Neuron death occurs in electronic SNNs when one or more neurons in the network 

fail and become inactive due to degradation caused by radiation or general device/circuit 

failure. The effects of neuron death on the spatio-temporal pattern learning ability of the 

network are discussed in this dissertation in 0.  

The chapter concludes that SNNs do have the ability to recover/retain their 

learned/trained pattern in case of neuron death. In the larger multi-layer SNNs, every 

neuron is connected to multiple synapses. The network in this study shows that the 

instantaneous neuron death is more deteriorating for an SNN than gradual neuron death 

overtime. Thus, an optimally connected network will be able to survive multiple gradual 

neuron deaths. Simulations also show that the non-participating afferents contribute to 

improving the learning ability of the network. More analysis is needed to understand the 

contribution of non-participating afferents. The study would help estimate the percentage 

of non-participating afferents needed for optimal learning and will also optimize the 

connection complexity in the larger networks.
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// Verilog-A code for non-linear memristor model (Vth and window function included) 

`include "constants.vams" 

`include "disciplines.vams" 

 

// Take care of current blowup error 

nature Current 

    abstol = 1e-14 ; 

 access = I ; 

 units = "A" ; 

 blowup = 1e12 ; 

endnature 

 

// Start of the module 

module memristor_verilog_neurolearning(In, Out, w_D, RinitK, Vth); 

input IRad_sc, RinitK, Vth;  

output w_D;  

inout In, Out; 

 

electrical In, Out, w_D , capaux, capgnd, IRad_sc, RinitK, Vth; 

branch (In, Out) mem; 

branch (capgnd, capaux) cap; 

 

parameter real Roff = 100k ;   //off-resistance in Ohms 

parameter real Ron = 10k ;   //on-resistance in Ohms 

parameter real D = 10n ;   //thickness of device in m 

parameter real mu = 10f ;   //dopant ion mobility in m2/V s 

 

real Gxconst, initcapV, Rhigh,Rinit,Vthp,Vthn,var,a,capv;  //variables used 

 

// Start of the analog 

analog begin 

 Rhigh = Roff ; 

 Vthp = 1* V(Vth);   // positive Vth 

 Vthn = -1*V(Vth);  // negative Vth 

 Rinit = 1000* V(RinitK); // initial device state if defined externally by user 

//a = 45 + (abs( $random%30));  // generate random Rinit,  

//  Rinit = 1000* a; 

   

 initcapV = (Rinit-Ron)/(Rhigh-Ron);  //initial voltage across capacitor 

 Gxconst = mu*Ron/(D*D);   //Gx = Gxconst*Imem*window function 

 

// Start of the analysis 

if (analysis("ic"))begin   // to reflect the initial state of the device 

 V(cap) <+ initcapV ;   //initializing capacitor to initial state 

 Capv = V(cap); 
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end else begin 

 V(capgnd) <+ 0; 

 I(cap) <+ ddt(V(cap));  //current contribution from cap 

  

 //including Vthn and Vthp, to include threshold to the device 

 if  ((V(mem) > Vthp) || (V(mem) < Vthn)) begin  

  //adding the window function 

  I(capaux) <+ Gxconst*I(mem) *(1-(pow(((2*V(cap))-1),8)));  

end 

 

end // End of the analysis 

 

//check the boundary conditions 

if(V(cap) >= 1)   V(cap) <+1;  

if(V(cap) <= 0)    V(cap) <+0;  

            

V(w_D) <+ V(cap);    //state (w/D) of the memristor 

V(mem) <+ I(mem)* ((Rhigh) -( Rhigh - Ron)* V(cap));  

//voltage across the memristor, V(mem) = V*Roff+Emem 

 

end   // End of the analog 

endmodule  // End of the module 
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// Verilog-A code for intercalated-ion memristor model  

`include "constants.vams" 

`include "disciplines.vams" 

`timescale 1us / 1us    // defining dt time scale 

 

// Start of the module 

module basic_v1_Diffu_Drft_verilog(In, Out, IGsc, Rmem); 

output Rmem;  

inout In, Out; 

input IGsc;  

 

electrical In, Out, IGsc, capgnd, capactive ,Rmem ; 

branch (In,Out) mem; 

branch (capactive,capgnd) cap; 

 

parameter real Ron = 0.1k ;  //on-resistance in Ohms 

parameter real Roff = 1k ;  //off-resistance in Ohms 

parameter real Rinit = 0.5k ;  //initial-resistance in Ohms 

parameter real Rdrift1c = 60e12 ;  // resistance change for 1 C of current 

 

parameter real w = 4u ;   // width of graphene layer in m 

parameter real l = 15u ;   // length of graphene layer in m 

parameter real D = 0.4n ;   // diffusion constant for Li in m2/s 

parameter real tao3 = 19 ;    // diffusion equ 3rd time constant 

parameter real c1  = -13.6 ;    // diffusion equ 1st constant 

parameter real c2  = -7.7 ;    // diffusion equ 2nd constant 

parameter real c3 = 21.3 ;    // diffusion equ 3rd constant 

 

real tao2, tao1;   // variables diffusion equ 1st and 2nd time constant 

real M, delM;     // variables for memristance 

real source_dir, t, sc_pulse_arrived; 

real diffusion_start_time, diffu_M,diffu_G, M_before_diffusion;  

 

// Start of the analog  

analog begin  

 tao2 = (l*l)/(2*D); 

 tao1 = (w*w)/(2*D);  

 

// Start of the analysis 

if (analysis("ic")) begin  // to reflect the initial state of the device 

M = Rinit;   // memristor initial condition 

 V(cap) <+ Rinit/Rdrift1c; // capacitor initial condition 

 sc_pulse_arrived = 0;   // setting sc pulse arrival to False 

 

 end else begin   

I(cap) <+- I(IGsc);   // charging capacitor V=It (Q=CV (C=1,      
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            Q=V), Q=It) from current source 

 V(capgnd) <+ 0; 

 I(cap) <+ ddt(V(cap));  // charge the capacitor 

 

//Capturing Drift 

 if  (I(IGsc) != 0) begin  // if state-change(sc) pulse is on  

    M = V(cap) * Rdrift1c;      

  source_dir = -I(IGsc);  //if the discharge was -ve or +ve 

  sc_pulse_arrived = 1;   // setting sc pulse arrival to True 

  M_before_diffusion = M;  // setting max drift resistance 

  diffusion_start_time = $abstime ;  //diffusion start time 

 

//Capturing Diffusion    

end else if ((I(IGsc) == 0) && (sc_pulse_arrived == 1) && (($abstime-

diffusion_start_time) < 1)) begin 

  t = $abstime-diffusion_start_time; // diffusion time (dt) calculation 

  diffu_M = ((c1 * exp(-t/tao1)) + (c2 * exp(-t/tao2)) + (c3 * exp(-       

        t/tao3)));   //change due to diffusion 

  if (diffu_M < 0) diffu_M = 0;  //following boundary condition 

   //negative state change  

  if (source_dir < 0) M = M_before_diffusion - diffu_M ;  

   //positive state change 

  else M = M_before_diffusion + diffu_M;  

 

  V(cap) <+ M/Rdrift1c;  //update the capacitor voltage  

 

//neither Drift nor Diffusion happening 

 end else begin M = M;t = 0;  

end 

  

end // End of the analysis 

  

V(Rmem) <+  M  ;     //device resistance at a given time 

V(mem) <+ I(mem)* M ;     //voltage across memristor 

 

end   // End of the analog 

endmodule // End of the module
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// Verilog-A code for non-linear memristor model with state change radiation 

`include "constants.vams" 

`include "disciplines.vams" 

 

// Take care of current blowup error 

nature Current 

    abstol = 1e-14 ; 

 access = I ; 

 units = "A" ; 

 blowup = 1e12 ; 

endnature 

 

// Start of the module 

module memristor_verilog_neurolearning_rad(In, Out, w_D, IRad_sc, RinitK, Vth); 

input IRad_sc, RinitK, Vth;  

output w_D;  

inout In, Out; 

 

electrical In, Out, w_D , capaux, capgnd, IRad_sc, RinitK, Vth; 

branch (In, Out) mem; 

branch (capgnd, capaux) cap; 

 

parameter real Roff = 100k ;   //off-resistance in Ohms 

parameter real Ron = 10k ;   //on-resistance in Ohms 

parameter real D = 10n ;   //thickness of device in m 

parameter real mu = 10f ;   //dopant ion mobility in m2/V s 

 

real Gxconst, initcapV, Rhigh,Rinit,Vthp,Vthn,var,a,capv;  //variables used 

 

// Start of the analog 

analog begin 

 Rhigh = Roff ; 

 Vthp = 1* V(Vth);   // positive Vth 

 Vthn = -1*V(Vth);  // negative Vth 

 Rinit = 1000* V(RinitK);   // initial device state if defined externally by user 

//a=45+ (abs( $random%30));  // generate random Rinit,  

//  Rinit = 1000* a; 

    

 initcapV = (Rinit-Ron)/(Rhigh-Ron);  //initial voltage across capacitor 

 Gxconst = mu*Ron/(D*D);   //Gx = Gxconst*Imem*window function 

 

// Start of the analysis 

if (analysis("ic"))begin    // to reflect the initial state of the device 

 V(cap) <+ initcapV ;    //initializing capacitor to initial state 

 Capv = V(cap); 
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end else begin 

 V(capgnd) <+ 0; 

 I(cap) <+ ddt(V(cap));   //current contribution from cap 

  

//including Vthn and Vthp, to include threshold to the device 

if  ((V(mem) > Vthp) || (V(mem) < Vthn)) begin  

  //adding the window function 

  I(capaux) <+ Gxconst*I(mem) *(1-(pow(((2*V(cap))-1),8)));  

end 

 

//including the state change radiation current effect in auxiliary circuit 

I(capaux) <+ (-1) * Gxconst*I(IRad_sc)*(1-(pow(((2*V(cap))-1),8))); 

 V(capgnd) <+ 0; 

 

end // End of the analysis 

 

//check the boundary conditions 

if(V(cap)>=1)   V(cap)<+1;  

if(V(cap)<=0)    V(cap)<+0;   

 

V(w_D) <+ V(cap);     //state (w/D) of the memristor 

V(mem) <+ I(mem)* ((Rhigh) -( Rhigh - Ron)* V(cap));  

//voltage across the memristor, V(mem)= V*Roff+Emem 

 

end   // End of the analog 

endmodule  // End of the module 
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// Verilog-A code for leaky integrate-and-fire (LIF) circuit 

`include "constants.vams" 

`include "disciplines.vams" 

`timescale 1us / 1ns 

 

// Take care of current blowup error 

nature Current 

    abstol = 1e-14 ; 

 access = I ; 

 units = "A" ; 

 blowup = 1e12 ; 

endnature 

 

// Start of the module 

module LIF_verilog_extcap(PostIn, PostVth, testout, LICcap, gnd); 

input PostVth;  

inout PostIn, LICcap, gnd;  

output testout; 

 

electrical PostIn, PostVth, testout,gnd, LICcap,LICaux,LICPostIn,firesource ; 

branch (PostIn,LICaux) LICswitch; 

branch (LICaux,LICcap) LICcharging; 

branch (LICcap,gnd) LICdischarging; 

 

// LIF circuit parameters 

parameter real Rcharging = 10e9 ;  // charging resistance 

parameter real Rdischarging = 200e9 ; // discharging resistance 

parameter real Rpostdischarge = 10e9 ;  // cap discharge during post spike 

// output pulse parameters 

parameter real pulse_width = 10e-3 ;  // output pulse width 

parameter real pulse_max_amp = 5 ;  // maximum output pulse V 

// circuit connecting and disconnecting parameters 

parameter real Ron = 0 ;   // connection valid, current flowing 

parameter real Roff = 1e300;   // connection invalid, no current flowing 

 

real state, tfire, t, Rfire, LICdischarging_R, LICswitch_R, V_fire, charging_timecont, 

discharging_timecont, chargingstart_starttime, charging, discharging, charging_amp, 

discharging_amp, discharging_endtime;   //variables used  

 

// Start of the analog  

analog begin 

 charging_timecont = 0.03*pulse_width;   // charging constant 

 discharging_timecont = 0.4*pulse_width;  // discharging constant  

 chargingstart_starttime = 0.05*pulse_width;  // charging start time 

 discharging_endtime = 0.75*pulse_width;   // discharging end time 

 charging = exp(-chargingstart_starttime/charging_timecont); 
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 discharging = exp(-discharging_endtime/discharging_timecont); 

 charging_amp = pulse_max_amp;   // charging max voltage  

 discharging_amp = pulse_max_amp*0.25;  // discharging max voltage 

 

// Start of the analysis 

if (analysis("ic"))begin 

 state = 0; 

 LICdischarging_R = Roff; 

 LICswitch_R = Ron; 

 V_fire = 0; 

    

end else begin 

 V(LICPostIn) <+ V(PostIn);             //separate circuit and LIF circuit 

 V(LICswitch) <+ I(LICswitch)*LICswitch_R;       //(dis)connect LIC circuit 

 V(LICcharging) <+ I(LICcharging)*Rcharging;     //charges the LIF capacitor 

 V(LICdischarging) <+ I(LICdischarging)*LICdischarging_R;  

        //discharges the LIF capacitor 

 

//if vcap < vth, post-synaptic neuron is not firing     

 if  (( V(LICcap) < V(PostVth)) && (state == 0))begin 

  tfire = $realtime; 

  LICswitch_R = Ron;    //connect LIC circuit 

  if (V(PostIn) < V(LICcap)) begin    

    LICdischarging_R = Rdischarging;   //turn on cap discharging 

    LICswitch_R = Roff;   //disconnect LIC circuit  

  end 

 end 

 

//if vcap > vth, post-synaptic neuron starts firing 

 else begin 

  LICdischarging_R = Rpostdischarge;  //turn on cap discharging 

  LICswitch_R = Roff;     //disconnect LIC circuit 

  State = 1;      //set state to 1 for firing 

  T = $realtime-tfire;     //start timer for pulse width 

 

//start of the LIF spike 

  if (t<= (pulse_width * 0.05)) begin    //generate potentiation part of the spike 

   V_fire = charging_amp *(t/(pulse_width * 0.05));  

  end else if ((t > (pulse_width * 0.05)) && (t <= (pulse_width * 0.8))) begin  

       //generate depression part of the spike 

V_fire = discharging_amp * (t - (pulse_width * 0.8))/(pulse_width 

* 0.75);  

  end else begin 

    V_fire = 0; 

   state = 0;     //set state to 0 for not firing 

   LICdischarging_R = Roff;   //turn on cap discharging 
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   LICswitch_R = Ron;   //turn on LIC switch 

  end //end of LIF spike 

 

  V(PostIn) <+ V_fire;  //initialize input terminal voltage  to V_fire 

 

 end  //post-synaptic neuron ends firing  

 

end  // End of the analysis  

 

V(testout) <+ V(LICPostIn) ;   //test terminal voltage, for circuit check 

 

end   // End of the analog 

endmodule // End of the module 

 


