
DETECTING UNDISCLOSED PAID EDITING IN

WIKIPEDIA

by

Nikesh Joshi

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

August 2020

c© 2020
Nikesh Joshi

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Nikesh Joshi

Thesis Title: Detecting Undisclosed Paid Editing in Wikipedia

Date of Final Oral Examination: 24th June 2020

The following individuals read and discussed the thesis submitted by student Nikesh
Joshi, and they evaluated the presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination.

Francesca Spezzano, Ph.D. Chair, Supervisory Committee

Edoardo Serra, Ph.D. Member, Supervisory Committee

Steven Cutchin, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Francesca Spezzano, Ph.D.,
Chair of the Supervisory Committee. The thesis was approved by the Graduate
College.

dedicated to my family

iv

ACKNOWLEDGMENTS

I would like to express my profound gratitude to my advisor, Dr. Francesca

Spezzano, for giving me an opportunity to work as a graduate assistant in her research

field. I am grateful for her mentorship, valuable advice, and direction with this thesis.

I would also like to thank distinguished members of my thesis committee, Dr.

Edoardo Serra and Dr. Steven Cutchin, for their time and guidance.

I would like to thank Smart SE (English Wikipedia administrator) for providing

the dataset and contributions of his domain expertise.

Finally, I would like to thank Mr. Aaron Halfaker, Principal Research Scientist

at the Wikimedia Foundation, for his help in retrieving ORES scores for Wikipedia

articles.

v

ABSTRACT

Wikipedia is a free and open-collaboration based online encyclopedia. The website

has millions of pages that are maintained by thousands of volunteer editors. It is part

of Wikipedia’s fundamental principles that pages are written with a neutral point of

view and are maintained by volunteer editors for free with well-defined guidelines in

order to avoid or disclose any conflict of interest. However, there have been several

known incidents where editors intentionally violate such guidelines in order to get paid

(or even extort money) for maintaining promotional spam articles without disclosing

such information.

This thesis addresses for the first time the problem of identifying undisclosed paid

articles in Wikipedia. We propose a machine learning-based framework that uses a

set of features based on both the content of the articles as well as the patterns of edit

history of users who create them. To test our approach, we collected and curated a

new dataset from English Wikipedia with ground truth on undisclosed paid articles

and a history of users who created those articles. Our experimental evaluation shows

that we can identify undisclosed paid articles with an AUROC of 0.98 and an average

precision of 0.91. Moreover, our approach outperforms ORES, a scoring system tool

currently used by Wikipedia to automatically detect damaging content, in identifying

undisclosed paid articles.

We further propose recurrent neural network-based frameworks, that are variants

of Long Short-Term Memory (LSTM), using a set of features based on the patterns

of edit history of users. Our experimental evaluation also shows that we can identify

vi

undisclosed paid editors with an AUROC of 0.93 and an average precision of 0.90

outperforming existing approaches while also outperforming other baseline approaches

in early detecting undisclosed paid editors. Finally, we show that our proposed

approaches can also be used to address other similar tasks achieving the maximum

AUROC score of 0.96, average precision score of 0.97, and accuracy score of 0.90.

Also, in this thesis, we show that our approaches are able to outperform other baseline

approaches in early detecting both Undisclosed Paid Editors and Wikipedia vandal

editors surpassing the performance scores with as little as just two edits.

This thesis is an extension of our work that was published in WWW ’20: The

Web Conference 2020 held in Taipei, Taiwan in April 2020 [13]. Wikipedia have

shown significant interest in our published work and we are currently collaborating

for possible deployment of our system directly into their platform.

vii

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

1 Introduction . 1

2 Related Work . 5

3 Dataset . 10

3.1 Article Network Analysis . 12

4 Detecting Undisclosed Paid Articles . 18

4.1 Features for Identifying Undisclosed Paid Articles 18

4.1.1 Article-based Features . 18

4.1.2 User-based Features . 20

4.2 Experimental Results . 22

4.2.1 Feature analysis . 23

4.2.2 Comparison with ORES . 24

4.2.3 Robustness of Model . 25

4.2.4 False Positives Analysis . 27

viii

5 Early Detection of Undisclosed Paid Editors 30

5.1 Methodology . 30

5.1.1 LSTM: Overview . 31

5.1.2 LSTM: Loss function . 32

5.1.3 LSTM: Loss function for user edit sequence 34

5.1.4 LSTM1: Using hidden layer output from last layer 35

5.1.5 LSTM2: Using all hidden layer outputs 35

5.2 Features for Identifying Undisclosed Paid Editors 37

5.3 Experimental Results . 39

5.3.1 Early Detection of Vandal Users . 44

6 Conclusions . 50

6.1 What have we done so far? . 50

6.2 Future directions . 51

REFERENCES . 53

A Reproducing Experiments . 57

A.1 Getting the code . 57

A.2 Repository Structure . 57

A.3 Getting the data . 58

A.4 Pre-processing of data . 58

A.5 Running the experiments . 60

A.5.1 Detection of Undisclosed Paid Articles . 60

A.5.2 Early Detection of Undisclosed Paid Editors 62

ix

LIST OF TABLES

3.1 Size of Positive and Negative Data. Positive data refers to newly

created paid articles or known undisclosed paid editors (UPEs). 11

4.1 Performance of our proposed features to detect undisclosed paid arti-

cles according to different classification algorithms (best scores high-

lighted in bold) and comparison and combinations with ORES features

(which are article-based) according to AUROC and average precision

metrics. 22

4.2 Class averages of each feature. 25

4.3 Analysis of model robustness in detecting undisclosed paid articles. . . . 26

5.1 Performance of our user-based features to detect undisclosed paid ed-

itors and comparison with related work according to AUROC and

average precision. 41

5.2 Early detection performance of our user-based features to detect undis-

closed paid editors and comparison with related work according to

AUROC and average precision. 44

5.3 Performance of our user-based features to detect undisclosed paid edi-

tors and comparison with related work according to AUROC, average

precision, and accuracy . 46

x

5.4 Early detection performance of our user-based features to detect Wikipedia

vandal editors and comparison with related work according to AUROC

and average precision. 48

xi

LIST OF FIGURES

3.2 Data collection process . 12

3.1 Article network: two articles are connected by an edge if they have

been edited by a common user. Colors indicate articles create by the

same sockpuppet group of undisclosed paid editors (UPEs). Negative

articles (in gray) are articles never edited by an UPE. 16

3.3 Standard deviation of unique edited articles per user per sockpuppet

investigation. 17

4.1 Top-10 most important features for detecting undisclosed paid articles. 23

4.2 False positive contribution averaged over 10 experimental runs. 28

4.3 False positive contribution averaged over 10 experimental runs. 29

5.1 Visual representation of a single LSTM cell . 32

5.2 LSTM gates . 33

5.3 LSTM1 overview . 36

5.4 Visualization of LSTM1 model architecture . 37

5.5 LSTM2 overview . 38

5.6 Visualization of LSTM2 model architecture . 39

5.7 AUROC and average precision comparison using first 20 user-edits 41

5.8 Comparison of approaches using AUROC . 43

5.9 Comparison of approaches using average precision. 43

xii

5.10 Comparison of approaches using AUROC, average precision, and ac-

curacy on UMDWikipedia [16] . 46

5.11 Comparison of approaches using AUROC. 48

5.12 Comparison of approaches using average precision. 49

5.13 Comparison of approaches using Accuracy. 49

A.1 Detection of Undisclosed Paid Articles Process. 62

A.2 Early Detection of Undisclosed Paid Editors Process. 64

xiii

LIST OF ABBREVIATIONS

AUROC – Area Under the Receiver Operating Characteristics

COI – Conflict of Interest

LSTM – Long Short-Term Memory

ORES – Objective Revision Evaluation Service

RNN – Recurrent Neural Network

UPE – Undisclosed Paid Editors

xiv

1

CHAPTER 1

INTRODUCTION

Wikipedia is the free online encyclopedia based on the principle of open collaboration;

for the people by the people. Anyone can add and edit almost any article or page.

Voluntary contributors are, however, expected to follow a set of guidelines when

editing Wikipedia. The purpose of Wikipedia is “to provide the public with articles

that summarize accepted knowledge, written neutrally and sourced reliably” 1 and

the encyclopedia should not be considered as a platform for advertising and self-

promotion. Wikipedia’s guidelines strongly discourage any form of conflict-of-interest

(COI) editing and require editors to disclose any COI contribution. Paid editing is a

form of COI editing and refers to editing Wikipedia (in the majority of the cases for

promotional purposes) in exchange for compensation. The guidelines set by Wikipedia

are based on good faith, and malicious editors who earn a living through paid editing

of Wikipedia choose to ignore the requirement to disclose they are paid. Moreover,

these malicious editors often use sockpuppet accounts to circumvent a block or a ban

imposed on the person’s original account. A sockpuppet is an “online identity used

for purposes of deception.” 2 Usually, several sockpuppet accounts are controlled by

a unique individual (or entity) called a puppetmaster.

The first discovered case of paid editing was the “Wiki-PR editing of Wikipedia”,

1https://en.wikipedia.org/wiki/Wikipedia:Conflict_of_interest
2https://en.wikipedia.org/wiki/Sockpuppet_(Internet)

https://en.wikipedia.org/wiki/Wikipedia:Conflict_of_interest
https://en.wikipedia.org/wiki/Sockpuppet_(Internet)

2

in 2013. 3 Wiki-PR is a company, which still exists but is banned by Wikipedia,

whose core business is to offer consulting services to create, edit and monitor “your”

Wikipedia page. The 2013 investigation found out that more than 250 sockpuppet

accounts were related to and controlled by the company. On August 31, 2015, the

Wikipedia community uncovered an even bigger set of 381 sockpuppet accounts,

as part of an investigation nicknamed “Orangemoody” 4, operating a secret paid

editing ring where participants extorted money from businesses who had articles

about themselves rejected. The Orangemoody accounts themselves may have been

involved in the deletion of some articles.

When undisclosed paid articles or editors are identified, such pages are removed

from Wikipedia, and accounts are blocked. However, the Wikipedia community still

relies on administrators who manually track down editors and affected articles. The

differences between good faith editing and spam can be hard for even experienced

editors to see, and, with hundreds of articles to be examined each month, the review

process can be tedious, inefficient, and possibly unreliable.

In this thesis, we focus, for the first time, on automatically detecting Wikipedia

undisclosed paid contributions and editors, so that they can be quickly identified

and flagged for removal. We make the following contributions. (1) We propose a

machine learning-based framework to classify undisclosed paid articles that uses a

set of features based on both article content, metadata, and network properties, as

well as the patterns of the edit behavior of users who create them. (2) We propose

neural network-based frameworks to classify and detect early undisclosed paid editors

using a set of features based on the patterns of the edit behavior of users. (3) To

3https://en.wikipedia.org/wiki/Wiki-PR_editing_of_Wikipedia
4https://en.wikipedia.org/wiki/Orangemoody_editing_of_Wikipedia

https://en.wikipedia.org/wiki/Wiki-PR_editing_of_Wikipedia
https://en.wikipedia.org/wiki/Orangemoody_editing_of_Wikipedia

3

test our framework, we built a curated English Wikipedia dataset containing 73.9K

edits by undisclosed paid editors (including deleted edits) and 199.2K edits by genuine

editors, with ground truth on undisclosed paid articles. (4) Through our experimental

evaluation, we show that our proposed machine learning-based method can efficiently

identify undisclosed paid articles with an AUROC of 0.98 and an average precision

of 0.91. We also show that our approach outperforms ORES 5, the state-of-the-art

machine learning service created and maintained by the Wikimedia Scoring Platform

team to detect content damage on Wikipedia. (5) Through our experimental evalu-

ation, we also show that our proposed neural network-based methods can efficiently

identify undisclosed paid editors with an AUROC of 0.93 and an average precision of

0.90 and easily outperform approaches based on ORES, SAFE [33], and an approach

by Yamak et al. [30]. We also show that our approaches outperform other baseline

approaches in early detecting undisclosed paid editors, exceeding the performance

scores with as little as just two edits. (6) Finally, we demonstrate that our proposed

approaches can also be used to address other similar tasks of detecting vandal users

in Wikipedia achieving the maximum AUROC score of 0.96, average precision score

of 0.97, and accuracy score of 0.90 using the UMDWikipedia [16] dataset curated for

the purpose of detecting Wikipedia vandal editors. We show that our approaches

are able to outperform other baseline approaches in early detecting Wikipedia vandal

editors.

The thesis is organized as follows. Chapter 2 discusses related work associated

with our thesis work. Chapter 3 describes the dataset, provided by Wikipedia, used

in our research work. Chapter 4 describes our approach and reports experimental

results and baseline comparison for detection of undisclosed paid articles. Chapter 5

5https://www.mediawiki.org/wiki/ORES

https://www.mediawiki.org/wiki/ORES

4

describes our approaches and reports experimental results and baseline comparison

for early detection of undisclosed paid editors. Chapter 5 also reports experimental

results and baseline comparison when we use our approaches in similar tasks of

detecting Wikipedia vandal editors. Finally, we draw our conclusions in Chapter 6.

Appendix A provides instruction to repeat and rerun our experiments for the purpose

of reproducibility.

5

CHAPTER 2

RELATED WORK

Past literature has studied different forms of content damage on Wikipedia, including

vandalism, hoaxes, and spam. Wikipedia vandalism is “the act of editing the project

in a malicious manner that is intentionally disruptive”, e.g., through text that is

humorous, nonsensical, or offensive. 1 Detecting vandalism was the first problem

studied in the context of Wikipedia content deception. Research shows that linguistic,

metadata, and user reputation features are all important to detect vandal edits in

Wikipedia [20, 29, 2, 1]. Kumar et al. [16] proposed Vandal Early Warning System

(VEWS) to address the problem of early detecting vandal users by leveraging editor’s

behavioral patterns. The literature showed that, on average, VEWS is able to detect

vandal users 2.39 edits before ClueBot NG, a state-of-the-art vandal detection tool.

VEWS, with its accuracy score of over 0.87 also outperforms less than 0.60 accuracy

scores from STiki, another state-of-the-art vandal detection tool.

Kumar et al. [18] studied the characteristics and impact of Wikipedia hoaxes, ar-

ticles that deceptively present false information as fact. They showed that Wikipedia

hoaxes can be detected using features that consider the article structure and content,

hyperlink network properties, and the hoaxes’ creator reputation. Utilizing such

features, Kumar et al. [18] achieved the AUROC score of 0.98 in detecting hoaxes

1https://en.wikipedia.org/wiki/Vandalism_on_Wikipedia

https://en.wikipedia.org/wiki/Vandalism_on_Wikipedia

6

compared to the AUROC score of just 0.63 with human-based approaches of detecting

hoaxes without any specialized tools.

Spam, which is another form of content damage on Wikipedia, refers to the

unsolicited promotion of some entities such as external link spamming and adver-

tisements masquerading as articles (as the promotional articles written by undis-

closed paid editors). The majority of the work on spam detection on Wikipedia

has focused on detecting link spamming via metadata, URL properties, landing site

characteristics [28, 27], or spam users using behavioral-based features [8]. Green and

Spezzano achieved an AUROC score of 0.842 in detecting Wikipedia spam users using

behavior-based features. To the best of our knowledge, there is no work addressing

the problem of detecting promotional Wikipedia articles or undisclosed paid edits.

Several bots and tools run on Wikipedia to detect vandalism or general damaging

edits. ClueBot NG 2 and STiki 3 [29] are designed to detect vandalism. ClueBot NG

is a bot that analyzes edit content, scores edits and reverts the worst-scoring edits.

STiki is an intelligent routing tool that suggests potential vandalism to humans for

definitive classification. It uses metadata and reverts to score edits and computes a

reputation score for each user. Currently, Wikimedia ORES5 is the state-of-the-art

approach to classify the quality of Wikipedia articles. Specifically, given an article,

ORES evaluates the content of the article according to one of the following classes:

spam, vandalism, attack, or OK. Thus, we will compare our proposed approaches to

detect undisclosed paid articles with ORES in our thesis work.

As explained in Chapter 1, undisclosed paid editors typically act as a group of

sockpuppet accounts. Several literary works have analyzed and detected sockpuppet

2https://en.wikipedia.org/wiki/User:ClueBot_NG
3https://en.wikipedia.org/wiki/Wikipedia:STiki

https://en.wikipedia.org/wiki/User:ClueBot_NG
https://en.wikipedia.org/wiki/Wikipedia:STiki

7

accounts in online social networks and discussion forums [26, 4, 19, 15]. Specific to

Wikipedia, Solorio et al. [21, 22] have addressed the problem of detecting whether or

not two accounts are maintained by the same user using text authorship identification

features. In detecting sockpuppets in Wikipedia, Solorio et al. [22] were able to

achieve an accuracy score of 0.68 outperforming baseline systems performance with an

accuracy score of 0.53 from a trivial classifier that predicts every case as a sockpuppet

(majority) and the accuracy score of just 0.50 from a random baseline (coin toss).

Other approaches have focused on classifying sockpuppet vs. genuine accounts by

using non-verbal behavior and considering editing patterns [25, 30]. Tsikerdekis and

Zeadally [25] were able to achieve an overall accuracy of 0.71 in identifying sockpuppet

accounts using non-verbal user activity. Yamak et al. [30] showed that their approach

based on the contribution behavior of the users achieves better performances than

other works based on the analysis of the contribution text [21, 22] or using non-verbal

behavior [25]. Yamak et al. [30] was able to achieve the best overall accuracy score

of 0.998 using Random Forest algorithm as compared to the accuracy score of 0.713

using the Non-verbal expectancy Violations Detection approach from Tsikerdekis and

Zeadally [25], 0.730 using Adaptive SVM Text Attribute Disagreement Algorithm

approach from Solorio et al. [21], and 0.688 from the Natural Language Processing

Similarity Searching approach from Solorio et al. [22].

Beyond a multitude of classic machine learning approaches, researchers have also

used deep learning architectures in the detection of malicious users. Zheng et al. [34]

used Long Short-Term Memory (LSTM), an artificial Recurrent Neural Network

architecture, to address the problem of class imbalance in datasets when detecting

fraud in online social networks. The literature utilizes LSTM to learn benign user

representation in hidden space from user’s edit sequences and uses complimentary

8

Generative Adversarial Network (GAN) model to train and generate complimentary

user representation in hidden space. Through its results, Zheng et al. [34] showed that

it performs better than nearest neighbor based approach such as the One-class nearest

neighbors (OCNN) [23], Gaussian-based approach such as the One-class Gaussian

process (OCGP) [14], and classical classifier-based approach such as the One-class

SVM (OCSVM) [24]. This work by Zheng et al. [34] shows the applicability of

LSTM in learning user’s edit sequences in hidden space and predicting vandal users.

Zheng et al. [33] addressed the problem of consistent detection of fraudsters in time,

i.e., early detection, by incorporating a survival analysis approach with a recurrent

neural network (RNN). The literature utilizes user-activity sequences through an

RNN and its output at each timestamp to determine the survival probability that is

used to make predictions at that timestamp. Through its results, SAFE [33] showed

that it performs better than classical classifiers such as Support Vector Machine

(SVM), a typical survival model such as the Cox proportional hazard (CPH) model

by Cox D. R. [5], and Multi-source LSTM (M-LSTM) by Yuan et al. [31] which

is a classification-based fraud early detection model that uses LSTM to capture

time-dependent covariates.

While automated and efficient detection of undisclosed paid contributions is paramount

in maintaining consumers’ faith on Wikipedia as a trusted source of information, it

can also result in unintended consequences of unpaid good-faith contributions flagged

as undisclosed paid contributions. Halfaker et al. [9] studied the impact of algorithmic

tools, utilized by Wikipedia to automatically reject contributions, on retention of new

contributors. The study found that automated reversion of contributions by desirable

new users reverts amplify the negative effect of rejection on survival, thus driving

away genuine contributors threatening the functional existence of open collaboration

9

systems in general. Likewise, false positives when detecting undisclosed paid con-

tribution to Wikipedia by flagging genuine good-faith contributions as undisclosed

paid contribution can have similar negative effects in retaining genuine contributors.

Therefore, apart from the focus on efficiency and effectiveness, the minimization of

false-positive detection is also one of the major challenges.

10

CHAPTER 3

DATASET

This chapter describes the dataset we used to perform this study. We collaborated

with an English Wikipedia administrator 1 active in reviewing articles that may have

a conflict of interest (especially paid editing) to collect and curate a dataset of newly

created positive articles, created by known undisclosed paid editors, and newly created

negative articles, created by genuine users who are not paid editors. We collected the

data through the publicly available Wikipedia API. We were able to access currently

deleted edits from known undisclosed paid editors, thanks to our administrator’s

account. Deleted edits are not visible to general users through the Wikipedia API.

To gather the set of positive articles, we started by considering a manually curated

set of 1,006 known undisclosed paid editor (UPE) accounts from English Wikipedia,

which includes accounts from 23 different sockpuppet investigations [3]. Another

set of 98 additional known UPE accounts were manually added by our Wikipedia

administrator, resulting in a total of 1,104 UPE accounts. Among the set of new

articles created by these UPE accounts, our administrator manually classified 748 of

these articles (authored by 330 different editors) as paid articles (positive data). 2

To collect the set of negative articles, we started by retrieving accounts of users

who created a new article (or moved pages created in their user page or draft page

1Smart SE, https://en.wikipedia.org/wiki/User%3ASmartse
2Not all the articles created by a UPE are paid articles as these editors may create “genuine”

articles to build a reputation.

https://en.wikipedia.org/wiki/User%3ASmartse

11

Table 3.1: Size of Positive and Negative Data. Positive data refers to newly created
paid articles or known undisclosed paid editors (UPEs).

Positive Data Negative Data

Newly Created Articles 748 6,984

Editors 1,104 (UPEs) 1,557
Total Num. of Edits 73,931 199,172

to the article namespace as some UPEs do) in March 2019 (time of data collection)

and who, similarly to UPEs, had made relatively few edits (less than 200 edits) in

their account lifetime. 1,557 of these users resulted in being genuine, i.e., they are not

known paid editors (or even Wikipedia blocked users 3), or potentially paid editors as

manually verified by our Wikipedia administrator. Then, we considered as the set of

negative articles, all the newly created articles by these genuine users. This resulted

in 6,984 articles.

For each article in the positive and negative sets, we built a dataset containing

the username of the user who created the page, the creation timestamp, the content

of the article corresponding to the last edit by the article creator, and computed its

size (in bytes). Further, in order to be able to compute features about the article

creator account, we collected the time when the account was created and the whole

edit history of all the genuine and UPE accounts collected as explained above. For

each of these edits (or revisions), we collected timestamp, edited page title, revision

ID, revision size, and size difference with respect to the previous version of the edited

page. As explained above, deleted edits by UPEs are included in this data, providing

us with a complete edit history for the UPE accounts. In total, we collected 73,931

edits by our 1,104 UPEs and 199,172 edits by our 1,557 genuine editors. Table 3.1

summarizes the size of the collected data. Figure 3.2 summarizes the data collection

3List of all Wikipedia blocked users: https://en.wikipedia.org/wiki/Special:BlockList

https://en.wikipedia.org/wiki/Special:BlockList

12

process.

Figure 3.2: Data collection process

3.1 Article Network Analysis

We built an article-article network where Wikipedia articles are nodes, and there

is an edge between two articles if the same user has edited them. We considered

the edit history of all the users in our dataset for creating this network. Figure 3.1

shows the resulting network (93,406 nodes and 44,264,072 edges) where colored nodes

13

represent articles where at least one undisclosed paid editor contributed (referred as

positive articles in the rest of this section), and gray ones indicate articles edited only

by benign users (referred as negative articles in the rest of this section). Two positive

nodes have the same color if the same sockpuppet group has created them. We

used the list of sockpuppet investigations in the context of undisclosed paid editing

provided by Ballioni et al. [3].

Statistical analysis of datasets gave us some insights into the network structures

and shapes of node concentrations based on sockpuppet investigations. We evaluated

the total number of unique articles edited by unique users in each socksuppet inves-

tigation and used standard deviation to measure the amount of variation of unique

article edits in each one of the investigations. Figure 3.3 shows standard deviations

of unique article edits per user in each sockpuppet investigations. We found out that

the investigations with higher standard deviation of unique articles edits counts per

user tend to form connected network shapes with larger nodes concentration. For

example, the LogAntiLog investigation has the highest standard deviation among all

the investigations and its ”drop” shape has the largest nodes concentration. For the

investigations with standard deviations in intermediate range, connected networks of

investigations tend to form ”bracket” shapes with sparse node concentrations with

small concentration of nodes. For example, Singer Jethu Sisodiya/Rudra.shukla and

Ventus55/Anatha Gulati investigation pairs with similar standard deviation values

form near identical shapes. As we move from highest to lowest standard deviations

of unique article edits per user, connected networks lose concrete form of nodes

concentration.

By studying the network, we found that positive articles are less central in the

network than negative ones. On average, positive articles have a PageRank of 1.15e-05

14

(vs. 1.17e-05 for negative ones) and an average local clustering coefficient (LCC) of

0.966 (vs. 0.974 in the case of negative articles). In both cases, the means are different

with a p-value ¡ 0.001 according to an independent t-test. This means that there is

less user collaboration among positive articles. UPEs only work on a limited number

of Wikipedia titles that they are interested in promoting, whereas genuine users edit

more pages related to their field of expertise. That results in negative pages being

more tightly knit in the network. This result also shows that sockpuppets accounts’

behavior in Wikipedia is different from sockpuppetry in online discussion communities

where sockpuppets’ main goal is to interact with each other to deceive other users,

and they have higher PageRank and LCC than benign users [15].

By looking at the articles edited by the same sockpuppet group in Figure 3.1,

we observe that, for some investigations, the corresponding pages are more clustered

than others. To further understand the meaning of different cluster shapes, for each

investigation, we computed the number of unique articles edited by each sockpuppet

account and used the standard deviation (SD) to measure the amount of variation of

unique edited articles per account in each one of the investigations. Figure 3.3 shows

the SD values for each investigation. We found out that the investigations with higher

standard deviation tend to form denser clusters with a “drop” shape. This is the case,

for instance, of the LogAntiLog investigation that has the highest standard deviation

of 697 among all the investigations with fewer sockpuppet accounts contributing to

most of the articles. For investigations with standard deviations in the intermediate

range, corresponding clusters tend to form “bracket” shapes as UPEs’ contributions

are more distributed among affected articles. For example, Singer Jethu Sisodiya

(SD=405)/Rudra.shukla (SD=397) and Ventus55 (SD=49)/Anatha Gulati (SD=70)

investigation pairs have similar standard deviation values and form near-identical

15

shapes. As we move to investigations with a lower standard deviation of unique edited

articles per account, clusters start to lose shape (e.g., Orangemoody investigation with

SD=12). This analysis suggests that different undisclosed paid editor groups may

adopt different editing strategies, which makes the problem of detecting undisclosed

paid articles more challenging.

16

Figure 3.1: Article network: two articles are connected by an edge if they have been
edited by a common user. Colors indicate articles create by the same sockpuppet
group of undisclosed paid editors (UPEs). Negative articles (in gray) are articles
never edited by an UPE.

17

Figure 3.3: Standard deviation of unique edited articles per user per sockpuppet
investigation.

18

CHAPTER 4

DETECTING UNDISCLOSED PAID ARTICLES

In this chapter, we address the problem of identifying undisclosed paid articles in

English Wikipedia as a binary classification task. This chapter is organized as follows.

Section 4.1 introduces our features to be used with our framework. Section 4.2

discuses experimental setup, results, and baseline comparisons.

4.1 Features for Identifying Undisclosed Paid Articles

In this section, we discuss two sets of features used with our framework based on the

properties of articles as well as the edit history of users who created such articles.

The features we chose are based on the patterns or behaviors that are more likely

to be associated with malicious behavior and paid editing to distinguish them from

a benign one. The list of features considered in our approach is described in the

following two subsections.

4.1.1 Article-based Features

This first set of features we discuss includes features related to the article, such

as metadata, content, and network-based features: Age of user account at article

creation (user age) - Since sockpuppet accounts are more likely to be created at the

19

time of the creation of an article, the age of user account at the time of article creation

can be considered as one of the features in detecting undisclosed paid articles.

Infobox - This feature checks if the article contains the infobox. The infobox is “a

fixed-format table usually added to the top right-hand corner of articles to consistently

present a summary of some unifying aspect that the articles share and some time to

improve navigation to other interrelated articles.” 1 Undisclosed paid editors tend to

add the infobox to the pages they create to increase the exposure of the entity they

are promoting as the presence of an infobox is an easy way for humans to grasp a

summary of article content.

Number of references - This feature indicates the total number of references

(including URL links) present in a given Wikipedia article. Regular Wikipedia articles

(especially newly created ones) have a lot of missing references, and researchers have

been addressing the problem of suggesting proper references [12]. On the other hand,

the purpose of creating undisclosed paid articles is promotional, hence several explicit

references to the promoted item are added at the time of page creation. Therefore, a

higher number of references in a given article can be a useful indicator of undisclosed

paid editing.

Number of photos - This feature refers to the number of photos present in a

given Wikipedia article. Uploading images on Wikipedia is relatively complicated

as it requires copyright verification. The majority of images added to Wikipedia

articles are removed within hours or days of being uploaded because of inappropriate,

insufficient, or inaccurate copyright information. Then, to avoid that a promotional

article looks suspicious because of its associated images, undisclosed paid articles tend

to have fewer images than regular articles.

1https://en.wikipedia.org/wiki/Help:Infobox

20

Number of categories - This feature represents the number of categories associated

with a given article. Articles that belong to many categories deal with more complex

topics and are less likely to be undisclosed paid articles.

Content length - This feature indicates the total length, in bytes, of the content

of the given Wikipedia page. As regular pages are more curated and edited collab-

oratively by many editors, they tend to have more content and longer in size than

undisclosed paid ones.

Network-based features - We also consider the article PageRank and Local Clus-

tering Coefficient (LCC) as additional features for the article (cf. Section 3.1).

4.1.2 User-based Features

The second group of features we discuss refer to characteristics, such as choice of

username and editing behavior, of the user account that created the article. All the

features but the username-based ones are computed by considering the history of

contributions made by the editor.

Characteristics of usernames can be linked to malicious users that could create

undisclosed paid articles [32]. For instance, Green and Spezzano [8] showed that

username-based features are important to detect Wikipedia spammers. Thus, we

consider the number of leading digits, the number of digits, the ratio of digits to

characters, and the ratio of unique characters in a username as features indicating a

suspicious account.

Average size of added text (avg size added) - Given an editor, this feature computes

the average size of text added to an article by the editor. Undisclosed paid editors

are more likely to create new article content offline and then add it to Wikipedia at

once, while benign users edit Wikipedia directly with smaller additions over time.

21

Average time difference (avg time diff) - This feature indicates the average time

between two consecutive edits made by the same user. As explained in the above

feature, undisclosed paid editors do not regularly edit Wikipedia. They work mainly

offline and then add the content whenever they are ready. Thus, we expect the average

time difference to be higher for these malicious editors than benign editors.

Ten-byte ratio - This feature computes the percentage of edits made by a user

that are less than 10 bytes. Undisclosed paid editors try to become autoconfirmed

users; thus, they typically make around ten minor edits before creating a promotional

article. A registered user account becomes automatically autoconfirmed if the account

is more than four days old and has made at least ten changes. Autoconfirmed users

are considered benign users that are therefore allowed to move pages to a different title

and make changes to pages that have been semi-protected by administrators. The

main reason for having autoconfirmed status on Wikipedia is to prevent vandalism

and other types of disruptive editing. 2

Percentage of edits on User or Talk pages (user talk edits) - This feature computes

the percentage of edits a user has done on a User or Talk page. Undisclosed paid

editors may want to edit User or Talk pages for several reasons: they want to have a

User page to look like genuine editors; they may draft some content on the article Talk

page before moving it to the main article page. Further, the content of an article is

discussed by Wikipedia editors on the article Talk page or the contributor’s User page.

As the contribution of undisclosed paid editors may be disputed by administrators

and genuine editors, we expect these malicious editors to engage more in editing these

types of pages than genuine editors.

2See https://en.wikipedia.org/wiki/Wikipedia:User_access_levels

https://en.wikipedia.org/wiki/Wikipedia:User_access_levels

22

4.2 Experimental Results

We tested our features for the classification task by using three different classification

algorithms, namely Logistic Regression, Support Vector Machine (SVM), and Ran-

dom Forest. We used class weighting to deal with class imbalance in all the classifiers.

Class weighting is a way to learn from an unbalanced dataset where the classification

imposes, during training, a penalty proportionally inverse to the class distribution

on the model for making classification mistakes. To evaluate the performances, we

considered the Area Under the Receiver Operating Characteristics curve (AUROC)

and the Average Precision metrics, which are well-suited to measure classification

results in case of unbalanced data, and performed stratified 5-fold cross-validation.

We were able to achieve the best performance with Random Forest with an

AUROC of 0.856 and an average precision of 0.507 using features based on article

content, as shown in Table 4.1.

Table 4.1: Performance of our proposed features to detect undisclosed paid articles
according to different classification algorithms (best scores highlighted in bold) and
comparison and combinations with ORES features (which are article-based) according
to AUROC and average precision metrics.

Article-based Features User-based Features Article + User Features

AUROC Average Precision AUROC Average Precision AUROC Average Precision

Our Features

Random Forest 0.856 0.507 0.971 0.893 0.983 0.913

Logistic Regression 0.734 0.230 0.675 0.171 0.656 0.153

Support Vector Machine (SVM) 0.555 0.171 0.980 0.823 0.556 0.172

ORES (Random Forest) 0.844 0.424 - - - -

Our Features + ORES (Random Forest) 0.905 0.597 0.974 0.877 0.981 0.907

Figure 4.1 shows the importance of content features in detecting undisclosed paid

articles.

23

Figure 4.1: Top-10 most important features for detecting undisclosed paid articles.

4.2.1 Feature analysis

To analyze our features, we computed feature importance via a forest of randomized

trees. Let F be a set of features. The relative importance (for the classification

task) of a feature f ∈ F is given by the depth of f when it is used as a decision

node in a tree. Features used at the top of the tree contribute to the final prediction

decision of a larger fraction of the input samples. The expected fraction of the samples

they contribute to can thus be used as an estimate of the relative importance of the

features. Figure 4.1 shows the importance of our set of features for the undisclosed

paid articles classification task. The red bars in the plot show the feature importance

using the whole forest. The variability of feature importance scores across the trees

in the forest is minimal (less than 0.0001).

Among all the features we defined (article and user-based), the top four most

important features are: percentage of edits on User or Talk pages, average time

24

difference, number of references, and ten-byte ratio. We observe that, on average, the

value of the percentage of edits on User or Talk pages feature is higher for positive

articles (0.008) than for negative ones (0.0007). These values confirm our hypothesis

that users who create undisclosed paid articles are more engaged in editing User and

Talk pages than genuine users. Further, we see that, on average, users who create

undisclosed paid articles edit more slowly than genuine users: the value of the average

time difference feature is 2.8 days for regular articles and 9.2 days for undisclosed paid

articles. Also, the percentage of edits that are less than 10 bytes in size is higher for

users who created undisclosed paid articles: the value of the ten-byte ratio feature is,

on average, 0.38 for positive articles and 0.34 for negative ones. This pattern aligns

with the typical behavior of UPEs who make around ten minor edits, then remain

quiet for a few days waiting for becoming autoconfirmed users (the process takes four

days), and then create a promotional article followed by the account going silent [3].

The third most important feature is the number of references in the newly created

article. We observe that, on average, positive articles have more references than

negative ones: 7.06 vs. 4.88. As explained in Section 4.1.1, this aligns with the fact

that regular Wikipedia articles have more missing references than undisclosed paid

ones that instead use references to the promoted item.

4.2.2 Comparison with ORES

To compare our preliminary work with ORES, we retrieved the draft quality scores

for the positive and negative articles in our dataset by using the ORES publicly

available API 3 and used them in input to a classifier to predict undisclosed paid

articles. Our preliminary work shows that our approach outperformed ORES, which

3https://ores.wikimedia.org

https://ores.wikimedia.org

25

Table 4.2: Class averages of each feature.

Feature Positive Average Negative Average

user age 0.439 (days) 0.467 (days)

num categories 2.06 2.154

infobox 0.57 0.479

num references 7.064 4.881

num photos 0.416 0.95

content length 4455.876 6184.849

user talk edits 0.008 0.0007

avgtime diffs 9.2 (days) 2.8 (days)

num digits 0.475 0.917

digits to chars 0.061 0.173

leading digits 0.021 0.02

unique char ratio 0.815 0.834

ten byte ratio 0.38 0.34

avg size added 1093.85 1080.372

PageRank 1.15e-05 1.17e-05

LCC 0.966 0.974

achieved an AUROC of 0.844 and average precision of 0.424 in detecting undisclosed

paid articles. We further observed that our approach, when combined with ORES

features, significantly improved both AUROC (0.905) and average precision (0.597).

Table 4.1 shows experimental results from our preliminary work.

4.2.3 Robustness of Model

One of the areas of concern in using a select set of features in detecting undisclosed

paid articles is the possibility of such users evading some features and degrading the

performance of our model and its ability to detect undisclosed paid articles. We

analyzed the stalwart performance of our model, in case the user tries to evade some

26

features, by understanding the robustness of our model. For that, we used a forest

of random trees along with feature ablation (removing one of the 16 features at a

time and performing the classification with the remaining 15 features). When we

exclude our top-1 feature, we notice the largest decrement of the performance of our

model. However, even with such drop, our model still achieves an AUROC of 0.962

and Average Precision of 0.834. Table 4.3 shows the performance of our model when

we remove one of the 16 features at a time and perform the classification with the

remaining 15 features.

Table 4.3: Analysis of model robustness in detecting undisclosed paid articles.

Excluded Feature AUROC Average Precision

user talk edits 0.962 0.834

num references 0.974 0.895

ten byte ratio 0.975 0.877

avg size added 0.975 0.897

avgtime diffs 0.976 0.881

PageRank 0.980 0.902

unique char ratio 0.980 0.905

num photos 0.980 0.908

num digits 0.980 0.905

content length 0.981 0.908

leading digits 0.982 0.911

num categories 0.982 0.910

digits to chars 0.982 0.914

infobox 0.982 0.906

user age 0.983 0.914

LCC 0.984 0.915

27

4.2.4 False Positives Analysis

Another area of concern when predicting UPEs is the false prediction of genuine

unpaid article edits as UPEs. We investigated such false positives from our proposed

approach by understanding each feature’s contribution to the resulting false positives

and feature values when there is a false positive prediction. To investigate the contri-

bution of a feature towards false positive predictions, we performed feature ablation

by removing one of the 16 features at a time and performing the classification with the

remaining 15 features. By performing feature ablation and subsequent classification,

we can identify which feature contributes to the least false positives when excluded

from model training and classification. From a multitude of experimental runs, we

computed the average of false-positive counts summed up over each stratified sampling

fold. We found out that digits to chars feature contributes most towards the false

positives in identifying UPEs as false positives count when this feature is excluded is

the least. Also, user talk edits contributes least in false-positive predictions of UPEs

as excluding this feature results in the highest number of false-positives. Figure 4.2

shows contribution of each feature towards false-positive prediction of UPEs.

False-positive counts showed us the extent to which each feature contributed to

false positives. However, we can also understand the conditions that led to such

false positive predictions by investigating feature values and its proximity to class

averages. To investigate feature values associated with false-positive predictions, we

compared feature values of each sample that resulted in false-positive predictions

against positive and negative average feature values and computed the counts of

cases when feature value from test sample was closer to positive average feature value

from train data than the negative average feature value from the train data. With

28

Figure 4.2: False positive contribution averaged over 10 experimental runs.

this determination, we can understand the relation between feature and its value

that results with false-positive predictions when test feature values associated with

negative ground truth value are closer to average feature value of positive train data.

In doing so, we found out that with the false positive predictions, avgtime diff and

digits to chars had its feature values closer to the average of positive train data than

the average of negative train data. We also notice that the user talk edits feature had

test values that are mostly closer to negative average train feature values. Figure4.3

shows how often each feature value was closer to positive train average when the

model made false-positive predictions.

Based on our false-positive analysis, we can remove our top false-positive con-

29

Figure 4.3: False positive contribution averaged over 10 experimental runs.

tributing feature, i.e., digits to chars, to reduce false positives from our proposed

approach while still maintaining robust performance with 0.982 AUROC and 0.914

average precision as shown in Table 4.3.

30

CHAPTER 5

EARLY DETECTION OF UNDISCLOSED PAID EDITORS

In this chapter, we address the problem of early detecting undisclosed paid editors

in English Wikipedia as a binary classification task using edit history data of the

users. This chapter is organized as follows. Section 5.1 introduces our proposed

methodology. Section 5.2 discusses user-based features we utilize for the early

detection task of undisclosed paid editors. Section 5.3 discuses experimental setup,

results, and baseline comparisons. Additionally, Section 5.3.1 discusses results and

baseline comparisons using a different dataset used to address the similar task of

detecting Wikipedia vandal editors.

5.1 Methodology

In order to achieve our objective of classifying user edit history data and detect

Undisclosed Paid Editors, we used Long Short-Term Memory (LSTM), which is a

special kind of Recurrent Neural Network capable of learning long-term temporal

dependencies, to study the dependability of temporal sequence of user’s edit behavior.

We made the following considerations in deciding architecture selection:

• The problem of detecting Undisclosed Paid Editors constitute task of classifi-

cation of user edit history data that are time-series sequence data

31

• To predict user sequence at any given time-step, we need to learn from its

behavior or action from previous time-steps, i.e., accessibility of feedback from

previous time-steps at each time-step

• Ability to relay constant flow of feedback without it vanishing or exploding for

the long sequences

Even though LSTM itself is a form of Recurrent Neural Network (RNN), unlike RNN,

LSTM incorporates input, forget, and output gates (Hochreiter and Schmidhuber [10])

that effectively resolves the issue of vanishing or exploding gradient. Utilizing these

gates, LSTM can maintain hidden states of previous time-steps that allows for a

constant flow of feedback in sequential data (Gehring et al. [6]). With this, LSTM

can decide to remember or forget the feedback in recurrent layers and allow for the

learning of long-term dependencies in sequential data (Huang et al. [11]) and thus

are more useful in sequence classification. As the user edit history data is a time-series

sequence data, LSTM once again makes a better approach for the task of detecting

undisclosed paid editors.

With LSTM selected as our preferred architecture for our approach, we now

present a general overview of Long Short-Term Memory (LSTM) which forms the

basis of our proposed methods. The rest of this section then describes our proposed

methods for early detection of Undisclosed Paid Editors.

5.1.1 LSTM: Overview

An LSTM consists of a repeating module of a basic unit called an LSTM cell. Each

LSTM cell consists of three gates, namely input, forget, and output gates, to decide

retention of memory from previous cell, details to be discarded in current cell, and

output of current cell respectively. In each LSTM cell, ht−1 is the output of the last

32

Figure 5.1: Visual representation of a single LSTM cell

LSTM unit, ct−1 is the memory from the last LSTM unit, xt is the current input, ct

is the new updated memory, and ht is the current output. Input gate uses ht−1 and

xt to decide which values from current input should pass through and gives weight to

those inputs passing through. Forget gate discards the memory to be discarded and

updates current memory ct. And finally, output gate uses updated memory ct and

input xt and decides new output ht. Hence, at any given step, inputs to the LSTM

cell are xt, ht−1 and ct−1 and outputs from the LSTM cell are ht and ct. Figure

5.1 shows components of individual LSTM cells and Figure 5.2 shows three gates of

LSTM.

5.1.2 LSTM: Loss function

A model’s performance is evaluated by considering how close its predicted values

are from the ground truth. Difference between predictions from actual results, which

signifies extent by which predicted values deviate from ground truth, is measured as a

loss value and function that computes this loss value is called loss function. An LSTM

optimizer works by minimizing this loss value in order to improve its performance.

33

Figure 5.2: LSTM gates

For classification problems, cross entropy loss function is used which is determined as

the product of the log of the actual predicted probability for the ground truth class

at each time instance as shown in the equation 5.1.

loss = −(ytlog(ŷt) + (1− yt)log(1− ŷt)) (5.1)

where,

yt = actual results or ground truth

ŷt = probability of predicted class

Out of two factors used to compute loss, ground truth is fixed. However, we use

ŷt (probability of predicted class) to define any variations to loss function as required.

ŷt at time-step t (t ∈ (1, .., `(u)) is computed using weight vector of dense LSTM

layer w and hidden layer activation output ht as:

34

ŷt = W T .ht (5.2)

where,

W T = weight matrix

ht = activation (hidden layer) output at time-step t

t = 1, .., `(u), i.e. length of edit sequence of user u

5.1.3 LSTM: Loss function for user edit sequence

For a given user u with edit sequence activity from time-step 1 to t, cross entropy

loss function for edit sequence is given by:

loss = CE(W T .ht) (5.3)

where,

W T = weight matrix

ht = activation (hidden layer) output at time-step t

t = 1, .., `(u)

`(u) = length of edit sequence of user u

u ∈ user in set of users U

And, cross entropy loss function for edit sequences of entire user set, therefore, is

given by taking the sum of cross entropy of all users as shown below:

loss =
∑
uεU

CE(W T .ht) (5.4)

where,

u ∈ user in set of users U

35

W T = weight matrix

ht = activation (hidden layer) output at time-step t

t = 1, .., `(u), i.e. length of edit sequence of user u

In sections 5.1.4 and 5.1.5, we propose variations of LSTM model architecture

based on the way we consider hidden layer outputs for cross entropy loss determina-

tions.

5.1.4 LSTM1: Using hidden layer output from last layer

In our first approach, we use the LSTM1 model, an LSTM model architecture with

a many-to-one setup, as shown in the Figure 5.3 where we only use the last hidden

layer output at the end of the sequence. In this approach, we use class-specific

weighting to deal with class imbalance. The detailed architecture of our LSTM1 model

implementation is shown in Figure 5.4. This approach allows the model to consider

the entire sequence before classifying a sequence. With such model architecture, our

standard cross entropy loss function takes the form as shown in the equation 5.5:

loss =
∑
uεU

CE(W T .hL) (5.5)

where,

u ∈ user in set of users U

L = length of edit sequence of user u

5.1.5 LSTM2: Using all hidden layer outputs

In our second approach, we use an LSTM model architecture with a many-to-many

setup, as shown in figure 5.5, where we use hidden layer output at each time-step

36

Figure 5.3: LSTM1 overview

of sequences resulting in hidden layer output sequence with the same length as that

of the input sequence. The final prediction for the given sequence considers hidden

layer output at each and every time-step. In this approach, once again, we use

class-specific weighting to deal with class imbalance. However, in LSTM2, we use

varying weights for different h-output from different LSTM cells. Such weights vary

from highest to lowest as we move from first h-output towards final h-output in

sequence. The detailed architecture of our LSTM2 model implementation is shown

in Figure 5.6. This approach allows the model to consider the hidden layer outputs

at each time-step before classifying a sequence. With such model architecture, our

standard cross entropy loss function takes the form as shown in the equation 5.6:

loss =
∑
uεU

`(u)∑
t=1

CE(W T
t .ht) (5.6)

where,

u ∈ user in set of users U

t = sequence length (1, .., `(u))

`(u) = length of edit sequence of user u

37

Figure 5.4: Visualization of LSTM1 model architecture

Figures 5.4 and 5.6 show the detailed architectures of LSTM1 and LSTM2 respec-

tively.

5.2 Features for Identifying Undisclosed Paid Editors

With the details of our proposed modeling approaches discussed, we now describe

the group of features we use with our models. As we have seen in the previous

chapter, the user-based features described in Section 4.1.2 are better than content-

based ones in detecting undisclosed paid articles. Thus, in this section, we investigate

the effectiveness of these features on the different but related task of early-detection of

undisclosed paid editors. The group of features we use to early-detect undisclosed paid

editors are similar to the ones we discussed in Section 4.1.2. However, we compute

some of the features in different ways that are more compatible with our approach in

early-detecting undisclosed paid editors. Each revision in user edit history represents

an action or event, and the user’s overall edit history represents a sequence of such

38

Figure 5.5: LSTM2 overview

actions. As we want our models to learn from each successive action for the task of

early-detecting undisclosed paid editors, feature values from each one of users’ actions

are used without any aggregation.

As discussed in Section 4.1.2, once again, we consider the number of leading

digits, the number of digits, the ratio of digits to characters, and the ratio of unique

characters in username as features indicating a suspicious account.

Size difference (sizediff) - Given an editor, this feature computes the size of any

modification or update corresponding to a given revision to an article by the editor.

This is the difference between the size of an article before and after the revision is

made.

Time difference (time diff) - This feature indicates the time between two consec-

utive edits made by the same user.

Under ten bytes - This feature is similar to Ten-byte ratio feature described in

Section 4.1.2. However, here we consider this as a binary feature indicating whether

an edit made by a user is less than 10 bytes or not.

39

Figure 5.6: Visualization of LSTM2 model architecture

Edits on User or Talk pages (edited) - This feature is similar to Percentage of

edits on User or Talk pages feature described in Section 4.1.2. However, for the

task of early detecting undisclosed paid editors, we consider this as a binary feature

indicating whether an edit made by a user is on User/Talk page or an article.

5.3 Experimental Results

In this section, we look at experimental results for our neural-network-based ap-

proaches discussed in Section 5.1. For this, we utilize features described in Section 5.2

and consider only up to the first 20 user-edits from our dataset. In our experiments,

both LSTM variants consist of a single LSTM layer with an output space dimension

of 16. As our objective is to catch undisclosed paid editors close to the beginning of

their action sequence, we consider only up to the first 20 user-edits in our dataset,

LSTM cell count, or time-step in both our models are 20 each. As LSTM1 uses hidden

outputs from hidden layer output only at the end of the sequence, its output shape is

40

a single hidden output sequence of length that is equal to the output dimension of the

LSTM layer. However, LSTM2 uses hidden outputs at each time-step and therefore

has LSTM layer output with a shape of (20, 16), i.e., twenty different hidden output

sequences of length that are equal to the number of output dimensions in an LSTM

layer. As reported in Table 3.1, we have 1,104 UPEs and 1,557 benign users in our

dataset.

Experiment1: Using first 20 user-edits. In our first experiment, we used two

of our approaches, LSTM1 (Section 5.1.4) and LSTM2 (Section 5.1.5) to investigate

capabilities and performance of our proposed models in detecting Undisclosed Paid

Editors. Results are reported in Table 5.1 that show our approaches achieving

AUROC scores of 0.926 and 0.901 for LSTM1 and LSTM2, respectively. Similarly,

the average precision for LSTM1 and LSTM2 is 0.897 and 0.845, respectively. When

comparing our approaches individually, the results also show that LSTM1 performed

better than LSTM2 both in terms of AUROC and average precision scores.

Comparison with related work. In order to evaluate experimental results

based on our LSTM1 and LSTM2 approaches, we once again considered work by Ya-

mak et al. [30] and Zheng et al. [33] (SAFE) discussed in Section 2. Even though SAFE

makes baseline comparisons with Support Vector Machine (SVM), Cox proportional

hazard (CPH) model and Multi-source LSTM (M-LSTM) described in Section 2, we

limit comparison of our experimental results with only the best performing approach

in work by Zheng et al. [33], i.e., SAFE. We also compared our experimental results

from LSTM1 and LSTM2 with those using ORES scores, discussed in Section 2. As

we can see from Table 5.1, our LSTM1 and LSTM2 approaches to detect Undisclosed

Paid Editors has a comparable AUROC score but achieves a better average precision

(+0.031) than those based on Yamak et al.’s [30] approach. The table also shows

41

that our LSTM1 and LSTM2 approaches achieve far better AUROC scores and

average precision when compared with the same using ORES scores as features. And

finally, AUROC scores and average precision from both of our approaches (LSTM1

and LSTM2) easily outperform corresponding scores using an approach based on the

SAFE. Figure 5.7 shows a comparison of AUROC and average precision using the

first 20 user-edits.

Table 5.1: Performance of our user-based features to detect undisclosed paid editors
and comparison with related work according to AUROC and average precision.

AUROC Average Precision

LSTM1 0.926 0.897

LSTM2 0.901 0.845

Yamak et al. [30] 0.914 0.866

ORES 0.724 0.632

SAFE [33] 0.575 0.525

Figure 5.7: AUROC and average precision comparison using first 20 user-edits

42

Experiment2: Using first K user-edits. In our second experiment, we again

use two of our approaches, LSTM1 (Section 5.1.4) and LSTM2 (Section 5.1.5), in

order to investigate capabilities and performance of our proposed models in detecting

Undisclosed Paid Editors using first K user-edits for each user in our dataset where

K ranges from 1 to 10. Results are reported in Table 5.2 that shows our approaches

achieving AUROC scores of 0.877 and 0.896 for LSTM1 and LSTM2 respectively

when up to 10 user-edits are considered. The table also shows average precision of

0.830 and 0.819 for LSTM1 and LSTM2 respectively.

Comparison with related work. Once again, we considered work by Yamak et

al. [30] and the SAFE approach by Zheng et al. [33] discussed in Sections 2, and

experimental results from our approach using ORES scores, discussed in Section 2, as

features in order to evaluate our experimental results. As we can see from Table 5.2,

our approaches (LSTM1 and LSTM2) to early detect Undisclosed Paid Editors easily

outperform both AUROC and average precision scores using approaches based on the

study by Yamak et al. [30], SAFE, and scores based on experimental results based on

ORES scores as features using as little as two edits. Figure 5.8 and 5.9 give visual

demonstration of superior performances of our model as compared to the those based

on related works. When our approaches are compared individually, the results also

show that LSTM2 performed better than LSTM1 when we consider first K edits.

Overall, our experimental results show that the LSTM2 is the best approach in the

early detection of undisclosed paid editors in terms of both AUROC and average

precision scores.

43

Figure 5.8: Comparison of approaches using AUROC

Figure 5.9: Comparison of approaches using average precision.

44

Table 5.2: Early detection performance of our user-based features to detect undis-
closed paid editors and comparison with related work according to AUROC and
average precision.

K Approach AUROC Average Precision K Approach AUROC Average Precision

LSTM1 0.642 0.472 LSTM1 0.785 0.627

LSTM2 0.641 0.458 LSTM2 0.860 0.777

1 ORES 0.610 0.460 6 ORES 0.657 0.529

Yamak [30] 0.521 0.368 Yamak [30] 0.769 0.712

SAFE [33] 0.692 0.645 SAFE [33] 0.583 0.533

LSTM1 0.667 0.477 LSTM1 0.813 0.687

LSTM2 0.739 0.601 LSTM2 0.874 0.789

2 ORES 0.636 0.500 7 ORES 0.655 0.533

Yamak [30] 0.635 0.444 Yamak [30] 0.789 0.729

SAFE [33] 0.616 0.570 SAFE [33] 0.580 0.531

LSTM1 0.679 0.488 LSTM1 0.842 0.749

LSTM2 0.801 0.663 LSTM2 0.885 0.805

3 ORES 0.651 0.515 8 ORES 0.668 0.548

Yamak [30] 0.688 0.519 Yamak [30] 0.798 0.731

SAFE [33] 0.607 0.553 SAFE [33] 0.579 0.530

LSTM1 0.709 0.526 LSTM1 0.864 0.799

LSTM2 0.827 0.712 LSTM2 0.892 0.817

4 ORES 0.642 0.505 9 ORES 0.670 0.552

Yamak [30] 0.706 0.588 Yamak [30] 0.815 0.746

SAFE [33] 0.598 0.543 SAFE [33] 0.579 0.530

LSTM1 0.754 0.573 LSTM1 0.877 0.830

LSTM2 0.842 0.745 LSTM2 0.896 0.819

5 ORES 0.644 0.513 10 ORES 0.672 0.558

Yamak [30] 0.751 0.680 Yamak [30] 0.827 0.759

SAFE [33] 0.589 0.536 SAFE [33] 0.578 0.529

5.3.1 Early Detection of Vandal Users

In the previous section, we evaluated the experimental results based on our approaches

(LSTM1 and LSTM2) to demonstrate its superiority in early detecting Undisclosed

Paid Editors compared to results from approaches based on related work. However,

we also evaluated the performance of our approaches when tested on a similar task

of early detecting Wikipedia vandal editors and, once again, made a comparison

of results from approaches based on related work. For that, we used the UMD-

45

Wikipedia [16] dataset, collected for the task of detecting Wikipedia vandal editors.

The dataset consists of 17,027 users that were blocked by Wikipedia for vandalism and

16,549 randomly selected benign users collected between January 01, 2013, and July

31, 2014. The dataset also consists of edit meta-data comprised of user, page-type

(normal or meta-page), title of page edited, time of edit, and category for the total

of 770,040 edits out of which 160,651 edits were made by vandals, and 609,389 were

made by benign users. The dataset provides edit sequences for each user based on

characteristics of consecutive edits actions, such as speed, frequency, page-type, etc.,

that are encoded with unique string representation with a maximum sequence length

of 500 edits for the total of 33,576 users. For our experimental setup, we considered

edit sequences with up to 20 (inclusive) edits. As the UMDWikipedia [16] dataset is

balanced, we were also included an accuracy metric, along with AUROC and average

precision metrics, in comparing our results.

Experiment3: Using first 20 user-edits. First, we used two of our approaches,

LSTM1 (Section 5.1.4) and LSTM2 (Section 5.1.5), in order to investigate capa-

bilities and performance of our proposed models in detecting Wikipedia vandal users

using UMDWikipedia [16] dataset. Results are reported in Table 5.3 that shows our

approaches achieving AUROC scores of 0.951 and 0.955, average precision of 0.969

and 0.972, and accuracy scores of 0.880 and 0.889 for LSTM1 and LSTM2 respectively.

Comparison with related work In order to evaluate experimental results based

on our LSTM1 and LSTM2 approaches, once again, we considered the SAFE approach

by Zheng et al. [33] (discussed in Section 2) using the UMDWikipedia [16] dataset.

As we can see from Table 5.3, LSTM1 achieved an AUROC score of 0.951, i.e. +0.376,

average precision of 0.969, i.e., +0.444, and accuracy score of 0.880, i.e. +0.240, as

compared to corresponding metrics based on the SAFE approach. Similarly, LSTM2

46

achieved an AUROC score of 0.955, i.e. +0.380, average precision of 0.972, i.e.

+0.447, and accuracy score of 0.889, i.e. +0.249, as compared to corresponding

metrics based on the approach by SAFE [33]. The results show that LSTM2 was

the best performing approach. Both LSTM1 and LSTM2 are comparable to one

another and perform far better than SAFE [33]. Figure 5.10 shows a comparison of

our approaches with related work according to AUROC and average precision.

Table 5.3: Performance of our user-based features to detect undisclosed paid editors
and comparison with related work according to AUROC, average precision, and
accuracy

AUROC Average Precision Accuracy

LSTM1 0.951 0.969 0.880

LSTM2 0.955 0.972 0.889

SAFE [33] 0.575 0.525 0.640

Figure 5.10: Comparison of approaches using AUROC, average precision, and accu-
racy on UMDWikipedia [16]

47

Experiment4: Using first K user-edits. Finally, we used two of our ap-

proaches, LSTM1 (Section 5.1.4) and LSTM2 (Section 5.1.5), in order to investigate

capabilities and performance of our proposed models in early detection of Wikipedia

vandal users using the UMDWikipedia [16] dataset. Results are reported in Table 5.4

that shows our approaches achieving AUROC scores of 0.948 and 0.952 for LSTM1

and LSTM2 respectively, when the first up to ten user-edits are considered. The table

also shows an average precision of 0.891 and 0.935 and accuracy scores of 0.878 and

0.886 for LSTM1 and LSTM2, respectively. When we compare our two approaches, we

can see that the LSTM2 performed slightly better than LSTM1. In terms of evaluation

metrics improvement with LSTM2, compared to those with LSTM1, accuracy score

achieved the biggest improvement while average precision score achieved the smallest

improvement.

Comparison with related work. Once again, we considered SAFE [33], discussed

in Section 2, to evaluate our approaches using the UMDWikipedia [16]. As we can

see from Table 5.4, our two approaches to detect Undisclosed Paid Editors, LSTM1

and LSTM2, easily outperform the results from experiments using an approach based

on study by SAFE [33] in all three metrics (AUROC, average precision, and accuracy

scores) using as little as two edits. Figures 5.11 through 5.13 shows the obvious

superiority of our approaches highlighting the fact that LSTM1 and LSTM2 curves

for all three metrics are significantly above those based on the approach by Zheng et

al. [33].

48

Table 5.4: Early detection performance of our user-based features to detect Wikipedia
vandal editors and comparison with related work according to AUROC and average
precision.

K Approach AUROC Average Precision Accuracy K Approach AUROC Average Precision Accuracy

LSTM1 0.796 0.579 0.579 LSTM1 0.939 0.878 0.873

1 LSTM2 0.795 0.759 0.768 6 LSTM2 0.944 0.922 0.880

SAFE 0.692 0.645 0.661 SAFE 0.583 0.533 0.651

LSTM1 0.859 0.776 0.807 LSTM1 0.944 0.883 0.874

2 LSTM2 0.886 0.842 0.845 7 LSTM2 0.948 0.927 0.883

SAFE 0.616 0.570 0.675 SAFE 0.580 0.531 0.651

LSTM1 0.899 0.834 0.850 LSTM1 0.946 0.886 0.876

3 LSTM2 0.911 0.877 0.862 8 LSTM2 0.950 0.929 0.884

SAFE 0.607 0.553 0.667 SAFE 0.579 0.530 0.651

LSTM1 0.920 0.856 0.862 LSTM1 0.947 0.889 0.877

4 LSTM2 0.929 0.899 0.871 9 LSTM2 0.951 0.934 0.886

SAFE 0.598 0.543 0.661 SAFE 0.579 0.530 0.651

LSTM1 0.930 0.871 0.870 LSTM1 0.948 0.891 0.878

5 LSTM2 0.938 0.914 0.878 10 LSTM2 0.952 0.935 0.886

SAFE 0.589 0.536 0.661 SAFE 0.578 0.529 0.651

Figure 5.11: Comparison of approaches using AUROC.

49

Figure 5.12: Comparison of approaches using average precision.

Figure 5.13: Comparison of approaches using Accuracy.

50

CHAPTER 6

CONCLUSIONS

6.1 What have we done so far?

In this thesis, we addressed the problem of identifying undisclosed paid articles and

editors in English Wikipedia. Our proposed approach relies on article-based and

user-based features that describe potential malicious behavior. Through evaluation

of our approaches, we demonstrated the following:

• We showed that we can detect undisclosed paid articles with an AUROC of 0.98

and an average precision of 0.91. As our features are independent of linguistic

barriers, our proposed approach can work on any Wikipedia language version.

• Through our article network analysis, we highlighted the complexity in investi-

gation of editing behavior of sockpuppet groups. We showed that undisclosed

paid editors contribute to a limited number of Wikipedia titles, possibly focused

on promotional articles, and the number of editors contributing to such articles

can vary from one undisclosed paid editors groups (sockpuppets) to another.

• We showed that our user-based features can be used to identify undisclosed paid

editors with 0.93 AUROC and 0.90 average precision. Our results in detecting

undisclosed paid articles and editors improve over state-of-the-art approaches.

51

• We showed that our proposed LSTM models are well capable of early-detecting

undisclosed paid editors with an AUROC of 0.88 and .90 and average precision of

0.83 and 0.82 respectively for LSTM1 and LSTM2. Furthermore, we also showed

that our LSTM approaches are well capable of early-detecting undisclosed paid

editors with our LSTM2 approach outperforming performance based on the

related works using as little as two edits.

• We demonstrated the reliability of our LSTM approaches in addressing other

similar tasks such as early detection of vandals in Wikipedia using the UMD-

Wikipedia [16] dataset set up to study the problem of detecting vandals in

Wikipedia. We showed that our proposed LSTM approaches can be used to

identify vandals with up to 0.96 AUROC and 0.97 average precision using our

best performing approach (LSTM2) far surpassing the performance of a similar

approach by SAFE [33].

6.2 Future directions

Our proposed approaches can be further improved and extended in the future. Wikipedia

has shown significant interest in our published work with the possibility of deployment

of our system directly into their platform. For that reason, we are now collaborating

with one of the teams from Wikipedia that will provide us with access to additional

user edit history data. With these additional data, we can improve our working

dataset to further improve the model-training and its performance in detecting undis-

closed paid editors. Our approaches can also be extended in the future for the study

of sockpuppets in general. In the future, it is also possible to include content analysis

of Wikipedia edits and investigate the socio-behavioral aspect of editors. One such

52

aspect that Wikipedia is interested in investigating is the study of user interactions to

detect detrimental behavior such as harassment. Finally, our thesis work can also be

extended beyond the study of early detection of undisclosed paid editors to address

the problem of early detection of sockpuppets in general.

53

REFERENCES

[1] B. Thomas Adler, Luca de Alfaro, Santiago Moisés Mola-Velasco, Paolo Rosso,
and Andrew G. West. Wikipedia vandalism detection: Combining natural
language, metadata, and reputation features. In Computational Linguistics
and Intelligent Text Processing - 12th International Conference, CICLing 2011,
Tokyo, Japan, February 20-26, 2011. Proceedings, Part II, pages 277–288, 2011.

[2] B. Thomas Adler, Luca de Alfaro, and Ian Pye. Detecting wikipedia vandalism
using wikitrust - lab report for PAN at CLEF 2010. In CLEF 2010 LABs and
Workshops, Notebook Papers, 22-23 September 2010, Padua, Italy, 2010.

[3] Tony Ballioni, James Heilman, Brian Henry, and Aaron Halfaker. Known
Undisclosed Paid Editors (English Wikipedia). 4 2018.

[4] Zhan Bu, Zhengyou Xia, and Jiandong Wang. A sock puppet detection algorithm
on virtual spaces. Knowledge-Based Systems, 37:366–377, 2013.

[5] David R Cox. Regression models and life-tables. Journal of the Royal Statistical
Society: Series B (Methodological), 34(2):187–202, 1972.

[6] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N
Dauphin. Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1243–1252.
JMLR. org, 2017.

[7] GitHub. https://github.com/.

[8] Thomas Green and Francesca Spezzano. Spam users identification in wikipedia
via editing behavior. In Proceedings of the Eleventh International Conference on
Web and Social Media, ICWSM 2017, Montréal, Québec, Canada, May 15-18,
2017., pages 532–535, 2017.

[9] Aaron Halfaker, R Stuart Geiger, Jonathan T Morgan, and John Riedl. The
rise and decline of an open collaboration system: How wikipedia’s reaction to
popularity is causing its decline. American Behavioral Scientist, 57(5):664–688,
2013.

https://github.com/

54

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[11] Minlie Huang, Yujie Cao, and Chao Dong. Modeling rich contexts for sentiment
classification with lstm. arXiv preprint arXiv:1605.01478, 2016.

[12] Abhik Jana, Pranjal Kanojiya, Pawan Goyal, and Animesh Mukherjee. Wikiref:
Wikilinks as a route to recommending appropriate references for scientific
wikipedia pages. arXiv preprint arXiv:1806.04092, 2018.

[13] Nikesh Joshi, Francesca Spezzano, Mayson Green, and Elijah Hill. Detecting
undisclosed paid editing in wikipedia. In Proceedings of The Web Conference
2020, pages 2899–2905, 2020.

[14] Michael Kemmler, Erik Rodner, Esther-Sabrina Wacker, and Joachim Den-
zler. One-class classification with gaussian processes. Pattern recognition,
46(12):3507–3518, 2013.

[15] Srijan Kumar, Justin Cheng, Jure Leskovec, and V. S. Subrahmanian. An army
of me: Sockpuppets in online discussion communities. In Proceedings of the 26th
International Conference on World Wide Web, WWW 2017, Perth, Australia,
April 3-7, 2017, pages 857–866, 2017.

[16] Srijan Kumar, Francesca Spezzano, and V. S. Subrahmanian. VEWS: A
wikipedia vandal early warning system. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney,
NSW, Australia, August 10-13, 2015, pages 607–616, 2015.

[17] Srijan Kumar, Francesca Spezzano, and VS Subrahmanian. Vews: A wikipedia
vandal early warning system. In Proceedings of the 21th ACM SIGKDD in-
ternational conference on knowledge discovery and data mining, pages 607–616,
2015.

[18] Srijan Kumar, Robert West, and Jure Leskovec. Disinformation on the web:
Impact, characteristics, and detection of wikipedia hoaxes. In Proceedings of
the 25th International Conference on World Wide Web, WWW 2016, Montreal,
Canada, April 11 - 15, 2016, pages 591–602, 2016.

[19] Dong Liu, Quanyuan Wu, Weihong Han, and Bin Zhou. Sockpuppet gang
detection on social media sites. Frontiers of Computer Science, 10(1):124–135,
2016.

[20] Martin Potthast, Benno Stein, and Robert Gerling. Automatic vandalism
detection in wikipedia. In Advances in Information Retrieval , 30th European

55

Conference on IR Research, ECIR 2008, Glasgow, UK, March 30-April 3, 2008.
Proceedings, pages 663–668. 2008.

[21] Thamar Solorio, Ragib Hasan, and Mainul Mizan. A case study of sockpuppet
detection in wikipedia. In Proceedings of the Workshop on Language Analysis in
Social Media at NAACL HTL, pages 59–68, 2013.

[22] Thamar Solorio, Ragib Hasan, and Mainul Mizan. Sockpuppet detection in
wikipedia: A corpus of real-world deceptive writing for linking identities. arXiv
preprint arXiv:1310.6772, 2013.

[23] David MJ Tax and Robert PW Duin. Uniform object generation for optimizing
one-class classifiers. Journal of machine learning research, 2(Dec):155–173, 2001.

[24] David MJ Tax and Robert PW Duin. Support vector data description. Machine
learning, 54(1):45–66, 2004.

[25] Michail Tsikerdekis and Sherali Zeadally. Multiple account identity deception
detection in social media using nonverbal behavior. IEEE Transactions on
Information Forensics and Security, 9(8):1311–1321, 2014.

[26] Bimal Viswanath, Ansley Post, Krishna P Gummadi, and Alan Mislove. An
analysis of social network-based sybil defenses. ACM SIGCOMM Computer
Communication Review, 41(4):363–374, 2011.

[27] Andrew G. West, Avantika Agrawal, Phillip Baker, Brittney Exline, and Insup
Lee. Autonomous link spam detection in purely collaborative environments. In
Proceedings of the 7th International Symposium on Wikis and Open Collabora-
tion, 2011, Mountain View, CA, USA, October 3-5, 2011, pages 91–100, 2011.

[28] Andrew G. West, Jian Chang, Krishna K. Venkatasubramanian, Oleg Sokolsky,
and Insup Lee. Link spamming wikipedia for profit. In The 8th Annual
Collaboration, Electronic messaging, Anti-Abuse and Spam Conference, CEAS
2011, Perth, Australia, September 1-2, 2011, Proceedings, pages 152–161, 2011.

[29] Andrew G. West, Sampath Kannan, and Insup Lee. Detecting wikipedia van-
dalism via spatio-temporal analysis of revision metadata? In Proceedings of the
Third European Workshop on System Security, EUROSEC 2010, Paris, France,
April 13, 2010, pages 22–28, 2010.

[30] Zaher Yamak, Julien Saunier, and Laurent Vercouter. Detection of multiple
identity manipulation in collaborative projects. In Proceedings of the 25th
International Conference Companion on World Wide Web (Companion), pages
955–960, 2016.

56

[31] Shuhan Yuan, Panpan Zheng, Xintao Wu, and Yang Xiang. Wikipedia vandal
early detection: from user behavior to user embedding. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages
832–846. Springer, 2017.

[32] Reza Zafarani and Huan Liu. 10 bits of surprise: Detecting malicious users with
minimum information. In Proceedings of the 24th ACM International Conference
on Information and Knowledge Management, CIKM 2015, Melbourne, VIC,
Australia, October 19 - 23, 2015, pages 423–431, 2015.

[33] Panpan Zheng, Shuhan Yuan, and Xintao Wu. Safe: A neural survival analysis
model for fraud early detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1278–1285, 2019.

[34] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. One-class
adversarial nets for fraud detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 1286–1293, 2019.

57

APPENDIX A

REPRODUCING EXPERIMENTS

A.1 Getting the code

The code can be downloaded from GitHub [7] using the URL below. The repository

will be made public after publication of this thesis. However, dataset will not be

available given the restricted nature of our dataset provided to us by Wikipedia.

URL: https://github.com/nikeshjoshi/DetectingUPEinWikipedia.git

We used Jupyter Notebook to implement our thesis work.

A.2 Repository Structure

The repository is structured in same was as the directory structure used in running

all of our experiments as shown below:

1. ./graphOutput/ stores graph output

2. ./nbDetectUPArticles/ includes notebooks required for detection of undisclosed

paid articles experiment

3. ./nbEarlyDetectUPEditors/ includes notebooks required for early detection of

undisclosed paid editors experiments

4. ./nbRetrieveORES/ includes notebooks required to retrieve ORES scores

https://github.com/nikeshjoshi/DetectingUPEinWikipedia.git

58

5. ./nbSAFE/ includes notebook required for baseline experiment using SAFE

6. ./nbThesisResults/ includes notebooks to run all the early detection of undis-

closed paid editors experiments using single notebook and tabulate and plot all

the experimental results together

7. ./pickles/ stores pickle output

8. ./plots/ stores plot outputs

9. ./wikiData/ includes data files provided by Wikipedia administrator. Note:

Two files in this folder have been added as zip file because of GitHub size limit.

To re-run the experiments, those files must be unzipped.

10. ./vewsData/ includes data files used by Kumar et al. [17] that we use for baseline

comparison

A.3 Getting the data

Additional data files that exceed size limit on GitHub repository are privately stored

on google drive and will not be publicly available given the restricted nature of our

dataset provided to us by Wikipedia. Authorized users can access these data using

google drive link (Additional Data Link).

To re-run the experiments, these data folders must be placed in same directory

that contains other folders listed in Section A.2.

A.4 Pre-processing of data

Wikipedia provided us their data in three different pairs of data files in binary form.

https://drive.google.com/drive/folders/1awR60xTsKz2cGlDvH16yce0GkU5-aFxK?usp=sharing

59

• Content data

– positive content (inc short)

– negative content

• User registration data

– positive user registration

– negative user registration

• Edit history (contribution) data

– positive contrib full v2

– negative contrib full v2

Beside these data files that were provided by Wikipedia, we also generate secondary

data files that are used in our notebooks that run our experiments.

• positive content with ORES.csv

• negative content with ORES.csv

• content data with ORES.csv

• user data without ORES.csv

• graph.pkl

• user and content data with ORES.csv

• posAll Data ORES Scores.csv

• negAll Data ORES Scores.csv

• userEdits.csv

Due to the restricted nature of Wikipedia dataset, these data will not be publicly

available from GitHub [7] repository.

60

A.5 Running the experiments

In this section, we discuss procedures for running our all of our experiments including

the ones for Detection of Undisclosed Paid Articles and Early Detection of Undisclosed

Paid Editors.

A.5.1 Detection of Undisclosed Paid Articles

Follow hierarchical procedure can be followed for complete re-run of experiments for

detection of undisclosed paid articles by running Jupyter notebooks in order as listed

below. Figure A.1 shows procedural flow diagram for detection of undisclosed paid

articles.

1. RetrieveORESScores AllContents.ipynb - Retrieve ORES scores for each articles

in Wikipedia content data.

• Outputs:

(a) positive content with ORES.csv

(b) negative content with ORES.csv

2. dupa ParseContentData.ipynb - Parse content data.

• Outputs:

(a) content data with ORES.csv

3. dupa ParseUserData.ipynb - Parse user data.

• Outputs:

(a) user data without ORES.csv

61

4. dupa Generate Graph.ipynb - Generate article-article network graph (where Wikipedia

articles are nodes, and there is an edge between two articles if the same user

has edited them) to extract article PageRank and Local Clustering Coefficient

(LCC).

• Outputs:

(a) graph.pkl

5. dupa runme.ipynb - Merge content data with user data.

• Outputs:

(a) user and content data with ORES.csv

6. dupa DetectUndisclosedPaidArticles.ipynb - Train and test model.

• This notebook generates experiment results for detection of undisclosed

paid articles. We can also directly rerun this notebook using pre-existing

user and content data with ORES.csv and graph.pkl files to reproduce ex-

periment results.

62

Figure A.1: Detection of Undisclosed Paid Articles Process.

A.5.2 Early Detection of Undisclosed Paid Editors

Follow hierarchical procedure can be followed for complete re-run of experiments for

detection of undisclosed paid articles by running Jupyter notebooks in order as listed

below. Figure A.2 shows procedural flow diagram for detection of undisclosed paid

articles.

1. RetrieveORESScores AllEdits.ipynb - Retrieve ORES scores for each edits in

Wikipedia contribution data.

• Outputs:

(a) posAll Data ORES Scores.csv

(b) negAll Data ORES Scores.csv

2. ParseUserData.ipynb - Parse user edit data.

63

• Outputs:

(a) userEdits.csv

3. These notebooks generate experiment results for early detection of undisclosed

paid editors with corresponding approach and dataset. Run following notebooks

(order not important):

(a) lstm1 max20 overall and firstKedits.ipynb - Run experiment using LSTM1

(discussed in Section 5.1.4).

(b) lstm2 max20 overall and firstKedits.ipynb - Run experiment using LSTM2

(discussed in Section 5.1.5).

(c) Yamak max20 overall and firstKedits.ipynb - Run experiment using Ya-

mak et al. [30] approach.

(d) vewsData lstm1 max20 overall and firstKedits.ipynb - Run experiment us-

ing LSTM1 (discussed in Section 5.1.4) approach with UMDWikipedia [16]

dataset.

(e) vewsData lstm2 max20 overall and firstKedits.ipynb - Run experiment us-

ing LSTM2 (discussed in Section 5.1.5) approach with UMDWikipedia [16]

dataset.

(f) safe max20 overall and firstKedits.ipynb - Run experiment using SAFE [33]

approach.

4. Alternative method:

(a) earlyDetectUPE runAll.ipynb - Run all early detection of undisclosed paid

editors experiments.

64

5. Generate results and plots:

(a) earlyDetectUPE Plots and Tables only.ipynb - Once all early detection of

undisclosed paid editors experiments have been executed, this notebook

tabulates all the results and plots together.

Figure A.2: Early Detection of Undisclosed Paid Editors Process.

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Related Work
	Dataset
	Article Network Analysis

	Detecting Undisclosed Paid Articles
	Features for Identifying Undisclosed Paid Articles
	Article-based Features
	User-based Features

	Experimental Results
	Feature analysis
	Comparison with ORES
	Robustness of Model
	False Positives Analysis

	Early Detection of Undisclosed Paid Editors
	Methodology
	LSTM: Overview
	LSTM: Loss function
	LSTM: Loss function for user edit sequence
	LSTM1: Using hidden layer output from last layer
	LSTM2: Using all hidden layer outputs

	Features for Identifying Undisclosed Paid Editors
	Experimental Results
	Early Detection of Vandal Users

	Conclusions
	What have we done so far?
	Future directions

	REFERENCES
	Reproducing Experiments
	Getting the code
	Repository Structure
	Getting the data
	Pre-processing of data
	Running the experiments
	Detection of Undisclosed Paid Articles
	Early Detection of Undisclosed Paid Editors

