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ABSTRACT 

Our planet is undergoing rapid change due to the expanding human population 

and climate change, which leads to extreme weather events and habitat loss. It is more 

important than ever to develop methods which can monitor the impact we are having on 

the biodiversity of our planet. To influence policy changes in wildlife and resource 

management practices we need to provide measurable evidence of how we are affecting 

animal health and fitness and the ecosystems needed for their survival. We also need to 

pool our resources and work in interdisciplinary teams to find common threads which can 

help preserve biodiversity and vital habitats.  This dissertation showcases how improved 

molecular biology assays and data analysis approaches can help monitor the fitness of 

animal populations within changing ecosystems.  

Chapter 1 details the development of a universal telomere assay for vertebrates. 

Recent work has shown the utility of telomere assays in tracking animal health.  

Telomere lengths can predict extinction events in animal populations, life span, and 

fitness consequences of anthropogenic activity. Telomere length assays are an 

improvement over other methods of measuring animal stress, such as cortisol levels, 

since they are stable during capture and sampling of animals. This dissertation provides a 

telomere length assay which can be used for any vertebrate.  The assay was developed 

using a quantitative polymerase chain reaction platform which requires low DNA input 

and is rapid.  This dissertation also demonstrates how this assay improves on current 

telomere assays developed for mice and can be used in a vertebrate not previously 
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assayed for telomere lengths, the American kestrel. This work has the potential to propel 

research in vertebrate systems forward as it alleviates the need to develop new reference 

primers for each species of interest. This improved assay has shown promise in studies in 

mouse cell line studies, American kestrels, golden eagles, five species of passerine birds, 

osprey, northern goshawks and bighorn sheep. 

Chapter 2 presents a machine learning analysis, using a topic model approach, to 

integrate big data from remote sensing, leaf area index surveys, metabolomics and 

metagenomics to analyze community composition in cross-disciplinary datasets. Topic 

models were applied to understand community organization across a range of distinct, but 

connected, biological scales within the sagebrush steppe. The sagebrush steppe is home 

to several threatened species, including the pygmy rabbit (Brachylagus idahoensis) and 

sage-grouse (Centrocercus urophasianus). It covers vast swaths of the western United 

States and is subject to habitat fragmentation and land use conversion for both farming 

and rangeland use. It is also threatened by increases in fire events which can dramatically 

alter the landscape. Restoration efforts have been hampered by a lack of resources and 

often by inadequate collaboration between stakeholders and scientists. This work brought 

together scientists from four disciplines: remote sensing, field ecology, metabolomics and 

metagenomics, to provide a framework for how studies can be designed and analyzed that 

integrate patterns of biodiversity from multiple scales, from the molecular to the 

landscape scale. A topic model approach was used which groups features (chemicals, 

bacterial and plant taxa, and light spectrum) into “communities” which in turn can be 

analyzed for their presence within individual samples and time points. Within the 

landscape, I found communities which contain encroaching plant species, such as juniper 
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(Juniperus spp.) and cheatgrass (Bromus tectorum). Within plants, I found chemicals 

which are known toxins to herbivores.  Within herbivores, I identified differences in 

bacterial taxonomical communities associated with changes in diet. This work will help 

to inform restoration efforts and provide a road map for designing interdisciplinary 

studies.  
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DISSERTATION INTRODUCTION 

Monitoring organismal and ecosystem health 

There is an urgent need to monitor the health of wildlife and the ecosystems of 

which they are a part. The earth is undergoing significant changes due to anthropogenic 

effects, which are fragmenting and destroying habitats, polluting ecosystems and causing 

global warming. It is likely that these activities are leading to the sixth mass extinction, 

with 322 land vertebrates having gone extinct in the last 500 years (Dirzo et al., 2014; 

Burgess, 2019). These extinction events do not account for additional population declines 

in the remaining species. Although conservationists and wildlife managers are trying to 

preserve and restore vital habitats to slow the rate of species decline and extinction, there 

is much work to be done. Efforts are in part hampered by a lack of resources and, in 

many cases, the difficulty of stakeholders and researchers to develop collaborations and 

shared goals (Sievanen et al., 2012; Pujadas Botey et al., 2014).  

There is an opportunity to develop better methods and data analysis tools to track 

the health of animals and their habitats and to pave the way for interdisciplinary research 

teams to share a common language and integrate disparate data sets across scales and 

disciplines. The focus of this dissertation is to improve molecular biology assays and data 

analysis approaches, which can aid ecologists and conservationists in the preservation 

and restoration of ecosystems, while also providing a road map for how an 

interdisciplinary team can co-analyze data sets to improve conservation outcomes. 

Although many molecular approaches have been developed to monitor human health and 
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disease, there has been slower progress in other vertebrate organisms due to the difficulty 

in transferring these assays to genomes and environmental conditions which differ from 

humans in significant ways.  

One emerging molecular method is to measure telomere lengths as an indicator of 

aging and fitness. However, this assay can be challenging to adapt to new organisms due 

to a lack of published genomes in many non-model organisms, which makes the 

development of reference primers challenging. Another important area of research for 

monitoring the health of an animal is through analysis of the gut microbiome. This type 

of analysis, when merged with other environmental data, can inform conservationists in 

their efforts to understand how animals adapt to climate change and other human 

disturbances and can better inform reintroduction efforts after local extinction events.  In 

this dissertation, I present advancements to two emerging molecular methods for 

monitoring the health of animals. In Chapter 1, I present an assay to measure fitness and 

stress responses in any vertebrate through telomere length assessment.  In Chapter 2, I 

present an integrated study of the sagebrush steppe, including microbiome analysis of a 

sagebrush herbivore, plant chemistry data and landscape surveys through remote sensing 

and leaf area index. I show how topic modeling can identify community structure in each 

of these data sets and lead to better integration of multi-disciplinary studies.  

Telomere background information 

Telomeres are critical structures for protecting the ends of linear chromosomes. 

Telomeres are long, non-coding, sequences of repeating nucleotides (TTAGGG)n which 

cap the ends of linear chromosomes. These repeats are the same in all eukaryotes, with 

similar sequences found in organisms across the tree of life (Watson and Riha, 2010; 
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Gomes et al., 2011). These repeats are bound by a six subunit protein complex called 

shelterin which protects the single-stranded DNA from DNA damage machinery 

following strand invasion of the single-stranded DNA to form a lariat-like structure 

(Greider, 1991; Lange, 2005) (Figure 1).  

 

 
Figure 1. Telomere repeats bound by shelterin protein complex  

Despite this structure formation, telomere shortening of the lagging strand still 

occurs during every cell division due to the end replication problem (Waga and Stillman, 

1998). During DNA synthesis, lagging strand synthesis occurs opposite the direction of 

the replication fork movement, which involves continuous use of RNA primers to 

generate Okazaki fragments (Read and Brenner, 2001). The DNA template at the end of 

the lagging strand is unable to be primed, and therefore, the lagging strand is slightly 

shorter during every round of cell division (Figure 2). This shortening eventually leads to 

cell senescence (Shay, 2018). Some stems cells, germ cells and most cancer cells express 

the enzyme telomerase, which is capable of adding new TTAGGG-3’ repeats to avoid 

this shortening.         
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Figure 2. End replication problem.  

DNA at the end of eukaryotic chromosome is not able to be fully copied during DNA 

synthesis, resulting in progressive shortening of telomeric sequences. 

 

In addition to the shortening of telomeres, which occurs during DNA synthesis, 

increases in the rate of telomere attrition occur from exposure to stress (Sahin et al., 

2011; Martens and Nawrot, 2016; Zhang et al., 2016; Barnes et al., 2019). Research into 

the mechanism of this increased rate of shortening has shown that this likely occurs 

through oxidative damage from environmental and genetic factors. This has made the 

measurements of telomere lengths a useful tool for monitoring the impact of stress and 

disease in humans (Bär and Blasco, 2016; Donati and Valenti, 2016; Factor-Litvak et al., 

2016). Despite this potential, and a growing need to assess the response of animals to 

environmental stressors, less progress has been made using telomere assays in other non-

human and non-model vertebrates.  

Telomere assays as measurements of animal fitness and health 

Despite the slower pace in the use of telomere assays in wildlife studies, there 

have been several pivotal studies which demonstrate the importance of this approach as a 

measure of fitness and lifespan. In one recent study by Dupoué et al., common lizards 

(Zootoca vivipara) were sampled along an extinction risk gradient and found to have 

shorter telomere lengths in populations facing a high risk of extinction. The authors of 

https://www.nature.com/articles/s41598-017-17323-z#auth-1
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this study propose that telomere lengths can be used as a biomarker to predict extinction 

events (Dupoué et al., 2017). In another study by Whittemore et al., they demonstrate 

that the rate of telomere shortening can be used to predict the lifespan of a wide variety of 

birds and mammals and that this is independent of the starting telomere length of 

individual animals (Whittemore et al., 2019). Other studies have shown a link between 

anthropogenic causes, such as urbanization, traffic noise and coal exposure, in telomere 

shortening in vertebrates, indicating that telomere lengths can also be used to measure 

these stressors (Meillère et al., 2015; Ibáñez-Álamo et al., 2018; Matzenbacher et al., 

2019). There have also been several studies which show a direct effect of disease and 

parasites on telomere shortening in animals (Beirne et al., 2014; Asghar et al., 2015). 

These studies point to the wide application that telomere assays can have to help 

understand the health of animal populations.  

Developing a universal telomere assay for all vertebrates 

Several approaches have been used to measure telomere lengths.  Terminal 

Restriction Fragment (TRF) analysis was the initial approach used to measure the length 

of telomeres (Mender and Shay, 2015). This approach involves using a labelled probe to 

the TTAGGGn sequences and performance of a Southern blot to analyze the intensity of 

telomere smears after digestion by restriction enzymes of all other genomic DNA. This 

method has long been considered the gold standard of telomere length measurements but 

is labor intensive and requires large amounts of DNA (approximately 3 µg), which can be 

particularly difficult to obtain from wildlife. Fluorescent in-situ hybridization (FISH) is 

another approach where probes specific to the telomere repeats are bound and 

fluorescence is measured using methods such as flow cytometry (Baerlocher et al., 2006). 
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This approach allows for telomere measurements in specific cell populations but is also 

time-consuming, expensive and requires significant technical skills due to the calibrations 

needed throughout the protocol (Baerlocher et al., 2006). Another approach, single 

telomere length analysis (STELA), is a ligation-PCR-based method which is capable of 

measuring the telomere length of a single telomere using primers designed to specific 

chromosomes (Hemann et al., 2001). This method is unique in its ability to identify 

critically short telomeres within a population of cells.  

Chapter 1 of this dissertation details the development of a quantitative polymerase 

chain reaction (qPCR) based universal telomere assay for all vertebrates. Many 

researchers are now measuring relative telomere lengths by qPCR, due to several 

advantages of this assay (Cawthon, 2002). This approach can be performed with much 

less DNA (approximately 75 ng) and can use high-throughput platforms, speeding the 

rate of discovery. In this approach the amount of telomere signal (T) is normalized to 

reference genes signals (R) and the relative telomere length calculated as a ratio between 

these signals T/Raverage. The bottleneck to this approach is the development of reference 

gene primers which are ubiquitous across vertebrates and do not exhibit copy number 

variants across individuals. This dissertation addresses this key technical issue by 

developing a qPCR based, universal telomere assay, with five pairs of reference gene 

primers, validated across the vertebrate tree of life. 

Microbiome background information 

The microbiome is defined as the collection of microorganisms, in particular 

bacteria, which live within an environment (Ursell et al., 2012). The study of 

microbiomes has benefited from advances in whole genome sequencing technology and 
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from decreased costs. It took nearly 13 years to sequence the human genome, while today 

we can generate millions of reads in a matter of hours using Next Generation Sequencing. 

This has led to the ability to rapidly decode the microbiome of individuals or an 

environment from a single DNA sample. Bacteria inhabit many body systems including 

the gut, skin and mouth. Changes to health status, diet and the environment can have 

profound effects on bacterial populations, in both the number and type of bacteria present 

(Althani et al., 2016; Lynch and Pedersen, 2016). Progress has been rapid in this field, 

with large projects such as the NIH Human Microbiome Project, established in 2008, 

contributing to the momentum. Over 200 million dollars is now spent annually on 

microbiome research (Proctor et al., 2019). However, as with telomere research, the field 

of generating and understanding microbial communities and their function has grown 

faster in human health than in other vertebrates.  

Analyzing microbiome data sets 

Analysis of microbiome data sets has been performed using a variety of 

computational and modeling approaches.  However, many of them do not lead to insights 

into the structure of bacterial communities or how these communities may interact with 

other features in the environment, such as chemical profiles. Common approaches to 

analyzing microbial communities include estimates of alpha and beta diversity and 

multivariate statistical analysis, such as principal coordinate analysis. These can give us 

an idea about community composition but do not offer insights into potential interactions 

across microbial communities or interactions with other communities at other biological 

scales or scientific disciplines. For example, identifying how changing plant communities 

influence the type and concentration of plant metabolites consumed by herbivores, which 
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influence bacteria populations exposed to those metabolites in the guts of herbivores, will 

help us unravel the functional interactions of these changes. Moving from describing 

populations of bacteria and chemicals to finding connections between them and to the 

environment is needed to start to understand functional biodiversity and how it is affected 

by various stressors (Shoaie et al., 2013; Dorrestein et al., 2014). Several clustering 

techniques have been used to try to group data points together, but these often fail to find 

more minor communities (LaMontagne, et al.; Widder et al., 2016). This need has led to 

an increased interest in computational approaches to develop deeper analysis of microbial 

and metabolic communities.  This dissertation (Chapter 2) shows how a topic modeling 

approach, Latent Dirichlet Allocation (LDA), can help to start to define community 

structure in datasets including landscape features, metabolomics and metagenomics.   

LDA is a method for identifying microbial communities which has some unique 

advantages over traditional clustering approaches. Normal, unsupervised clustering 

approaches, which are frequently employed to analyze microbiome datasets, do not 

unravel the latent community structure in bacterial samples that are biologically relevant 

(Yan et al., 2017). Importantly, these approaches do not allow bacteria taxa to reside in 

multiple clusters (mixed community membership). In contrast, LDA allows for mixed 

membership of bacteria across multiple communities. LDA is a Bayesian based method 

which applies topic modeling, frequently employed in text mining, to uncover hidden 

structure in datasets (Blei et al., 2003). The basic concept of LDA is that there are 

multiple possible bacterial communities and each type of bacteria has some probability of 

existing in each community. In addition, LDA allows for each microbial sample collected 

to have multiple communities of bacterial taxa. LDA is used to predict the probability of 
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each community existing within a given sample (Chen et al., 2012).  This represents a 

middle ground between clustering approaches (well-separated) and ordination approaches 

(continuous gradients). There was a recent demonstration of the effectiveness of LDA 

through the analysis of the human gut microbiome (Hosoda et al., 2019). Specifically, 

LDA identified a fourth classification of bacterial ecosystems in the human gut 

(enterotype) that unsupervised clustering was not able to identify. LDA’s ability to 

identify these communities of bacteria is an important step towards more accurately 

identifying microbial interactions that explain their collective effect on host health and 

well-being. In Chapter 2 of this dissertation I show that LDA can be used to identify 

communities of bacteria in a sagebrush herbivore that change in response to diet 

transitions.  In addition, I show how LDA can be used to also identify community 

structure in a range of data types including remote sensing data, metabolomic data and 

field ecology data.  

Developing an approach to integrate and model big data across scientific disciplines  

Defining communities of microbes and understanding these communities within 

the context of environments, at increasing biological scales, will give us new insights into 

animals and their habitats (Bahrndorff et al., 2016; Xiong, 2018; Allan et al., 2018). 

Many studies demonstrate a strong association between microbial communities and 

various environmental stressors, but there is further progress to be made to understand the 

causality and mechanisms behind the interactions of microbes and their environments. 

For example, how do the metabolic products produced by one community of microbes 

influence another microbe and how does host diet affect this interaction? How can 

scientists, from disparate disciplines, collaborate to better understand how animals and 
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their microbiomes change in response to the environment? These questions require a new 

approach to how we analyze large, multi-faceted datasets and a common language to use 

across disciplines. In this dissertation, I demonstrate the potential for community 

structure to unite patterns of biodiversity across molecular, organismal and landscape 

scales.  

This dissertation (Chapter 2) demonstrates how a probabilistic, topic modeling 

approach, Latent Dirichlet Allocation (LDA), can be used to understand community 

interactions in multi-disciplinary studies (Blei et al., 2003). With a specific focus on how 

large spatial scales of communities of landscape features from remote sensing and field 

ecology data can cascade down to explain communities of microbes within herbivores.  

In this study, we define communities as groups of features that are likely to be found 

together. These features are discipline specific. For example, in microbiome data these 

features are bacterial taxa and in field ecology these features are plant species. LDA 

allows us to find communities of these discipline-specific features and to calculate the 

probability of the features exiting within a community. Importantly, LDA allows for the 

existence of multiple communities within a single sampling unit, which prevents the 

overrepresentation of majority elements (Sankaran and Holmes, 2019). This means that a 

feature, such as the bacteria genus Clostridium, could be placed in multiple communities 

and in turn several of these communities could be found within a given sampling unit 

such as an individual herbivore.  

In Chapter 2, I apply LDA to a sagebrush steppe environment and look at four 

distinct data types representing different biological scales and disciplines. Data focuses 

on the sagebrush steppe ecosystem and includes hyperspectral data from the landscape 
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acquired by remote sensing, leaf area index of plant plots, metabolomics of sagebrush 

subspecies and metagenomics of a sagebrush herbivore. The sagebrush steppe covers 165 

million acres in the western United States and is threatened by changes in land use as 

well as an increase in fires, due to climate change (Baker, 2006). Understanding how the 

environment shapes the lives of the plants and animals living in the sagebrush steppe will 

allow us to develop conservation and wildlife management approaches with improved 

outcomes. I demonstrate how LDA can be used to find distinct community structures in 

landscape ecology, metabolome and microbiome data sets and provide a framework for 

developing future multidisciplinary studies across scales. 

Advancements in molecular approaches to analyze organismal and environmental 

interactions 

This dissertation provides a molecular assay to monitor vertebrate health, fitness 

and lifespan.  The universal telomere assay presented in this dissertation has been used to 

analyze the effects of parasitism and anthropogenic factors on new, non-model 

organisms. I also provide a topic modeling approach to analyze big data sets, thus 

allowing the integration of data from the fields of landscape ecology, metabolomics and 

metagenomics towards the goal of understanding interactions of animals and their 

environment.  This approach was able to identify invasive species in the landscape, 

metabolites which can differentiate plant species and predict selection by herbivores and 

shifts in bacterial communities in response to diet transitions in a sagebrush herbivore. 

Together these contributions will add to our toolshed in the quest to understand the 

effects of climate change and human activity on animals and the environment and 
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provide an approach for the development of interdisciplinary studies across disparate 

fields of study.   
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Abstract 

Telomere length dynamics are an established biomarker of health and aging in 

animals. The study of telomeres in numerous species has been facilitated by methods to 

measure telomere length by real-time quantitative PCR (qPCR). In this method, telomere 

length is determined by quantifying the amount of telomeric DNA repeats in a sample 

and normalizing this to the total amount of genomic DNA. This normalization requires 

the development of genomic reference primers suitable for qPCR, which remains 

challenging in non-model organisms with genomes that have not been sequenced. Here 

we report reference primers that can be used in qPCR to measure telomere lengths in any 

vertebrate species. We designed primer pairs to amplify genetic elements that are highly 

conserved between evolutionarily distant taxa and tested them in species that span the 

vertebrate tree of life. We report five primer pairs that meet the specificity and 
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reproducibility standards of qPCR. In addition, we demonstrate how to choose the best 

primers for a given species by testing the primers on multiple individuals within a species 

and applying an established computational tool. These reference primers can facilitate the 

application of qPCR-based telomere length measurements in any vertebrate species of 

ecological or economic interest. 

Introduction 

The measurement of telomere lengths is an important approach used to study the 

health and aging of organisms. Telomeres are structures at the end of Eukaryotic 

chromosomes that are comprised of proteins bound to repetitive DNA sequences. 

Telomeres protect the ends of linear chromosomes and provide several important cellular 

functions (1). The length of telomere DNA shortens at each cell division, and telomere 

shortening can eventually lead to cellular senescence, which affects tissue function, 

organismal health and lifespan (2–4). Telomere lengths are considered an indicator of 

phenotypic quality (5, 6) and telomere length dynamics have predictive power in the 

future success of organisms. For example, telomere shortening has been shown to predict 

both lifespan and reproductive success (7, 8), which are proxies for organismal fitness. 

Short telomere lengths have even been shown to precede extinction events (9). In 

addition, telomere shortening has been shown to be accelerated by various forms of stress 

(10–12) and telomere lengths have been used to evaluate environmental quality (13–15). 

The ability to monitor the health of organisms and to predict their future success has 

important applications in both wild and captive environments. In addition, understanding 

telomere dynamics across the vertebrate tree of life could also lead to a better 

understanding of the mechanisms and evolution of aging in general.  
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 Despite the motivation for measuring telomere lengths, research remains limited 

to relatively few species, with the majority of studies done in avian species (16–18). 

Methodological challenges are one reason for the limited use of telomere length 

measurements. A widely used method is to measure relative telomere length by real-time 

quantitative PCR (qPCR). This method requires only common lab equipment and 

techniques, can be done in relatively high-throughput and is robust despite low sample 

quantity and quality (19, 20). Measurement of telomere length by qPCR requires primers 

that amplify telomere repeats, where the concentration of telomeric DNA in a sample, 

determined by qPCR, is proportional to telomere length. The method also requires 

reference primers that amplify a non-telomeric region of the genome of interest to 

normalize for the total amount of genomic DNA in the sample (21). The repeating DNA 

sequence of telomeres (TTAGGG) is identical in all vertebrates, so the established 

telomere-specific primer pairs should work in any vertebrate species (22). In contrast, the 

genome specific reference primers optimized in one species may not work in other 

species because of unknown genetic differences, often requiring the design and 

optimization of new primers for each new species that is to be studied (23, 24). Reference 

primer development is especially challenging in non-model organisms with genomes that 

have not been sequenced. Despite the simplicity of measuring telomere lengths by qPCR, 

reference primer design may limit the adoption of this assay in newly analyzed species. 

Here we report PCR primers that can be used as genomic reference primers for 

qPCR based-telomere length measurements in any vertebrate species. To design a PCR 

assay that would work universally in vertebrates, we designed primers to amplify ultra-

conserved elements (UCEs) which are genetic elements that are highly conserved 
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between evolutionarily distant taxa (25–27). We identified primer pairs that amplify five 

different UCEs and also meet qPCR requirements for specificity and efficiency (28) 

(Figure 1A). We designed these primers to match the annealing temperature of the 

established telomere primers so that they can be used in the same PCR plate if desired. 

We found that all five primers efficiently and reproducibly amplify genomic DNA in 

every vertebrate sample that we tested. In addition, the targeted UCEs do not vary in 

copy number in the species we investigated. As a proof of concept, we used the primers 

to verify a significant decrease in telomere length with age in American kestrels, a 

species for which telomere lengths had not previously been measured. The reported 

qPCR primers enable the expansion of telomere length studies to new vertebrate systems 

for basic and applied research questions. 

Materials and Methods 

Genomic DNA extraction 

DNA was extracted from blood or tissue samples using the Zymo Quick-DNA 

Microprep Plus Kit (#D4074) according to the manufacturer’s protocols for the sample 

type. Blood samples from Northern goshawk and American kestrel were stored in 

Queen’s lysis buffer (0.01 M Tris, 0.01 M NaCl, 0.01 M EDTA, and 1% n-

lauroylsarcosine, pH 7.5) prior to extraction. Human DNA was from a buccal swab. DNA 

from a red-eared slider was extracted from a shell fragment. DNA from sea squirt was 

extracted from whole organisms. All other DNA samples were extracted from muscle or 

liver tissue. All animals were treated in accordance with Boise State University animal 

care and use policies where applicable. DNA purity was assessed by 260/280 nm 
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absorbance ratio (NanoDrop). DNA was quantified by absorbance at 260 nm and the 

concentration was normalized to 2ng/µl in 10 mM Tris-HCl pH 8.5 and 0.1 mM EDTA.  

Quantitative PCR 

Quantitative PCR (qPCR) was performed using a Roche LC96. A standard curve 

for each primer pair was included in triplicate on each qPCR plate. Genomic DNA from 

the organism of interest which had the highest concentration, measured by UV 

absorbance, was used for the standard curve. The standard curve was prepared by seven 

serial dilutions (1∶5). Reactions were carried out in 20 µL volumes containing 

approximately 8 ng DNA for unknown samples (or 4 µl of varying concentrations of 

DNA for serial dilutions), 10 µl of 2x Biotium Fast Plus EvaGreen® qPCR Master Mix, 

10 pmol each of forward and reverse primers (500 nM final primer concentration) and 

water up to 20 µl. For UCE and telomere primers, the two-step thermal cycling profile 

was 95°C for 2 min, followed by 40 cycles of 95°C for 5 s and 55°C for 30 s, with signal 

acquisition at the end of the 55°C step and melt curves generated by increasing 

temperatures from 72 to 95°C, in 0.5°C steps, with a 30 s dwell period per step at the end 

of the thermal cycling. Reactions with previously reported primers for 36B4 in mice 

contained a 250 nM final concentration of forward and reverse primers with all other 

reagents as described above. PCR reactions with the 36B4 primers were thermal cycled 

for 95°C for 2 min, followed by 35 cycles of 94°C for 30 s, 52°C for 30 s, and 72°C for 

30 s with a final extension for 5 min at 72°C and signal acquisition at the end of the 72°C 

step and melt curves generated by increasing temperatures from 72 to 95°C, in 0.5°C 

steps, with a 30 s dwell period per step at the end of the thermal cycling.  
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All samples were PCR amplified in triplicate along with three no template 

controls per primer pair. Triplicates were averaged and any sample with a quantification 

cycle (Cq) standard deviation of greater than 0.5 between triplicates or with Cq values 

outside of the standard curve were repeated. Concentrations (ng) of telomere repeats and 

UCEs were determined using an external standard curve approach and Roche 

LightCycler software (release 4.0) for Absolute Quantification auto-analysis with the 

second derivative maximum method (proprietary). The efficiencies of each primer pair 

were determined from the slope of the standard curves using Roche LightCycler software 

where E=10[1/slope]. Optimal efficiency (100%) is defined as a slope of 3.32. The 

correlation coefficients (R2) were determined from the replicates of the dilution series.  

Data analysis    

Primer pairs were assessed for their effect on stability values computationally 

(geNorm) as previously described (29). The same genomic DNA samples from multiple 

individuals were amplified with 3-5 UCE primer pairs, and the Cq values were used to 

sequentially eliminate the least stable primer pair. The two most stable UCE primer pairs 

were then used to generate DNA concentrations (ng) from a standard curve and these 

concentrations were graphed on a scatter plot with Pearson correlations and trend lines 

reported. To calculate relative telomere lengths in adult and nestling kestrels, the 

telomere concentration (T) was divided by the average concentration of two UCE genes 

(UCEave) to yield T/UCEave.   
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Results 

Assay development 

We set out to develop primer pairs to several UCEs to enable cross validation. We 

chose several UCEs from UCbase 2.0 and designed multiple primer pairs for each using a 

primer design tool (OligoArchitect, Sigma-Aldrich). During design, we limited the 

product length to 250 bps and designed primers to have a Tm of 60˚C to match the Tm of 

established telomere-specific primers (30). We ranked the primer pairs computationally 

(Beacon Designer) and experimentally tested the top four pairs for each of the UCEs by 

amplifying mouse DNA in a qPCR reaction. Using melt-curve analysis, we identified 

primer pairs for five of the UCEs that produced a single-peaked melt curve (Figure 1B). 

We determined the amplification efficiency for each of these five UCE primer pairs by 

amplifying seven serial dilutions of the mouse DNA in triplicate (Figure 1C). A primer 

pair for all five UCEs was found that had qPCR efficiencies within the best-practice 

range of 90-110% and correlations (R2) of the Cq values for replicates greater than or 

equal to 0.980 (31) (Figure 1C). The sequences of the chosen UCE primer pairs is 

reported in Table 1. 
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Figure 1.1 UCE primer performance in qPCR.  

(A) Conceptual diagram of the universal vertebrate telomere assay design. Black bars 

represent the level of conservation of genomic regions determined by the alignment of 

multiple genomes such as a bird, a mammal and a fish. Telomeric repeats are conserved 

in all chordates and are amplified by primers specific to this sequence. The same 

reference primers can be used in all species because they amplify ultra-conserved 

elements (UCE) that have high conservation among distant taxa. (B) Melt curves of the 

amplification product of the qPCR of genomic mouse DNA using the best primer pair for 

each UCE. (C) Efficiencies and R2 values of the best primer pair identified for five 

different UCEs, named by their access number in the UCE database. 

 

Table 1.1 UCE and Telomere Primer Sequences 

Name Sequence 

tel 1b CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT 

tel 2b CAGCCGAAAGGCCCTTGGCAGGAGGGCTGCTGGTGGTCTACCCTT 

UCE.359-F ATCTGAGACTTGTGACAT 

UCE.359-R GTGTTAATTGGTAATGACTATT 

UCE.28-F AAATACCACCCAACAGTTT 

UCE.28-R AAGCCCTATACAGATGGAT 

UCE.64-F GAGTCTCCAATATCATCAGAAGC 

UCE.64-R ACACATGCCACGATCAATG 

UCE.239-F TCAGATGTTCAGCCTATT 

UCE.239-R AATACCATGTTAATTATCCTCAA 

UCE.176-F TTTCTACAGTTCTGATTTAGTTGA 

UCE.176-R TGTTCCCTGTCGCATTAG 
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Validation across the vertebrate tree of life 

We next tested our primers across the vertebrate tree of life (Figure 2A). We 

collected various tissue types from 19 species for DNA extraction. To test our primers as 

broadly as possible, we also included a sea squirt, which is amenable to telomere length 

measurements because basal chordates have the same telomeric repeat sequences as 

vertebrates. We performed qPCR on each sample in triplicate with all five primer pairs 

and evaluated the melt-curves. We found that all five primer pairs amplified DNA from 

every species with a single melt peak. All of the UCE primer pairs also have efficiencies 

in the best practice range of 90-110% when used to generate a standard curve through 

serial dilution (32). These results indicate that all five primer pairs are suitable primers 

for qPCR in all vertebrates that we tested. 

An additional requirement for reference genes used for normalizing telomere 

length is that they must not vary in copy number among individuals in the population. For 

example, a duplication of a reference gene in one individual would appear as a halving of 

their telomere lengths relative to a non-duplicated individual. The amplification of 

closely related homolog variants could also introduce normalization differences that 

would have the same effect as copy number variation. The challenge of identifying 

reference primers with minimal variation between individuals for telomere length 

measurements is similar to choosing primer pairs for normalizing real-time PCR data for 

gene expression. We therefore evaluated our primer pairs using an algorithm, geNorm, 

designed for this purpose (29). The geNorm algorithm evaluates the cumulative variation 

among multiple primer pairs and iteratively eliminates primer pairs that contribute the 

most variation until final primer pairs are chosen. Two or more primer pairs are preferred 
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over a single primer pair to reduce random experimental variation (33). Using the 

NormqPCR package in R which uses the geNorm algorithm, we identified the best 

combination of UCE primer pairs from DNA extracted from 20 mice (Mus musculus), 17 

rock ptarmigan (Lagopus muta), and 20 northern goshawks (Accipiter gentilis), 

representing both sexes and a range of ages. Samples were amplified by qPCR with each 

of the five reference primer sets using the same DNA concentration (8 ng) for each 

reaction. We found that the use of two primer pairs for normalization led to very low 

stability values in each of the species tested (Figure 2B). Next, we extracted DNA from 

another mammal (bighorn sheep, Ovis canadensis) and tested the top three primer pairs 

which had been identified in mice. Bighorn sheep were limited to analyzing three primer 

pairs due to low DNA concentration provided for these samples. Using NormqPCR we 

identified the two primer pairs with the lowest stability values (Figure 2B). The genomic 

DNA concentration quantified by these two primer pairs showed high correlation 

(Pearson), suggesting that neither pair exhibit copy number polymorphisms within the 

individuals tested (Figure 2C and Supplementary Figure S1). 

We next set out to determine if the UCE-based assay yields expected relative 

telomere length measurements in a species where telomere lengths have not been 

previously measured. We extracted DNA from the blood of 15 adult and 29 nestling 

American kestrels. We amplified each DNA sample separately with telomere specific 

primers UCE.28 and UCE.239 which were chosen because of low stability values and 

high correlations. Relative telomere length was calculated as the ratio of the telomere 

amplification product to the average of the UCE amplification products. The results 

showed that adult American kestrels had a significantly shorter telomere length than 
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nestlings, which was expected since telomeres tend to shorten with aging (Figure 2D). 

We note that, prior to developing the UCE primers, we had attempted to use published 

GAPDH primers to normalize telomere lengths in the American kestrel. We found that 

both the published (34) and extensively redesigned and optimized GAPDH primers 

exhibited abnormal PCR variations among individuals, making this commonly used 

reference gene unsuitable in this organism (Supplementary Figure S2). These results 

suggest that our primers may even be an improvement for telomere assays in avian 

species.    
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Figure 1.2 Validation of UCE reference primers across the vertebrate tree of life.  

(A) Phylogenetic tree of organisms in which reference primers were validated. (B) 

Average stability values generated in geNorm from the utilization of six to two reference 

gene primers. (C) Pearson correlation between the genomic DNA concentrations (ng) of 

the two UCE primer pairs that resulted in the lowest average stability values (geNorm) in 

northern goshawk (Accipiter gentillis), rock ptarmigan (Lagopus muta), mouse (Mus 

musculus) and bighorn sheep (Ovis Canadensis). (D) Relative telomere length for adult 

and nestling American kestrels (Falco sparverius) using UCE primers.   
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UCE primers are an improvement over previously reported telomere assay reference 

primers for mice 

We next analyzed DNA from 20 mouse ear punches with a reference primer pair 

previously reported in the literature that was designed for qPCR-based telomere length 

measurement in mice (35). The previously reported primers target the acidic ribosomal 

phosphoprotein PO (36B4) gene and have been used in multiple publications (35). We 

used the published thermal cycling profile of the 36B4 primers to determine the PCR 

efficiency and evaluate the melt peak. The 36B4 primers had a good efficiency (102%) 

but showed a broad, multi-peaked melt-curve indicating PCR artifacts or non-specific 

amplification occurred (Supplementary Figure S3). When we included the 36B4 primer 

pair in the NormqPCR stability analysis for mouse, this primer pair was the second 

eliminated by the geNorm algorithm, indicating that our top UCE primer pairs are an 

improvement with respect to genomic reference stability values in mice. These results 

further suggest that our UCE reference primers may be useful even in organisms with 

established reference primers.  

Discussion 

Real-time qPCR-based telomere length assays provide a reliable and high-

throughput method for studying the length of telomeres. The primers reported here make 

this assay possible in any vertebrate species. For investigators that wish to study 

telomeres in a new organism, we recommend first testing all five UCE primer pairs on at 

least ten individuals and performing a stability analysis to find the best two primer pairs 

(29). Compared to a single reference primer pair, using the average quantity from two 

reference primer pairs for relative telomere length measurement has the advantage of 
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averaging out other sources of qPCR noise (36). While three or more reference primers 

could be used if warranted, this would require more DNA and reagents. We were able to 

identify primer pairs with low stability values in bighorn sheep from comparing the best 

three primer pairs identified from mouse DNA samples (UCE.28, UCE.64 and UCE.239). 

This suggests that these three primers could be a good starting point for any mammalian 

species. However, the slightly lower correlation between the concentrations measured for 

the bighorn sheep samples, compared to the other organisms, suggests that a better primer 

pair might be found if all five primers were tested (Figure 2C). The bighorn sheep 

samples also had relatively low DNA concentration, which may also have contributed to 

the lower correlation value. We also recommend that in telomere assays in which all 

samples do not fit on one plate that the raw T/ UCEave ratio would be divided by the 

average T/ UCEave ratio of internal calibrator samples. In addition to primer choice, it is 

also important to establish appropriate tissue collection protocols for each new species 

because telomere length dynamics can vary among different types of cells and tissue (37). 

The biological relevance of telomere lengths must be determined in each organism which 

will require additional information such as diseases state and life history. 

The ability to determine relative telomere length in any vertebrate species creates 

new opportunities in basic and applied research. For example, telomere length 

measurements can be used for monitoring the health and aging of organisms. Telomere 

lengths have even been considered a proxy for fitness because telomere lengths have 

been shown to predict lifespan and reproductive success in some species (5, 7). For 

organisms of conservation concern, telomere lengths have been shown to be an early 

indicator of extinction risk (9). Telomere lengths in indicator species in different 
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environments may allow identification of important ecosystems disturbances, including 

those caused by humans. The ability to study multiple species simultaneously opens up 

questions about how telomere lengths change during long-term predator-prey cycles or 

other ecological interactions. The ability to study telomere lengths in diverse taxa will 

allow for a better understanding of aging across the tree of life as well as from an 

evolutionary perspective (38).   

Availability 

geNorm is open source and available in the R software package NormqPCR 

(https://github.com/jimrperkins/NormqPCR).  
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 Supporting Information 

 

 

Fig. S1.1 Pearson Correlation matrixes for UCE primers in northern goshawk 

(Accipiter gentillis), rock ptarmigan (Lagopus muta), mouse (Mus musculus) and 

bighorn sheep (Ovis canadensis). 
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Fig. S1.2 GAPDH PCR variants in American kestrel.  PCR products of 

multiple sizes are formed when utilizing GAPDH primers in American kestrels 

(Falco sparverius).  

 

 

 

 
 

Fig. S1.3 Melt curve of frequently utilized 36B4 reference primers used in 

qPCR-based telomere assays in mice (Mus musculus).  
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In a nutshell: 

 Understanding how biodiversity responds to global change requires 

connecting research across many spatial scales, from molecules to 

landscapes. 

 Given modern challenges in conservation, we demonstrate how an 

interdisciplinary collaboration can further a holistic understanding of 

biodiversity, efficient conservation research and management planning. 
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 Using modeling to find common features within datasets, we present a 

framework to analyze data about landscape vegetation patterns, plant 

chemicals, and bacteria in the digestive tracts of sagebrush herbivores.  

 We demonstrate how our interdisciplinary approach could aid 

conservation strategies and how models for detecting communities could 

provide a common language across many types of ecological data.  

Abstract 

Biodiversity science increasingly encompasses multiple disciplines and biological scales 

from molecules to landscapes. Each scale has potential to inform conservation strategies 

and nested interactions between scales are common. Nevertheless, biodiversity data are 

often analyzed separately with discipline-specific methodologies and resulting inferences 

may be constrained across scales. To overcome this, we present a topic modeling 

framework to analyze community composition in cross-disciplinary datasets, including 

those generated from metagenomics, metabolomics, field ecology and remote sensing. 

Using topic models, we demonstrate how biodiversity inference from disparate datasets 

can inform the conservation of interacting plants and vertebrate herbivores. We show 

how topic models can identify members of molecular, organismal, and landscape-level 

communities that explain the health and population dynamics of threatened herbivores. 

We conclude with a future vision for how topic modeling could be used to design cross-

scale studies that promote a holistic approach to detect, monitor, and manage both 

threatened species and biodiversity.  
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Introduction 

Understanding biodiversity will require crossing disciplinary boundaries to link 

biological organization across scales. While early efforts to quantify biodiversity focused 

on the organismal scale of plants and animals (Simpson, 1949), modern biodiversity 

research encompasses molecular scales, including metabolomic, genomic, and microbial 

diversity, as well as scales beyond individual organisms, including variability of biotic 

and abiotic features within landscapes, regions, and continents. Studying biodiversity at 

microscopic and macrosystem scales has led to emerging insights with broad relevance 

for human health (Mohajeri et al., 2018), global sustainability (Bennett et al., 2015) and 

wildlife conservation (Trevelline et al., 2019). As recognition of the importance of 

biodiversity has increased, so have methods for analyzing biodiversity, from molecular 

approaches such as Next Generation sequencing for genomic data to airborne sensors that 

can measure large-scale landscape features. These methods are necessarily discipline-

specific, thus limiting analysis of biodiversity patterns that may be nested within or 

interact among scales. The lack of interdisciplinary cohesion in biodiversity studies, due 

to different terminology and varying scales of interest, is a critical gap that limits our 

understanding of biological processes vital to sustaining our global ecosystem. One step 

toward overcoming this lack of cohesion is to identify unifying patterns in data across 

disciplines that can then be analyzed and discussed with a common organization and 

language (Mosher et al., 2020). 

Community organization is a unifying feature of biodiversity across scales. 

Metabolites, microbial taxa, plant and animal species, and spectral bands from land 

surface reflectance are the features that comprise communities.  These are often 
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indicators of function that link disciplines. For example, metabolite features within plants 

influence the microbial features of individual herbivores and reflectance features of green 

plants can predict herbivore dynamic features of populations across landscapes. One 

challenge of detecting communities is mixed membership, including membership of both 

single features and single samples in multiple communities. The degree of mixed 

membership in communities depends on whether features arrange themselves as discrete 

members of disparate communities (Clements, 1916) or as fluid entities with membership 

in multiple communities (Gleason, 1926). Within cellular units, biomolecular processes 

such as mutation and differential gene expression can promote mixing of metabolic and 

genetic features. Within landscape units, processes such as dispersal and anthropogenic 

disturbances lead to mixing of organismal features (i.e., species) and obscure boundaries 

between communities (Lortie et al., 2004). Additionally, tradeoffs between sampling 

extent and resolution impact community detection and represent a common 

methodological challenge, spanning DNA sequencing to satellite remote sensing. For 

example, in metagenomics, the benefit of deep sequencing must be weighed against the 

cost of generating more reads and whether there will be adequate data generated to 

identify bacterial genes and taxa with low abundance but great importance. Similarly, in 

remote sensing, there are tradeoffs between quantifying abundance of specific plant taxa 

at high resolution and the spatial extent by which the broad plant classification are 

mapped across regions.   

Altogether, mixed membership of features within sampling units and communities 

is common. Nevertheless, many analytical methods, such as clustering and ordination 

techniques, lack a probabilistic interpretation of community membership, limiting our 
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understanding of diverse mixtures of coupled molecular and ecological data (McCune 

and Grace, 2002). One solution is topic modeling of community membership, which has 

revolutionized multivariate analysis by enabling a single feature or sampling unit to 

belong to multiple communities. Latent Dirichlet Allocation (LDA) is a topic modeling 

approach that can identify communities of features, while allowing for mixed 

membership of features across communities as well as mixtures of communities within 

individual sampling units (Valle et al., 2014). LDA was first developed in population 

genetics, motivated by the need to use genotypes as features that could group individuals 

into populations, while allowing for admixture (Pritchard et al., 2000). Several years 

later, LDA was independently developed as a tool for text mining and broadly adopted by 

the machine learning community (Blei et al., 2003). Since then, LDA has resulted in 

transformative biological insights across disciplines including annotating unknown 

chemicals in fermented beverages (van Der Hooft et al., 2016), characterizing functional 

roles of gene regions (Chen et al., 2010) and identifying communities of bird species in 

citizen science data (Valle et al., 2018). Beyond single discipline applications, we 

contend that topic modeling has unrealized potential to unify biodiversity science across 

scales. 

Here we demonstrate how to apply LDA across multiple scales to inform 

conservation of vertebrate herbivores. We focus on the sagebrush steppe ecosystem that 

once covered ~ 1 million km2 of land in the western United States but is increasingly 

threatened by wildfires and invasive species (Requena-Mullor et al., 2019). Sagebrush 

(Artemisia spp.) are the dominant plant species in these ecosystems and are critical for 

two sagebrush obligate species: the pygmy rabbit (Brachylagus idahoensis) and the 
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Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse). Both 

herbivores are considered species of conservation concern across the Intermountain West. 

However, efforts to conserve and reintroduce populations of pygmy rabbits and sage-

grouse have had mixed success due to problems that range from lack of consideration of 

local molecular adaptations (Oh et al., 2019) to ecosystem fragmentation (Cross et al., 

2018).  

Management of threatened species, including pygmy rabbits and sage-grouse, will 

benefit from a deeper and more functional understanding of the biological communities 

that promote or undermine individual health and population dynamics. We use four case 

studies co-occurring with the sagebrush steppe ecosystem to demonstrate how LDA can 

assess community mixtures of metabolites from leaf material of individual plants, 

microbial species from fecal pellets of herbivores, plant species from field plots within 

ecosystem patches and spectra from pixels across a landscape (Figure 2.1). Organismal 

sampling units, ecosystem patches, and the landscape interact in this study system. At the 

micro-scale, microbial features in herbivores (Kohl et al., 2016) interact with metabolite 

concentrations in the gut after herbivores consume sagebrush (Kohl et al., 2016) . At the 

macro-scale, features of herbivores and sagebrush are dependent on metabolite 

concentrations of plant taxa within habitat patches (Ulappa et al., 2014, Frye et al., 2013) 

and those plant taxa can be detected with aerial remote sensing platforms (Olsoy et al., 

2020). Ultimately, the community patterns that emerge from analyzing features across 

scales could deepen our understanding of plant-herbivore interactions and identify 

molecular, organismal, and landscape targets within complex communities for 

management in changing landscapes. 
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Results 

Applying Latent Dirichlet Allocation analysis across data sets 

We analyzed each of our datasets with LDA models in RStudio (v. 3.4.4) to 

determine community membership of features within sampling units. Our models applied 

a Bayesian framework using the Gibbs sampler from the ‘Rlda’ package (Albuquerque et 

al., 2019). We applied the elbow method to identify and focus on communities with 

biological relevance. We used a binomial variation of LDA to detect metabolite and 

spectral communities (Valle et al., 2018) and the multinomial parametrization for the 

analysis of microbial taxa and leaf area index (LAI) (Blei et al., 2003; Valle et al., 2014). 

We provide an overview of the statistical model underlying LDA and detailed methods 

for each case study in the supplementary material. For an overview of the statistics that 

underlie LDA we refer readers to Albuquerque et al. (2019) and Blei et al. (2003).  

Figure 2.1 Illustration of how communities of features related to biodiversity are 

measured in sampling units that span micro- and macro-scales.  

In the sagebrush steppe ecosystem, these communities are linked across scales. Microbial 

taxa in fecal pellets from individual herbivores interact with chemical features in leaf material 

when herbivores consume individual plants. Metabolite features in leaf material consumed by 

herbivores are dependent on the abundance of individual plant taxa detected within field 

plots. The distribution of plant taxa can be detected with spectral bands in pixels of aerial 

imagery obtained remotely within landscapes. 
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Case study 1. Reflectance of spectral bands at the landscape scale 

Our first case study uses LDA to assess patterns in spectral data obtained from 

remotely sensed images across the landscape. Understanding impacts of global change on 

sagebrush ecosystems will require measurements over spatial extents much greater than 

that provided by ecological field plots alone. We investigated how this challenge may be 

overcome using aerial remote sensing to detect spatial patterns in vegetation cover. We 

used a binomial version of LDA to detect patterns in electromagnetic reflectance from 

aerial imagery of a sagebrush steppe landscape (Figure 2.2a).  

Using LDA, we were able to detect ecological patterns related to changing 

composition of plant taxa. We identified two communities of spectral features 

characteristic of vegetation, including low reflectance in photosynthetically-active 

wavelengths (Figure 2.2a). Based on visual interpretation of concurrently collected Red-

Green-Blue (RGB) imagery, the first community (Community 1) represents juniper trees 

(Juniperus spp.) while the second community is more associated with low-growing 

shrubs (Figure 2.2b). Conifer tree encroachment, including juniper range expansion, 

threatens wildlife species (Severson et al., 2017). The patchiness of Community 1 

suggests fine-scale variation in juniper cover during the early stages of woody 

encroachment (Figure 2.2b). The more uniform representation of Community 2 (Figure 

2.2b, right panel) is attributable to a dominant but sparse canopy of shrubs documented in 

ground observations (National Ecological Observatory Network, 

NEON.DOM.SITE.DP1.10058.001). Our results demonstrate how high-resolution 

hyperspectral data can detect and map juniper encroachment in sagebrush steppe. 

Ultimately, patterns of remotely-sensed, spectral features could be used to monitor 
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ecological change in patches within and across the landscape where herbivores forage 

(Frye et al., 2013; Ulappa et al., 2014). 

 
 

 

 

 

 

 

 

  

Figure 2.2 LDA applied to a subset of hyperspectral (1 m2 resolution) 

orthomosaic from sagebrush steppe (Onaqui, Utah, USA).  

(a) The probability of each wavelength of reflected light belonging to two 

communities. The rapid change in reflectance between 690 nm and 750 nm (the “red 

edge”) is representative of changes in plant photosynthetic activity. (b) Red, Green, 

Blue (RGB) image of the area with encroaching juniper trees circled in yellow (left 

image) with community 1 overlay (middle) and community 2 overlay (right) in the 

same area outlining a high probability that junipers belong to Community 1. Colors 

approaching yellow indicate higher probability of pixel membership from a particular 

spectral feature. 
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Case study 2. Plant taxa within plots at the ecosystem scale  

Our second case study uses LDA to identify patterns in leaf-area-index (LAI) 

classified to species in field plots. Ecosystem processes are driven in part through LAI, 

the relative size of one leaf over a unit of ground surface and a common proxy for 

photosynthetic biomass (Ewert, 2004). Measurements of LAI in drylands also relate to 

food availability for herbivores (Olsoy et al., 2015). We quantified LAI in vegetation 

plots within a habitat dominated by Wyoming big sagebrush (Artemisia tridentata ssp. 

wyomingensis) (Figure 2.3).  

Results from applying LDA suggest that plots within this habitat type are 

characterized by six LAI communities (Figure 2.3). We report on the composition of 

three of these communities due to their ecological significance. Community 1 and 3 were 

dominated by the presence of Wyoming big sagebrush and Sandberg bluegrass (Poa 

secunda), respectively. Wyoming big sagebrush and Sandberg bluegrass are of particular 

importance because their presence indicates habitats favorable for herbivores (Beck et al., 

2009). Community 6 was dominated by cheatgrass (Bromus tectorum), an invasive 

annual (Figure 2.3a) that indicates degraded ecosystems less suitable for herbivores 

(Steenvoorden et al., 2019).  

LDA applied to all LAI plots indicate overall dominance by Wyoming big 

sagebrush and Sandberg bluegrass with generally low probability of the invasive 

cheatgrass community (Figure 2.3b). These results are also seen at the level of a single 

sampling unit (1m2, Figure 2.3c). Our leaf-level analysis could be used to quantify fine-

scale suitability for particular wildlife species. For example, plots monitored after fires 

with high probability of Wyoming big sagebrush and low probability of cheatgrass might 
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indicate more successful post-fire restoration (Baker, 2006), including the regeneration of 

suitable forage (Beck et al., 2012) for wild and domestic herbivores.  
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Figure 2.3 The results of LDA analysis on leaf area index (LAI) in a Wyoming big 

sagebrush habitat (Artemisia tridentata ssp.wyomingensis).  

(a) The probability of plant species occurring within three communities with an image of 

the dominant species in inset. (b) A landscape level photo (left) and the probability of the 

presence of the six most common communities within the habitat sampling units (right). 

(c) A representative photo of a single 1m2 field plot sampling unit (left) and the 

probability of the presence of each community within a single plot (right). 
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Case study 3. Metabolites within leaves at the plant scale  

Our third case study uses LDA to identify patterns in metabolite features between 

two sagebrush taxa. While several herbivores rely on sagebrush as forage year-round, the 

volatile monoterpene features of this plant influence selection by herbivores at the 

species, patch and plant scale (Frye et al., 2013). Although there are known 

concentration-dependent consequences of individual monoterpenes, the unique mixtures 

of metabolites in plants may better explain intake by herbivores (Nobler et al., 2019). 

Moreover, foraging herbivores consume mixtures of metabolites, not individual 

metabolites. Approaches that focus on the presence or concentration of a specific 

metabolite likely miss important changes in the relative ratios of compounds that better 

determine diet selection by herbivores and predict interactions with the microbial features 

(e.g., case study 4 below) in the gut of herbivores.  

We found that LDA can detect communities of monoterpenes that have relevance 

to herbivore diet selection in two different sagebrush taxa (Figure 2.4). We focused on 

three communities that contained compounds that predict foraging by herbivores. 

Community 4 is characterized by a high abundance of an unknown monoterpene (Unk 

21.0), while Community 3 is dominated by high abundance of a different unknown 

monoterpene (Unk 21.5) and Community 1 is co-dominated by yet another unknown 

monoterpene (Unk 20.5) and β-pinene (Figure 2.4a). There was considerable variation 

between sagebrush species, with highly dynamic differences among samples (Figure 

2.4b). At the individual sampling unit (plant) level, three-tip sagebrush (Artemisia 

tripartita) had a high probability of Community 4, whereas Wyoming big sagebrush was 

dominated by Communities 1 and 3 (Figure 2.4c). Concentrations of Unk 21.0 (in 
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Community 4) and Unk 21.5 (in Community 3) predict diet selection by free-ranging 

sage-grouse (Fremgen-Tarantino et al. 2020) and β-pinene was avoided by captive 

mountain cottontails (Sylvilagus nuttallii) (Nobler et al., 2019). Our results demonstrate 

how LDA can reveal communities of metabolite features that predict foraging decisions 

by herbivores. A potential application of LDA could be to improve post-fire restoration 

by reseeding with plants that have similar chemical community profiles to those of plants 

consumed and preferred by threatened herbivores. 
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Figure 2.4 Results of LDA analysis of monoterpenes from leaves of 

sagebrush plants consumed by herbivores with an image of the molecular 

structure of the dominate known monoterpene in inset.  

(a) Probability of monoterpenes occurring within three metabolite communities. 

(b) Probability of the eight most common metabolite communities across all 

sagebrush samples. (c) Probability of the eight metabolite communities occurring 

within an individual three-tip (Artemisia tripartita) and a Wyoming big 

sagebrush (Artemisia tridentata ssp. wyomingensis) sampling unit with an image 

of the leaf morphology of each species in inset. Illustrations by James Hudon. 
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Case study 4. Microbial taxa within fecal pellets at the herbivore scale 

Chemical communities in herbivore forage, including plants in the wild and 

artificial pellets in captivity, can modify microbial species composition within animal 

guts (Sandifer et al., 2015; Mohajeri et al., 2018; Kohl et al., 2014). Our fourth case 

study uses LDA to identify patterns in microbial taxonomic features detected in fecal 

pellets of pygmy rabbits over time, as they transitioned from a natural field-based diet to 

captivity. Specifically, we analyzed how the taxa of the fecal microbiome from this 

obligate sagebrush herbivore would change as they were transitioned from a natural diet 

containing Wyoming big sagebrush to a captive diet, containing commercial rabbit food, 

over a seven-day period. Fecal samples from the rabbits on day 1 (sagebrush diet) and 

day 10 (captive diet) were collected and analyzed using shotgun metagenomics. We used 

LDA to identify communities of bacteria at the genus level (Figure 2.5). The anaerobes, 

Clostridium and Bacteroides, were common features of these bacterial communities 

(Figure 2.5a). Communities 3 and 8 show the highest probability of being found within 

all fecal samples (Figure 2.5b). Community 3 was dominated by Bacteroides and had a 

higher probability of being present when the rabbits were on a natural diet, whereas 

Community 8, which was dominated by Clostridium species, was more prevalent after a 

week of transitioning to a captive diet (Figure 2.5c). Some Clostridium species are 

associated with enteritis and increased mortality in wild and captive animals (Paul and 

Friend 2019) whereas other Clostridium species may improve animal health (Liu et al., 

2019). These preliminary results suggest that LDA can be used to monitor changes in 

bacterial communities associated with dietary shifts, and potential health, in sagebrush-

dependent herbivores. Because microbial function is largely driven by communities, 
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rather than individual species, community-level analyses (e.g., LDA) are crucial for 

identifying physiologically-relevant changes in herbivore metagenomes.  
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Figure 2.5 LDA analysis using genus level taxonomy counts from metagenomics of fecal 

samples collected from pygmy rabbits (Brachylagus idahoensis, shown top left).  

(a) Probability of microbial features within the three most prevalent communities detected in 

fecal samples, each dominated by different microbial taxa. (b) Probability of the ten identified 

microbial communities within fecal samples from the pygmy rabbit (n=22). (c) Probability of the 

ten microbial communities in fecal samples from the pygmy rabbit sampling units consuming a 

natural diet (primarily Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and 

after ten days on an artificial pellet diet in captivity. Illustrations by James Hudon. 
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Discussion 

As biodiversity science grows to encompass scales from molecular to continental, 

the need for integrative approaches has increased as well. We have demonstrated the 

potential for community structure to unite patterns of biodiversity across disciplines. We 

found that Latent Dirichlet Allocation, a topic model that can represent mixed 

membership of features, enabled us to quantify biological communities across molecular, 

organismal and landscape scales. Our results have potential relevance for conservation of 

threatened herbivores in the imperiled sagebrush steppe ecosystem, including the pygmy 

rabbit. At the landscape scale, LDA detected juniper encroachment, a driver of habitat 

degradation in sagebrush steppe, from aerial remote sensing data. At the plant scale, LDA 

enabled discrimination between plant species assemblages, with relevance for habitat 

structure, including the availability of quality forage for herbivores and the presence of 

invasive species. At the molecular scale, LDA identified mixtures of secondary 

metabolites that can differentiate plant species and predict diet selection by herbivores. 

At the microbial scale, LDA quantified shifts in bacterial communities in response to diet 

transitions of herbivores, that are predictive of disease and survival. Across all of these 

scales, LDA enabled our interdisciplinary team to develop a holistic view of plant-

herbivore ecology and understand the relevance and community-level connections of 

research across disciplines. Common models for disparate datasets, including LDA, will 

enable collaborative studies that can inform cross-scale strategies for conservation.  

One realization that emerged from co-analyzing our data is the overarching 

importance of herbivore gut microbiomes for uniting scales. We argue that studying gut 

microbiomes has great potential to develop a more complete understanding of herbivore 
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ecology, particularly if multiple scales are incorporated into analyses. Herbivores, such as 

the pygmy rabbits in our study, make foraging decisions at individual metabolite, leaf, 

plant, and landscape scales (Ulappa et al., 2014; Nobler et al., 2019). In turn, foraging 

herbivores can influence patterns of habitat structure and plant species composition 

(Eldridge et al., 2016). Over long periods of time, we would expect that gut microbes 

mediate feedback loops between plants and herbivores, with ecological and evolutionary 

implications (Ley et al., 2008; Kohl and Dearing, 2016). In a practical sense, the gut 

microbiome links these disparate scales and represents the net sum of forage availability 

and quality across landscapes (Figure 2.2), habitats (Figure 2.3) and within plants (Figure 

2.4). Considering that herbivore foraging has wide-ranging consequences for above-

ground (Frye et al., 2013; Ulappa et al., 2014; Fremgen-Tarantino et al., 2020) and 

below-ground (Chomel et al., 2016) ecological processes, a more holistic understanding 

of co-occurring plant, metabolite and microbial communities in the guts of herbivores 

will have broad relevance. While topic models, such as LDA, present an opportunity to 

describe microbial community structure (Chen et al., 2012), development of analytical 

tools that integrate hierarchies of scale and complex network structure will further enable 

researchers to uncover how microbial communities might interact with communities at 

other scales, from the molecular to the landscape scale. 

We envision designing future studies where data are collected from multiple 

biological units at the same time and place with a focus around fecal collections. Data 

collection focused around herbivore fecal pellets could involve collecting feces from 

herbivores for metagenomic and metabolite analysis while simultaneously collecting leaf 

tissue from plants browsed by herbivores for metabolite content (parent and 
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detoxification products), and mapping the GPS location where pellets and plant samples 

are collected. Subsequently, research teams could assess how communities of microbes, 

plant-derived metabolites, and plant communities detected in feces are influenced by 

variation in plant species availability at plot and habitat scales to address questions of 

resource selection. Remote sensing data, such as hyperspectral aerial images, could then 

be applied to detect temporal and spatial variation in the composition of plant species and 

foliar chemistry across the landscape and to relate habitat features to microbial, 

metabolite, and plant communities. This type of data collection will require extensive 

interdisciplinary coordination, but will lead to a more connected understanding of 

coupled biodiversity among scales. Long-term ecological research sites, such as the 

NEON network, provide a valuable starting point for this type of study where collection 

and analysis of herbivore metagenomics and metabolites from plants could add 

substantial value to existing data on plant diversity and soil microbial communities. In the 

context of planning field studies, LDA could be applied as a generative model to simulate 

data and estimate appropriate sample sizes for statistical estimation.  

Biodiversity data commonly includes features and communities that change over 

time and space, in response to experimental treatments, environmental covariates, or 

endogenous dynamics. A next step for the development of LDA will be to incorporate 

predictor variables into topic models for community detection, with a goal of statistical 

inference. Dynamic topic models are currently used in text mining to account for 

changing community membership (Blei and Lafferty, 2006), while dynamic mixture 

models enable realized proportions of communities to change over time (Wei et al., 

2007). In ecology, LDA, in conjunction with breakpoint models, has recently been 
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applied to interpret temporal shifts in rodent communities (Christensen et al., 2018). As a 

statistical approach, conceptually related to regression models for proportional data 

(Douma and Weedon, 2019), LDA could be extended to enable robust statistical 

inference on community patterns. 

Altogether, coordinated studies of community structure across scales will enable 

researchers to address fundamental questions in ecology and evolution. One such 

question relates to the long-standing debate over whether biological features, from genes 

to species assemblages, are organized by neutral processes or deterministic ecological 

and evolutionary forces (Kreitman, 1996; Lynch, 2007; Lowe and McPeek, 2014). For 

example, convergent communities of microbes in the soil and guts of herbivores exposed 

to similar plant metabolite communities across broad biogeographical scales would 

provide powerful evidence for the role of non-neutral processes. Alternately, random 

associations between overlain communities could suggest neutral theory as an 

overarching explanation for observed assemblages. Common models for community 

structure will provide detailed and cohesive insight into the complex interactions among 

plants, animals and microbes co-occurring across landscapes. Altogether, we anticipate 

that interdisciplinary collaboration, facilitated by the common modeling language of 

LDA, will have payoffs for biodiversity studies that must address complex problems that 

cross scales. 
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Supplementary Information 

Modeling Overview: 

The overarching goal of our Latent Dirichlet Allocation model was to assess 

community membership in features across our datasets, including spectral reflectance, 

plant species, metabolites, bacterial taxa, and functional genes. We applied two versions 

of the LDA model to our case studies: a multinomial parametrization where the 

abundance of features in each sample unit was proportional (i.e., the abundance of 

features in each sample unit summed to one, ∑ Ym = 1n
n=1 ); and a binomial 

parametrization where this constraint was relaxed. For more details regarding the model 

description and application of LDA we refer readers to recent work by Sankaran and 

Holmes (2017) and Albequerque et al. (2019b). Briefly, we organized our datasets into 

abundance matrices where sampling units (m) were represented in rows and features (n) 

in columns. The multinomial version of LDA implies the following generative model: 

Ym,n ~ Multinomial(ϕz[m,n]); 

zm,n ~ Multinomial(θm); 

ϕk ~ Dirichlet(β); 

θm =  Vm  ∏(1‐Vm)

k‐1

k=1

, where Vm ~ Beta(1, γ). 

where (Ym,n) represents the observed abundance of (n) features in (m) sample units. Each 

entry in the data matrix is assigned to a community estimated as a latent variable zm,n that 

depends on the distribution of features across a sample unit (m), m. Parameter m is 

modeled with a stick-breaking prior that ensures the minimum number of latent states z  

[1,K]. In turn, the probability of a feature belonging to a community (n) is modeled as 

parameter k. Finally, the observed abundance is modeled according to the feature 
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distribution k for community zm,n. We used uninformed hyperparameters  and  to 

initiate the model, which assumed a uniform distribution of communities and features 

across sample units and communities, respectively.  

We applied the binomial parametrization of LDA to hyperspectral and 

metabolome datasets. Instead of a multinomial data generation process and a Dirichlet 

prior, the model assumes that observations are drawn from a binomial distribution: 

Ym,n ~ Binomial(
n

 , ϕz[m,n]); 

zm,n ~ Multinomial(θm); 

ϕk,n ~ Beta( 
0

, 
1

); 

θm =  Vm  ∏(1‐Vm)

k‐1

k=1

, where Vm ~ Beta(1, γ). 

The model closely follows the data generation process described above with a few 

changes. Specifically, each entry in parameter matrix  is given a flat prior drawn from a 

Beta distribution, and n is the number of trials in the Binomial distribution, indicating 

the observed maximum feature abundance across the sample units.   

We fit the LDA models to each of our datasets using the ‘Rlda’ package in R (R 

Core Team 2018), which relies on Gibbs sampling for parameter estimation. Following 

the framework outlined in Albuquerque et al. (2019a), we assessed model convergence 

using a trace-plot of log-likelihood in MCMC sampling and ensured that log-likelihood 

reached a plateau that indicated convergence. We discard the burn-in iterations and 

present parameter estimates as posterior means. Specifically, for each case study we 

present  and  parameter matrices corresponding to the membership of communities in 

sample units and features in communities, respectively. We set the number of 

communities as an input parameter, while the truncated stick-breaking prior ensured that 
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elements are allocated to the minimum number of communities. Therefore, the 

superfluous communities had probabilities of occurrence approaching zero and we used 

the “elbow method” to identify a set of biologically significant communities with non-

zero probability of occurrence. This method is commonly applied in machine learning 

analyses and proposes use of a cut-off value to identify the optimal number of clusters or 

objects in a dataset (Kodinariya and Makwana, 2013; Brieuc et al., 2018). All datasets 

presented in the study are available from Zenodo Digital Repository. Additionally, we 

provide fully annotated R scripts that can be used to reproduce the models as well as the 

results and figures presented in the main text.   

Spectral Features:  

We used publicly available data collected and maintained under National 

Ecological Observatory Network (https://www.neonscience.org) program (NEON 

2019a). The data analyzed in this study represents a 100 m2 airborne image mosaic of the 

Onaqui field site dominated by big sagebrush (Artemisia tridentata) with high spatial (1 

m2) and spectral (5 nm) resolution. The instrument used in the survey was a pushbroom 

spectrometer that includes the electromagnetic range from 381 nm to 2500 nm in 426 

bands. For computational efficiency and to avoid noise, we removed spectral bands that 

are sensitive to atmospheric moisture and carry little ecologically relevant information, 

resulting in 306 features in the dataset (the list of bands included in the analysis is 

available with the dataset online). We clipped the hyperspectral tile (extent: 373751, 

373850, 4448201, 4448300) in R using the ‘raster’ package (Hijmans 2019), and trained 

the model based on a random subset of 200 pixels from the clipped study area. We then 

forecasted the probabilities of communities over the study area, based on the spectral 

https://www.neonscience.org/
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reflectance of each pixel. When presenting the model output, we focused on two 

communities of bands with an absorbance in the red-edge of the spectrum (680-750 nm) 

and compared our inference with ground vegetation surveys (NEON 2019b). Changes in 

the red-edge electromagnetic reflectance are sensitive to changes in chlorophyll content 

(Filella and Penuelas, 1994; Schuster et al., 2012), which is relevant to the biological 

context of this study.  

Leaf Area Index features: 

Our study site for this case study is the Reynolds Creek Experimental Watershed 

(RCEW). RCEW is in Owyhee County in southwestern Idaho, USA. The 239km2 

watershed has served as a natural laboratory to study semi-arid rangeland hydrology since 

1960 (W. Slaughter et al., 2001). We used data collected during the summer of 2018 at a 

site located within the watershed characterized by a dominance of Artemisia tridentata 

ssp. wyomingensis. At this site, there are five one-hectare monitoring sites, and each site 

has 30 plots from which we collected leaf-area index (LAI) measurements. The LAI plots 

are 1m2 and randomly dispersed throughout the hectare. Data collected at the LAI plots 

were recorded using a metal sampling pin, that was lowered through 20 notches along 

five transects (100 notches per plot). Every contact between the sampling pin and 

vegetation was recorded to species, resulting in relative abundance of each species in a 

plot. In total, this field sampling resulted in 150 LAI plots.  

Metabolic features: 

Leaves collected in the field from two sagebrush species, including A. tridentata 

spp. wyomingensis and A. tripartita, were ground into fine, homogenized powder in 

liquid nitrogen. Monoterpenes from ground leaf tissue from each plant (100 mg wet 
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weight) were separated and quantified using headspace gas chromatography. All samples 

were analyzed using an Agilent 6890 Network Gas Chromatograph (Agilent 

Technologies, Inc., Santa Clara, CA, USA) ,coupled with a Hewlett-Packard HP 7694 

Geadspace AutoSampler (Model: G1289A, Hewlett-Packard, Palo Alto, CA, USA). For 

more details on the methodology, including the headspace and autosampler sequence 

parameters, please refer to Fremgen 2015 (Fremgen 2015). Compounds were identified 

using co-chromatography with a mixture of monoterpene standards. As not all 

compounds were able to be identified using the co-chromatography, unidentified 

compound names are based on retention times. Retention times and peak areas (area 

under the curve, AUC as the metric of concentration) were calculated with HP 

ChemStation version B.01.00. 

Microbial features: 

Pygmy rabbits were captured in the field while feeding predominantly on a 

natural sagebrush diet (A. tridentata ssp. wyomingensis) in Blaine County, Idaho (Idaho 

Department of Fish and Game collection permits 100310). The rabbits were then 

transported within 48 hours and housed indoors at the Small Mammal Research Facility 

at Washington State University (Boise State University Institutional Animal Care and 

Use Committee Protocol # 006-AC12–009, Washington State University Institutional 

Animal Care and Use Committee Protocol # 04513–001) for the duration of the study. 

They were given fresh water and pelleted commercial rabbit chow (Purina Professional 

Rabbit Chow, Purina Mills LLC, St. Louise, MO), void of sagebrush. Fecal pellets were 

collected on day one (day of capture on natural diet) and day ten (captive diet). 

Metagenomics of fecal samples were processed by the Knight lab at the University of 
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California, San Diego, using a magnetic bead based KingFisher Flex Purification System 

(Marotz et al. 2017). Shotgun metagenomic sequencing was performed as 150-base-pair 

paired-end reads using an Illumina HiSeq 2500. Samples were then sent through the MG-

RAST pipeline and were analyzed for taxonomical hits, using the NCBI RefSeq database 

to the genus level (www.ncbi.nlm.nih.gov/refseq/) (e-value:5, %-ident: 60, length: 15, 

min.abundance: 1). 

  

http://www.ncbi.nlm.nih.gov/refseq/
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CONCLUSION 

Overall, the work presented here represents a significant contribution to our 

ability to monitor non-model vertebrates and their ecosystems. To influence policy 

changes in wildlife and resource management practices, we need to provide measurable 

evidence of how humans are affecting animal health and the ecosystems needed for their 

survival.  The universal assay for measuring telomere lengths will provide a new tool for 

assessing how human activity and climate events affect the fitness of vertebrates. For 

example, it has the potential to assess whether blood parasites effect the fitness of the 

northern goshawk and how climate change effects the fitness of American kestrels 

(Appendix A).  

This dissertation also provides a framework for how machine learning and topic 

modeling can yield new insights on community structure in big data sets and unite 

disparate scientific disciplines to better understand biodiversity. It demonstrates how 

studies can be designed to span scales from the molecular to the landscape. 

Understanding how the microbiome of animals is tied to leaf chemistry and how plants 

are disbursed throughout the landscape will help us to understand the components needed 

to restore habitats and preserve ecosystems for threatened or endangered species. For 

example, I found that when a sagebrush herbivore is transitioned off its natural diet their 

microbiome is dominated by a different community of bacteria then when it is foraging 

on sagebrush.  This could have implications for reintroduction of this threatened 

herbivore into habitats with suitable foraging material. Overall, this work represents a 
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significant contribution to the fields of molecular ecology and conservation biology, both 

in terms of new tools in monitoring animal fitness and new analytical tools to design and 

understand interdisciplinary studies on biodiversity. 
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APPENDIX A 

Additional Contributions
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Manuscripts in Progress 

Physiological effects of hematophagous ectoparasites on golden eagle nestlings 

Benjamin M. Dudek, Michael T. Henderson, Stephanie F. Hudon, Eric J. Hayden, Julie 

A. Heath 

Preparing for submission to Conservation Physiology also found in thesis work: Dudek, 

Benjamin. (2017). The role of disease and ectoparasites in the ecology of nestling golden 

eagles. 

 

This work looks at the effects of a hematophagous ectoparasite, the Mexican 

chicken bug (Haematosiphon inodorus), on golden eagle (Aquila chrysaetos) nestlings. 

Hematophagous ectoparasites can have direct effects on young birds by depleting blood 

volume and reducing energetic resources available for growth and development. Less is 

known about the effects of ectoparasitism on stress physiology (i.e., glucocorticoid 

hormones) or changes in behavior. Mexican chicken bugs are blood-sucking ectoparasites 

that live in bird nests and feed on developing nestlings. Over the past 50 years, the range 

of H. inodorus has expanded, suggesting that new hosts or populations may be 

vulnerable. We studied the physiological effects of H. inodorus on golden eagle nestlings 

in southwestern Idaho to better understand the physiological and behavioral effects of 

ectoparasitism. We estimated the level of H. inodorus infestation at each nest and 

measured nestling mass, hematocrit, corticosterone concentrations, telomere lengths, and 

mortality. At nests with the highest levels of infestation, nestlings had significantly lower 

mass and hematocrit (Figures A1.1 and A1.2). In addition, heavily parasitized nestlings 

had corticosterone concentrations twice as high (42.96 ng/mL) as non-parasitized 
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nestlings (20.2 ng/mL) (Figure A1.3). Finally, in nests with higher infestation levels, 

eagle nestlings were twenty times more likely to die, often because they left the nest 

before they could fly (Figure A1.4) and heavily parasitized females had significantly 

shorter telomeres than non-parasitized females (Figure A1.5). For eagles that survived 

infestation, chronic elevation of glucocorticoids or shortened telomeres may adversely 

affect cognitive function or survival in this otherwise long-lived species. These results 

suggest H. inodorus may limit local golden eagle populations by decreasing productivity 

up to 23%. Emerging threats from ectoparasites should be an important management 

consideration for raptor species facing range-wide population declines like golden eagles. 

My contribution to this study was to measure the relative telomere lengths using 

the methods described in Chapter 1 of this dissertation.  This was done on 50 blood 

samples from eagle nestlings.  Preliminary results suggest that there is a sex-specific 

affect, with female nestlings exhibiting increased telomere shortening due to high 

infestation rates of H. inodorus infection (Figure A1.5).  
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Figure A1.1   Observed golden eagle nestling mass (black circles, scaled to remove 

the effect of nestling age and sex), predicted mass (dark line), and associated 95% 

confidence intervals (solid gray area) measured from nestlings experiencing 

different levels of H. inodorus infestation in nests in southwestern Idaho, USA in 

2015 and 2016.  

Nestlings that experienced high levels of infestation had lower mass than nestlings in 

nests with no or low levels of infestation ( 2 = 23.86, p < 0.01). 
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Figure A1.2 Hematocrit measured from golden eagle nestlings experiencing 

different levels of H. inodorus infestation in nests in southwestern Idaho, USA in 

2015 and 2016.  

Bold lines within boxes represent the median, upper and lower limits of the box are the 

first and third quartiles, whiskers contain 1.5 times the interquartile. range, and open 

circles are outliers. Nestling hematocrit decreased as cimicid infestation increased (2 = 

27.85, p < 0.01). 

 
Figure A1.3 Corticosterone levels measured from golden eagle nestlings 

experiencing different levels of H. inodorus infestation in nests in southwestern 

Idaho, USA in 2015.  

Bold lines within boxes represent the median, upper and lower limits of the box are the 

first and third quartiles, whiskers contain 1.5 times the interquartile range, and open 

circles are outliers. Nestling corticosterone levels (ng/mL) increased as H. inodorus 

infestation increased (2 = 21.1, p < 0.01). 
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Figure A1.4    Predicted probability (solid dark line) and associated 95% confidence 

intervals (solid gray area) of golden eagle nestlings leaving the nest early, or dying in 

the nest, based on the mean infestation level at nests throughout the breeding season 

in southwestern Idaho, USA in 2015 and 2016.  

The probability of leaving the nest early or dying in the nest increased as infestation 

increased (2 = 10.58, p < 0.01). 

 

 

 
Figure A1.5 Golden eagle nestling relative telomere lengths and associated 95% 

confidence intervals (solid gray area) measured from nestlings experiencing 

different levels of H. inodorus infestation in nests in southwestern Idaho, USA in 

2015 and 2016.  

Female nestlings that experienced high levels of infestation had shorter relative telomere 

lengths than male nestlings or nestlings in nests with no or low levels of infestation. 
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Comparing lengths of telomeres extracted from different tissues of American Kestrels 

(Falco sparverius) and Long-billed Curlews (Numenius americanus) 

 

Sadie C. Ranck, Stephanie F. Hudon, Ben Wright, Jay D. Carlisle, Eric J. Hayden, Julie 

A. Heath 

 

Telomere length is used as a metric of fitness, stress and longevity in basic and 

applied wildlife research. In avian species, most telomere research is based on the 

collection of blood samples. However, blood collection may be considered invasive and 

require specialized training for sample collection. Alternatively, recent research suggests 

that tissue attached to the tips of feathers may provide a source of genomic DNA suitable 

for telomere analyses. It remains unclear whether this approach is consistent across 

species or time due to patterns in feather molt and different rates of turnover between 

tissue types.  

We compared relative telomere lengths of DNA extracted from paired feather and 

blood samples from 12 adult American Kestrels (Falco sparverius) wintering in Boise, 

Idaho, and from six adult Long-billed Curlews (Numenius americanus) breeding in 

Wyoming. Relative telomere lengths were determined by quantitative polymerase chain 

reaction (qPCR). We found that telomeres in feathers are longer and more variable in 

kestrels (mean=3.5, σ2=3.75) and curlews (mean=0.79, σ2=0.28) when compared to 

telomere length estimates derived from blood in kestrels (mean=1.31, σ2=0.11) and 

curlews (mean=0.75, σ2=0.27). In kestrels, measured telomere ratios (T/R) in feathers 

ranged from 1.44 to 7.49 and ranged from 0.74 to 1.90 in blood. In curlews, measured 
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telomere ratios in feathers ranged from 0.13 to 1.27 and ranged from 0.14 to 1.57 in 

blood.  

We found consistent differences between blood versus feather derived telomere 

lengths that were species dependent (p=0.043), indicating that the relationship between 

telomere lengths from these two tissue types is significantly different between kestrels 

and curlews (Fig. A2.1). Although the relationship between blood-derived and feather-

derived telomere estimates tended to be different between species, neither species has a 

significant association between blood-derived and feather-derived relative telomere 

length estimates (kestrel 95% CI: -5.57 – 0.18, curlew 95% CI: -0.19 to 1.22). 

The differences in relative telomere lengths measured in feathers and blood of 

kestrels and curlew are likely caused by the presence of different cell types in each 

sample. We expect that DNA extracted from whole blood was primarily sourced from 

nucleated red blood cells, with some contribution from other leukocytes. As for feathers, 

the extracted DNA was likely sourced primarily from keratinized pulp caps and feather 

follicle cells attached to the calamus. Feather follicles contain several types of stem cells 

that are needed to regenerate feathers after molting, yet the length of telomeres in the 

stem cells of avian feather follicles relative to differentiated skin cells or blood cells is 

unknown. It is possible that these stem cells have longer telomeres due to fewer cell 

divisions than differentiated cells, or due to differential telomere maintenance. 

Additionally, muscle cells and blood cells could also be present in the feather samples 

since feathers are integrated into the motor system and contain capillaries.  

Results indicate that there was no significant correlation between relative 

telomere length estimates sourced from blood and feather samples for either species, 
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although the relationship between blood and feather telomere estimates was significantly 

different between kestrels and curlews. The lack of correlation within species could be 

the result of the different cell types present in each tissue type sampled, and different 

patterns between species suggests that there may be a species effect, or an effect from 

how long it has been since feather molt on the reliability of telomere length estimates 

derived from feather samples. These results suggest that additional work is needed before 

DNA sourced from feather tissue is used for deriving telomere length estimates, and to 

further understand why telomere lengths may differ between tissues. 

My contribution to this work was to train and supervise Sadie and Ben in DNA 

isolation and perform qPCR-based telomere length assays on both feathers and blood in 

two species of birds.  
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Figure A2.1  The association between telomere length estimates derived from 

blood and feather samples in 12 adult American Kestrels and 6 adult Long-billed 

Curlews.  

There is no significant effect of blood-derived estimates in explaining feather-derived 

estimates in either kestrels (95% CI: -5.57 – 0.18) or curlews (95% CI: -0.19 to 1.22) 

and there is high variability in feather-derived telomere estimates. There is a 

significant interaction between blood telomere lengths and species (p=0.043), 

indicating that the relationship between feather and blood telomere lengths is 

significantly different between kestrels and curlews. 
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Rapid changes in the gut microbiome of a captive mule deer upon introduction to a 

natural diet 

Stephanie F. Hudon, Alicia N. Wilkening, Eric J. Hayden, Jennifer Sorensen Forbey, Lisa 

A. Shipley 

 

Submitted to Microorganisms, waiting for additional sample sequencing prior to 

resubmission 

Herbivores rely on their gut microbial community for numerous functions. The 

importance of these functions to wildlife ecology is rapidly emerging. Although it is 

known that captivity can alter herbivore gut microbial communities, the effects are often 

species-specific and the dynamics and magnitude of effects for short-term captivity 

remain poorly studied. Here we report changes in the microbiome from fecal samples of 

a mule deer (Odocoileus hemionus) before and after its release into a natural habitat. 

Using shotgun metagenomics, we observed rapid shifts in the abundance of Bacteroidia 

populations in the fecal microbiome of this mule deer after transitions between a pellet 

diet and a diet with significant browse added (Figure A3.1). Functional annotation of 

sequence data showed changes in the abundance of genes belonging to carbohydrate and 

protein metabolism.  Deer on a pellet diet have a higher abundance of functional genes 

for amino acid and protein metabolism and a lower abundance of carbohydrate 

metabolism genes relative to deer on a wild diet suggesting a link between dietary 

changes in the deer and metabolic capacity of the associated microbiome (Figure A3.2). 

In addition, the taxonomic diversity of samples and relatively long read lengths reported 

here provide an important baseline for future studies. Our results confirm the feasibility 
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of using shotgun metagenomics to assess the effects of short-term captivity on the 

function of the microbiome in mule deer. 

Additionally, our results indicate that mule deer microbiomes can shift rapidly in 

response to diet changes associated with short term captivity and release. Most strikingly, 

we observed a dynamic response from the microbial class Clostridia (Figure A3.1). We 

find the highest relative abundance of Clostridia at the acclimation time point, when the 

deer had been eating browse from their natural habitat. Importantly, we find that the 

relative abundance of Clostridia mostly returns to pre-release levels after only a one 

week return to captivity (post-release) where the animal again received a pellet diet 

(Figure A3.1). This dynamic response suggests that the change in Clostridia is not simply 

an age effect. Instead, we conclude that the relative abundance of Clostridia is dependent 

on the diet of mule deer. 

Another important dietary change associated with captivity is the high levels of 

protein found in the captive pellet feed. In fact, we found that the functional annotations 

of our data mirror this diet shift. Specifically, the decrease in relative abundance of genes 

associated with protein metabolism also decreases in the acclimation sample, when 

protein content is lowest (Figure A3.3). This further highlights the importance of the 

acclimation diet in preparing the microbiome for release conditions. These results suggest 

that the effect of high-protein on the mule deer microbiome should be investigated 

further, and future studies should be aimed at isolating the effect of protein alone, without 

the confounding effect of cellulose introduced by the natural browse.  

 We performed an in-depth analysis of the mule deer gut microbiota with the aim 

of understanding how diet within a captive and wild environment influences gut 
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microbes. Future studies will apply this study format while integrating metabolomics and 

when possible sampling of multiple gut compartments. Ideally, several gut compartments 

would be sampled for bacterial content including the stomach, small intestine, ceca and 

large intestine to get the full spectrum of bacterial colonization. However, this is not 

always possible when animal survival is necessary for reintroduction, in which case, 

obtaining as much information as possible from a stool sample becomes of great 

importance. Plant samples collected from each site can also help identify sources of 

phytochemicals identified in gut compartments and provide a fuller picture of the 

pathways uncovered during metabolomics studies.  

 My contribution to this work was to prepare the DNA libraries for Next 

Generation sequencing from the mule deer fecal samples.  I also performed the data 

analysis for this study and wrote the manuscript. We have submitted additional samples 

for sequencing to increase our sample size for the study. 
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Figure A3.1 Taxonomical differences between a mule deer (Odocoileus hemionus) 

fed a pelleted diet with substantial browse prior to the transition into the wild 

(acclimation, blue) and a deer fed pellets in captivity before and after release into 

wild conditions (pre-release, green, post-release, red). Functional categories were 

compared with STAMP. 
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Figure A3.2 Functional categories (KEGG Level 2) between a mule deer (Odocoileus 

hemionus) fed a pelleted diet with substantial browse during the transition into the 

wild (acclimation, blue) and a deer fed pellets in captivity before and after release 

into wild conditions (pre-release, green, post-release, red). Functional categories were 

compared with STAMP.. 
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Additional Projects and Collaborations 

Telomere dynamics in a long-term, population study of the American kestrel (Falco 

sparverius) 

 

Stephanie F. Hudon, Sadie C. Ranck, Kathleen R. Callery, Eric J. Hayden, Julie A. Heath 

 

This project looked at how telomere lengths can be used as an index of stress and 

fitness in a population of American kestrels (Falco sparverius), which have been 

monitored for 30 years.  During this time period the population has been affected by 

climate change, which affects the timing of nesting, as well as by urban sprawl, which 

has dramatically changed the kestrel habitat.  American kestrels are considered a 

generalist predatory bird and tend to live in human-dominated environments. This makes 

the kestrel particularly susceptible to anthropogenic interference, which may result in 

decreased survival or reproduction.  In southwestern Idaho the breeding season is 

becoming earlier since climate change has resulted in farmers planting earlier in fields 

where kestrels forage. This can result in a mismatch between peak prey levels and 

nestling life cycles. The Heath lab has also analyzed habitat characteristics such as the 

amount of native shrub-steppe and human disturbances such as land development and 

traffic conditions.  These types of disturbances can lead to nest abandonment and 

therefore decreased reproductive success.  

Kestrels are cavity-nesting birds which have made them easy to monitor through a 

system of 89 nest boxes stationed throughout Idaho.  Every March the nest boxes are 

visited every 7-10 days to determine when clutches are produced.  Adults are captured for 
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blood sample collection, banding and measurements and then the nests are surveyed to 

determine the number of successful nestlings produced.  After hatching, the nestlings are 

also sampled and measured. Following the field collections, I performed a telomere assay 

on 78 birds which included both nestlings and adults.  This represented a significant 

amount of work since a common reference gene, GAPDH, exhibited variance in the birds 

and therefore we had to find suitable reference genes for the kestrel before the assay 

could be performed.  We are now in the data analysis stage of this work.  Preliminary 

results suggest that brood size may play significant role in nestling fitness (Figure A.4.1).  

The average telomere length of broods with three birds appears to be significantly longer 

than those of larger brood sizes.  This may be due to stress produced as siblings compete 

for limited food resources. Additional analysis will soon be performed to prepare a 

manuscript on this work.  

 

 
 

 

 

 

 

Figure A.4.1 Telomere lengths of American kestrel (Falco sparverius) 

nestlings from broods of different sizes.   

The average telomere length of a brood size of 3 is significantly different 

from a brood size of 4 (p=0.003), 5 (p<0.001) or 6 (p<0.001). 
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The effects of haemosporidia parasite infections on telomere lengths of Northern 

Goshawks (Accipiter gentilis) in the Minidoka Ranger District of the Sawtooth National 

Forest 

 

Stephanie F. Hudon, Julianna Ramirez, Robert A. Miller and Eric J. Hayden 

 

The Northern Goshawk (Accipiter gentilis) is considered a management indicator 

species for the Sawtooth National Forest. As such, management plans within the 

Sawtooth National Forest must consider the effects on the habitat and ecological needs of 

the Northern Goshawk and the status of the goshawks serves as indicator of how other 

non-monitored species are doing.  Top predators, such as raptors, are indicators of prey 

abundance within the forest food chain.   Within the Sawtooth National Forest, over 

50,000 acres are surveyed each year, including the monitoring of nearly 200 Northern 

Goshawk nests. In addition to surveying landscape features such as canopy closure and 

stand density, it also is important to establish the health of the goshawk population.   

Blood parasites (haemosporidia) have been shown by several studies to play a role 

in the health and life span of avian species. Previous work using blood smear analysis has 

shown that the Haemosporidia of the genera, Leucocytozoon, which uses blackflies to 

infect birds, is present in the Northern Goshawk population. To analyze the effect of 

these blood parasite infections on the birds we utilized a quantitative polymerase chain 

reaction (qPCR) approach developed by Tkach et al 2015 to determine the infection level 

within the goshawk population of three genera of blood parasites, Plasmodium, 

Haemoproteus and Leucocytozoon. We determined that the qPCR-based approach 
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correlated well with blood smear counts but with a higher sensitivity level for low-level 

infections. This assay has now been applied to 56 birds.  We are also performing 

telomere length assays on the goshawks to determine the effects of parasitism on the 

health and fitness of the bird population and to find the areas of highest infection within 

the Sawtooth National Forest. This work is ongoing.  We have isolated DNA from 124 

samples and will continue to process them for both parasite levels and relative telomere 

lengths.  My part in this project has been to perform DNA isolation from blood samples 

and run the telomere and parasite assays by qPCR.  Recently, Julie Ramirez joined this 

project and plans to run a more specific assay for just the Leucocytozoon parasite as well 

as to run additional telomere assays on newly acquired samples.    

Students Mentored 

Julianna Ramirez:  trained in single and multichannel pipetting and performing and 

analyzing telomere and parasite load assays in Northern Goshawks.  Julie will continue 

work on parasites within these samples for the next couple of years. Julie presented a 

poster at the Boise State Biology Undergraduate Research Showcase titled “Factors 

Influencing the Genetic Health of Northern Goshawks Across the Great Basin.” 

 

Alicia Wilkening: I trained Ali in pipetting and library preparation of samples for Next 

Generation Sequencing, as well as performing parasite assays on golden eagles using 

qPCR. She also helped to develop an assay to fragment and purify library samples to 

similar lengths for improved next generation sequencing results. Ali is an author on a 

paper in progress on the microbiome analysis of captive and wild populations of mule 

deer and she presented her poster “An Assay for Blood Parasite Detection in Golden 
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Eagle (Aquila chrysaetos)” at the Midstate Undergraduate Research Symposium as well 

as the Idaho Conference of Undergraduate Research.   

 

Sadie Ranck:  I trained Sadie in DNA isolation from blood samples and single and 

multichannel pipetting to analyze telomere lengths from American kestrel blood samples.  

Sadie went on to enroll in Boise State University’s Master of Science program in Raptor 

Biology where she continues to work on the American kestrel.  Sadie and I will author 

two manuscripts together and she presented a poster titled “Heritability of Telomere 

Length in American Kestrels” at the Idaho Conference on Undergraduate Research. 

 

Kathleen Callery: I trained Katie in DNA isolation from blood samples and single and 

multichannel pipetting to develop the original telomere assay presented in Chapter 1 of 

this dissertation.  Katie went on to enroll in Boise State University’s Master of Science 

program in Raptor Biology where she works on the American kestrel.  Katie is a coauthor 

on the universal telomere assay manuscript presented in Chapter 1 of this dissertation and 

presented a poster titled “What Correlates with Telomere Length in American Kestrels 

(Falco sparverius)?”  

 

Esteban Palencia Hurtado:  I trained Esteban in single and multichannel pipetting and 

DNA isolation from a variety of tissue types.  Esteban and I worked together for over two 

years developing the universal telomere assay.  Esteban is second author on the submitted 

manuscript on developing a universal telomere assay and presented a poster at the Idaho 
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Conference on Undergraduate Research at Boise State titled “Telomere Estimates by 

qPCR in American kestrels.”   

 

Benjamin Wright: I trained Ben in pipetting and how to isolate DNA from blood and 

feathers from his curlew samples.  Ben learned how to do telomere assays on these 

samples and will be a co-author on a manuscript in progress.  He is currently volunteering 

in the lab and applying to Boise State’s Biomolecular Sciences program. 

 

Stacie Loisate: I trained Stacie in multichannel pipetting and DNA isolation from 

primary mouse cell lines for telomere analysis. Stacie is now a co-author on a submitted 

manuscript and presented her poster titled “Effects of Microgravity and Disruption of 

LINC Complex on Cellular Compartmentalization of YAP and TAZ” at the Idaho 

Conference on Undergraduate Research. 

 

AnnaGrace Blomquist: I trained AnnaGrace in single and multichannel pipetting and 

DNA isolation from primary mouse cell lines for telomere analysis. She presented her 

poster titled “Dystrophin-Glycoprotein Complex and Reactive Oxygen Species” at the 

Boise State Undergraduate Research and Scholarship Conference.  

 

 


