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ABSTRACT

Climate change poses serious threats to global agriculture, however some localities

and crops may benefit from increasing temperatures. Grape production in southern

Idaho may be a beneficial example as vineyard acreage has increased over 300% since

the designation of the Snake River American Viticultural Area (SRVAVA) in 2007.

We perform a statistical characterization of agroclimate within the SRVAVA that

centers around four primary objectives: utilization of a novel, 30-year high resolution

climate dataset to provide insight and agrometrics unavailable at coarser resolutions,

climatic implications of the unique topography within the SRVAVA, identification of

statistical trends, and correlation of SRVAVA climate to large-scale climate indica-

tors such as the El Nino Southern Oscillation (ENSO). In Chapter 3 we build on

the identified correlations to large scale climate and utilize a long short-term memory

(LSTM) model in conjunction with empirical mode decomposition (EMD) to create a

novel, data driven method to forecast regional temperature trends with lead times up

to one year. Favorable results for local viticulture include an increase in growing de-

gree days and season length, as well as reduced frequency of freezing events. Possible

disadvantages include increased risk to shoulder season freezing events with warmer

winters, increased magnitude of strong freezing events, mid-season heat stress, and

higher susceptibility to powdery mildew outbreaks. Additionally, with strong correla-

tions identified with large-scale climate indicators, we find EMD an effective method
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to increase modeling power by using multiple frequencies of the signals as input into

a LSTM machine learning algorithm that can accurately predict temperature trends

up to one year in advance. This climatic characterization and modeling framework

could potentially inform many agricultural management decisions such as cultivar

choice, vineyard site selection, fungicide spray timing, irrigation strategy, and canopy

management.
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1

CHAPTER 1:

AGRICULTURE AND VITICULTURE IN THE

SNAKE RIVER VALLEY OF IDAHO

1.1 Motivation
The vulnerability of agricultural commodities is driven primarily by both climate

and weather. Climate, at the regional scale, informs the general suitability of an

agricultural zone. Weather events are often associated with agricultural risk. Though

relationships between climate and agriculture are obvious, they are complex, and the

intrinsically chaotic nature of the total climate system poses great challenges to the

entire agricultural industry (Liang et al., 2017). With increasing evidence of the

impacts of climate change on the agricultural sector and availability of novel high-

resolution datasets, there is an increasing need for examining historical climate and

forecasting future climate in ways that agriculture can bene�t at local scales.

Climate change has both direct (hazardous climate and weather phenomena) and

indirect (increased pressure from pests and pathogens) impacts on agricultural pro-

duction (Walthall CL, 2013). Current literature suggests that without adaptation

strategies, these impacts will negatively impact future agricultural production on

large scales. Examples include a reduction of yield in maize, rice, and wheat in both

tropical and temperate regions (Challinoret al., 2014); reduction of agricultural land
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due to sea-level rise (Gornallet al., 2010); and a potential reduction of U.S. total factor

production up to 4% (Liang et al., 2017). However, bene�ts to agriculture stemming

from a changing climate also exist in such forms as increased growing season length

(Joneset al., 2010), increase of photosynthetic rate of C3 crops as a result of higher

CO2 concentrations (Gornallet al., 2010), reduced number of freezing events (Mira

de Ordu~na, 2010), and potential expansion of suitability of certain crops (Sacchelli

et al., 2017). Many of these impacts are crop speci�c and it is bene�cial to take a

detailed view of climate with respect to a particular agricultural sector and region.

For this study, we primarily examine climate through the lens of viticulture - the

growing of grapes for wine production - and constrain our analysis to the Snake River

Valley American Viticultural Area (SRVAVA) region in Southern Idaho. Although

this study provides analysis through the perspective of grape growing, much of the

analysis will be useful to other specialty crops or Idaho agriculture as a whole.

The remainder of this chapter provides an overview of viticulture and the con-

ditions that control its successful production. Chapter 2 statistically characterizes

climate within SRVAVA over 30 years using a high resolution dataset generated lo-

cally at Boise State University. Chapter 3 leverages the trends found within this data

to produce a data driven seasonal forecasting model that may be useful as a tool for

viticultural decision making.

1.2 Idaho Agriculture
Idaho has a long history of productive agriculture. Idaho agribusiness currently

ranks in the top 10 for 26 separate crops in annual production (United States Depart-

ment of Agriculture National Agricultural Statistics Service, 2017), accounts for 26.4

billion dollars in sales, and provides over 120,000 local jobs, which is approximately 1
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in every 8 jobs within the state (Watson, 2019). When combined with food process-

ing, this accounts for approximately 20% of Idaho's total economic output (Koong

et al., 2018). Potatoes, barley, sugarbeets, and Austrian winter peas are some of the

top Idaho exports but other specialty crops such as grapes and hops have expanded

substantially in recent years. There's a total of 11.7 million acres of land within

Idaho utilized for agriculture and this number is expected to grow in coming decades

(United States Department of Agriculture National Agricultural Statistics Service,

2017).

Idaho Viticulture

Viticulture, the production of grapes (vitis vinifera ) for the purpose of making

wine is considered to be one of the fastest growing sub-segments of the agricultural

industry in Idaho, though it only accounts for a small percentage of current planted

acreage (Idaho Wine Commission, 2018). The �rst known grapes planted in Idaho

were in the Northwestern city of Lewiston in 1864 (Idaho Wine Commission, 2020).

However, the passing of prohibition in the 1920s put a halt to productive vineyards

that did not see any new grapes planted until the year 1970. In 2007, Idaho designated

its �rst American Viticultural Area (AVA) and was quickly followed by two smaller

Idaho AVA designations. An AVA can be described as a legally designated grape

growing region for the mutual bene�t of growers and consumers (Alcohol and Tobacco

Tax and Trade Bureau, 2020). It was the designation of the Snake River Valley AVA

(SRVAVA) in 2007 that sparked a boom in new Idaho vineyards and wineries which

began to give Idaho a national name for the production of quality wines. As of 2017,

Idaho has 60 wineries, over 1300 hundred acres of grapes planted, and produced 2942
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