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ABSTRACT 

Bioenergy production may reduce the emission of CO2 which contributes to 

climate change, particularly when management strategies are adopted that promote soil 

carbon (C) sequestration in bioenergy cropping systems. Planting perennial native 

grasses, such as switchgrass (Panicum virgatum L.) and big bluestem (Andropogon 

gerardii Vitman) may be used as a strategy to enhance soil C accumulation owing to their 

extensive root systems. Fertilizer use may further promote soil C sequestration, because 

of its positive impacts on plant production and soil C input. However, the influence of 

fertilizer addition on soil C accumulation is variable across bioenergy cropping systems, 

and fertilizer can negatively impact the environment. Increasing plant diversity may be 

used as a strategy to enhance soil C accumulation while augmenting other ecosystem 

properties such as soil biodiversity. The present study evaluates how inter- and intra- 

specific plant community diversity and N addition influence soil C storage and soil 

biodiversity. Soil was collected from a long-term (9 growing seasons) field experiment 

located at the Fermilab National Environmental Research Park in Illinois, USA. 

Treatments included [1] three cultivars of big bluestem and three cultivars of switchgrass 

cultivars grown in monoculture, [2] plant community diversity manipulated at both the 

species- and cultivar level, and [3] nitrogen (N) applied annually at two levels (0 and 67 

kg ha-1). The soil at the site was dominated by C3 grasses for 30 years before replacement 

with C4 bioenergy grasses, which enabled quantification of plant-derived C accumulation 

owing to the natural difference in isotopic signature between C3 and C4 grasses. Soil 
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samples were analyzed for [1] soil C and its δ13C isotopic signature, and [2] nematode 

and soil bacterial diversity. Our results indicate that both plant diversity and N addition 

influence soil community structure but not soil C storage or soil nematode biodiversity. 

However, the addition of big bluestem to the plant species mixes enhanced plant-derived 

C storage. In summary, our findings suggest that plant species identity can control soil C 

accumulation in the years following land conversion, and that manipulating plant 

community structure in bioenergy cropping systems may have a greater positive impact 

on soil C accumulation than N fertilization. 
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THESIS 

Introduction 

Atmospheric carbon dioxide (CO2) concentrations are increasing in response to 

anthropogenic activities, such as the burning of fossil fuels for energy (IPCC 2014). 

Because increased atmospheric CO2 levels contribute to climate change, it is important to 

identify mechanisms by which we can reduce atmospheric CO2 levels while satisfying 

society’s energy needs (IPCC 2019). Biofuel production is one way by which we can 

reduce the emissions of fossil fuels and fulfill our energy demand. Mitigation of 

atmospheric CO2 levels through the use of biofuels can be enhanced by growing biofuel 

crops that lead to an increase in soil C sequestration. Soils are the largest terrestrial 

carbon (C) pool (Scharlemann et al., 2014), and when soils accumulate more C, they 

contribute to reducing atmospheric CO2 concentration, thereby mitigating climate 

change.  

Soil C accumulation may be increased by converting Conservation Reserve 

Program (CRP) land from old fields dominated by non-native C3 plants to 2nd generation 

biofuel production systems planted with native perennial grasses (Carriquiry et al., 2011; 

Adler et al., 2009). The CRP was established in the 1980s to reduce land degradation 

(USDA/FSA website). Large areas of cropland (e.g. 53,418 hectares in IL) were taken 

out of production and were converted to old fields dominated by non-native cool-season 

C3 grasses. In some areas, these grasslands have since been converted to cellulosic 

bioenergy cropping systems comprised of native grasses such as switchgrass (Panicum 
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virgatum L.) and big bluestem (Andropogon gerardii Vitman). These species are 

promising candidates for this renewable energy strategy, because they compete with food 

production, and these native grasses stimulate soil C accumulation through their 

extensive root systems which stimulate soil C input and  remain undisturbed even after 

aboveground biomass harvest (Giannoulis et al, 2016; Naik et al., 2010). However, the 

magnitude by which these cropping systems contribute to soil C accumulation depends 

strongly on management strategies that optimize soil C input through plant production 

and retention of this C in the soil (Rodrigues et al., 2017; Stewart et al., 2017; Kantola et 

al., 2017; Adkins et al., 2016; Robertson et al., 2011; Schmer et al., 2011). 

Soil C storage can be increased through the application of nitrogen (N) fertilizers 

which increase biomass production (Frank, 2004; Geisseler and Scow, 2014), thus 

enhancing soil C input (Chatterjee et al., 2018; Thirukkumaran and Parkinson, 2002; 

Jung and Lal, 2011; Stewart et al., 2015). However, fertilization can lead to 

eutrophication of waterways (Anderson et al., 2018), and its production requires 

substantial energy input from fossil fuels that, from an energetic perspective, reduces the 

net benefit of growing biofuel crops from an energy perspective (Woods et al., 2010). 

Nitrogen addition may also reduce microbial biomass (Bradley et al., 2006), arbuscular 

mycorrhizal fungi (AMF) abundance (Treseder, 2004), and microbial and soil faunal 

biodiversity when applied at high concentrations (de Graaff et al., 2019; Fierer et al., 

2012; Larson et al., 2018, Frey et al. 2014, Wei et al. 2012). Given that soil organisms 

regulate soil C and N dynamics as well as important ecosystem services, loss of soil 

biodiversity following N addition is a major environmental concern (McBratney et al., 

2014; Wall, 2012). The scientific community identifies agricultural intensification, 
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including widespread use of fertilizer N inputs, as the greatest risk factor impacting 

belowground biodiversity (Orgiazzi et al., 2016). Thus, we must explore alternative 

management strategies that support a more environmentally sustainable production of 

bioenergy crops.   

As an alternative to N addition, increasing plant species diversity may be used as 

a management option in cellulosic bioenergy cropping systems to enhance ecosystem 

functioning, including soil C accumulation (Morris et al., 2016). Greater rates of soil C 

sequestration with increased aboveground plant community diversity may be a 

consequence of diversity-induced increases in plant production and concomitant soil C 

inputs (Tilman et al., 2006; Lange et al., 2015; Morris et al., 2016). Alternatively, 

diversification of the chemical composition of root derived C inputs may promote soil C 

retention (Zhu et al., 2018). Increased aboveground plant community diversity can also 

enhance belowground ecosystem structure and functioning because of increased resource 

availability for the soil organismal community (Ito et al., 2015). For example, there have 

been reports that increased plant diversity increases belowground diversity of soil 

organisms, including bacteria and nematodes  (Dick, 1992; Lange et al., 2015; Viketoft et 

al., 2009; Korboulewsky et al., 2016).  These increases can promote resistance of soils to 

disturbance (Ekschmitt et al., 2001; Rodrigues et al., 2017; Stewart et al., 2017; 

Porazinska et al., 1999) and stabilization of soil C (Schimel & Schaeffer, 2012; Steinbeiss 

et al., 2008). However, it is uncertain how increasing inter- and intraspecific plant 

community diversity relative to increasing N fertilizer inputs impact soil C accumulation 

and soil organismal diversity in cellulosic bioenergy cropping systems. 
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Here, we ask how inter- and intra-specific plant diversity and N addition impact 

soil biodiversity and soil C storage. We hypothesize that increased plant community 

diversity will increase soil C accumulation and soil biodiversity, while N fertilizer will 

increase soil C accumulation and decrease soil biodiversity. Soil (0-15cm depth) was 

collected from a long-term (9 growing seasons) field experiment located at the Fermilab 

National Environmental Research Park in Illinois, USA. Treatments included a variety of 

big bluestem and switchgrass cultivars grown in monoculture, plant diversity 

manipulated at both the species- and cultivar-level, and nitrogen (N) applied at two levels 

(0 and 67 kg ha-1). The soil was dominated by C3 grasses for 30 years before replacement 

with C4 bioenergy grasses in 2008, which enabled quantification of plant-derived C 

accumulation owing to the natural difference in isotopic signature between C3 and C4 

grasses (Park 1961). Soil samples were analyzed for (1) nematode abundance and 

diversity, (2) soil bacterial community structure and diversity, and (3) soil C and its δ13C 

isotopic signature.  

Methods 

Experimental Design 

In 2008, a 5.4 ha experimental bioenergy agricultural field was established at the 

U.S. Department of Energy National Environmental Research Park at Fermilab in 

Batavia, IL, USA. The soil is Grays silt loam, and has a mean annual precipitation and 

temperature of 920 mm and 9.5°C respectively (http://www.ncdc.noaa.gov).  In 1971, 

after a period of agricultural cultivation the field site was planted with non-native 

perennial, cool-season C3 grasses (Bromus inermis Leyss & Poa pratensis) which were 

maintained until 1984. Biannual mowing with clippings left in place continued until 
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2007, at which time the standing vegetation that remained was treated with glyphosate (a 

broad-spectrum herbicide) and burned. Two more applications of herbicide treatment 

occurred in spring 2008 to prepare the area for agricultural planting of experimental plots. 

For more details of the planting, see Morris et al., (2016).  

Six plant diversity treatments of bioenergy crops (Table 1), switchgrass and big 

bluestem were planted and replicated in three randomized complete blocks with fertilizer 

applied to half of the plant diversity treatments (0 and 67 kg N ha-1). In total, there were 

36 treatment plots each 36m x 20m in size. Three switchgrass cultivars (Kanlow, Cave-

In-Rock, Southlow) were planted in monoculture, and in an additional treatment were 

planted in polyculture to assess genotypic diversity. Plant species diversity treatments 

consisted of a warm season mix, with a combination of three big bluestem cultivars 

(Roundtree, Epic, Southlow) with the switchgrass cultivars. The most diverse plant 

community treatment contained three species of grasses; switchgrass and big bluestem 

cultivars and Indiangrass (Sorghastrum nutans L.), and eight species of forbs including 

three legumes (Desmodium canadense, Lespedeza capitata, Dalea purpurea). Plots were 

drill seeded in 20-cm rows with 6.7 kg pure live seed (PLS) at a depth of ~0.6cm with 

alleys of Festuca spp between each plot. Fertilized plots were treated with granular urea 

treatment (67 kg N ha-1) during the first week of June each year (Morris et al., 2016).  

Soil Collection 

In 2017 soils were sampled (2cm diameter x 15cm depth corer) from two 

transects established in each plot. Two transects crossed each field plot diagonally, and 

samples were collected 1m to the left and 1m to the right every 6m along the diagonal. 

This yielded a total of 12 samples across each diagonal and 24 samples per plot. The 24 
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individual samples collected from each plot were homogenized in the field and sent to 

Boise State University to be stored in -20°C freezer until processed for both biodiversity 

and carbon sequestration. 

Soil Processing 

In the laboratory, 10g sub-samples of soil were separated through a 2mm sieve 

and allowed to shake overnight in 5g L-1 of sodium hexametaphosphate to disperse soil 

particles. Shaken samples were then strained through two stacked sieves (250µm and 

53µm) to separate coarse particulate organic matter (CPOM: 2mm to 250µm) and fine 

particulate organic matter (FPOM: 250µm to 53µm) from silt (53µm to 2µm) and clay 

(<2µm). Silt fractions were isolated via centrifugation in a Sorvall Legend X1R for 1 

minute 22 seconds at 270 RPM. To isolate the clay fraction, 0.25 M MgCl2 + CaCl2 (1 

mL / 100 mL) was added to remaining supernatant and the solution was further 

centrifuged for 10 minutes at 2000 RPM. All isolated fractions, except CPOM, were then 

rinsed into labeled aluminum pans with deionized water and oven dried at 65°C for 24 

hours. For CPOM, sand within the samples was poured off and the remaining organic 

material was burned away in a muffle furnace at 400°C to determine percent of sand in 

each plot sample. All dried soil samples were homogenized with a ball mill prior to 

further analysis. 

Root Processing 

Roots from each sample plot were isolated by flushing 400g of soil collected from 

each plot with deionized water through a 500µm sieve and rinsing roots clean. The rinsed 

roots were placed in labeled aluminum pans and oven dried at 70°C for 48 hours. After 

samples were dried, roots were stored in 6 x 9 Manila Clasp Envelopes and weighed for 
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root biomass. Each sample was then homogenized using a ball mill prior to further 

analysis.   

Mass Spectrometry 

Soil and root samples were weighed into tin capsules (5x9mm, CE Elantech, Inc.) 

and analyzed with A 2010 ThermoFisher Delta V Plus continuous flow isotope ratio mass 

spectrometer which allows measurement of the stable isotopes of carbon (δ13C ‰). 

Glycine, cellulose and sucrose were included as standards and used to calculate %C, from 

which total C (Qt in equation) was determined.  

We used the following equation (Cheng, 1996; Nottingham et al., 2009) to 

quantify plant derived carbon input:    

𝑄𝑝 =  𝑄𝑡 ∗   
(𝛿13𝐶𝑡 − 𝛿13𝐶𝑠)

(𝛿13𝐶𝑝 − 𝛿13𝐶𝑠)
         

 [Equation 1] 

where Qp is the amount of plant-derived C, Qt is the total amount of C, δ13Ct is its 

isotopic composition, δ13Cp is the isotopic composition of the root material (Kanlow, 

Cave-in-Rock, Southlow, Switchgrass Mix = -14.15, Big Bluestem = -13.44, Prairie Mix 

= -13.42), and δ13Cs is the isotopic composition of the  C3 soil (Bulk = -22.61, CPOM = -

27.33, FPOM = -24.45, Silt = -21.70, Clay = -21.01) collected from CRP land next to the 

experimental field plots that was still dominated by C3 grasslands (Adkins et al., 2019). 

Bacterial Community Analysis 

Bacterial community analysis was conducted by personnel at Argonne National 

Laboratory using procedures described in Caporaso et al., (2012; 2011). Specifically, 

PCR amplicon libraries targeting the 16S rRNA encoding gene present in metagenomic 

DNA are produced using a barcoded primer set adapted for the Illumina HiSeq2000 and 
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MiSeq. DNA sequence data is then generated using Illumina paired-end sequencing at the 

Environmental Sample Preparation and Sequencing Facility (ESPSF) at Argonne 

National Laboratory. Specifically, the V4 region of the 16S rRNA gene (515F-806R) is 

PCR amplified with region-specific primers that include sequencer adapter sequences 

used in the Illumina flowcell.  The forward amplification primer also contains a twelve 

base barcode sequence that supports pooling of up to 2,167 different samples in each 

lane. Each 25 µL PCR reaction contains 9.5 µL of MO BIO PCR Water (Certified DNA-

Free), 12.5 µL of QuantaBio’s AccuStart II PCR ToughMix (2x concentration, 1x final), 

1 µL Golay barcode tagged Forward Primer (5 µM concentration, 200 pM final), 1 µL 

Reverse Primer (5 µM concentration, 200 pM final), and 1 µL of template DNA. The 

conditions for PCR are as follows: 94°C for 3 minutes to denature the DNA, with 35 

cycles at 94°C for 45 s, 50°C for 60s, and 72°C for 90 s; with a final extension of 10 min 

at 72°C to ensure complete amplification. Amplicons are then quantified using PicoGreen 

(Invitrogen) and a plate reader (Infinite® 200 PRO, Tecan). Once quantified, volumes of 

each of the products are pooled into a single tube so that each amplicon is represented in 

equimolar amounts. This pool is then cleaned up using AMPure XP Beads (Beckman 

Coulter), and then quantified using a fluorometer (Qubit, Invitrogen). After 

quantification, the molarity of the pool is determined and diluted down to 2nM, 

denatured, and then diluted to a final concentration of 6.75 pM with a 10% PhiX spike for 

sequencing on the Illumina MiSeq. Amplicons are sequenced on a 151bp x 12bp x 151bp 

Micro MiSeq run using customized sequencing primers and procedures.  

Sequencing data was analyzed using the pipeline software package QIIME1.9. 

Paired-end reads were joined without trimming, but singletons were removed. OTU’S 
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were clustered by 97% similarity using the Greengenes database to assign taxonomy to 

species. The phylogenetic tree created has 192298 tips and 192296 internal nodes. There 

were no negative controls or blanks sequenced and no contaminant OTU sequences were 

removed. 

Nematode Analysis 

Nematodes were extracted using the sugar flotation method based on (Jenkins, 

1964). Soil samples were suspended in tap water and rinsed through stacked sieves 

(180µm and 38µm). Soil material in the 38µm sieve was rinsed into 50mL round-

bottomed centrifuge tubes using tap water and were then centrifuged for 10 minutes at 

3000 rpm. Supernatant was discarded and a sucrose sugar solution (454g L-1) was then 

added to the samples. Working quickly to not expose the nematodes to undo osmotic 

stress, this solution was centrifuged for 2 minutes at 3000 rpm. The sugar supernatant 

was poured through a 25µm sieve and contents in the sieve were rinsed into 50mL tubes 

and stored at 4°C until further analysis. To fix nematodes for morphological 

identification, liquid was first aspirated from the tubes. Then, 90°C 4% formaldehyde 

was added to the tubes (which contained nematodes) followed immediately by cold a 

similar amount of 4% formaldehyde. Nematodes were then counted and identified 

according to mouthparts and feeding group (Yeates et al., 1993). 

Statistical Analysis 

All ANOVA tests for treatment effects on soil C and soil biodiversity were 

performed in R (package Car; Fox & Weisberg, 2019) and JMP (JMP®, Version <15>. 

SAS Institute Inc., Cary, NC, 1989-2019) and post-hoc analysis was performed using 

Tukey HSD. Alpha (α-) diversity metrics, which measure average species diversity in a 
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local habitat, included Simpson and Shannon indexes. Bacterial beta (β-) diversity, the 

ratio between α- and regional diversity, was calculated as weighted UniFrac and analyzed 

using PERMANOVA in R (package Vegan, Oksanen et al., 2019) to create non-metric 

multidimensional scaling (NMDS) plots. After obtaining PERMANOVA results, 

replicates (n=3) were pooled together based on diversity treatments and presence or 

absences of N fertilizer. Statistical significance was based on an alpha value of p<0.05.  

Results 

Soil Community Structure and Biodiversity 

Plant community diversity or fertilizer application did not affect α-diversity of 

nematodes, regardless of feeding group (Table 2). There were no significant interactions 

between plant diversity and fertilizer treatment. However, nematode family composition 

was significantly impacted by fertilizer application (Figure 1). Specifically, we found 

that the relative abundance of Criconematidae (plant feeders) decreased in response to N 

addition, whereas the relative abundance of Cephalobidae (bacterial feeders) increased in 

response to N addition (Figure 2).  

Bacterial α-diversity was not affected by plant species diversity or by fertilizer 

application (Table 2). However, bacterial β-diversity decreased significantly with N 

application (Figure 3a). In addition, the bacterial community composition (OTU relative 

abundance) changed significantly in response to N fertilizer application (Figure 3b). We 

found that the OTU abundance of the bacterial phyla Crenarchaeota and Chlamydiae 

increased in response to N addition, while the OTU abundance of Acidobacteria, 

Chloroflexi, GAL15, WS2 and Planctomycetes decreased in response to N addition 

(Figure 4, Table 3).  
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Both soil nematode and bacterial community structures varied significantly 

among monocultures of the switchgrass cultivars. The relative abundance of the 

nematode superfamily Dorylaimoidea was higher in soils planted with Cave-in-Rock than 

soils planted with Kanlow (Figure 6). For bacteria, the relative abundances of 

Acidobacteria, Nitrospirae, OP3, Planctomycetes and WS3 were higher in soils planted 

with Cave-in-Rock than in soils planted with Southlow and Kanlow, and the relative 

abundances of Bacteroidetes, Chlorobi, Cyanobacteria, Fibrobacteres, GN02 were higher 

in soils planted with Kanlow than in soils planted with Southlow and Cave-in-Rock. 

Finally, Chlamydiae, OD1, OP11, TM6 and TM7 had higher relative abundances in soils 

planted with Southlow than in soils planted with Kanlow and Cave-in-Rock plots (Figure 

5). 

Soil C Sequestration 

Neither plant species diversity nor N fertilizer application affected root biomass 

production (Table 4). Similarly, neither of those treatments had a significant effect on 

total soil C concentrations either in bulk soil, or in the four soil fractions (Table 4).  N 

fertilizer significantly increased total N in the CPOM fraction and the interaction of N 

fertilizer and plant composition was significant in the silt fraction (Table 4). 

Plant-derived C in bulk soils or fractions was also not significantly affected by N 

fertilization (Table 5). However, there was a significant effect of plant diversity treatment 

on plant derived C in the bulk soil (Table 5) and CPOM (Table 5, Figure 7, Table 6). 

Specifically in the latter case, there was significantly more plant derived C in bulk soil of 

plots planted with big bluestem than in the other plant diversity treatments (Figure 7). 

Likewise, the δ13C signature of CPOM-C in the big bluestem plots was significantly less 
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negative than the δ13C signature of CPOM-C in the Prairie Mix plots ( –14.28‰ vs.  –

18.45‰, respectively) (Table 5), indicating a greater input of plant-derived C in soils 

planted with the big bluestem mix, than in other species mixes (Table 5). Plant diversity 

also significantly impacted the δ13C of each soil fraction (Table 5). Plant-derived C was 

also significantly impacted by switchgrass cultivar. We found less plant derived C in soils 

dominated by Kanlow than in soils dominated by Cave-in-Rock and Southlow (Table 5).  

Discussion 

This study yielded three main results: [1] both fertilizer application and 

switchgrass cultivar, but not aboveground plant community  diversity, influenced the soil 

nematode family composition, [2] fertilizer addition significantly reduced bacterial β-

diversity and both fertilizer application and switchgrass cultivar affected the bacterial 

community composition, [3] big bluestem impacted soil C storage, but plant diversity and 

N fertilizer did not. In summary, our data indicate that choice of plant species or cultivar 

has a greater impact on soil C sequestration than increasing aboveground plant diversity 

or applying N fertilizer. While N fertilization did not affect soil C sequestration, it 

negatively affected bacterial diversity, and altered the community structure of nematodes 

and bacteria. Further study is warranted given that these changes may have contributed to 

the lack of a positive effect of N fertilization on soil C accumulation. If alteration of soil 

bacteria and nematodes influences the efficacy of fertilization on soil C accumulation, 

this effect would have to be considered when managing bioenergy cropping systems. 

Soil Community Structure and Biodiversity 

Neither inter- nor intra specific plant diversity significantly altered the community 

structure or biodiversity of soil nematodes. This result is not in agreement with previous 
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research in other ecosystems where an increase in plant species diversity or plant 

functional group diversity increased taxon richness of plant-feeding, bacterial-feeding 

and predatory nematodes (Cortois et al, 2017). Increased aboveground plant community 

composition might stimulate biodiversity of soil fauna by creating a more heterogeneous 

microenvironment both spatially and temporally (Eisenhauer, 2016), or by increasing the 

quantity and chemical diversity of plant-derived C substrates into soil. For example, 

greater plant species diversity has been shown to increase resource availability for plant 

feeding nematodes (Sohlenius et al., 2011), and bacterial-feeding nematodes through the 

impact on the soil bacterial community composition (Wardle et al., 2006; Eisenhauer et 

al., 2010; De Deyn et al., 2004). Previous research has shown that root exudates vary 

among cultivars of switchgrass and big bluestem when planted in monoculture (Kelly-

Slatten et al., 2019), and in the present study we found that cultivars differentially 

affected the soil bacterial composition, suggesting that different cultivars can modulate 

physical, chemical and biological soil properties in a manner that affects soil nematodes. 

Given this result, we might expect an increase in the diversity of substrates available to 

the soil nematode community when we mix species and cultivars in our system. 

However, increasing intra-or inter-specific diversity did not affect soil nematode family 

composition or diversity. Such effects may have been apparent if we had species-specific 

data on soil nematodes, rather than analyses done at the level of family.  Further study is 

needed to assess this possibility. 

Inter, or intra specific plant diversity also did not significantly impact the 

community structure or biodiversity of soil bacteria, though the bacterial community 

composition differed significantly among monocultures of switchgrass cultivars. Revillini 
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et al. (2019) analyzed impacts of aboveground biodiversity on soil bacterial diversity at 

the same field site after seven growing seasons. They also found α-diversity of the soil 

bacterial community was not affected by aboveground biodiversity and that there were 

cultivar specific impacts on the soil bacterial community structure. These cultivar specific 

impacts on soil bacterial communities are likely grounded in differences in root-derived 

C inputs either through exudates, or root litter, which drive differences in rhizosphere 

chemistry among cultivars (Kelly-Slatten et al., 2019; Stewart et al., 2017). The lack of a 

relationship between aboveground plant community diversity and α-diversity of the soil 

bacterial community has been observed by others (Kowalchuk et al., 2002; Fierer et al., 

2007; Prober et al., 2015). It has been proposed that there is an uncoupling of above- and 

belowground biodiversity (Wardle et al., 2006), and that belowground biodiversity is 

likely driven to a greater extent by edaphic factors, such as soil pH (Fierer et al., 2007; 

Tedersoo et al., 2014). In addition, the immense heterogeneity of the soil organismal 

community, and particularly the bacterial community may explain why we were unable 

to detect an effect of plant community on soil organismal diversity. 

Nitrogen application significantly altered the soil nematode community 

composition, and the direction of the response to N addition varied among nematode 

feeding groups, as seen in other studies (Sarathchandra et al., 2001; Liang et al., 2009). 

We found an increase in the abundance of bacteria feeding nematodes, particularly in the 

Cephalobidae family following N addition. This may be driven by an increase in the 

abundance and biomass of the soil bacterial community owing to fertilizer induced 

increases in NO3- concentrations (Song et al., 2016; Wei et al., 2012; Liu et al., 2016), or 

root exudate inputs (Badri and Vivanco, 2009).  The effects of N fertilization on plant 
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feeding nematodes were variable, which is common (Liang et al., 2009) because N 

addition can change patterns of belowground C allocation (Sun et al., 2013). Plant 

feeding nematodes are strongly dependent on the effects of fertilizer inputs on specific 

plant species and is as-such driven by seasonality of plant productivity, soil temperature 

and moisture availability (Verschoor et al., 2001). While N fertilization altered the 

nematode community composition in our study, it did not affect diversity of the soil 

nematode community. A recent meta-analysis indicated that soil faunal diversity is 

generally not negatively impacted by N fertilization, unless N fertilizer is applied in 

excess of 150 kg ha-1 (de Graaff et al., 2019). Our soils received 67 kg N ha-1 which may 

explain the lack of an impact on nematode diversity. Our study indicates that the soil 

nematode community is sensitive to N fertilization, as Wei et al., (2012) found, and this 

sensitivity can lead to significant shifts in microbial community composition that may 

feedback to affect ecosystem functioning.   

Fertilizer use significantly reduced bacterial β-diversity, corroborating the results 

of other studies (Choudhary et al., 2018; Shen et al., 2010; Yevdokimov et al., 2008; 

Zeng et al., 2016). Our plots were fertilized with granular urea, which can increase ionic 

strength and reduce soil pH thus inhibiting some soil microorganisms and favoring others 

(Eno et al., 1955; Omar and Ismail, 1999; Magdoff et al., 1997; Fierer and Jackson, 2006; 

Zhang et al., 2014). The positive effect of N fertilizer on bacterial diversity may be a 

consequence of fertilizer-induced increases in soil C (Belay-Tedla et al., 2009; Zhang et 

al., 2017; Chen et al., 2018; Rasse et al., 2005), which enhance resource availability to 

soil microbes (Hao and Chang, 2002; Mooleki et al., 2002), buffer against fluctuations in 

pH, and improve soil structure (Miller et al., 2002; Whalen and Chang, 2002; Reynolds et 
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al., 2003). However, in our study we removed plant biomass from the plots on a yearly 

basis and N fertilization did not impact soil C, which may explain why bacterial diversity 

in our experiment was reduced even at an application rate of 67 kg N ha-1. In addition to 

the loss in bacterial diversity, the relative abundance of Acidobacteria and Chloroflexi 

decreased with N fertilizer application. This result may be explained by the oligotrophic 

life history of these organisms, which leads to slower growth rates and lower competitive 

ability at higher resource availability (Fierer et al., 2012). In contrast, the relative 

abundance of  Crenarchaeota and Chlamydiae increased in response to N fertilization. 

This result corroborates Revillini et al. (2019) and is likely explained by the role of these 

bacteria in ammonia oxidation (Weidler et al., 2008; Xiao et al., 2010). Our study 

indicates that low levels of sustained synthetic N inputs (i.e. 67 kg N ha-1) can 

significantly impact the diversity and structure of soil microorganisms and perhaps 

ecosystem functioning. 

Soil C Sequestration 

N fertilizer did not impact soil C accumulation, as other studies in cellulosic 

bioenergy cropping systems have found (Das et al., 2018; Kibet et al., 2015; Jungers et 

al., 2017; Valdez et al. 2017). Fertilization can lead to increased decomposition of soil 

organic carbon (Khan et al., 2007), especially if N fertilizer application enhances the 

input of C that is easily accessible to the soil microbial community (Lin et al., 2019). Our 

results indicate that the N concentration in the CPOM fraction was greater in N fertilized 

soils, indicating that N fertilization enhances litter quality and possibly decomposition 

rates at our site. We also found that N fertilizer application significantly increased 

aboveground plant biomass production across all treatments (as sampled by Morris et al., 
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2016), which may have increased labile soil C inputs through greater litter inputs. 

Alternatively, N fertilizer might have not affected soil C accumulation in our experiment, 

because it did not impact switchgrass root production, which has been found in other 

studies (Kibet et al., 2015), and root-derived C inputs which are key to soil C 

accumulation (Rasse et al., 2005). Finally, the lack of a response to N fertilizer inputs 

have been the result of an increase in the relative abundance of bacteria feeding 

nematodes, which can decrease microbial biomass (Djigal et al., 2010; Trap et al., 2016). 

Microbial biomass formation is an important precursor to soil C stabilization (Kallenbach 

et al., 2015; 2016), thus a change in soil microbial biomass can reduce soil C 

accumulation (Emery et al., 2017; Lupwayi et al., 2005). While it is unclear which 

mechanisms best explain why N fertilization did not promote soil C accumulation at our 

site, our study highlights that understanding belowground dynamics at the root-soil 

organism interface and their response to N fertilizer inputs is crucial to predicting soil C 

sequestration in bioenergy cropping systems.   

We found no effect of inter,- or intra-specific plant community diversity on soil C 

sequestration, in contrast to previous research (Chen et al., 2018; Díaz et al., 2009). 

Positive impacts of aboveground plant community diversity on soil C accumulation may 

be explained by an increased variation in plant traits, such as chemical composition of 

root exudates that influence the composition of soil heterotrophs and their impact on soil 

C accrual (De Deyn et al., 2008; Bezemer et al., 2006). Others have found that increasing 

plant diversity promotes microbial growth and biomass production, which yields greater 

microbial necromass that is preferentially stabilized in soil (Liu et al., 2007; Chen et al., 

2018; Prommer et al., 2019). We contend that aboveground plant community diversity at 
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our site did not impact microbial biomass or soil C accumulation because the annual 

removal of plant biomass may have significantly reduced soil C inputs (Steinbeiss et al., 

2007). This effect may have been compounded by a lack of increase in root biomass with 

increasing plant diversity (Carney and Matson, 2005). While we found no links between 

above- and belowground biodiversity or soil C sequestration, plant community diversity 

will likely positively impact ecosystem structure and functioning in ways we did not 

measure, and as such should not be discounted as a successful management strategy.     

We found strong cultivar and species-specific effects on soil C accumulation. In 

particular,  big bluestem contributed significantly more C to the soil  C pool than other 

plant species (see also Adkins et al., 2019), unlike other studies that reported no 

differences in soil C sequestration between big bluestem and other perennial grasses 

(Kibet et al., 2015; Evers et al., 2013). Greater plant-derived C in soils planted with big 

bluestem at our site may be related to greater litter input in these systems. Indeed, plots 

containing big bluestem produced more biomass (Morris et al., 2016), and we found 

greater retention of plant derived C in the CPOM fraction in soils planted with big 

bluestem. The greater association of C associated with the less persistent CPOM fraction 

suggests that big bluestem derived C may not be protected in the long-term (Jastrow et 

al., 2018). Alternatively, increased particulate organic matter (POM) inputs may enhance 

microbial biomass and ultimately C stabilization on protected soil surfaces (Helal and 

Sauerbeck, 1986). We also found that the cultivars Southlow and Cave-in-Rock accrued 

more soil C than the cultivar Kanlow, which may be driven by differences in soil C input 

owing to variability in root morphology (Adkins et al., 2016), or by differences in 

retention of root derived C (Kelly-Slatten et al., 2019). Understanding the relationships 
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between the quantity and chemical composition of root-derived input, and the 

consequences for soil microbial metabolism will improve our understanding of soil C 

accumulation under different cultivars of switchgrass.  

Conclusion 

This study highlights that management decisions in cellulosic bioenergy cropping 

systems, including selection of plant species and cultivar, and N fertilization rates can 

significantly impact belowground biodiversity and community composition of soil 

bacteria and soil fauna, as well as soil C accumulation. In contrast to our hypotheses N 

fertilizer inputs did not increase soil C accumulation, but it did reduce belowground 

diversity. Conversely, plant species and cultivar were strong predictors of soil C 

accumulation. While aboveground plant community diversity did not affect belowground 

biodiversity or soil C accumulation, it is likely to positively impact other ecosystem 

attributes and processes that were not measured in this study. For example, Morris et al. 

(2016) showed that increasing intraspecific biodiversity in switchgrass dominated 

bioenergy cropping systems can stabilize yields, and others have shown a multitude of 

benefits associated with increasing plant community diversity in agroecosystems that 

reach across trophic levels (Lange et al., 2015; Hooper et al., 2012; Norris, 2008). This 

along with other studies that explore the implications of land-use change for bioenergy 

production will ensure that we sustainably manage land for biomass production and soil 

C sequestration and soil organismal biodiversity. 
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Tables 

Table 1 Description of plant treatments in the agronomic trial. Each plant 

treatment received a split-plot fertilization regimen. 

Plant Diversity Treatment Species description 

Switchgrass Monocultures 

(1 species, 1 cultivar) 

Kanlow, Cave-in-Rock, and Southlow switchgrass cultivars planted 

in monoculture 

Switchgrass Mix (SG) 

(1 species, 3 cultivars) 

Kanlow, Cave-in-Rock, and Southlow switchgrass cultivars planted 

in polyculture 

Big Bluestem Mix (BB) 

(2 species, 6 cultivars) 

Three switchgrass cultivars planted with three big bluestem cultivars 

(Roundtree, Epic, and Southlow) 

Prairie Mix (PR) 

(12 species, 6 cultivars) 

Eleven species polyculture consisting of three grass species and 

eight forb species, three of which are legumes. Grasses: the three 

switchgrass cultivars, the three big bluestem cultivars, Indiangrass. 

Forbs: showy tick trefoil, round-headed bush clover, purple prairie 

clover, tall tickseed, smooth oxeye, yellow coneflower, New 

England aster, Culver's root. 
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Table 2 Alpha diversity metrics for soil organisms. (means ± SE; n=3). 

 16s Bacterial DNA Nematode 

Treatment Shannon Diversity 
Shannon 

Diversity 
Simpson Diversity 

KA Fertilized 10.07 ± 0.21 1.69 ± 0.16 0.95 ± 0.015 

 Unfertilized 9.62 ± 0.12 1.72 ± 0.15 0.98 ± 0.009 

CR Fertilized 9.25 ± 0.14 1.72 ± 0.08 0.96 ± 0.007 

 Unfertilized 9.14 ± 0.34 2.19 ± 0.14 0.98 ± 0.003 

SL Fertilized 9.93 ± 0.30 1.75 ± 0.12 0.97 ± 0.006 

 Unfertilized 9.46 ± 0.14 1.92 ± 0.18 0.97 ± 0.002 

SG Fertilized 9.52 ± 0.18 1.90 ± 0.14 0.97 ± 0.001 

 Unfertilized 9.06 ± 0.39 1.88 ± 0.04 0.97 ± 0.004 

BB Fertilized 9.57 ± 0.30 1.78 ± 0.10 0.98 ± 0.003 

 Unfertilized 9.80 ± 0.50 1.73 ± 0.15 0.98 ± 0.002 

PR Fertilized 9.38 ± 0.27 1.93 ± 0.15 0.98 ± 0.006 

 Unfertilized 9.49 ± 0.36 1.90 ± 0.11 0.94 ± 0.005 

     

Source of ANOVA Variation (p-values)   

Plant Diversity 0.218 0.403 0.322 

N Fertilizer 0.266 0.224 0.649 

Diversity × N Fert 
 

0.723 0.359 0.061 
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Table 3 2-Way Analysis of variation associated with the means of values 

represented in Figure 4 (n=3). 

Source of Variation ANOVA N Fertilizer   

  Fertilized Mean Unfertilized Mean p-value 

Crenarchaeota 1.526 0.838 0.023 

Acidobacteria 12.915 14.743 0.002 

Chlamydiae 0.367 0.258 0.031 

Chloroflexi 2.933 4.290 0.033 

GAL15 0.001 0.002 0.042 

Planctomycetes 6.169 7.103 0.044 

WS2 0.001 0.002 0.002 
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Table 4 Root biomass, Total C & Total N for experimental treatments (means 

± SE, n=3). 

Plant 
Diversity 

N 

Fertilizer  

(kg ha-1) 

Root  

Biomass 
(g/ 400g 

soil) 

Total C (mg C/ g soil) Total N (mg N/ g soil) 

BULK CPOM FPOM SILT CLAY BULK CPOM FPOM SILT CLAY 

Kanlow 

0 
5.35 ± 

1.32 

24.01 

± 
2.26 

423.48 

± 
16.43 

38.47 

± 4.71 

13.83 

± 
1.62 

45.18 

± 
4.03 

2.06 

± 
0.20 

5.45 

± 
1.48 

2.95 

± 
0.34 

1.45 

± 
0.17 

5.13 ± 

0.36 

67 
3.65 ± 

0.59 

26.64 
± 

2.17 

382.51 
± 

50.07 

35.65 

± 6.77 

10.85 
± 

0.66 

40.58 
± 

7.16 

2.35 
± 

0.14 

6.83 
± 

0.05 

2.82 
± 

0.51 

1.07 
± 

0.12 

4.37 ± 

0.62 

Cave-in-

Rock 

0 
5.13 ± 

0.39 

25.76 

± 
1.99 

431.31 

± 8.25 

33.90 

± 1.31 

14.42 

± 
1.33 

45.33 

± 
3.85 

2.24 

± 
0.18 

3.95 

± 
0.98 

2.55 

± 
0.32 

1.60 

± 
0.07 

4.74 ± 

0.39 

67 
5.43 ± 
1.08 

24.45 

± 

2.28 

470.95 

± 

66.32 

42.04 

± 

10.09 

11.12 

± 

0.12 

38.81 

± 

2.04 

2.17 

± 

0.18 

7.33 

± 

0.39 

3.36 

± 

0.88 

1.19 

± 

0.02 

4.02 ± 
0.37 

Southlow 

0 
3.84 ± 

0.45 

31.46 
± 

2.06 

401.67 
± 

10.28 

169.13 
± 

16.43 

12.79 
± 

0.80 

48.15 
± 

5.34 

2.55 
± 

0.14 

5.21 
± 

0.34 

3.12 
± 

0.83 

1.28 
± 

0.11 

5.31 ± 

0.51 

67 
5.08 ± 
0.57 

12.25 

± 

1.42 

399.74 

± 

14.42 

63.66 
± 2.37 

13.37 

± 

0.35 

37.25 

± 

1.92 

2.02 

± 

0.17 

8.18 

± 

0.51 

4.59 

± 

0.33 

1.36 

± 

0.08 

4.34 ± 
0.58 

Switchgrass 
Mix 

0 
4.65 ± 

0.46 

22.84 
± 

1.66 

405.40 
± 

30.49 

59.40 

± 4.91 

13.58 
± 

0.26 

46.15 
± 

6.94 

1.99 
± 

0.14 

5.36 
± 

0.34 

4.14 
± 

0.30 

1.49 
± 

0.03 

4.35 ± 

0.60 

67 
3.54 ± 

0.52 

8.31 

± 
2.42 

413.52 

± 
20.58 

53.09 

± 5.26 

11.11 

± 
1.58 

35.45 

± 
7.81 

2.11 

± 
0.34 

4.87 

± 
1.02 

4.04 

± 
0.22 

1.18 

± 
0.20 

4.42 ± 

0.67 

Big 

Bluestem 
Mix 

0 
7.64 ± 
0.54 

28.21 

± 

3.27 

364.42 

± 

71.28 

35.61 
± 1.64 

12.18 

± 

0.62 

39.65 

± 

2.34 

2.29 

± 

0.21 

3.56 

± 

0.85 

2.71 

± 

0.23 

1.13 

± 

0.08 

4.07 ± 
0.39 

67 
4.97 ± 

0.99 

27.84 

± 
1.17 

435.81 

± 
15.90 

37.94 

± 3.42 

16.17 

± 
1.33 

39.39 

± 
5.64 

2.35 

± 
0.06 

5.16 

± 
0.43 

3.07 

± 
0.34 

1.67 

± 
0.18 

4.81 ± 

0.24 

Prairie Mix 

0 
3.61 ± 
1.27 

25.14 

± 

1.16 

360.08 

± 

65.49 

49.55 
± 0.06 

11.94 

± 

0.40 

41.27 

± 

4.97 

2.09 

± 

0.08 

5.24 

± 

0.57 

3.93 

± 

1.13 

1.39 

± 

0.18 

4.26 ± 
0.72 

67 
3.87 ± 

1.04 

29.77 
± 

3.50 

437.26 

± 8.37 

63.60 
± 

17.91 

21.59 
± 

2.81 

45.82 
± 

9.00 

2.51 
± 

0.28 

5.18 
± 

1.33 

4.93 
± 

1.44 

2.17 
± 

0.32 

4.90 ± 

0.99 

             

Source of variation (ANOVA)           

Plant Diversity 0.062 0.143 0.699 0.762 0.779 0.794 0.724 0.123 0.114 0.033 0.957 
N Fertilizer 0.215 0.940 0.232 0.779 0.833 0.083 0.520 0.002 0.167 0.568 0.710 

Diversity × N Fert 0.218 0.117 0.628 0.623 0.691 0.879 0.248 0.271 0.826 0.002 0.432 
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Table 5 δ 13C  and Plant-derived (C4) values for all treatment plots (means ± 

SE, n=3). 

Plant 

Diversity 

N 

Fertilizer  

(kg ha-1) 

δ13C (‰) Plant Derived (C4) C (mg/ g soil) 

BULK CPOM FPOM SILT CLAY BULK CPOM FPOM SILT CLAY 

Kanlow 
0 

-21.56 ± 

0.34 

-21.15 ± 

0.76 

-23.30 ± 

0.36 

-21.76 

± 0.29 

-19.51 ± 

0.22 
2.81 ± 0.77 

205.26 

± 24.54 

4.06 ± 

0.84 

0.23 ± 

0.23 

9.84 ± 

1.70 

67 
-21.85 ± 

0.37 

-19.71 ± 

0.38 

-22.94 ± 

0.61 

-21.34 

± 0.49 

-19.15 ± 

0.42 
2.60 ± 1.40 

230.29 

± 41.60 

9.64 ± 

6.05 

0.83 ± 

0.51 

11.99 ± 

3.59 

Cave-in-

Rock 

0 
-19.94 ± 

0.20 

-17.05 ± 

0.78 

-21.22 ± 

0.56 

-20.67 

± 0.13 

-18.73 ± 

0.25 
8.12 ± 0.90 

349.25 

± 35.34 

10.71 ± 

2.01 

2.00 ± 

0.43 

15.34 ± 

2.94 

67 
-20.74 ± 

0.50 

-17.50 ± 

0.69 

-20.99 ± 

0.17 

-20.94 

± 0.26 

-19.24 ± 

0.44 
5.64 ± 1.10 

357.86 

± 75.35 

13.87 ± 

2.76 

4.05 ± 

3.33 

10.26 ± 

3.04 

Southlow 
0 

-20.78 ± 

0.13 

-17.90 ± 

0.41 

-22.89 ± 

0.52 

-20.62 

± 0.43 

-18.79 ± 

0.48 
7.61 ± 0.93 

287.99 

± 19.72 

5.62 ± 

1.29 

1.96 ± 

0.66 

15.47 ± 

3.79 

67 
-20.67 ± 

0.51 

-18.85 ± 

0.17 

-21.48 ± 

0.11 

-22.10 

± 0.35 

-19.60 ± 

0.22 
5.39 ± 0.60 

256.90 

± 5.64 

18.30 ± 

0.32 

0.14 ± 

0.14 

9.31 ± 

2.09 

Switchgrass 

Mix 

0 
-20.31 ± 

0.33 

-17.93 ± 

0.67 

-21.41 ± 

0.39 

-21.54 

± 0.07 

-19.50 ± 

0.51 
6.09 ± 0.52 

291.08 

± 37.94 

17.12 ± 

3.25 

0.29 ± 

0.12 

10.81 ± 

4.06 

67 
-19.92 ± 

0.56 

-16.23 ± 

0.60 

-20.83 ± 

0.17 

-20.86 

± 0.34 

-18.96 ± 

0.58 
7.13 ± 0.24 

364.41 

± 5.48 

18.82 ± 

2.68 

1.68 ± 

0.60 

14.37 ± 

12.61 

Big 

Bluestem 

Mix 

0 
-19.39 ± 

0.13 

-14.28 ± 

0.17 

-19.97 ± 

0.15 

-20.37 

± 0.37 

-18.60 ± 

0.34 
9.83 ± 0.80 

397.56 

± 36.79 

15.00 ± 

0.67 

1.96 ± 

0.54 

12.75 ± 

2.25 

67 
-19.60 ± 

0.18 

-15.57 ± 

0.76 

-19.85 ± 

0.58 

-20.54 

± 0.38 

-18.59 ± 

0.32 
9.06 ± 0.91 

370.84 

± 36.49 

16.20 ± 

3.26 

2.28 ± 

0.85 

17.33 ± 

3.68 

Prairie Mix 
0 

-20.71 ± 

0.23 

-18.45 ± 

0.73 

-21.81 ± 

0.46 

-21.87 

± 0.24 

-19.61 ± 

0.27 
5.14 ± 0.48 

236.07 

± 38.75 

16.82 ± 

4.34 

0.11 ± 

0.08 

7.32 ± 

0.99 

67 
-20.82 ± 

0.15 

-17.82 ± 

0.73 

-21.95 ± 

0.36 

-21.69 

± 0.51 

-19.30 ± 

0.81 
6.15 ± 0.42 

317.44 

± 25.03 

15.36 ± 

5.29 

0.94 ± 

0.94 

11.69 ± 

5.71             
Source of variation (ANOVA)          

Plant Community 0.428 <0.001 <0.001 0.003 0.490 <0.001 0.002 0.495 0.834 0.595 

Nitrogen Fertilizer 0.360 0.435 0.056 0.655 0.702 0.177 0.159 0.725 0.304 0.086 

Community × N Fert 0.819 0.196 0.762 0.031 0.535 0.128 0.557 0.525 0.713 0.758 
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Table 6 2-Way Analysis of variation p-values associated with the means of 

values represented in Figure 7- “Plant (C4) derived C content normalized to the 

weight of soil fraction (%) in 1 g bulk soil (bars are means ± SE, n=6).”  

Source of Variation ANOVA 

  N Fertilizer Plant Diversity Diversity × N Fert 

BULK 0.612 0.006 0.313 

CPOM 0.159 0.002 0.557 

FPOM 0.725 0.495 0.525 

SILT 0.304 0.834 0.713 

CLAY 0.086 0.595 0.758 
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Figures 

  
Figure 1 Non-metric multidimensional scaling (NMDS) of nematode family 

relative abundance (ellipses are standard deviation, stress: 0.2543563, n=6). 
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Figure 2 Relative abundance of 2 nematode families (bars are means ± SE, 

n=3) within 2 defined feeding groups as a function of fertilizer treatment.  
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Figure 3 Non-metric multidimensional scaling (NMDS) of (a) 16s microbial β-

diversity (weighted UniFrac, ellipses are standard deviation, stress: 0.167644, n=6), 

and (b) OTU species relative abundance (ellipses are standard deviation, stress: 

0.2287912, n=6) . 

  



29 

 

 

 

 
Figure 4 Bacterial OTU relative abundance significantly impacted by N 

fertilizer (bars are means ± SE, n=3). 
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Figure 5 (a,b,c) Bacterial OTU relative abundance significantly impacted by 

switchgrass monoculture (n=3). Letters above the bars are significance based on 

comparisons between switchgrass cultivar treatment. 
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Figure 6 Relative abundance of nematode superfamily Dorylaimoidea 

significantly impacted by switchgrass cultivar monoculture (n=3). 
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Figure 7 Plant (C4) derived C content normalized to the weight of soil fraction 

(%) in 1 g bulk soil (bars are means ± SE, n=3). Lowercase letters represent Tukey 

HSD post-hoc for CPOM, uppercase letters represent Tukey HSD post-hoc for 

BULK soil. 
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