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ABSTRACT

With the dawn of quantum computing in scale, current secure classical primitives

are at risk. Protocols with immediate risk of breach are those built on the advanced

encryption standard (AES) and Rivest–Shamir–Adleman (RSA) algorithms. To se-

cure classical data against a quantum adversary, a secure communications ciphersuite

must be developed. The ciphersuite developed in this work contains components that

do not necessarily rely on quantum key distribution (QKD), due to recent insecurities

found when a QKD–based protocol is faced with a quantum eavesdropper.

A set of quantum–classical ciphersuite primitives were developed using less com-

mon mathematical methods where a quantum adversary will take a non–deterministic

polynomial-time to find a solution, but still easy enough for communicating classical

computers to evaluate. The methods utilized for this work were created from random

walks, lattices, symplectic mappings, combinatorics, and others. The hardware meth-

ods developed in this work rely on either classical laser-light, or entangled quantum

states, with matching optimization developed from global optimization theories.

The result of this work is the creation of non–QKD hybrid quantum-classical

set of secure ciphersuite primitives, built and expanded from existing classical and

post-quantum security schemes, for both classical and quantum information. In the

tight integration between quantum and classical computers, the security of classical

systems with quantum interaction is essential.
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CHAPTER 1

INTRODUCTION

The prospects of quantum computing1 have driven the search for fully functional

quantum processing units. Recent success in developing proof-of-concept quantum

processors in several technological mediums such as trapped-ions, superconducting

materials, and photonics, has prompted the question of how to integrate the processors

into our daily lives in a manner that classical computers have filled for decades.

When we look at where quantum computers will fit into our daily regime of

computer usage, the most obvious short-term application is as an acceleration co-

processor. Back in the early 1980s there were processors with math co-processors

[1], and once the technology had adapted where mathematics co-processors were

commonplace, they were integrated into the main processing unit. In the later 1980s

and 1990s, there was the rise of discrete graphics co-processors [2] in the form of

graphics processing units (GPUs), which are still commonplace today due to their

efficiency in calculating and displaying visual media. The near-term for quantum will

be similar; a main processor with some form of quantum offloading for both efficiency

and speed in calculating specific problem sets that are easier when utilizing quantum

mechanics.

With quantum offloading in mind, the first step of mass quantum utilization is the

integration of quantum processing units into our communications to help speed up

1For a brief introduction to some quantum computing math basics, please refer to Appendix A.
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and secure ourselves against any malicious quantum adversary. By utilizing methods

of multi-party access devised recently in the homomorphic space [3, 4] with a strong,

secure key-exchange, this becomes a distinct possibility. Data encoded into entangled

qubits, controlled by a classical computer, can afford the computational overhead

necessary for larger learning-with-errors key agreements that are suitable for multiple

parties to communicate with differing permissions to data access [5]. The three major

topics of interest to make this dream become a reality are quantum computational

structures, secure learning-with-errors based key exchange agreements, and the basis

of quantum homomorphic schemes for working, and computing, on secure data.

The concept of the need for security has been well established and with the

advent of shared-resource computing, the risk of information leakage further increases.

In many instances information may be of an extremely private, confidential, or

proprietary nature. Due to the value of private information which can be transmitted

by means of technology, there is an inherent need to secure the information through

the entire process of collection, processing, transmission, reception, and consumption.

The data transmitted and consumed by computer users needs protection both in

classical computational systems and quantum computational systems.

By utilizing quantum primitives, such as interference, entanglement, and super-

position, intertwined with classical computing ideals, a secured quantum–classical

hybrid communications protocol and ciphersuite primitives need to be developed for

communication between a classical computer and quantum devices, or even quantum-

to-quantum computing communication applications.



3

1.1 Motivation

Many researchers are focused on researching secure primitives for a post-quantum

era when quantum computers are at scale and are ubiquitous devices in our lives [6].

There has been much excellent research in this field of post-quantum cryptography

between classical computers and a quantum eavesdropping adversary [7, 8, 9], but

there is a distinct lack of research on current quantum-to-quantum computing secure

primitives, their integration into classical computing systems and the interactions

between classical and quantum clusters. All communications requiring any form of

secrecy should be estimated to be at least NP-hard, e.g. take a non-deterministic

polynomial amount of time to solve, for a quantum adversary. In an example where

a classical computer is operating with a single or a cluster of quantum devices, the

classical computer should not need to worry about one of the quantum devices being

an adversary while interfaced with another quantum device.

Ideally, quantum computing would be capable of blind server-sided computation

but there are several hurdles to be passed before this can be a reality due to the

necessitated usage of large entangled cluster states. Until this time, there is still a

lack of security in current protocols, as found by a NIST report in 2016 [6]. This

work will solve both the necessity for large entangled cluster states and overcome

classical limitations in post-quantum primitives, i.e. excessively large key sizes, output

string lengths, and the insecurity of known primitives such as the Rivest-Shamir-

Adleman (RSA) public-key cryptosystem, the elliptic-curve DiffieHellman (ECDH)

key agreement, and the digital signature algorithm (DSA).

A simple generalization is that a quantum key distribution (QKD) approach to

security would be the easy answer, but this is swiftly countered. In 2007, it was
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found that a known plaintext attack could be used to entirely reveal the contents of

a string, of a distributed key by QKD, when a part of a plaintext was known to the

eavesdropper, Eve, through the mutual information security criterion between Eve

and legitimate users, Alice and Bob [10]. To help fix this issue, the trace distance

criterion was introduced by M. Koashi in 2009 [11], showing that the distance between

the distributed quantum state and an ideal quantum state with Eve’s quantum system

decouples from the quantum system shared between Alice and Bob.

Leading into the work by M. Koashi was the work by Shor and Preskill in 2000,

proving that entanglement-based QKD is equivalent to prepare and measure QKD

systems such as BB84 [12]. The proof employed the same mutual information cri-

terion, thus this approach was applied to the trace distance criterion in 2009 [11].

Yuen immediately followed with his criticisms on the security of QKDs [13], with a

general warning that the security of QKD is not sufficient and that the trace distance

measure will not provide “universal composability” which is supposed to guarantee

independent and identically distributed (IID) keys. With this information in focus,

a large motivator for this dissertation work is to develop a system that does not

rely on QKD but instead on small states of entangled qubits or qubits that undergo

entanglement during processing, a system where entanglement distribution is the

major resource of interest.

1.2 Dissertation Overview

1.2.1 Thesis Statement

The objective of this research is to answer the following question:
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Can a set of secure communication primitives be designed that will work

interchangeably between classical and quantum computers; if so, how do

we use the primitives together?

Specifically, if we have a set of secure primitives operating together in an asym-

metric client-server model connection between a classical and a quantum computer, is

it possible to secure their communications in a manner in which a quantum adversary

will be met with a NP-hard problem?

1.2.2 Research Objectives

The objectives and main areas investigated are summarized as follows:

1. The development of a non-QKD approach towards secure communication; im-

portant where we do not want the complexities and side-channel attacks present

in a standard QKD protocol. The original proposed work covers the develop-

ment of a new form of quantum hashing inspired by sponge functions, with the

benefit that quantum mechanics will necessitate that the function is reversible

and may also be composable.

2. The development and utilization of a quantum photonic processor (QPP) with

1 ppm resolution for entangled photon usage and processing. The previous

platform was originally developed as a joint work between AFRL and MIT [14],

where the controlling hardware and software was completely renewed such that

there is now very high resolution control of the QPP to enable fine-grained

control over phase settings operating on single photons. The work here leads

into an updated photonics processor.
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3. The utilization of quantum teleportation (QTP) theory for inter-quantum-processor

communication, where there is the ability to utilize teleportation within a

quantum homomorphic scheme that can effectively link two adjoint lattices with

the communication of inconsequential information over a classical channel.

4. The final development of many components required for a quantum ciphersuite

such that there can exist a lattice-based key exchange protocol, a loss-less

hash-based compression stream cipher, and an efficient identity authentication

mechanism.

1.3 Contributions

The contributions of this work may appear varied, but all work together to form

one common goal: A ciphersuite is developed that is hybrid quantum-classical in

the sense that both are required to create a secured method of communication that

does not require QKD. While continuing to complete this research, several other

items needed to be developed that should have their own individual showcase and

also count as contributions to the field developed during the completion of the main

contributions.

Contributions and their brief descriptions are as follows:

1. Development of the first quantum sponge function, capable of absorbing an

arbitrary amount of information and producing a keyed and reversible arbitrary-

size output stream that can be used in other applications.

2. Development of the first physically unclonable function based on an all-optical

linear interferometer array with the additional capability to be reconfigured,

and capable to be used for identity verification and hardware keying.
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3. Development of the embedding mechanism to map a quantum hash onto a lattice

to be used in alternate methods other than just hashing. This development

also includes the arbitrary extensions of a quantum walk through a feedback

mechanism.

4. The development of an alternate to hardware identity authentication utilizing

physically unclonable functions which is a method of multiparty authentication

with single photons, including an optional mechanism to have a multiparty

contribution key.

5. Development of a new method of optimizing the linear interferometer network

to generate arbitrary output profiles through a topological graph optimization

technique.

1.4 Dissertation Layout

The work in this dissertation is organized in the following manner: Chapter 1

(this chapter) explains the research motivation and dissertation overview, including

objectives and contributions. Chapter 2 explains the construction of a quantum

sponge function, from the base classical sponge to the conception of methods necessary

to build a quantum sponge from hash-base to the constructing of a connected graph.

Chapter 3 describes two new methods of identity and message authentication, with

limited experimentation, based on optical physically unclonable functions, and a strict

photon-only authentication protocol. Chapter 4 describes a simple method of turn-

ing a quantum-walk-based hash function and associated developed quantum sponge

function from Chapter 2 into a simultaneous message passing model with classical

side-information. Chapter 5 shows the theory behind a quantum photonics processor
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that was used for experimentation in Chapter 3 along with, most importantly, the

optimization technique developed and utilized to enable fine-grain control of output

data. Chapter 6 gently touches on a developed command-line quantum photonics pro-

cessor simulator. Chapter 7 wraps-up the work with conclusions, recommendations,

and future direction that this dissertation has led to and that research to expect in

the future in similar fields of quantum cybersecurity.
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CHAPTER 2

THE QUANTUM SPONGE

Sponge functions, as originally described by G. Bertoni et al. [15], were derived

in the search for a cryptographic hash function that behaves similarly to a random

oracle. An image of the architecture of a sponge function is shown in Figure 2.1. Since

iterated hash functions often have state collisions (collisions in the chaining value), the

ideal structure of a collision-less hash function was proposed in the form of a sponge

function by G. Bertoni et al. A function with a finite state was developed in Bertoni

et al.’s work, where an arbitrary sponge function could only be distinguished from a

random oracle due to their respective inner collisions (collisions where two differing

message sets may produce a collision of the internal state, not the output chaining

value). Since a random oracle can take any input string and map it to an arbitrarily

long output string, the theoretical sponge construction should be able to satisfy all

the security criteria listed for a good hash function [16]. The output of the random

oracle is also completely random, where any produced bits should be uniformly and

independently distributed for any input, but for an application to work as a sponge

function there is a constraint of an identical input generating an identical output

over any number of trials. The mapping of input string to an arbitrarily long output

string is essential for the work shown in this dissertation and serves as the basis for

extension on many fronts, described in further chapters.
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Figure 2.1: Sponge architecture showing the different sections and phases of the
sponge construction [17]. A message M is input into the sponge with some padding
and the function f that makes up the sponge is calculated based on a given rate
r = log2 |A| and capacity c = log2 |C| of the sponge. Outputs can be arbitrarily
squeezed out, shown by Z.

2.1 Classical Sponges

All previous hash functions such as MD-5 [18], SHA-1 [19], and SHA-2 [20] were

iterative functions, prior to the development of the sponge construction, meaning that

the iterated hash functions operated on the chaining of values iteratively modified by

a function, whereby a message was the argument, as originally built upon the Merkle-

Damg̊ard construction [21, 22]. Unfortunately, it is a fairly unreachable goal to have

an iterated function be as strong as a random oracle, but there are two methodologies

that can be followed. The first method would be to make the hash function be non-

streamable, a blow to data processing and hashing that needs to be completed on-the-

fly, since data would need to be stored into memory prior to computation. Examples of

non-streamable functions would be those similar to compression algorithms operating

on data-at-rest, and are generally not a quality choice due to insecurities in methods

of compression algorithms [23]. The second method would be to follow an iterated
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function approach and deal with state collisions; this method was chosen for the final

sponge construction due to its ease of state manipulation, and possibility of continued

operation in a non-linear function space, generating possible one-to-many morphisms

for further obfuscation of information.

To describe the new sponge construction, it should be understood that the sponge

function takes a variable-length input string of m ∈ A ⊆ Z2 characters for some

alphabet A, in this case a binary alphabet, and produces an infinite output z ∈ A ⊆

Z2. Since the sponge’s state evolves over time, it can be assumed that a fresh sponge

will have internal values at an arbitrary position C, 0 ∈ C. The internal state of the

sponge, S = (SA,SC) ∈ A × C will have an initial value of (0, 0). The evaluation of

the sponge function transformation f is described in two distinct phases:

Absorbing: For each input character mi, the state is updated as

S ← f(SA +mi,SC) . (2.1)

Squeezing: An infinite-length output z is produced as a single character j, zj ∈

A, at a time through the evaluation

zj = SA , (2.2)

and through updating the state as

S ← f(S) . (2.3)

The sponge’s operation makes it a useful tool for infinite recursive generation of

output products. Specifically, an example can be shown for any given message m that
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absorbs information into the state under the function f such that S = Sf [m] forms a

path m to the sponge S under f . The recursion of this function can be described by:

Sf [ · ] = (0, 0) , (2.4)

Sf [xn ∈ A|ai ∈ A] = f(Sf [x] + a) ,

where “ | ” is the concatenation operator between symbols.

Interestingly, when a random sponge is analyzed with a given A, the set C, and an

initial value (0, 0), the mapping from the sponge’s function f itself entirely determines

the sponge function, thus there will be a total of (|A||C|)|A||C| possible sponge functions

with subsets of transformative and permutive sponges. The properties of sponge

functions make them prime candidates for hashing within the scope of quantum

computation, due to their computational complexity, easily built upon with quantum

walks.

2.2 A New Sponge: Quantum Sponge

For the quantum sponge to be built, many important theories need to be taken

from the mathematics community and intertwined with existing quantum theories.

The quantum variant of a sponge function would need to meet the criteria listed

in Equations 2.1, 2.2, and 2.3. To enable this work, the theoretic standpoint of a

sponge function must be identified to see how to translate an arbitrary input into an

arbitrary quantum output. Simply, an extended version of a quantum hash function

(QHF) must be built.
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2.2.1 Quantum Hash Base for the Sponge

The work by Y. Yang et al. serves to emphasize the usage of quantum hash

functions and their applications for privacy [24] and is summarized below. The QW-

based hash function described is a slightly modified version of a discrete QW with

two quantum systems, one for both a walker p and a coin c [25]. A walker-coin system

can be denoted by a vector in the Hilbert space Ht = Hp ⊗ Hc, with the motion of

the walk conditioned by the coin state via a conditional shift operator:

Ŝ =
∑
x

(|x+ 1, 0〉 〈x, 0|+ |x− 1, 1〉 〈x, 1|) , (2.5)

where the summation of Equation 2.5 denotes the sum over all possible positions.

The total evolution of the quantum system can then be implemented by repeating a

global unitary operator:

Û = Ŝ
(
Î ⊗ Ĉ

)
, (2.6)

where Î and Ĉ are the identity and coin operators, respectively, as applied to the coin

state. The final state after t steps is then expressed as:

|ψ〉t =
(
Û
)t |ψ〉0 =

∑
x

∑
v

λx,v |x, v〉 , (2.7)

with the probability of locating the walker at position x after t steps is:

Pr(x, t) =
∑

v∈{0,1}

| 〈x, v|
(
Û
)t|ψ〉

initial
|2 , (2.8)

where |ψ〉initial represents the initial state of the total quantum system.

For a discrete-time QW, a coin operator can be fixed, with a resulting probability
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distribution relying on the initial coin state and step number [24]. If a coin operator

at each step depends on a binary message to construct a quantum hash function

by the modification of a one-dimensional two-particle discrete-time QW on a circle

described by D. Li et al. [26], the resulting output probability distribution can be

utilized as the hash value. In the scheme shown in [26], the coin’s state operates as

the control parameter, thus keying the quantum hash function: The n-th bit of an

input message controls the n-th step of the quantum walk.

The construction of the quantum hash function is as follows:

1. Select parameters (n, (α, β, χ, δ)) and provide information regarding the initial

amplitudes of the coin state and provide the message of arbitrary length; n is

the node number of a circle, (α, β, χ, δ) are the amplitudes of the initial coin

state |v, τ〉 = (α |00〉+ β |01〉+ χ |10〉+ δ |11〉) .

2. Run a one-dimensional two-particle discrete-time QW on a circle under control

of the message and generate the hash value (probability distribution).

3. If a classical form is wanted, multiply all values in the resulting probability

distribution by a normalization factor, based on the size of the computed state,

to form the binary hash value (i.e. 10n (mod ‖Aclassical‖) ).

The hash function described has a full detailed construction shown in Appendix B,

but a generalization of this procedure can be shown for any polynomial representation

of a Boolean function (message) as described by F. Ablayev and A. Vasiliev. [27] and

serves as an extension to Equation 2.7.
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Letting t = 2n and parameter set ~B = {b1, b2, . . . , bk} ⊂ Zq, a generalized quantum

hash function can be defined where ψt, ~B : {0, 1}n 7→ (H2
t )
⊗(log d+1) for some input

m′ ∈ {0, 1}n as:

|ψt, ~B(x)〉 =
1√
d

d∑
i=1

|i〉

(
cos

2πbix

t
|0〉+ sin

2πbix

t
|1〉

)
. (2.9)

It then follows from Equation 2.9 that a quantum hash |ψt, ~B(x)〉 of an n-bit

string x consists of (log d + 1) qubits. The result is that the controlling set ~B of the

hashing parameters determines the size of the hash and provides the function ψt, ~B

with collision resistance.

2.2.2 Mapping from Quantum Hash to Polynomial

Since the quantum hash can be constructed to take classical or quantum infor-

mation and map it to a “hashed” version of the data, where in this sense the term

hash is used rather lightly1, the next step is to map the output to a polynomial

representation.

Luckily, A. Dragt’s lectures from 1982 describe that the Hamiltonian created by

the developed set of unitary transformations, created by the quantum hashing process,

can be represented as a symplectic mapping [28]. More specifically it should be

possible by Dragt’s Hamiltonian transformation to show that that there is a possible

integration of Hamiltonian systems using polynomial maps.

Specifically, an example where some arbitrary 8-dimensional (three qubit) space

can be represented through denoting a possible collection of eight phase-space vari-

ables, qθi, pθi ∀i ∈ {1, 2, 3, 4}, by symbol zθ:

1In this scheme the reversibility aspects of unitary quantum operations are still obeyed.



16

zθ = {qθ1, qθ2, qθ3, qθ4, pθ1, pθ2, pθ3, pθ4} . (2.10)

Interestingly, the Lie operator [28] that corresponds to the phase-space function

f(zθ), notated as Lf (zθ), where Lf is the Lie group on f , is defined by its action on

a phase-space function g(zθ) as:

Lf (zθ)g(zθ) = [f(zθ), g(zθ)] . (2.11)

The relation in Equation 2.11 simply denotes a standard Poissonian of the func-

tions f(zθ) and g(zθ). The Lie transformation function can then be defined as:

eLf (zθ) =
∞∑
n=0

Lf (zθ)n

n!
. (2.12)

The total effect of the Hamiltonian system on a qubit is formally just the action

of a map, M, that takes the qubit from an initial state zinitialθ to some final state

zfinalθ :

zfinalθ =Mzinitialθ . (2.13)

It is possible to show that M is a symplectic map [28] by considering the map’s

Jacobian, M , to satisfy the symplectic condition:

MᵀJM = J , (2.14)

where J is the fundamental symplectic matrix.

Following the Dragt-Finn factorization [29], the symplectic map can be factorized

as:

M = M̂eLf (zθ1)eLf (zθ2) . . . eLf (zθn)eLf (zθn+1) , (2.15)
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where f(zθn) denotes a homogeneous polynomial in zθ of degree n, uniquely deter-

mined by the factorization of the fundamental symplectic matrix. The infinite product

of Lie transformations then represents the non-linearity of M.

By using this procedure, each element on a lattice or ring can be represented by

a symplectic map. Similarly, if two of these maps were to be concatenated together

following the Campbell–Baker–Hausdorff theorem [30], a single map is formed of the

entire possible n-degree map-space.

Since the number of Lie transformations is infinite according to Equation 2.15, the

mapM should be truncated. Unfortunately the truncation ofM to some polynomial

order P will violate the symplectic condition. Instead, Dragt shows a simple method

of refactoringM in terms of several (smaller) symplectic maps that can be evaluated

without truncation; polynomial maps [28].

The actions on the phase-space are equivalent to solving for the Hamiltonian’s

morphism between one set of operators to another set of operators. For some time-

dependent operation, the previous set defined in Equation 2.10 can be examined.

Consider the following expanded example: the action of eL(q31) on q1, p1 in some

two-dimensional phase-space.

Setting up the operations to solve for a time-dependent basis leads to:

dq1

dt
=

∂h

∂p1

,
dp1

dt
= − ∂h

∂q1

, (2.16)

meaning that h = q3
1, where solving for a simple case of t = 0, −1 will result in:

q1(t) = q1(0) , p1(t) = p1(0)− 3q1(0)2t . (2.17)
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It is obvious then, that taking the original phase-space parameters and mapping

through smaller symplectic maps will result in some form of polynomial representa-

tion. The symplectic maps eLh(zθ) directly contribute to the polynomial mappings of

the phase-space variables into themselves. The result, then, is easily coded where the

following will be easily generalized into a higher dimension:

1. All polynomials following the form h(zθ), where both the phase-space variable

and the variable’s canonical conjugate do not appear together can easily give

rise to the polynomial symplectic maps through the operator eLh(zθ).

2. If there exists a canonical conjugate to a variable and it is paired with the orig-

inal phase-space variable, {qi, pi}, and it is present in the resulting polynomial

h(zθ), then it will only appear in functions of the collection of the phase-space

variables2, ẑθ with some polynomials a and g where the form is:

(a) a(ẑθ)qθi + g(pθi, ẑθ),

(b) a(ẑθ)pθi + g(qθi, ẑθ),

(c) Integer powers of h(zθ).

2.2.3 Making a Connected Graph of Polynomial Nodes

Now that there is a polynomial mapping shown for the Hamiltonian operators

and map, M, it is easy to see that the minimum of two relations is preserved for

the symplectic map and is easily changed based on the quantum technology. In this

sense, both position-momentum or phase relations are preserved by the symplectic

map. The coordinates are continuous variables and thus are the Hilbert space where

2The collection of phase-space variables is understood to be all variables that are linked in the
initial phase-space set that make-up the original Hamiltonian operator on the system.
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the state lives in infinite-dimension. The way to see how the coordinates relate is to

refer back to Equation 2.10. The equation works except for a generalized change in

a q-qubit system with arbitrary polynomial components q̂θi and p̂θi:

ˆzθn = (q̂θ1, . . . ˆqθn, p̂θ1, . . . p̂θn) . (2.18)

Following from Equation 2.18, a vector of generalized canonical coordinates is in

place, where the canonical commutation relation [31] is simply expressed as:

[ ˆzθn, ˆzθn
ᵀ] = i~Ω , (2.19)

where

Ω =

 0 In

−In 0


for an n× n identity matrix, In , and Planck constant ~. The form of Equation 2.19

is astoundingly similar to Equation 2.11, and indeed this is true: The canonical com-

mutation relation is operating under the position and momentum or phase operators

under a generalized Heisenberg equation in the phase-space.

Taking the calculation a bit further reveals that there is a physical realization of

the polynomial nodes within the Hilbert space. Since many physical situations only

require quadratic Hamiltonians of the form:

Ĥ =
1

2
ˆzθn

ᵀK ˆzθn , (2.20)

for K being a 2n × 2n symmetric matrix, a useful restriction is revealed. The

restriction allows for the reconfiguration of the Heisenberg equation as:
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d ˆzθn
dt

= ΩK ˆzθn . (2.21)

The change is again showing the similarity between Equation 2.21 and Equation 2.16.

Since the solution to both of the equations must preserve the canonical commutation

relation, it is thus true that the time-evolution of the system or, general message

evolution of the mapped polynomials, will be equivalent to the action in a real

symplectic group, Sp(2n,R), on the phase-space.

2.2.4 Traversing the Connected Graph

To better describe the Hamiltonian operations that occur in the polynomial map-

ping scheme to nodes on a graph within a Hilbert space, examine what is shown in

Figure 2.2. There are certain transitions possible within the mapping, but all follow

their respective path from node along an edge to a neighboring node.

Figure 2.2: Polynomial node transitions highlighting the map of a quantum
hash to its representation as a set of Hamiltonian operations, here as single unitary
operation, where there exists a map of several distinct sets of operations that can be
navigated through from a single unitary node to another along its closest edge.

To better describe what the operators are in Figure 2.2, it can be considered

that each point is made in the following method, from the result of a set of unitary
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transformations described after completing the standard quantum hashing function

shown in Equation 2.9. Given some hash result, taking an initial state |ψ0〉 with

successively applied unitaries, there is a global unitary, Utotal, representation.

|ψtotal0〉 = U0U1 . . . Un︸ ︷︷ ︸
Uα

|ψ0〉 (2.22)

From this, there will also be other possible global unitaries acting on an initial state,

such as:

|ψtotal1〉 = U0U1 . . . UnUn+1︸ ︷︷ ︸
Uβ

|ψ0〉 (2.23)

|ψtotal2〉 = U0U1 . . . UnUn+1Un+2︸ ︷︷ ︸
Uγ

|ψ0〉 (2.24)

|ψtotal3〉 = U0U1 . . . UnUn+1Un+2Un+3︸ ︷︷ ︸
Uδ

|ψ0〉 (2.25)

In general, it is possible to describe the transitions from one polynomial unitary-

representing node to the next through a transition operator. Suppose that the

current system is on node Uα and an operation is applied to the two-dimensional

plane depicted in Figure 2.2. From the figure, a simple unitary transition operator,

U trans
n , where n represents n-number can be applied such that the following would

be true:

Uδ = U trans
2 Uα . (2.26)

Here, it becomes obvious that the estimated endpoint can be determined by the

resulting transition unitary from a start point to an end point.
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2.2.5 Arbitrary Length Extension of Quantum Sponge

Following from Section 2.2.4, a method to traverse a polynomially-connected graph

is developed, but there is still the missing enabling component for arbitrary-input and

arbitrary-output lengths necessitated by the quantum sponge function. Specifically,

it becomes a question of what does the length extension mean in the context of this

work? For this work, the arbitrary length-extension operates in terms of increasing the

order of the polynomial generated, as shown in Section 2.2.2. Interestingly, a closer

look needs to be taken at the actual unitary dynamics of the system. There is work

by A. Nahum et al. that focuses on the dynamics within a gaseous system and the

resulting quantum entanglement growth [32]; which is able to be applied directly to

the work here to describe the changes present in the connected graph of transitional

polynomial representations of Hamiltonian operations, due to the data effectively

encoded into transitional states, as is shown in Equation 2.20 and Equation 2.21,

that have a slice-dependence where the node being operated on is within its own order

‘slice’ with dependence on the interconnecting nodes, or pseudo-time-dependence in

the related vocabulary for the work by A. Nahum et al..

A 1-dimensional model can be examined to see how the entanglement dimension

increases with successive movements across the lattice, or with successive entangling

operations applied. If a chain of quantum spins is considered within a local Hilbert

space of q-dimension, the open boundary condition can be initially taken with the

bounds of the lattice x = 1, . . . , L. Since only the unitary dynamics matter at this

point, a full density matrix ρ = |ψ〉 〈ψ| can be used to represent a pure state. Looking

at entanglement across a single cut at position x, a reduced density matrix ρx can be

defined by splitting the 1-dimension chain into two halves at x and tracing out the
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left- or right-hand side. The n-th Renyi entropy [33] for a cut at x is defined as

Sn(x) =
1

1− n
logq(Tr ρnx) . (2.27)

Taking log base q, where limn→1, the Reyni entropy becomes the von Neumann

entropy,

SvN(x) = −Tr ρx ln ρx . (2.28)

Importantly, a constraint on the von Neumann entropy can be made where neighbor-

ing nodes may only differ by at most one change. The constraint on changes between

nodes is described by

|SvN(x+ 1)− SvN(x)| ≤ 1 . (2.29)

Examining the relation of growth of bipartite entropies, S(x,m), with message m,

starting from a base state, there will be growth in the entropy of the system with each

subsequent message change, depending on the unitary operation applied. Figure 2.3

shows how the transition and increase in entropies described would work.

Starting where limn→0 of the Reyni entropy occurs, known as the Hartley entropy,

S0, the bond dimension of message nodes can be calculated. Keeping the initial

state size q finite, in a given message transition, a unitary can be applied at node

x. Applying the unitary may change the Hartley entropy at the selected message

node, but the connected message nodes requiring distinct unitary transitions will

not change. The reason this is true is due to the previous constraint on transitions

from Equation 2.29, such that the maximum value allowed by the constraint, with

Pr(change) = 1, will be:
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Figure 2.3: Dynamic message changes in a chain of message nodes depending
on where an entropic cut occurs, supported by an entangling unitary transition. The
entropy of a d-dimensional message chain increases with each successive operation.

S0(x,m+ 1) = min(S0(x− 1,m), S0(x+ 1,m)) + 1 . (2.30)

This entropic relation can be generalized naturally to higher dimensions, cut by a

d-dimensional disordered membrane embedded into (d + 1)-dimensional space-time.

By using CNOT gates to increase entanglement in the system, the cut of the higher

dimension will reveal a larger dimensionality within the chosen subspace. Interest-

ingly, the entanglement S(m) for a region A whose boundary ∂A becomes a temporal

thickness m, will terminate on the upper bound of a ‘time-slice’ (message-slice). The

total volume of the space-time subspace is |∂A| × m, leading to the scaling of the

membrane’s energy and thus entanglement. The sub-leading terms are subsequently

used to encode universal information.

By entanglement, a d-dimensional noisy quantum system will result in systems
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where d = 1 and d = 2 exist with unique dynamic phase and nontrivial critical

exponents. The result for disordered systems where d = 1 and d = 2 is derived

from the early Ising models of systems with pinning [34], and can be applied to any

system of quantum interconnect, as described in the 1986 work by D. Fisher [35].

If a lattice is present, or in this work, a topology of interconnected nodes similar to

Figure 2.3, two stable phases and dynamical phase transitions are possible in d = 3

and higher, since the membrane can be pinned by the lattice of message nodes. If a

quantum system is taken that is infinite in one direction and of size L in the other

(d−1)-directions; considering the entanglement for a perpendicular cut to the infinite

direction will yield to S(m) growing indefinitely for the given geometry. This is ideal,

since the developed geometry can be extended upon indefinitely, therefore allowing

for a map of the generated quantum hash into this space to form the quantum sponge

function.

2.2.6 Bounding of Expanded Quantum Sponge to User Requirement

Up until this point, the quantum sponge has the ability to be mapped and to grow

fairly unconstrained, with matching unitary transition sequences. Since the quantum

sponge, including the repeated entanglements, continues to grow, this necessitates

that when someone is expecting an arbitrary output, they should provide a growth

argument, Gmax.

To properly constrain the output of the quantum sponge, the uniform boundedness

principle can be applied, where the details of the uniform boundedness principle can

be seen in Appendix C. Why can the uniform boundedness principle be applied? The

reasoning is quite clear, since the quantum state exists within a large Hilbert space,

it must be remembered that the Hilbert space is a vector space over the complex
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numbers with an inner product. The Hilbert space is then complete with respect to

the inner product, where the Hilbert space is then directly a Banach space whose

norm is determined by the inner product. Eventually, the size set by the user will

need to follow:

Gmax ≤
∞∑
i=0

∞∑
j=0

∥∥U trans
i

∥∥∥∥∥|ψ〉j∥∥∥ , (2.31)

where the value of i, j limits the number of either entanglements or number of

traversal unitaries applied.

The space keeps expanding until the point at which Gmax is satisfied for some

arbitrary i, j, depending upon whether the user places an alternate restriction on the

number of unitary transitions or on the total number of entanglements that take place.

Following the uniform boundedness principle then shows that for a fixed message

node, the family of points are point-wise bounded by Gmax, i.e. the message point and

any branches from the message point up to U trans
i are Banach (sub)spaces, detailed in

Appendix D, of the total Hilbert space defined by |ψ〉j. Thus, all of the requirements

to apply the uniform boundedness principle are fulfilled, such that the linear unitary

operator’s ability is effectively finite with respect to the user’s requirement.

2.3 General Quantum Sponge Application

When reviewing the construction of the quantum sponge, at its core, a pattern

emerges. As a QW-based hash is expanded, mapped to a polynomial representation,

and traversed topologically, for each successive step, the unitary transformation could

potentially be immense. The fact that there are potentially large changes in dimen-

sionality when referring to successive steps provides an excellent platform to construct

secure primitives. A secure primitive constructed on a path arbitrary in length leaves
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little room for an adversary to estimate origin or sequence on successive steps on

the path, never mind being able to form assumptions of the dimensionality of the

system. An optimal application for the quantum hash function and sponge extension

will be further described in Chapter 4. Additionally, the movement between nodes

of polynomial mapping serves the potential application of state traversal solely along

vertexes of the mapping, instead of necessitating an edge; described in more detail in

Chapter 5.
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CHAPTER 3

AUTHENTICATION METHODS

Authentication is an important part of any ciphersuite, as authentication provides

a secure method of authenticating not only entities, but other components in a

network, such as keys and messages. Identity authentication is generally the first

method of authentication thought of when authentication is mentioned, because this

primitive allows for the protection of the communication from an eavesdropper, Eve,

pretending to be a legitimate user. It is important to make any protocol or ciphersuite

have resilience and resistance to an eavesdropper, such that the sent messages are only

accessed by the authenticated user. In an authentication scheme, the receiver verifies

the creator of the information, as where in identity authentication specifically, the

identity is generally a machine or an individual, where an entity that tries to prove

itself is known as a prover, and the entity that verifies the other’s identity is the

verifier.

In general, an identity authentication scheme works because a sender pre-registers

‘secret’ information regarding his/her identity, in a database held by the receiver, prior

to any communication. When communication is initiated, an identity authentication

occurs where the receiver can receive the secret information from the sender and verify

the information against the previously registered information in the database.

The other versions of authentication, specifically message authentication, work
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where the sender and receiver have a secure channel that may be in an untrusted

environment. Within the untrusted environment there is the potential for an eaves-

dropper to intercept and manipulate messages, or impersonate either the sender or

receiver in what is commonly known as a ‘man-in-the-middle’ (MITM) attack. The

message authentication techniques help to overcome the falsification of identity when

sending messages by appending or applying user-specific information to the message

between a prover and verifier.

When examining potential methods of solving issues revealed to MITM attacks

in networks and communications, a common classical hardware technique comes

to mind: physically unclonable functions (PUFs) and physical one-way functions

(POWFs). The question of how to implement these devices in a ‘quantum’ way is

of interest and relevance to this work since hybrid quantum–classical primitives are

necessary to develop a ciphersuite.

3.1 Classical PUFs

Classical CMOS-based PUFs are physical primitives that utilize process fabrica-

tion variance to create unique physical one-way functions. Unlike non-volatile memory

where information can be stored and read digitally, information in CMOS-based

PUFs is directly extracted from inherent lithographic variation, making static PUFs

impossible to be duplicated; even within the original manufacturing process [36].

Other common forms of electronic PUFs include arbiter PUFs [37] that utilize delay

to measure difference in transmission times of two competing pathways to gener-

ate a digital response, butterfly PUFs [38, 39] that examine output from a set of

cross-coupled latches, and random-access memory (RAM) PUFs [40] that are based
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on randomly distributed mismatches between two transistors where the repeatable

start-up conditions of cells are treated as digital responses.

The operating scheme for all types of PUFs remains identical. Given a set of

specific inputs, referred to as the challenge, a PUF will generate a unique output

response due to the randomness present in the device. These inputs and specific

outputs are known as the challenge-response pairs (CRPs). The manufacturer/user

of the PUF enrolls the device by generating and recording all of the viable CRPs.

The user can later verify the identity of the integrated or remote PUF by challenging

the device and comparing the response to the expected response.

3.1.1 Classical PUFs in Quantum Systems

The application of classical PUFs, or PUFs whose base operating point relies on

classical binary information, has not been studied in depth as a field of interest. The

most relevant work with regards to application is related to the readout of classical

PUFs, and will be described in detail in Section 3.2.4. The most recent and relevant

work in the field of classical PUFs, as applied to quantum systems, can be seen in a

survey on PUFs and their security, with a quantum emphasis, written by M. Arapinis

et al. in late 2019 [41].

3.2 Optical PUF Hardware Photon Authentication

A major component of this work was the development of a physically unclonable

function (PUF) based on an integrated silicon photonic platform1. PUFs have been

suggested as a means to securely authenticate a networked device or remote user. The

1The platform for the PUF is photonic to the author’s fellowship and affiliation during his PhD
studies. Realistically, several other controllable photonic devices may be used a PUFs or POWFs.
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current state-of-the-art means of authentication begins with the usage of a classical

secret key or token stored within a read-only memory (ROM). A PUF is of particular

interest since they often form the basis of the hardware primitives necessary to replace

these shared secret keys with a non-reproducible physical object or device.

PUFs based on optical measurements have been proposed with differing operating

bases, where either the scattering of laser-light from bulk inhomogeneous media [42],

or multi-mode fiber [43], or non-linear interaction in specialized integrated devices

[44] are observed. One of the main reasons that electronic PUFs are commonly

implemented into field programmable gate arrays (FPGAs) and other protected IPs

is because of the electronic PUFs’ ease of integration into the many existing CMOS-

process devices as well as their low size, their low weight, and their low power

requirements.

Optical PUFs often require non-trivial bulk optics and ancillary support, such

as micron-accurate positioning stages [42] or bulk disordered materials [43]. A more

compact solution was conceived by Grubel et al. [44], utilizing integrated optics,

however, these integrated optical PUFs require a set of completely custom-designed

devices for the sole purpose of use as a PUF. In this work it is shown that any large

enough and well-connected enough array of linear optical devices2 can be used both

for its designed purpose and as an optical PUF.

In this work, a linear optical interferometric circuit is described, without the

original intent to be utilized as a PUF3, and demonstrates how a small sub-circuit

behaves as a weak PUF but has the possibility to further meet the criteria of a

2The array of linear optical devices was available due to the author’s fellowship and affiliation
during his PhD studies. The device utilized for this work was originally developed between the
author’s fellowship organization and MIT [14].

3The original application for the device was as a ‘lab-on-chip’ to allow for quantum telecommu-
nication experimentation.
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strong PUF. In addition, it is shown how the scale of an integrated optical circuit

intrinsically carries enough randomness from multi-input interference via adjustments

of Mach-Zehnder interferometers (MZIs) to act as a practical PUF.

3.2.1 Optical PUF and Randomness

The device used and simulated in testing of the all-optical PUF is the device as

described in greater detail, ahead in Chapter 5. To understand this work however,

requires only the knowledge that MZIs are basic optical components that are analo-

gous to thermo-optic switches. Electrical settings on the device act on the waveguide

material to control how much light travels down consecutive pathways. This work was

completed using two PUF devices consisting of 10 MZIs, each pumped by a Keysight

laser (model 81606A) through a simple waveguide. Each PUF device has 8 output

ports, each connected to a single standard positive-intrinsic-negative (PIN) photodi-

ode (Precision Micro Optics model DPRM-412). The subset devices used within the

photon manipulation tool are triangular-shaped with a light cone dispersion region,

with a representation of a single 10-MZI lightcone shown in Figure 3.1.

Of importance to note, is that each of the MZIs within the lightcone struc-

ture are composed of two symmetrical beamsplitters, where each beamsplitter is

thermo-optically controlled using an integrated resistive heating device (more on

that later). Since randomness in the output of the device is essential to the basic

operation of a PUF, it is important to understand where sources of randomness

are located for the device used in this work. The first source of randomness for

this device is the ≈ 15.43% variation between resistive heaters, as measured, due

to fabrication variances. An additional source of randomness, having a far more

significant effect on the device, are the two directional couplers within each MZI. The
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Figure 3.1: Optical PUF lightcone depicting the graphic representation of the
subset devices utilized within the photon manipulation device. The laser input is
arbitrarily user-chosen between the two input waveguides in the lightcone region,
with the 8 output ports each connected to a single standard PIN photodiode. The
figure inset shows a single ‘cross’ depicting the operation of a single MZI.

couplers are designed to be a nominal 50:50 split but fabrication defects stemming

from variation in the etching process, sidewall roughness, and variation in minute

distances between waveguides leads to unpredictable splitting ratios near 50%. An

additional source of unpredictability leading to potential for randomness in the device

comes from a minor design flaw: Since many of the MZIs share ground leads, positive

feedback ground-loops are formed when a single MZI’s voltage is set and the cascading

MZI’s resistive elements return a very complicated function of voltages, induced by

association to the active element. The effect of ground-loop feedback is approximately

−45 dB as measured by M. Prabhu [45]. It can be expected that the positive feedback

ground-loop voltage errors may be a minor factor in the device’s overall behavior. To

minimize thermo-optic effects, the device was held at a steady temperature slightly

above ambient throughout testing.

The photon manipulation device is large enough to act as two distinct 10-MZI

devices with identical structure due to the original device being composed of 88 MZIs.

Two devices were programmed to be used for comparison by taking the photon ma-
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nipulation device and pumping laser-light into two space-like separated sections such

that the light from one 10-MZI lightcone will not reach the other 10-MZI lightcone,

either directly or through reflections other than those coupled into the slab-mode. In

addition, the two devices are electrically separated so that no positive ground-loop

feedback effects can exist between the devices. Using the photon manipulation device

in this manner means that fabrication and interconnection differences between the

two halves of the device are minimized. Any similarly fabricated device to be utilized

as a PUF will inherently possess additional random variance compared to the devices

under test, especially due to the tunability of MZIs. The additional random variance

may be calculated for additional fabricated devices by Markov chains for mutual

information.

3.2.2 PUF Metrics and Notation

The definition of a weak or strong PUF given by C. Herder et al. [36] is applied. A

weak PUF is described as: a) Having a number of CRPs linearly related to the number

of components, b) being robust against environmental effects i.e. having stable CRPs,

c) having unpredictable responses to any stimulus and, d) being extremely impractical

to reproduce. A strong PUF is characterized by all of the previous statements

regarding weak PUFs with the addition of: e) Having enough CRPs such that the

number is exponential in the number of challenge bits and f ) that the readout will

reveal only the response R = f(C), plus noise, and nothing else.

One metric chosen to test the difference between CRPs is the Euclidean distance,

`2-norm, of the N outputs. To measure the Euclidean distance, the analog response

of each detector is divided into even-sized subsets; each of which is larger than the

estimated noise of the system. For testing, a subset of size 0.5% of the total power
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detected across the N outputs was chosen based on the minimum detector sensitivities,

scaled by normalization factors between CRPs.

To decrease or correct error within the testing of the PUF, the size of the voltage

subset utilized in computation was increased from 0.1%. The increase in subset size

serves to decrease the chances that any noise present on a particular channel straddles

the bounds between two values. The increase in subset size also has the effect of a

reduction in resolution for the `2 distance. An alternative option to decrease or correct

error within the testing of the PUF is to increase the collection time, thus increasing

the amount of averaging that results in a single CRP. The drawback to relying on

increasing the collection time are latency requirements, which may hamper any fast

electronics requiring the output of the PUF and may possibly allow an adversary

additional time to perform side channel attacks.

The second set of metrics that are utilised to quantify the results of the PUF

are the inter- and intra-device Hamming distances (HDinter, HDintra) along with the

inter- and intra-device Euclidean norms (`2
inter, `

2
intra). To analyze the results, the

standard Hamming distances were modified between a response Ri and challenge Ci

to reduce the effects of noise. The loose Hamming distance (LHD) can be analyzed

between two noisy responses, Ri and Rj for all elements k as:

LHD =
∑
k

f(Ri, Rj)k =


0,∀k if |Ri,k −Rj,k| < L

1,∀k if |Ri,k −Rj,k| ≥ L

(3.1)

Where L ∈ N defines the degree of looseness and L = 1 is the normal HD. In the case

of the small PUFs, L = 2 is sufficient. The LHD definition is used to compensate for

the experimental noise and rounding errors, as discussed below. In addition to the
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LHD, the standard `2-norm is used, following the standard definition given by:

‖x‖2 =

√∑
i

x2
i . (3.2)

The major difference between these two metrics for non-binary data is that the

Hamming distance represents the number of measurements which are different while

the Euclidean norm gives a metric of the significance of differentiation. Interestingly,

the Hamming distances are expanded upon and are used to determine the uniqueness

of the device as described by R. Maes and I. Verbauwhede [46]. Uniqueness is a

calculated estimate for the amount of entropy available from a PUF and can be applied

to a similar population of PUFs with an identical architecture. The uniqueness, Un,

can be calculated for some challenge, Ci, as:

U|Ci =

(
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

LHD(Ri, Rj)

m

)
× 100% , (3.3)

Analogous to Equation. 3.1, L = 1 gives the standard definition of uniqueness. Here,

n is the number of PUFs in a population, and m represents the number of bits in

the response from the PUF. An optimal uniqueness value for binary PUFs would

be 50%, as this implies uncorrelated responses. Since the PUF is continuous via

electronic control, the interpretation of Equation 3.3 must be modified. Given that

LHD = 0, i.e. a complete collision, doesn’t contribute to U|Ci and a partial collision

contributes only to the fraction that didn’t collide, U|Ci is counting non-colliding

responses. Regardless of the looseness, this is equivalent to a target uniqueness

between devices of 100%.



37

3.2.3 Results of PUF Testing

To test the optical PUF, several sets of data were generated. First, using the

small section from Figure 3.1, 100,000 random CRPs were created and mirrored on

each device, and a single CRP was repeated 5,000 times on each device. All of the

CRPs were randomly selected in each variable from a uniform distribution over the

v2π voltage range required for a complete switching response of a typical MZI. For

the analysis of the response of the small PUFs depicted in Figure 3.1, eight output

intensities were measured via a polled array of photodiodes. The results are shown

below.
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Figure 3.2: Distinguishability of LHDintra, for both 10-MZI devices. LHDintra

between the same repeated challenge (orange) and between a typical challenge and
random challenges (blue) on the same device.

Figure 3.2 shows the repeatability (orange) of the same challenge applied 5,000

times to each device. The two devices show a relatively low LHD ≤ 4. The difference

between Figure 3.2a and Figure 3.2b is accounted for by the differences in noise level,

with a higher total noise on the second device4. The second dataset in both figures

(blue) shows the difference between a typical CRP and the 100,000 randomly selected

4This difference is likely caused by photodetector variation due to differing production batches
with a result of approximately 1.5 times the noise shown on the datasheet for the PIN photodiodes
previously mentioned.
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CRPs. The two devices show strong repeatability through the LHD by staying

within a narrow variable range. The two devices additionally show strong metrics

for distinguishability. The differences between a single challenge and response set

to a differing challenge and its response set is easily identified. Ideally, LHDintra =

0 should be true for a fixed challenge and LHDintra = 8 for differing challenges.

The `2-norm is necessary to provide an additional measure of the significance of the

differences.

For applications of this PUF in authentication roles, the key importance is the

inter-chip response to the same challenge. Figure 3.3 depicts the LHDinter metric

between 100,000 randomly chosen CRPs as they apply to both devices. The number

of challenges is too large to test all possible settings. For 100,000 challenges mirrored

between the two devices, Equation 3.3 can be analyzed to find a total uniqueness

of 85.28%. LHDinter is strongly centered around LHDinter = 8, approximately 70%

of challenges and responses have no measurement values in common, and less than

10% have more than two distinct measurements in common. There were no complete

collisions5 found during testing through numerical search of empirical results.

The commonality of the measurements are shown in Figure 3.4, where the blue

data shows the `2
inter distance between the two devices for each challenge. The smallest

`2
inter distance found was 11, with a mean of 58, median of 55, and standard deviation

of 23. The orange data shows the `2
intra distance between a typical response and all

other responses to the same challenge on a single device. The data shown is typical

with limited overlap between histograms. Some CRPs appear to have more noise

5In this context a collision is considered to be complete where all output values are identical for
two different given inputs, or partial where two similar inputs result in arbitrarily similar outputs;
these are not fully distinguishable since a distinguisher can exist where a value can be differentiated
from a random oracle [16].
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Figure 3.3: LHDinter distances of small PUFs between 100,000 randomly chosen
challenge-response pairs compared between the two 10-MZI devices.

than others and multiple datasets have shown no overlap at all between histograms,

the least distinguishable of which is shown as an example in Figure 3.4, the `2
intra data

shown here has a mean of 6, median of 5, and a standard deviation of 4.
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Figure 3.4: Euclidean distances of small PUFs, showing the distance between
the response to identical voltage settings on both devices (`2

inter, blue) and the response
of one device to the same repeated challenge (`2

intra, orange, typical). The inset shows
the region of overlap.
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3.2.4 Optical PUF as an Authentication Mechanism

The general operation of a PUF authentication system can be summarised by the

image shown in Figure 3.5. Shown is a general method where the device containing

the optical PUF can be characterized with a set of challenges and a measured response

can be captured by the verifier; called challenge-response pairs (CRPs). When the

device is manufactured, it is characterized with possible challenges and the responses

are measured. The CRPs are then stored and delivered to the purchaser of the

device, often called the enrollment data. Once the device is in use away from

the manufacturing facility and/or connected via an untrusted channel, one of the

challenges can be applied to verify that the expected response is generated. If the

verification is successful, the authenticity of the device can be assumed.

Figure 3.5: Generic PUF application detailing the operation of a PUF within a
network or device communicating through an untrusted environment where the final
value can be queried by a third-party to verify that the communication taking place
is genuine. Once verified, communication can continue in an untrusted channel.

To utilize the optical PUF in a practical application, a more subtle approach is

necessary. The challenge applied to the optical PUF is in the form of electrical settings

sent through a control-module, while classical light, or single photons, are present at
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the input ports. When the applied challenge is in the form of classical light, the MZIs

will configure the light to a certain output profile, depicted by Figure 3.6. The output

profile is in terms of normalized relative intensity across the measured photodiodes

where a distinct histogram is formed for each provided set of challenges to the MZIs.

Figure 3.6: Optical PUF output profile from two challenges applied to the device
in the form of MZI settings, with the right graph showing the resulting profile from
the detector’s response in terms of relative intensity. The blue/orange bars represent
possible responses to a predefined set of two challenges. The MZI symbol is in the
upper left, represented by a ‘cross’ where each MZI is composed similarly to the one
shown later in Figure 5.2.

Similarly, the purely-quantum variant of utilizing the optical PUF will result in a

set of MZI phase modulation settings being sent to the device as a challenge via the

same control-module mentioned previously. The result will be an arbitrary state out-

put from the device where the PUF has applied an arbitrary unitary transformation,

Uarb, to the photons entering the device. The mathematical representation of a PUF

authenticator with N input/output modes and q-many photons will be:

Uarb
qi
|ψchallenge〉qi = |ψresponse〉qi , (3.4)

where |ψresponse〉qi =
N∑
j=0

α0
qi
|j〉 ,
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for a q-many qubit (photon) input state with indexable qubits at position i. The

response will be in a superposition state with some coefficients α0
qi

on output modes

|j〉 due to the natural structure of the PUF device shown in Figure 3.1. Since a single

or multi-photon input, of an unknown state will enter the device, the resulting output

density matrix, ρψresponse , will have an additional weight constant ωn and PUF weight

constant ωp, described further in Section 3.2.5, where each weight constant affects the

separate |0〉 and |1〉 components of a qubit. The output response (histogram) from

the PUF will then be projected from a measurement (or repeated measurements) of:

ρqiψresponse = |ψresponse〉qi 〈ψ
response|qi (3.5)

= ωnωpU
†arb
qi

(a |−〉 〈−|+ b |+〉 〈+|)Uarb
qi

(3.6)

= ωnωpU
†arb
qi

(c |0 〉 〈0 |+ d |1 〉 〈1 |)Uarb
qi

, (3.7)

where |1〉 =
i√
2

(|+〉 − |−〉) ,

for differing polarization, either left = |−〉, right = |+〉, horizontal = |0〉, or vertical

= |1〉.

The operation of a fully optical PUF in a quantum system has not been studied

before, but, something similar was approached by B. Škorić et al. whereby a quantum

readout protocol was developed to interface with a classical PUF [47]. The readout

protocol is modified, described below, with key notational differences to fit this work

and to allow for a reconfigurable, optical, PUF.

The quantum readout of the optical PUF is simple, where the challenge space of

the device is a d-dimensional Hilbert space, H, with a direct mapping to the response

Hilbert space6. An arbitrary input challenge |ψchallenge〉 ∈ H is mapped through the

6Our device, being electronically reconfigurable, facilitates the mapping of an optical input
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optical PUF, with response R̂, such that R̂ |ψchallenge〉 ∈ H. The response will be

unique, up to the limit of uniqueness from Equation 3.3 where all nominal values of

unique CRPs is above 50%7, for each challenge applied, where R̂ may not necessarily

be unitary, but can be decomposed into a response coefficient matrix R and response

unitary Uarb such that R̂ = RUarb.

The authentication between two parties, Alice and Bob, works where the verifier

(Alice) wants to check if Bob still possesses the optical PUF. Alice first retrieves the

original shared enrollment data, then picks a random state, ψ, and prepares the state

ψchallenge ∈ H and sends it to Bob. Bob then lets the prepared particle interact with

the optical PUF, resulting in the final response state ψresponse = R̂ψchallenge, which is

then sent back to Alice. Since the result of the PUF response is in the density matrix,

Alice then computes ρψresponse according to Equation 3.6. Alice is then able to repeat

this process multiple times to be sure that Bob’s PUF is the correct PUF being used.

3.2.4.1 General Security Measure of Optical PUF Authentication

The security of the protocol described is based on the no-cloning theorem, or in this

work, the unclonability of the unknown quantum state by an eavesdropper [48, 49].

For each round of the optical PUF quantum authentication protocol described: A

standard challenge-estimation attack, where an adversary who attempts to determine

the challenge applied using measurement techniques, will only have a maximum

probability of 2
(1+d)

to cause a ‘true’ response from the PUF. The overall probability of

a false positive decreases exponentially with the number of verification challenges that

combined with input phase settings into a ‘challenge’ Hilbert space with the response from the
device being a ‘response’ Hilbert space.

7Uniqueness should be approximately 50%; this value is based on a binary PUF delivering results
from GF (2n), where the reconfigurable optical device in question will show many more possibilities
up to CRPmax depending on the initial challenge, thus more unique and semi-unique CRPs exist.
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Alice sends to Bob. Since the protocol can be generalized to be q qubits (photons), the

state-space becomes |ψchallenge〉⊗q, where the attacker’s per-qubit success probability

is upper-bounded by q+1
q+d

[50].

3.2.5 Optical Authentication of Classical and Quantum Information

Traditionally, PUFs are only used for device authentication and not for message

authentication. Our device is fully optical and can accept quantum states ‘at-once’

unlike the original readout protocol [47]. The modified protocol described can also

have the additional benefit of being reconfigurable, or the ability to act as many PUFs

within a single device due to the tunability of the MZI’s relative phases. The major

difference is in the density matrix and projected measurements showing the additional

ωp parameter. The value for ωp changes with each distinct challenge possible within

the device, such that the solution space increases not only by |ψchallenge〉⊗q but, by an

additional factor of:
CRPmax∑
i=0

‖ωp, i‖ , (3.8)

where the value for CRPmax can be determined by a maximal upper bound by

following the Catalan numbers [51], Cn. It is then possible to count the number

of distinguishable settings within the optical PUF by analyzing the MZI structure as

a fully-rooted binary tree with n + 1 leaves. A rooted binary tree may be applied

since the PUF is pumped from a single input and can calculate an upper bound given

by:

Cn =
(2n)!

(n+ 1)!n!
. (3.9)

This maximal upper limit is unfortunately still too large, due to the number of

configurations of MZIs that are not possible within the architecture. The limit of
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the architecture where pure Catalan numbering cannot apply is due to the limited

number of columns in the device. The limit in number of columns means that the

Catalan numbering scheme will count combinations in a light-cone pattern that are

impossible. To overcome the configuration limit set by the standard Catalan numbers,

a lesser-known combinatorics counting method for binary trees can be utilized, as

described by F. Qi and B. Guo [52], the method of counting by integral representation

of the Catalan numbers. The method of integral counting can be directly applied to

the planar tree variation of counting, similar to the work by P. Flajolet and A. Odlyzko

in [53].

If for a forest composed of a set of trees, F = {t0, t1, . . . , tk}, a single tree is

examined, ti(n, h): this tree can represent any binary tree with or without a shared

child of height h with n nodes. Simply,
∑

h ti(n, h) = Cn, for the n-th Catalan

number. By analysis, the Catalan recurrence for a planar tree gives the recurrence

formula for ti(n, h)8:

ti(n+ 1, h+ 1) = 2
n∑

m=h+1

ti(m,h)
h−1∑
j=0

ti(n−m, j)

+
n−h−1∑
m=h+1

ti(m,h) ti(n−m,h) . (3.10)

The formula in Equation 3.10 utilizes the double summation to count the number

of combinations to build a binary tree on n + 1 vertices whose left sub-tree has a

height h0, and whose right sub-tree has height h < h0. Doubling this value by a

factor of 2 adds all trees whose right sub-tree have height h′0, and whose left sub-trees

have height h′ < h′0. The final term of Equation 3.10 serves to count the planar trees

8This formula requires the following definitions ti(0, 0) = 1 and ∀ ti(0,−) = 0.
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on n+ 1 vertices whose left and right sub-trees are of height h.

Following the modified quantum readout, a simple extension can be made where

authentication of classical data, and quantum messages can be completed. In the

classical case, Bob receives the optical PUF used in this work that acts as several

distinct devices labeled 0, . . . , CRPmax − 1. Bob wants to send an authenticated

classical random variable x ∈ X or message vector x to Alice. Bob’s message vector

of length n is decomposed into xi = {0, . . . , n − 1} ∈ x, where x = (pj)
N
j=1, pj ∈

{0, . . . , CRPmax − 1}, for some PUF pj with selected CRP, j, and is subsequently

sent to Alice. Alice and Bob perform the following:

1. Bob sends x to Alice over a public and non-authenticated channel.

2. For j ∈ {0, . . . , CRPmax−1} Alice and Bob both perform the modified quantum

readout protocol using the PUF’s CRP number pj.

During each of the CRP tests in pj, Alice slowly gains confidence that Bob’s PUF

is returning the responses to her issued challenges. Since there is a response to the

challenges it can be assumed that the holder of Bob’s PUF agrees with the variable

x sent over the non-authenticated channel.

The quantum message authentication variant of the modified quantum readout

protocol operates significantly different with respect to the initial design. Consider a

PUF design where CRPmax = 3. Alice sends a random challenge state |ψchallenge〉

to Bob. Bob then routes the challenge to CRP0 with probability amplitude α,

CRP1 with probability amplitude β, and CRP2 with probability amplitude γ. The

probability amplitudes are sent to satisfy |α|2 + |β|2 + |γ|2 = 1 since the total
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probabilities cannot sum to be greater than one. Bob’s response state sent back

would then be:

|ψresponse〉 = αR̂0︸︷︷︸
αR0Uarb0

|ψchallenge〉+ βR̂1︸︷︷︸
βR1Uarb1

|ψchallenge〉+ γR̂2︸︷︷︸
γR2Uarb2

|ψchallenge〉 , (3.11)

which is subsequently sent to Alice. Alice is then able to verify even though she doesn’t

know the probability amplitudes (α, β, γ) since she does know the components of R̂i

from the initial registration of the optical PUF. This means that when Alice verifies

Bob’s response, that she will need to rely on the initial PUF weight constant, ωp, to

have a ‘best guess’ of what the probability assignment for the PUF’s CRPs would be

when assigned by Bob. Alice then knows that:

∣∣ωCRP0
p

∣∣2 +
∣∣ωCRP1

p

∣∣2 +
∣∣ωCRP2

p

∣∣2 ∝ |α|2 + |β|2 + |γ|2 , (3.12)

where she will then be able to determine that the responses and probabilities match

those that were originally registered from the PUF – assumed to be – held by

Bob. Alice also knows from receiving the modified state that the sender has to

be holding Bob’s PUF, through successive state readouts; thus achieving an optical,

reconfigurable, PUF-based authentication of a quantum state.

3.2.5.1 Secrecy of Modified Readout for Reconfigurable PUF

From a security standpoint of the quantum message authentication using an all-

optical PUF with reconfigurable CRPs, the data could still be considered confidential.

Assuming a challenge-estimation attack on a q-qubit system where q < d, an initial

state ψchallenge would be chosen uniformly at random. An attacker could know
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ψresponse but would not posses the PUF. Additionally, assuming the attacker does

not have access to a quantum machine, or any device that can compute arbitrary

unitary transformations losslessly, only a generic measurement could be completed

with a biased estimator. The adversary would then only be able to compute an

estimation of a response Ê|ψresponse〉 = R̂Ê|ψchallenge〉.

If an adversary challenged Bob’s PUF, the response would not necessarily reveal

the probability amplitudes (α, β, γ) of the proper CRP because, to an adversary, this

information could plausibly be from a different reconfigurable PUF or could relate to

a different reconfiguration setting. In addition, an adversary that could determine the

probability amplitudes sent for different CRPs would not know the original registered

parameter, ωp, that contains the true suggested probability amplitudes for each of the

CRPs within the reconfigurable PUF.

Thus, the modified quantum readout scheme for a reconfigurable all optical PUF

verifies the authenticity of the PUF and can be used to authenticate both classical

messages and quantum states.

3.3 Strict Photon Authentication

Although the idea of a hardware authentication such as that described in Sec-

tion 3.2 is good for devices that have a known ‘owner,’ there are other times when

a more mobile authentication type is needed. A more mobile variant of a quantum

authentication protocol and quantum identity authentication (QIA) can be shown

where simple, non-entangled, photons are used to form a special key-sequence9 that

proves the identity of either a prover or verifier in a two-party system. The major

9This key-sequence is not to be confused with a standard encryption or decryption key!
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difference is that the QIA protocol is able to be mobile across platforms due to the

non-requirement of advanced quantum resources, and can also be used to prove the

identity of multiple provers or verifiers in a multi-party communication system.

A recent work by C. Hong et al. describes a simple protocol to accomplish QIA

with a single photon [54], briefly described where an idealized set of quantum devices

are used with user-specific authentication keys that are coded through encoding bases

of photon polarization. The protocol requires relatively few resources, with security

based on the average eavesdropper’s information gained through each protocol run;

similar to the way that the optical PUF authentication protocol works for classical

information presented in Section 3.2.4. There are two major flaws in the original

protocol: a) Not a single portion of the secret can be revealed, even accidentally,

otherwise Eve is able to collect subsequent portions of the secret during the repeated

protocol runs, and b) there is no proper adaptation to use the protocol as described to

authenticate classical data in a quantum manner. The work pioneered by M. Curty

and D. Santos in QIA schemes is a simple building block that has had much work

expanded upon it since its inception in 2001 [55]. Similarly to the optical PUF au-

thentication, there is some pre-assigned secret information that each party holds, the

security of the protocol requires that there is no leakage of private information during

the exchange process and that the execution does not reveal additional information

to an eavesdropper through subsequent runs of the protocol.

3.3.1 Photon Identity Authentication Protocol

The general requirements for a non-hardware approach to identity authentication

are quite stringent since there is no physical device that is registered then transferred
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to the appropriate parties. For the QIA protocol to be secure, the following must be

true:

1. No portions of the shared secret between communicating parties can be exposed

to an eavesdropper,

2. the shared secret must remain unchanged between subsequent reruns from an

unsuccessful QIA attempt,

3. and no prior means of authentication of the underlying channel shared between

communicating parties can be assumed.

The original QIA protocol based on single photons in the work by C. Hong et al.

is based on a pre-shared secret authentication key, SK = (Sk1, . . . , Skn), where the

combination of Ski represents a two-bit combination of {0, 1}. The original protocol

also operates in two sets of bases: A rectilinear basis Br = {|0〉 , |1〉}, and a diagonal

basis Bd = {|+〉 , |−〉}, used for specific sets of encodings, shown in Table 3.1.

Table 3.1: QIA encoding rules used by Alice and Bob when using a single photon
for authentication within an untrusted environment or establishing communication.

Basis Br Br Bd Bd

Ski(kn, kn+1) (0, 0) (0, 1) (1, 0) (1, 1)
Q State |0〉 |1〉 |+〉 |−〉

The protocol between Alice and Bob then continues as shown in Appendix E,

as Protocol E.1. The protocol works as expected, but there are potential problems,

described below, when it comes to the same MITM attack that the optical PUF is

susceptible to.

If Eve is impersonating Alice, then Eve is able to measure the photons coming

from Alice and forward fake photons to Bob on the same basis derived from Eve’s
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measurement. There are three scenarios in this case, where Eve will either be

successful in passing the counterfeit data to Bob or she will be detected:

1. Eve’s outcome and passing of data agrees with Alice’s encoding, where nothing

will be detected,

2. the reconstructed photon from Eve is in the correct state but the data may not

match what was originally sent by Alice,

3. or the bit decoded by Bob in reception was the result of an incorrect basis

selection by Eve, where Bob’s decoding will fail.

All options are possible, independent of the mode selected by Alice. If Eve gets

a basis selection wrong, Bob will have the incorrect encoding. Since the protocol

is designed to be run again, Eve will gain subsequent knowledge from each of the

rounds accomplished; she will slowly figure out the information sent and have a

higher probability of correctly choosing the basis set by Alice. It is then obvious that

for each protocol abort sent, Eve will learn an additional portion of the secret shared

between Alice and Bob.

Interestingly, the possibility for a MITM attack to happen on the protocol de-

scribed by C. Hong et al. means that this work should also be susceptible to similar

attacks as were present in the original Bennett-Brassard 1984 (BB84) quantum public

key distribution protocol; the foundation of QKD [56]. The protocol described by C.

Hong et al. matches the same four-basis state encoding that is present in the original

BB84 QKD scheme. Indeed, this is the case, as is shown by H. E. Brandt [57], whereby

a probing setup, a ‘Brandt probe,’ can be constructed for the BB84 QKD scheme such

that three separate classes of unitary transformation can be applied to the probe to

carry out an entanglement discrimination attack. The simplest method of probing
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that H. E. Brandt devised, relies upon the implementation of a single controlled-NOT

(CNOT) gate where the control qubit consists of two polarization-basis states of the

signal, the target qubit consists of two probe-basis states, and the initial state of the

probe is set by the error rate.

The CNOT approach by Brandt to probe a BB84-like protocol, i.e. the protocol

devised by C. Hong et al., can be applied to make the protocol more secure. Assuming

that a modified basis used between Alice and Bob is Bu = {|u〉 , |ū〉} and Bv =

{|v〉 , |v̄〉}, plus an arbitrary ±π/n relative to the computational basis used by Eve.

The bases are then related by

|0〉 = cos

(
π

n

)
|u〉+ sin

(
π

n

)
|ū〉 |1〉 = −sin

(
π

n

)
|u〉+ cos

(
π

n

)
|ū〉 (3.13)

|0〉 = cos

(
π

n

)
|v〉 − sin

(
π

n

)
|v̄〉 |1〉 = sin

(
π

n

)
|v〉+ cos

(
π

n

)
|v̄〉 . (3.14)

From the encoding above, Eve can then attempt to reconcile the information sent

between Alice and Bob by entangling a travel qubit with a probe register using a

CNOT gate,

CNOT = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ σX , (3.15)

where I is an identity operation and σX = |1〉 〈0|+ |0〉 〈1| or a Pauli-X bit-flip applied

to the target register. Since Eve has the freedom to choose her basis of an initial state

ψE, she will have four basis operations to chose from, where Bob can observe relative

errors induced during communication. Eve then can produce the following possible

states through using her own state, the bases Bu and Bv, and her σX operation:

|u〉 |ψE〉
CNOT−−−−→ |u〉

(
cos2

(
π

n

)
I + sin2

(
π

n

)
σX

)
|ψE〉 (3.16)
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+ |ū〉 sin
(
π

n

)
cos

(
π

n

)(
I − σX

)
|ψE〉

|v〉 |ψE〉
CNOT−−−−→ |v〉

(
cos2

(
π

n

)
I + sin2

(
π

n

)
σX

)
|ψE〉 (3.17)

+ |v̄〉 sin
(
π

n

)
cos

(
π

n

)(
I − σX

)
|ψE〉

|ū〉 |ψE〉
CNOT−−−−→ |ū〉

(
sin2

(
π

n

)
I + cos2

(
π

n

)
σX

)
|ψE〉 (3.18)

+ |u〉 sin
(
π

n

)
cos

(
π

n

)(
I − σX

)
|ψE〉

|v̄〉 |ψE〉
CNOT−−−−→ |v̄〉

(
sin2

(
π

n

)
I + cos2

(
π

n

)
σX

)
|ψE〉 (3.19)

+ |v〉 sin
(
π

n

)
cos

(
π

n

)(
I − σX

)
|ψE〉

If Bob measures correctly, then Eve’s register must exist in two possible states due to

the basis selected, where Eve’s state she initially chose for the probing register only

provides her a 50% advantage over a random guess. For the 50% of states where Eve

cannot decipher the incoming message, her minimum error discrimination between

her (non-orthogonal) basis states then leads to the rate of inconclusive measurement

to equal her overlap between the discriminated states; thus Eve only can conclusively

determine the transmitted symbol only a (1 − q) fraction of the cycles completed

between Alice and Bob.

3.3.2 Result of the Modified Strict Photon Authentication Protocol

Since Eve can deploy a Brandt probe constructed according to the maximum

performance metric described by J. Shapiro [58] to the described authentication

between Alice and Bob, and thus gain further information from the communication

that takes place, a classical side-channel can easily be added to further increase the

security of the identity authentication protocol. The classical side-channel serves as
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a format to send data publicly, where the public information has no value by itself.

An eavesdropper will therefore not be able to construct any meaningful information

from the information transmitted in the classical side-channel.

The value of the compared secret and the sequential processing of the secret

is the downfall of the original single photon identity authentication protocol. By

applying a simple hashing mechanism to the protocol, and removing the originally

described control mode, the classical/quantum photon identity protocol can be made

secure. The change reveals that Eve would then be tasked with finding the specific

pseudorandom hash-value and will then be faced with solving the secure identity

authentication protocol in an all-or-nothing manner. The probability of solving the

pseudorandom hash generator is then nearly zero, depending on the strength of the

classical hashing function.

For some alphabet, A , Alice and Bob can share some sequence length i (mod 2) =

0 such that ∃xi ∈ X ∀ a ∈ A , there will be a classical hash function H(·) and

the standard bases Br and Bd, which communicate via quantum channel with a

classical side-channel. In this instance, a classical (perhaps post-quantum secure)

hash function like SHA-3 [59] can be employed, with classical control [60], to help

Alice harden her data against Eve, who is using the Brandt probe, by developing

a session secret from the hash function with inputs of a random number r and the

sequence xi ∈ X. A modified message mode following this theme would then continue

as:

Protocol 3.1 QIA Hash Protocol Between Two Parties

Inputs. Verifier-generated session secret hash value.

Goal. Two parties successfully authenticate each others identity.
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The protocol:

1. Setup.

(a) Both parties set individual counters to n = 0.

(b) If n > Skn, authentication is successful, else proceed.

(c) Alice chooses the hash-based secure message mode.

2. Hash Secured Message Mode.

(a) Alice generates her modified session secret from the hash of a random

number and sequence.

(b) Bob listens on the classical channel for Alice to send her random number.

Bob takes the received random number and calculates a session secret,

then starts to listen on the quantum channel.

(c) Alice then encodes her qubits according to the previous table and sends

them individually, not necessitating a secure channel, to Bob.

(d) Bob expects a sequenced set of qubits and is able to decode them based

on the settings agreed in the session secret.

(e) Bob then can estimate the number of lost or incorrect qubits based on his

reception and can form a biased estimation to decide if the message should

be kept.

Interestingly, the simple modification necessary to make the originally described

scheme secure is only the inclusion of time-slotting and a shared hash function between

the two parties. The result is that each authentication appears different from the
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previous authentication runs and provides no basis for an eavesdropper to get a full

key, shared secret, encoding table, or the hash function itself.

From the previous possible MITM attack described, Eve would measure incoming

qubits but would obtain outcomes that are only local operations happening on the

strings being sent between Alice and Bob. The hash function guarantees that Eve

is unable to deduce the correct measurement basis from knowledge of the randomly

generated number alone.

The designed protocol here describes the variation in a random coefficient that

is immune to a Brandt probe style attack and makes a non-genuine authentication

impossible between the two communicating parties.
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CHAPTER 4

QUANTUM SIMULTANEOUS MESSAGE PASSING

SECURE COMMUNICATION

As a continuation to the ideas about hash functions and state extension of poly-

nomially mapped quantum messages presented in Chapter 2, it is possible to build a

secure message-passing model based on quantum hash functions and their arbitrary

length extensions. Specifically, the simultaneous message passing (SMP) model [61] is

the best to follow for this work, because it allows a third, trusted, party to handle the

direct passing of information between users. The protocol would be fairly complex

to realize in a physical system at this time due to limitations in the experimental

setup. The major limitation for this protocol would be the implementation of a dual

quantum SWAP-test, similar to the implementation for dual signing introduced by

J. Liu et al. [62] in 2016. To start understanding how the quantum hash-based SMP

protocol would work, a quick refresher on how the SMP model operates is necessary.

4.1 Classical SMP Model

A. C.–C. Yao developed the original basis for the SMP model in 1979 [61] through

a question about a communication game. If there is a Boolean function f : X ×Y 7→

{0, 1} where two players, Alice and Bob, wish to collaboratively compute the value

of f for an input (x, y) ∈ X × Y , how can they do so if Alice can only see input x
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and Bob can only see input y? The seemingly obvious answer would be what Yao

proposed: A model called simultaneous messages whereby a referee handles the two

variables that Alice and Bob each hold, and computes on behalf of the two parties

the evaluation of f(x, y). The evaluation of f(x, y) is, however, not standard since

both Alice and Bob simultaneously pass their messages of fixed length to the referee,

after which the referee announces the function value. Interestingly, each party in the

SMP model is a function of the arguments, that each party knows, respectively.

Given two parties and a referee, it should be simple to examine a topological

space of tightly interconnected nodes to simulate the message space in which a SMP

model could fit. Indeed, the older work by L. Babi and P. Kimmel [63] discusses

in their Section 4 how related problems in graph theory regarding the complexity of

communication in SMP models apply. The results of the work by L. Babi and P.

Kimmel prove that one-sided error randomized simultaneous message complexity is

of equality under a restricted set of protocols, namely, those where the function f is

symmetric through the equal actions of Alice and Bob.

Suppose that Alice and Bob receive inputs x and y, respectively. If x = y, then

Alice and Bob send vertices from independent complexity sets, a referee can output

1. If x 6= y then the probability that the referee outputs a 0 is exactly the density of

the graph space between the independent complexity sets of X and Y [63]. Looking

at the error in this operating scheme shows that as long as x and y are close enough,

the result from the referee will be 1 + ε ; there are plenty of options for recovery from

a small error introduced by a referee.
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4.2 Building a Quantum Hash SMP Model

The work described in Chapter 2 can be applied to the work in this section, as

the quantum sponge function can be built into a SMP model. To begin, a simple

one-sided Boolean model is constructed and evaluated with respect to a polynomial

representation of a message to be passed.

4.2.1 One-Sided Boolean SMP Model

In a model where Alice performs calculations and evaluates data to be sent to

Bob, she will ultimately send Bob information with the complexity determined by

the number of qubits sent. Bob, in return, computes the portion of the protocol and

provides an output. Assuming a function f(x1, . . . , xn1 , y1, . . . , yn2) with n = n1 + n2

variables, Alice will handle the sequence of values in x and Bob will handle the se-

quence of values in y. Since the SMP model has both Alice and Bob handling different

information, it is necessary to exploit f(·) to decompose any input polynomial into the

sum of two polynomials of equal degree, with one distributed to each communicating

member.

Thus, assuming that f(x, y) is a simplified Boolean polynomial function with

n = n1 + n2 variables, there exists a characteristic polynomial g(x, y) for f(x, y) over

Zq. If g(·) can be decomposed such that g(x, y) = g1(x) + g2(y), then an arbitrary

function δ(·) can be decomposed and computed by f(·) in a one-way protocol with

log d+1 = O(log log q+ log(1/δ)) qubits of information, following from Equation 2.9.

The communicating parties give a combined input (x, y) and want to know if

f(x, y) = 1. This is similar to the equation g(x, y) = 0 or if g1(x) = −g2(y); an

equality that a protocol would check based on this simplified scheme, a comparison
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of Boolean hash values through a quantum swap-test. If the returned value is not

exactly 1, then an intermediate value between 0 and 1 must be considered, since that

difference represents similarity in information transmitted.

4.2.2 Swap Test and Quantum Information

The swap-test, as originally described by D. Gottesman and I. Chuang in their

2001 paper on quantum digital signatures [64], details how to determine with certainty

whether two unknown quantum states are different in a pass-fail method. The swap-

test involves a Fredkin gate [65]; representative for a multi-qubit gate with one control

qubit and two target qubits to compare with each other.

Two forms of swap-test gates have been proposed in literature: First, the original,

and destructive, Hong-Ou-Mandel (HOM) interference swap using a MZI [66] without

an ancillary qubit and second, the non-destructive [67, 68] swap-test that utilizes an

ancillary qubit for measurements. The non-destructive swap-test is directly applica-

ble, from a modified Fredkin gate construction [69, 65], used to perform the swap

operation. The Fredkin-based swap-test additionally has the advantage of being able

to determine the difference between two unknown states, not just to determine if the

two states are the same. Since the difference in states is important to the quantum

SMP model for information regarding messages, the non-destructive swap-test is the

preferred method for this work.

Assuming that there are two prepared quantum states between Alice and Bob for

their polynomials, x and y, respectively, then |x〉 , |y〉 ∈ C2n will be two quantum

states prepared by unitary transition operators Ux and Uy. Or, in individual terms:

|x〉 = Ux |0〉⊗n and |y〉 = Uy |0〉⊗n . (4.1)
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The swap-test can be applied to estimate the similarity (or difference) through the

calculation of inner product 〈x|y〉.

The initial state prepared is a controlled unitary phase state,

|φr〉 =
1√
2

(|+〉 |x〉+ |−〉 |y〉) . (4.2)

The constructed state then is transformed by unitary transformation into UR as

UR = (I⊗(n+1) − 2 |φr〉 〈φr|)(σZ ⊗ I⊗n) (4.3)

= Uφr(I
⊗(n+1) − 2 |0〉⊗(n+1) 〈0|⊗(n+1))U †φr(σZ ⊗ I

⊗n) ,

where σZ = |0〉 〈0| − |1〉 〈1| is the Pauli-Z matrix.

The state after transformation is then easily written as

|φr〉 =
1

2
(|0〉 (|x〉+ |y〉) + |1〉 (|x〉 − |y〉)) . (4.4)

The formula in Equation 4.4 here represents the non-normalized superposition state,

through simplification, between the data that Alice and Bob hold, where the density

matrix is |φr〉 〈φr|, holding the probabilistic outcome of the swap-test.

Taking the amplitude of the states is done to normalize |x〉 and |y〉 where

||0〉|2 =

√
1 + Re 〈x|y〉√

2
(4.5)

||1〉|2 =

√
1−Re 〈x|y〉√

2
, (4.6)

and there exists a real-valued phase that satisfies the amplitudes where θr ∈ [0, π/2].

The normalized states between Alice and Bob can be denoted as
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|u〉 = |x〉+ |y〉 and |v〉 = |x〉 − |y〉 , (4.7)

where θr satisfies the oscillatory amplitude function

|φr〉 = sin θr |0〉 |u〉+ cos θr |1〉 |v〉 . (4.8)

Applying the Schmidt decomposition [70] to the state |φr〉 decomposes the state

to

|φr〉 =
−j√

2
(ejθr |y+〉 − e−jθr |y−〉) , where |y±〉 =

1√
2

(|0〉 |u〉 ± j |1〉 |v〉) . (4.9)

The values of |y±〉 thus represent the eigenstates of UR, where the information about

phases θr are contained in the eigenvalues.

From Equation 4.9, the output of a quantum phase estimation [71, 72, 73] will be

the approximate state represented as

|ψr〉 =
−j√

2
(ejθr |γr〉 |y+〉 − e−jθr |2t − γr〉 |y−〉) , (4.10)

where t is a precision parameter derived from the dimension of the referees state-

space, and where γr ∈ [0, 2t−1] for an approximate value 2θr ≈ γrπ/2
t−1, since from

Equation 4.6, θr can be used to satisfy cos θr = Equation 4.6, or in other words

Re 〈x|y〉 = −2cos θr . (4.11)

By Equation 4.6 and Equation 4.11, then, it is clear that
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Re 〈x|y〉 ≈ −cos
(
πγr
2t−1

)
. (4.12)

The approximate equality here represents the measure of similar information shared

between two parties Alice and Bob when transferred and computed in a swap-test and

is also suitable for the imaginary component of the information compared, necessary

to compare information shared between polynomial strings of phase-encoded data, as

developed in Chapter 2.

4.2.3 General Application of Swap Test on Quantum SMP Method

To compile the quantum hashing function component into a SMP model, the

swap-test must be applied. For the Boolean function f(·) and the data to be sent, a

characteristic polynomial should be considered, χqf on Zq. For two sets between Alice

and Bob, Γ = {γ1, . . . , γn1} and Λ = {λ1, . . . , λn2}, of polynomials on Zq such that

the set χqf = {γ1 + λ1, . . . , γn1 + λn2} is characteristic of f(·) over Zq, there will be

a subset of distinct polynomials representing the individual’s data. The polynomials

from Γ will depend on Alice’s input X = {x1, . . . , xn1} and the polynomials from Λ

will rely on Alice’s input in conjunction with Bob’s input Y = {y1, . . . , yn2} through

an intermediate (referee) polynomial set Z = {z1, . . . , zi}.

4.2.3.1 Alice’s SMP Information Transfer

The beginning of the SMP model begins when Alice receives an input ᾱ =

{α1, . . . , αn1} and applies the values to Γ(·) as Γ(ᾱ) = {γ1(α1), . . . , γn1(αn1)} into

the following general hash, derived from Equation 2.9, in log d+ 1 qubits as
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|ψq, ~B(Γ(ᾱ))〉 =
1√
d

d∑
i=1

|i〉

(
cos

2πbi(γ1(α1))

q
|0〉+ sin

2πbi(γ1(α1))

q
|1〉

)
×

. . .×

(
cos

2πbi(γn1(αn1))

q
|0〉+ sin

2πbi(γn1(αn1))

q
|1〉

)
.

(4.13)

The state is then sent to Bob, along with information concerning the referee, Z =

{z1, . . . , zi}, that can contain specific information related to the processing of the

SMP transfer.

4.2.3.2 Bob’s SMP Addition and Conveyance to Referee

Bob then receives the information and prepares his information, β̄ = {β1, . . . , βn2},

the quantum hash |ψq, ~B(·)〉, and the values z1, . . . , zi. In the absence of a referee, it is

possible for Bob to complete the SMP protocol at this point, but it is not suggested,

since a referee will have absolute authority over the swap-test function. Bob can

compute his respective hash for Λ(β̄) = {−λ1(β1), . . . ,−λn2(βn2)} as

|ψq, ~B(Λ(β̄))〉 =
1√
d

d∑
i=1

|i〉

(
cos

2πbi(λ1(β1))

q
|0〉+ sin

2πbi(λ1(β1))

q
|1〉

)
×

. . .×

(
cos

2πbi(λn2(βn2))

q
|0〉+ sin

2πbi(λn2(βn2))

q
|1〉

)
.

(4.14)

Bob then forwards the result of the functions to a referee to perform the final swap-

test, and the information extraction, according to the method defined in Section 4.2.2.
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4.2.3.3 Referee’s Swap-Test and Information Comparison

The referee takes the set of states from Alice and Bob, |ψq, ~B(Γ(ᾱ))〉 and |ψq, ~B(Λ(β̄))〉,

respectively, and computes the set of phase values θr for each of the polynomials

zi ∈ Z. The phase difference values are then calculated following the method from

Section 4.2.2. The values utilized by the referee come out to

|θr〉 = sin θr |0〉 (|ψq, ~B(Γ(ᾱ))〉+ |ψq, ~B(Λ(β̄))〉) + cos θr(|ψq, ~B(Γ(ᾱ))〉 − |ψq, ~B(Λ(β̄))〉) ,

(4.15)

following the expected result when applying Equation 4.8. Applying the Schmidt

decomposition leads to the eigenstates

|y±〉 =
1√
2

(|0〉 (|ψq, ~B(Γ(ᾱ))〉+ |ψq, ~B(Λ(β̄))〉)

± j |1〉 (|ψq, ~B(Γ(ᾱ))〉 − |ψq, ~B(Λ(β̄))〉)) . (4.16)

Even though the eigenstates now contain the information related to the originally

sent polynomial, a vector of difference values will become apparent. The following

section describes a simplified method of handling the similarity between states.

4.2.4 Similarity in Information Outcome from SMP Referee

The referee’s outcome of the non-destructive swap-test is ultimately a measure

of information similarity, on a scale of 0 to 1, where a 0 represents no similarity in

the density operator (|φr〉 〈φr|) and a 1 represents a complete match in information.

Any other state between 0 and 1 can be calculated by the referee to determine

the differences in data sent from the communicating parties. The differentiation

in information is easily completed by following the process starting at Equation 4.9.
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The two eigenvalues of the state are the following

λ1 =
−jejθr√

2
and λ2 =

je−jθr√
2

. (4.17)

To find the similarity, the referee’s interpretation of the state φr will be ψr, where

the two density operators for comparison will be ρ = |ψr〉 〈ψr| and σ = |φr〉 〈φr|.

Applying the 1-norm defined for some matrix A =
√
ρ
√
σ as

‖A‖2
1 = Tr[A†A] where A†A =

√
σρ
√
σ = τ , (4.18)

and the 2-norm defined as

∥∥√ρ√σ∥∥2

2
= Tr[

√
σρ
√
σ] = Tr[

√
σ
√
σρ] (4.19)

= Tr[σρ] , (4.20)

according to the method employed by M. Wilde to find information similarity [74],

then the results can be analyzed according to the decomposed value of τ .

Decomposing the value of τ will be the simple singular value decomposition where

τ = XDX−1 (4.21)

for a diagonal matrix D. Exchanging the value of Tr[σρ] for Tr[D] is then allowed

since the matrix represents the Hilbert-Schmidt inner product.

By analysis, the following equality will hold true:

Tr[
√
D]2 =

∑
i

λ2
i + 2(λ1λ2) , (4.22)
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then substituting the necessary eigenvalues leads to

((
−jejθr√

2

)2

+

(
jejθr√

2

)2)
+ 2

(
−jejθr√

2
× je−jθr√

2

)
, (4.23)

with simplification

(
−ejθr

2
+
−ejθr

2

)
+ 2

(
1

2

)
= 1− ej2θr . (4.24)

Thus, for some two sets of information from Alice and Bob, the referee in the

SMP model will gather that the information similarity can be reduced to solving for

θr in the following manner

ej2θr = cos(2θr)− j sin(2θr) . (4.25)

For this work, the value found for each successive solution for θr represents the

difference of the information encoded by phase between the two polynomials compared

by the referee from Alice and Bob.

4.3 Application of SMP Model and Information Leakage

The SMP model designed for this work is indeed able to be implemented by

classical and quantum machines. A classical machine will be able to create a basic

classically-mapped function that can be interacted with a purely quantum variant

or vice–versa. When analyzing the information difference, the basic state will be

considered as a collapsed quantum state and will not contain additional superposition

information otherwise required, but is able to be fully mapped into a larger number
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of qubits, as described in Section 2.2.2.

The application of the designed SMP model described in this work is secure against

classical leakage due to the makeup of the quantum sponge function. This does not

mean that a classical machine is not able to compute when in the communication

scheme, but that the side information present in this work is secure against an

adversary understanding what the information represents. The proofs of quantum

hashing being secure against classical leakage are described by C. Huang and Y. Shi

[75], whereby a small leakage of classical side information will not ultimately reveal

the input of the quantum hash.

Since the referee is the only component of the SMP model with the ability to

translate information, the referee becomes the weakest link. Indeed, an adversary

with direct access to either of Alice or Bob’s messages and the referee’s difference

polynomial vector could potentially generate a message transformation and find the

other party’s response. If this process was delegated to several referees, i.e. chain-

ing, then a set of referees may be able to conceal components of state differences,

necessitating an adversary to compromise several referees and bases.
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CHAPTER 5

PHOTONICS PROCESSOR AND OPTIMIZATION

Photonics research has led into integrated photonic devices to be used for quantum-

based processes. Integrated photonics have been used in classical communications for

decades, especially in the back-haul fiber communication of our internet today [76].

Integrated quantum photonic applications that promise enhanced security, low loss,

low noise, and large computational power are nearly within technological reach. The

enabler for this integrated technology is the silicon process that has existed since

the turn of the century and promises scalability, integration, and compatibility with

CMOS-based microelectronics. The properties of silicon-based integrated quantum

nanophotonics circuits enable multiple possibilities of large-scale quantum computa-

tion with rapid deployment and ease of manufacturability [77].

5.1 Integrated Silicon Photonics Photon Manipulation

Quantum systems exhibit unique properties and behaviors such as superposition

and entanglement. The properties of quantum systems may be used to collect,

process, transmit, and encode information, where the field of quantum information

science works to revolutionize information technologies. The handling of communica-

tion, processing, and collection of information within quantum nanophotonic devices

is based on the manipulation of photons; single particles of light [78].
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Since silicon has a high third-order nonlinear coefficient χ(3), the material’s refrac-

tive index varies with optical intensity, enabling many devices to be fabricated, with

varying uses. Devices fabricated in silicon photonics can range from photon sources,

photo-optic switches, to transceivers among others. To further understand why a

high nonlinear coefficient is valuable for quantum nanophotonics, traditional linear

optics must first be understood.

5.1.1 Unitary Decomposition of Photonic Circuits

Without any loss, gains, or parametric processes, any optical system can be simply

described by unitary operations. Unitary operations may be considered a special set of

operators due to their description as a set of complex rotation matrices or orthogonal

matrices. All unitary operations must satisfy the following conditions:

Inverse: Û Û † = Û †Û = 1

Determinant: |det Û | = 1

Row Normalization:
∑

i |Ûi,j|2 = 1

Column Normalization:
∑

j |Ûi,j|2 = 1

Orthonormality: Ûi · Ûj = δi,j

Decomposition: Û = V̂ D̂V̂ †

where D̂ represents a diagonal matrix and Û is a unitary matrix. Here it can be said

that if Û is unitary, Û |v〉 = λ |v〉 then 〈v| Û † = 〈v|λ∗. Combining these, the result is

〈v|v〉 = 〈v|Û †U |v〉 = 〈v|λ∗λ|v〉 = |λ|2 〈v|v〉. Assuming λ 6= 0 then |λ|2 = 1 is implied,

thus all eigenvalues of the unitary matrix are unimodular (having a norm of 1) and

can be written easily as ejα for some α. This will help understand the operations of

unitary operators within quantum nanophotonic devices.
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All linear optical networks may be modeled by unitary operators. These unitary

operators need a basis to be physically created to perform computations, with the

decomposition of larger circuits into 2 × 2 matrices outlined by both Reck [79] and

Clements [80] using different structures. Both decompositions require an estimated

N(N − 1)/2-many two-port interferometers, able to implement two-dimensional uni-

tary transformations (U(2)), to realize an arbitrary N -dimensional unitary matrix.

More information on finding the decompositions and proper settings for applying an

arbitrary unitary transformation can be found in Chapter 6. A graphical example of

the two decompositions mentioned are shown in Figure 5.1.

Figure 5.1: Unitary decompositions of a unitary matrix U using both the (a)
Clements decomposition [80], and (b) Reck decomposition [79]. Both decompositions
use the same number of 2 × 2 MZIs, with each MZI represented by a ‘cross’. Each
MZI is composed similarly to the MZI shown in Figure 5.2.
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5.1.2 Electric Fields and Photonic Propagation

The unitary matrix is special in that it represents the scattering of the interaction

of the electric fields present from photons such that a relation can be made between the

waveguides present in the photonics processor and the spatial separation to support an

axial propagation coefficient. Examining how the unitary transformation physically

interacts with photons, a simple relation for an electric field, ~E, can be made:

~Eout = U ~Ein . (5.1)

As a first step, Maxwell’s equations can be applied where they are expressed in a

form of an eigenvalue problem of a Hermitian operator [81, 82]. First, Amperes law

is applied such that:

∇× ~H = ε(x, y, z)ε0
∂ ~E

∂t
(5.2)

= −jωε(x, y, z)ε0 ~E , (5.3)

where rewriting for ~E in terms of a traverse field distribution and a traveling wave in

the axial direction, φ(x, y)e−jωt+jβz:

∇× 1

η2(x, y)
∇× ~H = ω2 ~H . (5.4)

The index of refraction, η, is present in Equation 5.4, showing a direct link for

this application between Ampere’s law and a refraction coefficient. Since the result

is a Hermitian operator describing the magnetic field, a relation can be written:
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(Θψ, φ) = (ψ,Θφ) , where Θ = ∇× 1

η2
∇× 1

ω2
, (5.5)

for a vector pair (ψ, φ) describing the interaction of the magnetic field ~H; Θ then

being dependent on the distribution of the index of refraction. From the work by

A. Hardy and W. Streifer, there is a simple method of describing the coupled mode

theory for parallel waveguides [83].

Depending on the length parameter between two waveguides, the Hermitian op-

erator from Equation 5.5 relates directly to a splitting ratio of a directional coupler,

controlled by choosing a coupling length. For some splitting ratio ηs, the unitary

transformation applied by a directional coupler is:

Ucoupler =

 √
ηs j

√
1− ηs

j
√

1− ηs
√
ηs

 . (5.6)

The single MZI shown in Figure 5.2 details the construction, typically utilized

within the field of integrated silicon photonics, where a controlled phase is necessary.

Two directional 50 : 50 beamsplitters are mated together with electronic control of

doped resistive (850 Ω typ.) heating elements. The heating elements are adjacent to

portions of the waveguide and have the effect of dynamically changing the length of

two directional couplers, LC1 and LC2.

The values for LC1 and LC2 are important to the operation of the MZI because

they serve to adjust the splitting ratio of each directional coupler. Considering a

single 2× 2 directional coupler, the length L will be given by

L =
3Lπ

2
(5.7)
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Figure 5.2: Single MZI and control composed of two directional beamsplitters
and two integrated resistive heaters. The control covers both the internal and external
phases, (θ, φ), through the thermo-optic effect, effectively changing the lengths of LC1

and LC2.

where Lπ is the angular mode propagation, defined as

Lπ =
π

∆β
. (5.8)

The value of ∆β is the waveguide mode propagation constant difference, ∆β = β1−β2,

which is dependent on the coupling coefficients between the top T and bottom B

waveguides, χTB and χBT . From coupled mode theory, an amplitude relation is

present according to A. Hardy and W. Streifer [83], which states that there is a

directionally fixed1, propagation dependent, amplitude relation:

dAT (z)

dz
= −j χBT ej∆βzAB(z)

dAB(z)

dz
= −j χTB ej∆βzAT (z) , (5.9)

for a z-axis propagation direction with amplitudes, A.

The unitary transformation can alternatively be described by the phase relations

1Directionally fixed, assuming that a transverse field exists within the waveguide’s structure such
that there is z-axial dependence generated by the electric and magnetic fields, { ~Et, ~Ht} [83].
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in a transfer matrix. A simplified method of phase relation between two waveguides

was developed by M. Paiam and R. MacDonald [84]. The method of phase relation,

γ, shows that for an input i to output j, for a 2× 2 coupler is

γi,j = δB −
π

2
(−1)i+j+2 +

π

8

×
[
i+ j − i2 − j2 + (−1)i+j+2

(
2ij − i− j +

1

2

)]
, (5.10)

where δB is a constant phase response for the bottom waveguide given by

δB = −βT
3Lπ

2
+

3π

16
. (5.11)

The output amplitude distribution from the 2× 2 MZI then is given by

AoutT

AoutB

 = Ucoupler

AinT
AinB

 , (5.12)

for a coupler unitary matrix, Ucoupler. The effect of the heaters on phases from

Equation 5.10 results in a total transfer matrix T of

T =

ej(∆γT+εγT ) 0

0 ej(∆γB+εγB)

 ,

where εγ(T/B) is the resulting error terms accumulated from the differing portions of

the MZI. The resulting output from the waveguides are differences in optical intensity

with the base definition stemming from Equation 5.9, calculated as a ratio between

|AoutT |
2

and |AoutB |
2
.
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5.1.3 Mach-Zehnder Interferometer Unitary Implementation

The major option for the basis of the N -dimensional implementation of a unitary

matrix are Mach-Zehnder interferometers (MZIs), mentioned in Section 5.1.2. When

using two waveguide-based 50:50 beamsplitters, a phase-shifter may be placed in the

path of one of the two legs between the beamsplitters, and the reflectivity of the MZI

may be controlled. Assuming some phase of an optical field incident to the input

ports can be set, a MZI with an internal phase shifter can implement any rotation

in U(2) through the addition of a phase shifter in one of the output paths of the

MZI. The structure of a photonics processor using multiple MZI unit cells is shown

in Figure 5.3.

Figure 5.3: QPP architecture showing the structure of MZIs following a modified
Reck scheme, shown in Figure 5.1b. This device is designed to be built in a silicon-on-
insulator (SOI) process. Waveguides are the horizontal black lines. The internal phase
difference θ controls the splitting ratio and the external phase difference φ controls
the output phase offset. There are 11 layers in total, enabling the implementation of
a 26-mode unitary transformation and an 8-mode arbitrary unitary transformation.

Each MZI is able to be thermally tuned by an integrated resistive heating element

acting as a phase shifter. The phase shifters, θ = ∆γT and φ = ∆γB, which map to
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the internal phase setting and output phase offset, respectively, since each MZI can

be described by two different transfer matrices:

ejθ 0

0 1

 and

ejφ 0

0 1

 . (5.13)

The phase shifting matrices can be combined with the unitary transformation for the

directional couplers in Equation 5.6 to create an equation describing the MZI with

respect to the phase applied and the splitting ratios for two sequential couplers, ηs1

and ηs2,

UMZI =

ejφ 0

0 1


 √

ηs2 j
√

1− ηs2

j
√

1− ηs2
√
ηs2


ejθ 0

0 1


 √

ηs1 j
√

1− ηs1

j
√

1− ηs1
√
ηs1

 .

(5.14)

Each MZI is able to apply an ideal 2×2 unitary transformation shown in Equation 5.15

with respect to only phase settings, assuming ideal splitting ratios.

UMZI(θ, φ) =
1

2

ejφ 0

0 1


1 j

j 1


ejφ 0

0 1


1 j

j 1

 (5.15)

A v2π voltage range, described further in Section 5.2, is required for a complete

response from a typical MZI; with expanded definition of the sinusoidal response from

Equation 5.15, simply modified into a sine or cosine format, shown in Equation 5.16.
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UMZI(θ, φ) =
1

2

ejφ(ejθ − 1) jejφ(ejθ + 1)

j(ejθ + 1) −(ejθ − 1)

 = je
jθ
2

ejφsin
(
θ
2

)
ejφcos

(
θ
2

)
cos
(
θ
2

)
−sin

(
θ
2

)

(5.16)

Since these devices have an ability to be arbitrarily programmed and controlled,

it is possible to implement quantum gates out of sets of properly adjusted MZIs to

manipulate single photons (qubits). Properly adjusted and controlled MZIs can then

be used to carry out protocol or experimental design and simulation.

5.2 Quantum Photonic Processor Optimization

Optimization of networks and graphs are well-known problems since the advent

of advanced computing methods and techniques; starting with the rise of parallel

computing for optimization in the 1960s [85]. Finding the solutions to large and

complex networks and graphs has become simplified to a point where researchers

expect solutions to their complex problems within time-frames spanning from hours

to a few days, instead of days to a few weeks as became common in the 1980s [86].

Graph and networking theory grew rapidly, with two distinct directions spawning from

advances in molecular and electrical theories between the late 19th to 20th centuries;

forming two core parts of graph theory, algebraic graph theory and optimization

theory.

Today, the optimization portion of both graph and networking theories has an

application in all fields, from science and medicine to economics and finance. For

this work, following the points of research and development listed in Section 1.2.2,

there is reason to research how graph and networking optimization can be applied to



79

photonics and optics. The work by N. Lagali et al. [87] serves as one of the first analyt-

ical approaches to optimizing switching characteristics in generalized Mach-Zehnder

inferferometers (GMZIs) by employing multimode interference (MMI) couplers and

examining their deviations in phase relations and power splitting ratios through

transfer matrices.

A large component of accurately controlling a photonics processor is the opti-

mization and careful characterization of such large MZI structures. There are several

forms of optimization that can be used for an array of MZIs. The most common

of these currently seek to optimize either in a swap-iterative format [88] or in a

recursive search method. For this work, a new method of arrayed MZI optimization

is described through the utilization of previously unused global optimizers. The work

of this dissertation builds on the theoretical framework by N. Lagali et al. [87]

by examining a working system of integrated phase shifters operating on a linear

interferometer network with the purpose of single-photon manipulation and control

[88, 89]. Such networks are known to be able to perform small quantum circuits [90].

The development work completed here additionally serves to showcase a set of ‘best’

optimization techniques for handling a large linear interferometer array to achieve full

control of the device without necessitating total calibration prior to application.

5.2.1 Global Optimization

Due to the general design of the QPP, and to the sources of error previously

mentioned in Section 3.2.1, following an iterative approach to the characterization

and optimization of the device is quite challenging due to the degrees of freedom

present in the design. Recent work by B. Bartlett and S. Fan, in November 2019,

shows a prime example of the complexity of a generic photonic processor for quantum
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manipulation tasks [91] which is similar to the notation in Section 5.1.3 but certainly

notes that the theoretical framework of photonic architecture usage for quantum

information processing is done without error and assumes ideal quantum gates.

In this work, looking at the simple iterative approach towards optimization is

a very resource-intensive task and creates overhead in the setup of the device that

results in slowed operation. The general optimization approach of simplicial homology

is an excellent resource for the photonic device due to its general integer coefficients,

representing degrees of freedom, of simplicial complexes where reduction can result in

sparse matrices. The sparse matrices are representative of the general combinational

topology present on-device and can generally be approximated into homomorphic

boundaries between the MZIs present on the device, as previously described in Sec-

tion 5.1.3.

The work by S. Endres et al. [92] discusses a simplicial homology global optimiza-

tion for Lipschitz optimization but, the algorithm assumes that the function being

optimized has Lipschitz continuity or, given two metric spaces with their metrics,

(X, dX) and (Y, dY ), a function f : X 7→ Y would be considered Lipschitz continuous

if there exists a real constant K ≥ 0 such that ∀x1, x2 ∈ X,

dY (f(x1), f(x2)) ≤ KdX(x1, x2) . (5.17)

Since any K would be the Lipschitz constant for f(·), it is possible for 0 ≤ K ≤ 1

where f(·) may map a metric space to itself, a contraction. This contractive response2

is what harms a potentially great optimization method and forces one to move to a

different simplicial homology global optimizer.

2Assuming that there are imperfections in the MZIs and that the system is relatively imperfect,
as represented in Equation 5.14, the MZI will need to be handled as non-Lipschitz continuous.
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A topographical global optimization method, then, is the best contender to handle

the optimization of a large number of degrees of freedom on the photonic processor.

A. Törn and S. Viitanen came up with a simple method [93] to attack this problem.

The essence of the work by A. Törn and S. Viitanen starts with the mapping of the

objective function, in this case a function similar to Equation 5.16, into a topography

matrix and then finds starting points to the function i.e. local minimizers. The

topology matrix is then searched via the initial minimizers and each new minimum

is found and operates towards the calculation of the global minimum required.

For the work in this dissertation, a mathematical ‘structure’ is provided to an

algorithm3 that represents the MZIs, their adjustable parameters, and the expected

ideal response. From the initial parameters, a uniform random sampling occurs where

the generation ofN points is created within the search space. The points generated are

then used to form a topograph of the photonic processor, specifically, a directed graph

where each sampled point is a vertex to k nearest neighbors. The nearest neighbor

vertices then form the basis for the direction of a path towards points of larger function

values. The constructed topograph is then locally minimized, contributing to a larger

global maximum.

5.2.1.1 Generation of Sampling Points

Generating the sampling points within the function set is easily achieved through

a grey-code implementation defined by I. Antonov and V. Saleev [94] from their 1979

paper detailing single XOR operations for each dimension. Since the dimensions used

for the current photonics architecture are generally low, up to an 8 × 8 matrix, the

3Keep in mind that the structure will represent the largest unitary that can fit on the device, in
this case an 8 × 8, where each composite 2 × 2 unitary made possible by the MZI has matching θ
and φ parameters.
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resulting number of computations to chose N sampling points is low. From a vertex

vi to the next sampling point xi, the only computation necessary to find the following

sampling point is xn,i = xn−1,i ⊕ vk,i. The implementation of the method to find

sampling points is a component of the UQToolkit maintained by Sandia National

Lab [95].

5.2.1.2 Construction of the Topograph from MZIs

The topograph for the photonics processor can be directly calculated from the

resulting components and intermediate points after the sampling point generation

derived from a Clements decomposition [80], as previously discussed in Section 5.1.1.

The image shown in Figure 5.4 highlights three stages of point decomposition for a

2-qubit gate.

The 2-qubit gate decomposition into the topograph works similarly to the Clements

decomposition, although the topograph is constructed from the generated sampling

points within the function space. The function space for the construction is made

from probabilities of paths and points, representing the final required distribution

of laser-light to be seen on the output ports of the photonic processor. From the

simple 2-qubit set of MZIs shown in Figure 5.4, the initial step is to examine the

paths possible for alternate routes and their resulting regions within the Clements

representation of decomposition. The result will be a set of matrices with distinct

probabilities for a given pathing. The second step is to move to the following stage of

MZIs to determine what specific modes are interfered and how the paths may change.

Following this procedure for the depth of the circuit will result in the topograph’s set

of initial global minimizer functions, f(·).
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Figure 5.4: Multipath Clements decomposition showing the three stages of a
simple 2-qubit gate being decomposed with varying pathing (red, dashed) into the
architecture. The matrices to the right of each of the three steps shows where the
points are affected after each pathing operation. The topograph points are selected
to be intermediately between MZIs but along the respective paths based on wanted
output distributions.
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The first points within the matrix are effectively selected from the previous uni-

formly generated sequence of points within a feasible domain, a subset of the real-

space operators. Any points that lie outside of this constraint can be ignored since

they will not have an effect on the final pathing required for a specific distribution of

laser-light on the output ports. The points remaining after eliminating outliers can

be ordered by their Euclidean distances. The final ordered list contributes to the final

rows of the topograph.

5.2.1.3 Minimization of Functions for MZI Pathing

Each functional minimizer within the topograph, generated as described in Sec-

tion 5.2.1.2, is used as a starting point for local minimization. The resulting local

minima are then used to find a global minimum. The method to find the direction of

interior points for pathing though MZIs follows the method set by N. Henderson et al.

to find all solutions of nonlinear systems with constraints [96]. The method employed

for minimization and local search of functions applies a functional map gradient to

the points selected to minimize to the selected pathing required. Assuming that

∇f(·)i ∈ Rn×m where f(·) : Rn 7→ Rm, the function to be minimized will result

in a matrix of partial derivatives of f(·). If there is a local minimizer that exists,

then first-order optimality will be satisfied, i.e. there will exist a vector of Lagrange

multipliers where the elements of the vector are real sets of diagonalizeable integers.

5.2.2 Implementation of Global Optimizer

To implement the optimizer, the method followed was as used by W. Sacco et

al. [97] regarding topographical clearing functions for point generation. The original

function implemented by W. Sacco et al. was implemented in C++, however, the
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method utilized for this work was based in Python 3.x and was adapted to change

the method of stochastic number generation by following the output of a previously

developed hash-based number generator [98]. The adapted number generation by

Sacco was originally based on the Mersenne Twister [99] but was replaced by a

standard SHA-2-based hash function, due to issues with large-order patterning, a

recurring problem for Mersenne Twister-based generators [100].

The remainder of the function implemented followed the method previously de-

scribed by N. Henderson et al. [96] to find the solutions of nonlinear solutions, also

implemented in Python 3.x.

To run the optimizer, first the pattern of the QPP’s architecture was taken into

account. A single waveguide was then pumped with classical laser-light and the

output intensities were measured. The program then collects samples of the affected

MZIs in the light-cone and their relative outputs. The outputs are the upper and lower

legs of the MZIs affected by the laser-light input, where the estimated end-points are

where the ideal output profile dictates light should travel.

From the first measurement, the topology matrix is constructed with the current

positions of light in the waveguides to the output ports and compared against the

requested output profile, similar to the measured output profiles described in Sec-

tion 3.2.4. From this point, the topology matrix is solved for the MZIs and optimized

by the routine described previously. The optimized matrix is then converted into the

MZI voltage settings and iterated until a steady-state point is reached.

The optimizer developed successfully takes an input source of laser-light from

either a single, or multiple, waveguide(s) with the matching initial characterization

map, and applies the topographical global optimization scheme with constraints. The

constraints on the topographical global optimizer routine determine the method of
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pathing within the photonics processor, and determine the final output profile that

matches the pathing, according to the constraints initially provided. The application

of the optimizer to the photonics processor serves as a large step towards quick and

efficient optimization for large linear MZI arrays, enabling other researchers the ability

to successfully construct and experiment on large sets of MZIs with high fidelity.
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CHAPTER 6

QUANTUM PHOTONICS PROCESSOR

HARDWARE/SOFTWARE CO-SIMULATOR

An important portion of this work was the development of a method to simulate

not only quantum information processors, but the optical device that was available

during the course of writing this dissertation [14]. To complete this task, the early

version of Xanadu’s software, Strawberry Fields, was used as inspiration [101]. The

Strawberry Fields software was originally designed as a full-stack quantum software

platform to design, optimize, and simulate photonic quantum circuits. The Straw-

berry Fields suite, however, does not have a method to handle hardware photonic

chips, their architectures, and proper co-simulation1.

6.1 Quantum Circuit Back- and Front-end

The back-end for the quantum simulator developed is simply created in Python 3.x,

first with a focus on the generation of quantum circuits. The back-end was designed

as a ‘noisy’ quantum simulator, where operational and integer noise could be modeled

to get a fuller picture of the operation of quantum circuits in a realistic setting. The

errors modeled include fidelity errors of the quantum logic gates as well as timing

1The co-simulation functionality still has not been implemented in Strawberry Fields at the time
of defense - April 2020.
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errors. The simulator designed for this work has many tunable parameters designed

to fully encapsulate errors seen in typical gate implementations.

The errors modeled to the specific architecture used in experimentation, i.e. the

experiments shown in Chapter 3, relate to variances in the total optimization of the

photonic chip, after following the method outlined in Section 5.2 and the implemented

circuits.

Since the simulator and the controlling software for the photonics processor is

written with a Python back-end, there is a simple extension to the simulator where

any modeled circuit that is able to be implemented on-chip can be co-simulated. First,

the desired quantum circuit is designed using a custom command-console. Second,

the unitary transformation is generated, along with MZI phase settings that are then

translated to voltages based on the v2π response range of the device. Third, the

settings are uploaded to the device and the states are prepared for operation. Fourth,

the simulator simulates an idealized circuit without error and then simulates a version

of the circuit with variational errors derived from device-specific tolerances. After the

simulation is complete, the photonic circuit is then run and the response histograms

are created, based on real-valued responses from a superconducting nanowire single

photon detector array.

6.2 Quantum Photonics Simulator

There are, overall, three primary components that are related to the simulator

itself. The first is the circuit composer, used to construct circuits that are to be

run on a photonics processor. Second is the circuit decomposition technique; a set

of techniques derived from the work by Reck and Clements, previously described in
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Section 5.1.1 and visualized in Figure 5.1. Finally is the photonic simulation itself

including all errors. The decomposition output is piped into the simulator, simulations

are run, and the results recorded.

The quantum gates that can be applied within the simulator are all standard

Clifford gates, and arbitrary unitary gates. The gates supported fully by the simulator

are:

• Identity Gate: I

• Hadamard Gate: H

• Not Gate: X

• Phase-Shift Gate (π): Z

• Phase-Shift Gate (π/4): T

• Controlled-Phase Gate: TC

• Controlled Not Gate: CX

• Controlled Rotation Gate: CR

where any of the ‘control’ gates are able to be expanded to an arbitrary number of

qubits, up to the limit for the number of run-time configurations for standard dual-rail

qubits or spatial qubits.

6.2.1 Circuit Composition

The underlying composition of the circuits within the simulator is built so that

the initialization of a circuit is started only when given a size, in a number of qubits,

that should be operated upon.
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n qub i t s = 3

c i r c u i t = C i r c u i t ( n qub i t s )

Next, a gate should be added to the circuit following a special method, add gate( ),

that creates a gate object. As an example, a not gate (X) can be added to the 0th

qubit. Note that the qubit the gate is to be assigned to is passed to the gate object.

c i r c u i t . add gate (X( 0 ) )

Additionally, multiple gates may be added in a single statement as follows

c i r c u i t . add gate (X( 0 ) , X( 1 ) )

Chained function calls also work when multiple gates are needed in succession.

c i r c u i t . add gate (X( 0 ) ) . add gate (X( 1 ) )

For controlled gates, the gate object should be provided the control qubit(s) first,

followed by the target(s).

c i r c u i t . add gate (CX( [ 0 , 1 ] , [ 2 , 3 ] ) )

A representation of the circuit can be printed to the console as follows

c i r c u i t . apply ( )

print ( c i r c u i t . draw ( ) )

which provides the following output:

|0> −−−−−X−−−−−−X−−−−−−−−−−−−−CX−−−−−

|0> −−−−−−−−−−−−−−−−−−−X−−−−−−@−−−−−−

|0> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Following the work by the IBM team behind a general simulator for their quantum

architecture, Qiskit [102], the circuit simulator designed may also add ‘moments’ to
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the quantum circuit. Each moment simply represents a slice of a quantum circuit that

may have multiple operations happening across multiple qubits simultaneously. To

create the moment, it must be specified that gates are to occur in the same moment

by creating a moment object, adding gates, then adding the moment to the circuit;

enabling better control over how a circuit is run.

First, the moment is created by providing the number of qubits in a circuit.

moment = Moment( c i r c u i t . n qub i t s )

Next, the gates are added to the moment. Both the multiple-gate method and

chained-gate method may be employed when adding to a moment, similarly to adding

individual gates to a circuit.

moment . add gate (H( 0 ) , H( 1 ) )

Lastly, the moment is added to the circuit.

c i r c u i t . add moment (moment)

To see the results, the circuit can be printed again, similarly to the previous

example, utilizing single gates, except the output will now predictably change based

on moments.

|0> −−−−−X−−−−−−X−−−−−−−−−−−−−CX−−−−−H−−−−−−

|0> −−−−−−−−−−−−−−−−−−X−−−−−−−@−−−−−−H−−−−−−

|0> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Suppose an additional gate is added with multiple control, circuit .add gate(CX(0, 1, 2)),

and the circuit reprinted. The resulting output will then change.
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|0> −−−−−X−−−−−−X−−−−−−−−−−−−−CX−−−−−H−−−−−−CX−−−−−

|0> −−−−−−−−−−−−−−−−−−X−−−−−−−@−−−−−−H−−−−−−C−−−−−−

|0> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−@−−−−−−

There is also additional information that can be gathered, including the unitary

matrix generated, a flag indicating whether the operations are unitary, and the

possible output states.

Unitary :

0 . 5 0 . 0 −0.5 0 .0 0 .5 0 .0 0 .0 −0.5

0 .0 0 .5 0 .0 −0.5 0 .0 0 .5 −0.5 0 .0

0 .5 0 .0 0 .5 0 .0 0 .5 0 .0 0 .0 0 .5

0 .0 0 .5 0 .0 0 .5 0 .0 0 .5 0 .5 0 .0

0 .5 0 .0 0 .5 0 .0 −0.5 0 .0 0 .0 −0.5

0 .0 0 .5 0 .0 0 .5 0 .0 −0.5 −0.5 0 .0

0 .5 0 .0 −0.5 0 .0 −0.5 0 .0 0 .0 0 .5

0 .0 0 .5 0 .0 −0.5 0 .0 −0.5 0 .5 0 .0

I s un i ta ry r e a l l y un i ta ry ? True .

S ta t e s :

0.5 |000>

−0.5|010>

0.5 |100>

−0.5|111>
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6.2.2 The Circuit and The Unitary Decomposition

The circuit and generated unitary transformation are then able to be decomposed

following either the Reck or Clements transform, described in Section 5.1.1. To

complete the decomposition, the following can be run.

mz i s e t t i ng s , output phases = reck decomp ( c i r c u i t . un i ta ry )

The output of printing both variables, for the circuit previously generated, will result

in the following set of phase settings and output phase adjustment necessary to imple-

ment the circuit. The format for the MZI settings is [waveguide1, waveguide2, θ, φ, size]

and the format for the phase adjustments is a vector of required rotations.

[ [ 6 , 7 , 0 . 0 , 3 .141592653589793 , 8 ] ,

[ 5 , 6 , 1 .5707963267948966 , 0 , 8 ] ,

[ 4 , 5 , 0 .7853981633974483 , 3 .141592653589793 , 8 ] ,

[ 3 , 4 , 1 .5707963267948966 , 0 , 8 ] ,

[ 2 , 3 , 0 .9553166181245092 , 3 .141592653589793 , 8 ] ,

[ 1 , 2 , 1 .5707963267948966 , 0 , 8 ] ,

[ 0 , 1 , 1 .0471975511965979 , 3 .141592653589793 , 8 ] ,

[ 6 , 7 , 0 .7853981633974483 , 3 .141592653589793 , 8 ] ,

[ 5 , 6 , 1 .5707963267948966 , −6.123233995736766e−17, 8 ] ,

[ 4 , 5 , 0 .9553166181245092 , 3 .141592653589793 , 8 ] ,

[ 3 , 4 , 1 .5707963267948966 , −8.164311994315688e−17, 8 ] ,

[ 2 , 3 , 1 .0471975511965979 , 3 .141592653589793 , 8 ] ,

[ 1 , 2 , 1 .5707963267948966 , −9.184850993605148e−17, 8 ] ,

[ 6 , 7 , 3 .061616997868383 e−17, 3 .141592653589793 , 8 ] ,

[ 5 , 6 , 1 .5707963267948966 , −1.8369701987210304e−16, 8 ] ,
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[ 4 , 5 , 1 .0471975511965976 , −1.0205389992894612e−16, 8 ] ,

[ 3 , 4 , 1 .5707963267948966 , −1.103539415828288e−16, 8 ] ,

[ 2 , 3 , 0 .9553166181245093 , 3 .141592653589793 , 8 ] ,

[ 6 , 7 , 1 .0471975511965976 , 3.0616169978683836 e−16, 8 ] ,

[ 5 , 6 , 1 .5707963267948966 , −3.141592653589793 , 8 ] ,

[ 4 , 5 , 0 .9553166181245093 , −3.141592653589793 , 8 ] ,

[ 3 , 4 , 1 .5707963267948966 , −5.3674054655673156e−17, 8 ] ,

[ 6 , 7 , 4 .329780281177466 e−17, 1.7934537145593042 e−17, 8 ] ,

[ 5 , 6 , 1 .5707963267948966 , 3 .141592653589793 , 8 ] ,

[ 4 , 5 , 0 .7853981633974483 , 2.144840517017907 e−16, 8 ] ,

[ 6 , 7 , 0 .7853981633974483 , −3.141592653589793 , 8 ] ,

[ 5 , 6 , 1 .5707963267948966 , 9.013958510555925 e−17, 8 ] ,

[ 6 , 7 , 1 .0330811926697055 e−17, −2.8127958890487004e−16, 8 ] ]

[−1.−1.22464680 e−16 j

1.+9.18485099 e−17 j

1.+3.16367090 e−16 j

−1.−6.74008172e−17 j

1.+1.65762483 e−16 j

−1.−6.16847722e−18 j

1.+3.56902487 e−16 j

1.+6.74008172 e−17 j ]

The resulting set of values are then piped into the processor optimizer as a set of

parameters, required to be met to implement certain circuits, in a method other than
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those generated by the global optimizer.

6.3 Theoretical Gate Error and Fidelity Model

To aid in conditioning the results from the photonic processor, there is the neces-

sity for simulation of gate error and simulation of fidelity measure. Classical comput-

ers have obvious benchmarking possible on CPUs, GPUs, memory, hard drives, etc.

but there is no universal quantum benchmark. Upcoming benchmarking by industry

leaders include qubit quality, qubits’ fidelity, coherence times, and connectivity. Since

the platform utilized for this work is photonic, there is not the same error induced as

would typically be seen on an industry superconducting-qubit quantum computer.

Previously mentioned in Section 5.1.3, Equation 5.14, there are limited mathemat-

ical models related to MZI error, but none for total quantum gate error in relation

to the photonic processing platform. When looking at gate fidelity, F , a parameter

for fidelity may be associated with each quantum gate. The fidelity then represents

a measure of how close a particular quantum gate is applied versus the idealized

quantum state that the gate intended to apply. Mathematically, the fidelity can

be computed between an idealized state output, |Φ〉, and the actual state of the

system |Φ̂〉, where U is the ideal unitary transform occurring, and Û is the imperfect

transformation taking place.

U |Ψ〉 = |Φ〉 (6.1)

Û |Ψ〉 = |Φ̂〉 (6.2)

When analyzing the resulting fidelity, the measure would be calculated as
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F =
∣∣∣〈Φ|Φ̂〉∣∣∣2 . (6.3)

For simulation, the imperfect difference generated by the gate application can be

modeled as a unitary transform purely composed of errors, Uε. The error generated

here is a coherent error where there is no distinct loss in coherence of the quantum

state, only a loss or unwanted transformation of information happening to the output

of the quantum state after the application of a gate transformation.

Experimentally, measurement of fidelity is not as straightforward, and can ul-

timately be simulated with varying probabilities based on errors inherent to the

qubit’s platform. The errors may be measured experimentally by first applying a

gate (unitary transformation) to a qubit such that the ending measurement of the

qubit is targeted to return the basis state. The application of the unitary and its

inverse would be a simple UU † but, there is a distinct possibility that instead of a

basis state, an orthogonal state may be returned. If an orthogonal state is returned,

then that implies that the operation UU † did not transform the state as intended,

and it can be completed several more times to determine an average fidelity 〈F〉.

6.3.1 Photonic Intensity (Amplitude) Errors

There are several possible reasons for one to measure an incorrect state. In

photonics especially, there are two major sources of error a) amplitude errors, and

b) phase errors. The amplitude errors culminate as intensity errors, where laser-light

is not of the expected intensity in a classical sense, or where a detector experiences far

more registrations than would be expected. Amplitude errors are some of the most

difficult errors to quantify and track within a system, where the qubit interactions

present can be from other gates, other qubits, or even the environmental noise present.



97

Being able to quantify intensity errors is extremely important in understanding how

a quantum circuit operates in a real-world environment, outside of the laboratory.

For a single qubit gate, an error parameter ε can be used to denote total intensity

error culminated in the final state output for the system. The error can be described

by a unitary-error transformation as

Uε |Ψ〉 = ε |Ψ⊥〉+
√

1− ε2 |Ψ̄〉 . (6.4)

The transformation is representative of the error seen by the state perpendicular to

the operational state (|Ψ⊥〉), plus the error seen by the intended operational state

(|Ψ̄〉).

As a simple example, a not gate σX , with parameters |Ψ〉 = |0〉 and |Ψ̄〉 = |1〉,

will return a relation for gate fidelity, notated as

F = 1− ε2 . (6.5)

Thus, for an error ε = 0, the σX gate will return without error, where the unitary

transform will also have no error, i.e. fidelity is 1.

The error for a gate operation can be extended to create intensity error unitaries

for each of the major gates ran, with the most common shown below.

σ̂Xε =

 ε
√

1− ε2
√

1− ε2 ε

 (6.6)

Ĥε =

 ε+
√

1− ε2 −ε+
√

1− ε2

−ε+
√

1− ε2 −ε−
√

1− ε2

 (6.7)
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ˆCNOT ε =



√
1− ε21

√
1− ε22 −ε2

√
1− ε21 −ε1ε2 −ε1

√
1− ε22

ε2
√

1− ε21
√

1− ε21
√

1− ε22 −ε1
√

1− ε22 ε1ε2

ε1
√

1− ε22 −ε1ε2 ε2
√

1− ε21
√

1− ε21
√

1− ε22

ε1ε2 ε1
√

1− ε22
√

1− ε21
√

1− ε22 −ε2
√

1− ε21


(6.8)

From Equation 6.8 it is noted that the errors are in terms of two qubits. Similarly,

if written for a three qubit gate such as a controlled-controlled-not (CCNOT), there

would be three separate error terms, one related to each qubit in operation. Thus,

the following fidelities can be assigned for one- and two-qubit gate operations:

Fone−qubit = 1− ε2 (6.9)

Ftwo−qubit = (1− ε21)(1− ε22) . (6.10)

Since the gate errors are not identical for each run, averages must be taken for

each gate error fidelity. Assuming repeated uses of a gate do not result in the same

intensity error, the average fidelity then can be calculated for the same one- and

two-qubit gate operations:

〈Fone−qubit〉 = 1− 〈ε2〉 (6.11)

〈Ftwo−qubit〉 = 1− 〈ε21〉 − 〈ε22〉+ 〈ε21ε22〉 . (6.12)

The fidelity averages can then be generalized for n-qubit operations as

〈Fnq 〉 = 1− (〈ε21〉 − 〈ε22〉 − . . .− 〈ε2n〉) + (〈ε21ε22 . . . ε2n〉) . (6.13)

From the equations for average fidelity, as long as a matching probability distribu-
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tion for any gate’s error completely reflects the nature of the gate’s error forms, there

will be an accurate model for error for every gate implemented by the co-simulation

suite.

6.4 Co-Simulation of the Photonic Processor

The co-simulation of the photonic processor is accomplished by a Python 3.x hook

to the optimizer and control code. First, the initial calibration data is fetched from a

SQLite database for a static pathing similar to the estimated circuit implementation.

Second, the optimizer is applied to the circuit when activated with laser-light to

implement the expected circuit and pathing model required. Finally, when the

optimizer is finished applying the finalized circuit and phase settings, a comparison

versus the probabilistic simulated outcome is completed. When the circuit is near to

an ‘ideal’ simulation, sets of scores are given to the simulator to show the user the

most likely simulation matching real-world output results.

The continued development of the co-simulator is ongoing and remains a topic for

future research.
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CHAPTER 7

CONCLUSION, RECOMMENDATIONS, AND FUTURE

WORK

Quantum computing is ultimately an interdisciplinary field, melding several con-

cepts and techniques from engineering, computer science, and physics. The applica-

tions of quantum computing are still few, but span a broad range; from factorizing,

Hamiltonian simulation, and black-box search optimization. Each of the basic tools

available to quantum computers; superposition, entanglement and interference, play

an important role in several fields to solve problems from ‘designer’ pharmaceuticals,

to quantitative finance, to complex engineering problems. Each field, however, ne-

cessitates communication and has present security threats when operating between

classical and quantum machines to solve complex tasks.

The research presented in this work set out to answer the question of whether or

not secure communication primitives could be designed that would work interchange-

ably between classical and quantum computers, and if so, how could the primitives

designed be used together? The work towards that goal, for this dissertation, is

a large step towards the complete interchangeability of hybrid quantum–classical

protocols and their underlying algorithms. The general findings, however, lead to

the understanding that while quantum technologies are coming to the forefront, they

are not displacing existing classical technology that is used in everyone’s everyday
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life.

7.1 Key Objectives

The key research objectives for this work were: a) development of a non–QKD ap-

proach towards secure communication, b) utilization of a silicon-based quantum pho-

tonics processor and the development of high-resolution control, enabling fine-grained

phase settings, and an updated design of a photonics processor with a control system,

c) utilization of quantum teleportation for inter-quantum-processor communication

of gates and associated secret information sharing, d) and the final development of

several components required for a quantum ciphersuite.

The key research objectives all led into a common goal: A ciphersuite developed

that is hybrid quantum-classical in the sense that both are required to create a secured

method of communication, not necessitating QKD. The contributions towards the

field of quantum security that were completed during the course of this research

were:

1. Development of the first quantum sponge function, capable of absorbing either

quantum or classical information, and producing a keyed, reversible output

stream.

2. Development of the first all-optical physically unclonable function based on a

linear interferometer array.

3. Development of an embedding mechanism to map a quantum hash onto a

polynomial lattice.

4. Development of multiparty single-photon authentication and multi-party keys.
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5. Development of a global optimization technique for tunable linear interferometer

arrays built on topology graph optimization.

The first key objective was met, and was described in Chapter 2, tying into the

second key objective towards a quantum–classical ciphersuite described in Chapter 3.

The third key objective was a major component towards the quantum sponge func-

tion, from Chapter 2, with the fourth key objective serving to support the single-

photon-based authentication scheme shown in Chapter 3. The work in Chapter 5

meets the fifth, and final, key objective which makes it possible to run the experiments

from Chapter 3, and opened the pathway towards optimization of the SMP protocol

described in Chapter 4.

Methods and application developed ‘along-the-way’ include the alternate method

of the quantum swap-test, supporting a return of information similarity (or differ-

ence), to users through a referee, the new form of global optimization subroutines as

applied to the requirements in Chapter 6, a method to examine the path transitions

described in portions of Chapter 2, and a mechanism to determine the automorphisms

of information while being operated within the setting of the quantum random walk.

A numerical analysis method based on the Catalan numbers was also developed to

help analyze the possible number of CRPs for the given architecture of MZIs in the

hardware device shown in Chapter 3.

7.2 Quantum Sponge Relevance

The quantum sponge designed in this work is unique, in that the capability is

now present to map either quantum or classical messages into a polynomial space of

interconnected nodes. Once the message is mapped into a polynomial-node space, it is
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able to be either extended arbitrarily according to a set of rules governed by a quantum

random walk, in either constrained or unconstrained space, or may be applied into a

message passing model. The messages passes between parties can be deconstructed

by a referee where the information contained in the original message is not lost, and

is considered secret against an adversary (discussed further in Section 7.4).

7.3 Multiparty Authentication Component Remarks

The two main components of the multiparty authentication were the development

of an all-optical PUF based on linear interferometric device arrays, and the devel-

opment of a method of using single photons for authentication tasks. Both have

interesting applications, but the all-optical PUF has certain limitations, as was found

during experimentation.

7.3.1 All-Optical Physically Unclonable Function

The results extrapolated by a planar tree recurrence from Equation 3.10 serve to

highlight the optical interferometric PUF’s ability to scale exponentially, thus meeting

the first criterion for a strong PUF by C. Herder et al. [36]. An additional facet of the

design shown is the ability to have quick reconfigurability to assess additional CRPs.

Since each of the MZIs are independently tunable, it is observed that the response

of a tuned device, and the change of parameters for subsequent CRPs, changes the

device’s total output and its ability to affect the system. The ability to tune the

device at-will enhances application and use-cases to not only the static processing

of information but to the processing of streaming information. It is thus possible to
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process information streamed through the device or static information where a set of

CRPs is dynamically changed depending on the information received.

Unfortunately, there are several negative attributes to using a system of interfer-

ometers as a PUF. The greatest negative is the one where nearest-neighbor challenges

may give predictable results on smaller PUFs. In addition, the interferometric system

is highly structured and fixed, such that a sufficient number of CRPs being calculated

could lead to the device being fully characterized. Indeed, the QPP was designed with

such characterization in mind, because the original use case was for applications and

experimental testing of quantum optical networks [103]. It should be pointed out that

the device was not originally intended to act as a PUF and that the operation is based

on exploiting its attributes. Since the reconfigurability of the QPP is available, it is

possible to make one device clone the function of another device; for purpose of using

it as a PUF, it is suggested to utilize this device in an uncalibrated mode. Custom

designed interferometric circuits with more complicated interconnections, including

variable feedback loops, would be more resistant to characterization and thus act as

stronger PUFs.

A second negative attribute of the current prototype is that the operating tem-

perature must be stable within ±1◦C. Allowing the temperature to vary may be a

route to increasing the number of challenge and response pairs if two devices respond

differently to temperature changes. This is an open research question. If temperature

variation were not desired, packaging the device may lead to an easy method of

stabilization. Alternatively, multiple sets of CRPs can be created for an array of

temperatures prior to use. The variation with temperature observed is a direct result

of using common SOI and CMOS fabrication. Silicon is a thermo-optic material

and was chosen for its ease of integration into existing CMOS processes. However,
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the design for an interferometric optical PUF can be trivially transferred to an

electro-optically controlled material such as Lithium Niobate to create a more stable

standalone device or an application specific integrated circuit. It should be noted,

however, that Lithium Niobate will still have a small thermo-optic effect. Conversely

each challenge C̄i could double as an independent bias setting for the device. A

variation in other parameters, such as global heating of the device, wavelength inputs,

and variance in the number of pumped channels, can allow each challenge to be

utilized as an individual, separate, PUF. Here, these parameters have been taken to

be constants for simplicity, but if allowed to vary, utilizing more parameters opens an

enormous set of possible CRPs theoretically available.

Finally, with the software drivers used in these experiments, it takes approximately

3 seconds to completely set a challenge and measure a response of 1,000 physical

measurements on the QPP. This has since been significantly improved with a new

driver optimization. The fundamental limit to the speed of the challenge and response

is set by the maximum speed that the thermal switching can occur; estimated to be in

the ≈ 100kHz range [104]. This may appear slow, but it should be stressed that the

experimental setup was in no way designed to optimize the speed of the measurements.

The system currently runs on several standard Arduino-driven Teensy boards, for

ease of development. Hardware integration with an FPGA and implementation in an

electro-optical media will result in orders of magnitude speed-ups to gigahertz speeds.

If a design were optimized for usage as a PUF with the proper, previously mentioned

controls, then the existence of reconfigurable optical PUFs will greatly enhance the

security of future optical communications.
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7.3.2 PUF-based Identity Authentication

In this work, the use of a reconfigurable all-optical PUF is described as a hardware

authentication mechanism. The usage of the optical PUF as an authentication

mechanism is carried out by a modified quantum readout protocol. The readout

protocol makes the PUF able to authenticate classical and quantum information

through the usage of classical light or single-photon-level manipulations. Additionally,

the usage of the hardware optical PUF enables one to authenticate that the receiver

of information is not adversarial in nature. This work represents the first application

of an all-optical reconfigurable PUF for tasks other than object and direct-access user

authentication.

7.3.3 Single Photon Authentication

The work to develop a standard single photon authentication mechanism built on

top of the recent work by C. Hong et al. [54], whereby a method to utilize a single

photon for authentication tasks can be achieved. Since there is a limited quantum

resource being utilized for the task, where only the basis is of importance, along

with the position characteristics, it is possible for this technique to coexist between

quantum and classical computation. To overcome possible probe-style attacks on the

scheme, it was modified slightly to employ a classical, post-quantum, technique to

obfuscate the selected basis, along with the same position encodings.

The downside to this method, however, is when one may wish to send many more

messages in succession than the number of possible basis selections. This situation

could lead to possible attack by an eavesdropper with similar power to an oracle

operating in a similarly modeled situation.
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7.4 Quantum Simultaneous Message Passing

The SMP model developed for this work is based on the mapping of messages

to polynomial nodes presented in earlier sections. The major breakthrough in this

method is the application of the sponge-based mapping to a model where two (or

more) parties may communicate through a referee. Since the referee serves to compare

information and relay the differences to the parties, a new form of information crite-

rion applied to a SMP model had to be utilized, based on the Schmidt decomposition.

The result is that the referee is able to send a difference measure to the parties, instead

of a true or false result.

The inclusion of the information difference between messages then can be further

developed into a method for information and key agreement schemes in the future.

The key agreement schemes possible from this work, and that will be looked into in the

future, would be multi-party key agreements, with the ability to limit access to certain

information only meant to be shared with select members of the key agreement.

7.5 Photonics Processor and Optimization

Photonic integrated circuits have become important in the past several years and

have been integral to classical optical communication for decades. The attributes that

make the photonic integrated circuits ideal for classical communications; compactness,

high fidelity, high bandwidth, and the control of a large number of optical modes,

make them ideal for use in new applications. Thus, photonic integrated circuits

can be used not only for optical classical computing, but for integration of quantum

computing with classical optical networks and for quantum acceleration.
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The major benefit of the photonics processor is that it is designed around existing

CMOS processes, common among foundries world-wide, and that it operates at the

same optical wavelengths of current optical telecommunications equipment. The

scalability of the photonics processor is also advantageous in that many optical modes,

unitary controls, and phase modulators may be implemented on a single chip, not

requiring the large amount of space and the stability controls required in bulk optics.

The major future applications of the photonics processor range from self-configuring

optical experimental circuits, to quantum information processing, to machine learning

and neural network implementation. Specific interest goes to quantum information

processing, and entanglement consumption in further quantum applications such as

multi-party key agreement schemes, quantum radar, and time-traversal quantum

gates.

The setup of a global optimizer for the photonics processor is also relevant, for

not only the experimental setup, but for the simulation of specific circuits, to model

their operation and the required set-points when it needs to be inclusive of errors that

may occur due to imperfections. While the photonic circuits and MZIs are imperfect

devices, the goal of the global optimizer is to get rid of imperfections due to the

variances in fabrication and to the computer-control of the MZIs integrated resistive

heaters. The ability to model and predict the operation of the photonics processor is

an important step to enable other researchers to simulate how their quantum circuits

and implementations may operate, given the chance to use a similar platform.

The optimizer designed in this work has application where rapid global optimiza-

tion is necessary, in instances where one might wish to use the photonics processor to

model the previously-mentioned Hamiltonian simulations, or for quick switching and

optimization of implemented security protocols; a topic for future continued research.
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7.6 Photonics Processor Simulation

The application of the quantum photonics co-simulator was originally developed

to characterize and simulate the possibilities of implementing portions of the afore-

mentioned hybrid ciphersuite components. The simulation of the photonics processor

and contributions made by this work aim to be the foundation of more elaborate

simulation systems based on photonic processors, their application in quantum in-

formation processing, and their integration into existing optical telecommunication

technologies. Since the simulator developed in this work is capable of co-simulation

with a physical device, it is of interest to other researchers in similar fields to have

access to a simulated version of the photonics processor.

The current state of quantum technologies is fragmented, at best, and shows how

unification of written instruction set architectures is necessary at this point in time.

As companies and organizations develop their own technologies ‘in the dark’ a wedge

is being driven between researchers who are agnostic to platform. By creating an

open platform for others, future research on a given technology will have real weight

behind the research.

The photonics simulator thus has multiple attributes to make it a future candidate

which would be easily adopted by researchers: The application of a comprehensive

decomposition technique for arbitrary unitary transformations, a method of inducing

simulated gate errors as applied to the photonic architecture, and an instruction

set architecture with simple key words to apply gates and moments to a quantum

circuit, with the back-end applying the necessary transformations through transparent

methods.
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7.7 Final Thoughts and Recommendations

In all, the work presented in this dissertation is not an end-all be-all for a quan-

tum secured hybrid ciphersuite, but represents possible implementations of several

ciphersuite components that may operate together cohesively. The representations

of information in this work should only serve as a simple foundation to build hy-

brid ciphersuites. As quantum computing continues, in scale, to become something

that classical machines can no longer predict, it will be of utmost importance to

secure classical information in a manner considered ‘NP’-hard (at a minimum) to the

quantum computer.

It is thus a strong recommendation that any base for security developed, with

quantum supremacy on the horizon, be one based on physical devices. Software-only

approaches will be easily solved in this scenario due to being within the exact nature

of the types of problems that quantum computers are good at – black box searches.

7.8 Future Work

Obviously a dissertation is not truly the end of research in a field, but is a small

window into a major realm of interest and continued study. Future work stemming

from this dissertation is still security-focused and will naturally contribute to the end

goal of a full quantum ciphersuite, not merely primitives that work well together, and

not merely the processing of data. Continued work that is happening at the time of

writing extends into the mathematical mechanisms by which the quantum hash SMP

function operates, and the trade-offs that need to be made when considering hybrid

algorithms. Some of this work includes the creation of a mathematical tool to allow

one to pre-measure a quantum state, then continue operating on it, while achieving the
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same result as if the measurement had been done after all operations were completed.

Additional work investigates the homomorphic operations on quantum state vertices,

and the topology of interconnected states and their related transitions through unitary

and non-Clifford gate operations.

Strategies for achieving the goals of future work are actively being worked on,

by examining the continuity, differentiation, and quantum state transfer in discrete

quantum state structures. The focus of the immediate work is to see how one may

traverse continuously, in continuous time, on just the vertices of directed graphs, and

an application for the transfer of quantum states through a continuous path in a simple

quantum network. The work ultimately leads into directed graph homomorphisms

of quantum states, and can lead to the development of a more efficient method of

quantum homomorphism.
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APPENDIX A

QUANTUM COMPUTING

Quantum computing is a relatively new area of computing which holds the poten-

tial of significant speedup over classical computers with regard to finding the solution

of certain problems. However, the major disadvantage of quantum computers is

their fundamental difference in operation versus a classical computer. Literature

contains many textbooks which handle the basics of quantum computing, with [105]

acting as a comprehensive reference about quantum computing, and [106] and [107]

serving to show an accessible alternative for non-physicists. In this section, quantum

computing will be viewed from the perspective of someone who does not have a

physicist’s understanding of quantum mechanics; beginning with basic assumptions

and following with the intuitive examples and concepts in an easily conceptualized

form.

A.1 Quantum Introduction

In general, a quantum computer is abstractly similar to a classical computer in

that there is a state for the computer which evolves as each operation takes place.

In this work the state of the quantum computer is contained in a quantum register,

initialized in some predefined way for the desired operation. The state then evolves

according to the operations which are specified in advance according to the algorithm
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necessary for computation. At the finale of computation, information from the state

register is obtained through an operation called measurement. The measurement,

however, must be completed with data stored once computation is finished or else the

information produced will be lost due to quantum mechanical effects.

First we must define several key notations to quantum computing:

• Tensor Product Space – Given two vector spaces, V and W , over field K with

bases {e1, . . . , em} and {f1, . . . , fm} respectively, the tensor product, V⊗W , pro-

duces another vector space over K of dimension mn. For quantum computing,

there is a bi-linear operation in the tensor product space ⊗ : V ×W → V ⊗W .

The vector space formed by V ⊗ W has a basis ei ⊗ fj∀i = {1, . . . ,m}, j =

{1, . . . ,m}. If the origin vector spaces are complex Hilbert spaces, H, of a type

Cn, and a standard basis is chosen where orthonormal vectors have a value of

1 in a single position, 0 elsewhere in the origin vector spaces, then the tensor

product is known as the Kronecker product. The Kronecker product in this

context is then a generalization of the outer product.

• Kronecker Product – To define the Kronecker product, we can consider all

operation in this work taking place in the complex Hilbert spaces, H, of form

Cn, by using the standard basis. In a loosely defined way, the tensor product

can refer to the Kronecker and outer products. Given A ∈ Cm×n, B ∈ Cp×q, the

Kronecker product, A⊗B is the matrix Cmp×nq defined as:
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D := A⊗B =



a11B . . . a1nB

a21B . . . a2nB

...
...

am1B . . . amnB


.

If a standard basis is chosen over vector spaces Cm×n and Cp×q, then the bi-linear

operation ⊗ of the tensor product Cm×n⊗Cp×q is simply the Kronecker product.

There are fairly broad definitions which the tensor product must satisfy, which

are outside of the scope of this work. Other important notations are where A∗ is used

to denote a conjugate transpose of A, but when given a matrix A, the notation A
⊗n

will be used to indicate a tensor product of A with itself n times. The same notation

will be used for Hilbert spaces, shown as:

A
⊗n

:= A⊗ A · · · ⊗ A︸ ︷︷ ︸
n times

, H⊗n := H⊗H · · · ⊗H︸ ︷︷ ︸
n times

.

A.2 Bra-Ket Notation

The final part of notation necessary to understand quantum computing is known

as bra-ket notation, from quantum mechanics. Given a Hilbert space H ≡ Cn, a

quantity ψ ∈ H enclosed in a ket, denoted by |ψ〉, is a vector which can be envisioned

as a classical column vector. A similar quantity, φ ∈ H∗, enclosed in a bra is denoted

by 〈φ|. The value 〈φ| represents a vector in the dual space; thought of as a row

vector that is the conjugate transpose of φ ∈ H. Thus, a resulting expression, 〈φ|ψ〉,

represents an inner product within the Hilbert space. For this work, the Hilbert

spaces will be of the form (C2)
⊗q

, where q is any given integer. Therefore, the basis
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elements of the Hilbert spaces must be defined.

The standard basis for C2 is denoted by:

|0〉1 =

1

0

 , and |1〉1 =

0

1

 .

A larger standard basis for (C2)
⊗q

, which has q elements is denoted by:

|0〉q , |1〉q , . . . , |2
q − 1〉q .

To formally define ket notation for basis vectors, we can abstract without loss of

generality by saying that for any q-digit binary string, x ∈ {0, 1}q, |x〉 is the 2q-

dimensional basis vector in (C2)
⊗q

which corresponds to the binary string. For

example, a 2q-dimensional basis vector with 1 in position
∑q−1

j=0 2q−j−1xj, and 0

elsewhere could be represented by a toy example where |101〉 is the 8-dimensional

basis vector (00000010)ᵀ. However, if x is any integer ≤ 2q − 1, |x〉q represents the

2q-dimensional basis vector |xBq〉 ∈ (C2)
⊗q

, or simply, the basis vector in which

x is expressed as a binary string on q digits. To simplify notation though, |x〉q is

used to note a basis state. For example, |6〉3 = |101〉 is the 8-dimensional basis vector

(00000010)ᵀ. Be sure to take note that according to notation, |0〉 = |0〉1 and |1〉 = |1〉1

since sub-scripting a basis state is unnecessary for basis vectors in C2.

An example for the basis elements of (C2)
⊗2

= C2 ⊗ C2 can be represented as:
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|0〉2 = |0〉 ⊗ |0〉 = |00〉 =



1

0

0

0


|1〉2 = |0〉 ⊗ |1〉 = |01〉 =



0

1

0

0



|2〉2 = |1〉 ⊗ |0〉 = |10〉 =



0

0

1

0


|3〉2 = |1〉 ⊗ |1〉 = |11〉 =



0

0

0

1


.

The index then of a standard basis for (C2)
⊗q

composed of basis elements correspond-

ing to a tensor product of basis elements of C2 can be simply noted by the decimal

number, which corresponds to a binary string obtained by concatenating the indices

of the basis elements of C2.

A.3 Quantum State and Qubits

By the model developed in this work, a quantum computing device has a state

which is stored in a quantum register. Qubits represent the quantum counterpart

to a bit found in a classical computer, with the key difference being that a classical

computer has registers made of bits versus a quantum computer’s usage of a single

quantum register composed of qubits. The state of the quantum register, therefore the

quantum computer, can be described from the assumption that the state of q-many

qubits can be represented as a unitary vector in (C2)
⊗q

= C2⊗· · ·⊗C2. If a standard

basis for C2 is chosen, then a single qubit (q = 1) can be represented as:
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α |0〉+ β |1〉 = α

1

0

+ β

0

1

 , where α, β ∈ C and |α|2 + |β|2 = 1 .

Following, then if a standard basis is given for each C2, a basis for (C2)
⊗q

is given by:

|0〉q = |0〉 ⊗ · · · ⊗ |0〉 ⊗ |0〉︸ ︷︷ ︸
q times

= |0Bq〉

|1〉q = |0〉 ⊗ · · · ⊗ |0〉 ⊗ |1〉︸ ︷︷ ︸
q times

= |1Bq〉

...

|2q − 1〉q = |1〉 ⊗ · · · ⊗ |1〉 ⊗ |1〉︸ ︷︷ ︸
q times

= |(2q − 1)Bq〉 .

In general, the state of the qubits can be described by:

|ψ〉 =
2q−1∑
j=0

αj |j〉q where αj ∈ C and
2q−1∑
j=0

|αj|2 = 1 .

It is important to keep in mind that (C2)
⊗q

is a 2q-dimensional space; a sharp contrast

with the state of classical bits. For classical bit states, given q-many bits, the state

is a binary string in the field {0, 1}q, which is a q-dimensional space. The major

difference in dimensionality is that the dimension of the state space of the quantum

register grows exponentially by the number of qubits, whereas the dimensionality of

the state space for a classical register would grow linearly by the number of bits.

In addition, the representation of a quantum state needs complex coefficients since

a q-many qubit quantum register will ‘store’ 2q complex coefficients: An enormous

amount of information compared to what can be stored in a classical q-bit classical
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register. However, the quantum state is not able to be accessed directly, thus even if

the quantum state contains much information, access is not as easy as with a classical

register.

A.3.1 Superposition

If both |x〉 and |y〉 are in a basis state, either α0 or α1 is zero, where, similarly,

either β0 or β1 is zero while the non-zero coefficients have a modulus of one. We

can say that q-many qubits are in a basis state if their state |φ〉 =
∑2q−1

j=0 αj |j〉q

is such that for every k: |αk| = 1, αj = 0, ∀j 6= k. Otherwise, the qubits are in

a superposition. Thus, only one of the coefficients in the expression of the state of

|x〉 ⊗ |y〉 is non-zero; in fact the modulus is one, so all other coefficients are zero. It

follows that if both |x〉 and |y〉 are in a basis state, |x〉 ⊗ |y〉 represents a basis state

as well.

For example, consider two qubits:

|x〉 = α0 |0〉+ α1 |1〉

|y〉 = β0 |0〉+ β1 |1〉 .

The two qubits taken together as a whole will be in state:

|x〉 ⊗ |y〉 = α0β0 |0〉 ⊗ |0〉+ α0β1 |0〉 ⊗ |1〉+ α1β0 |1〉 ⊗ |0〉+ α1β1 |1〉 ⊗ |1〉 .

Now, if we assume that α0 = β0 = α1 = β1 = 1√
2
, the qubits |x〉 and |y〉 are in a

superposition. Following the previous information, the state of |x〉 ⊗ |y〉 is also in a

superposition with a value of:
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|x〉 ⊗ |y〉 =

(
1√
2
|0〉+

1√
2
|1〉

)
⊗

(
1√
2
|0〉+

1√
2
|1〉

)

=
1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉 .

The normalization of coefficients computes correctly, since the tensor product of

unitary vectors is unitary. The shown example relates a generalization to an arbitrary

number of qubits where for any q, q-many qubits are in a basis state if and only if each

of the individual qubits is in a basis state. The realization of multiple basis has no

counterpart in classical computing since any q-many classical bits will always be in a

basis state since the q-many bits will always correspond to exactly one of the 2q binary

strings possible. Superposition then is a main differentiating feature of quantum

computers versus classical computers; the second is the concept of entanglement.

A.3.2 Entanglement

The state of q-many qubits can be represented as a vector in (C2)
⊗q

, a 2q-

dimensional space. Since the space in which a single qubit exists, a tensor product

of C2, an unanswered question is whether or not moving from the usage of single

qubits to multiple qubits brings any inherent gain. To clarify, the question would be

whether or not the quantum states which are able to be represented by q-many qubits

are simply the tensor product of q-many single qubits. By utilizing prior notation,

the state of q-many qubits is a unitary vector in (C2)
⊗q

, which can be alternately

represented as:

|ψ〉 =
2q−1∑
j=0

αj |j〉q ,
2q−1∑
j=0

|αj|2 = 1 .
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If we consider the tensor product of q-many qubits, the jth of which would be in state

βj,0 |0〉+ βj,1 |1〉. After taking the tensor product, we obtain the vector:

|φ〉 =
1∑

jq−1=0

1∑
jq−2=0

· · ·
1∑

j0=1

q−1∏
k=0

βk,jk |jqjq−1 . . . j0〉

=
2q−1∑
j=0

q∏
k=1

βk,(jBq)k |jBq〉 , |βj,0|2 + |βj,1|2 = 1, ∀j = 1, . . . , q .

The normalization condition for |φ〉 implies:

1∑
jq−1=0

1∑
jq−2=0

· · ·
1∑

j0=1

q−1∏
k=0

|βk,jk |
2 = 1 ,

which is more restrictive that that for |ψ〉. More plainly, there are values for αj with:

2q−1∑
j=0

|αj|2 = 1

which cannot be expressed as any coefficient which similarly satisfies the conditions

for |φ〉.

A.3.3 Entanglement Example

As an example, we can consider two distinct qubits, or two single-qubit states:

|x〉 = α0 |0〉+ α1 |1〉

|y〉 = β0 |0〉+ β1 |1〉 .

The two individual qubit states can be taken together by the tensor product, resulting

in:
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|x〉 ⊗ |y〉 = α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉 , (A.1)

with the normalization conditions of |α0|2 + |α1|2 = 1 and |β0|2 + |β1|2 = 1. The

general state of the quantum two-qubit register |ψ〉 is:

|ψ〉 = γ00 |00〉+ γ01 |01〉+ γ10 |10〉+ γ11 |11〉 , (A.2)

with a qubit normalization condition of |γ00|2+|γ01|2+|γ10|2+|γ11|2 = 1. By comparing

Equation A.1 with Equation A.2, it is easily determined that |ψ〉 is of the form |x〉⊗|y〉

if and only if it satisfies the relationship:

γ00γ11 = γ01γ10 . (A.3)

At this point it is clear that |x〉⊗ |y〉 will yield coefficients which satisfy the condition

set by Equation A.3. To see a mathematically strong converse, let θ00, θ01, θ10, and

θ11 represent the phases of γ00, γ01, γ10, and γ11, respectively. By this relation, and by

Equation A.3, this implies that:

|γ00|2|γ11|2 = |γ01|2|γ10|2

θ00 + θ11 = θ01 + θ10 .

We can then rewrite the coefficients as:
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|γ00| =
√
|γ00|

2
=
√
|γ00|2 (|γ00|2 + |γ01|2 + |γ10|2 + |γ11|2)︸ ︷︷ ︸

normalization condition = 1

=

√
|γ00|4 + |γ00|2|γ01|2 + |γ00|2|γ10|2 + |γ01|2|γ10|2

=

√
|γ00|2 + |γ01|2︸ ︷︷ ︸

|α0|

√
|γ00|2 + |γ10|2︸ ︷︷ ︸

|β0|

,

which with other coefficients written similarly:

|γ01| =
√
|γ00|2 + |γ01|2︸ ︷︷ ︸

|α0|

√
|γ01|2 + |γ11|2︸ ︷︷ ︸

|β1|

|γ10| =
√
|γ10|2 + |γ11|2︸ ︷︷ ︸

|α1|

√
|γ00|2 + |γ10|2︸ ︷︷ ︸

|β0|

|γ11| =
√
|γ10|2 + |γ11|2︸ ︷︷ ︸

|α1|

√
|γ01|2 + |γ11|2︸ ︷︷ ︸

|β1|

.

To finish fully defining the coefficients α0, α1, β0, and β1, their phases must be deter-

mined. It is easy to assign:

α0 = eiθ00|α0|, α1 = eiθ10|α1|, β0 = |β0|, β1 = ei(θ01−θ00)|β1| . (A.4)

It can be finalized by verification that the state |ψ〉 in Equation A.2 can be expressed

as |x〉⊗|y〉 in Equation A.1 with the coefficients α0, α1, β0, and β1 as given in Equation

A.4.

A.3.4 Quantum State Decomposition

The concept of expressing quantum state(s) as a tensor product composed of

lower-dimensional quantum states can be described by its decomposed variant. Given



133

a quantum state |ψ〉 ∈ (C2)
⊗q

is able to be decomposed if it can be expressed as

a tensor product, |ψ1〉 ⊗ · · · ⊗ |ψk〉 of k > 2 quantum states on (q1, . . . , qk) qubits,

respectively, with the property that (q1 +. . .+qk) = q. The general quantum state |ψ〉

could be the resulting product of two or more higher-dimensional quantum states, e.g.

|ψ〉 = |ψ1〉 ⊗ |ψ2〉, with |ψ〉1 and |ψ2〉 being entangled states. In this case, a quantum

state |ψ〉 ∈ (C2)
⊗q

is a product state if it can be decomposed into the tensor product

of q-many single-qubit quantum states; otherwise it is entangled. In such a situation,

|ψ〉 will still show some entanglement but can be theoretically ‘simplified’. By the

fact of minor entanglement, a quantum state can be called entangled as long as the

state is unable to be fully decomposed.

For example, we can consider the following two-qubit state:

1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉 .

The state represented is a product state since it is equal to:

(
1√
2
|0〉+

1√
2
|1〉

)
⊗

(
1√
2
|0〉+

1√
2
|1〉

)
.

Where, by contrast, the following state:

1√
2
|00〉+

1√
2
|11〉

is an entangled state since it cannot be expressed as a product of two single-qubit

states.
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APPENDIX B

CONSTRUCTION OF A QUANTUM HASH FUNCTION

BY MODIFYING THE ONE-DIMENSIONAL

TWO-PARTICLE DISCRETE-TIME QW ON A CIRCLE

Y. Yang et al. introduce two coin operators [24], the Grover operator Ĉ16
0 and the

coin operator Ĉ17
1 , in Equation B.1 and Equation B.2, respectively.

Ĉ0 =
1

2



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


(B.1)

Ĉ1 =
1

2



1 1 1 1

1 −1 −1 1

−1 1 −1 1

−1 −1 1 1


(B.2)

B.1 Description of QW Restriction

Taking the construction of a quantum hash function by by D. Li et al. in [26]

and expanded by Y. Yang et al. in [24], a one-dimensional two-particle discrete-time
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QW on a circle will effectively describe the QW of two walkers whose motions are

restricted to a circle. The operators Ŝ1 and Ŝ2 of a two-particle QW become:

Ŝ1 =


|2, 0〉 〈1, 0|+ |n, 1〉 〈1, 1| , when x = 1;

|1, 0〉 〈n, 0|+ |n− 1, 1〉 〈n, 1| , when x = n;

|x+ 1, 0〉 〈x, 0|+ |x− 1, 1〉 〈x, 1| , when x 6= 1, n .

(B.3)

It is noted that Ŝ2 will be similar to Ŝ1, where the total conditional shift operator Ŝ

is equivalent to Ŝ = Ŝ1 ⊗ Ŝ2. However, when the i-th bit of the message is 0(1), the

i-th step of the walk will execute with interaction Ĉ0(Ĉ1).

B.2 QW Example and State

Example: Given a binary message m = “0 1 0 0 1 1 0”, then a final state will

evolve to:

|ψ〉7 = Û0Û1Û0Û0Û1Û1Û0 |ψ〉0 , (B.4)

where Û0 = Ŝ
(
Î ⊗ Ĉ0

)
and Û1 = Ŝ

(
Î ⊗ Ĉ1

)
. The initial state of the quantum system,

|ψ〉0 is thus given by:

|ψ〉0 = |x, y〉 ⊗ |v1, v2〉 . (B.5)

Here,

|v1, v2〉 = (α |00〉+ β |01〉+ χ |10〉+ δ |11〉) , (B.6)

where |α|2 + |β|2 + |χ|2 + |δ|2 = 1 .
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APPENDIX C

THE UNIFORM BOUNDEDNESS PRINCIPLE

Let X and Y be Banach spaces, described in Appendix D, and let Tα be a family

of bounded linear maps from X into Y . Suppose that the sequence Tn ∈ B(X, Y )

of bounded linear operators has the property that for every x ∈ X, the sequence

Tn(x) ∈ Y is bounded. Then, the sequence of norms ||Tn|| will be bounded. If we

define a larger set: Mk = {x ∈ X : ||Tn(x)|| ≤ k ∀n} , k ≥ 1 .

Since the Tn’s are continuous, the sets are closed, and since for every x ∈ X the

sequence Tn(x) is bounded, we have x ∈Mk for a sufficiently large k. Thus

X =
⋃
k≥1

Mk .

By Baire’s category theorem [108], there is a guarantee that one of the closed sets

contains an open ball, for example B(x0, r) ⊂Mk0 . Thus we have

||Tn(x)|| ≤ k0 for any x ∈ B(x0, r) and n ≥ 1 .

Letting x ∈ X, x 6= 0, then a vector z = x0 + r
2||x||x belongs to B(x0, r) and

x = 2||x||
r

(z − x0). It can thus be calculated that ||Tn|| ≤ 4k0
r
∀n ∈ N.
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APPENDIX D

DEFINITION OF BANACH SPACE

A Banach space is a vector space X over field R or C that is equipped with a

norm and is complete w.r.t. the distance function indiced by the norm. Thus, for all

Cauchy sequences xn ∈ X ∃ x ∈ X such that:

lim
n→∞

xn = x , (D.1)

or equivalently:

lim
n→∞

||xn − x||X = 0 . (D.2)

Since the vector space structure allows one to relate directly to Cauchy sequences,

a normed space X is a Banach space iff each absolutely convergent series in X

converges,

∞∑
n=1

||vn||X <∞ implies that
∞∑
n=1

vn converges in X . (D.3)

The completeness of a normed space is preserved if the given norm is replaced by an

equivalent one, where all norms on a finite dimensional vector space are equivalent.

Every finite dimensional normed space over R or C is a Banach space.
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APPENDIX E

QIA PROTOCOLS BETWEEN TWO PARTIES

Protocol E.1 QIA Protocol Between Two Parties (Original)

Inputs. Pre-established secret key Skn.

Goal. Two parties successfully authenticate each others identity.

The protocol:

1. Setup.

(a) Both parties set individual counters to n = 0.

(b) If n > Skn, authentication is successful, else proceed.

(c) Alice randomly selects either message or control mode.

2. Message Mode.

(a) Alice takes the shared secret Ski and constructs a quantum state according

to Table 3.1.

(b) Alice sends her constructed state to Bob.

(c) Bob receives the incoming state and measures. He selects the measurement

basis using bit kn of his own copy of the shared secret. Bob’s measurement

outcome will be k′n+1.
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(d) Bob publicly announces the reception of the state. Alice then communi-

cates back that they are operating in the ‘message’ mode.

(e) Bob then compares his received value versus the expected value for the bit.

If k′n+1 = kn+1, the protocol will proceed; waiting to confirm the cycle’s

success to Alice, n = n+ 2, then proceed to step 1.b, otherwise abort the

protocol.

3. Control Mode.

(a) Alice creates the pair (kn, r), for a random bit r. Then on the agreed basis

Alice constructs a state according to Table 3.1.

(b) Alice sends her constructed state to Bob.

(c) Bob receives the incoming state and measures. He selects the measurement

basis using bit kn of his own copy of the shared secret. Bob’s measurement

outcome will be r′.

(d) Bob publicly announces the reception of the state. Alice then communi-

cates back that they are operating in the ‘control’ mode and the value of

r.

(e) Bob then compares his received value versus the expected value for the bit.

If r′ = r, the protocol will proceed; waiting to confirm the cycle’s success

to Alice, n = n+2, then proceed to step 1.b, otherwise abort the protocol.




