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ABSTRACT 

Predictive models for composition-structure-property relationships are essential to 

realizing the full potential of electroceramic materials; however, the electroceramics 

industry has largely failed to invest in predictive models in favor of simple rules of thumb 

or expensive, time-consuming trial-and-error methods. Empirically derived predictive 

models have the potential to significantly improve and guide future research in a more cost-

effective and timely manner. It may even be possible to predict some intrinsic properties 

(e.g., polarization) on the order of a unit cell using only the charge and size of each 

chemical component. Scientists and researchers may ultimately be able to use these types 

of models to produce compositional recipes from desired property or structural data or 

conversely predict properties and structures from compositional data. Moreover, empirical 

models allow for the investigation and discovery of trends in properties and structures that 

would be practically unobservable via either expensive experimental or computationally 

demanding first-principles methods. The main focus of this work will be the use of 

empirical data to derive predictive models for ceramics with the perovskite crystal structure 

and thereby glean crystallochemical insights which explain them.  

Chapter one lays the foundation for this work. A general overview of perovskites 

is provided and the seemingly endless degree of applications and properties that perovskite 

exhibit are explored including ferroelectricity, piezoelectricity, pyroelectricity, 

superconductivity, ionic conductivity, etc. It should be noted that the development of 

general correlative models which encompass all of these various properties and structural 
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effects would be well beyond the scope of this work. Instead, this work concentrates on 

developing models for the effects of layered A-site ordering, rock salt B-site ordering, 

trigonality, and oxygen vacancies on the perovskite structure. Additionally, previous 

empirical modeling efforts are introduced to lay the groundwork for the development of 

the correlative models within this work. 

Chapter two examines the effect of layered A-site ordering on the perovskite 

structure. 15 compositions in the [(NayLi1-y)(1-3x)/2La(1+x)/2)TiO3 (NLLT) system (y = 0.25, 

0.5, and 0.75; x = 0, 0.0533, 0.1, 0.1733, and 0.225) were produced. Long-range ordering 

for x ≥ 0.1 was observed via X-ray diffraction, while short-range ordering was shown to 

exist even for x < 0.1 via electron diffraction. Overall, the degree of ordering was observed 

to decrease as x increased. The A-site ordering parameter (η) and the resultant expansion 

(ΔrA) were each modeled for every y series of compositions in the NLLT system. Two 

general models were developed based on these system specific models, which allow for 

the prediction of η and ΔrA in layered A-site ordered perovskites with any arbitrary degree 

of ordering using only published ionic radii data.  

Chapter three investigates the effects of 1:2 B-site ordering in the BaMg1/3Ta2/3O3 

(BMT) perovskite system. BMT is an ideal compound for the study B-site ordering because 

the degree of B-site ordering increases with increasing annealing time. Thus, BMT 

powders were synthesized and annealed incrementally from 0 to 40 hours at 1500°C. The 

resulting structures were increasingly ordered on the B-site, which also caused a trigonal 

distortion within the structure. An empirical model was developed which describes the 

degree of ordering in terms of the B-site shrinkage or the annealing time, which allows for 

the prediction of the ordering parameter (η) in BMT using only experimental input. This 
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work has major implications in that this modelling technique may be expanded to include 

other B-site ordered complex perovskites, which could allow for the prediction of the 

degree of ordering and resultant volume shrinkage in B-site ordered perovskites in general 

using only published ionic radii data or experimentally-derived pseudocubic lattice 

constants.  

Chapter four analyzes the effects of 1:1 rock salt B-site ordering in general. Four 

compositions were synthesized in the AZn0.5Ti0.5O3 system (A = Nd, Sm, Nd0.5La0.5, 

Nd0.5Gd0.5). Long-range 1:1 rock salt cation ordering on the B-site was shown to exist for 

all four compositions via X-ray diffraction. Additional data was mined from literature for 

another 38 rock salt B-site ordered perovskites. This data was sorted according to the B-

site species and empirical models were developed which describe the B-site shrinkage 

(ΔrB) for each of these systems. From these system specific models, a general model was 

developed for rock salt B-site ordering, which allows for the prediction of ΔrB in rock salt 

B-site ordered perovskites using only published ionic radii data. 

Chapter five focuses on the development of a general correlative model for 

perovskite trigonality. A data mining approach was employed to gather published structural 

data for trigonally distorted perovskites. These perovskites were sorted into specific 

systems, and empirical models were developed for the degree of trigonality for each of 

these systems, which can be expressed a function of the ratio of the pseudocubic lattice 

constant (apc) to the B-X bond length (rBX). From these system specific models, general 

models were developed for trigonal perovskites with either R3c or 3R c  symmetry which 

describe the degree of trigonality as a function of the modified tolerance factor. 
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Additionally, a general model was developed which allows for the prediction of the 

intrinsic polarization in R3c trigonal perovskites.  

Chapter six describes the effects of oxygen vacancies in perovskite ceramics. Eight 

compositions in the CaTi1-xFexO3-x/2 system (x = 0.05, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 

and 0.45), and eleven compositions in the SrTi1-xFexO3-x/2 system (x = 0, 0.025, 0.05, 0.10, 

0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45) were synthesized. A data mining approach was 

used to supplement this data with more oxygen vacant perovskite systems. Empirical 

models were developed for each of these oxygen-deficient systems which describe the 

effective oxygen vacancy size (rV) and the bond deformation (DB). In addition, a general 

model was developed for the modified tolerance factor, which allows for the prediction of 

the tolerance factor in oxygen vacant perovskites. In turn, this allows for the accurate 

prediction of the effective anion size (rX) and pseudocubic lattice constant (apc) in oxygen 

vacant perovskites.  
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CHAPTER ONE: INTRODUCTION 

1.1 Perovskites in general 

Perovskites are growing increasingly important in modern electronic devices. In 

fact, perovskites are crucial in several multibillion dollar industries[1] primarily due to the 

fact that ceramics with the perovskite structure possess a wider range of properties than 

ceramics with almost any other crystal structure. For example, perovskites are known to 

exhibit ferroelectricity (e.g. BaTiO3)
[2]

, microwave resonance (e.g. Ba(Zn1/3Ta2/3)O3)
[3]

, 

piezoelectricity (e.g. PbZrxTi1-xO3)
[4]

, magnetism (e.g. BiCr1-xGaxO3)
[5], catalysis (e.g. La1-

xKxCo1-yFeyO3)
[6], photovoltaic properties (e.g. CH3NH3PbI3)

[7],  electrical conduction (e.g. 

LaCo0.5Ni0.5O3±δ)
[8], and many more useful electronic properties. 

1.2 The Aristotypical Perovskite 

The archetypal perovskite stoichiometry is ABX3, but not all materials with ABX3 

stoichiometry are perovskites. For example, MgTiO3 crystalizes in the ilmenite structure. 

Thus, there are more factors than just stoichiometry that determine whether a particular 

material is a perovskite or not.  

The aristotypical perovskite exists in cubic space group 3Pm m  with A-site cations 

at each of the eight corners of the unit cell, B-site cations at the body center, and X-site 

anions at each of the six face centers, as can be seen in Fig. 1.1. 
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Figure 1.1 The ideal cubic perovskite structure ( 3Pm m ), where the X anions are 

at the face centers of the unit cell, the B cation is at the body center of the unit cell, 

and the A cations are at the corners of the unit cell. The pseudocubic lattice 

constants 
pca  and 

pca  are shown by the green and blue arrows, respectively. 

 
Figure 1.2 Coordination polyhedra for the XII-fold coordinated A cation (left), 

the VI-fold coordinated B cation (middle), and the II-fold coordinated X anion 

(right). 

Additionally, Fig. 1.2 illustrates the different coordination environments for each 

species within the perovskite structure. The XII-coordinated A-site cations are within 

cuboctahedra, the VI-coordinated B-site cations are within octahedra, and each X-site 

anion is coordinated to two B-site cations resulting in II-fold coordination.  A-site cations 

are second-nearest neighbors, about 41% further away. 
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Since most perovskites exist as hettotypes due to structural distortions, it is often 

useful to express the structure of the hettotypes in terms of the aristotype. Indeed, the 

following expression for the pseudocubic lattice constant, apc, is a useful technique for 

expressing non-cubic structures in terms of the cubic one: 

1/3

pc

V
a

Z

 
  
 

                                                        (1.1) 

where V is the unit-cell volume and Z is the number of formula units per unit cell. 

Moreover, the A-X bond length can be defined as follows: 

pc

A-X
2

a
r

 
  
 

                                                         (1.2) 

and the B-X bond length can be defined as follows: 

pc

B-X
2

a
r

 
  
 

                                                          (1.3) 

where apc is the pseudocubic lattice constant; however, it is often convenient to express the 

pseudocubic lattice constant associated with the A-X bond length as a′, and the 

pseudocubic lattice constant associated with the B-X bond length as a″, as defined in Fig. 

1.1. Assuming a close-packed system of hard spheres with contact between both A and X 

as well as B and X, Eqs. 1.1 and 1.2 can now be redefined as: 

 A B2a r r                                                      (1.4) 

 B X2a r r                                                         (1.5) 

where rA, rB, and rX are the effective ionic radii of each species in XII, VI, and II-fold 

coordination respectively. 
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Furthermore, Goldschmidt[9] developed the following relationship for the 

perovskite unit cell in 1926: 

   A X B X2r r r r                                               (1.6) 

Eq. 1.6 can be rearranged using Eqs. 1.4 and 1.5 into what is commonly known as 

the Goldschmidt tolerance factor: 

 

 
A X

0

B X2

pc

pc

a r r
t

a r r


 
  

 
                                           (1.7) 

Tolerance factor is typically used as a measure of structural stability for perovskites. 

The most stable perovskites will exhibit a tolerance factor near unity.  As t0 decreases (i.e., 

rA becomes too small for regular cuboctahedral coordination), there is a driving force for 

octahedral tilting, which reduces the volume of cuboctahedra.  At t0 < 0.985 antiphase 

tilting of octahedra is generally observed, and when t0 < 0.965 both in-phase and antiphase 

tilting are generally present.[10] If the A-site cation becomes too small (e.g. t0 < 0.8465[11], 

then the structure becomes ilmenite (e.g. MgTiO3). Although the conventional tolerance 

factor is a fairly reliable tool for predicting tilt transitions in perovskite structures, it cannot 

be used on its own because it does not account for chemical ordering or point defects such 

as vacancies. 

Additionally, the concept of a bond-valence tolerance factor, tBV, was developed by 

Lufaso and Woodward in 2001[12]. In particular, the bond-valence method is used to 

calculate the ionic radii which are used to determine tBV. Although tBV is a powerful tool 

for predicting perovskite stability, several of the drawbacks with using tBV are that it does 

not account for some cation species, most polyatomic ions, nor extrinsic vacancies.  
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Another method for predicting perovskite stability was developed by Salinas-

Sanchez[13] in 1992. Their method uses the differences between calculated and 

experimental bond valence sums to determine the likelihood that a perovskite structure will 

form. The resulting expression (Eq. 1.8) is referred to as the global instability index (GII). 

The GII also predicts the likelihood of octahedral tilting, and is defined as the following 

expression: 

 
1/2

2

i

i 1

N

GII d N


  
   

  
                                             (1.8) 

where di is the difference between the formal valence and calculated bond valence for the 

ith ion, and N is the number of ions in the unit cell. For untilted perovskites, the GII is 

usually < 0.1 v.u. (valence units); however, for tilted perovskites, the GII is usually < 0.2 

v.u. Additionally, crystal structures are unstable when GII > 0.2 v.u. 

1.3 The Hettotypical Perovskite 

The vast majority of perovskites actually exist as hettotypes due to a variety of 

defects that cause slight structural deviations from the aristotype structure. These effects 

can arise due to differences in ionic sizes, differences in oxidation states, and/or cation or 

anion vacancies. Predicting lattice constants for these slightly distorted perovskites is 

becoming a more and more important issue for researchers in academia and industry alike. 

For instant, lattice matching parent materials with substrates used in the epitaxial growth 

of thin films or superlattices is incredibly important for appropriately bonding the film to 

the substrate without excessively straining the lattice of the deposited films[14-19]. Since 

there are currently no universal composition-structure models for predicting these lattice 

constants, large amounts of money and time are consumed trying to solve these structural 

problems.  
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The ability to detect minute distortions in the perovskite structure has increased 

dramatically over the last hundred years or so due to the significant improvement of 

characterization techniques and equipment. Of which, X-rays, electrons, and neutrons are 

currently the main types of diffraction sources for the characterization of perovskite 

materials. Basic structural data can readily be elucidated from X-ray diffraction data 

including lattice constants, cation positions, and phase purity (within ~ 1 at. wt.%); 

however, this technique is rather insensitive to most anions (e.g. oxygen). The resolution 

of X-ray diffraction data can further be improved by using synchrotron X-ray sources, 

which emit precisely controlled monochromatic X-rays, although the insensitivity to 

anions remains an issue. Additionally, important crystal symmetry and defect information 

can be determined by using electron diffraction, such as short-range ordering. Perhaps the 

most powerful characterization technique, neutron diffraction is sensitive cations positions, 

lattice constants, and phase purity similar to X-ray diffraction, yet it is also sensitive to 

anion positions and magnetic moments. It should also be noted that neutron scattering 

power varies randomly from one atomic species to another[20]. This means that neighboring 

elements on the periodic table may scatter neutrons in vastly different amounts; hence, 

those elements will be easily distinguishable from one another using neutron diffraction 

data[20]. Also, some heavier elements (e.g. W) scatter neutrons more weakly than lighter 

elements (e.g. H, C, O)[21]. Thus, even very small distortions in perovskite structures are 

easily discernable by using all three of these diffraction methods. 

In total, there are 15 possible space groups for distorted perovskites encompassing 

six perovskite lattice systems[22-25], four of which are shown in Fig. 1.3. Additionally, Fig. 
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1.3 shows the relationship between the actual lattice parameters and the pseudocubic lattice 

parameters for each of these distortions. 

 
Figure 1.3 Four common pseudocubic to hettotype relationships. Relationships 

between the (a) orthorhombic, (b) tetragonal, (c) and rhombohedral unit cells to the 

pseudocubic unit cell. (d) Relationship between the rhombohedral and hexagonal 

unit cells. 

1.4 The Effect of Structural Distortions in Perovskites 

The vast majority of perovskites are distorted such that t ≠ 1 (Eq. 1.7) and a′ ≠ a″ 

(Eqs. 1.4 and 1.5 respectively). Therefore, it is necessary to gain insight into how certain 

types of defects can impact these distortions and how they affect structure-composition 

relationships. It is rather simple to model properties in both bulk and nano scale materials 

that are undistorted, however modeling properties in distorted perovskites is significantly 

more challenging due to the complex ways in which certain defects tend to affect the 

structure. Predictive models based on empirical evidence for structures with defects have 
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the potential to significantly aid in the discovery of new electroceramic perovskites by 

reducing the amount of time and money required to discovery these materials.  

The discovery of ferroelectrics was made by Joseph Valasek in the early 1920s in 

Rochelle salt (e.g. potassium sodium tartrate tetrahydrate KNaC4H4O6∙4H2O)[26]. Although 

he never referred to the effect as “ferroelectricity”, his work in the area was groundbreaking 

nonetheless. Most notably, he was the first scientist to observe and report the Curie point, 

the reversible polarization, and the domain structure. Although Rochelle salt was the only 

known material at that time to exhibit these properties, he performed extensive research 

into this area and essentially fully characterized this phenomenon[27-30], which significantly 

helped to shape the future of the electroceramics industry. In fact, large amounts of time 

and money are still spent developing new ferroelectric ceramics for modern technological 

applications.  

Table 1.1 lists the 32 crystallographic point groups, of which, 21 are non-

centrosymmetric. All materials which possess non-centrosymmetric symmetry (except for 

cubic point group 432) will exhibit piezoelectricity, which is the phenomenon in which an 

applied mechanical strain induces a charge separation on the crystal faces. The reverse 

process can also occur, in which a mechanical strain is induced in the material by an applied 

electric field[31]. These two effects are widely used in the electroceramics industry for 

developing materials such as piezoelectric resonators used in electronic clocks and sonar 

equipment[32].  

A subset of 10 of the 21 non-centrosymmetric point groups possess a unique axis 

of symmetry, which are defined as polar. These polar point groups are listed in table 1.1, 

and structures that fall into one of these point groups (i.e. polar structures) are referred to 



9 

 

 

 

as spontaneously polarized because their unit cells effectively have a dielectric polarization 

built into them. These spontaneously polarized structures are categorized generally as 

pyroelectrics because a change in temperature will cause a change in polarization within 

these structures. Sometimes the reverse process can happen in these structures and is 

referred to as the electrocaloric effect. Additionally, some of these pyroelectric materials 

possess the ability to change the direction of spontaneous polarization within the structure 

under an applied mechanical stress or electric field. If this effect occurs, the material is 

further classified as ferroelectric[31]. It is important to note that all ferroelectrics are 

pyroelectrics and piezoelectrics, but not all pyroelectrics and piezoelectrics are 

ferroelectrics.  

Table 1.1 Centrosymmetric and non-centrosymmetric point groups showing 

polar and non-polar point groups. 

Crystal system Centrosymmetric 

Non-centrosymmetric 

(non-polar) 

Non-centrosymmetric 

(polar) 

Triclinic 1   1 

Monoclinic 2/m  2, m 

Orthorhombic mmm 222 mm2 

Tetragonal 4/m, 4/mmm 4 , 422, 42m  4, 4mm 

Trigonal 3 , 3m  32 3, 3m 

Hexagonal 6/m, 6/mmm 6 , 622, 62m  6, 6mm 

Cubic 3m , 3m m  23, 432, 43m   

 

 Fig. 1.4 shows the relationships between the different types of electroceramics. 

Defects can significantly affect these properties along with composition and structure. 

These defects cause small distortions to occur within the crystallographic structure, which 

can fundamentally alter these properties. For example, Ishihara et al.[33] found that slightly 

doping the A-site of SrGa0.8Mg0.2O3-δ perovskites with rare earth cations effectively 

suppressed hole conduction without significantly reducing electrical conductivity. 
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Figure 1.4 Functional relationships for electroceramics. All ferroelectrics are 

dielectrics, but not all dielectrics are necessarily ferroelectrics.  

1.4.1 Octahedral tilting 

Tilting of perovskite BO6 octahedra along at least one pseudocubic axis is very 

common amongst perovskite distortions. In fact, it has been shown[10] that tilting typically 

occurs when t < 0.985. Glazer discovered[34] that there exists 23 possible octahedral tilt 

systems for perovskites. In fact, Glazer’s notation for octahedral tilting has become the 

conventional method for describing tilting in perovskites, in which the three Cartesian axes 

are represented by a, b, and c; and each of the three axes is given a superscript denoting no 

tilting (0), in-phase octahedral tilting (+), and antiphase octahedral tilting (-) as shown in 

Fig. 1.5. The same symbol (e.g. a, b, or c) is used if the degree of tilting is the same along 

any two or three of the axes. Additionally, the tilting systems have been related to cation 
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ordering by Woodward et al.[35], and group theory has been used to show[22-25] that the total 

number of space groups for tilt systems can be reduced to 15 as shown in Fig. 1.6. 

Moreover, Carpenter et al. [36] have recently defined additional symmetry hierarchies for 

combinations of cooperative Jahn-Teller ordering and octahedral tilting in perovskites. 

Cooperative ordering and octahedral tilting may explain certain structural distortions 

associated with both A-site and B-site cation ordered perovskites. 

 
Figure 1.5 Illustrations of octahedral tilting. (a) Untilted structure, a0a0a0; (b) In-

phase octahedral tilting, a+a+a+; (c) Antiphase octahedral tilting, a-a-a-. 
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Figure 1.6 The group-subgroup relationships for all 15 perovskite tilt systems 

and their associated space groups. Second-order transitions are indicated by the 

solid lines and first-order transitions are indicated by the dashed lines. 

1.4.2 Cation Ordering 

As mentioned earlier, perovskites possess a wider range of functional properties 

than does almost any other mineral type; hence, predicting the structures and properties of 

perovskites without expensive trial-and-error experiments would save researchers and 

industry a significant amount of both time and money. For example, it can be shown that 

there is a direct link between the degree of cation ordering and the microwave dissipation 

factor or dielectric loss, tan, in complex perovskites; therefore, predicting the degree of 

ordering – and ultimately the quality factor, Q (where Q = 1/tan) – could eliminate the 

need for expensive measurements and unlock the full potential of these materials.  As Q is 

a function of the frequency at which it is measured, it is often expressed as the product Qf, 

where f is the resonant frequency (in GHz).  Other diagnostic properties of dielectrics 

include the dimensionless relative permittivity, r, and temperature coefficient of resonant 

frequency, f, typically expressed in units of ppm/°C or equivalently MK-1. 

Cation ordering on alternating {001}, {110}, or {111} pseudocubic planes is 

possible in both A-site substituted A0.5Aʹ0.5BX3 or B-site substituted AB0.5Bʹ0.5X3 complex 
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perovskites,[37] although layered {001} ordering tends to be preferred for the former and 

{111} ordering (so-called rock salt ordering) for the latter. In particular, layered A-site 

ordering in A0.5Aʹ0.5BX3 perovskites results in alternating layers of A and A′ ions along 

pseudocubic [001], as can be seen in Fig. 1.7. Similarly, rock salt B-site ordering in 

AB0.5Bʹ0.5X3 perovskites results in alternating layers of B and B′ ions along [111], resulting 

in a structure which resembles that of NaCl, as can be seen in Fig. 1.7. It should also be 

noted that there is only one unique ordering axis in layered A-site ordered structures, 

[001]pc, whereas 1:1 rock salt B-site ordered perovskite structures have four ordering axes 

[111]pc, , , and  as illustrated in Fig. 1.8a. Even when the structures 

become distorted such as the monoclinically distorted LaZn0.5Ti0.5O3 perovskite, the 

structure still has four ordering axes (e.g. the monoclinic [101], 101   , [110], and 110   ) 

as illustrated in Fig. 1.8b and 1.8c. 

 
Figure 1.7 Doubled perovskite unit cells showing layered A-site ordering (left) 

and rock salt B-site ordering (right). The ordering planes are shown in both cells. 

pc
111   pc

111   pc
111  
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Figure 1.8 (a) Cubic and (b), (c) monoclinically distorted rock salt B-site ordered 

perovskite structures showing all 4 ordering planes in each case. The anions are not 

shown in (a). 

In general, ordering is typically expected to produce structures that exhibit greater 

packing efficiency than disordered structures;[38] hence, ordering in complex perovskites 

should result in structures with smaller unit volumes than those of their disordered 

counterparts. With this reasoning, the expected trend would be a decrease in unit volume 

with increasing order. Indeed, this is typically the trend that is observed[39,40] for rock salt 

B-site ordering; however, the opposite trend is often observed in the case of layered A-site 

ordering, in which the unit-cell volume is commonly observed[39,40] to increase with 

increasing order. 

In either case, the volume change may be due to the relative motion of ions in 

response to charge imbalances caused by the demixing of cations.  A volume decrease can 

be understood in simple terms as resulting from a more efficient packing of ions, analogous 

to the discontinuous specific-volume shrinkage observed upon crystallization of a liquid; 

however, in the case of ionic solids, this shrinkage would only occur within the ordered 

planes.  In the specific case of layered A-site ordering in an otherwise aristotypical 

perovskite, the greatest number of bonds an {001} plane could contain, when normalized 

per unit cell, is four (either four A-X or four B-X bonds) as can be seen in Fig. 1.9; 
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therefore, the resulting bond density (number of bonds per area) on {001} is 4/a2; however, 

there are twice as many A-X bonds out of these planes. Although, the bonds in the {001} 

would be shortened due to more efficient packing of ions within the ordered planes, 

repulsion between adjacent (001) planes due to the charge imbalances caused by ordering 

results in an overall volume expansion in systems like (Li,Na)(1-3x)/2La(1+x)/2TiO3.  On the 

other hand, although there are no B-X bonds on the {111}pc planes, the B-site species will 

inevitably pack more efficiently within the {111} upon ordering. Since there are 4 ordering 

planes in the case of 1:1 rock salt B-site ordering that are approximately perpendicular to 

one another, the unit cell must contract because a unit cell volume expansion in this case 

would imply that the B-site species pack less efficiently within the {111}; and, so explains 

the unit cell volume contraction observed in B-site ordered perovskite systems like 

(Ca,Sr,Pb,Ba)(Mg1/2W1/2)O3.
[40]  

 
Figure 1.9 Perovskite unit cell showing an (001) plane. The A-X bonds that lie 

within this plane are shown. 

1.5 Predictive Modeling of Composition-Structure Relationships in Perovksites 

Recently, Ubic et al.[41,42] developed a new model for predicting the perovskite 

tolerance factor that accounts for extrinsic defects such as A-site vacancies and dopants.  

This model was later refined[43,44] as:  



16 

 

 

 

 1

B X( )

0.011730139
1.760998

0.7209203

pc

id

a
t

r r


 


                                (1.9) 

where rB and rX are the published Shannon radii of the B and X ions, respectively. This 

model has been proven[11] to be much better than t0 at predicting octahedral distortions in 

perovskites. It also does not require knowledge of rA, which eliminates the ambiguity in 

calculating the size of partially occupied sites; however, it does require foreknowledge of 

the pseudocubic lattice constant. In fact, Eq. 1.9 can be solved for apc: 

  1 B X( )0.7209203 1.760998 0.011730139pc ida t r r                       (1.10) 

Moreover, when t ≠ 1 the bonds in perovskite structures undergo either compression 

or stretching. This stretching/compression effect is referred[11] to as bond deformation, DB. 

An empirical model for predicting A-site size, rA, that accounts for bond deformations, and 

A-site vacancy size, rV, in 2 3

1 3 2 3(A A )BXx x

 


  perovskites has also recently been developed by 

Ubic et al.[11]: 

 A VA id Br r D xr                                                  (1.11) 

where 

2

0 0BD 7 4801 12 2139 4 8257. . .t t                                      (1.12) 

2

V 0 020 8983 36 9417 14 4471. . .r t t                                    (1.13) 

and rA(id) is the ideal Shannon radius.  In this formulation, x is the concentration of vacancies 

on the A site, x = [VA]. 

Moreover using the (Ca,Sr,Pb,Ba)1-3xLa2xTiO3 system, Ubic et al.[11] have 

developed a new model for the perovskite tolerance factor, t′, as a function of the 

conventional tolerance factor. 



17 

 

 

 

2

0 0t A Bt Ct                                                     (1.14) 

where, 

2

A( ) 0 A( ) 050.978 84.274 32.411id x id xA r r                               (1.15) 

2

A( ) 0 A( ) 0130.35 205.44 77.539id x id xB r r                                (1.16) 

 2

A( ) 0 A( ) 081.294 124.73 46.185id x id xC r r                               (1.17) 

where rA(id)x=0 is the average Shannon size of the A site when fully occupied (i.e., the 

composition with no vacancies). This model is useful for calculating the tolerance factor 

due to the fact that the only variables that are needed are the conventional tolerance factor 

and the Shannon radius/radii for the A-site species at the x = 0 composition. Thus, this 

model allows for the prediction of the tolerance factor while accounting for extrinsic 

defects.  

Furthermore, Ubic et al.[11] have developed a new model for effective anion size as 

a function of t′ and the ideal Shannon size, rX(id).  

 X X( )0.42983 0.56696 idr t r
                                        (1.18) 

Eqs. 1.3, 1.4, and 1.10 can now be redefined in terms of t′ and rX′. 

  B X( )0.7209203 1.760998 0.011730139pc ida t r r                            (1.19) 

 A X2pca r r 
                                                      (1.20) 

 B X2pca r r 
                                                         (1.21) 

where rA is calculated using Eq. 1.11 and rB = rB(id). Thus, Eqs. 1.19-1.21 allow for the 

prediction of the pseudocubic lattice constants using only the Shannon radii of the A-site, 

B-site, and X-site species, while simultaneously accounting for extrinsic defects.   
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1.5.1 Density Functional Theory 

Accurately determining the structures of materials lies at the core of developing 

processing-structure-property relationships. Density functional theory (DFT) calculations 

can be used to validate these relationships by verifying experimentally determined 

structures and properties. For instance, Sausa et al.[45] used molecular DFT to predict the 

structure and properties of bis-oxadiazole-bis-methylene dinitrate, and they found that the 

most energetically favorable structure matches well with the experimental structure. 

Additionally, Pandey et al.[46] performed geometry optimizations according to density 

functional theory for the CsPbCl3 and CsPbBr3 perovskites. They found that not only did 

these calculations accurately predict the crystal structures of these two perovskites, they 

also found that the lattice parameters were accurately predicted. In both cases, DFT 

calculations were successfully used to validate experimental structures; hence, empirical 

models based on such experimental evidence can be validated using density functional 

theory calculations. 

1.6 Aims and Objectives 

Correlative models based on empirical evidence have the potential significantly 

improve the electroceramics industry, yet few of these predictive tools currently exist. 

This work attempts to fill this knowledge gap by developing predictive models to account 

for the effects of layered A-site ordering, rock salt B-site ordering, trigonality, and 

oxygen vacancies in distorted perovskite oxides using a combination of experimental data 

and published data from literature. 
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2.1 Introduction 

The aristotype perovskite structure forms in cubic space group 3Pm m  with ABX3 

stoichiometry; however, there are a vast number of structural distortions that occur which 

can greatly affect properties.  In particular, cation ordering on alternating {001}, {110}, or 

{111} pseudocubic planes is possible in both A-site substituted A0.5Aʹ0.5BX3 or B-site 

substituted AB0.5Bʹ0.5X3 complex perovskites,[2] although layered {001} ordering tends to 

be preferred for the former and {111} ordering (so-called rock salt ordering) tends to be 

more common for the latter. 

Initially, NayLa1-yTiO3 (y = 0.05 – 0.8) perovskites were observed[3] to exhibit cubic 

symmetry with unit-cell volumes increasing with y for 0.05  ≤ y < 0.1 then decreasing for 

y ≥ 0.1. It should be noted that this stoichiometry is problematic, as a fully occupied A site 

requires that the upper limit on y be 0.5.  When y < 0.5, Ti exists as a mixture of Ti3+ and 

Ti4+ (pure Ti3+ at y = 0), but when y > 0.5 the only way to charge-balance would be to 

produce oxygen vacancies (not A-site vacancies as the authors propose).  As there is a 

significant amount of TiO2 in the XRD patterns for all samples with y > 0.5, it can be 

assumed that phase purity was not achieved for these compositions; instead, the following 

reaction is proposed: 

1- 3 0.5 0.5 3 2 2Na La TiO  ( 0.5) 2(1 )Na La TiO +(2 -1)TiO +( -0.5)Na Oy y y y y y     

The Na2O phase melts at 1132°C and would likely have volatilized from calcined 

powders.  Several years later, Ruiz et al.[4] studied various compositions in the vacancy-

doped Na(1-3x)/2La(1+x)/2TiO3 (NLT) system using neutron diffraction. This unconventional 

formulation, although not used by Ruiz et al.,[4] is convenient because the concentration of 

A-site vacancies, [VA], is identical to x, i.e., [VA] = x; so increasing x can be thought of as 
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doping with vacancies.  They observed that both the x = 0.0533 and x = 0.1733 

compositions exhibited orthorhombic symmetry in space groups Ibmm and Pbmm, 

respectively, and had a completely disordered arrangement of Na+ and La3+ cations on the 

A site; however, upon re-examination[5] they determined that the x = 0.1733 composition 

exhibited some degree of layered A-site ordering. In addition, the x = 0.2233 composition 

showed[5] similar ordering. Knapp and Woodward[6] also studied Na0.5La0.5TiO3 (x = 0) and 

observed no long-range cation ordering on the A site; however, the NLT system was 

recently re-examined by Tolman et al.[7] using electron diffraction, and short-range cation 

ordering was observed for x = 0 and attributed to the existence of ordered nanodomains, 

which explains why the ordering is not observed via X-ray diffraction (XRD). Furthermore, 

both (Na0.5La0.5)TiO3 and (Na0.5Tb0.5)TiO3 were later studied[8] via neutron diffraction; and 

while the latter was observed in orthorhombic space group Pbnm, the former crystallized 

in trigonal space group cR3 . The similar (NayLayCa1–2y)TiO3 (0 < y < 0.5) system was also 

studied[9] via XRD and Raman spectroscopy, and the y = 0.5 composition (Na0.5La0.5TiO3) 

was reported to exist with tetragonal symmetry in space group I4/mcm, whereas the y = 0 

composition (CaTiO3) exhibited orthorhombic symmetry in space group Pbnm. The 

tetragonal-to-orthorhombic phase transformation occurred between 0.34 ≤ y ≤ 0.39.  The 

NLT (x = 0) composition is well known for exhibiting quantum paraelectricity at low 

temperatures (< 50 K)[10] and is also reported to exhibit photoluminescent properties[11]. Its 

microwave dielectric properties have been reported[12,13] at its resonant frequency of 3 GHz 

as: εr = 122, Q = 3260, τf = 480 ppm/°C. 

Initial studies[14-18] of the structure of Li(1-3x)/2La(1+x)/2TiO3 (LLT) indicated that the 

symmetry remained tetragonal in space group P4/mmm for 0 ≤ x ≤ 0.244. Later, the 
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structure of LLT was reported[19] to undergo a phase transformation from tetragonal 

(P4/mmm) to orthorhombic (Pmmm) as x increased to 0.13 – 0.19. The x = 0.213 

composition was also reported[20] as orthorhombic, but in space group Cmmm, with layered 

ordering of the La3+ cations and vacancy-rich planes along the c axis.  Several of these 

studies[14-16] showed that the Li+ and La3+ cations order in layers along the c axis in the Li+-

rich (low-x) variants. This result was later supported by Ruiz et al.[17] who used neutron 

diffraction to determine that the x = 0.103 composition exhibited long-range cation 

ordering. In order to investigate high-temperature structures of LLT, several studies[18,21,22] 

used quenched LLT samples. These samples exhibited trigonal symmetry in space group 

3R c  with Li+ ions existing on four-coordinated interstitial sites (in the center of the square 

faces of the A-site coordination cuboctahedra). Similarly, samples[23-26] that underwent 

natural cooling in the furnace also contained Li+ ions on the interstitial sites but formed 

with orthorhombic symmetry in space group Cmmm.  Only samples cooled slowly[14-18,20] 

reach the equilibrium state in which Li+ and La3+ ions form a layered ordered structure, 

although the short-range nature of that ordering has not always been recognized. Electron 

diffraction can be used to establish the existence of short-range A-site ordering as well as 

vacancy ordering, both of which can be difficult to determine from X-ray diffraction 

(XRD) alone. Short-range 1:1 A-site ordering typically results in diffuse pseudocubic 

½{even,even,odd}  superlattice reflections in electron diffraction patterns.  The LLT (x = 

0) composition is known to exhibit high values for ionic conductivity.[19,27] 

The complex perovskite [(NayLi1-y)(1-3x)/2La(1+x)/2]TiO3 (NLLT) has an effective A-

site cation size intermediate between that of NLT and LLT.  Again, this formulation is 

unconventional but convenient, as the concentration of A-site vacancies, [V], is identical 
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to x.  In 2002, Rivera et al.[28] were possibly the first to produce any type of NLLT hybrid 

composition. In particular, they analyzed the x = 0 compositions [(NayLi1-y)0.5La0.5]TiO3 (0 

≤ y ≤ 1) via neutron and X-ray diffraction. They reported that all compositions in the series 

crystallized in space group cR3 , and they did not observe an appreciable difference in unit-

cell parameters between any of the compositions. The lithium mobility was also reported 

to decrease by two orders of magnitude as the value of y increased, changing from values 

associated with fast ion conductors at y = 0 to those of insulators at y = 1. The intermediate 

(Na0.3Li0.2La0.5)TiO3 (y = 0.6) composition was later analyzed[29] via neutron diffraction in 

the temperature range from 300 to 1073 K, with the room-temperature variant forming in 

rhombohedral space group cR3  due to antiphase octahedral tilting about the pseudocubic 

[111]. 

Herrero et al.[30] appear to be the first to have analyzed vacancy-doped NLLT. They 

analyzed both the [(NayLi1-y)0.5La0.5]TiO3 (x = 0) and [(NayLi1-y)0.2La0.6]TiO3 (x = 0.2) 

series via neutron diffraction, impedance spectroscopy, nuclear magnetic resonance, and 

Monte Carlo simulations. The latter series was reported in the orthorhombic space group 

Cmmm with layered type vacancy ordering along the c axis, whereas the former was 

reported in the rhombohedral space group cR3  with a completely disordered A site.  Later 

work[22] on the x = 0 compositions at temperatures ranging from 300 K to 1073 K showed 

that all compositions exhibited a cubic structure ( 3Pm m ) near 1000 K; however, once the 

samples began to cool down, the octahedra exhibited antiphase tilting about [111], causing 

a rhombohedral distortion and resulting in space group cR3  near room temperature.  The 

x = 0.2 series [(NayLi1-y)0.2La0.6]TiO3 (0 ≤ y ≤ 1) was again investigated[31] via neutron 
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diffraction at temperatures between 300 K and 1073 K; and in addition to the vacancy 

ordering, octahedral tilting along the b axis was also reported.  

The ordering of cations on either A or B sites in a complex perovskite clearly has 

structural implications.  It has also recently been established[7,32] using this model and 

verified via both density functional theory (DFT) and Rietveld refinements that, while rock 

salt ordering of the B site results in a decrease in the unit-cell volume with respect to the 

disordered state, A-site layered ordering can result in an increase in the unit-cell volume.  

This counterintuitive expansion was later explained crystalochemically[32] by the fact that 

ordering in perovskites causes more efficient packing – and so shrinkage – within ordered 

planes but an expansion of bonds perpendicular to them.  This result could have 

implications for functional properties, especially ionic conduction.  Specifically, large 

negative errors (-1% - -2%) in both pca  and pca , caused by an underestimation of the A-X 

bond length, are indicative within this model of so-called layered A-site ordering.[7]  In 

such systems, errors can be corrected by introducing a rA correction term, which is a way 

of quantifying the degree of order as a function of composition.  In the cases of both NLT 

and LLT, the ΔrA which resulted upon ordering could be expressed entirely as a function 

of vacancy concentration (x): 

A

1 exp

P
r

x Q

S

 
 

  
 

                                                      (2.1) 

where P, Q, and S are coefficients.  Likewise, the order parameter, , could be 

derived from rA with an equation of the form: 

A

η ln 1
C

A B
r

   
          

                                                      (2.2) 
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where A, B, and C are different coefficients.  In this way, rA can be used explicitly 

as a measure of A-site ordering.  Interestingly, while no evidence of long-range A-site 

ordering has been observed in the NLT system via x-ray or neutron diffraction,[3-6,8,9,22,28,33-

36] this model clearly shows the pattern of errors leading to the conclusion of order.  In fact, 

electron diffraction shows[7] that the structure consists of nanodomains of order (short-

range order); thus, even short-range order can be quantified with this model.  Indeed, such 

regions of short-range order may be a more common phenomenon than is widely realized, 

as similar regions have also been found within long-range disordered spinel[37] and 

pyrochlore[38] structures.  In both the NLT and LLT systems, the degree of vacancy 

ordering increases with x while the degree of cation ordering decreases.[7] 

Here, four similar models have been derived for the [(NayLi1-y)(1-3x)/2La(1+x)/2]TiO3 

(NLLT) solid solution using 15 compositions (y = 0.25, 0.5, and 0.75; and x = 0, 0.0533, 

0.1, 0.1733, and 0.225). From these data, two generalized empirical models have been 

developed which predict both the A-site size correction factor, rA, and the A-site ordering 

parameter, , for perovskite titanates. 

2.2 Materials and Methods 

Fifteen compositions in the system (NayLi1-y)(1-3x)/2La(1+x)/2TiO3 (NLLT) with five x 

values (x = 0, 0.0533, 0.1, 0.1733 and 0.225) for each of three y values (y = 0.25, 0.5, and 

0.75) were synthesized via the solid-state mixed-oxide route. As-received La2O3 (99.9%, 

Alfa-Aesar, Ward Hill, MA) powder was first hydroxylated by mixing with an excess of 

deionized water and drying overnight, forming La(OH)3. Stoichiometric amounts of 

Na2CO3 (99.5%, Thermo Fisher Scientific Inc., Pittsburgh, PA), Li2CO3 (99.5%, Thermo 

Fisher Scientific Inc., Pittsburgh, PA), TiO2 (99.9%, Aldrich Chemical Co., Milwaukee, 
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WI), and La(OH)3 were then ball-milled with yttria-stabilized ZrO2 (YSZ) media using 

deionized water in a high-density nylon pot for ~6 hours. Powders were then dried 

overnight in an atmospheric drying oven at ~98°C until all the water was evaporated. 

Calcination was conducted for three hours in a box furnace (1807FL, CM Furnaces Inc., 

Bloomfield, NJ) at 1100°C for the x ≤ 0.0533 compositions, 1150°C for x = 0.1 and x = 

0.1733, and 1200°C for x = 0.225. A pre-contaminated crucible was used to inhibit sodium- 

and lithium-loss into the crucible walls. No excess sodium or lithium was added to the 

compositions. After calcination, the powders were ball-milled again with YSZ media using 

deionized water in a high-density nylon pot for ~24 hours, adding 2 wt% polyethylene 

glycol (PEG 10 000, Alfa-Aesar, Heysham, UK) powder for the final 5 minutes. The 

mixture was then dried overnight in an atmospheric drying oven at ~98°C until all the water 

was evaporated. Cylindrical green compacts 8-10 mm in height and 10 mm in diameter 

were then formed by applying a uniaxial pressure of 63 MPa. Compacts were placed on 

bed of sacrificial calcined powders with the same composition on a Y2O3 plate, and were 

completely covered with the same sacrificial powder to induce a sodium- and lithium-rich 

closed atmosphere during sintering. An inverted 250 mL Al2O3 crucible was placed over 

the Y2O3 plate containing the compacts and sacrificial powder. Compacts were sintered for 

three hours at 1300°C (x ≤ 0.0533), 1350°C (x = 0.1733), and 1400°C (x = 0.225).  

Powder XRD measurements were performed in a diffractometer (Miniflex-600, 

Rigaku, Woodlands, TX) operating with convergent-beam geometry and CuKα radiation. 

Le Bail refinements were performed on the XRD patterns using GSAS II (Argonne 

National Laboratory, IL). The background was fitted with a twelfth-order Chebyshev 
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polynomial. All compositions were refined with either orthorhombic or tetragonal 

symmetry. 

Specimens for transmission electron microscopy (TEM) (JEM-2100 HR, JEOL, 

Japan) were prepared from sintered pellets by mechanically cutting them with a diamond 

wafering blade then polishing the faces via conventional ceramographic techniques, 

finishing with a precision ion polisher (Model 691, Gatan, Pleasanton, CA) at low ion-

beam angles to achieve electron transparency (i.e., thickness ~100 nm). Amorphous 

material caused by ion damage was removed using a plasma cleaner (Model 1400, E. A. 

Fischione Instruments Inc., Export, PA) prior to observation in the TEM. 

2.3 Results and Discussion 

Figs. 2.1-2.3 show the XRD traces for each of the y series of compositions in the 

NLLT system that were produced. These figures clearly show that there are no secondary 

phases in any of the compositions. It can also be seen that none of the x ≤ 0.0533 

compositions show any superlattice reflections, indicating a lack of detectable long-range 

A-site ordering.  In the cases of y = 0.25 and y = 0.5, such ordering seems to disappear 

below x = 0.1, and for y = 0.75 it is absent below x = 0.1733.  The reason the degree of 

ordering seems to counter-intuitively increase as x increases (i.e., as the stoichiometry 

diverges from the ideal 1:1 ratio for NayLi1-y:La) can be explained by the size of ordered 

domains.  At low x values the degree of ordering is high but ordered domains are small and 

so undetectable via XRD, although the order is detectable via electron diffraction as seen 

in Fig. 2.4.  As x increases, the degree of order decreases ( = 1 - 3x) but the range of 

ordering grows so that it becomes more detectable via XRD.  The same phenomenon was 

previously observed in pure NLT.[7,39]  As in the NLT and LLT systems,[7] the degree of 
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cation ordering in NLLT decreases as x increases while the degree of vacancy ordering 

increases. 

Figs. 2.1-2.3 also suggest that there is a structural transformation from 

orthorhombic to tetragonal between 0.1 ≤ x ≤ 0.1733 for both the y = 0.25 and y = 0.5 

variants and between 0.1733 ≤ x ≤ 0.225 for the sodium-rich y = 0.75 variant, as seen for 

example in the splitting of the pseudocubic 200 peak from a doublet to a triplet. This 

structural transformation can be understood in the light of previous work in which pure 

NLT has been reported[5] to exhibit orthorhombic symmetry throughout the range of 

compositions, whereas conventionally processed pure LLT tends to exhibit tetragonal 

symmetry for Li-rich compositions (x ≲ 0.19) and orthorhombic symmetry for Li-poor 

ones (x ≳ 0.19).[14-20] Thus, all three NLLT hybrid compositions exhibit certain symmetry 

elements of both end members. 
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Figure 2.1 X-ray diffraction of (Na0.25Li0.75)(1-3x)/2La(1+x)/2TiO3 for 0 ≤ x ≤ 0.225. 

Peaks resulting from long-range A-site cation ordering are marked with a *. 
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Figure 2.2 X-ray diffraction of (Na0.5Li0.5)(1-3x)/2La(1+x)/2TiO3 for  0 ≤ x ≤ 0.225. 

Peaks resulting from long-range A-site cation ordering are marked with a *. 
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Figure 2.3 X-ray diffraction of (Na0.75Li0.25)(1-3x)/2La(1+x)/2TiO3 for  0 ≤ x ≤ 0.225. 

Peaks resulting from long-range A-site cation ordering are marked with a *. 

The refinements in tables 2.1-2.3 show that, in general, the model increasingly 

underestimates the pseudocubic lattice constant as the degree of cation ordering increases. 

This effect can be seen in Fig. 2.5 and tables 2.4-2.6 by the increase in the A-site size 

correction factor, ΔrA, as the cation ordering parameter, η, increases (or x decreases). This 

result seems to support the hypothesis[32] that electrostatic repulsions pushing ordered 

planes apart will dominate over the effects of the shrinking bonds within ordered planes 

for this type of layered ordering. This repulsion, in turn, causes the unit-cell volume to be 

larger than that for a random distribution of cations. 
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The change in unit-cell volume can then be explained by the relative motion of ions 

in response to charge imbalances caused by the demixing of cations. Cations will pack 

more efficiently within ordered planes, but electrostatic repulsion will result in less 

efficient packing outside of these planes.  The aristotypical perovskite {001} planes can 

contain at most four A-X bonds per unit cell; however, there are twice as many A-X bonds 

out of this plane, resulting in a net volume expansion upon ordering.  Thus, the overall 

trend favors volume expansion with increasing layered type A-site cation ordering.  By 

contrast, the contraction of B-X bonds due to more efficient packing of B-site species 

within ordered (111)pc planes in conjunction with the contraction of A-X bonds within 

ordered (111)pc planes, despite the lower bond density on {111}pc than on {001}, results in 

a net volume shrinkage observed in rock salt ordered perovskites like, for example, 

Ba(Mg⅓Ta⅔)O3.
[32] 

The trend in error values seen in tables 2.1-2.3, i.e., large negative errors at low x 

values gradually increasing to large positive errors as x increases, is indicative of an 

underestimation of rA.  It can also be observed from tables 2.1-2.3 that the model produces 

much larger absolute errors in pca  for smaller A-site cation sizes than for larger ones. It 

produces an error of -1.035% for the x = 0 composition in the Li-rich y = 0.25 series, 

whereas the error for the x = 0 composition in the Na-rich y = 0.75 series is merely -0.476%. 

The model also appears to increase in accuracy for all y values as vacancy concentration 

increases due to fact that the overall degree of 1:1 cation order decreases the further the 

composition is removed from the ideal 1:1 stoichiometry. 

In order to account for the volume expansion upon ordering and minimize 

resultant errors, values of rA were increased by an amount rA.  At x = 0, rA was 



39 

 

 

 

determined by incrementally increasing rA (effectively increasing the Shannon[40] radii) 

until the errors in both pca  (Eq. 1.3) and pca  (Eq. 1.4) were minimized. The resultant 

rA(x=0) value is necessary to subsequently derive values of t′ and thus apc (Eq. 1.19).  For x 

> 0, rA was increased until errors in pca  were minimized due to the fact that pca  is far 

more sensitive to the A-site size than is pca . The results of this process can be seen in 

tables 2.4-2.6. It should be noted that apc in tables 2.1-2.6 is calculated from Eq. 1.19, 

where t0 and rA(x=0) are used to calculate tʹ via an empirical model[41] (Eq. 1.14). 
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Table 2.4 (Na0.25Li0.75)(1-3x)/2La(1+x)/2TiO3 accounting for cation effective sizes (Å) 

x ΔrA 

apc 

Eq. 

1.19 Error% 


pca  

Eq. 1.3 Error% 


pca  

Eq. 1.4 Error% 

0 0.06850 3.8739 0.115 3.8693 -0.005 3.8696 0.005 

0.0533 0.05888 3.8699 -0.038 3.8714 0.000 3.8653 -0.157 

0.100 0.04765 3.8713 -0.044 3.8730 0.000 3.8668 -0.160 

0.1733 0.02293 3.8846 0.271 3.8741 0.000 3.8813 0.185 

0.225 0 3.9037 0.765 3.8745 0.012 3.9020 0.721 

0.3333a 0 3.9479 0.242 3.9466 0.209 3.9501 0.296 
      aRef. [42]. 

Table 2.5 (Na0.5Li0.5)(1-3x)/2La(1+x)/2TiO3 accounting for cation effective sizes (Å) 

x ΔrA (Å) apc Error% 
pca  Error% 

pca  Error% 

0 0.04885 3.8764 0.120 3.8712 -0.015 3.8723 0.015 

0.0533 0.04275 3.8718 -0.002 3.8719 0.000 3.8674 -0.117 

0.100 0.03223 3.8729 0.013 3.8724 0.000 3.8685 -0.100 

0.1733 0.01273 3.8855 0.293 3.8742 0.000 3.8823 0.209 

0.225 0 3.9025 0.738 3.8824 0.219 3.9007 0.692 

0.3333a 0 3.9479 0.241 3.9466 0.208 3.9500 0.295 
      aRef. [42]. 

Table 2.6 (Na0.75Li0.25)(1-3x)/2La(1+x)/2TiO3 accounting for cation effective sizes (Å) 

x ΔrA (Å) apc Error% 
pca  Error% 

pca  Error% 

0 0.0266 3.8754 0.118 3.8704 -0.011 3.8713 0.011 

0.0533 0.02356 3.8711 -0.027 3.8721 0.000 3.8666 -0.143 

0.100 0.01805 3.8722 -0.028 3.8733 0.000 3.8678 -0.142 

0.1733 0.00197 3.8853 0.307 3.8734 0.000 3.8820 0.222 

0.225 0 3.9004 0.680 3.8912 0.444 3.8984 0.629 

0.3333a 0 3.9479 0.241 3.9466 0.208 3.9500 0.295 
      aRef. [42]. 
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Figure 2.4 Selected area diffraction patterns for the x = 0, 0.0533, and 0.225 

compositions in the (Na0.5Li0.5)(1-3x)/2La(1+x)/2TiO3 system with the associated 

pseudocubic indexing. Some α, β, and γ superlattice reflections are labeled. 

Fig. 2.4 shows the presence of three types of superlattice reflections in the electron 

diffraction patterns of (Na0.5Li0.5)(1-3x)/2La(1+x)/2TiO3.  The α superlattice labels correspond 

to ½{odd, odd, odd} reflections with mixed indices.  Such reflections are typically 

associated with either antiphase octahedral tilting or rock-salt cation ordering.  Reflections 

marked  correspond to ½{even, even, odd} indices.  Specifically, ½{001} reflections 

correspond solely to layered cation ordering[7] whereas the intensity of reflections for 
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which both even indices are not 0 may also contain a component from antiparallel A-site 

cation displacements.  The presence of ½{001}  reflections in all [100]pc and [110]pc 

patterns indicates some degree of layered ordering in every composition.  The different 

intensities of the  reflections within the same [100]pc pattern may be further evidence of 

layered ordering within nanodomains.  For example, while the intensities of ½{even, even, 

odd} and ½{even, odd, even } reflections are roughly equal for x ≤ 0.0533 due to the 

nanosize of ordered regions, at x = 0.225 the ½{even, even, odd} reflections are clearly 

stronger, indicating both a single plane of order and an increase in the size of ordered 

domains.  Although not technically  type, ½{111} reflections are specific to rock-salt 

ordering but can also occur via double diffraction if  reflections are also present, as they 

are here.  The  reflections are of the type ½{odd, odd, even}, where the two odd indices 

are not equal, and correspond to in-phase octahedral tilting.  Although they might also 

contain a component from columnar A-site order, as layered ordering is clearly evident 

here, this possibility can be discounted.  In the case of x ≤ 0.0533,  reflections are not 

observed in [111]pc patterns and are very weak in [100]pc patterns, where they probably 

occur via double diffraction; however, at x = 0.225  reflections also occur in [111]pc 

patterns in which there is no route for double diffraction. In this case, discreet  reflections 

of the type ½{even, odd, odd} can be seen, indicating the presence of in-phase tilting about 

the pseudocubic a axis.  Although not technically  type, ½{even, odd, odd} reflections for 

which the two odd indices are equal may correspond to columnar A-site cation ordering 

(which possibility can be discounted for reasons explained above) but may also occur via 

double diffraction, and such reflections for which the even index is not 0 may also 

correspond to antiparallel A-site cation displacement. All these observations agree with 
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those previously observed in pure NLT;[7] however, whereas three sets of discreet  

reflections were observed in NLT for x ≥ 0.1733, here only diffuse intensity can be seen in 

½{odd, even, odd } and ½{odd, odd, even} positions, suggesting some degree of 

aperiodicity along the b and c axes. 

Fig. 2.5 shows the value of rA and the A-site order parameter, , as functions of 

vacancy concentration, x, for (NayLi1-y)(1-3x)/2La(1+x)/2TiO3 (y = 0, 0.25, 0.5, 0.75, 1). Fig. 

2.6 shows  as a function of rA. These figures clearly show that the empirical model[41] 

based on random ionic occupancies increasingly underestimates the unit-cell volume as the 

degree of cation ordering increases. On the other hand, the model appears surprisingly 

insensitive to vacancy ordering, as the error in the model decreases to nearly zero as the 

vacancy concentration increases, as illustrated in Fig. 2.5. 

 
Fig. 2.5 A-site size adjustment factors as functions of composition from 

experimentally collected data for (NayLi1-y)(1-3x)/2La(1+x)/2TiO3 and A-site order 

parameter, η, as a function of composition.  The y = 0 data are from Ref. [7]. 
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All the curves in Fig. 2.5 can be described using Eq. 2.1, and Table 2.7 lists all the 

associated coefficients.  These curves demonstrate that, for a given x, the magnitude of the 

rA required decreases as the size of the A-site species increases. 

Table 2.7 Coefficients of Eq. 2.1 and the goodness of fit, R2 

y P Q S 

0 0.0740887 0.141918 0.0399016 

0.25 0.0735582 0.130847 0.0525141 

0.5 0.0521042 0.121984 0.0451441 

0.75 0.0268138 0.12089 0.0309928 

1 0.0105 0.089 0.028 

R2 0.9998 0.9994 0.9999 

 
Figure 2.6 A-site order parameters as functions of ΔrA from experimentally 

collected data for (NayLi1-y)(1-3x)/2La(1+x)/2TiO3. The y = 0 data are from Ref. [7]. 

Similarly, the curves in Fig. 2.6 can be described using Eq. 2.2, and Table 2.8 lists 

all the associated coefficients. 
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Table 2.8 Coefficients of Eq. 2.2 and the goodness of fit, R2 

y A B C 

0 0.6 0.118 0.0753 

0.25 0.61 0.175 0.075 

0.5 0.63 0.14 0.0521 

0.75 0.67 0.08 0.0271 

1 0.71 0.11 0.0108 

R2 0.9999 1 0.9998 

 

The curve fits in Fig. 2.7 demonstrate trigonometric relationships between all these 

coefficients (A, B, C, P, Q, S) and the ideal A-site size when x = 0 (rA(id)x=0) which are 

summarized in Eqs. 2.3-2.8. Importantly, Eqs. 2.1-2.8 allow for the prediction of both ΔrA 

and  using just published ionic radii data. 

 
Figure 2.7 Coefficients of Eq. 2.1 (left) and Eq. 2.2 (right) as functions of A-site 

size, rA(id)x=0. 
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   2

A 0
0.0959983cos( 18.3005 20.2936) 0.694574 0.9999

id x
A r R


           (2.3) 

   2

A 0
0.049293sin(70.2849 93.8517) 0.12697 1

id x
B r R


                  (2.4) 

   2

A 0
0.0338009cos(38.1898 49.5677) 0.044067 0.9998

id x
C r R


           (2.5) 

   2

A 0
0.0334125sin(37.7844 47.4713) 0.043107 0.9998

id x
P r R


          (2.6) 

   2

A 0
0.006164 tan(30.0708 36.8021) 0.125554 0.9994

id x
Q r R


           (2.7) 

   2

A 0
0.0132533sin( 59.3986 73.3694) 0.039914 0.9999

id x
S r R


           (2.8) 

As the data in tables 2.7 and 2.8 have been derived for the NLLT system, 0 ≤ y ≤ 1, 

these general equations have an accuracy range for titanates in which 1.288 Å ≤ rA ≤ 1.375 

Å.  While the model may be more generally applicable, the nature of empirical models 

makes it impossible to extrapolate beyond this range with certainty; and new data would 

be required in order to validate/revise the model. 

Finally, Eq. 2.1 was used with the coefficients in table 2.7 to predict the A-site size 

correction factor for all of the compositions reported in Ref. [30] (x = 0, y = 0, 0.4, 0.6, 1 

and x = 0.2, y = 0, 0.5, 0.65, 0.8). The experimental ΔrA (derived from data in Ref. [30]) 

and predicted ΔrA values are shown in Fig. 2.8. The discrepancy in the data points at x = y 

= 0 may be due to the fact that these samples in Ref. [30] were quenched in liquid nitrogen, 

which resulted in a trigonal unit cell with Li+ on interstitial sites as previously discussed. 

On the other hand, the model employed here was developed using data from slowly cooled 

samples, which results in a layered ordered structure in which Li+ resides on the A sites. 

The apparent divergence at x = 0.2, y = 0 may be due to experimental error or a difference 

in the degree of ordering caused by different cooling rates. In any event, the model 
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accurately predicts ΔrA to within ~0.01 Å for all of the compositions regardless of 

processing method. 

 
Figure 2.8 (NayLi1-y)(1-3x)/2La(1+x)/2TiO3 ΔrA values calculated from the data in Ref. 

[30] (squares) plotted against the results of Eq. 2.1 (circles) for x = 0 (top) and x = 

0.2 (bottom). 

2.4 Conclusion 

Fifteen compositions within the (NayLi1-y)(1-3x)/2La(1+x)/2TiO3 system (y = 0.25, 0.5, 

and 0.75; and x = 0, 0.0533, 0.1, 0.1733, and 0.225) were successfully synthesized via a 

solid-state mixed-oxide route. It can be seen from the XRD patterns that some degree of 

long-range order exists as x increases; however, electron diffraction patterns show that 

there is some degree of order present in all compositions. This ordering results in a net 

increase in cell volume with respect to the disordered state, and several specific models 
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were developed to describe the A-site size adjustment factor, rA, and A-site ordering 

parameter, .  Based upon these equations, two general models were developed to describe 

ΔrA and η as functions of ionic radii in this system. The significance of these models is that 

they accurately predict/verify the degree of layered A-site ordering in perovskite titanates; 

and a major implication of this empirical modeling method is that it can potentially be 

applied to predict the degree of ordering in many other complex perovskite systems. 
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3.1 Introduction 

The perovskite Ba(Mg1/3Ta2/3)O3 (BMT) is known for developing long-range 1:2 

cation ordering on the B site after sintering or annealing for long periods of time.  In its 

ordered form it exhibits exceptional microwave dielectric properties.[1,2]  In particular, 

BMT is known in the electroceramics industry to exhibit high Qf values (maximum of 

430,000 GHz)[2] after long sintering times (>20 hours),[1] making it especially attractive for 

satellite communications systems; and many pieces of this ceramic currently orbit the earth. 

In general, X-ray diffraction (XRD) is a sensitive technique for analyzing B-site 

long-range cation ordering, which lowers the symmetry with respect to the disordered form 

and thus gives rise to weak superlattice (ordering) peaks in the XRD patterns. 

Nomura et al.[3] may have been the first to report that dense samples of BMT had 

useful properties for microwave dielectric-resonator applications.  In order to enhance 

sinterability, a small amount of Mn was used as a sintering aid, after which they measured 

Q = 16,800±300 at 10.5 GHz, r = 25, and f = 2.7 MK-1.  Sugiyama et al.[4]  were possibly 

the first to note that BMT slowly orders with increasing annealing time.  They reported the 

degree of ordering increased from completely disordered in the pre-annealed state to almost 

completely ordered after 16 hours annealing time at 1600°C.  They also noted a trend of 

increasing Q with increasing annealing time. 

The formation mechanisms of BMT during solid-state and wet-chemical synthesis 

were later analyzed by Surendran et al.[5] who observed that the particle size and calcination 

temperature were both significantly higher for solid-state synthesis.  For wet-chemical 

synthesis, BMT was reported to calcine at 600°C and have an average particle size of 

18 nm; whereas, solid-state synthesis required calcination at 1100°C and resulted in an 
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average particle size of 220 nm.  As a result, the solid-state synthesis route resulted in 

ceramics with larger grains upon sintering.  Since the microwave dielectric properties are 

generally better for larger grain sizes, these samples had better microwave dielectric 

properties than those produced via the wet-chemical method. 

In 1982, Kawashima et al.[6] analyzed the microwave dielectric properties of the 

similar compound Ba(Zn1/3Ta2/3)O3 (BZT) and observed that increasing sintering time 

increased Q.  It was also found that Q improved with increasing Zn2+ and Ta5+ ordering on 

the B site.  In particular, Q increased from near 0 to 14,000 at 12 GHz as sintering time 

increased (hence, ordering increased) from 0 to 120 hours at 1350°C.  A similar study on 

the microwave dielectric properties of BMT was performed by Kim and Yoon[1] a decade 

later.  They found a small linear correlation between annealing time and the dielectric 

constant and a much stronger relationship between annealing time and Q.  The ordering 

parameter was found to be maximized after annealing for 20 hours at 1500°C (Fig. 3.1). 

 
Figure 3.1 Q and dielectric constant (r) values vs. annealing time for 

Ba(Mg1/3Ta2/3)O3
[1] 
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Li et al.[7] analyzed the microwave dielectric characteristics of Ca(Mg1/3Nb2/3)O3 

(CMN) and Ba(Zn1/3Nb2/3)O3 (BZN) perovskites.  They stacked thin slices of sintered 

pellets inside a shielded cavity in three arrangements: CMN/BZN, CMN/BZN/CMN, and 

BZN/CMN/BZN.  Finite-element analysis and dielectric-composite models were used to 

analyze the effect of stacking schemes and volume fraction of BZN on microwave 

dielectric properties.  They reported effective relative permittivities of 34.33-34.52, Qf 

values of 58,800-62,080 GHz, and near-zero temperature coefficients of resonant 

frequency for these structures. 

Structure-dielectric property relationships of five compositions of the perovskite 

Ba(M⅓M′⅔)O3 (M = Mg, Ni, Zn; M′ = Nb, Ta) were analyzed by Lufaso.[2]  Rietveld 

refinements were performed on neutron-diffraction data for these perovskites, and crystal 

structure models were made from the refinements.  On average M-O and M′-O bonds were 

stretched, whereas the Ba-O bonds were compressed based on calculated bond valence 

sums.  The d0 M′ ions (Ta5+
, Nb5+) reportedly shifted out of their ideal positions at the center 

of the M′-O octahedra, indicating that second-order Jahn-Teller distortions affect the M′O6 

octahedra, which causes three short and three long M′-O bonds to form.  A correlation was 

found between the divalent B-site cation (M2+) and f.  Specifically, it was noted that as 

M2+ became more underbonded, f would become more negative.  A higher Qf was 

observed if B-site cations exhibited bond valence sums near their formal oxidation states, 

and the highest Qf value (430,000 GHz) was reported for BMT. 

Kim et al.[8] analyzed the structure and properties of the perovskites 

(A½La½)(Mg½Ta½)O3 (A = Ba, Sr, Ca) and La(Mg⅔Ta⅓)O3 (LMT) and reported that these 

compounds exhibited band gaps of 4.6-4.8 eV, dielectric permittivities of r = 18-23, tanδ 
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= 0.004-0.007, and temperature coefficients of capacitance (c) less than 100 MK-1 over 

the temperature range 20-150°C.  In particular, (Ba½La½)(Mg½Ta½)O3 (BLMT) was 

reported with a near-zero c.  The space groups of these perovskites were reported to be 

3Fm m  for BLMT and P21/n for (Sr½La½)(Mg½Ta½)O3 (SLMT), (Ca½La½)(Mg½(Ta½)O3 

(CLMT), and LMT. 

In 1997, Janaswamy et al.[9] reported Ba(Mg⅓Ta(2-x)/3Nbx/3)O3 (BMTN) calcined at 

1400°C with a disordered cubic phase.  Later it was reported[10] that an ordered trigonal 

phase begins to appear at higher calcination temperatures, with the degree of order 

dependent upon the calcination temperature.  In 2008, Janaswamy et al.[11] reported that 

the disordered cubic phase appeared at 1300°C.  As calcination temperature increased to 

1600°C, the concentration of the ordered trigonal phase increased.  A fully ordered trigonal 

phase was observed only for the x = 0 (BMT) and x = 0.4 compositions.  The rest of the 

solid-solution series contained some degree of disorder.  

In 1980, Setter and Cross[12] were the first to analyze the effect of cation size and 

charge on the degree of ordering in A(B′B″)O3 perovskites.  According to their study, large 

differences in either charge or size of B′ and B″ ions tend to lead to a higher degree of 

cation ordering.  Over a decade later, work by Zhang et al.[13] and Gui et al.[14] seemed to 

corroborate these findings.  Zhang et al.[13] derived an ordering structure factor, F0, which 

was determined from the charge difference and size difference of the B-site ions.  F0 is 

larger when charge and size differences are small, but is more strongly affected by charge 

differences. 

Lei et al.[15] analyzed the ordering transition in BMT particularly.  They observed 

diffuse superlattice reflections along all <111> directions in electron-diffraction patterns 
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of unannealed BMT, indicative of ordered nano-domains (i.e., short-range ordering).  They 

attributed this short-range order to defects on the B-site cation sublattice, which resulted in 

local excesses of Mg2+ or Ta5+.  As annealing time increased, 1:2 ordered nuclei appeared; 

and long-range order appeared only after long annealing times. 

Recently, Tolman et al.[16] derived empirical models for A-site ordering of two 

perovskite systems.  First, four compositions in the Na(1-3x)/2La(1+x)/2TiO3 (NLT) system (x 

= 0.0, 0.0533, 0.1733 and 0.225) were synthesized.  It was shown via electron diffraction 

that these perovskites contain a layered short-range order on the A site, and the degree of 

ordering decreases as x increases.  Interestingly, they reported that the ordered form had a 

larger unit volume than did its disordered counterpart. Furthermore, various compositions 

in the Li(1-3x)/2La(1+x)/2TiO3 (LLT) system reported in the literature were analyzed.  Unlike 

NLT, these perovskites have been reported with A-site long-range order.[17,18]   

The A-site ordering model derived by Tolman et al.[16] and both specific examples 

show a somewhat counterintuitive trend of volume increase with increase in A-site order.  

This phenomenon is in contrast to the trend generally observed for ordering on the B-site, 

in which case an overall volume decrease is typically observed, as demonstrated by 

Tolman et al.[16]  Despite the opposite nature of the effect with respect to A-site ordering, 

one would expect both to be equally amenable to empirical modeling. 

This work focuses on developing an empirical model for B-site ordering in 

Ba(Mg1/3Ta2/3)O3 (BMT).  This compound was chosen because the extended annealing 

treatments required to produce full order enable several intermediate partially-ordered 

states to be easily investigated in order to unambiguously support the prediction that B-site 

ordering is the cause of the volume shrinkage.  In order to develop a model that can predict 
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the ordering parameter as a function of annealing time or rB, specimens were annealed at 

1500°C for five different times (5, 10, 20, 30, and 40 hours).  As the degree of order in 

perovskites is directly related to Q, such a model would be a quick diagnostic for high-Q 

BMT materials and, if generalized, could be extended to other complex perovskite systems. 

3.2 Materials and Methods 

A series of Ba(Mg⅓Ta⅔)O3 (BMT) samples were synthesized via the solid-state 

mixed-oxide route.  Stoichiometric amounts of BaCO3 (99.95%, Alfa-Aesar, Thermo 

Fisher Scientific, Tewksbury, MA), 4MgCO3•Mg(OH)2•4H2O (43.5%, Alfa-Aesar, 

Thermo Fisher Scientific, Tewksbury, MA), and Ta2O5 (99.95%, Alfa-Aesar, Thermo 

Fisher Scientific, Tewksbury, MA) were then ball milled with yttria-stabilized ZrO2 (YSZ) 

media using deionized water in a high-density nylon pot for ~24 hours.  Powders were then 

dried overnight in an atmospheric drying oven at 95°C until the water was evaporated.  The 

powders were placed in an alumina crucible for calcination, which was conducted in a box 

furnace (1807FL, CM Furnaces Inc., Bloomfield, NJ) at 1200°C for 12 hours.  Calcined 

powders were then sieved to under 250 μm and re-milled in deionized water for 24 hours 

adding 2 wt% polyethylene glycol (PEG 10,000, Alfa-Aesar, Heysham, UK) in a water 

solution for the last three minutes of milling.  The mixture was then dried overnight in an 

atmospheric drying oven at 95°C until all the water had evaporated.  Cylindrical pellets 8-

10 mm in height and 10 mm in diameter were then formed via uniaxial pressing at 63 MPa.  

One pellet and some unpressed powder were then subjected to each of six heat treatments: 

5, 10, 15, 20, 30 or 40 hours at 1500°C. 

Powder XRD measurements were performed in a diffractometer (Miniflex-600, 

Rigaku, Woodlands, TX) operating with convergent-beam geometry and Cu Kα radiation 
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(λ=1.540593 Å).  Refinements of the XRD data were performed using FULLPROF.  The 

background was fitted with a sixth-order Chebyshev polynomial. 

3.3 Results and Discussion 

No secondary phases were detected in Ba(Mg1/3Ta2/3)O3 samples via XRD (Fig. 

3.2).  The superlattice reflections resulting from long-range ordering are not present in 

XRD patterns of specimens annealed for less than 20 hours, in agreement with Lei et al.[15] 

who reported that BMT contained short-range-ordered nanodomains in similar samples, 

with long-range order beginning to appear on the B-site only after 20 hours.  The XRD 

patterns in Fig. 3.2 were all indexed in the pseudocubic setting, with ordering peaks, which 

can only be indexed according to the trigonal unit cell, starred. 

 
Figure 3.2 X-ray diffraction data of Ba(Mg1/3Ta2/3)O3 samples annealed for  0 – 

40 hours.  Peaks marked with a * result from long-range B-site cation ordering. 
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Figure 3.3 Ba(Mg⅓Ta⅔)O3 X-ray diffraction with annealing times of 0 and 40 

hours.  Peaks marked with a * result from long-range B-site cation ordering.  The 

inset shows the trigonal distortion of the structure in the splitting of the 024c peak 

into 226t and 422t peaks. 

Close inspection of the XRD peaks in Fig. 3.3 reveals that BMT exhibits a 

trigonally distorted lattice after 40 hours of annealing.  In particular, the 024 cubic peak at 

114.74°, which occurs for unannealed samples, splits into trigonal 226 and 422 peaks at 

114.71° and 115.01°, respectively, after annealing for 40 hours, as previously 

reported.[10,11] 

Ordering is typically expected to produce structures that exhibit greater packing 

efficiency than disordered structures;[19] hence, ordering in complex perovskites should 

result in structures with smaller unit volumes than those of their disordered counterparts.  

With this reasoning, the expected trend would be a decrease in unit volume with increasing 

order. 

In the case of B-site ordered Ba(Mg1/3Ta2/3)O3, Mani et al.[20] reported a unit cell 

with apc = 4.0868 Å; however, using this value, the modeling technique of Ubic et al.[21] 
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results in unexpectedly large positive errors in both a'pc (0.952%) and a''pc (1.595%), 

suggesting an overestimation of rB caused by the volume shrinkage induced by ordering, 

as discussed by Tolman et al.[16]  Other examples are listed in Tables 3.1 and 3.2.  Table 

3.1 shows the results without correcting for B-site shrinkage while Table 3.2[20-26] shows 

the results after adding a correction term, rB, effectively removing the errors in both a'pc 

and a''pc.  The phenomenon of volume shrinkage upon B-site ordering has already been 

demonstrated[16] via DFT in the case of La(Zn0.5Ti0.5)O3, which reportedly[26] forms with 

1:1 B-site ordering in space group P21/n.  These calculations showed that the unit volume 

does, in fact, decrease upon ordering, validating the empirical modeling technique.[21] 

Specifically, the disordered form had a calculated unit volume at 0 K of 253.27 Å3 

compared to the ordered variant which had a unit volume of 252.24 Å3.  The relative 

energies of the ordered and disordered forms were 0.0952 eV and -0.2131 eV, respectively, 

indicating that the ordered form is the more stable, as observed experimentally.[26]
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The results of annealing time for BMT are shown in Figs. 3.4 and 3.5.  Fig. 3.4 

demonstrates that, as the order parameter increases, the volume of the unit cell shrinks.  

The order parameter, , was calculated by the difference of the occupancies of the two B-

site species in the two relevant Wyckoff positions in 3 1P m : 

 = |[Mg]1b – [Mg]2d| = |[Ta]2d – [Ta]1b|                                     (3.1) 

Table 3.3 X-ray powder Rietveld refinement results for Ba(Mg1/3Ta2/3)O3 in 

space group 3 1P m . 

Anneal time (hr) a (Å) c (Å) Vol (Å3) 

Unannealed 5.7823(7) 7.0748(6) 204.855(67) 0.248 

5 5.7767(4) 7.0816(6) 204.656(34) 0.454 

10 5.7728(4) 7.0839(8) 204.442(39) 0.677 

15 5.7726(7) 7.0898(6) 204.602(68) 0.725 

20 5.7726(5) 7.0883(8) 204.559(39) 0.860 

30 5.7722(5) 7.0914(7) 204.617(42) 0.939 

40 5.7709(4) 7.0899(6) 204.483(32) 0.945 

 

The refinements in Table 3.3 clearly show that, while c generally increases with 

increasing , a decreases such that an overall decrease in unit-cell volume is observed.  

This result is illustrated in Fig. 3.4 and supports the hypothesis that, while ionic 

displacements push successive ordered planes apart (ordering in BMT is normal to c), as 

also observed in cases of A-site ordering, ionic spacings within ordered planes decrease 

due to more efficient packing.  In the case of A-site ordering, it seems that the former effect 

dominates while, for B-site ordering, the latter dominates. 

In the specific case of BMT, the disordered form reported by Janaswamy et al.[9-11] 

has a cubic lattice constant of a = 4.0893 – 4.0884 Å and so contains a {111} spacing of 

~2.3604 – 2.3610 Å.  On the other hand, the ordered form reported by, for example, Mani 

et al.,[20] can be described with a smaller pseudocubic lattice constant of apc = 4.0868 Å, 
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with an average spacing of ordered planes parallel to (001) of 2.3638 Å.  Additionally, the 

spacing between a Mg2+ (001) plane and a Ta5+ (001) plane is 2.2875 Å, whereas the 

spacing between two adjacent Ta5+ (001) planes is 2.5188 Å; therefore, although the 

structure expands overall along [001] upon ordering, the reason that it expands is due 

entirely to the two adjacent Ta5+ (001) ordered planes (ionic demixing). This is most likely 

due to the very high oxidation state of Ta5+, which will create two very highly charged 

(001) planes that mutually repel. This explanation supports the hypothesis that in a 1:1 rock 

salt B-site ordered compound, the structure actually shrinks along the [111]pc because the 

spacing between adjacent Mg2+-rich and Ta5+-rich (111)pc planes is smaller (2.2875 Å) than 

the average (111)pc spacing in the disordered variant of BMT (~2.3604 – 2.3610 Å). 

Additionally, the interatomic distance between two nearest B-site atoms within the (111)pc 

planes in the disordered variant of BMT is ~5.7831 Å – 5.7819 Å, whereas the interatomic 

distance between nearest B-site atoms (both Ta5+ and Mg2+) within the (111)pc ordered 

planes is 5.7743 Å, which supports the hypothesis that the structure packs more efficiently 

within the ordering planes. 

Table 3.4 Crystallographic comparison of disordered and ordered forms of 

BMT 

3Pm m  (disordered) 3 1P m  (ordered) 

 

a = 4.0893 Å 

a = 5.77428 Å, c = 7.09139 Å; 

apc = 4.0868 Å 

d{111} = 2.3610 – 2.3604 Å d(001) = 2.3638 Å 
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Figure 3.4 Ba(Mg⅓Ta⅔)O3 unit-cell volume (black curve) and order parameter 

(red curve) as a function of annealing time 

It is clear from Fig. 3.4 that the volume shrinkage is directly related to increasing 

B-site order caused by increased annealing time.  Eq. 3.2 describes the black curve in Fig. 

3.4, which relates the unit-cell volume (Å3) to annealing time in hours, t: 

 9917.0t102t0014.0t0332.085.204 2352   RxVol                          (3.2) 

Furthermore, Eq. 3.3 relates to the annealing time in hours, t (red curve in Fig. 

3.4): 

 20.973062
η 0.9989

8.72456 t
1 exp

7.37166

R 
 

  
 

                                           (3.3) 
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Figure 3.5 Ba(Mg⅓Ta⅔)O3 order parameter (red curve) and B-site size 

adjustment (blue curve) as a function of annealing time.  The inset shows the order 

parameter as a function of rB and can be thought of as an empirical model for 

ordering (0 = disorder, 1 = fully ordered) 

Fig. 3.5 shows the inherent relationships between , rB, and t.  In particular, the 

inset shows that  decreases as rB increases, corresponding to an increasing unit-cell 

volume.  Eq. 3.4 describes the blue curve in Fig. 3.5 which relates rB to t. 

 9952.0t107t105t0001.00427.0 23826

B   Rxxr              (3.4) 

Eq. 3.5 describes the relationship between  and rB (inset in Fig. 3.5). 








 




4

B

1083894.3

0434304.0
exp1

22869.1
η

x

r
                                              (3.5) 

The increase in the order parameter shown in Figs. 3.4 and 3.5 corresponds to the 

increase in Q with annealing time depicted in Fig. 3.1, thus providing a clear link between 

 and Q, as expected.  Furthermore, as Fig. 3.4 clearly relates  to volume shrinkage, there 

is also a link between volume shrinkage and Q. 
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Of course, it is also possible to simply quantify the relationship between  and 

either apc or trigonality (c/a) without ever invoking the model of Ubic et al.;[21] however, 

such a model would necessarily be unique to BMT and could not be generalized to other 

systems. 

3.4 Conclusion 

Ba(Mg1/3Ta2/3)O3 was synthesized using a conventional solid-state mixed-oxide 

method and subsequently annealed at 1500°C.  The unit-cell volume was found to decrease 

as the degree of B-site ordering increased.  Analysis of the XRD patterns showed a 

structural transition from cubic to trigonal with increasing annealing time, and it was shown 

that while ordering caused a shrinkage within the ordered planes, it caused an expansion 

perpendicular to the ordered planes due to charge imbalances in this case.  This observation 

explains both the volume shrinkage observed upon B-site rock salt ordering and the volume 

expansion reported in layered A-site ordered perovskites.  An empirical model which 

relates the shrinkage to the degree of order in BMT has been developed.  This model could 

potentially be extended in order to enable the prediction of ordering parameters in other 

complex perovskite systems from ionic-radii data and experimentally-derived pseudocubic 

lattice constants alone.  It may also be possible to predict the degree of order-induced 

volume contraction, which has implications for functional properties like Q or ionic 

conductivity. 
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CHAPTER FOUR: CORRELATIVE MODELS FOR PEROVSKITES WITH ROCK 

SALT B-SITE ORDERING 

 

This chapter was published by John Wiley & Sons, Inc. in the Journal of the American 
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4.1 Introduction 

Predictive models for composition-structure-property relationships are essential to 

realizing the full potential of electroceramic materials. Ceramics with the perovskite 

structure possess a wider range of properties (e.g., pyroelectricity, ferroelectricity, 

piezoelectricity, superconductivity, etc.) than ceramics with almost any other type of 

crystal structure;[1] thus, eliminating the need for expensive trial-and-error experiments by 

instead using predictive models to predict structures and properties is key to the future of 

the electroceramics industry.  

There are a vast number of structural distortions in perovskites which cause 

deviations from the aristotypical perovskite structure in cubic space group 3Pm m . These 

structural distortions, such as cation ordering, can have significant implications for the 

materials properties, such as ionic conduction. In perovskites, cation ordering often occurs 

on alternating {001}, {110}, or {111} pseudocubic planes for both A-site substituted 

0 5 0 5 3A A BX. .
   or B-site substituted 

0 5 0 5 3AB B O. .
   complex perovskites[2]. Ordering on {111} 

(rock salt ordering) is typically preferred for B-site ordering, whereas {001} ordering 

(layered ordering) tends to be preferred for A-site ordering.  

In 1980, Setter and Cross[3] were the first to study cation size and charge effects on 

the degree of ordering in 
0 5 0 5 3AB B O. .
   perovskites. According to their study, large 

differences in either charge or size of B′ and B″ ions tend to lead to a higher degree of 

cation ordering. Over the next couple of decades, these findings were seemingly 

corroborated by many studies[4-7]. In particular, Woodward et al.[6] observed that if the B′ 

and B″ cations have a charge difference larger than two, then they will tend to form highly 
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ordered structures; however, if the charge difference is equal to or less than two, then 

various degrees of ordering among the B cations will exist. 

Interestingly, the large majority of rock salt B-site ordered perovskite oxides seem 

to prefer monoclinic symmetry in space group P21/n, with the second most preferential 

symmetry being cubic 3Fm m ;[7-9] however, Howard et al.[9] note that many of the 

perovskites listed with P21/n symmetry may actually have higher symmetry, and many of 

the perovskites listed with 3Fm m  symmetry may have lower symmetry due to varying 

degrees of octahedral tilting. This discrepancy is primarily due to the fact that the majority 

of the B-site ordered perovskites reported to date have been studied using X-ray diffraction, 

but octahedral tilting is notoriously difficult to detect via X-ray diffraction. It is typically 

visible via electron diffraction, but neutron diffraction would most likely be necessary to 

accurately quantify the degree of octahedral tilting in such cases. 

The (Ca,Sr,Pb,Ba)(Mg1/2W1/2)O3 perovskite systems lend themselves particularly 

well to the study of B-site ordering due to the fact that they are reported[10-25] to exhibit 

long-range rock salt type ordering of Mg2+ and W6+ cations on the B site. The 

CaMg1/2W1/2O3 (CMW) composition has been studied[10,11] via neutron and X-ray 

diffraction (XRD) and has been reported to exist in monoclinic space group P21/n. The low 

symmetry was attributed[10] to tilting of the BO6 octahedra and an antiparallel shift of the 

A-site cations along the monoclinic [010]. Moreover, the SrMg1/2W1/2O3 (SMW) 

perovskite has been investigated[12-16] via neutron diffraction and XRD, and it has been 

reported with tetragonal symmetry in space group I4/m. Likewise, BaMg1/2W1/2O3 (BMW) 

has been studied[16-20] using neutron diffraction and XRD, but it has been reported with 

cubic symmetry in space group 3Fm m . In addition, the well-studied PbMg1/2W1/2O3 
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(PMW) composition was initially reported[21] in cubic space group 3Pm m  but was later 

reported[22] with orthorhombic symmetry in space group Pmmm. Several more studies[23,24] 

seem to verify that PMW exhibits orthorhombic symmetry at room temperature, but in 

space group Pmcn; however, the most recent study[25] performed on PMW suggests that it 

crystalizes in cubic space group 3Fm m  at room temperature but transitions to 

orthorhombic space group Pmcn below 8°C.  

The A3+Zn0.5Ti0.5O3 perovskite system is an important system for many dielectric 

applications,[26-28] and it seems to readily display[26-29] long range rock salt B-site ordering. 

Ubic et al.[26] reported a monoclinic symmetry in space group P21/n for LaZn0.5Ti0.5O3 

(LZT) and observed a completely ordered B site via neutron diffraction. A seemingly 

different result was later observed by Aguadero et al.,[29] who also used neutron diffraction 

but observed about 10% disorder on the B site; however, the difference is reconcilable 

considering the difference in experimental processes between the two studies. Aguadero et 

al.[29] used soft-chemistry processing procedures and annealed their samples at 1150°C, 

whereas Ubic et al.[26] used solid-state processing procedures and annealed their samples 

at 1400°C. The dielectric properties reported by Ubic et al.[26] at 4.25 GHz were εr = 34, 

Qf = 36,090 GHz, and τf = -70 MK-1. 

NdZn0.5Ti0.5O3 has been reported[27] to exist with monoclinic symmetry with a fully 

ordered B site. The following dielectric properties were also reported[27] at 8.5 GHz: εr = 

31.6, Qf = 170,000 GHz, and τf = -42 ppm/°C. Additionally, PrZn0.5Ti0.5O3 (PZT) and 

GdZn0.5Ti0.5O3 (GZT) were studied[28] via X-ray and electron diffraction. Both compounds 

were observed[28] with monoclinic symmetry in space group P21/n, but GZT was reported 

with a fully ordered B site while PZT was reported with a 95% ordered B site. The B-site 
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ordering was attributed to a large charge and size difference between the B-site cations 

(Zn2+ and Ti4+). The following dielectric properties were also observed[28] at 1MHz: εr = 

27 & tanδ = 0.003 for PZT, and εr = 17 & tanδ = 0.005 for GZT. 

Interestingly, BiZn0.5Ti0.5O3 (BZT) was studied[30] using X-ray and electron 

diffraction and was reported[30] to exist with a completely disordered arrangement of Zn2+ 

and Ti4+ cations on the B site, which would seem to contradict the conclusions of 

Woodward et al.[6] Room temperature dielectric properties of εr = 250 and tanδ = 0.1 were 

observed[30] at 1 MHz. 

AR0.5Ir0.5O6 (A = Sr, Ba; R = Sc, Y, La, Lu)[31] and SrCu0.5Ir0.5O3
[32] perovskites 

were studied via X-ray diffraction and were all determined to exhibit a fully ordered B site. 

All of these compounds are reported with monoclinic symmetry except for SrCu0.5Ir0.5O3, 

which was reported with tetragonal symmetry in space group I4/m. Moreover, these 

perovskites were observed to exhibit paramagnetic properties down to 4.5 K, and 

SrCu0.5Ir0.5O3 was observed to exhibit magnetic properties above 15 K. 

SrY0.5Ta0.5O3
[33,34] and SrY0.5Nb0.5O3

[33] were both studied via X-ray diffraction and 

they were observed with a fully ordered B site in monoclinic space group P21/n. 

BaLn0.5Nb0.5O3 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu),[35] 

BaLn0.5Ta0.5O3 (Ln = Y, all lanthanide species),[36] SrLn0.5Ta0.5O3 (Ln = Nd, Pm, Sm, Eu, 

Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu),[37] and AIn0.5Nb0.5O3 (A = Ca, Sr, Ba)[38] perovskites 

were all studied using X-ray diffraction[35-37] or neutron diffraction[38]. All compositions 

were observed in monoclinic space group P21/n, except for members of the Ln = Dy-Lu 

series of the BaLn0.5Ta0.5O3 system, which were reported in cubic space group 3Fm m . All 

compositions were also reported with long range rock salt ordering on the B site. In 
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addition, all of the compositions, except for the AIn0.5Nb0.5O3 system, were reported with 

paramagnetic properties down to 5 K.  

Interestingly compounds in the SrM0.5Mo0.5O3 (M = Mg, Mn, Fe, Co, Ni, Zn)[39] 

system were determined via X-ray diffraction to exhibit triclinic symmetry in space group 

1P  with nearly fully ordered B sites; however, the similar SrCa0.5Mo0.5O3 perovskite 

compound has been studied[40] via neutron diffraction and was also reported[40] with a fully 

ordered B site but in monoclinic space group P21/n. 

It has recently been established[41-43] that, while layered A-site ordering results in a 

counterintuitive unit-cell volume increase compared to the disordered structure, rock salt 

B-site ordering results in the expected unit-cell volume decrease compared to the 

disordered structure. This result was explained crystalochemically[41] by the fact that 

ordering causes more efficient packing in perovskites within ordered planes but an 

expansion of bonds perpendicular to them. In other words, bonds which lie in or near the 

ordering planes will contract whereas those more perpendicular will tend to expand. For 

this reason, a strong indicator of rock salt B-site ordering within this model[42] is an 

overestimation of B-X bond length, which results in large positive errors (1% - 3%) in both 

pca  and 
pca . In these cases, a negative ΔrB correction term can be introduced to effectively 

correct for these errors. 

In this work, four compositions within the A(Zn0.5Ti0.5)O3 (A = Nd, Sm, Nd0.5La0.5, 

and Nd0.5Gd0.5) (NZT, SZT, NLZT, and NGZT) perovskite system were produced. Another 

38 rock salt B-site ordered perovskites were also mined from literature. Empirical models 

were derived for each specific B-site ordered system. From these data, a general empirical 
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model has been derived for the B-site size correction factor, ΔrB, similar to the A-site model 

recently derived by Smith et al.[43] 

4.2 Materials and Methods 

Four compositions in the system A(Zn0.5Ti0.5)O3 (A = Nd, Sm, Nd0.5La0.5, 

Nd0.5Gd0.5) were synthesized via the solid-state mixed-oxide route. As-received La2O3 

(99.9%, Acros Organics, Fair Lawn, NJ), Nd2O3 (99%, Alfa-Aesar, Ward Hill, MA), and 

Sm2O3 (99.9%, Alfa-Aesar, Ward Hill, MA) powders were first hydroxylated by mixing 

with an excess of deionized water and drying overnight, forming La(OH)3, Nd(OH)3, or 

Sm(OH)3. Stoichiometric amounts of ZnO (99.9%, Alfa-Aesar, Ward Hill, MA), TiO2 

(99.5%, Alfa-Aesar, Ward Hill, MA), Gd2O3 (99.9%, Alfa-Aesar, Ward Hill, MA) 

La(OH)3, Nd(OH)3, and Sm(OH)3 were then ball-milled with yttria-stabilized ZrO2 (YSZ) 

media using deionized water in a high-density nylon pot for ~6 hours. Powders were then 

dried overnight in an atmospheric drying oven at ~98°C until all the water was evaporated. 

An initial dehydroxylation heat treatment was conducted in an open crucible at 600°C for 

2 hours. Calcination was subsequently conducted in a closed crucible for two hours in a 

box furnace (1807FL, CM Furnaces Inc., Bloomfield, NJ) at 1200°C. After calcination, the 

powders were ground using a porcelain mortar and pestle. Powders were then re-calcined 

in a closed crucible for two hours at 1400°C, after which they were ball-milled again with 

YSZ media using deionized water in a high-density nylon pot for ~24 hours. The mixture 

was then dried overnight in an atmospheric drying oven at ~98°C until all the water had 

evaporated. The mixture was then ground again using a mortar and pestle and finally sieved 

to under 250 μm. 
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Powder XRD measurements were performed in a diffractometer (Miniflex-600, 

Rigaku, Woodlands, TX) operating with convergent-beam geometry and CuKα radiation. 

Rietveld refinements were performed on the XRD patterns using GSAS II (Argonne 

National Laboratory, IL). The background was fitted with a Debye diffuse scattering 

function with six terms. All compositions were refined in monoclinic space group P21/n 

allowing the cation occupancies and the coordinates of the A-site species in the 4e sites to 

vary. 

4.3 Results and Discussion 

Figs. 4.1 and 4.2 show the XRD patterns and refinement fits for each of the four 

compositions that were produced within the A(Zn0.5Ti0.5)O3 system, clearly showing that 

all the compositions had successfully been produced with complete phase purity. Fig. 4.1 

also shows that the 110 pseudocubic peak is split into a triplet, which is one of the 

characteristics of an orthorhombic distortion.  This triplet arises due to slight differences 

in the spacings of the pc(011) , {110}pc/{101}pc, and (011)pc; however, the structure is 

actually monoclinic in space group P21/n due to the presence of long-range rock salt 

ordering of Zn2+ and Ti4+ cations on the B site. 
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Figure 4.1 Rietveld plots of NLZT, NZT, SZT, and NGZT. The data points 

correspond to the observed intensities.  Both refinement results and difference 

patterns are shown for each composition, and all peaks are indexed according to the 

pseudocubic unit cell. 
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Figure 4.2 Rietveld plots of NLZT, NZT, SZT, and NGZT in the range 15° ≤ 2θ ≤ 

28° showing the ½(111)pc peak fit. 

The existence of ½{odd,odd,odd}pc peaks may indicate 1:1 B-site ordering; 

however, ½{odd,odd,odd}pc superlattice reflections are also commonly associated with 

anti-phase octahedral tilting, which makes it difficult to unambiguously identify the origin 

of these superlattice reflections via XRD alone; nevertheless, Rietveld analyses of the XRD 

patterns do suggest that all four of these perovskites exhibit fully ordered B sites.  

Table 4.1 shows the results of the Rietveld refinements performed on each of the 

four compositions within the A(Zn0.5Ti0.5)O3 system. The refinements suggest that all four 

of these perovskites exhibit monoclinic symmetry in space group P21/n and display full 

rock salt ordering of Zn2+ and Ti4+ cations on the B site. These results also suggest that the 
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samples become increasingly monoclinic (i.e.,  increases) as the size of the A-site species 

decreases (i.e., as the tolerance factor decreases).  

Table 4.1 Refinement Results for Zinc Titanates 

A-site species (Nd0.5La0.5) Nd Sm (Nd0.5Gd0.5) 

a (Å) 7.84135(8) 7.78132(7) 7.72469(9) 7.73249(9) 

b (Å) 5.63482(5) 5.64713(4) 5.65861(6) 5.65563(6) 

c (Å) 5.52172(5) 5.46671(5) 5.41550(7) 5.41560(6) 

β (°) 90.021(4) 90.099(1) 90.184(1) 90.211(1) 

x (4(e) A-site) 0.2510(3) 0.2504(4) 0.2500(3) 0.2505(3) 

y (4(e) A-site) 0.0456(1) 0.0535(1) 0.0602(1) 0.0593(1) 

z (4(e) A-site) 0.9895(2) 0.9876(2) 0.9851(2) 0.9851(2) 

wR% 7.81 5.78 3.58 3.71 

 

Table 4.2 shows the errors in 
pca , 

pca , and apc, (Eqs. 1.3, 1.4, and 1.19) with respect 

to the experimental pseudocubic lattice constants. Table 4.3 shows the B-site size 

correction parameters and the resultant reduced errors in Eqs. 1.3, 1.4, and 1.19. The data 

from Table 4.2 shows that, in general, the model overestimates the pseudocubic lattice 

constant for rock salt B-site ordered perovskites, which supports the hypothesis[41] that 

shrinking bonds within ordered planes will dominate over the effects electrostatic 

repulsions pushing ordered planes apart. 

The large positive errors in pseudocubic lattice constants predicted from the 

uncorrected model (Table 4.2) result from an apparent overestimation of rB. Somewhat 

predictably, the uncorrected model seems to be less accurate for compounds with large 

differences in B-site cation sizes, whereas it appears to be far more accurate for compounds 

with similar B-site cation sizes. For instance, the model produces an error of 4.506% when 

predicting 
pca  in Sr(Ca0.5Mo0.5)O3, in which the size difference between Ca2+ and Mo6+ 
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ions is 0.41 Å; however, the model only produces a 0.170% error in 
pca  for Sr(Cr0.5Ir0.5)O3, 

in which the size difference between Cr3+ and Ir5+ ions is just 0.015 Å. 

To effectively minimize and account for the errors coming from the volume 

contraction upon ordering, the values of rB were decreased by an amount ΔrB. The value 

of ΔrB was determined by incrementally decreasing the value of rB until the errors in apc 

(Eq. 1.19), 
pca (Eq. 1.3), and 

pca  (Eq. 1.4) were simultaneously minimized. It should be 

noted that apc and 
pca  are more sensitive to changes in B-site size than is 

pca  due to the 

fact that both apc and 
pca  depend directly on rB. Thus, the errors in 

pca (Eq. 1.3) tend to be 

the largest in this case. Table 4.3 displays the results of this iterative process. Also, Eq. 

1.19 is used to calculate apc in tables 4.2 and 4.3, where t′ is determined from t0 and rA via 

an empirical model[44] (Eq. 1.14). Additionally, Eqs. 1.3 and 1.4 are used to determine pca  

and pca  in tables 4.2 and 4.3, where the effective rX is calculated from a correlative 

model[44] (Eq. 1.18) using t′ and the Shannon radius of the X-site species.  
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It should be noted that all 42 compositions in Tables 4.2 and 4.3 were sorted into 

series based upon the smallest B-site cation in each, rB,small, in order to develop a model for 

the B-site size adjustment factor with relation to the B-site size. This process created seven 

unique series of data (i.e. compounds with Mo, Ru, Sb, Ir, Nb or Ta, Mg½W½, or Zn½Ti½ 

on the B site). A correlative model was then developed for each series. 

The fact that Nb5+ and Ta5+ have the same charge and ionic size makes it impossible 

to isolate the effects of size and charge in compounds containing either of these species; 

however, compounds containing either Nb5+ or Ta5+ as the smallest B-site species produced 

very similar ΔrB vs. apc curves. Despite the fact that Nb and Ta have very different atomic 

masses (mNb = 92.906 amu and mTa = 180.95 amu), it would appear that the model is only 

sensitive to size and charge differences between two species. Thus, it was possible to 

consider these compounds together in a single series. 

 
Figure 4.3 B-site size adjustment factors as functions of the pseudocubic lattice 

constant (Eq. 1.19). 
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Fig. 4.3 shows the relationship between the B-site size correction factor, ΔrB, and 

pseudocubic lattice constant, apc. These curves demonstrate that the general trend is clearly 

a quadratic polynomial and can be represented generically by Eq. 4.1: 

2

B pc pc ,r Aa Ba C                                                         (4.1) 

where apc is calculated from Eq. 1.19. Since Eq. 1.19 predicts apc using solely ionic 

radii data[45], ΔrB can be predicted only using ionic radii data[45] as well. The coefficients 

and goodness of fit for all seven of these curves are listed in table 4.4. 

Table 4.4 Coefficients of Eq. 4.1 and the goodness of fit, R2 

rB,small A B C R2 

Nb, Ta 0.3858 -3.3406 7.1619 0.9809 

Ir 0.3529 -3.0608 6.5796 0.9889 

Sb -0.1986 1.4324 -2.5646 0.9908 

Ru 0.3707 -3.1345 6.5778 0.9922 

Mo -0.8958 6.8529 -13.1282 0.9999 

MgW -0.2328 1.8175 -3.5842 0.9970 

ZnTi -5.3117 41.6784 -81.7733 0.9836 
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Figure 4.4 Coefficients of Eq. 4.1 as a function of charge (Z) and ionic radius of 

the smallest B-site species, rB,small. 

Fig. 4.4 shows the relationship between the coefficients of Eq. 4.1 and the product 

of charge and size of the smallest B-site cation, Z∙rB,small. Not only is this model sensitive 
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to both the size and charge of B-site cations, but all three of the coefficients (A, B, and C) 

are related to the charge and size of the smallest B-site species in each composition by the 

same trigonometric function:  

   B,small B,smalltan 2 sin 3 ,Coeff a b Zr c Zr                                   (4.2) 

where Coeff = A, B, or C. Table 4.5 lists all the coefficients of Eq. 4.2 and the 

goodness of fit. 

Table 4.5 Coefficients of Eq. 4.2 and the goodness of fit, R2. 

Coefficient a b c R2 

A -0.11987 0.80266 1.29757 0.9715 

B 0.75396 -6.33299 -10.29258 0.9709 

C -1.12758 12.49349 20.42735 0.9701 

 

It appears from Fig. 4.4 that the A, B, and C coefficients are not independent 

parameters but are actually highly correlated. Specifically, A and C differ by a scale factor 

while B is a mirror image of A and C with a constant scale factor. This correlation is 

demonstrated in Fig. 4.5. 

 
Figure 4.5 Coefficients of Eq. 4.1 as functions of one another. 
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The linear correlations of Fig. 4.5 can be represented by Eqs. 4.3-4.4: 

 27 88736882 0 19527227 1. .B A R                                           (4.3) 

 215 55306591 0 75275399 0 9999. . .C A R                                  (4.4) 

Substituting Eqs. 4.3 and 4.4 into Eq. 4.1 yields Eq. 4.5: 

 2

B pc pc pc7 88736882 15 55306591 0 19527227 0 75275399,. . . .r A a a a          (4.5) 

where apc is calculated using Eq. 1.19. The advantage of Eq. 4.5 is that it allows for the 

prediction of the B-site size correction factor, ΔrB, using only a single coefficient, A, which 

can be easily calculated from Eq. 4.2 and the coefficients in Table 4.5 as 

   B,small B,small0 11987 0 80266tan 2 1 29757sin 3A Zr Zr  . . .                 (4.6) 

 

 
Figure 4.6 Comparison of experimental apc values to apc calculated using Eq. 

1.19. The triangles show apc before ΔrB has been applied and the circles show apc 

after ΔrB has been applied. The trend line represents apc (calc.) = apc (exptl.). 
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Since Eq. 1.19 was developed from perovskite data which contained random 

distributions of cations on both the A and B sites, it does not accurately predict apc in B-

site ordered perovskites, as Table 4.1 and Fig. 4.6 demonstrate. The pseudocubic lattice 

constant calculated from Eq. 1.19 tends to be larger than the experimental pseudocubic 

lattice constant, which further demonstrates that the model overestimates the unit cell 

volume for B-site ordered perovskites; however, Fig. 4.6 also shows that after the volume 

shrinkage resulting from B-site ordering has been accounted for, Eq. 1.19 is still an accurate 

predictor of the pseudocubic lattice constant. Thus, the model as developed previously[44] 

has been effectively extended to account for rock salt B-site ordering.  

A major implication of this model is that it can be used to accurately predict the 

volume shrinkage as the result of rock salt B-site ordering in perovskites; however, it 

should be noted that the model is only generally applicable to rock salt B-site ordered 

perovskites with the smallest B-site species between 0.565 (Ru5+) and 0.64 (Nb5+, Ta5+) 

and ionic charges between 4+ and 6+. Although the model may be more generally 

applicable, like all empirical models, it cannot be extrapolated beyond the upper and lower 

bounds in the data set with any degree of certainty. 

4.4 Conclusion 

Using a solid-state mixed-oxide method, four compositions within the 

A(Zn0.5Ti0.5)O3 system (A = Nd, Sm, La0.5Nd0.5, Nd0.5Gd0.5) were successfully synthesized. 

The XRD patterns show long-range rock salt B-site order is present within all of the 

compositions. Seven system-specific models were derived for the B-site size adjustment 

factor, ΔrB, as a function of apc. A general model for rock salt B-site ordering in perovskites, 

which accounts for both the charge and size of the smallest B-site species, was derived 
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based upon these specific models. One of the major implications of this model is that it 

accurately predicts the volume shrinkage, and so pseudocubic lattice constant, for any 

A2(B′B″)O6 rock salt B-site ordered perovskites using only readily available ionic radii 

data. Conversely, it might be used to determine the degree of order in a given perovskite 

from experimental measurements of lattice constants. It may even be possible with more 

data to extend this model to predict volume shrinkage in other B-site ordered perovskite 

systems (e.g., those with 1:2 ordering). 
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CHAPTER FIVE: EMPIRICAL MODELS OF TRIGONAL DISTORTIONS AND 

POLARIZATION IN PEROVSKITES 
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and Polarization in Perovskites,” Journal of the American Ceramic Society, submitted. 

 

  



103 

 

 

 

5.1 Introduction 

Correlative models describing composition-structure relationships are the keys to 

unlocking the full potential of many materials, including electroceramics. Perovskite 

ceramics exhibit an expansive range of properties, and examples of trigonally distorted 

perovskites alone exhibit colossal magnetoresistance (e.g., La0.6-xPrxSr0.4MnO3)
[1], 

magnetocaloric effects (e.g., La0.65Sr0.35V0.1Mn0.9O3)
[2], catalysis (e.g., La1-xAgxMnO3)

[3], 

and ferroelectricity (e.g., BiFeO3)
[4]. Thus, predictive models linking structure to properties 

are needed to minimize expensive and time-consuming trial-and-error experiments, 

allowing for a more cost-effective future for the electroceramics industry, with all the 

concomitant benefits for society which that entails. 

Generally, perovskites are defined as compounds with ABX3 stoichiometry in 

which large A-site cations exist on cuboctahedral sites between corner-sharing anion 

octahedra, each of which contains a smaller B-site cation. Trigonal distortion in perovskites 

occurs when the BO6 octahedra undergo equal anti-phase octahedral tilting about all three 

crystallographic pseudocubic axes (a-a-a- in Glazer’s notation[5]). This tilting results in the 

vast majority of trigonally distorted perovskites crystallizing in the centrosymmetric space 

group 3R c ; although it is also possible for these perovskites to crystallize in the non-

centrosymmetric space group R3c. Both 3R c  and R3c trigonal perovskites can be 

described with either a rhombohedral or hexagonal cell; however, a hexagonal cell is most 

often chosen for the sake of convenience; thus, all of the trigonally distorted perovskites in 

this work were considered in the hexagonal setting.  

Additionally, the A site for all the trigonal perovskites that have been analyzed in 

this work contain a trivalent cation (e.g., La3+) and have been doped with either a divalent 
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cation (e.g., Sr2+) or a monovalent cation (e.g., Na+) according to the following 

stoichiometries: 3 2 3 4

1 1 3A A B B Ox x x x

   

 
 or 3 1 3 4

1 2 2 1 3A A B B O/ /x x x x

   

 
. Using these formulas, a divalent 

cation species can completely replace the trivalent one (x = 1) without the need for oxygen 

vacancies for charge compensation; however, a monovalent A-site dopant can only be used 

to replace half of the trivalent one before intrinsic oxygen vacancies or second phases 

would begin to form. 

Many of the trigonal perovskites that have been produced to date contain 

manganese on the B site due to its useful magnetic properties. Mn3+ is a well-known Jahn-

Teller ion, and the Mn3+ cation is known to exist purely in its high-spin (HS) state  3 1

2t eg g  

at room temperature and atmospheric pressure[6]. Furthermore, the Mn3+ cation is well 

known for its ability to change oxidation states, which allows for series such as LnMnO3 

to be doped with divalent or monovalent cations while maintaining fully occupied anion 

sites. For instance, doping LaMnO3 with a quantity of Sr2+ causes the formation of an equal 

amount of Mn4+. Interestingly, electrons can migrate between Mn3+ and Mn4+ cations via 

the double exchange mechanism; thus, if the dopant reaches sufficient concentration (i.e., 

the Mn4+ concentration reaches sufficient concentration), it can cause the electrons to 

delocalize from these cations and allow the sample to exhibit metallic conductivity[6].  

On the other hand, the spin state of the Co3+ cation in the LnCoO3 series of 

compounds is a bit ambiguous. Current research[6] suggests that Co3+ exists in its low-spin 

(LS) state  6

2t g  at room temperature and atmospheric pressure but transitions to an 

intermediate-spin (IS) state  5 1

2t eg g  at higher temperatures and pressures. Furthermore, 

Fe3+ is known to exist purely in its high-spin state  3 2

2t eg g  at room temperature and 
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atmospheric pressure[7]. Thus, for the sake of choosing the appropriate ionic radii, Mn3+ 

and Fe3+ were considered in their high-spin states and Co3+ was considered in its low-spin 

state for the perovskites in this work. 

There currently exist several correlative models for predicting both cubic[8-10] and 

orthorhombic[11,12] perovskite lattice parameters. There even exists an empirical model for 

predicting tetragonal lattice parameters in perovskites[13]; however, there are currently no 

empirical models for predicting lattice constants in trigonally distorted perovskites, 

arguably a larger and more commercially relevant class of perovskite.  

In 2001, Lufaso and Woodward developed[14] a program called SPuDS (Structure 

Prediction Diagnostic Software) for predicting perovskite structures. It was based on the 

concept of the global-instability-index (GII) as developed by Salinas-Sanchez et al.[15]. 

SPuDS is a very powerful tool, and it is currently one of the only methods available for 

predicting the stability of trigonal perovskites; however, because SPuDS relies solely on 

the GII, it cannot unambiguously predict the most stable perovskite structures in many 

cases. It also fails to account for B-site octahedral distortions and does not account for some 

atomic species (e.g., Pm3+ and Ra2+). 

 

5.2 Materials and Methods 

In this work, 57 trigonally distorted perovskites in space group 3R c  and 31 

trigonally distorted perovskites in space group R3c were mined from literature. A total of 

10 compositional series were analyzed for the perovskites in space group 3R c : La1-

xSrxFeO3 (LSF), La1-xSrxCoO3 (LSC), La1-xBaxCoO3 (LBC), La1-xSrxMnO3 (LSM), La1-

xBaxMnO3 (LBM), La1-xCaxMnO3 (LCM), La1-xNaxMnO3 (LNM), La1-xKxMnO3 (LKM), 
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La1-xAgxMnO3 (LAM), and La1-xPbxMnO3 (LPM). Using the data from these perovskites, 

system-specific models were developed for the perovskites in space group 3R c  which 

describe the degree of trigonality as a function of the ratio of the pseudocubic lattice 

constant to the B-X bond length. From the system-specific models, a general model 

describing perovskite trigonality for perovskites in space group 3R c  in terms of the 

modified tolerance factor[16] was derived. In addition, a general model was developed for 

both trigonality and intrinsic polarization in perovskites with space group R3c. 

5.3 Results and Discussion 

Table 5.1 shows the data for all 57 compounds used to derive the general trigonal 

model for perovskites with 3R c  symmetry and the predicted perovskite trigonality, c/a, 

using this model. Values of t′ were determined from an empirical model[16] using only the 

values of t0 and Shannon[17] values of rA for each compound. After applying the trigonal 

model to each compound, the average global absolute error between the experimental and 

predicted c/a values is 0.1348%. The two systems producing the most error are La1-

xSrxCoO3 (0.3187%) and La1-xPbxMnO3 (0.2968%), whereas the system producing the least 

amount of error is La1-xSrxFeO3 (0.0529%).  

Table 5.2 shows the experimental and predicted trigonal lattice constants using Eqs. 

5.4-5.7 for all 57 3R c  trigonal compounds used in this model. The average global absolute 

error for a and c is 0.0449% and 0.0898%, respectively. Again, the two systems producing 

the most error are La1-xSrxCoO3 (0.1060% for a and 0.2123% for c) and La1-xPbxMnO3 

(0.0993% for a and 0.1981% for c), and the system producing the least amount of error is 

La1-xSrxFeO3 (0.0176% for a and 0.0352% for c). It should be noted that the errors are very 

good overall; however, one of the reasons that the La1-xPbxMnO3 compound has the largest 
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errors may be due to the fact that Pb is volatile during the calcination and sintering stages 

of processing. Thus, if care is not taken to minimize the amount of lead loss in these 

compounds, it can cause oxygen vacancies and/or multiple phases to form. 
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Figure 5.1 Linear fits describing c/a vs. apc(Exptl.)/rBX(Exptl.) for the (a) 

3 2 3 4

1 1 3La A Mn Mn Ox x x x

   

 
, 3 1 3 4

1 1 2 2 3La A Mn Mn Ox x x x

   

 
, (b) 3 2 3 4

1 1 3La A Fe Fe Ox x x x

   

 
, and (c) 

3 2 3 4

1 1 3La A Co Co Ox x x x

   

 
 systems. 

Fig. 5.1 shows the relationship between the degree of trignonality, c/a, and the ratio 

of the pseudocubic lattice constant, apc, to the B-X bond length, rBX. These fits clearly show 

that this trend is linear so can be represented by Eq. 5.1: 

pc

BX

,
ac

A B
a r

 
  

 
                                                   (5.1) 

Fig. 5.1 also shows that the seven series with Mn on the B site clearly converge at 

LaMnO3 and the two series with Co on the B site converge at LaCoO3. Table 5.3 shows all 

of the coefficients and the goodness of fits for the trends represented by Eq. 5.1.
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Table 5.3 Coefficients of Eq. 5.1 

Composition A B R2 

La1-xSrxFeO3 1.543171 -0.635964 0.9937 

La1-xSrxCoO3 2.191690 -1.932677 0.9809 

La1-xBaxCoO3 1.907794 -1.370724 0.9728 

La1-xSrxMnO3 1.343478 -0.239554 0.9977 

La1-xBaxMnO3 1.249331 -0.053637 0.9273 

La1-xCaxMnO3 5.104347 -7.666295 0.9075 

La1-xNaxMnO3 0.584690 1.258855 0.9320 

La1-xKxMnO3 0.900957 0.634310 0.9244 

La1-xAgxMnO3 1.420578 -0.391807 0.9464 

La1-xPbxMnO3 1.124310 0.193246 0.9737 
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Figure 5.2 Coefficients of Eq. 5.1 vs. tolerance factor[16]. 

Fig. 5.2 demonstrates the relationship between the modified tolerance factor[16] and 

the coefficients of Eq. 5.1. Both coefficients of Eq. 5.1 (A and B) can be represented by the 

same fifth-order polynomial as a function of t′: 

5 4 3 2Coeff at bt ct dt et f                                              (5.2) 
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where Coeff = A or B, and t′ is determined via an empirical model[16] at the compositions 

that are 50% doped on the A site for divalent dopants and 25% doped on the A site for 

monovalent dopants (i.e. 3 2 3 4

0 5 0 5 0 5 0 5 3A A B B O. . . .

     or 3 1 3 4

0 75 0 25 0 5 0 5 3A A B B O. . . .

    ). For instance, the 

compound La0.8Sr0.2MnO3 has an x value of 0.2, but Eq. 5.2 would be applied to the 

La0.5Sr0.5MnO3 composition to determine the values of A and B. Then, Eq. 5.1 can be 

applied to the actual composition, La0.8Sr0.2MnO3, to predict its c/a value. Table 5.4 lists 

the goodness of fits and the coefficients of Eq. 5.2. 

Table 5.4 Coefficients of Eq. 5.2 

Coeff a (×108) b (×108) c (×108) d (×108) e (×108) f (×108) R2 

A -0.279599 1.428203 -2.917000 2.977727 -1.519272 0.309941 0.9674 

B 0.552473 -2.822077 5.763927 -5.883965 3.002091 -0.612450 0.9669 

 

 
Figure 5.3 Linear correlation between the coefficients of Eq. 5.1. 

It is also apparent from Fig. 5.2 that A and B are not independent parameters; 

instead, it appears that they are highly correlated and are, in fact, displaced mirror images 



118 

 

 

 

of each other. Fig. 5.3 shows the correlation between A and B, which is linear. It can be 

represented by Eq. 5.3: 

 21 975479 2 411050 1. .B A R                                          (5.3) 

Eq. 5.3 can be substituted into Eq. 5.1; thus, simplifying the model even further as 

shown in Eq. 5.4: 

pc

BX

1 975479 2 411050. .
ac

A
a r

 
   

 
                                    (5.4) 

Now, Eq. 5.4 allows for the prediction of the perovskite trigonality, c/a, using only 

a single coefficient, A. This coefficient can now be easily calculated using Eq. 5.2 and the 

coefficients of Table 5.4 as: 

 5 4 3 2 80 279599 1 428203 2 917000 2 977727 1 519272 0 309941 10. . . . . .A t t t t t           

(5.5) 

Interestingly, perovskites with R3c symmetry tend to exhibit c/a values greater than 

6 , which is beyond the range of Eqs. 5.4-5.5. Thus, another general model was developed 

to describe the perovskite trigonality for these compounds. 
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Figure 5.4 Quadratic fit describing c/a vs. apc(Exptl.)/rBX(Exptl.) for the 31 R3c 

trigonal perovskites 

Fig. 5.4 shows that the trigonality for all 31 R3c perovskites can be represented by 

the same general quadratic function (Eq. 5.6) in terms of the ratio of the experimental 

pseudocubic lattice constant, apc(Exptl.), to the experimental B-X bond length, rB-X(Exptl.). 

 
2

pc pc 2

BX BX

22 211002 87 942060 89 514066 0 9783. . . .
a ac

R
a r r

   
      

   
         (5.6) 

Table 5.5 shows the experimental data and the predicted trigonality for all 31 R3c 

trigonal perovskites using Eq. 5.6. Overall, this model is very accurate. The average error 

is 0.2380%. Only the LiReO3 composition produces a rather large error of 1.5779%. 

Table 5.6 shows the experimental and predicted lattice constants for all 31 R3c 

trigonal perovskites. The average error for a and c are 0.0795% and 0.1587%, respectively. 

Again, the LiReO3 composition produces the most error (0.5316% for a and 1.0547% for 

c). One of the reasons LiReO3 produces the largest error may be due to the fact that ReO3 
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is actually a perovskite[18] with a completely vacant A-site. Thus, the Li ions may not 

necessarily occupy the A-site in these perovskites. It is entirely possible that some of the 

Li ions may occupy interstitial sites. Another possibility is that there are some Li vacancies 

in this perovskite because Li tends to volatilize at the high temperatures associated with 

the calcination and sintering processes if care is not taken to mitigate this volatilization. A 

third possibility is that displacive disorder is occurring in this perovskite. In any of these 

cases, the degree of trigonality will be significantly affected and cause large errors in the 

prediction of the trigonality and lattice constants. 
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Eq. 5.7 describes the mathematical relationship between the degree of trigonality, 

c/a, and the pseudocubic lattice constant, apc: 

3

pc
4 3

ac

a a

 
  

 
                                                     (5.7) 

From this expression, it can be shown that the trigonal-to-cubic transition occurs at 

6/c a , where the structure is considered trigonal if 6/c a . It should also be noted 

that using Eqs. 5.4-5.7 to predict lattice constants for the cubic perovskite SrTiO3 (t′ = 1, 

apc/rBX = 2), the model predicts c/a = 2.4561, which is very near the experimental value of 

2.4495 (0.270% error). Thus, the model can accurately predict the composition at which a 

trigonal-to-cubic transition occurs. The trigonal lattice constants can now be derived using 

Eqs. 5.4-5.7. Fig. 5.6 and Tables 5.2 and 5.6 show the predicted trigonal lattice constants 

using this model and demonstrate that the model is an effective predictive tool at least 

within the ranges 5.3594 ≤ a ≤ 5.5776 and 12.9828 ≤ c ≤ 13.5470 provided that 2.406 ≤ 

c/a ≤ 2.4495 for 3R c  symmetry; and 5.0918 ≤ a ≤ 5.8461 and 13.4030 ≤ c ≤ 14.4182 

provided that 2.4495 ≤ c/a ≤ 2.6913 for R3c symmetry. 
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Figure 5.5 Predicted c/a values of trigonally distorted perovskites using Eqs. 5.4-

5.6. 

Fig. 5.5 shows the predicted trigonality using the general models. The accuracy of 

the models appears to be very good for all 88 trigonally distorted perovskites analyzed in 

this work. It shows that the models can be applied even to compositions that are severely 

distorted on either side of the cubic transition. There appears to be an outlier at c/a ~ 2.42, 

which corresponds to La0.67Pb0.33MnO3
[19]. The underestimation of the trigonality in this 

case may be due to excessive lead volatilization during sintering, especially as this sample 

was sintered five times in an open environment, likely causing the formation of oxygen 

vacancies which would be virtually undetectable via XRD. The reasons for the outlier at 

c/a ~ 2.63, which corresponds to LiReO3; have already been addressed. 
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Figure 5.6 Predicted trigonal lattice constants of all 88 trigonally distorted 

perovskites. 

It is also useful to relate trigonality to polarization, which is the intrinsic component 

of the relative permittivity - the key to unlocking the ferroelectric, piezoelectric, and 

pyroelectric properties of a material. The dipole moment of a material arises from the 

separation of the two oppositely charged sublattices. There is obviously no net dipole 

moment for perovskites in the centrosymmetric space group 3R c , in which the charge 

centers of the two sublattices coincide. On the other hand, space group R3c is non-

centrosymmetric; thus, perovskites with R3c symmetry can have non-zero dipole moments. 

Table 5.7 shows the derived polarizations for 31 R3c trigonal perovskites which are the 

direct result of their trigonal distortion. Fig. 5.7 shows that there are three distinct trends in 

polarization which coincide with A1+B5+O3, A2+B4+O3, and A3+B3+O3 structures. This 

distinction between perovskites with larger charge differences between the A and B cations 

and ones with equally charged A and B cations makes sense because the charge centers for 

the cation sublattices will be different depending upon the ionic charges of the A- and B-

site cations. The trends in each of these cases are described by Eqs. 5.8-5.10.
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Figure 5.7 Polarization of the 31 perovskites in space group R3c of the form (a) 

A1+B5+O3, (b) A2+B4+O3, and (c) A3+B3+O3 as a function of c/a. (d) Calculated vs. 

experimental polarization values for all 31 R3c perovskites. All experimental data 

are from neutron diffraction. 

Fig. 5.7 shows that all three polarization trends can be described by the same 

general equation: 

2

μC
P tan 6 ,

cm

c
G H K

a

    
         

                                     (5.8) 

where   6/H c a   is in radians. It should be noted that the P = 0 data point at 6c a/  

was assumed in all three cases because the polarization will be zero when the structure 

transitions from trigonal to the centrosymmetric cubic space group 3Pm m . Table 5.8 lists 

the coefficients for each series. 
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Table 5.8 Coefficients of Eq. 5.8. 

Series G H K R2 

A+B5+O3 -4.515086 -0.821300 -19.295296 0.9675 

A2+B4+O3 18.720362 1.683688 178.895349 0.9749 

A3+B3+O3 18.581938 8.123501 108.231639 0.9469 

 

 
Figure 5.8 Coefficients of Eq. 5.8 as functions of the charge difference between 

the A- and B-site cations, Δq. 

Fig. 5.8 shows that all three coefficients of Eq. 5.8 can be represented by the same 

expression as a function of the charge difference between the A- and B-site species, Δq: 

   sin 0 8 cos 0 45. .Coeff M q Q q                                               (5.9) 

where Coeff = G, H, or K. Table 5.9 shows the coefficients of Eq. 5.9. 
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Table 5.9 Coefficients of Eq. 5.9. 

Coefficient M Q R2 

G 7.179977 18.558904 1.0000 

H -3.374372 8.058375 0.9842 

K 112.350064 106.062864 0.9933 

Although Fig. 5.8 clearly shows that G, H, and K are not correlated, the coefficients 

of those fits (M and Q) are, in fact, highly correlated, as shown in Fig. 5.9, and can be 

represented by Eq. 5.10. 

 
Figure 5.9 Correlation between the coefficients of Eq. 5.9. 

Fig. 5.9 clearly shows that M and Q can be represented in terms of one another as 

illustrated by Eq. 5.10: 

0 840861 11 669807. .Q M                                               (5.10) 

Thus, Eq. 5.9 can be simplified as follows: 

      sin 0 8 0 840861cos 0 45 11 669807cos 0 45. . . . .Coeff M q q q            (5.11) 
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Although Bi0.9Pb0.1FeO3 and Bi0.9Ca0.1FeO3 are not exactly A3+B3+O3 type 

perovskites, their ionic charges are very close; hence, they fit the trend very well. It should 

also be noted that all the data used for deriving the polarization trends are from neutron 

diffraction experiments because, unlike XRD, neutron diffraction is sensitive to oxygen 

positions. Thus, structural data derived from neutron diffraction experiments will provide 

the most accurate positions for the oxygen sublattice, which will allow for the polarization 

to be more accurately calculated from that structural data.  

5.4 Conclusion 

Using data mined from literature for several specific systems, general models were 

derived for the trigonality of perovskites in both 3R c  and R3c as a function of the ratio of 

pseudocubic lattice constant, apc, to B-X bond length, rBX. A major implication of these 

models is that they allow for the accurate prediction of trigonal lattice parameters in 

trigonally distorted perovskites. In addition, these models successfully predicted the 

trigonal-to-cubic phase transition at room temperature. It may even be possible to extend 

these models, in conjunction with other empirical models, to predict temperature-

dependent trigonal phase transitions in perovskites (e.g., TC). Moreover, a general model 

has been developed for predicting the polarization in trigonal perovskites of the forms 

A1+B5+O3, A2+B4+O3, and A3+B3+O3 in R3c. This model has major implications in the 

electroceramics industry because it allows for the accurate prediction of intrinsic 

polarization using only the degree of trigonality, c/a, which itself can be accurately 

predicted using the models presented here. 
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6.1 Introduction 

Correlative models describing composition-structure-property relationships are the 

keys to unlocking the full potential of electroceramics. Perovskite ceramics display a larger 

range of properties (e.g., superconductivity, piezoelectricity, ferromagnetism, 

pyroelectricity, etc.) than do ceramics of almost any other structure type[1]. Within the 

perovskite structure, many types of structural distortions which cause deviations from the 

aristotypical cubic structure in space group 3Pm m  are possible. They can also be 

deleterious to certain properties (e.g., dielectric properties), yet beneficial for others (e.g., 

thermoelectric properties[2]).  

One of the structural effects that oxygen vacancies can exhibit in perovskites is 

ordering[3,4]. At low concentrations they exist as isolated point defects; however, it has been 

reported[3,4] that as their concentration increases, they can begin to arrange themselves into 

linear chains along [101]pc directions. When the concentration gets sufficiently high, those 

chains begin to merge, which eventually results in alternating (101)pc planes of oxygen 

vacancies; therefore, a perovskite with a high concentration of oxygen vacancies may 

exhibit layered type ordering amongst the (101)pc planes.[3.4] 

Oxygen vacancies also play an important role in certain electroceramic properties. 

For instance, an increase in the number of oxygen vacancies can lead to an increase in the 

spontaneous normal-to-relaxor ferroelectric phase transition[5,6]. Thermoelectric properties 

can also be improved by an increase in the concentration of oxygen vacancies[2]. It was 

reported[2] that such vacancies cause the carrier mobility to increase whilst simultaneously 

causing a decrease in the thermal conductivity. This effect was attributed[7] to the oxygen 

vacancies effectively suppressing heat transfer within the material, inherently causing an 
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increase in the thermoelectricity. It was also observed[2] that increasing the oxygen-vacancy 

concentration leads to an increase in the electrical conductivity without significantly 

effecting the Seebeck coefficient in the oxygen-deficient SrTiO3±δ perovskite system. The 

increase in conductivity is particularly useful in organic-inorganic halide perovskite solar 

cells[8] because it causes an improvement in the power conversion efficiency. 

Oxygen vacancies play an instrumental role in solid-oxide fuel cells (SOFCs). For 

example, SrTi1-xFexO3-x/2+δ and SrSn1-xFexO3-x/2+δ are both known[9] to be good cathode 

materials in SOFCs because the oxygen vacancies create pathways for the ions to more 

easily diffuse, which leads to an increase in the ionic conduction. Oxygen vacancies in 

La0.6Sr0.4CoO3-δ SOFC cathodes reportedly[10] act as immoblizers in lithium-sulfur 

batteries. The oxygen vacancies increase the bond strength between polysulfide 

compounds and the La0.6Sr0.4CoO3-δ, which effectively traps the sulfur and prevents it from 

migrating out of the cathode. Oxygen-deficient perovskites can also be used as catalysts. 

In particular, several oxygen-deficient perovskites were studied[11] for use as catalysts in 

the decomposition of NO gas. It was observed that two NO molecules would be 

simultaneously adsorbed onto two neighboring oxygen vacancies, resulting in the 

activation of the two nitrogen atoms, which then bond with each other to form N2 gas. The 

leftover oxygen atoms would then bond with each other to form O2 gas. 

In addition, oxygen vacancies play an important role in perovskite memory cells. 

In particular, oxygen vacancies in single crystal SrTiO3 substrates with graphene 

nanoribbon (GNR) electrodes have been linked[12] to bipolar resistive switching properties 

in resistive random access memory (RRAM) devices. The mechanism for this process has 



139 

 

 

 

been attributed to oxygen vacancies on the surface of the SrTiO3 substrate creating 

conduction pathways for the electrons. 

In A-site or B-site doped perovskite ferrites (e.g., 3 2

1 3A A FeOx x

 


, 2 4

1 3A B Fe Ox x

 


, 

etc.), charge balancing occurs either via oxygen vacancies and/or an increase in iron 

valence from Fe3+ to Fe4+  according to: 

    2

3 2 3 4

1 1 3
A A Fe Fe O   x yx x y y x y

   

  
( )  or  2+ 4 3 4

1 1 3 1A B Fe Fe Ox y y x yx

  

   
 
  ( )  

Beausoleil et al.[13] have analyzed the effects of divalent A-site cation doping in 

lanthanum ferrite (LaFeO3). Their results were compared to the values predicted by an 

empirical model developed by Ubic et al.[14] While the errors (-0.746% to -0.445%) were 

all well within the expected accuracy of the model, it was observed that they were all 

negative. Thus, the experimental values were consistently larger than the values predicted 

by the model. As Fe4+ is even smaller than Fe3+, which would result in a volume shrinkage, 

this result supports the hypothesis that oxygen vacancies were the principle cause of the 

underestimation; however, for Ca-doped LaFeO3 they reported only the oxidation of Fe3+ 

to Fe4+. For Sr- or Ba-substituted LaFeO3 they conjectured that charge compensation was 

accomplished via both the oxidation of Fe3+ to Fe4+ and the formation of oxygen vacancies. 

Recently, it was noted[15] that as the oxygen vacancy content in SrFeO3-δ (SFO) thin 

films increased above about 17% (i.e. SrFeO2.5) the structure changed from perovskite to 

brownmillerite. Interestingly, as the oxygen content decreased, the tetragonality was 

observed to increase causing a net unit-cell volume increase. In fact, this trend is 

corroborated by another study[16] using neutron diffraction, and it is also seen in several 

other oxygen-deficient perovskite systems like BaSn1-xYxO3-x/2
[17] (BSYO) and BaZr1-

xDyxO3-x/2
[18] (BZDO); however, this trend of unit cell volume expansion with increasing 
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oxygen vacancy concentration is by no means universal. In fact, the opposite trend is 

observed in the NaNb1-xTixO3-x/2
[19] (NNTO) and BaCe1-xYxO3-x/2

[20] (BCYO) systems. 

Recently, an empirical model was developed[21] which predicts the lattice 

parameters in oxygen-deficient perovskites. Unlike most predictive models that currently 

exist, this model accounts for the sizes of the cations and anions in their correct 

coordination environments (XII, VI, and II for A-, B-, and X-site species, respectively). 

This model is also accurate with an average error of 0.83% when predicting the lattice 

parameters of oxygen-deficient perovskites; however, it has some significant drawbacks. 

For instance, it relies on a combination of experimental lattice constants as well as lattice 

constants from theoretical perovskite compounds calculated via density functional theory 

(DFT). Additionally, this model was not derived from a large range of compositions. The 

majority of the compositions used in its derivation exist in the (La1-xSrx)(Ga1-yMgy)O3-(x+y)/2 

(LSGMO) system, which means that it can only be applied with any degree of certainty to 

a narrow range of compositions. Thus, another empirical model is needed in order to 

effectively calculate the tolerance factor for a broader range of oxygen-deficient 

perovskites.  

In this work, eight compositions in the CaTi1-xFexO3-x/2 (CTFO) system and eleven 

compositions in the SrTi1-xFexO3-x/2 (STFO) were produced. An additional 32 oxygen-

deficient perovskite compositions were mined from literature, and correlative models were 

developed for each system. From these models, general models describing the effective 

vacancy size and bond deformation as functions of t' were developed. Models were also 

developed for t' as a function of the ideal anion size. From these system-specific models, a 

general model was then developed. 
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6.2 Materials and Methods 

Eight compositions in the system Ca(Ti1-xFex)O3-x/2 (x = 0.05, 0.15, 0.2, 0.25, 0.30, 

0.35, 0.40, and 0.45) and eleven compositions in the system Sr(Ti1-xFex)O3-x/2 (x = 0, 0.025, 

0.05, 0.10, 0.15, 0.2, 0.25, 0.30, 0.35, 0.40, and 0.45) were synthesized via the solid-state 

mixed-oxide route. Stoichiometric amounts of SrCO3 (99.9%, Sigma-Aldrich, St. Louis, 

MO), CaCO3 (99.9%, Sigma-Aldrich, St. Louis, MO), TiO2 (99.9%, Sigma-Aldrich, St. 

Louis, MO), and Fe2O3 (99%, Merck, Darmstadt, Germany) were ball-milled in a planetary 

mill with yttria-stabilized ZrO2 (YSZ) media using ethanol in a YSZ jar at 250 revolutions 

per minute for 30 minutes. Powders were then dried overnight in an atmospheric drying 

oven at ~75°C until all the ethanol had evaporated. The dried powders were then uniaxially 

pressed into pellets which were then calcined at 1100°C in air for twelve hours in an open 

boat. After calcination, the pellets were pulverized using an agate mortar and pestle and 

ball-milled again in a planetary mill with YSZ media using ethanol in a YSZ jar at 250 

revolutions per minute for 30 minutes. The mixture was then dried overnight in an 

atmospheric drying oven at ~75°C until all the ethanol had evaporated. Again, the dried 

powders were uniaxially pressed into pellets before being sintered at 1400°C for twelve 

hours in air, after which the samples were allowed to cool to room temperature slowly 

inside the furnace.  

XRD measurements were performed on the sintered pellets in a diffractometer 

(Empyrean, PANalytical, Malvern, UK) operating with convergent-beam geometry and 

CuKα radiation. Le Bail refinements were performed on the XRD patterns using GSAS 

II[22] (Argonne National Laboratory, IL). The background was fitted with a third-order 
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Chebyshev polynomial. CaTi1-xFexO3-x/2 compositions were refined with orthorhombic and 

tetragonal symmetry, and SrTi1-xFexO3-x/2 compositions were refined with cubic symmetry. 

6.3 Results and Discussion 

Figs. 6.1 and 6.2 show the X-ray diffraction (XRD) patterns for the CaTi1-xFexO3-

x/2 (CTFO) and SrTi1-xFexO3-x./2 (STFO) systems, respectively. The lack of secondary-phase 

peaks indicate that all the compositions in both series have successfully been produced 

with complete phase purity. Fig. 6.1 shows that there is a structural transition from 

orthorhombic to tetragonal in the CTFO system between 0.25 ≤ x ≤ 0.30 as indicated[23] by 

the reversal in the asymmetry of the 211pc doublet. Fig. 6.2 shows that all eleven 

compositions produced in the STFO series exhibit cubic symmetry. 

Tables 6.1 and 6.2 show the results of the Le Bail refinements for all eight CTFO 

and eleven STFO compositions that were produced. Table 6.1 further illustrates the phase 

transition from orthorhombic to tetragonal near the x = 0.25 composition in the CTFO 

system. The pseudocubic lattice constant in this system systematically increases with 

increasing oxygen vacancy concentration. Interestingly, the refinement results in Table 6.2 

show that the cubic lattice constant for STFO initially increases slightly upon doping with 

Fe3+, which may be due to the fact that Fe3+ (0.645 Å) is larger than Ti4+ (0.605 Å), before 

gradually decreasing as the oxygen vacancy concentration continues to increase. The fact 

that the trend in pseudocubic lattice constant versus oxygen-vacancy concentration is 

different in these two systems may imply that the size of the A-site species plays an 

important role in how the structure distorts as a function of oxygen-vacancy concentration. 

It may also be possible that the anion vacancies order to some extent, which may cause the 

unit cell volume to increase or decrease with respect to the disordered structure similar to 
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the effects of A-site and B-site cation ordering; however, since the concentration of 

vacancies in these perovskites are all below 8%, the likelihood that the vacancies become 

ordered to any degree is very low. Individual vacancies would, on average, be far too well 

separated to interact, and even if some degree of order did exist, the scale of the ordering 

would be negligible. Thus, the potential effects on these structures due to vacancy ordering 

will be very minimal at best. 

Additionally, CaFeO3 is a well-known perovskite with Fe4+ occurring on the B-site 

at room temperature; although, charge disproportionation of the iron to Fe3+ and Fe5+ has 

also been observed[24] in this perovskite below room temperature; however, CaFeO3 has 

only been synthesized[25] under a high-oxygen pressure atmosphere. Thus, the fact that Fe4+ 

exists in these perovskites is due to the high-pressure synthesis procedure. Synthesis of 

oxide materials under normal atmospheric conditions usually results in iron forming with 

either a 2+ or 3+ valence state; therefore, as the starting material included Fe2O3, only Fe3+ 

was assumed to be present in the CaTi1-xFexO3-x/2 and SrTi1-xFexO3-x/2 perovskites.  
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Figure 6.1 XRD patterns of CaTi1-xFexO3-x/2 (x=0.05, 0.15, 0.20, 0.25, 0.30, 0.35, 

0.40, and 0.45). All patterns are indexed according to the pseudocubic unit cell. 
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Figure 6.2 XRD patterns of SrTi1-xFexO3-x/2 (x=0, 0.025, 0.05, 0.10, 0.15, 0.20, 

0.25, 0.30, 0.35, 0.40, and 0.45). All patterns are indexed with cubic symmetry. 
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Table 6.1 CaTi1-xFexO3-x/2 refinement results 

Composition Crystal System a (Å) b (Å) c (Å) Z apc(exptl) (Å) 

x = 0.05 Orthorhombic 5.3913 5.4391 7.6494 4 3.8276 

x = 0.15 Orthorhombic 5.3964 5.4372 7.6530 4 3.8290 

x = 0.20 Orthorhombic 5.3978 5.4364 7.6562 4 3.8297 

x = 0.25 Tetragonal 3.8307 3.8307 3.8324 1 3.8314 

x = 0.30 Tetragonal 3.8331 3.8331 3.8298 1 3.8320 

x = 0.35 Tetragonal 3.8333 3.8333 3.8345 1 3.8337 

x = 0.40 Tetragonal 3.8357 3.8357 3.8337 1 3.8350 

x = 0.45 Tetragonal 3.8364 3.8364 3.8420 1 3.8383 

 

Table 6.2 SrTi1-xFexO3-x/2 refinement results 

Composition Crystal System a (Å) b (Å) c (Å) Z apc(exptl) (Å) 

x = 0 Cubic 3.9088 3.9088 3.9088 1 3.9088 

x = 0.025 Cubic 3.9085 3.9085 3.9085 1 3.9085 

x = 0.05 Cubic 3.9115 3.9115 3.9115 1 3.9115 

x = 0.10 Cubic 3.9098 3.9098 3.9098 1 3.9098 

x = 0.15 Cubic 3.9087 3.9087 3.9087 1 3.9087 

x = 0.20 Cubic 3.9089 3.9089 3.9089 1 3.9089 

x = 0.25 Cubic 3.9072 3.9072 3.9072 1 3.9072 

x = 0.30 Cubic 3.9066 3.9066 3.9066 1 3.9066 

x = 0.35 Cubic 3.9041 3.9041 3.9041 1 3.9041 

x = 0.40 Cubic 3.9031 3.9031 3.9031 1 3.9031 

x = 0.45 Cubic 3.8980 3.8980 3.8980 1 3.8980 

 

To develop a workable model for the effect of oxygen vacancies in perovskites, 

several reasonable assumptions are necessary. The first assumption is that increasing the 

number of oxygen vacancies does not affect the B-site size, rB.  The second assumption is 

that the oxygen anions are in contact with both the A-site and B-site cations. Under these 

conditions, the effective size of the X-site anion, rX, is represented by the difference 

between the B-site cation and half the pseudocubic lattice constant, apc: 

 
pc

BX
2

exptl

a
r r                                                                 (6.1) 

where rB is the Shannon[26] size of the B-site cation in six-fold coordination. 
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Figure 6.3 Non-ideality of the effective anion sizes (X-site) for all 50 oxygen-

deficient perovksites in this work. 

The ratio of rX (Eq. 6.1) to rX(id) can be expressed as a function of t′ (Eq. 1.9) as 

shown in Fig. 6.3. This relationship is described mathematically by Eq. 6.2: 

 

 2X

X id

0 544008 0 453751 0 9987. . .
r

t R
r

                                   (6.2) 

As expected, rX = rX(id) only when t′ = 1. It should be noted that this expression is 

very similar to that derived previously by Ubic et al.[27] for ABX3 perovskites in general; 

however, that model was not developed using oxygen-deficient perovskites. Thus, 

although Eq. 6.2 is very similar to Eq. 12 in the previous work,[27] it is slightly different, 

presumably because it accounts for the effects of oxygen vacancies in the perovskite 

structure. 
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Now, the anion size is composed of three components: the ideal (Shannon) size, the 

deviation from ideality caused by bond deformation (including the effect of partial 

covalency) when t′ ≠ 1, and the effect of vacancies: 

        X VX id 0 X X id 0
1

6 6
x exptl x

x x
r r r r r

 

 
     
 

                               (6.3) 

It should be noted again that the term "bond deformation" in this work is used to 

describe the difference between the actual ionic size and the Shannon size.  It includes the 

effect of partial covalency and is non-zero even for untilted perovskites.  The "deformation" 

implies stretching or compression of bonds rather than angular distortions. In Eq. 6.3 the 

three terms on the right-hand side represent, respectively, the ideal (Shannon) size, bond 

deformation, and the effect of vacancies.  This equation can be re-written more succinctly 

as: 

         VX X id 0 X id 0
6 6 Bexptl x x

r r xr xr D
 

                                 (6.4) 

For convenience, the left-hand side of this equation can be considered a size 

parameter, L. So, by graphing L vs x, as in Fig. 6.4, one obtains a line in which the slope 

is rV and the intercept is 6DB. 
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Figure 6.4 The size parameter, L, as a function of the composition, x. 

Table 6.3 shows the coefficients of Eq. 6.4 and goodness of fits for all seven 

oxygen-deficient perovskite systems. 

Table 6.3 Coefficients and goodness of fit for the linear trends in figure 6.4 

Composition t′(x=0) (Eq. 1.9) rV DB R2 

NaTi1-xNbxO3-x/2 0.8540 1.4524 -0.1084 0.9988 

CaTi1-xFexO3-x/2 0.9444 1.1850 -0.0424 0.9999 

(La1-xSrx)(Ga1-yMgy)O3-(x+y)/2 0.9705 1.1156 -0.0256 0.9983 

BaCe1-xYxO3-x/2 0.9803 1.1046 -0.0211 0.9988 

SrTi1-xFexO3-x/2 1.0041 1.0463 0.0006 0.9992 

BaSn1-xYxO3-x/2 1.0311 0.9082 0.0165 0.9924 

BaZr1-xDyxO3-x/2 1.0382 0.7680 0.0240 0.9954 
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Figure 6.5 The effective vacancy size, rV, and bond deformation, DB, as functions 

of the modified tolerance factor at x = 0. 

Fig. 6.5a shows that the vacancy size, rV, can be represented by a third order 

polynomial as a function of the modified tolerance factor: 

     
3 2 2

V 0 0 0305 775864 863 428549 813 609546 257 011523 0 9860. . . . .r t t t R      

(6.5) 

where t′ is calculated from Eq. 1.9 using apc(exptl.) at the x = 0 composition for each system 

(i.e. the composition with no extrinsic vacancies). Fig. 6.5b shows that the bond 

deformation, DB, is a linear function of the modified tolerance factor: 

 2

00 712022 0 716288 0 9986. . .BD t R                                    (6.6) 

Thus, the effective anion-site size can now be predicted using Eq. 6.7: 

   X V OX id
VBr r D r                                                              (6.7) 

where rX(id) is calculated from the Shannon tables[26] and stoichiometry, DB is obtained from 

Eq. 6.6, rV from Eq. 6.5, and [VO] = x/6 is the effective oxygen vacancy concentration. 

Unfortunately, in order to invoke this equation, it is first necessary to calculate t′, which 

would seem to require a foreknowledge of apc (Eq. 1.9). In order to circumvent this 

problem, a relationship between t′ and rX(id) was established (Fig. 6.6). 
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Figure 6.6 The modified tolerance factor, t′ (Eq. 1.9), as a function of the ideal 

Shannon[25] anion size, rX(id). 

Fig. 6.6 shows that the relationship between the modified tolerance factor, t′, and 

the ideal Shannon[26] anion size, rX(id), for all 7 oxygen-deficient perovskite systems can be 

represented by the same linear expression: 

X(id)t Ar B                                                               (6.8) 

where rX(id) is the effective Shannon[26] size of the X-site species in two-fold coordination. 

For the purpose of finding an appropriate function to find a trend for A and B, the 

function G was defined as: 

    

     
A 0 X id 0

1 3

B 0 X id 0
2

/

x x

x x

r r
G

r r

 

 






                                                      (6.9) 
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Figure 6.7 Coefficients of Eq. 6.8. 

Fig. 6.7 shows that the relationships between the coefficients (A and B) of Eq. 6.8 

as functions of G (Eq. 6.9) can be represented by Eqs. 6.10 and 6.11: 

   

   

3 2

2

929 413997 4433 65433

7043 016170 3724 521276 0 9138

. .

. . .

A G G

G R

 

  
                        (6.10) 

   

   

3 2

2

1527 992999 7286 513754

11572 422503 6118 697145 0 9209

. .

. . .

B G G

G R

 

  
                     (6.11) 

 
Figure 6.8 Correlation between the coefficients of Eq. 6.8. 

Fig. 6.8 shows that the coefficients of Eq. 6.8 are not independent parameters but 

are in fact highly linearly correlated, as shown by Eq. 6.12: 
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 21 179372 1 173984 0 9938. . .B A R                                     (6.12) 

Thus, Eq. 6.8 can be simplified as follows: 

  X id
1 179372 1 173984. .t A r                                               (6.13) 

Tables 6.4, 6.6, 6.8, 6.10, 6.12, 6.14, and 6.16 show the experimental and calculated 

tolerance factor, t′, and anion sizes, rX, using Eqs. 6.13 and 6.7 for all 7 oxygen-deficient 

perovskite systems. Additionally, tables 6.5, 6.7, 6.9, 6.11, 6.13, 6.15, and 6.17 show the 

experimental and calculated pseudocubic lattice constants for all 7 oxygen-deficient 

perovskite systems. The values for apc in Tables 6.5, 6.7, 6.9, 6.11, 6.13, 6.15, and 6.17 are 

calculated by first predicting t′ using Eq. 6.13, then plugging that value into Eq. 1.19. 

Similarly, pca  and pca  are calculated by first predicting t′ using Eq. 6.13, then using that 

value to predict rX using Eqs. 6.5-6.7. This value of rX is used along with the ideal Shannon 

size of the B-site cation to predict pca  using Eq. 1.5, whereas pca  is calculated from Eq. 

1.4 using this value of rX but the value of rA used in Eq. 1.4 is determined from another 

empirical model (Eq. 6.14) developed by Ubic et al.[27]:  

        

       

A A

A A

2

A A id 0 V 0 0 V 0

2

A0 V 0 0 V 0

7 4801 12 3139 4 8257

20 8983 36 9417 14 4771 V

. . .

. . .

r r t t

t t

 

 

    

  

                           (6.14) 

where 
  A0 V 0

t


 is the Goldschmidt the tolerance factor corresponding to the composition in 

a given  2 3 4

1 3 2 3A A B Xx x

  

  system where x = 0 (with no extrinsic vacancies) and [VA] is the 

concentration of A-site vacancies. Thus, all three versions of the pseudocubic lattice 

constant can be predicted using only published ionic radii data. 
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It should be noted that while the model has been applied to all 7 oxygen-deficient 

systems, the model for t′ was derived using data from 2 4 3

1 3 2A B B O /x x x

  

 
 perovskites 

exclusively; thus, this model cannot necessarily be accurately applied to oxygen-deficient 

perovskite systems. In fact, when this model is applied to the NaNb1-xTixO3-x/2 (NNTO) 

system, which has the form 1 5 4

1 3 2A B B O /x x x

  

 
, the t′ and rX models produce very large errors; 

however, the model appears to be surprisingly accurate when applied to the La1-xSrxGa1-

yMgyO3-(x+y)/2 (LSGMO) system (0.3186% absolute average error for t′ and 0.2084% 

absolute average error for rX), which has the form  
3 2 3 2

1 1 3 2
A A B B O

/y y x x x y

   

    . This fact does 

not mean that the model is necessarily accurate for all perovskites of the type

3 3 2

1 3 2A B B O /x x x

  

 
. In order to fully explain this trend, correlative models would need to be 

developed for the 1 5 4

1 3 2A B B O /x x x

  

 
 and 3 3 2

1 3 2A B B O /x x x

  

 
 perovskite systems in addition to 

the models developed in this work for 2 4 3

1 3 2A B B O /x x x

  

 
 perovskites.  

These tables show that the model is very accurate overall with the smallest absolute 

relative errors coming from the CaTi1-xFexO3-x/2 system (0.0809% for t′ and 0.1593% for 

rX), and the largest errors coming from the BaZr1-xDyxO3-x/2 system (1.5039% for t′ and 

0.8132% for rX). The larger errors could possibly be due to the fact that these compositions 

were only analyzed[18] via X-ray diffraction, which may not be able to detect deviations 

from stoichiometry; however, deviations in oxygen vacancy concentrations in this system 

are unliklely because Zr and Dy generally have oxidation states of 4+ and 3+, respectively. 

Thus, the only way for oxygen occupancy to deviate from stoichiometry and still maintain 

charge neutrality would be for A-site vacancies to occur. Although X-ray diffraction can 

be used to detect A-site vacancies, the X-ray patterns from these samples were only 
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analyzed[18] via Le Bail, not Rietveld, refinements. For this reason, it is possible that A-site 

vacancies were present in these samples causing the oxygen vacancy concentration to be 

greater than the concentration reported.  
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Figure 6.9 Experimental pseudocubic lattice constants, apc(exptl.), versus the 

predicted pseudocubic lattice constants, apc (Eq. 1.19), for all 5 2+ 4+ 3+

1- 3- /2A B B Ox x x
 

oxygen-deficient perovskite systems. 

Fig. 6.9 shows the results of the predicted pseudocubic lattice constant, apc, by 

inserting the predicted t′ from Eq. 6.13 into Eq. 1.19. It clearly shows that this modeling 

technique can accurately predict the pseudocubic lattice constants within a very wide range 

(3.8246 ≤ apc ≤ 4.3990). Although the models for rV and DB were derived using the data 

from all 7 oxygen-deficient perovskite systems analyzed in this work, it should be noted 

that the modeling technique can so far only be applied reliably to 2 4 3

1 3 2A B B O /x x x

  

 
 

perovskites due to the fact that the predictive model for t′ was developed using only those 

types of perovskite systems. Thus, the models developed in this work cannot be applied to 

any other type of perovskite system with any degree of certainty. 

For this reason, the values for rX and apc in tables 6.18-6.20 were calculated with 

Eq. 6.7 using t′(exptl) instead of calculating t′ using Eq. 6.13. Tables 6.18-6.20 show the 
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results when this modeling technique is applied to LaFeO3, La0.9Ca0.1FeO3-δ, 

La0.9Sr0.1FeO3-δ, and La0.9Ba0.1FeO3-δ as produced by Beausoleil et al.[13] In particular, 

Table 6.18 shows the results when the model is applied to all four compositions where 

charge compensation is accounted for purely via oxygen vacancies. The results show that, 

while the error in apc might be acceptable, there are large errors in the predicted anion sizes, 

rX. Table 6.19 shows the results assuming charge compensation purely by an increase in 

the iron oxidation state from Fe3+ to Fe4+. In this case the errors in both apc and rX look 

acceptable, but even better results can be obtained by allowing for both Fe3+ oxidation and 

oxygen vacancies as shown in Table 6.20. Indeed, the error in rX for La0.9Ca0.1FeO3- δ, 

La0.9Sr0.1FeO3- δ, and La0.9Ba0.1FeO3- δ can effectively be reduced to zero if there are some 

anion vacancies in addition to some Fe4+ present in each composition. The errors for pure 

LaFeO3 can also be reduced to zero by allowing for a La3+ vacancy concentration of 0.2% 

and a charge-balancing amount of oxygen vacancies (0.1%). 
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These results are in general agreement with the conclusions of Beausoleil et al.[13], 

who suggested that both oxygen vacancies and iron oxidation (to Fe4+) occur in Sr- or Ba- 

doped lanthanum ferrites; however, where they found only iron oxidation in Ca-doped 

lanthanum ferrite, this model shows that there may also be a small concentration (~0.04%) 

of oxygen vacancies in this composition. Such a small concentration of vacancies would 

be difficult to detect via x-ray or neutron diffraction. Similarly, the very small 

concentration of A-site vacancies (0.2%) in LaFeO3 would be difficult to demonstrate 

experimentally. 

6.4 Conclusions 

Eight compositions within the CaTi1-xFexO3-x/2 system and eleven compositions 

within the SrTi1-xFexO3-x/2 system were successfully synthesized, and their respective XRD 

patterns show that all compositions are single-phase. Data corresponding to compositions 

in five other homologous series were also analyzed, and system-specific models for rV and 

DB were developed for all seven series. Based upon these system-specific models, general 

models were developed which allow for the accurate prediction of the vacancy size and the 

bond deformation in oxygen-deficient perovskites. Furthermore, five system-specific 

models were developed which describe the modified tolerance factor, t′, as a function of 

the ideal anion size, rX(id), in 2 4 3

1 3 2A B B O /x x x

  

 
 perovskites. A general model was then 

developed based upon these specific ones. Results also suggest that both oxygen vacancies 

and Fe3+ oxidation to Fe4+ occur in La0.9M0.1FeO3-δ (M=Ca, Sr, Ba) and that La vacancies 

probably occur with oxygen vacancies in pure LaFeO3. A major implication of this 

modeling technique is that it allows for the accurate prediction of the tolerance factor in 
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oxygen-deficient perovskites, which in turn allows for the accurate prediction of the 

effective anion size and pseudocubic lattice constants in oxygen-deficient perovskites.  
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CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 

7.1 Concluding Remarks 

The correlative modeling techniques presented in this work significantly impact the 

electroceramics industry in that they allow for the accurate prediction of several structural 

distortions (e.g., trigonal as well as those caused by layered A-site cation ordering, rock 

salt B-site cation ordering, and oxygen vacancies) in perovskite electroceramics. They can 

also be used in some cases to link structural aspects (e.g, trigonal distortion) to properties 

(e.g., polarization). These models have the potential to save researchers significant amounts 

of time and save industry significant amounts of money developing new perovskite 

materials.  

Chapter one described perovskites generally. It was observed that perovskites 

possess more functional properties than almost any other type of crystal structure due to 

the various structural distortions that can occur within the perovskite structure. Correlative 

models based on empirical evidence which can predict these various structural distortions 

are very powerful tools indeed, yet few models currently exist outside this work for 

perovskites with A-site cation ordering, B-site cation ordering, trigonality, or oxygen 

vacancies. This knowledge gap was filled by developing predictive models for each of 

these structural distortions based entirely on structural data from compositions produced in 

this work and from structural data mined from published scientific literature. 

Chapter two investigated the effects of layered A-site ordering on the perovskite 

structure. The structural effect of A-site ordering was studied in the (NayLi1-y)(1-



174 

 

 

3x)/2La(1+x)/2TiO3 (NLLT) system. 15 compositions in the NLLT system were synthesized 

using a conventional solid-state mixed-oxide method, and structural parameters were 

determined from X-ray diffraction patterns. X-ray diffraction shows evidence of long-

range ordering at higher x values, but electron-diffraction shows that some degree of order 

exists for all compositions. It was observed that this ordering causes an increase in the unit 

cell volume as compared to the disordered state. A general model was developed which 

effectively accounts for this volume expansion, which allows for the accurate prediction of 

the degree of ordering in layered A-site ordered perovskite titanates using only published 

ionic radii data.  

Chapter three explored the effects of 1:2 B-site ordering in the BaMg1/3Ta2/3O3 

(BMT) perovskite compound. BMT is first synthesized using a conventional solid-state 

mixed-oxide method in its disordered state, then subsequently annealed for up to 40 hours 

in order to gain insight into how the structure is distorting as the B-site is becoming more 

and more ordered. It was observed that as the degree of ordering increased, the unit cell 

volume decreased. It was also shown that the structure contracts within the ordering planes 

yet expands perpendicular to the ordering planes due to ionic demixing. A general model 

was developed for this volume shrinkage, which allows for the accurate prediction of the 

volume contraction resulting from 1:2 B-site ordering in BMT. It may even be possible to 

extend this model to predict the effects of 1:2 B-site ordering in general. 

Chapter four further investigated the effects of B-site ordering in 1:1 rock salt B-

site ordered perovskites. The rock salt B-site ordered NdZn0.5Ti0.5O3, SmZn0.5Ti0.5O3, 

(Nd0.5La0.5)(Zn0.5Ti0.5)O3, and (Nd0.5Gd0.5)(Zn0.5Ti0.5)O3 perovskites were synthesized 

using a conventional solid-state mixed-oxide route. Evidence of long-range range ordering 
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in all four compositions was shown via XRD. Additional data for rock salt B-site ordered 

structures was mined from literature, and system-specific models were initially developed 

for the B-site size adjustment factor, ΔrB. A general model was then developed for ΔrB 

which allows for the accurate prediction of the B-site ordering induced volume contraction 

in rock salt B-site ordered perovskites using only published ionic radii data. It may be 

possible to extend this model, in conjunction with the model for BMT, to predict this effect 

in 1:2 B-site ordered perovskites in general. 

Chapter five proposed predictive models for the effects of trigonlity in perovskites 

and the polarization in trigonally distorted perovskites in space group R3c. Data was mined 

from scientific literature, and general models were developed based upon this data. The 

general models developed for perovskite trigonality successfully predicted the trigonal-to-

cubic phase transition at room temperature, which means that it may be possible, with the 

use of additional correlative models, to extend these models to predict trigonal phase 

transitions which are temperature-dependent (e.g., TC). Additionally, a general model was 

developed for polarization in A1+B5+O3, A2+B4+O3, and A3+B3+O3 perovskites; which 

allows for the accurate prediction of the intrinsic polarization in R3c trigonal perovskites 

using only the degree of trigonality, c/a. 

Chapter six investigated the effect of oxygen vacancies on the perovskite structure. 

Eight CaTi1-xFexO3-x/2 compositions and eleven SrTi1-xFexO3-x/2 compositions were 

synthesized via a solid-state mixed-oxide method. Structural data for additional oxygen 

vacant perovskites were mined from literature. The effective oxygen vacancy size and the 

resultant bond deformation were modeled for each system. A general model was then 

developed for the modified tolerance factor, t′, which allows for the accurate prediction of 
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the tolerance factor in oxygen-deficient perovskites. In turn, this allows for the accurate 

prediction of the effective anion size and pseudocubic lattice constants in oxygen-deficient 

perovskites using only published ionic radii data. 
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7.2 Future Work 

7.2.1 Extend empirical model for A-site vacancies to perovskites with rA < 1.34 Å (Ca2+) 

The proposed system for this study is (Ca1-yMgy)1-3xLa2xTiO3 (0 ≤ x ≤ ⅓, 0 < y ≤ 1) 

because MgTiO3 forms in the ilmenite structure. Thus, doping Ca1-3xLa2xTiO3 with Mg2+ 

should effectively reduce rA until the perovskite structure destabilizes. An alternative could 

be MgSiO3, which is a perovskite, but there may be difficulties with eliminating amorphous 

phases during synthesis. 

7.2.2 Extend all models with thermal variations 

All of the empirical models derived in this work use characterization data that was 

collected at room temperature and ambient pressure. Ionic sizes will likely change 

significantly with temperature, but the degree of that change is not yet known for the 

systems analyzed in this work. So, it is necessary to first develop empirical models which 

describe the relationship between ionic size and temperature by determining the bond 

lengths from neutron or X-ray diffraction experiments. It may then be possible to extend 

the empirical models in this work to predict meaningful phase-transition temperatures such 

as the ferroelectric TC.  

7.2.3 Develop an empirical model for simultaneous A- and B-site ordering  

This work focuses on developing empirical models for A- and B-site ordering 

separately. However, it is desirable to have a single model that can account for both A- and 

B-site ordering. The proposed systems for this study are Na0.5Ln0.5Mg0.5W0.5O3 and 

K0.5Ln0.5Mg0.5W0.5O3 (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er) because these systems 

contain simultaneous layered ordering between the Na+, K+ and Ln3+ cations on the A-site 

and rock salt ordering between the Mg2+ and W6+ cations on the B-site. 



178 

 

 

7.2.4 Develop a correlative model for simultaneous vacancies on both A and X 

A model for oxygen vacancies was developed in this work; however, it is 

desirable to produce an empirical model that accounts for both A-site and X-site 

vacancies. The proposed system for this study is ((Ca,Sr,Ba)xLa1-xy)FeO3+x-3xy/2, (0 ≤ x ≤ 

1, 1 ≤ y ≤ 1/x) because A- and O-vacancies can be simultaneously engineered into the 

structure. Theoretically, 50% A-site and 33% oxygen vacancies can be achieved in this 

system, but an increase in iron valence from Fe3+ to Fe4+ may be possible at higher x and 

y values. Thus, X-ray photoelectron spectroscopy (XPS) should be performed to verify 

the valence state of the iron atoms. It should also be noted that at x = 0 or y = 1 only 

oxygen vacancies will be produced. Also, the same [VO] or [VA] may be achieved by 

using different compositions with different tolerance factors. 

7.2.5 Extend B-site ordering model to include 1:2 and 1:3 B-site ordered perovskites 

 A general correlative model was developed for 1:1 rock salt B-site ordering and a 

model was developed for 1:2 B-site ordered BaMg1/3Ta2/3O3 in this work. However, it 

would be useful to develop a general model for 1:2 and 1:3 B-site ordered perovskites as 

well. The proposed method for this study is a data mining approach due to the large 

quantity of published structural data that currently exists for these types of perovskites. 

This could potentially allow for the development of a single general empirical model 

which encompasses 1:1, 1:2, and 1:3 B-site ordered perovskites.  


