
LOW INTENSITY VIBRATIONS RESTORE NUCLEAR YAP LEVELS AND ACUTE 

YAP NUCLEAR SHUTTLING IN MESENCHYMAL STEM CELLS SUBJECTED TO 

SIMULATED MICROGRAVITY 

by 

Matt Thompson 

 

 

 

 

 

 

 

 

 

A thesis 

submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Mechanical Engineering 

Boise State University 

 

May 2020  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2020 

Matt Thompson 

ALL RIGHTS RESERVED  



BOISE STATE UNIVERSITY GRADUATE COLLEGE 

 

 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 

 

of the thesis submitted by 

 

 

Matt Thompson 

 

 

Thesis Title: Low Intensity Vibrations Restore Nuclear YAP Levels and Acute YAP 

Nuclear Shuttling in Mesenchymal Stem Cells Subjected to Simulated 

Microgravity 

 

Date of Final Oral Examination:  14 April 2020 

 

The following individuals read and discussed the thesis submitted by student Matt 

Thompson, and they evaluated his presentation and response to questions during the final 

oral examination.  They found that the student passed the final oral examination.  

 

Gunes Uzer, Ph.D.    Chair, Supervisory Committee 

 

Clare Fitzpatrick, Ph.D.   Member, Supervisory Committee 

 

Xinzhu Pu, Ph.D.    Member, Supervisory Committee 

 

The final reading approval of the thesis was granted by Gunes Uzer, Ph.D., Chair of the 

Supervisory Committee. The thesis was approved by the Graduate College. 

 



iv 

DEDICATION 

I would like dedicate this thesis to my father John Thompson and to my mother 

Lisa Thompson, for their unrelenting support of my studies and career building and for 

the work ethic which they demonstrated and passed on to me, without all of which I 

would not have accomplished this significant work.



v 

ACKNOWLEDGEMENTS 

The completion of this work necessitates that I acknowledge several individuals 

who contributed significantly to its success. First and foremost, the invaluable advice and 

feedback provided by Dr. Gunes Uzer for the research in this study was instrumental in 

its execution and exemplary for his role as my major advisor. Additionally, the support 

and commentary from my thesis committee members Dr. Clare Fitzpatrick and Dr. 

Xinzhu Pu contributed substantially to the quality of this document and the presentation 

of this research. Finally, sections of the methods utilized in this research were developed 

through diligent work by other research students including the image analysis MATLAB 

code process assembled by Kali Woods and the atomic force microscopy procedure 

developed by Josh Newberg. These were both crucial contributing components of this 

research which enabled me to accomplish the experiments described in this document.



vi 

ABSTRACT 

The bone deterioration that astronauts experience in microgravity environments is 

known to occur in response to the lack of gravity-based tissue stress. Mechanical forces 

are crucial to maintain healthy bone mass by regulating the function of bone-making 

osteoblasts as well as the proliferation and differentiation of their progenitors, 

mesenchymal stem cells (MSC) which replenish osteoblastic cells. Regulation of 

proliferative function of MSCs in response to mechanical force is in part controlled by 

the “mechanotransducer” protein YAP (Yes-associated protein) which is shuttled into the 

nucleus in response to mechanical challenge to induce gene expression necessary for cell 

proliferation. Our group had recently reported that altered gravity conditions under 

simulated microgravity (SMG) decreases proliferation of MSCs and that application of 

daily low intensity vibrations (LIV) during SMG reverses this effect on proliferation. 

While these findings suggest that LIV may be a promising countermeasure for altered 

loading, the specific SMG and LIV effects on YAP mechanosignaling are unknown. 

Therefore, here we tested the effects of SMG and daily LIV treatment on basal nuclear 

YAP levels as well as on the acute YAP nuclear entry in response to both mechanical and 

soluble factors in MSCs. MSCs subjected to 72h of SMG, despite decreased nuclear YAP 

levels across all groups, responded to both LIV and Lysophosphohaditic acid (LPA) 

treatments by increasing nuclear YAP levels within 6hrs by 49.52% and 87.34%, 

respectively. Additionally, daily LIV restored the basal decrease seen in SMG as well as 

nuclear YAP levels as well as restored in part the YAP nuclear entry response to 
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subsequently applied acute LIV and LPA treatments. These results show that rescue of 

basal YAP levels by LIV may explain previously found proliferative effects of MSCs 

under SMG and demonstrates that daily LIV is capable of alleviating the inhibition 

caused by SMG of YAP nuclear shuttling in response to subsequent mechanical and 

soluble challenge.
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CHAPTER ONE: INTRODUCTION 

1.1 Research Motivation: 

The deterioration of the skeletal and muscular systems of astronauts on long-term 

space missions in microgravity and the resulting dramatically increased risk of traumatic 

physical injury is theorized to be due to the reduction of mechanical loading on the body 

and all of its musculoskeletal organs [1][2]. This process of dangerous bone and muscle 

atrophy is a result of the human body’s mechanical adaptation mechanisms which 

remodel these tissues in order to maintain homeostasis. Various studies have begun to 

analyze the composition and characteristics of these mechanisms; however, their specific 

functional behavior remains incompletely understood. The identification and analysis of 

the components and their functions within these mechanisms may be instrumental in 

developing biomedical treatments capable of counteracting tissue atrophy like the 

conditions observed in long-term microgravity. The motivation for this research, 

therefore, was to reduce this knowledge gap by investigating the behavior of one of these 

signaling mechanisms. 

 

1.2 Specific Experimental Goal 

The YAP signaling pathway is one such signaling mechanism which has been 

identified and shown by studies to play a crucial role in the process of cell adaptation in 

response to mechanical stimulus [3][4]. In this pathway, the YAP protein is activated in 

response to mechanical stimulus and is shuttled into the cell nucleus where it activates 
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gene transcription leading to cell cycle entry and resulting in proliferation [5]. Our group 

and others have reported that simulated microgravity treatment applied to bone and 

muscle stem cells in vitro decreases proliferation of these cells which is necessary for 

healthy tissue regeneration [6][7]. Conversely, recent studies have shown that these stem 

cells display increased proliferative and differentiative responses to external mechanical 

stimuli, including applied mechanical vibration [8] and previous research from our group 

has demonstrated this treatment to be effective at countering the inhibitory effects of 

simulated microgravity on stem cell proliferation. Therefore, the specific goal of this 

research was to determine if the YAP signaling pathway is a contributing component of 

the mechanical adaptation mechanism which is responsible for the proliferation response 

of stem cells to simulated microgravity and mechanical vibrations. If this was found to be 

true, this research would seek to determine to what extent mechanical vibrations were 

able to alter and potentially counteract the inhibitory effects of simulated microgravity on 

YAP signaling. 
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CHAPTER TWO: BACKGROUND 

2.1 Tissue Forces 

2.1.1 Microgravity 

The preservation and regeneration of healthy bone and muscle tissue which is 

necessary to maintain their mechanical integrity under physical loads is known to be 

impaired by microgravity. In general, this atrophy has been examined using simulated 

microgravity (SMG) and has been determined to be a result of decreased proliferation of 

the various cell types which make up the musculoskeletal tissues as well as decreased 

differentiation of multipotent stem cells into the required cell types. Specifically, for the 

skeletal system, bone tissue loss which results from unloading is a result of decreased 

generation of cell types including osteoblasts, osteocytes and adipocytes [9]. Muscular 

atrophy as caused by applied SMG is similarly a result of impaired myogenesis and 

proliferation of myoblasts and myocytes [10]. 

2.1.2 Low Intensity Vibrations 

This form of muscle atrophy is a natural response to the elimination of 

mechanical forces exerted on bone and muscle tissues, a process which for the average 

human on Earth is counteracted at by constant mechanical forces which are experienced 

throughout the body. These forces include different kinds of strains regularly whether the 

human body is at rest or moving around. Forces experienced during movement and also 

at all times by gravity cause high magnitude strains in bones and muscles. In addition to 

these forces, high frequency contractions in our muscles cause low magnitude strains in 
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these tissues. Both of these kinds of forces are regularly experienced in healthy human 

body activity and both contribute to healthy bone and muscle tissue generation [11]. 

Recent research has developed mechanical treatments which are capable of simulating 

these crucial mechanical forces. Using various techniques, strain can be applied directly 

to the tissues to simulate the strains experienced during regular exercise [12]. 

Additionally, high frequency low magnitude strains can be simulated using low intensity 

vibrations (LIV) applied to organisms, to tissues, or even to cells individually both in vivo 

and in vitro as shown in Figure 1 [13]. These mechanical treatments have been shown to 

activate and enhance tissue regeneration. 

 
Figure 1. Application of low intensity vibrations (a) in vivo (b) in vitro. 
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2.2 Mechanoadaptive Regeneration 

2.2.1 Cell Mechanoadaptation 

These treatments rely on the mechanism which enables the tissues to be able to 

sense these forces and adapt appropriately. Studies have revealed that most eukaryotic 

cells are individually capable of sensing the forces in their environment. They respond 

with appropriate cell growth and development to form healthy tissues [14]. In order to 

sense these forces, they possess an elastic mechanical structure which is capable of 

deformation in response to these forces. The largest component of this mechanical 

structure is the cytoskeleton, which consists of actin fibers stretched between the cell 

membrane and the nucleus. The structure of the cytoskeleton, combined with the stiffness 

of the cell membrane and the nuclear membrane, enable the cell to deform under applied 

force. The resulting strain triggers the activation of various biochemical signaling 

pathways which initiate cell proliferation. This process by which cells respond to 

mechanical forces is known as mechanoadaptation. This process involves many specific 

biochemical components and many different signaling pathways. These pathways make 

up the mechanism which ensures healthy tissue growth via the process known as 

mechanoadaptation. As a result, they have been the subject of numerous studies, but 

many of these pathways are not yet completely understood. In order to take full 

advantage of the mechanoadaptation mechanism, these pathways and their components 

must be analyzed and fully defined. 

2.2.1 Mesenchymal Stem Cells 

All of the crucial cell types which make up musculoskeletal tissues share a 

common progenitor stem cell type: the mesenchymal stem cell (MSC). Therefore, the 
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active proliferation of MCSs both in response to mechanical stimulation and to unrelated 

signaling is required for the maintenance of the tissue integrity of musculoskeletal organs 

[6] as shown in Figure 2. 

 
Figure 2. Multipotency of mesenchymal stem cells. 

It is for this reason that MSCs have been identified as a key focus of tissue 

engineering research including studies attempting to describe the mechanical adaptation 

process of the muscular and skeletal systems. To be clear, MSCs and most animal cells 

possess this mechanoadaptive ability on the individual scale and can sense and adapt to 

mechanical forces even without connection to or interaction with other cells [15]. This 

indicates that the structural and signaling components which enable this process, 

including but not limited to the cytoskeleton, cellular and nuclear membranes, and the 

YAP signaling pathway, exist within each cell individually; therefore, these components 
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can be examined in vitro to observe their responses to mechanical stimulation applied 

directly to the cells. 

 

2.3 Mechanoadaptive Signaling 

2.3.1 Cell Signaling Pathways 

Recent research has confirmed that MSC proliferation is decreased by applied 

SMG and has also demonstrated that this can be tested and observed in vitro [7]. This 

means that subcultured MSC’s plated in flasks and subjected to mechanical stimulus, or 

lack thereof in the case of SMG, are capable of interpreting the stimulus in order to 

trigger an adaptive response. This phenomenon, in turn, points to a signaling pathway or 

coordinated mechanism consisting of signaling pathways which exist within each cell and 

is capable of translating mechanical stimulus into biochemical signals to trigger 

proliferation. This is further supported by other studies which have shown that MSCs 

display proliferative and differentiative responses to other mechanical conditions 

including but not limited to cell adhesion area [7][11], plating substrate stiffness [7][8], 

applied substrate strain [6], and applied low intensity vibrations (LIV) [6][16]. From 

these sets of data, it can be surmised that MSCs possess some mechanical structure which 

is capable of sensing the both passive and active mechanical conditions around them. The 

process by which MSCs as well as most animal cells sense and adapt to these conditions 

is generally referred to as mechanoadaptation. Considering this, both the mechanical 

structure and the signaling components involved in these processes work in conjunction 

to enable the mechanoadaptation mechanism of MSCs. 
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2.3.2 YAP Signaling Pathway 

One such biochemical signaling pathway is the YAP signaling pathway. YAP 

(Yes-associated protein) is a signaling protein which is known to activate cell 

proliferation, or cell growth [3]. YAP signaling has been shown by many studies to be 

activated in response to the application of mechanical forces [6]. In the process of YAP 

signaling, YAP proteins move within a cell from the cytoplasm to the nucleus, where it 

activates gene transcription for cell proliferation, as shown in Figure 3. Recent research 

has shown that YAP signaling is required to activate proliferation in response to 

mechanical stimulation, meaning it is a critical component of the mechanoadaptation 

mechanism [6]. 

 
Figure 3. YAP nuclear shuttling in response to mechanical challenge.
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CHAPTER THREE: DEVLOPMENT OF METHODS 

3.1 Mechanical Treatments 

3.1.1 Low Intensity Vibrations Treatment 

LIV was to be applied to MSCs in vitro using a custom-made LIV device as 

described in previous research [7] as shown in Figure 4. This device was capable of 

vibrating MSCs plated in various kinds of tissue culture containers. The LIV device 

subjected cells to low intensity 90 Hz lateral vibrations at 0.7g for 20min intervals.  

 
Figure 4. LIV device and cell culture plate placement. 

In order to examine the effects of LIV treatment both in the form of long-term 

application and of acute single burst treatments, two separate LIV treatment protocols 

were developed. The first treatment was dubbed daily LIV treatment (LIVDT) and was 

based on the treatment protocol developed previously in the lab which was able to 

counteract the effects of 72h of SMG on MSC proliferation [7]. This treatment was 
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applied for 3 days with 20min LIV sessions 2x per day separated by a 2h refractory 

period to enhance effects as demonstrated in previous research [17]. 

The alternate treatment protocol dubbed acute LIV treatment (LIVAT) was 

developed to emulate acute mechanical treatment protocols which had been demonstrated 

by outside studies to be able to be able to stimulate YAP signaling [6]. This treatment 

consisted of 5x 20min treatments with 1h in between each for a total of 340min (nearly 

6h) total treatment time with the 1h pauses acting as refractory periods during this time. 

The plated cells were returned to the incubator during the refractory periods. 

3.1.2 Simulated Microgravity Treatments 

For the application of SMG, our lab had previously built a clinostat device which 

subjected MSCs plated in culture flasks to SMG by rotating them constantly at 15 RPM. 

This method of simulating microgravity works by constantly changing the vector of force 

due to gravity acting on the cells in order to effectively negate this force vector. A 

technical requirement of this method was that the flasks must be capable of being filled 

completely with cell medium and sealed with no bubbles, because these would be 

dragged across the MSCs while the flask was rotating and damage them. The initial 

design used for previous experiments in the lab [7] used airtight flasks to accomplish this, 

but this design was not suitable for immunofluorescence staining. To adapt the protocol 

to allow for this analysis, it was necessary to select a new kind of flask which allowed for 

both airtight sealing and also could be used for staining. The culture flask which was 

selected was the Nunc SlideFlask, which is comprised of an imaging slide with a flask 

section connected to it with airtight sealant. This also required that the clinostat SMG 

device be redesigned in order for it to be capable of holding these new flasks (Figure 5a). 
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For experiments, MSCs were plated in the SlideFlasks and secured in clinostat inside 

incubator which subjected them to SMG for 72h as shown in Figure 5b.  

 
Figure 5. (a) Clinostat simulated microgravity device redesign CAD model. (b) 

Clinostat shown inside incubator with 1 cell culture flask. 

 

3.2 Protein Tracking using Immunofluorescence Microscopy 

3.2.1 YAP Immunofluorescence Staining 

Immunofluorescence staining was used to track localization of the YAP proteins 

inside the experimental MSCs in order to quantify and analyze YAP nuclear shuttling. 

Following mechanical treatments, the flask sections of SlideFlasks were removed to 

access plated MSCs. These cells were stained with YAP specific antibody and 

fluorescent red secondary antibody and nuclear DNA was labeled via DAPI stain. Stained 
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samples were stored with protection from light to prevent photobleaching and imaged 

within a week to preserve stain quality. 

3.2.2 Stained Sample Imaging 

Stained samples were then imaged with laser scanning confocal microscopes to 

obtain images of stained cells for protein localization analysis. Two separate confocal 

microscopes were used, the first stage of experiments before the implementation of LPA 

application were imaged using a Leica TCS SP8, and following experiments were imaged 

using a Zeiss LSM 510 Meta; however, a 40x oil-immersion objective setup was used 

with both confocal microscopes, and all experiments contained individual image analysis 

normalized to control levels. 

3.2.3 Image Analysis 

Exported images were used to quantify relative YAP levels within each nuclei, 

with the nuclear regions traced by DAPI stained nucleus, which was accomplished using 

a custom-made Matlab code. The code worked by first separating the red and blue 

colored data from the YAP and DAPI stain respectively, then it identified the nuclear 

regions using the blue stain and isolated the stained YAP inside the nuclear regions as 

shown in Figure 6. The result was a list of red pixels for each cell nuclei which 

correspond to the concentration of YAP protein inside the nuclei. For each individual 

nucleus identified by the code, the average intensity of the pixels was found and stored as 

an individual data point. These average nuclear YAP protein stain intensity data points 

were subsequently all normalized to the control levels and presented on bar graphs in 

order to visualize the effects of mechanical treatments on YAP nuclear levels. 
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Figure 6. MATLAB image analysis process.
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4.1 Abstract 

The bone deterioration that astronauts experience in microgravity environments is 

known to occur in response to the lack of gravity-based tissue stress. Mechanical forces 

are crucial to maintain healthy bone mass by regulating the function of bone-making 

osteoblasts as well as the proliferation and differentiation of their progenitors, 

mesenchymal stem cells (MSC) which replenish osteoblastic cells. Regulation of 

proliferative function of MSCs in response to mechanical force is in part controlled by 

the “mechanotransducer” protein YAP (Yes-associated protein) which is shuttled into the 

nucleus in response to mechanical challenge to induce gene expression necessary for cell 

proliferation. Our group had recently reported that altered gravity conditions under 

simulated microgravity (SMG) decreases proliferation of MSCs and that application of 

daily low intensity vibrations (LIV) during SMG reverses this effect on proliferation. 

While these findings suggest that LIV may be a promising countermeasure for altered 

loading, the specific SMG and LIV effects on YAP mechanosignaling are unknown. 

Therefore, here we tested the effects of SMG and daily LIV treatment on basal nuclear 

YAP levels as well as on the acute YAP nuclear entry in response to both mechanical and 

soluble factors in MSCs. MSCs subjected to 72h of SMG, despite decreased nuclear YAP 

levels across all groups, responded to both LIV and Lysophosphohaditic acid (LPA) 

treatments by increasing nuclear YAP levels within 6hrs by 49.52% and 87.34%, 

respectively. Additionally, daily LIV restored the basal decrease seen in SMG as well as 

nuclear YAP levels as well as restored in part the YAP nuclear entry response to 

subsequently applied acute LIV and LPA treatments. These results show that rescue of 

basal YAP levels by LIV may explain previously found proliferative effects of MSCs 
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under SMG and demonstrates that daily LIV is capable of alleviating the inhibition 

caused by SMG of YAP nuclear shuttling in response to subsequent mechanical and 

soluble challenge. 

4.2 Introduction 

The musculoskeletal deterioration which astronauts experience on long-term 

space missions and the resulting increase of traumatic physical injury risk is in-part due 

to the reduction of mechanical loading on the musculoskeleton [18][19]. This process of 

dangerous bone and muscle atrophy is a result of the human body’s mechanical 

adaptation mechanisms which remodel these tissues in order to maintain homeostasis 

under mechanical challenge. To alleviate the detrimental effects of unloading, astronauts 

undergo long intensive regimens of running and resistance training in orbit [18]. Despite 

these efforts, astronauts lose an average bone density of 1% for each month they spend in 

space [1][19]. This loss necessitates new non-pharmacologic therapies in addition to 

exercise to keep bones healthy during long-term space missions. In bone, tissue level 

response to mechanical challenge is in-part regulated by osteoblasts and osteocytes [20]. 

Both osteoblasts and osteocytes in turn share a common progenitor: the mesenchymal 

stem cell (MSC). Therefore, the growth and differentiation of MCSs in response to 

mechanical stimulation is required for the maintenance and repair of bone [21]. It is for 

this reason that MSCs are a potential target for mechanical therapies aiming to alleviate 

bone loss in astronauts, service personnel with long periods of bedrest, and physically in-

active aged individuals [22]. 

To maintain healthy bone making cell populations, MSCs rely on environmental 

mechanical signals inside the bone marrow niches near bone surfaces. While the exact 
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characteristics of the mechanical environment that MSCs exist in remain to be quantified, 

it is known that during habitual activities our bones are subjected to combinations of 

complex loads including strain, fluid shear, and accelerations, each of which is 

inseparable [23]. For example, during moderate running, cortical bone can experience 

strains up to 2000µε [24][25], which also generate coupled fluid flow within canaliculi up 

to 100µm/s [26]. The interior of bone is filled with bone marrow with viscosities up to 

400-800cP [27]. During moderate running, tibial accelerations reach to 2-5g range [28] 

(1g = 9.81 m/s2), creating a complex loading at the bone-marrow interface that depends 

on many factors including frequency, amplitude, and viscosity [29]. In silico studies 

reveal that when exposed to vibrations (0.1-2g), marrow-filled trabecular compartments 

generate fluid shear stresses up to 2Pa [29][30], capable of driving bone cell functions 

[31]. Interestingly, while these high magnitude forces are only experienced a handful of 

times during the day, bones are bombarded by smaller mechanical signals arising from 

muscle contractions that generate bone strains ranging between 2 to 10µε [11]. 

Exogenous application of these small magnitude mechanical regimes in the form of low 

intensity vibrations (LIV) ranging between 0.1-2g acceleration magnitudes and 20-200Hz 

frequencies were shown to be effective in improving bone and muscle indices in clinical 

and preclinical studies [32]. At the cellular level our group has reported that application 

of LIV increases MSC contractility [8], activates RhoA signaling [16], and results in 

increased osteogenic differentiation and proliferation of MSCs [7][33]. 

One of the most studied signaling pathways that regulate the MSC 

mechanoresponse is the Yes-associated protein (YAP) signaling pathway. As evidence of 

the contributing role of YAP in cell proliferation and growth, YAP depletion in stem cells 
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results in reduced proliferation and osteogenesis [4][34]. Similarly, depleting YAP from 

osteoblast progenitors decreases both bone quality and quantity in mice [35]. 

Functionally, in response to cytomechanical forces and substrate stiffness, YAP moves 

from the cytoplasm to the nucleus where it interacts with its co-transcriptional activators 

such as TEAD to regulate gene expression related to proliferation [36]. For example, 

application of substrate strain induces YAP nuclear entry and YAP transcriptional 

activity which is required to activate proliferation [5]. While it has been shown that YAP 

nuclear entry is triggered by soluble factors increasing F-actin contractility such as 

Lysophosphatidic acid (LPA) [37][38], large changes in substrate stiffness [4], or 

substrate stretches ranging from 3% to 15% [5][6], it is not known if low magnitude 

signals like LIV also trigger acute YAP nuclear entry.  

Research aimed at studying the effects of microgravity at the cell level often relies 

on simulated microgravity (SMG) devices designed to alter the gravitational conditions 

that cell experience by rotating on one or multiple axis at low speeds [39][40][41]. 

Research from our group and others show that SMG results in reduced cytoskeletal 

contractility [39][42][43] and reduced levels of integral nuclear proteins such as Lamin 

A/C and LINC (Linker of Nucleoskeleton and Cytoskeleton) complex element Sun-2. 

Concomitantly, applied SMG also consistently results in decreased MSC proliferation. To 

test the efficacy of LIV as a possible countermeasure for sMG-induced proliferation loss, 

we have shown that twice daily application of LIV for 20 minutes during 72h SMG was 

able to recover MSC proliferation levels as well as the reduced levels of nuclear envelope 

proteins [7]. As mechanically induced YAP nuclear shuttling has been associated with 
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LINC complex function [44], these findings suggested that SMG should serve to decrease 

YAP nuclear entry in response to mechanical or soluble factors. 

Therefore, here we set out to answer the hypothesis SMG-induced impairment of 

acute YAP nuclear entry in response to mechanical and soluble factors will be alleviated 

by daily application of LIV. 

4.3 Results 

4.3.1 Acute LIV Application Increases Nuclear YAP Levels 

To quantify the acute YAP nuclear entry in response to LIV, MSCs were plated at 

the density of 1,700cells/cm2 and were allowed to attach for 24hr. Following this, MSCs 

were subjected to treatment in two groups: control and acute LIV treatment regimen 

(LIVAT). The LIVAT regimen consisted of 5x 20min vibration periods separated by 1hr in 

between each at room temperature while control samples were also taken out of the 

incubator but were not vibrated. Immediately after LIVAT, the samples stained against 

YAP and DAPI were imaged, followed by MATLAB image analysis to quantify the 

changes in the nuclear YAP levels. As shown in Figure 7a, qualitative visual analysis of 

the resulting images showed an increase in YAP staining in the cell nuclei. Analysis 

shown in Figure 7b revealed a 32.43% increase in the nuclear YAP levels of the LIVAT 

samples as compared to the control samples (p<0.0001). As both LIV-induced focal 

adhesion signaling [16] and YAP nuclear entry in response to substrate strain [6] requires 

intact LINC function, disabling LINC function via a dominant negative overexpression of 

Nesprin KASH (Klarsicht, ANC-1, Syne homology) fragment (DNK) both decreased 

basal nuclear YAP levels by 33.91% (p<0.0001) and reduced the LIV-induced YAP 

nuclear entry when compared to empty plasmid (Figure S1). 
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Figure 7. Acute LIV application increases nuclear YAP levels. 

(a) MSCs were subjected to LIVAT and stained with DAPI and YAP red. Images 

showed LIVAT increased nuclear YAP levels as well as overall cellular levels. (b) 

MATLAB analysis revealed LIVAT samples 32.43% increase in nuclear YAP levels 

compared to control levels. n>400/grp, group comparison was made a Mann-

Whitney post-hoc test, **** p<0.0001. 

4.3.2 Basal Nuclear YAP Levels Decreased by SMG Were Rescued by LIV 

We next tested whether a daily LIV treatment regimen (LIVDT), applied in 

parallel with SMG, could alleviate basal YAP levels in the nucleus. As we reported 

previously, LIVDT consisted of 2x 20min vibrations every 24 hours during the 72h period 

of SMG application which was effective at restoring MSC proliferation and the whole 

cell YAP levels when applied in conjunction with SMG [7]. MSCs were plated at the 

density of 1,700cells/cm2 in 25cm2 tissue culture SlideFlasks (Nunc, #170920) and were 

allowed to attach for 24h, after which point the flasks were filled completely with growth 

medium, sealed, and subjected to 72h of treatment followed by staining against YAP and 

DAPI. During the 72h treatment period, MSCs were divided into three groups: control 

samples, SMG samples which were subjected to the standard regimen of 72h of 

continuous SMG, and SMG+LIVDT samples which were subjected to both the 72h SMG 
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regimen and the daily LIVDT regimen. Representative images for YAP and DAPI stained 

images are shown in Figure 8a. As depicted in Figure 8b, MATLAB analysis revealed a 

41.60% decrease in the nuclear YAP intensity of the SMG samples as compared to the 

control samples (p<0.0001). Compared to the SMG group, nuclear YAP levels of the 

LIVDT treated MSCs showed an increase of 66.75%, respectively. There was no 

significant nuclear YAP level difference between of LIVDT treated MSCs and non-SMG 

controls. 

 
Figure 8. Basal nuclear YAP levels decreased by SMG were rescued by LIV. 

(a) MSCs were subjected to SMG, and SMG+LIVDT over 72h period and stained 

with DAPI and YAP red. (b) MATLAB analysis showed for SMG sample 41.60% 

decrease of nuclear YAP levels compared to control levels. Combined SMG+LIVDT 

treatment samples showed 66.75% increase of nuclear YAP levels with compared to 

SMG samples to no significant difference with control levels. n>100/grp, group 

comparisons were made using one-way ANOVA, **** p<0.0001. 

4.3.3 LIVAT-induced YAP Nuclear Entry Decreased by SMG Was Partially Restored by 

Daily LIVDT Application 

As SMG decreased basal nuclear YAP levels, we next tested whether SMG 

decreases LIVAT-induced YAP mechanosignaling (i.e. nuclear shuttling). Since LIVDT 
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was able to restore nuclear YAP levels (Figure 8), the SMG+LIVDT group was added to 

evaluate the effect of LIVDT on the SMG response. A schematic of the experimental 

design is given in Figure 9. 

 
Figure 9. SMG and LIV application experimental design. 

MSCs were subcultured and plated in SlideFlasks and allowed to attach for 24h 

before SlideFlasks were filled with culture medium and sealed for mechanical 

treatments. After treatment, flask was removed to isolate the cells on slide for 

immunofluorescence staining. Treatment regimen for MSC’s involved 72h SMG 

with additional LIV and/or LPA application as shown. LIVDT regimen consisted of 

one treatment cycle every 24hr during SMG treatment with each cycle consisting of 

2x 20min LIV with an hour in between. LIVAT regimen was applied after 72h SMG 

treatment period and consisted of 5x 20min LIV with an hour in between each. For 

LIV application, MSCs plated in Slideflasks were placed in LIV device constructed 

in the lab previous to this research. Vibrations were applied at peak magnitudes of 

0.7 g at 90 Hz at room temperature. For SMG application, MSCs plated in 

SlideFlasks were secured in lab custom-built clinostat inside incubator. The 

clinostat subjected the MSCs to constant 15 RPM rotation simulated microgravity. 

MSCs were divided into six groups where the CTRL, SMG, SMG+LIVDT groups 

were treated with ±LIVAT at the end of 72h and nuclear YAP levels were measured. 

Similar to previous experiments, SMG alone decreased basal nuclear YAP levels by 

36.99% (p<0.0001) which were increased back to control levels in the SMG+LIVDT 
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group. As depicted in Figure 10, +LIVAT increased nuclear YAP levels in the CTRL, 

SMG and SMG+LIVDT groups by 49.52%, 69.01% and 21.87%, respectively (p<0.0001) 

while exhibiting the smallest increase in the SMG+LIVDT. As a result, final nuclear YAP 

levels in the SMG+LIVDT+LIVAT group remained not significantly different from the 

SMG+LIVAT and 22.60% smaller than the LIVAT group. 

 
Figure 10. LIVAT-induced YAP nuclear entry decreased by SMG was partially 

restored by daily LIVDT application. 

MSCs were subjected to SMG, and parallel SMG+LIVDT over 72h period, shown in 

first, third, and fifth columns. Additional experiments examined YAP nuclear entry 

sensitivity to LIVAT application of these three samples, shown in second, fourth, and 

sixth columns. MATLAB analysis of stained images revealed sensitivity of CTRL 

sample to be 49.52%, of SMG sample to be 77.12%, and of SMG+LIVDT sample to 

be only 21.87%. MATLAB analysis also showed for SMG+LIVAT samples 29.18% 

decrease and for SMG+LIVDT+LIVAT samples 22.60% decrease of LIVAT-induced 

YAP nuclear entry compared to LIVAT samples. n>200/grp, group comparisons 

were made using one-way ANOVA, **** p<0.0001.  
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4.3.4 LPA Addition Increases Nuclear YAP Levels 

As LIVDT treatment did not restore the acute LIVAT response to that of control 

levels, we next considered a soluble regulator of cytoskeletal tension, LPA. To test the 

effect of LPA on the acute YAP nuclear entry, two LPA concentrations (50µM and 

100µM) were compared against control samples. Shown in Figure 11, nuclear YAP 

levels were almost doubled under two hour exposure to 50µM LPA and 100µM LPA 

treatments with 98.55% and 106.52% increases as compared to the control samples 

(p<0.0001). Nuclear Yap levels for 50µM LPA and 100µM LPA treatments were not 

significantly different.  
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Figure 11. LPA addition increases nuclear YAP levels. 

MSCs were subjected to LPA addition at 50uM and 100uM concentrations. 

MATLAB analysis of stained images revealed for LPA (50uM) samples 98.55% 

increase, and for LPA (100uM) samples 106.52% increase of nuclear YAP levels 

compared to control levels with no significance difference between the 

concentrations. n>30/grp, group comparisons were made using one-way ANOVA, 

**** p<0.0001. 

4.3.5 LPA-induced YAP Nuclear Entry Decreased by SMG Was Partially Restored by 

Daily LIVDT Application 

In order to evaluate whether LIVDT can restore LPA-induced YAP 

mechanosignaling (i.e. nuclear shuttling) after SMG, 50µM LPA or DMSO were added 

to the samples at the end of the 72h treatment of either CTRL, SMG or SMG+LIVDT 

treatments. The CTRL group, SMG group, and SMG+LIVDT groups were subjected to 

the same treatment as in the previous experiments and displayed similar results. As 

depicted in Figure 12, +LPA increased nuclear YAP levels in the CTRL, SMG and 
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SMG+LIVDT groups by 104.78%, 66.63% and 43.39% respectively (p<0.0001). While 

final YAP nuclear levels in SMG+LIVDT+LPA remained higher than the CTRL and 

SMG+LPA groups (P<0.0001), they remained 29.05% smaller than the LPA group. 

 
Figure 12. LPA-induced YAP nuclear entry decreased by SMG was not restored 

by daily LIVDT application. 

MSCs were subjected to SMG, and parallel SMG+LIVDT over 72h period, shown in 

first, third, and fifth columns. Additional experiments examined YAP nuclear entry 

sensitivity to LPA addition of these three samples, shown in second, fourth, and 

sixth columns. MATLAB analysis of stained images revealed sensitivity of CTRL 

sample to be 104.78%, of SMG sample to be 66.63%, and of SMG+LIVDT sample to 

be only 43.39%. MATLAB analysis also showed for SMG+LPA samples 55.17% 

decrease and for SMG+LIVDT+LPA samples 29.05% decrease of LPA-induced YAP 

nuclear entry compared to LPA samples. MSCs subjected to SMG, and parallel 

SMG+LIVDT over 72h period. Experiments examined sensitivity to LPA of these 

three samples. n>100/grp, group comparisons were made using one-way ANOVA, 

**** p<0.0001. 
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4.3.6 SMG and LIVDT Do Not Affect Nuclear Stiffness or Nuclear Area 

As YAP mechanosignaling of SMG+LIVDT MSCs remained below control levels 

in response to both LIVAT and LPA, we quantified the nuclear stiffness in CTRL, SMG 

and SMG+LIVDT samples. AFM Testing was used to quantify the elastic modulus of the 

nucleus by measuring load-displacement curves on top of the nucleus. As shown in 

Figure 13a, analysis revealed no statistically significant effect on nuclear elastic modulus 

in the SMG or SMG+LIVDT groups compared to control levels. We have further 

quantified nuclear area as a measure of cyto-mechanical forces on the nucleus [45]. 

Shown in Figure 13b, analysis of cross-sectional area of cell nuclei using DAPI stained 

images revealed no significant effects on average nuclear size by either SMG or 

combined SMG+LIVDT treatment compared to control levels.   
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Figure 13. Nuclear stiffness and nuclear area size are not affected by SMG and 

SMG+LIVDT treatments. 

MSCs were subjected to SMG, and parallel SMG+LIVDT over 72h period. (a) AFM 

analysis of live cells revealed apparent 21.09% decrease and SMG+LIVDT samples 

showed similar apparent decrease of nuclear membrane elastic modulus to 26.57% 

below control levels, however statistical analysis revealed these changes to not be 

statistically significant. n=10/grp, ns, p=0.8713, against control levels. (b) MATLAB 

image analysis of the same treatment groups revealed no significant effects of either 

SMG or LIV treatment on the average nucleus size. n=100/grp, group comparisons 

were made using one-way ANOVA, ns, p=0.5103. 

4.4 Discussion 

The mechanical forces to which the bone and muscle tissue cells of the human 

body are subjected both on Earth and in microgravity environments are complex and 

remain incompletely understood. At the same time, it is clear that these forces are 

required for healthy tissue growth on Earth and are adversely affected in microgravity 

which is the cause of tissue degeneration. The complexity of these forces makes it 

difficult to design realistic experiments that comprehensively simulate in vivo conditions. 

While the in vitro experiments utilizing SMG and LIV treatments used in this study are 

limited in this way and do not entirely correlate with the physiological behavior of these 



29 

 

cells in vivo, the experiments presented here remain useful for testing cell behavior under 

well-defined conditions.  

In this study, the investigation of MSC mechanosignaling was focused on the 

YAP signaling pathway and the first step to characterize and define the effects of LIV on 

MSC YAP signaling capability was to develop and verify a method capable of analyzing 

MSC nuclear YAP levels and transient YAP nuclear entry response, specifically as they 

are affected by acute LIV or LPA treatments. The first experiments demonstrated that 

LIV application over several hours was capable of stimulating YAP entry into the 

nucleus (Figure 7). However, the later experiments called into question the suitability of 

LIV as treatment form of acute mechanical challenge, in particular after it had already 

been used for daily treatments. 

In other studies, high magnitude applied mechanical strain has been used for this 

kind of treatment [5][6]. Because the application of real mechanical stretch treatment to 

the MSCs would have been very difficult to incorporate into the methods developed for 

simultaneous SMG and LIV application, LPA addition served as the best option for 

applying a simple mechanical stimulation in order to evaluate the YAP 

mechanotransduction. LPA is a phospholipid derivative signaling molecule which is 

capable of causing the simulation of static transient stretch of a cell by increasing the 

contractility of the cytoskeleton [33][46]. The first experiments with LPA served to 

verify that the simulation of stretch via increased cytoskeleton contractility was capable 

of triggering YAP entry into the nucleus and the analysis methods were capable of 

picking up this response (Figure 11). 
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In these and in the following experiments, MSCs in the various samples were 

observed visually to be at different life cycle stages and some were also potentially in the 

process of differentiation. It was for this reason that substantially large sample sizes were 

used for all experiments in order to accurately observe the authentic effects of the 

mechanical treatments. Additionally, levels of differentiating MSCs were expected to be 

low due to un-altered cell growth medium used and limited 72h treatment timespan for 

experiments; therefore, the effects of differentiation on nuclear YAP levels were assumed 

to be negligible. 

The first SMG experiments confirmed a clear decrease in basal nuclear YAP 

levels. Interestingly, SMG treated cells remained highly responsive to mechanical and 

soluble activator of YAP nuclear entry as both LIVAT and LPA treatments were able to 

raise the acute nuclear YAP levels back up to and above non-treated controls. However, 

YAP levels remained significantly below non-SMG groups (Figures 8, 10 & 12). These 

finding suggested that the YAP mechanosignaling apparatus of MSCs was to some extent 

intact under SMG. When applied in parallel to SMG, daily LIVDT treatment was able to 

restore basal YAP levels in the cell nucleus (Figure 8) up to after 24h after the final 

LIVDT treatment. As acute increases in YAP nuclear levels in response to mechanical 

challenge are shown to be transient [5] and expected to return to baseline after 24h, this 

increase in nuclear levels supported our earlier report that showed sustained recovery of 

MSC proliferation by LIVDT [7].  

Interestingly, this increase of basal nuclear YAP levels under LIVDT was 

accompanied by a reduced MSC response to acute stimulations by both LIVAT and LPA. 

While these levels were still restored to greater than SMG sample levels and greater than 
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initial control levels, they were only partially restored to the control plus acute treatment 

samples. This suggested that after the combined treatment period of SMG and LIVDT to 

restore the nuclear YAP levels, there may have been some effect on the 

mechanosignaling mechanism which was limiting the sensitivity of the MCSs to 

additional mechanical stimulus. Initially, after analysis of the SMG+LIVDT+LIVAT 

samples, this was theorized to be due to LIV’s potentially poor suitability as an treatment 

form of acute mechanical challenge (Figure 10); however, when LPA addition was tested 

in the role as the acute treatment, the same trend revealed that SMG had some effect on 

the mechanism which LIVDT was not completely able to alleviate. At this point, 

additional experiments would be required to determine which component or components 

in the mechanism were affected. Data from previous research in our lab using the same 

treatment protocols as in these experiments suggested that total cellular YAP levels 

decreased by SMG were restored to control levels by daily LIV [7]. This would indicate 

that total availability of YAP in both the cytoplasm and the nucleus is not responsible for 

this observed incomplete restoration of YAP signaling response. 

In regard to other potential effects of SMG on the components of the 

mechanosignaling mechanism, one current prevailing hypothesis considering YAP 

mechanosignaling in particular suggests a role of nuclear pore opening in response to 

cyto-mechanical forces [44] which may be affected by changes in the nuclear stiffness. 

Unfortunately, AFM experiments and additional YAP nuclear entry experiments were not 

able to identify any statistically significant effects of SMG or LIVDT treatment on nuclear 

stiffness or on nuclear area (Figure 13). While future studies are required, considering 

the significant role which the nuclear membrane plays as a mechanical structural 
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component in the cell’s interpretation of mechanical stimulus [47][48], our results were 

not able to detect any changes in nuclear stiffness may not be a factor in reduced YAP 

mechanosignaling after LIVDT treatment of MSCs subjected to SMG.  

In summary, while the restoration of basal nuclear levels under daily LIVDT 

treatment suggest that LIV acts as a possible countermeasure to improve MSC response 

to detrimental effects of simulated microgravity, future studies are required to understand 

why acute YAP nuclear entry in response to mechanical and soluble factors remain less 

responsive. 

4.5 Methods 

4.5.1 Mesenchymal Stem Cell Culture 

Primary mice bone marrow derived MSC’s were extracted as previously 

described. MSCs were then subcultured and plated in Iscove modified Dulbecco’s cell 

culture medium (IMDM, 12440053, Gibco) with 10% fetal calf serum (FCS, S11950H, 

Atlanta Biologicals) and 1% pen/strep. MSCs were subcultured every one week, stock 

cells were plated in 10cm culture dishes at a density of 1,300cells/cm2, and experimental 

cells were plated in SlideFlasks at density of 1,700cells/cm2 and given 24h to attach to 

the slide before being used for experiments. Cell passages for MSCs used for experiments 

were limited to P7-P15. 

4.5.2 Low Intensity Vibrations Treatment 

SlideFlasks with plated MSCs were filled completely with culture medium and 

placed in LIV device designed and used in previous research (Figure 9) [7]. LIV device 

subjected cells to low intensity 90 Hz lateral vibrations at 0.7g at room temperature. 

MSCs were vibrated for 20min intervals broken up over time. End treatment LIV 
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regimen was applied after 72h treatment period and consisted of 5x 20min LIV with an 

hour in between each. Daily treatment LIV regimen consisted of 3x treatments in parallel 

with SMG treatment each consisting of 2x 20min LIV with 2h in between. 

4.5.3 Simulated Microgravity Treatment 

SlideFlasks (Nunc, #170920) with plated MSCs were filled completely with 

culture medium (Figure 9) and placed in clinostat SMG device. The clinostat shown is a 

redesign of custom-made clinostat described in previous research [7]. with new flask 

holder casing capable of holding SlideFlasks and also is autoclavable. The clinostat 

subjected the MSCs to constant 15 RPM sMG for 72h. 

4.5.4 Immunofluorescence Staining and Image Analysis 

Immediately after mechanical treatment, MSCs plated in Slideflasks were 

removed from treatment, and the SlideFlasks were separated in order to stain the MSCs 

on the slides (Fig.3). The MSCs were fixed with 4% paraformaldehyde, then washed and 

permeabilized with 0.05% Triton X-100 in PBS, then immunostained with YAP specific 

antibody (YAP (D8H1X) Rabbit mAb, Cell Signaling Technologies) and Alexa Flour red 

secondary antibodies (Donkey anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary 

Antibody, Alexa Fluor Plus 594 for all experiments prior to usage of LPA, after this 

Donkey anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 

633 was used). Nuclear DNA was labeled via DAPI (Vectashield Mounting Medium, 

Vector Laboratories). Cytoskeletal actin was labeled using Phalloidin in (Alexa Fluor 488 

Phalloidin- Invitrogen). Stained samples were imaged with confocal microscope (Leica 

TCS SP8 confocal microscope, 40x, HC PL APO CS2 Oil Immersion, 1024x1024 .jpg 

images prior to usage of LPA, after this Zeiss LSM 510 Meta Confocal Microscope, 40x, 
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HC PL APO CS2 Oil Immersion, 1024x1024 .jpg was used). Exported images were used 

to quantify relative YAP levels within each nuclei (nuclear regions traced by DAPI 

stained nucleus) via custom-made MATLAB program (The MathWorks, Natick, MA). 

DAPI images were analyzed using an edge-detection algorithm in order to determine the 

nuclear area for each cell. The nuclear outline was then used as a mask to quantify the 

average pixel intensity of the YAP stain within the nuclei of each individual cell. (n=50-

100 nuclei/sample). 

4.5.3 Atomic Force Microscopy 

Bruker Dimension FastScan AFM was used for collection of the atomic force 

measurements. Tipless MLCT-D probes with a 0.03 N/m spring constant were 

functionalized with 10 µm diameter borosilicate glass beads for force collection. The 

AFM’s optical microscope was used to locate individual live MSCs plated on the 

SlideFlask slides but with the flask section removed for access to the cells. The nucleus 

of each cell was tested with at least 3 seconds of rest between each test. In each test, three 

force-displacement curves were obtained (ramping rate: 2 µm/sec over 2 µm total travel, 

1 µm approach, 1 µm retract), which were analyzed using Nanoscope software with the 

implementation of a best-fit curve to a Hertzian (spherical) model (optimized such that 

R^2 value was greater than 0.95, or p<0.05) to obtain elastic moduli of nuclear membrane 

of individual nuclei. 

4.5.3 Simulated Microgravity Treatment 

All data analysis results were displayed graphically based on the mean value with 

standard error bars. Differences between treatments were not assumed to follow a 

Gaussian distribution. Therefore, group differences were identified via either non-
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parametric two-tailed Mann-Whitney U-test (Fig. 1b) or Kruskal-Wallis test followed by 

Tukey multiple comparison (Figures 2b, 4, 5, 6, 7 and S1). P-values of less than 0.05 

were considered significant. 

 
Figure S1. LINC complex disruption decreases nuclear YAP levels and reduces 

LIVAT-induced YAP nuclear entry sensitivity. 

MSCs were cultured and treated with mCherry plasmids with (DNK) and without 

(MC) overexpression of a dominant negative KASH domain of Nesprin, then each 

group was subsequently subjected to LIVAT. MATLAB image analysis of stained 

images revealed for MC-LIV samples 49.27% increase, for DNK-CTRL samples 

33.91% decrease, and for DNK-LIVAT samples 18.33% decrease of nuclear YAP 

levels compared to MC-CTRL levels with no significance difference between the 

DNK samples. n=30/grp, group comparisons were made using one-way ANOVA, 

****, p<0.0001.
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CHAPTER FIVE: RESEARCH CONCLUSIONS AND FUTURE 

5.1 Summary of Research 

The overarching experimental goals of this research were to: 

 Determine if nuclear YAP levels are affected in MSCs by acute LIV 

 Determine if nuclear YAP levels are affected in MSCs under SMG 

 Determine if YAP nuclear entry response to acute mechanical challenge is 

affected in MSCs under SMG 

 Determine if these effects of SMG can be counteracted by LIV 

The significant results of this research include: 

 A method was developed which enabled the simultaneous application of SMG 

and LIV treatment and also allowed for immunofluorescence staining analysis 

 A form of acute LIV treatment was developed which was capable of activating 

YAP nuclear shuttling in MSCs 

 Basal nuclear YAP levels in MSCS were found to be decreased by SMG and 

restored to control levels by simultaneous daily LIV treatment, showing 

correlation with the observed effect of these treatments on MSC proliferation 

 YAP nuclear shutting response to both acute LIV treatment and LPA addition 

after applied SMG was found to be partially restored to control levels by daily 

LIV treatment 
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Our experimental hypothesis was confirmed: 

 SMG-induced impairment of acute YAP nuclear entry in response to mechanical 

and soluble factors was alleviated by daily application of LIV 

5.2 Current Limitations 

The YAP signaling pathway is known to be connected to and affected by several 

other signaling pathways and is not the only pathway which affects cell proliferation. The 

correlation of nuclear YAP levels with cell proliferation in this research combined with 

YAP’s known role in cell proliferation suggests that the YAP signaling pathway is a 

major contributing component of the mechanism which dictates the mechanoadaptive 

response of cells in bone and muscle tissue. However, it remains unclear which other 

signaling components play a role in and to what degree they are responsible for this 

signaling response. The primary limitation of this student was that all of the experiments 

were focused on the nuclear YAP content which was a useful tool for tracking YAP 

nuclear shuttling but could not reveal the functional effects of the SMG and LIV 

treatment on the MSC mechanoadaptation mechanism. 

5.3 Future Directions 

The significant valuable result of this research was the method which was 

developed to analyze YAP nuclear shuttling in response to SMG and LIV treatments. 

Future research attempting to understand the specific effects of these treatments on this 

signaling pathway should focus on the analysis of both the mechanical components and 

the other biochemical signaling components of the MSC mechanoadaptation mechanism. 

Specifically, investigation of the effects of SMG and LIV treatments on these mechanical 

components including cell membrane structure, cytoskeletal structure, nuclear structure, 
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as well as the numerous other biochemical signaling proteins followed by comparison of 

the these components to the YAP nuclear shuttling response using the methods developed 

in this study will help to comprehensively define the behavior of this mechanism.
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