
SECURE NETWORK-ON-CHIP AGAINST BLACK HOLE AND

TAMPERING ATTACKS

by

Luka Daoud

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Boise State University

March 2020



© 2020
Luka Daoud

ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the dissertation submitted by

Luka Daoud

Dissertation Title: Secure Network-on-Chip Against Black Hole and Tampering Attacks

Date of Final Oral Examination: 4 March 2020

The following individuals read and discussed the dissertation submitted by student Luka
Daoud, and they evaluated the presentation and response to questions during the final oral
examination. They found that the student passed the final oral examination.

Nader Rafla, Ph.D., PE Chair, Supervisory Committee

Gaby Dagher, Ph.D. Member, Supervisory Committee

Hani Mehrpouyan, Ph.D. Member, Supervisory Committee

Koushik Chakraborty, Ph.D. External Examiner

The final reading approval of the dissertation was granted by Nader Rafla, Ph.D., PE, Chair 
of the Supervisory Committee. The thesis was approved by the Graduate
College.



ACKNOWLEDGMENTS

My PhD journey has been full of exciting and motivating moments accompanied with

ups and downs. Therefore, I am using this opportunity to express my gratitude to everyone

who supported me throughout the courses and research of this dissertation. I am thankful

for their aspiring guidance, invaluably constructive critique and friendly advice during the

project work.

I would like to extend my sincere gratitude to my adviser, Dr. Nader Rafla, for his

invaluable guidance, support, and patience. I am grateful for his continuous encouragement

to boost my confidence during stressful times. I would also like to thank Dr. Gaby Dagher

for his valuable feedback on my research and concrete discussion of worthy research

problems.

I acknowledge my research committee members: Drs. Rafla, Dagher, and Mehrpouyan

for their valuable reviews and rigorous feedback that added to the shape of this dissertation.

I would like to thank Dr. Benjamin Johnson for his help in using the Cadence tool. It was

a valuable guide for synthesizing my proposed architectures of this work.

Furthermore, I gratefully acknowledge the Department of Electrical and Computer

Engineering for their financial support and giving me the opportunity to instruct and teach

the Digital Systems lab for undergraduate students.

I would like to extend my gratitude to the research lab and my colleagues: Fady

Hussein, Shelton Jacinto, Danyal Mohammadi, and Kamran Latif, with whom I contributed

in several research projects.

iv



I would also like to thank the International Student Services (ISS) for giving me the

chance to interact with many students of various nationalities. I had the opportunity to be

exposed and connected to multiple cultures, and virtually lived in their home.

Finally and most importantly, I thank my family back home for their unconditional

support, their unwavering confidence in my abilities and their encouragement in all of

my endeavors. I am genuinely grateful to all the amazing people who believed in me

and supported me on this exciting stage. Without you, this journey would not have been

possible. This work is dedicated to all of you.

v



AUTOBIOGRAPHICAL SKETCH

Luka Daoud is a PhD Candidate at Electrical and Computer Engineering at Boise State

University. He has joined the PhD program in August 2014. He received his M.Sc. degree

in Electronics and Communications Engineering from Egypt-Japan University of Science

and Technology (E-JUST), Alexandria, Egypt, in 2012 and B.Sc. degree in Electrical

Engineering from Fayoum University, Fayoum, Egypt. His main research focuses on hard-

ware security, Network-on-Chip, reconfigurable high performance computing, embedded

systems, and High-level synthesis (HLS) design. Currently, he is developing trusted and

secure architectures for Network-on-Chip.

vi



ABSTRACT

The Network-on-Chip (NoC) has become the communication heart of Multiprocessors-

System-on-Chip (MPSoC). Therefore, it has been subject to a plethora of security threats to

degrade the system performance or steal sensitive information. Due to the globalization of

the modern semiconductor industry, many different parties take part in the hardware design

of the system. As a result, the NoC could be infected with a malicious circuit, known as a

Hardware Trojan (HT), to leave a back door for security breach purposes. HTs are smartly

designed to be too small to be uncovered by offline circuit-level testing, so the system

requires an online monitoring to detect and prevent the HT in runtime.

This dissertation focuses on HTs inside the router of a NoC designed by a third party. It

explores two HT-based threat models for the MPSoC, where the NoC experiences packet-

loss and packet-tampering once the HT in the infected router is activated and is in the

attacking state. Extensive experiments for each proposed architecture were conducted using

a cycle-accurate simulator to demonstrate its effectiveness on the performance of the NoC-

based system.

The first threat model is the Black Hole Router (BHR) attack, where it silently discards

the packets that are passing through without further announcement. The effect of the BHR

is presented and analyzed to show the potency of the attack on a NoC-based system. A

countermeasure protocol is proposed to detect the BHR at runtime and counteract the delib-

erate packet-dropping attack with a 26.9% area overhead, an average 21.31% performance

overhead and a 22% energy consumption overhead. The protocol is extended to provide

vii



an efficient and power-gated scheme to enhance the NoC throughput and reduce the energy

consumption by using end-to-end (e2e) approach. The power-gated e2e technique locates

the BHR and avoids it with a 1% performance overhead and a 2% energy consumption

overhead.

The second threat model is a packet-integrity attack, where the HT tampers with the

packet to apply a denial-of-service attack, steal sensitive information, gain unauthorized

access, or misroute the packet to an unintended node. An authentic and secure NoC

platform is proposed to detect and countermeasure the packet-tampering attack to maintain

data-integrity and authenticity while keeping its secrecy with a 24.21% area overhead. The

proposed NoC architecture is not only able to detect the attack, but also locates the infected

router and isolates it from the network.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Rapid advances in technology have boosted unprecedented growth in the semiconductor

industry which is impacted by Moore’s prediction that the number of transistors in an

integrated chip (IC) would double every 18 to 24 months; well-known as Moore’s Law [1].

Due to advances in deep sub-micron technology, semiconductor manufacturing is moving

towards 7 nm processing technology [2] and by the next decade the physical dimension of

CMOS transistors are expected to cross even below 5 nm [3,4]. This leads to increasing the

transistor density and allows cramming more components into a single IC creating massive

circuits into a single chip.

Following the positive influence of Moore’s law, the complexity of the circuits into a

chip exponentially increases. In order for design engineers to keep pace with such sophis-

ticated levels of integration, they have come up with a new design methodology, known

as System-on-Chip (SoC). The current Very Large Scale Integration (VLSI) technology is

able to support high chip density by integrating many computing resources with specific

Intellectual Property (IP) cores to build a complete system on a single chip. IP cores are

the building blocks of various system on chip designs for embedded system applications.

Examples of cores are the Central Processing Unit (CPU), the Digital Signal Processor

(DSP), the memory controllers, or the peripheral devices such as Ethernet or the Peripheral
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Component Interface (PCI) buss controllers. A SoC may contain hardware cores of digital,

analog, or mixed-signal in addition to software cores.

However, with the breakdown of Dennard scaling [5], further clock frequency increases

are constrained by practical limits on power dissipation [6]. Because of shrinking the

transistor channel, the power dissipation in IC increases with the operating clock frequency,

leading to thermal runaway. Therefore, design engineers have moved their focus from

improving a single-core performance, by means of higher clock speed and the use of wider

and more intricate micro-architectures, to increasing the amounts of parallelism in a system

to achieve high performance and efficiency goals [7]. Chip multiprocessors (CMPs) [8] are

now the only way to construct a high performance platform by filling up a processor die

with multiple, relatively simpler cores instead of just a larger one.

Future designs are expected to integrate hundreds of processing elements (PEs) into a

single chip. The processing cores must include an interconnect architecture among them-

selves and interfaces to peripheral devices. The interconnection architecture consists of

physical interfaces and communication mechanisms to allow proper communication among

SoC components. Therefore, On-chip communication has a significant impact on the

chip-level performance and energy efficiency [9–11]. Usually, the interconnect architecture

is based on dedicated wires or shared busses. For a limited number of PEs, dedicated wire

architecture is effective. When the number of PEs in the system increases, the number

of wires around the PE also increases and thus dedicated wires have poor reusability and

flexibility. On the other hand, a shared bus is a set of wires common to multiple cores that is

more flexible and totally reusable. The drawback of shared buses is that they allow only one

communication transaction at a time. As a result, the communication between other PEs

that share the same bus are stalled. The bus communication bandwidth in the system and

its scalability is limited to a few PEs. Therefore, it faces the major problem of scalability.
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This had prompted the research to attain a new scalable interconnect architecture known as

Network-on-Chip (NoC) [12].

The NoC architecture has been proposed as a high performance, scalable and power

efficient alternative to the bus-based architecture. The NoC-based interconnection systems

are scalable for integrating hundreds of PEs without significant degradation of the perfor-

mance. It separates the computation system (PEs) from the communication system (NoC).

This made NoC ideally suitable for contemporary and future integrated systems [13].

NoC has been adopted as a new interconnect paradigm for IP cores in SoC to over-

come the shortcomings provided by the traditional interconnection architectures, wires, and

busses. For example, the Intel Teraflop Research chip [14, 15] is an integrated architecture

that comprises 80 tiles, each containing a pair of simple floating point execution units

arranged in an 8×10 2D array with a NoC-based interconnection. In addition, the Intel

Single-Chip Cloud Computer project [16] incorporates 48 Itanium cores arranged in 24 tiles

(each tile has 2 cores) connected via a 2D array network of 6×4 routers. Other examples

are given by IBM, Larrabee, and Tilera which demonstrate 32, 64, and 100 cores in a single

die with NoC backbone interconnection [17, 18]. More recently, Xilinx announced a new

programmable device, known as Versal, which is the first adaptive compute acceleration

platform (ACAP). The Versal chip adopts processing elements and acceleration engines

connected by a programmable NoC [19].

Unlike buses, NoC makes possible sharing wiring resources between several communi-

cation flows and at a higher bandwidth, which allows multiple concurrent communications

[20]. Figure 1.1 shows the time line for the evolution of on-chip interconnect architectures

[21]. In the contemporary era, the NoC has replaced the traditional bus-based intercon-

nection architecture for scalability, high performance, low power, and low design cost.

Although there are advantages provided by NoC for integrating complex systems, modern
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SoC are exposed to a plethora of security vulnerabilities.

Figure 1.1: Evolution of on-chip communication architectures [21].

The SoC organizational revolution has resulted in a globalized and collaborative supply

chain with wide use of Third Party Intellectual Properties (3PIPs) seeking a reduction in

time-to-market and the overall design cost. A designed system may be obtained from a

various pool of design houses, with a wide array of in-built functionality. This will have far

reaching implications towards the security and trustworthiness of the entire chip [22, 23].

3PIP providers preserve their technological innovations, and limited design information is

disclosed which makes the security assurance and verification of 3PIPs a challenge. As a

result, many existing techniques based on internal signal inspection are useless for detecting

malicious hardware embedded in 3PIPs (e.g.[24]).

The malicious hardware modification of the original design in the chip is known as a

Hardware Trojan (HT). HTs can be embedded during any stage of the IC design flow and

the manufacturing process of the IC design life-cycle [25]. The aim of such HT attacks is

to leak information, degrade the system, manipulate the data, or others [26–29]. HTs are

becoming more complex and powerful, such that they are very hard to detect, particularly
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complex systems in a single IC which makes it even harder to notice HTs during the test

process. Therefore, it became very difficult for SoC designers to pinpoint the physical

alterations in 3PIPs. In particular some techniques are applied to camouflage malicious

circuits. Recently, a number of cases have been reported where hardware Trojans have

compromised the underlying system without being detected. One example is a failure

of a Syrian radar system in detecting air strikes due to a HT infection [30]. Another

example is demonstrated in [31] where a backdoor was inserted into a military chip in order

to access the FPGA configuration. Researchers have also demonstrated many hardware

Trojan designs and attack models [32].

In Multiprocessors System-on-Chip (MPSoC), the NoC is the heart of the communica-

tion core between processors, which made data transferred from a source to a destination

exposed in the on-chip network. This made the NoC a target to security attacks. Addition-

ally, NoC is composed of several based-routing modules and its complexity has increased

to guarantee quality of services (QoS) [33]. As a result, the NoC is vulnerable to Hardware

Trojan attacks.

1.2 Research Motivation

NoCs are expected to dominate the computing platforms in the near future and take part in

the success of future SoCs for embedded applications. NoC platforms will keep pace with

technology capabilities and diminish the design productivity gap [34].

The main advantage of NoC is being flexible and dynamically sharing resources, where

multiple PEs connected by NoC are dynamically allocated [35–38] and performing various

applications simultaneously on a MPSoC. The NoC is the core of the data communication

between IPs that could represent a system vulnerability. It plays an important role and can
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contribute to the overall system security. Besides flexibility of the NoC, the data and infor-

mation being transferred between IPs through the NoC are uncovered. This may expose the

NoC to security threats, such as data and information snooping, crypto-keys robbing, data

altering, hijacking IPs and allowing illegitimate access, shared memory access and data

seeping, network bandwidth degradation, and applying Denial of Service (DoS) to degrade

the whole system.

It is believed that the Internet-of-Things (IoT) [39] is pervasive in our lives, where

several devices interact together through the environment. Additionally, a multiprocessors-

based system connected with the environment could run sensitive and critical applications.

The possible interference of MPSoC with the environment makes the system vulnerable to

attacks which cannot be ruled out. In this case, malicious applications could be downloaded

at runtime and infect the processing cores thorough the NoC and run threat attacks on the

system.

Much research on the security threats to the NoC have been adopted, but several attacks

have not been explored enough and still remain to be counteracted. A search of the

literature revealed few studies on the effect of a hardware Trojan in NoC performance and

security. However, this work expanded the research on the impact of a HT in an on-chip

network to provide a trusted interconnection platform for the IP-cores in the system.

Much research focuses on the impact of hardware Trojans in the NoC while advocating

for secure communication among the IP-cores in the system. The main goal of this work

is to provide a resilient and secure NoC architecture that mitigates the effects of the HTs

and the malicious nodes, such as applying DoS by consciously dropping the data packets

from the NoC, thus creating a black hole in the NoC. The Black Hole Router (BHR) is

a malicious router that receives the packets from the adjacent nodes and silently discards

them and, therefore, the victim packets do not reach their determined recipients. On top
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of mitigating HT effects, this work also proposes an authentic and secure on-chip inter-

connection platform to guarantee various security services of data confidentiality, integrity,

and authentication.

1.3 Dissertation Statement

The objective of this research is to answer the following question: Can we design a secure

NoC in the presence of a malicious router?

More specifically, if a NoC is infected with a malicious element during the design flow,

we need to detect and prevent associated internal attacks at runtime.

The goal of this research is to design a secure NoC model that is resilient to denial of

service attack while maintaining data-confidentiality, integrity, and authenticity in the NoC

even if it is infected with malicious Trojans.

Overall, this dissertation covers the black hole attack in the NoC, where, a HT is hidden

in the NoC to silently discard packets from the network without forwarding them to their

recipients. It also covers protection to the data packet in the NoC and validating their

delivery to the intended destination. This dissertation, additionally, uncovers HT attacks

that are inserted in the network router to deliberately tamper with the data packets, to snoop

on the transferred data, obtain unauthorized access, or misroute them to apply a denial of

service attack.

1.4 Dissertation Contributions

The major contributions of this dissertation are presented in Chapters 4, 5, and 6. The

achievements of this research are demonstrated in two main research directions concerning

HT attacks and design challenges. The first research direction presents a novel technique
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to locate, detect a BHR, and prevent its attack. This work is adopted to provide an energy-

friendly technique to detect a BHR with less power and performance overhead. The second

research direction presents a novel method to keep the secrecy of moving packets and detect

packet-tampering attacks in an infected NoC while maintaining integrity, and authenticity.

It also presents a novel technique to detect misrouting and a hidden HT.

1.4.1 Detection and Prevention Protocol for BHR Attack

This work proposes a NoC architecture that mitigates the Black Hole Router attack that

drops packets when it is activated.

The contributions made through this work are:

• A new threat model originating from a compromised NoC. This model can be a

potent security threat since third party NoCs become common in low cost design.

• A detailed design of a Black Hole Router showing the potency of the associated

attack.

• A detailed design of the proposed mechanism to counteract such attacks and guaran-

tee packet delivery even in existence of a Black Hole Router.

• Extensive experiments using a cycle-accurate simulator along with discussion on the

effect of the proposed secure protocol on the NoC performance and on its overhead.

1.4.2 Energy-Efficient Detection of BHR

This work proposes a power-efficient NoC model that reduces the power consumption

while mitigating the Black Hole Router attack.
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The contributions made through this work are:

• A detailed design of a power-gated NoC architecture that detects a BHR with mini-

mum power consumption.

• Extensive experiments using a cycle-accurate simulator along with discussion on the

effect of the proposed secure protocol on the NoC performance and its overhead.

1.4.3 Authentic and Secure NoC Platform

This work proposes a secure NoC model for detecting a packet-tampering attack to obtain

privilege on the moving packets in the NoC. It demonstrates a novel technique to not only

detect the malicious attack but also localize the infected router in the NoC while providing

maintaining data-confidentiality, integrity, and authenticity.

The contributions made through this work are:

• Authentic-NoC Model: an on-chip network platform that provides data integrity and

authenticity while maintaining the secrecy of the data in the NoC.

• A detailed design of the NoC model to discover the packet tampering attack, packet

routing violation, and locate the source of the attack in the NoC.

• Extensive experiments using a cycle accurate simulator along with discussion on the

effect of the proposed secure platform on the NoC performance and its overhead.

1.5 Dissertation Organization

Chapter 2 provides the background of the Network-on-Chip and security attacks in embed-

ded NoC-based systems.
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Chapter 3 reviews the aspect of security in Multiprocessors System-on-Chip (MPSoC)

and provides a literature survey of the security attacks in the NoC.

Chapter 4 presents a study of the Black Hole Router attack on the NoC. It demonstrates

the power and area overhead, and explores the effect of their locations and distribution in

the network as well.

Chapter 5 presents the contribution to the first proposed research direction. It demon-

strates the detection and prevention mechanism for a Black Hole Router that deliberately

drops packets from the NoC when activated. In addition, a power-gated technique is

proposed to identify BHR and protect the NoC from the attack by an energy-efficient

mechanism.

Chapter 6 demonstrates a novel authentic technique to secure the NoC platform to

provide packet integrity and authenticity while maintaining its confidentiality. This chapter

proposes a technique to localize the source of the attack on the victimized packets.

Finally, Chapter 7 concludes the main research of this dissertation and discusses the

potential future research.
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CHAPTER 2

BACKGROUND

This chapter discusses the new paradigm of the interconnection of IPs into a single chip

(SoC). It is known as a Network-on-Chip (NoC), where the data (message) is divided into

packets and then transferred from one node to another through a routing protocol forming a

simple network. In this chapter, an overview of the NoC architecture and routing techniques

are presented. In addition, this chapter also covers hardware security issues in SoCs,

including security threats, hardware Trojans (HTs), and their countermeasure techniques.

2.1 Network-on-Chip (NoC) Platform

2.1.1 Architecture

The Network-on-Chip is an interconnection architecture that consists of three main compo-

nents: the Network Interface (NI), the Router, and the Link [40]. Figure 2.1 shows a general

architecture of the NoC. The NI is an interface module that decouples the computation part

(executed by IPs) from the communication part (executed by routers). The Router is a

smart engine that directs data packets from a source IP to a target IP through intermediate

nodes. The Link is a physical connection, wires, that attaches different routers.
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Figure 2.1: General architecture of the Network-on-Chip.

Network Interface (NI)

Each IP core is connected to a respective NI that serves as a logical interface between

the communication network and the IP core. The NI is responsible for packetizing or

depacketizing the message that is being sent or received, via the network, by an IP core.

The NI is generally divided into two main sub-modules: a front-end and a back-end sub-

module [41–43]. The front-end module handles the requests of IP cores, while avoiding the

knowledge about the network. However, the back-end sub-module is connected directly to

the network to handle basic communication services, such as data packetization, network

protocols, and reordering packets.

Router

The Router is the main component in the NoC [13]. It is the communication backbone in the

NoC-based interconnect architecture. It receives incoming data packets and analyzes their
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routing information to determine the best path, based on the routing function. A typical

router consists of two main components, the Datapath, where the packets go through from

an input port to an output port, and the Controlpath to guide the flow of the data packets in

the router. Figure 2.2 shows a classic virtual channel router. A router is built according to

the Open Systems Interconnection (OSI) model [44,45] of the NoC. Each layer has its own

specific functions to perform [46].

Input Buffers

Router

Crossbar Switch

CONTROLPATH

Routing 
Logic

Switch Allocator

Input
North

Output
Local

Output
North

Output 
East

Channel Allocator

input Port

Input
East

input Port

Input
Local

input Port

Figure 2.2: Block diagram of a typical router architecture.

The basic router architecture has input ports, output ports, and a local port that is

attached to its corresponding IP core. The ports are connected through a switching ma-

trix. The datapath consists of input buffers, and a crossbar switch. It handles the storage
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elements and the movements of packets of data or signals. On the other hand, the control

path is composed of the Routing Logic (RL), the Virtual Channel Allocator (VCA) and

the Switch Allocator (SA) blocks. These modules calculate the routing path, and manage

arbitration and resource allocation when a conflict of multiple packets occurs for limited

physical resources.

Link

Links are the physical wires that connect the routers in a network, which packets are being

transmitted through. Generally, the communication between routers are full-duplex (two

physical channels) and the link connection could be serial or parallel. The number of wires

per channel is uniform throughout the network and is known as the channel bit width. The

channel link is composed of two sets: a data-path for data packets and a control-path for

communication and handshaking. The length of the link plays a crucial role in latency,

which may require long wires to be partitioned into smaller segments and then a pipeline-

mechanism is applied [47]. A link connects different routers in the network and the number

of router’s ports depends on the chosen network topology.

2.1.2 Topology

The NoC topology determines the physical layout and the connections between network

components. It determines how switches and nodes are connected through the commu-

nication channels in the platform. The NoC topology determines the number of hops (or

routers) that a packet must traverse, and the interconnect lengths between hops. Further-

more, it defines the total number of alternative paths between nodes, which affects the

network bandwidth. The topology choice depends on the cost-performance trade-off of the

applications. Some of the most popular NoC topologies are illustrated in Figure 2.3.
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(a) Mesh (b) Torus (c) Folded Torus

(d) BFT (e) SPIN (f) STAR

Figure 2.3: An example of several topologies of the NoC [48].

Mesh

The Mesh topology [34] is a two-dimensional tiled array (grid) network. It consists of

m columns and n rows. Figure 2.3a shows an example of a Mesh NoC topology. Their

routers are situated at the intersections of two Links and each router is attached with an IP

core. Middle routers have five input and output ports corresponding to the four neighboring

directions and the local IP core. On the other hand, edge and corner routers have four and

three input and output ports, respectively, corresponding to the communication links and

IP cores. Due to the realities of semiconductor manufacturing and its layout efficiency, the

mesh NoC is the most popular and favored topology among research groups [20].

In [48, 49] many topologies for NoC have been proposed, however, it has been noticed

that mesh topology enjoys several advantages over the others. It has regularity in architec-

ture and can be easily implemented inside a chip. The links are short and have equal length.
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The routers used within the topology are of same type, except the corner and edge routers.

It can be fabricated on a single metal layer. It is also very simple to provide an addressing

scheme. Therefore, the 2D Mesh NoC has been addressed in the work of this dissertation.

Torus

The Torus topology [20, 50] is similar to a regular mesh NoC. However, the edge routers

are wrapped around to the other side ones, such that each router in the network is connected

to four neighbor routers, as shown in Figure 2.3b. The path diversity of a torus is better

than the mesh network, and it has more minimal routes. On the other hand, due to the

long wraparound channels, the packet transmission delay increases and consequently the

network performance is degraded. This can be avoided by folding the torus network as

shown in Figure 2.3c

Butterfly Fat Tree (BFT)

A tree topology consists of nodes (vertices) and leaves. In the Butterfly Fat Tree (BFT)

topology [48, 51], routers are placed at the nodes and IP cores are placed at the leaves.

Figure 2.3d shows an example of a two level BFT. Each router has two parent ports and

four child ports.

SPIN

A Scalable, Programmable, Integrated Network (SPIN) [12, 52, 53] is another popular

topology. It is similar to fat tree architecture, as shown in Figure 2.3e. Unlike the BFT,

where the number of routers at each level reduces by two, the number of parent ports in the

SPIN architecture is equal to the number of child ports for every router. There are as many

parents (routers) as leaves (IP cores) such that the network is non-blocking, i.e., it is always
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possible to establish a connection between any idle IP cores without any effect on existing

connections [43, 54].

STAR

A STAR network [55] consists of a central router in the middle of the star, and IP cores

or sub-networks at the spikes of the star, as shown in Figure 2.3f. The main issue of the

STAR architecture is that the capacity of the central router is quite large, since all the traffic

between the spikes goes through it. That causes a remarkable possibility of congestion in

the central router of the star.

Others

There are some other proposed topologies such as Octagon [48, 56], Polygon (Hexagon)

[55], Spidergon [55], Butterfly, Ring and others [13]. When routers are arranged as an

octagon shape, this architecture is called the Octagon topology. The simplest polygon

network is a circular network where packets travel in a loop from one router to another. In

a Ring topology, the routers are in a ring shape.

Different topologies have a fundamental impact on the network performance, cost,

and routing protocols. These criteria allow the design engineers to choose the optimum

topology for the target system. In this research, the Mesh network has been used for

its simplicity of data routing and architecture which allows the division of the chip into

processing regions. So, different protocols may be used in local regions. The work in this

dissertation can be applied to other NoC topologies as well.
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2.1.3 Switching Techniques

Routers and links, along with the network topology, are employed for providing communi-

cation infrastructure for the IP cores. The Data (message) is being moved from a source to

a destination in the NoC via routers and links. Based on the router structure and network

topology, messages follow a flow-control known as a switching technique. The Switching

technique controls the allocation of network buffers and links. It assigns messages to the

buffers and the links in the NoC.

When a message is injected into the network, it is first divided into packets, which

sometimes are further split into fixed-length flits (flow control units) depending on the

switching technique that is used. A message is the logical unit of communication above

the network and a packet, however, is the physical unit that makes sense to the network. A

Packet is a fixed length data block that contains all the control and routing information in

its header. Unlike packets, just the first flit (header flit) contains the routing information; its

main task is reserving a path for other flits (data flits) following it, and the last flit (tail flit)

releases all the resources reserved by header flit, so all flits of a packet must follow the same

route. Figure 2.4 shows an example of packet segmentation. A message is partitioned into

packets. A packet is composed of Header and Payload. Each packet carries its routing and

sequence information in the header, and the payload contains the data message. Packets

are further divided into flits (Header, Body, Tail).

The Performance of the NoC also depends on the switching technique that defines the

way and the time of connections between input and output ports inside a switch (router).

There exist various switching techniques, but the most popular ones are Circuit Switching,

Packet Switching, Virtual Cut-Through Switching, and Wormhole Switching.
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Figure 2.4: Structure of messages, packets, and flits.

Circuit Switching

In circuit switching [54], the physical path connecting the source with the destination is

reserved before the start of message transmission and kept busy for the entire duration of

the transferring process. The setup procedure is done by injecting the header flit into the

network. Since the header flit contains routing information, it moves towards the destina-

tion through intermediate routers and reserves the communication links. Once the header

flit reaches its destination, the complete path has been assigned to this data transmission

and an acknowledgement is sent back to the source. The reserved path is then released

when the tail flit has arrived.

This technique reserves network bandwidth for the entire duration of the data transfer

while it ties up resources and may cause unnecessary delays. Circuit switching is useful

when the messages are infrequent and long. On the other hand, it may block other mes-

sages, since the entire physical path is allocated to that transmission.
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Packet Switching

In the Packet Switching technique, also called Store-and-Forward (S&F) [54], the message

is partitioned into fixed-length packets. Every packet, unlike the circuit switching tech-

nique where the path is constructed prior to sending the data, is routed individually to the

destination. Each packet has routing and control information embedded into the header,

which is used by the intermediate routers to decide the packet’s destination. This technique

is useful when messages are frequent and short. It also fully utilizes the communication

link when there are data to be transferred. However, a packet is completely buffered at

each intermediate router before it is forwarded to the next one, require large-sized buffers.

This storage requirement at the individual routers can become extensive if the packet size

becomes large and multiple packets must be buffered.

Virtual Cut-Through (VCT) Switching

In the packet switching technique, the packet is stored in a buffer, waiting for the whole

packet to be completely received before making any routing decisions. However, the size of

the packet may be bigger than the width of the physical channel, so transferring the packet

will take multiple cycles. Instead of waiting for the entire packet to be received, a router

forwards the packet header and the following data once the routing decision has been made

and the output buffer is free. In fact, the packet does not have to be buffered at the output

of the router and can cut through to the input buffer of the next router before the complete

packet has been received at the current router. This switching technique is called Virtual

cut-through (VCT) [54].

The VCT and S&F techniques, unlike circuit switching, do not reserve the whole

path from the source to the destination, since every packet contains routing information.
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However, a physical link between two contiguous routers is reserved during the packet

transmission. Additionally, in VCT and S&F, each packet is routed independently and thus

they may take different paths.

Wormhole Switching

In wormhole switching [54], packets are further divided into smaller pieces called flits,

as shown previously in Figure 2.4. The size of a flit is usually equal to the width of the

physical link. The main reason for partitioning the packet into flits is to decrease the buffer

size at routers and thus achieve much faster routers. Data is transferred from the source to

the destination through the network at the flit level in a pipeline platform. The header flit

contains routing information so it reserves resources in routers along the path, which other

flits follow, while the tail one releases the resources for subsequent communications. While

wormhole switching requires a smaller buffer size, problems due to deadlock and livelock

may arise [43]. In case of a blocking, wormhole switching stops every flit in its current

router, so it occupies several routers in the constructed path. This blocks the resources and

stall flits’ movement, causing a deadlock problem [57]. In order to solve this issue, some

control logic splits the physical channel into several Virtual Channels (VTs). Each has its

own buffer, but they share the same physical link [58].

2.1.4 Routing Algorithms

A routing algorithm determines the path taken by the data packets from the source to

reach its destination. Routing methodology has been efficiently used for increasing the

network performance and decreasing packet latency. Several routing techniques exist that

are generally categorized according to their key characteristics.
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Every routing algorithm has a different impact on the network performance. Routing

schemes may accompany some problems, such as deadlock, livelock, and starvation:

Deadlock: deadlock is a situation when packets stall and are not able to move. It

happens when two or more packets are waiting for each other to be routed forward. For

example, if two packets occupy some resources and both are waiting for each other to

release the resource, a cyclic dependency between the channels exists, causing a deadlock

problem. Deadlock is the most difficult problem to solve.

Livelock: Livelock usually happens in adaptive routing algorithms. It happens when a

packet is circulating forever around its destination and the required channel to the destina-

tion is always reserved to other packets and not being assigned to it. In this case, the packet

will pick any alternative available channel and move to the next switch instead of waiting.

Starvation: Starvation happens when a packet requests a resource that is always granted

to other packets. As a result, the packet stops in the traffic and will not obtain the requested

resource.

According to the way of defining the routing path, routing techniques can be either

deterministic (oblivious), i.e., the routing path is the same between a source and a des-

tination, or adaptive (dynamic), where the routing path from a source to a destination is

dynamically changed based on network load, traffic conditions, or other information about

the network. Hybrid schemes are also possible where routing algorithms can switch from

one technique to another according to the network status. Deterministic routing requires

less resources, but it underutilizes the network resources [12]. While adaptive algorithms

provide higher throughput and lower latency, they are more complex in implementation,

requesting extra hardware, and are deadlock or livelock prone in comparison with oblivious

ones. Additionally, packets between the same source-destination pair may take different

routes. As a result, they may arrive out of order, and thus a large buffer space is needed for



23

reordering them [59].

There are various routing techniques in the literature. This work will present a set of

approaches being applied or proposed in modern and future multiprocessor interconnects.

Oblivious Routing algorithms

Oblivious routing algorithms have no information about the conditions of the network, such

as traffic amounts or congestion.

• Dimension Order Routing

In Dimension Order Routing (DOR), the network topology should be decomposed

into several orthogonal dimensions, e.g. hyper cubes, meshes and torus [48]. The

routing algorithm is deadlock-free for n-dimensional hyper cubes and meshes since

their Channel Dependency Graph (CDG) is acyclic [57]. The data packets move

through one dimension until they reach the target coordinate of this dimension, then

they switch to the other dimension.

XY routing: XY routing [60] is a type of DOR routing which routes packets first in

a horizontal (X) direction to the target column and then in a vertical (Y) direction to

the destination router. This routing algorithm is deadlock and livelock free [60], and

well-fit to mesh and torus topologies.

Pseudo-adaptive routing [60] and Surrounding XY Routing [61] are two schemes

derived from XY routing. Pseudo-adaptive routing works in a deterministic mode

first, but it switches to an adaptive mode based on the network congestion. Similarly,

Surrounding XY Routing works just like basic XY routing as long as the network is

not blocked, but it goes around routers that are blocked or inactive.
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• Turn Model

Turn model algorithms [62] assign a turn or turns of the packet routing to avoid dead-

lock between packets travelling in different directions. West-First, North-Last, and

Negative-First routings are well-known examples of turn model routing algorithms.

• Deterministic routing algorithms

Deterministic routing algorithms [54] always generate the same routing path for a

given pair of source and destination. They usually choose the shortest path. In

deterministic routing, the header packets move forward, reserving a new channel

at each routing operation, choosing the closer path to the destination. A shortest path

routing is one of the simplest deterministic routing algorithms. Packets are always

routed along the shortest possible path. Distance vector routing and link state routing

are notable examples of shortest path routing algorithms.

Source Routing: In the source routing technique, the sender makes all the decisions

of the routing path for a packet and embeds the whole routing path into the packets’

header, such as a vector routing, an Arbitration look ahead scheme (ALOAS) [63],

and contention-free routing. They are different version schemes that work the same

as source routing.

Destination-tag routing: A destination-tag routing is also known as a floating vector

routing [64]. The address of the receiver – destination tag – is stored into the header

of the packet and every intermediate router makes its routing decisions indepen-

dently.

Topology adaptive routing: A Topology adaptive routing [65] algorithm works

like a basic deterministic algorithm but it has one feature which makes it suitable

to dynamic networks. The systems administrator can update the routing tables of the
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routers if necessary. A corresponding algorithm is also known as an online oblivious

routing [66].

• Stochastic Routing algorithms

They are typically simple and fault-tolerant. However, they are quite slow and use

plenty of network resources. Stochastic routing algorithms define the packet’s time to

live (TTL), which is the time that the packet can wander around in the network before

it is dropped off from the network. Flooding Algorithms [67] is the most common

stochastic routing algorithm, where routers send a copy of an incoming packet to

all possible directions like a flood. The number of copies and the routing directions

depend on the type of the flooding algorithm. A probabilistic flood, a directed flood,

and a random walk [67] are three different techniques of flooding algorithms.

Adaptive Routing Algorithms

Adaptive routing algorithms do not provide a fixed routing path between a source and a

destination. The current network conditions affect the routing decision, which makes the

routing more flexible. Therefore, packets could follow different ways instead of waiting for

a busy link. Based on the current and destination nodes, an adaptive routing algorithm sets

the available output channels and then determines the most appropriate one. Nevertheless,

adaptive routing algorithms increase routing flexibility, but the hardware becomes more

complex and slower.

• Minimal Adaptive Routing

This algorithm [64] always routes packets along the shortest path. It uses a route

which is the least congested.
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• Fully Adaptive Routing

A fully adaptive routing algorithm [64] always uses a non-congested route, regardless

of it being the shortest path between the sender and the receiver.

Congestion Look Ahead: In this routing algorithm, information about congestion

from other routers are collected and analyzed, then packets will be directed to bypass

the congestion [68].

• Other Adaptive Routing Algorithms

Other adaptive routing algorithms can be applied in the NoC. For example, the

Odd-Even turn model for adaptive routing [69]. Also, the dynamically adaptive

and deterministic (DyAD) NoC system [70]. Q-routing [71] which makes a routing

decision based on the network traffic statistics. The Hot-Potato routing algorithm

[72] is also an adaptive routing technique, where packets are moving all the time and

forward from one router to another without stopping before reaching their destina-

tion.

2.2 Security Attacks in a System-on-Chip

Embedded systems are basically built into every electronic device today, ranging from

commercial applications such as smart phones and computers, to more critical applications

like banking and military systems. The security of such critical applications is highly

demanded to protect personal and sensitive information from threats and attacks. If a

banking system leaks passwords and secret information or even fails, a tremendous collapse

in the wealth of a country could take place. Moreover, if a military system has been cracked,

disasters could happen.
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Security attacks can be in the form of hardware or software threats. Hardware attacks

have emerged as a crucial issue to the security of systems. They can cause various adverse

effects on the system, for example changing internal memory values, leaking sensitive

information such as secret keys, or degrading the system or even completely damaging the

device. Unlike software attacks where they can be always removed, hardware attacks may

linger within the system and completely change the functionality of the system. Software

attacks that change the actual software may be reversed by overwriting the software with

the original software again. Different hardware threats include fault injection, IC counter-

feiting, 3rd party intellectual property (IP) piracy, and hardware Trojans (HTs).

2.2.1 Attack Taxonomy

In order to add specific security features to a system, additional costs in the design are

applied in terms of design flow modification, and extra hardware or software modules.

Consequently, the system performance and power consumption are affected [73]. As a

result, design engineers need to deduce the security threats in the system and the require-

ments to counteract such attacks. This would reduce the implementation cost of the secure

system. Therefore, this chapter provides an overview of typical security attacks in system

on chip, and their classifications in terms of the way that an attack occurs and its target.

Security threats are attacks that exploit the software and physical vulnerabilities through

invasive or non-invasive techniques [74]. Attacks could cause severe issues to the privacy

of information, the integrity of data, and control of the system.

• Software Attacks

In software attacks, the system architecture is exposed to malicious software agents

such as a virus, a Trojan horse, or a worm. These attacks address hidden bugs in

the software code, such as those which exploit buffer overflow or similar techniques
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[75]. As embedded systems software increases in complexity and functionalities,

they become more vulnerable to software attacks in embedded devices, automotive

electronics, and several widespread applications. Since hackers can cheaply perform

a malicious function through a simple infrastructure, software attacks exemplify the

major threat to face in the challenge to a secured system. Additionally, the possi-

bility of modifying functionalities, updating software, or downloading new software

applications increases the vulnerability to external attackers and malicious threats to

the security of the system. Moreover, systems are connected to the internet such that

an attacker no longer needs a physical connection to access the system [76], which

reflects an increase in the potential for security threats.

• Physical Attacks

In physical attacks, a physical connection to the system is established in order to

directly access sensitive information or interface with it. Attackers should know

some details about the system and exploit the characteristic implementation or some

of its properties to breach the security of the device. Physical attacks are classified

into invasive and non-invasive [77].

Invasive Attacks: Invasive attacks [77] require depackaging the chip to directly

access the internal component. For instance, snooping information carried on the

data bus or on the internal wires. Depackaging the chip exposes the system structure,

then data wires are attached to micro-probes for observing internal parameters and

detecting values on buses, memories and interfaces [73]. Invasive attacks require

relatively expensive infrastructure, thus they are much harder to use. However, they

can be exploited to gather information about the device, such as information about

the system layout and the main components, that can be used to perform other types
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of non-invasive attacks.

Non-invasive Attacks: A non-invasive attack only exploits externally available in-

formation that are inadvertent emissions which accompany data processing and com-

putations, such as running time, power consumption, and electromagnetic. Unlike

invasive attacks, the device is not opened or damaged during the attack. Several

types of non-invasive attacks exploit different sources of information gained from

the physical implementation of a system, such as power consumption [78], timing

information [79, 80], electromagnetic leaks [81], scan-based channel attacks [82, 83]

and others, including counterfeit ICs and third party IP piracy [84].

2.2.2 Hardware Trojan Attacks and Countermeasures

Since the work presented in this dissertation considers the security threats of HTs in the

NoC, we focus on malicious hardware attacks.

Hardware Trojans

The semiconductor industry has started a globalized business model for the IC design

flow. The IC design goes through several stages of design, fabrication, assembly, and

test. Because of the global business model, IC design may experience outsourcing. Figure

2.5 depicts the IC design flow, and manifests vulnerabilities connected with outsourcing.

Companies consider cheaper ways to sell their high quality product; therefore, they look

for the cheapest foundries that will manufacture their product. Since the IC design has

been outsourced and handed to a 3rd party, hardware security threats have been increased

[85–90]. This has led to undesirable changes and malicious additions to the IC design.

These malicious hardware modifications on the original chip are known as a hardware

Trojan. HTs can be embedded at any stage of the IC design flow and the manufacturing



30

IP Std. Cells

Design
Fab

Interface

Dice and 

Package

Wafer 

Probe
Deploy and 

Monitor

Tools

Specifications Mask Fab

Package 

Test

Models

Trusted

Untrusted

Either

Figure 2.5: Outlined vulnerabilities of the IC design flow [85].

process. They can be embedded at the Register Transfer Level (RTL) in the design’s

Hardware Description Language (HDL), or straight into the gate level netlist, leading to

logical attacks on the system [28]. Also, design layouts can be modified at the fabrication

stage to include a HT for changing the internal circuit parametric properties such as delay

[25]. HTs must have a malicious goal. They are designed to attack the system in a variety

of forms such as a Denial of Service (DoS), information leakage, data manipulation, and

system degradation [26–29]. HT designs are becoming more complex and implemented in

a way such that they are hard to detect. They become able to bypass robust post-silicon

tests due to the nature of the HTs being small enough to consume negligible amount of

power compared to the whole system or being triggered by a rare event.

Figure 2.6 shows a hardware Trojan mechanism (Payload is the action or the damage

that the HT will execute once it is triggered). HTs can be activated via several types of

trigger circuits and then an attack occurs through a payload circuit. HTs can be triggered by

analog conditions such as temperature, delay, or voltage variation. Also, digital conditions

can trigger HTs such as Boolean logic or sequential events [91].
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Figure 2.6: An example of a Hardware Trojan scheme.

Nature and Potency of HT Attack

There are three major types of damage or malicious purpose a HT may have. First, it

may try to change or control the system’s functionality. Second, it may leak sensitive

information. Normally this is done through side channels, such as the power network.

Finally, it may try to reduce circuit reliability or the lifetime of the system. These type

of Trojans include parametric HTs or those that activate applications or functional units to

drain resources from the system and reduce the system life.

HT Activation Mechanism

A robust Trojan in hardware is designed to not be in a continuous active state in order to

pass the offline test, but it can hold other states such as idle and ready states, waiting for

a signal to start the attack. Once it is activated, it applies its malicious payload. A HT

can move from one state to another. Activating the HT is the criteria that makes it alive

to execute its disruptive job. The activation process can be externally activated (e.g. by

an antenna or a sensor that cooperate with the external world), or internally activated (e.g.

always active or condition-based).
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In the externally triggering mechanism, the target module requires an external input to

activate the Trojan. It could be user input (e.g. switches, keyboards, keywords and phrases

stream to the input) or component output (e.g. data coming through an external interface

such as the RS-232 or an antenna). Additionally, a HT could be activated by the environ-

mental conditions based on the output of a senor that monitors temperature, voltage, or by

any type of external interfaces (such as electromagnetic interference, humidity, altitude, or

temperature) [25]. For example, a HT can be triggered when the chip temperature exceeds

a certain threshold [88]. On the other hand, in the internally triggering mechanism, the

activation process is usually based on an internal logic state, a particular pattern of bits, or

an internal counter. This will result in a time bomb [92]. Since a HT cannot be always

active, it becomes really difficult to detect a Trojan through the testing process.

Hardware Trojan Detection and Challenges

Several Trojan detection techniques have been developed over the past decade. Trojan de-

tection approaches can be classified as either a side-channel analysis or a Trojan activation

[25]. In Side Channel Analysis [93, 94], the device goes through side channel examination

and analysis of some correlated signals including electromagnetic radiation, delay, and

power characteristics. The extracted side channel data is compared to what the “Golden

Model” displays to detect the abnormalities in the design. In Trojan activation strategies,

testing engineers run the device under several circumstances and input data anticipating

that the Trojan will become active and abnormal behaviors will take place. In some cases,

this activation detection method is combined with power analysis, where the Trojan has

been activated and the malicious circuit will consume more dynamic power.
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HT Detection Difficulties:

There are several HTs detection mechanisms, such as an offline detection method that

attempts to trigger the Trojan circuit and hence the HT is revealed. Therefore, the switching

probability of the trigger circuit is raised at the test time to increase the visibility of HTs

[91, 95]. However, for complex circuits, this increases the difficulty of capturing HTs and

infected ICs may still bypass offline detection methods. Detection of a HT in a SoC and

such suspicious alterations is extremely difficult for several reasons:

• A SoC integrates a large number of soft, firm, and hard IP cores, besides the high

complexity of today’s IP blocks. Therefore, looking for a Trojan circuit in a system

is like looking for a needle in a haystack.

• The nanoscale of IC makes the detection of a malicious circuit by physical inspection

and destructive reverse engineering very difficult and costly.

• Trojan circuits are designed such that their activation processes occur under very

rare conditions (e.g. sensing power or temperature, or sequence of input bits), which

makes them unlikely to be activated and detected using random or functional stimuli.

• An improvement in lithography led to a decrease in the physical feature sizes of

transistors which made the process and environmental variations have greater impact

on the integrity of the circuit parametrics. Therefore, it is impractical to use simple

analysis of these parametrics to detect Trojans.

• Since transistor size is constantly decreasing, it will be difficult for side channel anal-

ysis to distinguish the HT impact on the circuit, during the offline test, such as delay

and power consumption, due to the process variations of the system. Additionally,
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the idea of a “Golden Model” is impractical since the process variations still exist

and the HTs can easily be masked in the deviation.

• I/O ports and bit widths are increasing in embedded systems. This increases the

testing time for the system verification, which makes the testing process costly in

terms of money and time. It is very difficult to detect HTs by logical I/O testing,

since HTs may depend on a large amount of combinational logic input conditions

that triggers the Trojan circuit.

• For reducing the detection probability, a typical attack does not include HTs in every

integrated circuit, however HTs are selectively injected into a portion of the chip

population. Therefore, if detecting HTs in some ICs is negative, it does not guarantee

that the remaining ICs will be Trojan free.

HTs maliciously can be injected into an on-chip network for information leakage,

unauthorized memory accesses, and denial of service (DoS) attacks [96], such as incorrect

path routing, deadlock, or livelock [97]. Because of the high complexity of the NoC and

the challenges in HT detection, it is very difficult to detect Trojan circuits in a NoC. Thus,

run-time solutions can provide a practical defense for the system to mitigate the Trojan

effect. Hence, instead of detecting malicious circuits in a system during the post-silicon

test, the NoC should be designed to not only protect itself from the HT payload that delivers

the attack, but also to detect and to isolate any malicious node in the network system.
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CHAPTER 3

LITERATURE REVIEW

This chapter provides a literature review on security threats in the NoC-based systems

to-date. It presents the security services and summarizes the security threats addressing

the Network-on-Chip. Different types of attacks and countermeasures are presented, along

with their effect on the overall system.

3.1 Overview

A Multiprocessors System-on-Chip (MPSoC) is widely used in embedded systems to in-

crease their performance. It is composed of multiple processing elements (PEs), a memory

hierarchy, and I/O devices. All these components are connected to each other through a

NoC. Figure 3.1 shows a graphical representation of a MPSoC composed of several PEs,

memories, and I/O devices.

Since the NoC is the central interconnection platform of the processing cores inside

the chip that manages all communications among the Intellectual Properties (IPs), it has

become a target of security attacks. Most of the NoCs have been developed without

having compromising security issues in the design. So far, most proposed solutions try

to secure the IP cores and not the intercommunication itself inside a MPSoC. So, if the

interconnection between the IPs is not protected, the whole system will be vulnerable to
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security threats. Therefore, including a mechanism to achieve security services in a NoC

while maintaining low power and high speed communication is a challenge.
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Figure 3.1: An example of a NoC-based Multiprocessors System-on-Chip composed of
multiple PEs, memories, and I/O devices connected through the NoC.

3.1.1 Security Services

The security service is a service provided by the communication structure to supply the

system with a specific kind of protection to secure data transfer. In MPSoC systems, it

can be classified as having primary and secondary attributes [98]. Figure 3.2 illustrates the

classification of the security services attributes.

Primary attributes:

• Data confidentiality: provides the protection of data from unauthorized disclosure,

e.g., sensitive data stored in the memory or packets flowing in the NoC.
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Security Services

 Accountability

 Authenticity

 Non-repudiability

Secondary Attributes

 Data Confidentiality

 Data Integrity

 Availability

Primary Attributes

Figure 3.2: Security services attributes.

• Data integrity: maintains the data unchanged from unauthorized alteration, e.g.,

packets moving from the source to the destination should be delivered without changes.

• Availability: maintains the obtainability of resources to satisfy the performance

requirements, e.g., packets or flits can access buffers if they are available and have

the right to do this.

Secondary attributes:

• Accountability: availability and integrity of the identity of the IP that performs an

operation, i.e., an IP that attempts to access some resources has to provide informa-

tion that identifies itself to the target.

• Authenticity: integrity of a message content and origin, and possibly of some other

information, such as the time of emission.

• Non-repudiability: availability and integrity of the identity of the sender of a mes-

sage (nonrepudiation of the origin), or of the receiver (nonrepudiation of the recep-

tion). It avoids that any element denies an action, i.e., an IP cannot tamper with its

credentials to gain access to protected system resources.
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The combination of these security attributes defines a set of security constraints creating

a “Security Policy”. Security attributes are provided by security services to ensure the qual-

ity of service which guarantees that the MPSoC system has a certain level of performance

and data protection.

3.1.2 Security Threats Addressing the NoC

Attackers have different objectives and various attack scenarios to proceed with also. If

someone has succeeded with an attack on the on-chip network between the PEs of the

MPSoC system, they will be able to steal information, alter data, or degrade the system.

Several goals of security attacks and scenarios in the NoC are summarized in Table 3.1.

Table 3.1: Attack Scenarios and Countermeasure Techniques [96].

Attack Goal Attack Method Countermeasure
Techniques

• System Degradation

Denial of Service:
• Bandwidth depletion
• Incorrect path
• Deadlock
• Livelock
• Black Hole

Power Deprivation

H
ardw

are
Trojan

(H
T

)

• Firewall
• Security Zones
• Encryption

• Secret Info. Extraction Unauthorized Read

• Hijacking
Unauthorized Write
Unauthorized Reconfiguration

System degradation

By attacking the communication network between the PEs, attackers can degrade the whole

system and its performance.
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Denial-of-Service (DoS): The goal of this attack is to waste the network bandwidth and

cause higher latency in the packet transfer, resulting in missing deadlines. The following

attack scenarios are more damaging because they aim to obstruct channels in the NoC.

• Bandwidth depletion: the goal of this attack is to flood the network with redundant

packets that have random destinations to occupy some channels in the NoC [99,100].

• Incorrect path: this attack injects packets with erroneous paths in the network

with the aim to trap them into a dead end to reserve some channels and make them

unavailable for other valid packets.

• Deadlock: this attack routes the packets to a certain path to intentionally cause

deadlock. This leads to the contention of the channel and consequently of a part

or of the entire NoC.

• Livelock: this attack directs the packets to paths such that they cannot reach their

targets and stay turning infinitely in the NoC. This leads to waste of bandwidth,

latency, and power.

• Black Hole: this attack deliberately drops the packets from the NoC without further

information. This leads to packet loss and severe damage to the system [96,101,102].

Power Deprivation: The aim of this attack is to waste more power in the NoC by any

means, such as deviating packets in the network to consume more power to reach their

destinations. This attack should be taken into account especially for battery-based systems

such as a NoC in mobile phones.
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Secret Information Extraction

The aim of this attack is to read data in an unauthorized secure target to steal information,

sensible data, and crypto-keys.

Hijacking (System Reconfiguration)

This type of attack is the most harmful threat since all security policies are ineffective if the

system can be configured by an attacker. The aim of the attacker is to have the write access

to the secure area in order to modify or reconfigure the system. In this case, users will fail

to have control of the system.

Besides the aforementioned methods of attacks, a HT may be embodied in the system

for most kinds of attacks. In this case, the hardware platform is not secure any more. A HT

is considered a robust source of attack. If the hardware itself is insecure, the whole system

is not safe and no amount of software can secure it [96].

Countermeasure Techniques

A considerable amount of research on security threats in the NoC and their countermeasures

has been conducted. It is very expensive to design a NoC to counteract all of the security

attacks. Based on the security threat, a countermeasure technique is provided. For example,

a firewall around the memory is created to keep the secrecy of the data which autho-

rizes predefined memory spaces for read or write based on the security policy [103–106].

Encrypting packets in the NoC is another method to maintain the data confidentiality

[107, 108]. Creating a security zone [109–113] that contains some IPs in the NoC is a

mechanism to secure the application running on it. Other techniques are discussed in the

study of the related work.
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3.2 Survey of Related Work

There have been several studies on security attacks for NoC-based systems. There are

various sources of the attacks categorized below.

• A Software-based attack, where a malicious application is mapped to different pro-

cessing elements in the MPSoC to steal information or apply DoS.

• A Side channel attack, where sensitive information could be read through a timing-

side channel attack [114–118].

• A Malicious-NoC attack, where the NoC itself was embedded with a hardware Tro-

jan, or a compromised attack such that the NoC is malicious and works along with a

software program mapped onto one or more PEs in the MPSoC.

Security issues in the on-chip network architecture were first studied by Gebotys in

[119, 120]. They proposed a framework for security in a general communication NoC at

both the network level (transport layer) and the core level (application layer). The work

presented a secure exchange of cryptographic keys within the NoC addressing protection

from power or EM attacks of a system which is comprised of secure and non-secure cores.

This secure structure supports authentication, encryption, and key exchange. However, this

framework has to keep track of a large number of keys.

Most software-based security attacks can be revoked by firmware and software updates.

However, what if the hardware platform itself is malicious? In this section, the research

challenges of the infected NoC with malicious routers are explored. Attackers can embed

HTs in the routing nodes to apply security threats, such as extracting sensitive information

or causing system degradation. A Trojan in hardware can be in an idle state and waiting for

an activation (trigger) signal to run its malicious payload. This makes the HT potent and
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very difficult to reveal during post-silicon tests. Therefore, a malicious node in a NoC can

be a malignant one [96] that silently applies its attack without any notice.

3.2.1 Hardware Trojan Attacks and Countermeasures

Ancajas et al. in [121] addressed a HT model in the NoC-router that snoops on data

and breaks the system confidentiality. The HT is activated by a data-sequence and then

it forwards packets to a compromised processor attached to one of the network nodes. For

HT threat mitigation, they proposed the Fort-NoC model, which is a mechanism of three

layers to protect the on-chip network from third party IPs. The proposed three layers are

end-to-end (e2e) data scrambling, packet certification, and node obfuscation to prevent HT

activation. Although each layer reduces the risk of triggering the HT, scrambling data

and obfuscation fixedly runs the risk of masking an unintended target. While Fort-NoC

presents a modest packet security mechanism, it exhibits weakness in the encryption and

authentication method, where a static key is used to encrypt the packets and the header of

the packet is unprotected. This leaves a loophole for the attacker to comprehend the packet

certification and effectively steal senstive data without being detected.

Similar to [121], Hussain and Guo [122] addressed packet leak due to an inserted HT.

They implemented a dynamic packet certification, also known as a packet-tag, to overcome

the attack analysis and close such loopholes. They proposed a new technique to generate

a dynamic tag and scramble it with the data packet. This technique required two separate

keys, one to produce the tag, and the other one for scrambling. This technique was able to

detect a packet leak, however, it does not detect the location of the malicious router.

In [123], they designed a new packet authentication scheme, where packet-tags are gen-

erated at the source node and progressively authenticated during the way to the destination
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to reduce the effect on NoC bandwidth. However, this proposed ongoing authentication

adds excessive amount of energy and performance overheads.

Hussain et al. in [124] proposed an end-to-end technique to locate HT in an untrusted

third party NoC and reduce energy and performance overhead on the system where packet

authentication was verified at the final destination. Once a packet fails its validation at the

destination node, a localization method is applied to trace back the routing path to find the

HT. However, this method fails to detect a hidden HT in some scenarios, as explained in

the contribution section of this dissertation presented in chapter 6.

In [125], Biswas et al. analyzed the vulnerability of the NoC router security attacks

and their effects on the MPSoC security. They considered two types of router attacks:

unauthorized access, and misrouting attacks. In order to detect and prevent such attacks,

three different monitoring-based countermeasures were proposed: the Runtime-monitor,

the Restart-monitor, and the Ejection address checker (EAC) with an extra percentage area

of the router by 26.6%, 22%, and 3.4%, respectively. In addition, Biswas et al. included a

local monitoring module inside each router in a non-secure region. This module is based

on a time-out counter at each input port to protect the NoC from several malicious effects

resulting from a misrouting attack. Although the proposed monitoring technique detects

and protects from an attack, it cannot rectify the malicious routing table. In [126], Biswas

et al. extended their work and proposed countermeasures with less complexity and area

resources.

Yu and Fery [127] addressed HT issues in NoC links. They used an error control coding

approach to detect HT-induced link flaws. They applied a reshuffling technique to the

link and isolated the attacked link-wires instead of using cryptographic-based rerouting

algorithms through alternative paths in order to reduce the overall hardware cost for security

protection and the average latency of the NoC. However, their reshuffling technique to
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detect errors and correct packets is limited to the two victim wires of the link. Another

limitation is that their technique works if the HT is active for a short period of time. In a

case that the HT is active for a longer duration, a link isolation algorithm is used and the

two-bit errors of the malicious link can be solved.

In [128], Frey and Yu exploited the state-obfuscation technique, inspired from [129] and

the logic encryption [130] methods for general IP authentication, to detect and protect the

system from a HT that is embedded in the Finite State Machine (FSM) of the NI at runtime.

The proposed technique has two phases: 1) key-bits were added to the FSM and dummy

states were created to increase the difficulty of meaningful attacks; 2) illegal states were

examined to detect the HTs. Unlike the existing approaches of state-obfuscation methods

[129], the suggested one provided more paths from the legal states to the illegal one.

In [131], Frey and Yu proposed a dynamic permutation and a flit integrity check method

to thwart the HT attacker from modifying the flit type, changing the packet destination

address, or sabotaging the integrity of the packet inside the router. Consequently, they

mitigated a bandwidth depletion attack. Each router has an independent permutation con-

figuration such that it will be more difficult to perform a successful HT attack via multiple

routers. However, attacking the communication link between routers was not considered.

Another limitation of their proposed technique is the area and power overhead, since it

consumes 39% more area resources and 13% more dynamic power than the baseline design.

In addition, the NoC performance was not evaluated nor was considering real secure and

non-secure traffic scenarios.

Boraten and Kodi [132,133] examined a link HT that performs a packet inspection and

fault injection attack to apply DoS. The proposed HT model exploited the vulnerabilities

created by the fault-tolerant methods. For instance, an Error Correction Code (ECC)

can recover data transferred through the link, whereas multi-bit errors using single-error
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correction with double error detection (SECDED), corrects only one bit and detects double

errors, which triggers retransmitting the data. The purpose of the faults injection is to

trigger the ECC to detect errors and request packet-retransmission, hence it starves the

network resources by creating deadlock. Unlike [134] and [135] that considered flood-

based DoS attacks caused by rogue software, [132] and [133] considered a link HT within

the NoC to cause DoS attacks. In order to mitigate the suggested attack, they proposed a

heuristic-based fault detection model.

Boraten and Kodi [136] proposed a packet validation technique to protect a compro-

mised NoC from fault injection, side channel, and HT attacks by including two error

detection schemes, algebraic manipulation detection (AMD) [137] and cyclic redundancy

check (CRC) codes, to ensure data integrity. In normal operating scenarios, a CRC is well

capable of detecting faults in packets for low fault rates. However, for sending sensitive data

between cores, the system switches to the AMD mode to protect the sensitive information

from fault injections attacks. While the security system has been enhanced, the AMD costs

significant area and power overhead due to its complexity of encoding.

Rajesh et. al [138, 139] proposed a runtime latency auditor (RLAN) to detect traffic

abnormalities caused by a HT that suppresses allocation requests and de-prioritizes arbiters

within the router controller. Such a HT gives rise to flit latency and contention, which

consequently applies a bandwidth DoS attack in the NoC. RLAN was integrated in the SoC

firmware module that interfaces the PE to the NI in order to identify the latency elongation

of packets caused by the bandwidth depletion attack. The key problem with the RLAN

technique is that it uses delay to detect a DoS attack, which is difficult because several

factors influence packet latency during normal operation.

In [140], Zhang et al. demonstrated the effectiveness of two types of HT-assisted DoS

attacks, the sinkhole and the blackhole attacks, that target the NoC-based multiprocessor
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system. In their attack model, packets are either dropped or diverted to other malicious

nodes. The authors only analyzed the effectiveness of the proposed attacks. However,

neither a detection nor an avoiding technique was proposed to countermeasure the security

threat.

In [101], the effect of the Black Hole router in the NoC was studied. The associated at-

tack based on the number of infected nodes and their distribution in the NoC was analyzed.

In [141], a HT model that applies a DoS attack by misdirecting the packets in the NoC

was proposed. The authors presented a detection technique and a secure routing scheme.

However, the detection method is based on a deterministic routing algorithm.

The main goal of this dissertation is to detect such malicious nodes at run-time and

avoid them through secure routing protocols. Unlike fault-tolerant routing algorithms

where the faulty nodes are dead routers and are not involved in packets’ routing, malicious

nodes are nodes that participate in packet routing and apply their payload to breach the

system security or degrade the system. In contrast to malicious nodes, faulty nodes are

easy to detect and avoid. Malicious nodes are seemingly part of the network, but they

attack the system once they are triggered. A run-time detection technique and avoiding

such malicious nodes are needed and they are the research challenges of this dissertation.

This chapter has demonstrated the current research literature on HT attacks in the NoC.

The next chapters presents the contribution of this dissertation. The work focuses on two

attacks: 1) the black hole router attack, where packets are intentionally discarded from the

NoC. 2) the packet-tampering attack, where packets are altered to gain the privilege of the

NoC and obtain unauthorized access or to apply a DoS attack.
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CHAPTER 4

ANALYSIS OF THE BLACK HOLE ROUTER ATTACK IN THE

NOC

In this chapter, a HT model that applies a DoS attack by deliberately discarding the packets

from the NoC is proposed. The infected router that drops the packets is also known as a

Black Hole Router (BHR). The effect of the BHR attack on the NoC is studied. The power

and area overhead of the BHR are analyzed. The influence of the location of the BHRs and

their distribution in the network is demonstrated as well.

4.1 Threat Overview

As pointed out in the background overview, Chapter 2, HTs can be embodied at any time

of the design process and it is hard to detect them due to their potency in hiding. Such

malicious circuits are designed as “wolves in sheep’s clothing”, where they are concealed

and are considered as part of the system, however, they quietly attack the platform. It seems

possible that a router (node) in the NoC can be infected with a HT which sinks packets as

they pass through it and does not forward them to the next hop, forming a Black Hole

Router.

“A Black Hole Router is a node in the NoC where incoming or outgoing packets are

silently dropped without further information to the system [101].”
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Therefore, any incoming or outgoing packets to or from a BHR are disappeared from

the NoC. The BHR is classified as a malignant node [96] and in order to silently drop

the received packets, it follows the communication handshaking successfully and then

swallows them as soon as they are handed off. Figure 4.1 shows a scenario of a BHR

(R3). The handshaking (shown as dotted lines) between R1 and R2 are done successfully

and the packet is completely forwarded. Similarly, a packet is sent from R2 and handed

over to R3 auspiciously. However, R3 silently drops it and does not transfer it to R4 without

further notice. It seems to the source (S), R1, and R2 that the packet is being forwarded

successfully and neither R4 nor the destination (D) is aware of that drop.

R4R2R1

S D

R3

Figure 4.1: A scenario of a Black Hole Router (R3) that discards packets received from
R2 [101].

4.2 A Black Hole Router Targeting A Mesh NoC

A HT can be inserted into the control unit of the receiving module of a router, as shown in

Figure 4.2, in order to alter the control signals of the buffers of the input ports. Once the

HT is activated, it can then attack the received packets.

In this threat model, the HT has two parts: 1) the configuration circuit, which is in

charge of activating and deactivating the BHR attack, and 2) the payload circuit, which

executes the packet-dropping attack. Each input port needs a HT module, so there are a
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Figure 4.2: An example of a HT inserted in the input ports of a router.

total of five HT circuits that are synchronized to activate and deactivate the BHR attack.

Figure 4.3 shows the trigger circuit of the HT and the Black Hole function module. The

“Configuration & Trigger” circuit is designed as a Finite State Machine (FSM), where the

HT moves from one operating state to another. In order for the HT to move among different

states, it first needs to be activated through a trigger signal. A HT can be activated internally

or externally.

The HT activation process is the criteria that makes it alive to execute its disruptive

job. In this threat model, before the packet-dropping attack takes place, the attacker needs

to follow a few preliminary steps to configure and activate the HT. Initially, the HT state

is “idle” and it changes to an “active” state when a coded sequence of flits are received

at the associated input port. Once the HT is in an active state, a predefined command

may change the HT state to the “attacking” state, then it triggers the “Black Hole Attack”
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Figure 4.3: The HT structure including the trigger circuit and the Black Hole circuit at an
input port.

module. The predefined coded sequence between the attacker and the HT trigger circuit

may be generated due to a random traffic. The probability of generating K bits randomly is

defined as Prnd .

Prnd = (
1
2
)K

Therefore, the probability of generating the coded sequence for five flits of 32 bits each

is ≈ 10(−48) , which is very less likely to be generated randomly. The values and number

of the consecutive flits are customized by the attacker design, according to their needs.

Based on the HT status, it can be in one of the following states: idle, active, or attacking.

These three states are described in Table 4.1. In the idle state, the HT is inactive and waiting

for the activation (trigger) signal. Once it is activated, it applies its malicious payload. The



51

HT can move from one state to another.

Table 4.1: States of the Hardware Trojan.

State Description
Idle The Trojan is inactive and waiting for a trigger signal.
Active The Trojan is ready and waiting to start its attack.
Attack The Trojan applies its attack in the system.

4.3 Black Hole Router Attack Evaluation

In this section, the area and power overheads of a BHR in the NoC, along with the effect

of its attack on the network are evaluated.

4.3.1 Area and Power Overhead

A robust HT is the one that has an unnoticeable footprint which makes it very difficult to

detect. Additionally, the HT is designed to have three states (Inactive, Waiting, Attacking

as described in Table 4.1.), which make it even harder to be discovered during the offline

test. In order to evaluate the area and power overhead of a BHR, a moderate size, five-ports

router, with an 8-flit depth FIFO was designed in the C/C++ language, targeting the high-

level synthesis (HLS) [142], and the register transfer level (RTL) design was extracted using

Vivado HLS [143]. The design was synthesized using 45nm TSMC technology (using the

Cadence Design Compiler) for the area and power analysis. The baseline router has an

area of 43,180 µm2 and power of 826.03 µW . The baseline router was modified with

the HT-based model, along with the trigger circuit. The malicious router area and power

overhead increased by 1.98% and 0.74%, respectively, of the baseline router, which is too

small to be revealed during the post-silicon test.
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4.3.2 Experimental Setup

In order to evaluate the effect of the BHR attack on the NoC, the proposed threat model was

developed in a cycle-accurate simulation environment using SystemC and was integrated

with the Noxim simulator [144]. The baseline network size is a 8×8 Mesh-based NoC

with an X-Y routing technique. In particular, the simulations with different NoC sizes were

performed and their analysis results were very similar to what is provided in this section.

A set of certain factors are known which impact on the BHR-based infected network, such

as the number of the malicious nodes and their locations in the NoC, the traffic distribution

of the packets, and the routing technique. In order to fairly analyze the effect of the BHRs

location and their distribution in the NoC, the spatial distribution of the traffic was set to a

uniform random traffic. Table 4.2 shows the configuration parameters of the NoC.

Table 4.2: The NoC parameters for the BHR attack evaluation.

NoC parameter value
NoC size 8×8
Packet Size 4 Flits (32 bits/Flit)
Buffer Size 8 Flits
Switching Technique Wormhole
Routing Algorithm X-Y routing
Traffic Pattern Uniform

4.3.3 Experimental Results

In the first experiment, the effect of the location of the BHR in the NoC was analyzed in

terms of the number of dropped packets. In this experiment, only one node of the NoC was

infected with a BHR at a time. The total number of dropped packets was measured. The

simulation was repeated for another infected node and the outcome results were recorded.

The simulation was run again to cover each node in the NoC. Figure 4.4 shows the ratio of
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the packet loss to the total injected packets in the network. For example, when the node [3,

4] was the only one infected with a malicious circuit, it dropped 12.3% of the total injected

packets in the NoC. What can be clearly seen in this figure is that the packet-dropping rate
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Figure 4.4: Packet loss percentage for each individual node [101].

increases when the infected node is closer to the middle of the NoC. Therefore, the location

of the BHR in the NoC plays an important role in the attack.

In the second experiment, the NoC was infected with two BHRs at a time. Therefore,

there are 2016, i.e.
(64

2

)
, different distributions of two BHRs in the NoC. Figure 4.5 shows

the analysis of a NoC attacked by two BHRs. The ratio of the dropped packets varies

from 5.2% to 24% for all the combinations of the distribution of the two BHRs in the

NoC. Figure 4.5a shows the frequency of the dropping rate periods. It can be noticed that

around half of the possible combinations of different BHRs’ distributions have 14% to 18%

of packet loss rate. Figure 4.5b and Figure 4.5c represent the distributions of two BHRs

for the 100 minimum and maximum dropping rate, respectively. The number in the box

represents how many times this node was involved in the distribution of the paired BHRs.
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It is obvious that the closer pairs to the center influence the maximum packet drop.

(a) Frequency of the packet loss rate
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(b) Possibility distributions of two BHRs for min-
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Figure 4.5: An 8×8 NoC under two BHRs attack [101].

In the third experiment, the effect of the average distance between the BHRs was ana-

lyzed. In this demonstration, the NoC was infected with three BHRs. The packet dropping

rate and the average distance between the BHRs were captured. The average distance

between three BHRs is measured as the average number of hops between each pair of

them. Figure 4.6a shows the frequency of the packet dropping rate periods for the attacked

NoC. The dropped packet rate varies from 7.4% up to 33.8% for all the combinations of

the distribution of the three BHRs in the NoC. Half of the possible combinations of BHRs
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(a) Frequency of the packet loss rate.
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(b) Density of the packet loss rate with the average
distance between the BHRs.

Figure 4.6: An 8×8 NoC under three BHRs attack [101].

distribution have 21% to 27% of the packet loss rate. Figure 4.6b demonstrates the density

of the packet dropping rate, along with the average distances between each possible three

BHRs in the NoC. The graph reveals that a higher density of packet loss rate is located at

21% to 27% when the average distance between the BHRs is medium (for example, the

average distance = 6).
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4.4 Summary

Thus far, this chapter presented a security threat model that attacks the NoC through a HT

that deliberately discards packets from the network, known as a Black Hole Router (BHR).

The malicious node has a very small area and power overhead, 1.98% and 0.74% respec-

tively, which makes it very hard to be detected during a post-silicon test. Furthermore,

this chapter has shown the potency of the BHR attack on the NoC. It has demonstrated the

effect of the BHR in a NoC in terms of the location of the infected nodes, their number,

and the average distance between them. Results have shown that the packet dropping rate

varies between 5% to 33.8% based on the number of BHRs and their locations in the NoC.

Therefore, it is necessary to counteract the BHR attacks in runtime. The countermeasure

technique should detect such malicious nodes, and once they are detected, the routing

algorithm should be reconfigured to detour around them so as to avoid their effect.
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CHAPTER 5

DETECTION AND PREVENTION PROTOCOL FOR THE BLACK

HOLE ROUTER ATTACK

This chapter presents a secure interconnection network against the Black Hole Router

attack and provides several simulation experiments to study the network performance. The

proposed technique not only detects and locates the BHR but also isolates it from the

network routing. A secure interconnection platform for MPSoC that guarantees packets

delivery is achieved. The designed model is extended to reduce the energy consumption

during the BHR detection process.

5.1 Threat Mitigation

Chapter 4 presented the BHR threat model and analyzed its attack on the NoC. Even with

the current detection and prevention methods of HT described in Chapter 2, having an

effective defense technique in place is required to prevent such attacks at runtime. A two-

stage solution is designed and described for the detection and prevention of a Black Hole

Router at runtime as follows:

1. Detect the DoS attack caused by the Black Hole Router.

2. Apply a secure routing scheme to detour around such a malicious node.
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5.1.1 Black Hole Router Detection

In order to confirm that a packet is not dropped and is moving forward from one hop to

another in the NoC, a switch-to-switch (s2s)-based acknowledgement (ACK) is required.

Therefore, a single notification, ACK, is sent back to the one hop away (penultimate) router

confirming that the packet is moving forward towards the destination.

Figure 5.1 shows a process of forwarding a packet from the source (S) to the destination

(D) including the ACKs sent back to the routers (shown as dashed lines). For example, a

packet is sent from router (R2) to router (R3). R3 forwards it to R4. R4 should then send

an ACK to R2 that the intermediate router (R3) had forwarded the message successfully.

In case R3 does not forward the packet, R2 will never receive an ACK that the packet has

been forwarded to the next hop. In case R2 does not receive the ACK within a certain time

frame, a flag is raised indicating a potential malicious behaviour at R3. The time that R2

should wait for a response from R3 has a threshold value that depends on some factors such

as the processing time to prepare for an ACK, NoC traffic pattern and NoC congestion, as

evaluated in Section 5.3.2.

R4R2R1

S D

R3

Data-Packet

ACK-Packet

Figure 5.1: A process of forwarding a packet from the source (S) to the destination (D).
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Figure 5.2 shows a time sequence diagram for diagnosing the packet-dropping mali-

cious node. In this figure, a packet is being forwarded from a “Penultimate” router,RP, to

the “Current” router, RC, through an “Intermediate” router, RI . The detection technique

sequence is described as follows: 1) RP sends a packet to RI , 2) RI forwards the packet to

the following node and at the same time it sends an ACK to the proper node indicating that

the packet has been successfully received, 3) RC node forwards the packet to the intended

destination and at the same time it sends an ACK to the RP node that the packet has been

received. In step (4), an intermediate node is in charge of forwarding the ACK from RC to

RP, where these two nodes are not directly connected.

Intermediate 
node

RI

Current
node

RC

1

2

3

4

Penultimate
node

RP

Figure 5.2: Time sequence diagram of the malicious node detection technique.

However, when a malicious node exists in the NoC, some certain security techniques

must be applied, since the ACK message of the two penultimate nodes (RP and RC) may

pass through a malicious node which may forge the ACK, and it would incorrectly sound to

RP that the packet has been forwarded successfully. Therefore, a secure acknowledgment

is a must (detailed in Section 5.2). One way to keep its confidentiality is to use a shared
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key between RP and RC. Then, the secure acknowledgement (Secure-ACK) is signed by

RC using the shared key along with the received packet. In this case, RI cannot forge the

signature unless it has access to the shared key.

In addition, the Secure-ACK should be prepared in a trusted and secure unit. Therefore,

the authenticated ACK is performed in the SoC firmware at the interface of the processing

core with the NoC, which is assumed to be designed in-house by a trusted team.

5.1.2 Detouring A Black Hole Router

After detecting a Black Hole Router, the operating system (OS) is informed of an existing

BHR along with its location in the NoC in a secure process - this is out of the scope of this

research - for further operations such as task migration and future processor allocation.

The surrounding nodes of the Black Hole Router are updated, as shown in Figure 5.3a,

creating a shield ring around it, and the NoC is divided into virtual segments. These

surrounding nodes alter the packets’ routing to avoid the malicious node. Alteration of

a packet routing depends on the direction it comes from, the type of the current node, and

the destination. The nodes in the NoC have several types. All the nodes of the NoC are of

a “NORMAL” type, however, for routing purposes to avoid the infected router, the nodes

around a BHR have different types: Not S, Cr NE, Not W, Cr SE, Not N, Cr SW, No E,

and Cr NW.

There are several routing techniques to detour around a specific node. These techniques

are inherited from fault-tolerant routing, such as [62,145–147]. In order to avoid deadlock,

the malicious-tolerant routing algorithm breaks one of the possible cycles of the turn model

[62]. The routing algorithm is reconfigured to avoid the BHR based on a secure and routing-

aware algorithm [141] that prohibits the East-South and North-West turns, as shown in

Figure 5.4, to provide deadlock-free platform.
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Figure 5.3: An 8×8 Mesh NoC with a Black Hole Router.

ES

NW

Figure 5.4: The prohibited East-South (ES) and North-West (NW) turns.

Table 5.1 shows the output direction of the secure routing algorithm. The output from

the routing module is the direction of the packet, which depends on the type of the node

and its location along with the destination region type.

The inputs to the routing module are: 1) Node Type (Figure 5.3a), 2) Destination

Region (Figure 5.3b) and its destination (X dst, Y dst), 3) Current Location: (X local,

Y local), and 4) NoC dimension dimX×dimY. Based on the input to the malicious routing

module , the output is one of the directions ( North Direction, East Direction, South Direction,

West Direction, or Local Direction). Appendix A demonstrates a graphical example of a

packet detours around a malicious node in 5×5.
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Table 5.1: Malicious tolerant routing based on the Node Type and the packet destination.

Y-North North East X-East South East Y-South South West X-West North West

NORMAL

return North Direction;

return East Direction;

return South Direction;

return West Direction;

Cr NE

if (X dst <X local -1
OR Y dst <= Y local)
{ return West Direction; }
else { return South direction;}

Not W

if (Y local == dimY-1
OR (X local == 1 && Y dst <Y local))
{ return North Direction; }
else { return South direction; }

Cr SE
if (X local == 1 && Y dst <Y local - 1)
{ return North Direction; }
else{ return West Direction;}

Cr NW

if ( Y local == dimY-2 OR Y dst >= Y local
OR X dst >X local + 2 )
{ return East Direction; }
else{ return South Direction; }

if (Y local == dimy-1
OR (X local == 1 && Y dst <Y local))
{ return North Direction; }
else { return South direction; }

Cr SW

if ( Y dst >= Y local
OR X dst >X local + 1 )
{ return East Direction; }
else { return North Direction; } return West Direction;

Not E

if ( Y local == dimY-1
OR Y dst <Y local )
{ return North Direction; }
else{ return South Direction; }

Not N
if (X local != 0)
{ return West Direction; }
else{ return East Direction;}

return East Direction;

Not S return North Direction;

if ( Y local == dimY-2
OR X local == 0 OR Y dst <= Y local
OR X dst >X local + 1 )
{ return East Direction; }
else { return West Direction; }

if ( X local != 0 )
{ return West Direction; }
else { return East Direction; }

5.2 Secure NoC Model Against A Black Hole Router

As was pointed out earlier in this chapter in order to detect a BHR, each node that receives

a data packet sends a Secure-ACK to the penultimate node to assure that the packet is

moving forward to the destination. The Secure-ACK is calculated in a trusted module

attached to the router. Figure 5.5 shows the packet format for the ACK. The packet carries

the calculated ACK at the current node and necessary routing information and is described

as follows:

• Source ID (src ID): to identify the source of the ACK packet.

• Penultimate ID (pen ID): to identify the penultimate node to route the ACK to it.

• Packet type (type): to identify the type of the packet, whether it is data or ACK.
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• Packet ID (pkt ID): to identify the packet ID to check the correctness of the ACK.

• ACK-Payload: to carry the calculated ACK at the current node to be compared at the

penultimate node.

The ACK-packet is injected at the current node towards the penultimate node. Once it

is routed to the proper node, the ACK-Payload is extracted and compared to the calculated

ACK at the penultimate node.

src
ID

pen
ID

type
pkt
ID

ACK

Figure 5.5: ACK packet format.

Figure 5.6 shows the architectural details of a secure Mesh-NoC model. Each node

in the NoC is connected to a Secure Signature Module (SSM) that is responsible for

generating a signed ACK. On one hand, routers are only in charge of routing packets

from a node to another. On the other hand, the SSM is a secure module that has access

to the paired keys and computes the Secure-ACKs to detect a BHR. It is implemented in

the network interface by a trusted party or in-house. None of the routers in the NoC has

access to the keys in the NoC. When an attack is detected, a secure signal is sent to a

Secure Detection Management Module (SDMM) through a secure link to check the attack

and localize it for further actions, such as isolating the infected node and avoiding mapping

tasks to the attached processing element.

In order to design the presented secure NoC model, the baseline router has been mod-

ified and a security engine is attached to it to assure data delivery and to countermeasure

the Black Hole Router attack. The presented secure router (also called “Secure Signature

Router” (SSR)) architecture is composed of input buffers, a crossbar switch, and routing
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Figure 5.6: Structural overview of the proposed NoC model.

logic. The secure signature module (SSM) is attached to the router, which is assumed to be

designed in-house. The SSM signs the received packets and generates the Secure-ACKs.

On one hand, the Data-Routing module is a normal router which contains data routing

control unit and input data buffers. On the other hand, the SSM has two main cores: Signa-

ture and Confirmation cores. In order to decouple the data routing from the signed-packets

routing, two separate virtual communication channels have been created at each port of the

router.

Figure 5.7 shows the architecture of the Secure Signature Router. The received data-

packets at a router’s port are saved in the input data-buffer. These packets are signed by the

SSM using a shared key between the associated routers, then the signed-packet is routed

back to the corresponding router for acknowledgment and confirmation. When a signed-

packet is received at the appropriate router, a confirmation processes is performed to check

if the packet has been successfully forwarded. If the current router is not the destination

of the signed-packet, it will route it to the appropriate adjacent one. In this model, the
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Figure 5.7: Secure Signature Router (SSR) architecture.

data-packet and ACK-packet share the same physical link and their routing is managed by

the channel allocator giving higher priority to the ACK-packets.

Figure 5.8 shows the flow control of a received packet inside the router. In this diagram,

the type of the packet is checked whether it is data or ACK. In case of a data-packet,

it will be pushed into the input data buffer. In the meantime, a secure ACK needs to

be calculated at the “Secure ACK Computing Unit” in the SSM module and sent to the

penultimate node. In case of receiving an ACK packet, it will be checked by the router

for its destination. If the current router is the target destination, it will be checked for its
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validity at the “Received ACK Validating Unit”, otherwise it will be routed towards its

destination. The BHR detection unit checks if an ACK is received within a predefined time

frame. If not, a packet-dropping attack might have occurred and the SSM raises a flag to

the SDMM to take an action and isolate the BHR.

Secure Signature Module (SSM)

ACK
pkt?

Received pkt

Input Buffer

Signed Buffer
pen.

node?

No 

No

Yes

Yes

time
out?

BHR
Check

Yes

BHR Detection Unit

Secure ACK
Computing Unit

Routing
Unit

Received ACK
Validating Unit

Figure 5.8: Flow control diagram of handling a received packet in the secure router.

Figure 5.9 presents an example of detecting a BHR. In this example, a processing

element, Ps, sends a data-packet, pkt, to a destination node, PD. pkt is routed success-

fully through routers Rs, R1, R2. At the signature module, SSM, attached to R1, a secure

acknowledgement, ACK1 , is calculated and sent back to the secure module attached to Ps

to be validated and clarifies that Rs is HT-free. Similarly, when the pkt is forwarded to

R2, ACK2 is calculated and sent back to SSM of Rs to confirm that R1 is HT-free as well.

On the other hand, pkt is forwarded to the adjacent router towards the destination, which
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is assumed to be infected with a Black Hole Trojan, BHR, that drops the packet and does

not send back any acknowledgement. Both SSM attached to R1 and R2 are waiting for

an ACK which in fact was not generated. At that moment, the waiting time expires and

a Black Hole attack has been detected. Hence, these nodes send control packets to the

Secure Detection Management Module (shown in Figure 5.6) indicating the data-packet ID

to define the BHR. In order for increasing the arrival chance of these special packets, they

are sent (flooded) horizontally (East and West directions) and vertically (North and South

directions) to the SDMM. The received packets at the SDMM are analyzed to locate the

BHR and then it takes an action to isolate the malicious router from the NoC routing.

pkt

X

RD

PD

RS

PS

R1R2BH

Time
out

Time
out

X

Figure 5.9: An example of the BHR detection technique in the SSR-based NoC model.

Signature Engine

In order to increase the level of security, a Message Authentication Code (MAC) may be

used for improving the security of the ACK. A Hash-based Message Authentication Code
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(HMAC) [148] is a specific type of MAC that involves a cryptographic hash function, such

as SHA-3 [149], and a secret cryptographic key. The HMAC has three rounds of hashing

process that takes a longer time to be performed, as proven in [150] that the SHA-3 takes

about 70 clock cycles to hash one block, and the HMAC [151] takes 280 cycles to perform

one signature block. The HMAC is a power and time consuming technique which may

impact the whole system performance, although it offers a high-level of security.

In order to authenticate the ACK packet to detect and countermeasure the BHR, sym-

metric cryptography such as Advanced Encryption Standard (AES) [152] is a suitable

candidate to sign the ACK in the signature module because it is a lightweight encryption

technique and provides higher performance compared to the HMAC. The AES is a faster

and secure symmetric encryption compared to other encryption standards, such as Data

Encryption Standard (DES) [153], and asymmetric key encryption, RSA [154]. RSA is a

cartographic technique that provides high security level at the expense of the performance

of the system.

However, a light-weight authentication technique is recommended for embedded sys-

tems. Therefore, a secure ACK is calculated by bitwise-XOR, the received packet with a

one-time pad number shared with the current and penultimate nodes. One way to generate

one-time pad random numbers which are shared between two nodes is by designing a

Pseudo Random Number Generator (PRNG) and the shared key is the seed of the PRNG

circuit. In this work, a PRNG was used for generating dynamic random number to authenti-

cate the ACK-packet. For a higher security level, AES was adopted in the Secure Signature

Router to sign the ACK-packet and used for comparison with the light-weight security.
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Key Management Scalability

Key management between the nodes is a crucial task to maintain the trust of the NoC

operations. The process of key exchange takes place when the system boots up. The secure

boot is based on the Public Key Infrastructure (PKI) process to authenticate the NoC and

share the keys between the nodes in the NoC. Keys between routers can be safely distributed

using the Diffie-Hellman protocol [155], [156]. In the NoC, [157] is used to decentralized

the key exchange between the nodes. Key exchanging is out of the scope in this research.

In the secure router architecture, a node needs to send a secure ACK to the penultimate

nodes. Figure 5.10 shows the keys between a node and its penultimate nodes. A node (R)

communicates with the penultimate nodes via the shared keys: K1, K2, K4, K5, K8, K9, K11,

and K12 and with the neighbored processing elements through keys: K3, K6, K7, and K10.

This indicates that each node in the NoC requires 12, 8, and 5 distinct keys for the middle,

side, and corner nodes, respectively.

K7
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K4

R

K3

K1

K11

K12

K10

K6

K2
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K9

Figure 5.10: Keys shared between a node (R) and its neighboured PEs and the penultimate
nodes.
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The required total number of keys in the system is proportional to the NoC size. Ap-

pendix B studies the number of keys required for the NoC to achieve a secure architecture.

The total number of distinguished keys for a N×N NoC is represented by the following

equation:

6N2−15N +2 ∀ N ≥ 5

Figure 5.11 shows the scalability of seed-keys in the system with the NoC size. Notice

that the total number of distinguished keys linearly increases with the NoC size. Each

secure network interface of the middle nodes in the NoC carries a maximum of twelve

different keys while each node at the corner of the NoC has only five keys, regardless of its

size.
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Figure 5.11: Scalability of the distinct seed-keys with the NoC size.

A cryptographic hash function such as SHA-3 [149] is used for securely generating

the seed-key for each pair of nodes. The overhead for generating such a key depends on

the throughput of the hash function [150]. As explained earlier, the key exchange happens

when the system boots up.
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Area Overhead

In order to evaluate the area overhead of the secure signature router against the BHR attack,

a moderate size, five-ports router, with a 4 packets depth FIFO, each of 4 Flits (32 bits),

and a “Store-and-Forward” (S&F) switching technique was designed and synthesized using

45nm TSMC technology (using Cadence Design Compiler). It occupied an area of 73,215

µm2. The baseline router was modified and the security features against the BHR attack

were added. The area overhead was increased by 26.9% of the baseline router.

5.3 Evaluation and Experimental Results

In order to study the NoC behavior and performance overhead of the secure signature

router architecture, a cycle-accurate simulation model of a Mesh NoC architecture was

developed in SystemC and integrated with the Noxim simulator [144]. The baseline router

was designed to have five ports: North, South, East, West, and Local. Each port has an input

buffer and full duplex data communication. The Black Hole threat model was designed

and inserted into the receiving-unit of the input ports of the victim router with a time-bomb

activating circuit. The secure router architecture was developed in SystemC and integrated

with the simulation environment for evaluation. The simulation setup was established for

two different NoC models:

• A NoC that contained only the baseline routers to be used for collating purposes.

• A NoC that contained the secure router with the same baseline NoC parameters.
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The same experiments were run on both setups for fair comparison. Figure 5.12 shows

the block diagram of the simulation structure. The path on the left-hand side represents the

baseline NoC design with parameterized size, routing technique, buffer depth, ... etc. The

right-hand path is for the infected NoC with a HT model, including the secure engine model

for BHR detection. The NoC performance for both models were evaluated under various

packet-injection rates and several traffic distributions. The configuration of the NoC was

manipulated by a Python script to automate the evaluation process and analyze the output

results.
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Figure 5.12: A block diagram of the simulation structure.
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5.3.1 Experimental Setup

To evaluate the router structure presented in Section 5.2, the NoC parameters and the

simulation environment were configured to cover different NoC sizes and buffer depth sizes

for various injection rates and several synthetic traffic patterns [64]: Bitreversal, Butterfly,

Random, Shuffle, and Transpose. Appendix C describes the traffic patterns of each type.

Simulations were run for different buffer depths, NoC sizes, and different injection rates for

100,000 clock cycles. Their analysis results were very similar. Therefore, this section pro-

vides the analysis results for an 8×8 NoC size and a buffer depth of 4 packets. The results

of different parameters on the NoC performance will be presented in case these parameters

play a role in the network behavior. Table 5.2 depicts the configuration parameters of the

simulation environment.

Table 5.2: NoC parameters for the experimental simulation.

NoC Size 8×8
Packet Size 4 Flits
Flit Width 32 bits
Buffer Depth 4 Packets
Switching Technique S&F
Simulation Time 100,000 cc
Warm-up Time 200 cc

5.3.2 Experimental Results

The experimental setup explained in the previous section was used for evaluating the effect

of the designed Secure Signature Router (SSR) on the NoC behavior. System throughput

and overhead were analyzed for the different NoC parameters listed in table 5.2. The

simulation objectives of the NoC model which adopts the signature router are summarized

as follows:
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1. Identifying the saturation point of the presented SSR-based NoC model and measur-

ing its throughput.

2. Identifying the threshold waiting time for the secure ACK of the SSR router.

3. Measuring the degradation of the NoC performance in the presence of a BHR for the

NoC model.

4. Measuring the system scalability.

5. Measuring the NoC performance for different security-levels.

Throughput and saturation point

In order to evaluate the overhead of the Secure Signature Router (SSR) on the NoC per-

formance and identify the saturation point of the NoC-based system, the modeled runtime

detection technique of the BHR attack was integrated into the baseline NoC. In this ex-

periment, the NoC was not under a BHR attack, and the detection technique is activated

without any further action of false positive attacks.

Figure 5.13 shows the average latency (clock cycles) of both the baseline NoC and

the SSR-based NoC models. For deterministic traffic distribution (Bitreversal, Butterfly,

Shuffle, Transpose 1, and Transpose 2), the SSR-based NoC model almost saturates at a

similar point. It saturates at 7%, 12%, 11%, 7%, and 7% for Bitreversal, Butterfly, Shuffle,

Transpose 1, and Transpose 2 traffic patterns, respectively. Because of the deterministic

traffic patterns, the saturation points of the NoC model with and without a security engine

are similar, where the source and destination pairs are fixed. However, for a Random traffic

pattern, destinations are randomly selected using a uniform distribution. This allowed

different packets to be directed to different nodes from the same source node. Figure 5.13c
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shows the average latency of SSR compared to the baseline model, where the SSR-based

NoC model saturates at 13% while the baseline model saturates at 19%.
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Figure 5.13: Average Latency of the Secure Signature NoC model under several traffic
patterns, the injection rate (IR) is measured in Flit/Cycle/Node.

Figure 5.14 shows the throughput of the NoC model for different traffic patterns. Sim-

ilarly, the SSR-based NoC model has slightly less performance than the baseline one for

deterministic traffic patterns. It drops by 1%-2%. This is due to the nature of the distributed

traffic where a fixed destination node is allocated to a selected source node. For Random

traffic pattern as shown in Figure 5.14c, the SSR-based NoC model experiences 21.31%

average performance overhead. It can be observed that the average throughput decreases,

yet packet delivery is assured to the notion of graceful degradation of service.
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Figure 5.14: Average Throughput of the Secure Signature NoC model under several traffic
patterns, the injection rate (IR) is measured in Flit/Cycle/Node.

Threshold time for Secure-ACK

In this experiment, the waiting time for the penultimate router to receive a Secure-ACK

from the proper node was studied. The time that a confirmation-packet traverses in two

hops depends on several factors, such as injection rate, buffer size, traffic pattern, and the

position of the router in the NoC. Therefore, the maximum time that a node waits for

receiving a Secure-ACK was measured for each node in the NoC. The injection rate was

fixed to the saturation point of the NoC model for different traffic distributions. Figures

5.15, 5.16, and 5.17 show the maximum waiting time in clock cycles at each router for

each traffic pattern.

It is noticed that the network traffic plays a main role in determining the maximum

waiting time at each router. Additionally, the maximum waiting time is not equally spatially

distributed among routers. The reason behind this is that the routers at the mesh network
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Figure 5.15: The maximum waiting time, in clock cycles, for the Secure-ACK at each
node in the NoC for several traffic patterns .

0 1 2 3 4 5 6 7
X

0
1

2
3

4
5

6
7

Y

45 16 88 28 71 93 86 13

194 255 218 192 188 202 243 202

106 210 242 201 202 220 285 216

22 106 120 100 41 105 159 112

106 112 107 79 105 122 107 15

234 281 223 213 185 247 206 107

266 309 239 198 291 194 201 167

12 76 92 56 26 98 20 44
50

100

150

200

250

300

(a) Shuffle traffic

0 1 2 3 4 5 6 7
X

0
1

2
3

4
5

6
7

Y

273 235 213 294 203 175 143 138

271 232 219 171 204 225 243 231

326 241 207 182 139 159 212 269

189 194 152 103 117 154 176 221

335 242 161 102 98 134 169 255

207 192 152 134 142 160 201 259

321 285 207 224 224 234 233 193

172 132 244 198 172 203 255 233 120

160

200

240

280

320

(b) Random

Figure 5.16: The maximum waiting time, in clock cycles, for the secure-ACK for several
traffic patterns.

corners or borders have two or three ports, rather than four for the others, which limit

the packet directions. Therefore the threshold waiting time is set differently at each node

of the NoC. Choosing a short threshold time for receiving the ACK might lead to poor

performance, since the router that has not received an ACK may claim a false attack,

requesting the OS for further check. Similarly, choosing a long threshold time may lead to
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Figure 5.17: The maximum waiting time, in clock cycles, for the secure-ACK for several
traffic patterns.

poor performance as well, since the router waits for long time to receive the ACK while

an attack might be in progress. One way to achieve better performance, a reconfigurable

threshold time is needed. In the reset of the experiments, the threshold time was set to 1.25

× the calculated value at each router.

In order to check the effect of the buffer sizes on the waiting time for the confirmation

packet delivery with respect to the injection rate, an experiment was structured to measure

the maximum waiting time among the routers for different buffer sizes. The buffer size

was set to 4, 6, and 8 packets at each input port for each experiment. Figure 5.18 shows

the maximum waiting time for NoC of these buffer sizes. It is noticed that when the input

buffer sizes increase, the waiting time for the confirmation ACK decreases because the

NoC becomes less congested and packets move faster.
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Figure 5.18: The maximum waiting time, in clock cycles, for the secure-ACK for different
buffer depth under various traffic patterns.

Performance Degradation

In this experiment, the detouring scheme to avoid an infected node in the network was

assessed. Two SSR-based NoC models were designed. One model was HT-free. The other

model was infected with a BHR (packet-dropping attack). In both models, the throughput

was recorded and evaluated. In this experiment, the infected model has one BHR at a time.

The NoC performance was reported. The simulation was repeated for a different infected

node and the outcome results were recorded. The simulation was run again to cover each

node in the infected NoC. The measured throughput was averaged over the total number of

the NoC nodes and compared to those of the HT-free model. The injection rate was fixed to

the saturation point, 13% Flits/Node/Cycle. Figure 5.19 demonstrates the normalized NoC

throughput of 8×8 NoC size for Random traffic pattern. The throughput is normalized to

a Trojan-free NoC. As it is expected, when the NoC experiences HT nodes, the average
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Figure 5.19: Normalized performance of the NoC model under a BHR attack.

throughput is slightly decreased with a low injection rate. The throughput decreases with

increasing the injection rate. The performance overhead is due to packets detouring around

the infected node experiencing a longer path to reach their destinations. Although the

packets experience a longer route to avoid the BHR attack, which increases the packet

latency, the NoC is more reliable (packet loss free) and assures packet-delivery to their

destinations.

System Scalability

In this experiment, the scalability of the SSR-based NoC model was demonstrated with

respect to the network size by measuring the average throughput of the NoC, with different

sizes, for several injection rate.

Figure 5.20 shows the scalability of the secure router architecture for different injection

rates, 1%, 5%, 10%, and 13%, for a Random traffic pattern. It is noticed that the SSR-based

NoC scales efficiently with the NoC size for several injection rates.
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Figure 5.20: Scalability of the SSR-based NoC for different injection rates (IR), Flit/N-
ode/Cycle.

NoC performance and security level

In the SSR-based NoC model, the signing process to generate a secure ACK is calculating

bitwise-XOR of the received packet with a one-time pad number. This presents a low

level of security. In order to increase the security level, Advanced Encryption Standard

(AES)[152] may be used to sign the packet by the shared key at the expense of the pro-

cessing time. In order to evaluate the performance overhead of the signature process using

AES, in this experiment, the signature unit was integrated into the simulation environment,

then measured its effect on the network performance without any malicious node. Two

different designs for the secure signature router were evaluated. One with a one-time pad

number (SSR) and the other with the AES (SSR (AES)). The purpose of this simulation was

to measure the throughput and saturation points of the NoC model for the aforementioned

techniques of packet signature.



82

0

400

800

1200

1600

2000

0.01 0.03 0.05 0.07 0.09

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline SSR SSR (AES)

(a) Bitreversal traffic

0

400

800

1200

1600

2000

0.01 0.03 0.05 0.07 0.09 0.11 0.13

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline SSR SSR (AES)

(b) Butterfly traffic

0

400

800

1200

1600

2000

0.01 0.04 0.07 0.1 0.13 0.16 0.19

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline SSR SSR (AES)

(c) Random traffic

0

400

800

1200

1600

2000

0.01 0.03 0.05 0.07 0.09 0.11 0.13

A
ve

ra
ge

 L
at

en
cy

IR

Baseline SSR SSR (AES)

(d) Shuffle traffic

0

300

600

900

1200

0.01 0.03 0.05 0.07 0.09

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline SSR SSR (AES)

(e) Transpose 1 traffic

0

300

600

900

1200

0.01 0.03 0.05 0.07 0.09

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline SSR SSR (AES)

(f) Transpose 2 traffic

Figure 5.21: Average Latency of the NoC model based on different security levels under
several traffic patterns, the injection rate (IR) is measured in Flit/Cycle/Node.
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Figure 5.22: Average Throughput of the NoC model based on different security levels
under several traffic patterns, the injection rate (IR) is measured in Flit/Cycle/Node.
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Figure 5.21 shows the average latency for the two presented techniques, SSR and SSR

(AES), compared with the baseline model. As expected, SSR (AES) saturates faster than

SSR. This is due to the fact that AES takes a longer time to generate a secure-ACK.

Additionally, the generated secure-ACK has the same size as the packet. This loads the

network with a heavy number of packets in the system. Consequently, SSR (AES) presents

lower performance compared to the SSR, as shown in Figure 5.22.

5.4 Energy-Efficient Detection Technique for the Black Hole Router

5.4.1 Refined Problem

The detection and protection schemes of the BHR attacks presented in the previous sec-

tion were primarily based on a hop-to-hop (h2h) technique, where each router forwards

a secure ACK back to the penultimate one indicating that the packet has been received

and was successfully forwarded through the intermediate router. This leads to more power

consumption due to moving the ACK between the nodes in the NoC.

In order to study the energy consumption of the h2h detection technique to detect BHR

in NoC, several experiments were run for different NoC sizes and traffic distributions for

the secure NoC model, including the signature modules to detect the BHR attack. Figure

5.23 shows the relative energy overhead of the h2h BHR detection unit to the baseline

router in 8×8 Mesh NoC with uniform random traffic distribution for several injection

rates. As can be seen, online h2h BHR detection incurs up to 24% of energy consumption

overhead to the baseline NoC model. This indicates that a significant amount of energy is

being consumed by the always active h2h detection technique.

If the HT is not active, as is often the case in most of the cases [91] or the system is

HT-free, such an on-going h2h confirmation only causes an unnecessarily significant energy
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Figure 5.23: Energy consumption overhead of the SSR-based NoC model over the baseline
NoC.

and performance overheads. Therefore, in this work, an end-to-end (e2e) power-gated

technique that reduces the energy consumption along with BHR detection was designed.

The presented e2e flow control does not only guarantee an attested interconnection, but is

also able to localize the BHR online in the infected NoC.

5.4.2 Energy-Efficient BHR Detection Technique

In order for a source node to confirm a successful arrival of a message to the final destina-

tion, the final recipient node sends a secure-ACK to the source. This technique supplies a

packet delivery assurance.

After packetizing the message at the network interface of the source node, it is injected

into the NoC. Upon its arrival at the receiver side, the packet is processed by the PE and an

ACK is generated and sent back to the source node. Packets usually consist of a number

of flits and the acknowledgement can be considered as a single flit to assure a successful

delivery of one packet. Once the sender receives a correct ACK, it assures that the packet

has been received successfully at the recipient node. In contrary to h2h, the e2e protocol is
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applied on a higher network layer, such as the transport layer, where the processing element

may generate the ACK once it receives the message.

Figure 5.24 shows the sequence diagram of basic e2e packet delivery assurance pro-

tocol. In this model, the message is partitioned into multiple packets, P(1), P(2), .., P(n),

before it gets injected into the network. At the destination, packets are received into a buffer

in the network interface, then are grouped together to reformat the determined message.

In order to confirm message arrival at the recipient node, an ACK-packet is created for

each received packet, ACK(1), ACK(2), .., ACK(n). For an optimized model, only one

ACK-packet may be sent to represent a successful arrival of the whole message.

Source

Message

Network Destination 

Message

P (1)

P (2)

P (n)

P
a

c
k

e
tiz

a
tio

n

P (1)

P (2)

P (n)

ACK (1)

ACK (2)

ACK (n)

D
e

p
a

c
k

e
tiz

a
tio

n







Figure 5.24: A sequence diagram of an end-to-end communication protocol for packet
delivery assurance.

However, a packet could be discarded from the NoC due to a BHR attack. In this

case, there are two possible attack scenarios: 1) The message is dropped on its way to
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the destination node at an intermediate malicious router, i.e., BHR. 2) The ACK itself is

dropped on its way to the source node, i.e., the message has been successfully received

at the recipient node but the source is not aware of its successful delivery, which leads to

re-sending the data again. In either of these behaviors, the BHR attack has occurred by

either dropping the message or the ACK. Figure 5.25 shows these two possible scenarios

of DoS attack due to BHR.

In Figure 5.25a, packet, P(1), was successfully received at the intended destination.

Consequently, an ACK(1) is calculated and sent back to the source node. However, P(2)

was dropped on its way to the destination node, as a result, ACK(2) will not be generated.

Figure 5.25b presents a scenario where an ACK is dropped on its way to the source node

despite a successful arrival of the packet to the final destination node.

In case a data-packet has been lost due to a BHR, the recipient node will never receive

a packet and thus it will not generate an ACK or the source node will never receive an ACK

although the packet has been received successfully.
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Figure 5.25: Two scenarios of the BHR attack on e2e packet delivery protocol.

Our e2e protocol of the BHR detection is divided into two parts: 1) BHR attack detec-

tion, i.e., detecting the drop of a data packet or an ACK packet, and 2) BHR localization,
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i.e., localizing the infected router in the NoC to be isolated.

In order to detect the packet dropping attack in the NoC, a threshold time (t∆) that

specifies the maximum waiting time for receiving an ACK from the receiver is set at the

sender side. In case an ACK was not received within (t∆), the packet is re-transmitted. If

the ACK has not been received, the sender raises a flag indicating that a packet dropping

attack has been detected. The threshold time values between a source and each destination

node depend on several factors: NoC size, injection rate, and the NoC traffic distribution.

Therefore, (t∆) has to be determined for each case and application.

In the scenario when the ACK packet itself is dropped from the NoC, the protocol is

still able to detect the BHR attack. In this case when (t∆) expires, the source node re-sends

the packet again one more time, as explained. At the destination node, the packet sequence

is compared with the one that was previously received. If they are the same, the receiver

detects a BHR attack on the ACK packet.

Figure 5.26 shows the packet format for the energy efficient NoC model. The packet

carries valuable information to the e2e model platform and is described as follows:

• Source ID (src ID): to identify the source of the message for routing the ACK packet

back to it.

• Destination ID (dst ID): to identify the destination node for routing the data-packet

to it.

• Packet type (type): to identify the type of the packet if it is either data, an ACK, or a

control packet.

• Message ID (msg ID): to identify the message and its sequence to the source and

recipient nodes which is used for generating and verifying proper ACKs.
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• Packet ID (pkt ID): to identify the packet in the NoC, where each data-packet has a

corresponding ACK-packet.

• Payload: to carry the data to be transferred via the NoC in case it is a data packet, or

the acknowledgement for ACK-packet type.

src
ID

dst
ID

type
msg
ID

pkt
ID

Payload

Figure 5.26: Packet format for the Energy-Efficient e2e protocol.

Figure 5.27 shows the state diagram of the transmitter and the receiver protocols at

the source and the destination nodes, respectively. In Figure 5.27a, the transmitter waits

for a new message. As soon as a message is ready to be sent to the intended node, it is

packetized to multiple packets and injected into the NoC. When the last packet is released,

the sender module waits for an ACK from the intended destination node to be received

within the threshold time (t∆). For successful arrival, an ACK should be received in the
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Figure 5.27: State diagram of the transmitter and the receiver modules at a node.
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defined time. If waiting time expires, the sender checks if the message was sent before. If

not, the message is resent. If it was sent before, it declares a Black Hole attack and requests

for localization process to identify its location in the NoC. In Figure 5.27b, the receiving

module receives a message. Once the last packet is received, it checks if the message was

previously received. If not, it calculates the proper ACK and sends it back to the source.

If it was received before, it means that a BHR attack exists on the path of the ACK and

requests searching for the location of BHR.

At this moment, the DoS attack has taken place and a BHR attack has been detected.

However, this method does not identify the location of the BHR in the NoC because

detection alone does not provide enough information to interpret the origin of the attack.

After the BHR attack is detected, the h2h detection technique, explained previously in

Section 5.2, is activated only for this path and the victimized message will be re-sent re-

questing the h2h Secure-ACK. This security scheme has two different detection procedures,

e2e and h2h. In this scheme, an energy-efficient BHR attack detection and localization

technique is designed to leverage the existing e2e and h2h approaches to selectively activate

and deactivate the detection units at each hop in the routing path between the source and

the final destination nodes.

Figure 5.28 shows two scenarios of attack and how the BHR localization is performed.

The first scenario is shown in Figure 5.28a when packets are dropped on their way to the

destination. In this example, Ps sends packet, pkt, to PD and waits for a secure confirmation

that it has successfully arrived. In case that Ps has not received an ACK, it resends the

packet, pkt ′, one more time and waits for an acknowledgement. If it does not receive an

ACK, the Black Hole attack has been detected and then it activates the secure signature

technique by a special control packet to locate the BHR.

The second scenario of attack is explained in Figure 5.28b where the packet, pkt is
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injected by the source, Ps, and has arrived at the destination, PD, that has generated an

acknowledgment packet, ACK, and sent it to Ps. However, it has been dropped due to a

Black Hole attack. Since Ps has not received an acknowledgement that the packet has been

delivered, it re-sends the packet, pkt ′, one more time. At the destination side, PD receives

pkt ′ which was previously received. If PD receives a packet two times, it means that a Black

Hole attack has occurred on the ACK on its way to the source node. Therefore, a special

control packet is sent on the way of the ACK to activate the h2h secure signature technique

to localize the BHR.
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Figure 5.28: Localization of the BHR in two different scenarios of attack.

In these scenarios of detecting the Black Hole attack and localizing its source, a mes-

sage may be sent multiple times. However, the destination node compares the msg ID and

pkt ID to identify duplication of the received packets. On the other hand, the ACK may be

received late at the source node after the packet has been re-sent. In this case, when the

packet is received at the destination node for the second time, it sounds that the ACK was

dropped and activates the signature detection technique to detect and localize the attack
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although it was not. At the source side, the ACK will be received one more time, which

can be omitted by the source after checking its ID. This will not affect the correctness of

the model but it will add a little extra overhead.

Detection and localizing technique of a BHR is not the final solution to a successful

packet-delivery. Once the BHR location is spotted, the malicious node is isolated from

the NoC and the routing algorithm is reconfigured to detour around such malicious nodes.

This presented scheme has three security stages: First, detecting the BHR attack; Second,

localizing the BHR; and the Third is isolating it.

5.4.3 Evaluation and Experimental Results

In this section, we evaluate the performance overhead of the Energy-Efficient and Secure

Router (EER) and compare it with the Secure Signature Router (SSR). In order to evaluate

the EER architecture, the NoC parameters and the simulation environment were configured

to cover different NoC sizes and buffer depth sizes for various injection rates and several

synthetic traffic patterns [64]. The setup of the simulation environment is the same as

previously described in Section 5.3. Simulations were run for different buffer depths

and NoC sizes. The analysis results of different NoC and buffer sizes were very similar.

Therefore, the analysis results of an 8× 8 NoC size with buffer depth of 4 packets are

provided in this section.

The main objective of this section is to evaluate the Energy-Efficient router model.

Extensive experiments were run to assess the presented secure router and the NoC under

different network traffic, buffer sizes, and injection rates. The system throughput and

overhead were analyzed for these NoC parameters. The collected results were compared

to the NoC model presented in Section 5.2. The simulation objectives are summarized as

follows:
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1. Measuring the saturation point of the EER-based NoC model and its throughput.

2. Measuring the energy consumption of the EER-based NoC model.

3. Measuring the degradation of the NoC performance in the presence of a BHR for the

EER-based NoC model.

Throughput and saturation point

In order to evaluate the overhead of EER-based NoC model performance and identify the

saturation point, the e2e runtime detection technique of the BHR attack was integrated into

the baseline NoC. The NoC was HT-free and the localization unit is deactivated.

Figure 5.29 shows the average latency of the baseline NoC and both SSR-based and

EER-based NoC models for different traffic patterns. The EER-based NoC model has quite

similar saturation points compared to the baseline model. It saturates at 7%, 12%, 19%,

11%, 7%, and 7% for Bitreversal, Butterfly, Random, Shuffle, Transpose 1, and Trans-

pose 2 traffic patterns, respectively. The similarity of saturation points between EER-based

and baseline models is due to the less number of the ACK injected in the NoC, where the

ACK is generated at the final destination node, unlike the SSR-based NoC model, where

several ACKs are generated for each hop.

Figure 5.30 shows the throughput of the NoC model for different traffic patterns. Sim-

ilarly, the EER-based NoC model has less overhead and shows similar performance to the

baseline one.
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Figure 5.29: Average Latency of the SSR-based NoC model and the EER-based NoC
model under several traffic patterns, the injection rate (IR) is measured in Flit/Cycle/Node.
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Figure 5.30: Average Throughput of the SSR-based NoC model and the EER-based NoC
model under several traffic patterns, the injection rate (IR) is measured in Flit/Cycle/Node.
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Energy consumption overhead

In this experiment, the energy consumption of both the SSR-based and the EER-based NoC

models were measured under different traffic patterns and for different injection rates. The

measured energy overhead was normalized to the baseline NoC model. Figure 5.31 shows

the energy overhead of both the SSR-based and the EER-based NoC models to the baseline

router for different traffic distributions at the injection rate of the saturation point. As

expected, the always-active h2h BHR detection consumes a significant amount of energy

compared to the energy-efficient model. The EER-based NoC model adds 1% to 3% of

energy overhead, unlike the SSR-based one where the energy overhead ranges from 9%

to 24%. The low overhead provided by the EER-based NoC model makes it appealing to

embedded system design.
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Figure 5.31: Energy consumption overhead of the SSR-based NoC model and the EER-
based NoC model for different traffic patterns.
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Performance Degradation

In this experiment, the effect of the EER on the NoC performance during detouring around

an infected node was evaluated. The NoC was infected with a BHR (packet-dropping

attack) and the throughput was recorded and evaluated. Figure 5.32 demonstrates the

normalized NoC throughput of an 8×8 NoC size for Random traffic pattern for both the

SSR-based and the EER-based NoC models. The presented architecture includes the de-

touring scheme to detect and avoid the BHR attack.

The throughput is normalized to a Trojan-free NoC. As it is expected, when the NoC

experiences a BHR, the average throughput is slightly decreased with a low injection rate.

The throughput decreases with increasing the injection rate. The performance overhead is

due to packets detouring around the infected node experiencing a longer path to reach their

destinations. The EER-based NoC model shows slightly less performance degradation.

However, it presents higher throughput compared to the SSR-based one.
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NoC model under a BHR attack.
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5.5 Summary

In this chapter, a novel NoC model to detect a packet-dropping attack in the Network-

on-Chip (NoC) due to outsourcing design that may infect the network with a Black Hole

Router (BHR) was presented. A secure protocol for the NoC-router with runtime detection

and protection of the Black Hole attack was also modeled. The effect of detection of a

BHR and avoiding it on the performance of the NoC was studied. The designed router

architecture detects the BHR in runtime and detours around infected nodes once they are

detected, with an overhead 26.9% in resources utilization. This novel, always-active, BHR

detection technique has 21.31% overhead in performance, with 22% overhead in energy

consumption, as compared to the baseline NoC model.

The model was extended to provide an Energy-Efficient technique to detect the BHR

with negligible overhead in the NoC throughput and power consumption based on an end-

to-end (e2e) acknowledgement technique. It presented 2% and 1% overheads in the energy

consumption and the throughput, respectively, compared to the baseline NoC model.



97

CHAPTER 6

AUTHENTIC AND SECURE NOC MODEL AGAINST PACKET

TAMPERING ATTACKS

The protection schemes discussed in the previous chapters have focused on protocols to

detect the Black Hole Router and isolate it from the NoC by detouring the packet routing

around it to prevent the source of the attack and to assure a packet delivery. In this chapter,

a new protocol is presented to provide a security service to the data packets moving in

the NoC and to detect a packet tampering attack. This new scheme provides a security

level to the packets moving in the NoC by encrypting them, maintains their integrity, and

supplies packets with authentication. This technique provides an Authentic and Secure

Router (ASR) to the NoC model. The ASR-based NoC is not only able to recognize the

attack, but also to localize the source of the attack and to isolate it from the NoC routing to

prevent any further attacks.

6.1 Threat Overview

In the NoC, packets are routed from a node to another in plaintext, which makes the system

vulnerable to the theft of sensitive information by listening to the flowing packets via either

invasive or non-invasive methods [77]. An attacker can run a malware application on one

of the compromised processors to receive an unauthorized copy of the packets passing

through a certain node [121]. In order to countermeasure this attack, a technique to hide
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the information carried by the packets is required. This can be performed by using an

encryption protocol.

This security threat model may tamper with the packets and direct them to a certain

destination to leak some information, gain unauthorized access, or apply a DoS attack.

Figure 6.1 presents several types of attacks on the NoC due to tampering with the packets,

where P(s,d,m) is a packet P from a source (s) to a destination (d) with a payload, or a

message, (m).

Figure 6.1a shows an example of tampering with the message (m) to apply a DoS, where

the destination receives a wrong message (m′) and may take an undesired action leading

to the degrading of the NoC-based system. A different type of packet tampering attack

is presented in Figure 6.1b, The figure shows an example of a packet-leak attack which

occurs by copying a packet to a compromised node by changing the destination to (d′). In

this attack, packets still progress to their intended destination, but another copy of them are

forwarded to the attacker for further analysis. Figure 6.1c shows a third attack scenario for

obtaining unauthorized access to a certain node. For a certain security level, some nodes in

the NoC are not allowed to be accessed by others for security purposes. For example, in a

secure zone, the sources of the packets are validated before accessing the destination node.
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Figure 6.1: Potentials for packet tampering attacks and their purposes: a) to apply DoS, b)
to leak information, or c) to gain unauthorized access.
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In order for an attacker to access an unauthorized node, the packet header is altered by a

HT to change their source identification (s′) to obtain the privilege to access a forbidden

node (d′).

The purpose of the several scenarios of the packet attacks in the NoC presented in

Figure 6.1 is to apply DoS, steal sensitive information, or access unauthorized data. In

this chapter, a security layer is added onto the NoC to prevent the possibility of packet

attacks. The goal of this work is not only to maintain the data confidentiality, integrity, and

authenticity, but also to identify the source of the attack and detach it from the NoC.

6.2 Threat Mitigation

In order to hide sensitive information carried by packets in the NoC, packets need to be en-

crypted during their path from the source to the destination. Several encryption techniques

[107, 108, 119, 120] may be applied to provide confidentiality to the system. However,

packets may be diverted to an unauthorized and compromised node to be analyzed by a

crypt-analysis technique to cover sensitive information or to steal the cryptographic key.

This may require a robust encryption technique to conceal the data and make it harder

to reveal. Additionally, encrypted packets can be altered on their way and be directed to

a different destination. In this case, the destination receives incorrect information after

decrypting the received message.

In order to address such problems, encryption alone is not enough and maintaining the

integrity of the data is a must. Therefore, only correct packets received at the recipient

node will be accepted and the wrong or unauthorized packets will be rejected. In order to

achieve this goal in the presented scheme, Authenticated Encryption (AE), a tag is formed

by the source node and is appended to the packet. At the receiver side, the tag is generated
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from the received packet and is compared to the received one, i.e., the source-tag. Since the

generated tag is correlated with the data, an equality of the destination-tag and source-tag

means the data remained intact on its way to the recipient node. Generating the tag from the

payload only guarantees data integrity however it does not guarantee authenticity, where

an attacker may change the source or destination IDs and generate the corresponding tag.

Hence, in this presented AE technique, the source and destination IDs, and the payload are

included in generating the tag.

Figure 6.2 shows the Authenticated Encrypted (AE) message format being used, where

the tag is composed of the source and destination IDs, the type of the packet, and the digest

of the information that needed to be transferred. The type of the packet is included inside

the AE message to be prevented from alteration by the HT.

In this AE scheme, the AE message is created at the source node inside the network

interface which is assumed to be trusted and built-in-house. At the source side, the message

is divided into multiple packets, each packet has a 32-bits payload. For an 8× 8 NoC

size, each of the source (src) and the destination (dst) is represented by 6-bits length. The

message can have different types, either a data packet or a control packet. It could also

AES

Packet Payload (1)

Payload (2)

Payload (3)

AE Message

tag

src dst

src dst type

Payload (1) Payload (2) Payload (3) Packet digestsrc dst type

Figure 6.2: Authenticated Encrypted (AE) message format.
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be extended to include other types based on the environment of the system. In this case

study, “type” is 4-bits length, which could represent up to 16 different types for future

extension. “Packet digest” is 16-bits generated from “Payload (1)”, “Payload (2)”, and

“Payload (3)”. Generating the “Packet digest” is discussed in the next section. Therefore,

the size of the generated “tag” is 32-bits and the total size of the message is 128-bits.

After forming the payloads and the generated tag, they are encrypted using the Advanced

Encryption Standard (AES) [152], AES-128, by using a shared key between the source and

the destination. The source safely injects the AE message into the network to its intended

destination. At the destination side, the received AE message is decrypted and the data

payloads and the tag are extracted, and then the node recalculates the packet digest and

compares it, along with the source and the destination IDs, to the received tag, in order to

check the correctness of the received packet.

Figure 6.3 shows a block diagram of the sender entity at the authentic module of a

source node. Initially, the sender is waiting for a new message from its attached processing

element. Once a new message (msg) has arrived, it is divided into packets. A digest

is calculated for each packet and is concatenated with the source ID, the destination ID,

and the type of the packet to create the packet-tag. Each node has a secure storage for

cryptographic keys saved in the “key Table”. The required key is extracted from the “key

Table” using the destination ID address. For authenticating the message, the data-packet

along with the packet-tag are signed by the shared key, Key(src,dst), between the source and

the destination nodes using AES-128. Therefore, the data is secure to be pushed into the

network. The process is repeated for every packet till the end of the message.

The purpose of this message format is to maintain the following goals:

• Data Confidentiality: the data packets (Payload (1), Payload (2), and Payload (3))

are encrypted.
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• Data Integrity: the correctness of the data is maintained when the received tag

matches the calculated tag at the recipient node.

• Authenticity: only the permitted sources have the right to access the computational

or memory element at the destination node. The message authentication is achieved

when the calculated tag is correct, since the crypto-key used for the encryption and

decryption is uniquely shared between the source and the destination.
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Figure 6.3: A block diagram of the sender node.

6.2.1 Packet Digest

There are many techniques to create a digest of a message, such as calculating the hash of

the message using a one way function, such as secure hash algorithm as seen in MD5, SHA-

1, SHA-2, or SHA-3 [149]. These techniques are time demanding and require massive

computation resources [150].
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In the presented AE scheme, a secure hashing is not necessary for two reasons: 1) the

tag is calculated and then is signed with the data by the shared key, so an attacker will not

have access to the tag to run crypt-analysis to detect the message. 2) altering a single bit of

the encrypted message leads to a complete different output message, due to the diffusion

property of the standard AES protocol, so a simple packet digest is enough to check the

correctness of the message.

The purpose of the packet digest inside the encrypted message is to guarantee packet

integrity. It was explained that the data packet and its digest are encrypted before being

sent to the destination. This prevents an attacker from altering a packet and generating a

corresponding new tag. Therefore, a cyclic redundancy check (CRC), a Hamming code, or

an arithmetic checksum are fit candidates to calculate the message digest.

In this work, an arithmetic checksum is used for calculating the packet digest. Figure

6.4 illustrates the packet digest using the arithmetic checksum. In this AE scheme, a packet

is composed of three payloads, each having 32-bits of length. Payloads are divided into

multiple words of 16-bits length and added together. The 16-bits output summation result

(CheckSum) is the digest of the packet.

Payload (1)

16-bit 16-bit

32-bit

Payload (2)

16-bit 16-bit

32-bit

Payload (3)

16-bit 16-bit

32-bit

Σ Σ Σ

Σ

CheckSum

Figure 6.4: Generating the packet digest using the arithmetic checksum.
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6.2.2 Attack Detection

By following the presented AE message format, the receiving node can detect any alteration

of the received packet by decrypting the message using the shared key with the source. If

the packet has been attacked, the decrypted message will not have a matched tag, which is

either, src, dst, or the packet digest. Once the tag is not correct, the destination node can

claim that a packet attack has occurred. It is must be pointed out that packet alteration due

to link failure is out of the scope of this research, since the focus here is on attacks due to

a malicious circuit in the router.

Figure 6.5 shows a block diagram of the detection unit at the receiving node. The

received packet contains the source and destination IDs, the type of the packet and the

authenticated encrypted packet. The source IDs are the address to obtain the shared key

between the two nodes from the secured storage, “Key Table”, which is used for decrypting

the received packet. The output from the “AES Decryption Module” is composed of the

payload (plaintext message) and the packet-tag that contains information about the source

and destination IDs, packet type, and the packet digest. The payload is passed to the “Packet

digest Calculator” to calculate the message digest. Therefore, the calculated message digest

along with the received source and destination IDs will be compared with the decrypted

packet-tag. If a packet has changed on its way to the receiving node, the calculated tag will

not match the decrypted received tag.

The moving packet in the network consists of several parts. Some of them are in

plaintext and known to the intermediate routers for the routing process such as, source

ID, destination ID, and packet-type. Others are encrypted in the authenticated packet (AE

pkt) such that the internal information is hidden to the routers of the NoC. Tampering with a

packet can happen in one or more parts of the moving packet. For example, in the plaintext
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Figure 6.5: Detection of the packet tampering at the receiving node.

information or in the encrypted packet. Flipping one bit of the moving packet leads to an

expected mismatch of the received tag with the calculated one.

Table 6.1 shows the consequence of tampering with different parts of the packet. When

the source ID or the destination ID is tampered with, the cryptographic key will be different

than the one that was used to encrypt the AE packet. As a result, the decrypted packet will

be different than the intended packet. This will lead to a different tag as well. Additionally,

when the AE packet is tampered with, the decrypted packet will be different, which may

affect the correctness of the sent-tag due to the avalanche effect of the AES [152].

Table 6.1: Effect of the packet tampering on the decrypted packet.

Packet Part Effect
src ID Wrong Key
dst ID Wrong Key

AE pkt
Wrong decrypted packet.
(src, dst, type, or/and packet-digest)
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6.2.3 HT Localization

Once a tampering attack has happened to the message during the transfer process, it will

be detected at the Authentication Module (AM), which is attached at the recipient node.

However, the source of the attack has not been identified. In this work, a novel protocol to

identify the location of the tampering node in the NoC is presented.

In order to accomplish this task, the AM creates a Scouting Packet (SP) to track the

path of the received message to identify the source of the attack. The SP traces back, hop

by hop, from the recipient node to the source of the message. The source ID is extracted

from the plaintext header information, which is the src ID. Figure 6.6 shows an example of

the detection and searching processes of the HT.

In Figure 6.6a, a packet was supposed to be forwarded from a source node, S, to a

destination node, D, however it has been tampered with at a HT node. The source and the

destination IDs were changed to S′, and D′, respectively, for an attacking purpose. Once

the tampered packet arrives at D′, it will be decrypted by a different key, Key(S′,D′), which

HT S' S

D'

D

(a) Detection of HT attack

L HT S'

D'

(b) HT Localization

Figure 6.6: Searching for the source of the attack.
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leads to an unmatched tag. Hence, tampering is detected. Figure 6.6b shows the path for

searching the tampering router. At this moment when an attack has been detected at D′, the

AM at D′ instantiates an SP to be routed from D′ to S′. At each hop, an encrypted packet

is sent from a node to the adjacent one on the searching path. Once it arrives at a node, it

replies with a Scouting Packet Reply (SP REPLY), which is a secure confirmation, back

one hop and calculates the SP and forwards it one hop towards S′. The process is repeated

till it reaches the intended node, S′. The SPs are routed in a reverse direction of the X-Y

routing technique, i.e., the reverse path of the data packet from D′ to S′ in the Y-X routing

direction. The SP and SP REPLY have a similar format to the original data packet, which

is described in Figure 6.2. In their format, the Payload (1) is a random number generated

by the node, and the Payload (2) carries information about the packet, such as the packet

ID, however, the Payload (3) carries information about the original source, srcorg (D′) and

the original destination, dstorg (S′), IDs. The SP REPLY packet has the same packet format

except that Payload (1) is a response to the received one from the SP. In this presented

model, a bitwise-Inverse function of the received Payload (1) was used as a response to the

the SP packet. The type of packets are described in Table 6.2.

Table 6.2: Types of the decrypted packet.

Packet Type Description
DATA TYPE The packet carries data information

SP
The packet carries a control packet
to detect & localize a HT

SP REPLY
The packet carries a control packet
to confirm the node’s authentication

In the case that the SP faces an infected router (HT), as shown in Figure 6.6b, the AM

attached to the node, L, sends a secure packet to the HT, however the HT tampers with

the packet and a confirmation packet will not be sent back to L. At this time, L keeps
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waiting for an ACK till it exceeds a threshold time (Tth). The value of Tth is defined based

on the time that the AM takes to create the SP and SP REPLY. Hence, the AM runs the

same protocol with the other adjacent nodes to check the correctness of the attached router,

L. Once L is HT-free and does not receive a SP REPLY, its attached AM sends the attack

location to the OS through a secure link to inform it to isolate the HT node and reconsider

mapping the applications - migrating the applications is out of the scope of this research.

Algorithm 1 shows the pseudo code of detecting a routing violation in an infected NoC.

Algorithm 1: Runtime detection and localization of the tampering-HT.
Input: Packet: (src, dst, Payload(1,2), srcorg, dstorg, tag)
Given: Current Node ID (xcurr, ycurr)
Result: Tampering-HT Location
Packet Decrypt () ;
Packet Correctness Verify () ;
if type == DATA TYPE then

Packet Consume () ;
end
if type == SP then

Scouting Packet Reply Create () ;
Scouting Packet Create&Forward () ;

end
if type == SP REPLY then

Scouting Packet Correctness Verify () ;
end

So far, this technique finds the location of a HT in the NoC as long as it is in the

searching path. A question might be raised. Is there a case where the HT hides itself from

the searching path?

In answering this question, a case that a HT covers itself by a simple technique is

assumed. The following section describes such failure cases and how they are mitigated in

this secure scheme.
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Mitigation of Unsuccessful Localization

As mentioned earlier, a tampering router (HT) may change any part of the packet. It might

alter the source ID of the message such that it removes its location from the searching path.

Figure 6.7 shows a scenario where a HT hides itself and the detection protocol fails to detect

it. As shown in Figure 6.7a, a packet is sent from S to D passing through a HT which alters

the packet source and destination IDs to S′ and D′, respectively. Once the packet arrives at

D′, the tampering attack will be detected by the AM attached to the receiving node. So, it

instantiates the SP, forming the searching path as shown in Figure 6.7b. By following the

searching path using the traditional technique, the HT will not be discovered.

Having discussed that a HT can conceal itself, an additional technique is required to

discover a such unnoticeable HT, which is addressed next. As previously mentioned, the

searching path is a trace back from D′ to S′ and the data packet was supposed to follow the

routing protocol. Therefore, if a packet has changed its direction but it follows the routing

restrictions, the searching path will include the tampering node.

S'

S

HT

D'

D

(a) Undetected HT technique

S'

S

HT

D'

D

(b) HT escapes from the searching path

Figure 6.7: An example of a HT localization failure.
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Figure 6.8 shows an example of a routing violation that occurred because of a HT and

is detected at node L. In this example, a data packet is moving from S to D. However, the

HT router changes its direction and changes the source and the destination IDs to S′ and

D′. However, the router L receives the tampered message as it was sent from S′ to D′. L

realizes that it is not supposed to receive such a packet from S′ to D′ for the X-Y routing

protocol. Therefore, L detects a routing violation at the east input port. Hence, it reports

that the adjacent east router (HT ), that is attached to the input port, had violated the routing

protocol.

S'

S

L HT

D'

D

Figure 6.8: An example of routing violation due to a HT.

Routing Violation Detection

In the X-Y routing algorithm, packets are routed all the way horizontally in the x-direction

(EAST or WEST ) till the x-coordinate of the destination is aligned with the x-coordinate

of the current router, then packets are directed vertically in the Y-direction (NORT H or

SOUT H) to their final destination. If the packet is deviated to a wrong direction, the

receiving (neighbor) router will detect it. Hence, when a packet is received at each port of

a router, the receiving module of the router checks if the routing has been violated. In order
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to detect the routing violation, the network is divided into certain regions around a certain

node router. Figure 6.9 shows eight regions surrounding a specific node (“Local”) in the

NoC. In the X-Y routing, when a packet is received at the EAST input port of a router, the

source should be in the X−East region and the destination should be at any of the regions

Y −North, Y −South, X−West, North West, South West, or Local.

Y-
N
o
rt
h

Y-So
u
th

X-East

North_East

X-West

North_West

South_West South_East

X

Y

Figure 6.9: Eight types of segments around a certain node.

In X-Y routing, the packet follows some certain turns and directions at a local router

based on the source and the destination IDs. When a packet is received at the WEST

input port, the source should be in the X −West region and the destination should be at

any of the regions Y −North, Y −South, X −East, North East, South East, or Local, as

shown in Figure 6.10a. Similarly, when a packet is received at the EAST T input port, the

source should be in the X−East region and the destination should be at any of the regions

Y −North, Y − South, X −West, North West, South West, or Local, as shown in Figure

6.10b. When a packet is received at the NORT H input port, the source should be in the

Y North region and the destination should be in either of these regions Y South, or Local,
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as shown in Figure 6.10c. Similarly, when a packet is received at the SOUT H input port,

the source should be in the Y South region and the destination should be in the Y North, or

Local, as shown in Figure 6.10d. Otherwise, a routing violation would have occurred and

can be detected.

C

Source Node

Destination Node

(a) A packet is received at the
West input port

C

Source Node

Destination Node

(b) A packet is received at the
East input port

C

Source Node

Destination Node

(c) A packet is received at the
North input port

C

Source Node

Destination Node

(d) A packet is received at the
South input port

Figure 6.10: A graphical explanation of the relation between the source IDs, destination
IDs, and the input port of a router to detect the packet misrouting attack.
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Algorithm 2 shows the pseudo code of detecting the routing violation in an infected

NoC.

Algorithm 2: Run-time detection of routing Violation.
Input: Input direction, in dir, (E, W, N, S)

Source Coordinates (xsrc, ysrc)
Destination Coordinates (xdest , ydest)

Given: Current Router ID (xcurr, ycurr)
Result: Violation Detection (True, False)
if in dir == E then

check (ysrc == ycurr) ;
check (xsrc > xcurr) ;
if dst != Local then

check (xdst <= xcurr) ;
end

end
if in dir == W then

check (ysrc == ycurr) ;
check (xsrc < xcurr) ;
if dst != Local then

check (xdst >= xcurr) ;
end

end
if in dir == N then

check (ysrc < ycurr) ;
if dst != Local then

check (ydst > ycurr) ;
check (xdst <= xcurr) ;

end
end
if in dir == S then

check (ysrc > ycurr) ;
if dst != Local then

check (ydst < ycurr) ;
check (xdst == xcurr) ;

end
end
return False // No Violation;
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In the presented NoC model, once the malicious node is detected, the routing technique

of its surrounding nodes is updated and, hence, they do not completely follow the X-Y

routing protocol. So, their routing violation detection techniques perform differently than

the other normal nodes. Appendix D presents the routing violation detection technique

for the reconfigurable routing algorithm that allows a packet to detour around the infected

node.

Key Management Scalability

In order to maintain the authenticity of the ACK packet, it is encrypted with a shared

key between the sender and the receiver. Keys between the processing elements can be

safely distributed using Diffie-Hellman protocol [155], [156]. The key exchange process

occurs when a new application is allocated to some processing elements. If these processing

elements interact with each other, each one should have a separate key with the other nodes.

It is not necessary that each node in the NoC has a distinct key with all the other nodes of

the NoC. For example, if the total number of nodes in a NoC is sixteen and only four

processing elements are mapped to one application and interact with each other, each node

of these four processing elements should have only three distinct keys rather than fifteen

keys per node. This will reduce the number of shared keys between the nodes in the NoC.

In the worst case, when all the PEs in N×N NoC interact with each other, the total

number of keys, Numkeys, required in the system is proportional to the NoC size and equal

to:

Numkeys =
N2

P2

Since these keys are shared between each other, the total number of the distinguished

keys for a N×N NoC is represented by the following equation:
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NumdisKeys = (N2
C2) =

(
N2

2

)
Figure 6.11 shows the scalability of the keys in the system with the NoC size. It is

clear from the figure that the total number of keys exponentially increase with the NoC

size. However, for an application mapped to certain nodes in the NoC, the nodes should

hold only the shared keys between them rather than for the whole NoC, where these nodes

communicate only with each other. This is based on the applications that are mapped on

these sets of processing elements.

Without loss of generality, in order for an application to run on certain processors in

a multiprocessors system, an allocation process is required to allocate the application on

the selected processors [35–38]. In this case, it is not necessary for those processors to

have shared keys with others which are not in communication with them. This will reduce

the number of the keys per node in the system. The key-exchange process between a

certain nodes may be performed during the mapping process of the application using the

Diffie-Hellman protocol [155], [156], such as in [113, 157–159].
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Figure 6.11: Scalability of the distinct keys with the NoC size.
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6.2.4 Model of Authenticity and Security

Figure 6.12 shows a diagram of the Authentic and Secure Router (ASR)-based NoC model.

Each router in the NoC is connected to an Authentication Module (AM), which is in charge

of creating the authenticated and encrypted message before it is injected into the network.

The AM also checks the message authentication to detect packet-alteration and spots the

source of the tampering. The AM is a secure module that has access to the paired keys

and is implemented in the network interface. Authenticated encryption is performed on the

NoC firmware level. None of the routers in the NoC has access to the keys in the NoC.

Routers are used for forwarding the packets from one node to another. For each router, a

routing violation detection unit is designed and is placed in each input port of the router.

When an attack is detected and its location is defined, a secure signal is sent to a Secure

Management Module (SMM) to take an action, such as isolating the infected node and
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Figure 6.12: Secure NoC model with authentication module attached to the processing
element.
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avoiding mapping tasks to the attached processing elements. In order to increase the arrival

chance of the secure signal to the SMM without tampering, the AM sends the special packet

horizontally and vertically to the SMM. The received packets at the SMM are analyzed, to

take an action to isolate the malicious router from the NoC routing.

In order to evaluate the area overhead of the presented secure router architecture against

the packet-integrity attack, a five-ports router with a 4 packets depth buffer, each of 4 Flits

(32 bits), with a “Store-and-Forward” (S&F) switching technique was designed and syn-

thesized using 45nm TSMC technology (using the Cadence Design Compiler). It occupied

an area of 73,215 µm2. The baseline router was modified and the security features against

the attack were added. The area overhead was increased by 24.21% of the baseline router.

6.3 Evaluation and Experimental Results

In this section, the performance overhead of the authentic and secure NoC model is eval-

uated . The NoC parameters and the simulation environment were configured to cover

different NoC sizes and buffer depth sizes for various injection rates and several traffic

patterns. In the conducted experiments, the packet size was set to three flits, each is 32-bits,

and the tag size was set to 32-bits, which includes information about the source and the

destination IDs, the packet type, and the packet-digest. The packet was authenticated and

encrypted by the AES-128 protocol [152, 160, 161]. Experiments were run for different

injection rates for 100,000 clock cycles.

6.3.1 Experimental Results

Extensive experiments were run to assess the authentic and secure NoC model under dif-

ferent network traffics, buffer sizes, injection rates, and etc. The system throughput and the
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overhead were analyzed for different NoC parameters. The collected results were compared

to the baseline NoC model.

The goal of these experiments is to identify the maximum injection rate where the

presented NoC saturates. Additionally, it is crucial to recognize the required time to locate

a HT in the NoC, where the source of the tampering attack can be spotted within the studied

period of time. The simulation objectives are summarized as follows:

1. Identifying the saturation point of the presented authentic and secure NoC model and

measuring the throughput.

2. Evaluating the searching time overhead for the HT localization.

3. Measuring the degradation of the NoC performance in the presence of a HT for the

presented NoC model.

NoC Throughput and saturation point

In order to evaluate the overhead of the Authentic and Secure Router (ASR) on the NoC

performance and identify the saturation point of the presented NoC model, the NoC was

free of HTs and the tampering detection technique was activated. Figure 6.13 shows the

average latency (clock cycles) of the baseline NoC model and the presented, ASR-based,

NoC model for different traffic patterns. The x-axis represents the injection rate of the

data-flits in the NoC. The ASR-based NoC model saturates earlier compared to the baseline

one for different traffic patterns as shown: (5% - 7%, Bitreversal), (9% - 12%, Butterfly),

(15% - 19%, Random), (8% -11 %, Shuffle), (5% - 7%, Transpose 1), and (5% - 7%,

Transpose 2). One reason that ASR-based NoC model saturates at a lower injection rate

than the baseline one is that each packet is appended with a tag, which increases the number

of flits in the NoC, however, the actual number of data-flits are less than the injected flits.



119

0

300

600

900

1200

0.01 0.03 0.05 0.07 0.09

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline ASR

(a) Bitreversal traffic

0

300

600

900

1200

0.01 0.03 0.05 0.07 0.09 0.11 0.13

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline ASR

(b) Butterfly traffic

0

300

600

900

1200

0.01 0.04 0.07 0.1 0.13 0.16 0.19

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline ASR

(c) Random traffic

0

300

600

900

1200

0.01 0.03 0.05 0.07 0.09 0.11 0.13

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline ASR

(d) Shuffle traffic

0

300

600

900

1200

0.01 0.03 0.05 0.07 0.09

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline ASR

(e) Transpose 1 traffic

0

300

600

900

1200

0.01 0.03 0.05 0.07 0.09

A
ve

ra
ge

 L
at

e
n

cy

IR

Baseline ASR

(f) Transpose 2 traffic

Figure 6.13: Average Latency of the ASR-based NoC model under several traffic patterns,
injection rate (IR) is measured in Flit/Cycle/Node.
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Figure 6.14: Average Throughput of the ASR-based NoC model under several traffic
patterns, injection rate (IR) is measured in Flit/Cycle/Node.
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For example, three data-flits (payloads) requires one tag-flit. This indicates that 75% of

the routed flits are data and the rest 25% are tag-flits. Because of this, the throughput of

the proposed NoC model decreases, as well, as shown in Figure 6.14. It can be observed

that the average throughput slightly decreases, yet the confidentiality along with the packet

integrity and authenticity are maintained to the notion of graceful degradation of service.

Localization Time Overhead

In this experiment, the overhead of the searching technique to localize the source of the

packet-tampering attack is evaluated. The distance between the node that detects the attack

and the source of the attack is the main factor to estimate the localization time. Therefore,

in the experiment setup, only one node of the NoC was infected with a packet-tampering

attack. For any packet that passed through this infected node (HT), its destination was

tampered with and forwarded to a fixed node (D′) that was n hops away from the infected

node. As previously mentioned, the authentication module connected to the D′ initiates the

scouting packet to spot the source of the attack. The searching time to localize the infected

node was measured and recorded along with the number of hops between the D′ and HT

nodes. The simulation was repeated for a different D′ and a fixed HT position to cover all

of the nodes in the NoC. After that, the location of the HT was changed to another node

and the previous simulations were run and the localization time was recorded along with

number of hops between the D′ and HT nodes to cover all the possible cases.

Figure 6.15 demonstrates the overhead of the localization technique to spot the position

of the infected router in the NoC for different distances between the infected node (HT )

and the destination node (D′) that initiated the scouting process. The graph shows the

distribution of the localization time overhead at each possible single distance between the

detector, D′, and the tampering, HT , nodes. It is shown that the localization time overhead
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is linearly proportional to the number of hops between the start of the scouting process and

the infected node. It takes 90 to 730 clock cycles to localize the tampering router in an 8×8

NoC. Therefore, the HT can be located if it is active for up to 730 clock cycles, excluding

the travel time of the tampered packet to the detector node.

Figure 6.15: HT Localization overhead vs number of hops.

Performance Degradation

In this experiment, the NoC was infected with a packet-tampering router that alters the

packet on its way to the recipient node. The authentication module of the ASR-based

NoC detects the attack and initiates the searching technique to spot the infected node. The

infected node was isolated and packets detoured around it. The routing technique of the

nodes that surround the malicious router were updated and reconfigured to avoid routing

the packets through it. Additionally, the routing violation detection technique was updated

for each surrounding node, since they do not follow X-Y routing technique. The throughput

of the infected NoC was measured and normalized to the HT-free ASR-based NoC model.
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Figure 6.16 demonstrates the normalized NoC throughput of an 8×8 NoC size for a

Random traffic pattern. The graph shows that there has been a slight decrease in the

performance of the NoC when it avoids an infected node at higher injection rate, 17%

degradation at 10% injection rate. However, the packets maintain their integrity, secrecy,

and authenticity.
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Figure 6.16: Normalized performance of the NoC model under a HT attack.

Discussion

A comparison of the presented NoC model and the packet leak detection of the Fort-NoC

proposed in [121] is demonstrated in Table 6.3. The main feature of the Fort-NoC is to

detect the packet leak in the NoC due to a HT hidden in the router. In the Fort-NoC model,

packets are scrambled by bitwise-XOR with a static key. Though Fort-NoC offers less

area overhead, it exhibits weakness in the encryption and authentication method, leaving a

backdoor for the attacker to comprehend the packet certification. The packet certificate is

fixed for the destination and can be easily detected. In this presented design, AES is used
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for encrypting and authenticating the packets, which makes it very hard for a crypt-analysis

attack to uncover the data or gain unauthorized access.

Table 6.3: Comparison between the Fort-NoC [121] and the ASR-based NoC model.

Fort-NoC [121] ASR-based Model
Packet Leak 3 3

Security Level Low
(bitwise-XOR)

High
(AES)

Misrouting Detection 5 3

HT Localization 5 3

Area 9.91% 24.21%

6.4 Summary

In this chapter, an authentic and secure NoC model was presented. It provides data confi-

dentiality, integrity, and authenticity. In this model, each node is attached to an authentic

and secure module, Authentication Module (AM), to generate authenticated and encrypted

packets using the AES encryption standard, before they are injected into the NoC. At the

receiver side, the received packets were verified and validated to check their integrity and

authenticity. Once a tampered packet is detected at the receiving node, it generates a

scouting packet to localize the source of the tampering router. Experiments were conducted

on an 8× 8 NoC and showed that the technique maintains the packet integrity and can

localize the tampering node within 90 to 730 clock cycles, based on the number of hops a

HT is located from the start of the searching process. The presented secure NoC model has

a 24.21% area overhead and the injected packets in the NoC carry 75% of the information

data compared to the baseline router.
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CHAPTER 7

CONCLUSIONS

7.1 Conclusions

The Network-on-Chip (NoC) provides a high performance and scalable interconnection

between hundreds of processing elements. It decouples the computation sub-system from

the communication one. This has made the NoC widely used in contemporary and future

Multiprocessor systems-on-chip (MPSoC). Third Party Intellectual Properties (3PIPs) have

been adopted in many design due to time-to-market and to reduction in the overall design

cost.

However, the outsourcing of designs and the concern about 3PIPs have raised the

security concerns about the possibility of placing Hardware Trojan (HT) circuits in the

NoC to compromise data manipulation, steal sensitive information, or degrade the system.

It is too difficult to pinpoint physical alterations in complex circuits of 3PIPs within a large

state-space, since HTs are usually in an idle state and become active upon launching an

attack. This leads HTs to escape testing cases and appear in final products. Therefore,

run-time detection solutions are necessary to provide a practical defense for the system

to mitigate the HT effect, since post-silicon testing, in most cases, is usually incapable of

detecting such malicious circuits.

Chapter 3 provided a literature research and revealed several studies on the different

types of security attacks on NoC-based systems and on the applications running on the IP-
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cores of the systems. Several studies focused on the impact of a HT in the NoC performance

and the system security.

The goal of this work was to provide a resilient and secure NoC model that mitigates

the HT effects. The research contributions provided in this dissertation considered two

HT-based attacks:

• A packet-dropping attack, which is known as Black Hole Router (BHR) attack, where

packets are dropped from the NoC once they pass through a BHR, without further

information.

• A packet-tampering attack, where packets experience alteration on their way to the

destination due to a hidden HT in the NoC router.

Chapter 4 presented an analysis for the BHR attack and its effect on the NoC, and

examined the influence of the number of the infected nodes, along with their distribution,

on the potency of the attack. Experiments were designed and were run on a cycle-accurate

simulator for an 8× 8 NoC which showed that the packet loss rate varied between 5%

to 33.8% based on the number of the BHRs and their locations in the NoC. This studied

showed that by considering some factors in the BHR design, a violent attack can occur with

less effort.

Chapter 5 developed a novel mechanism to detect the BHR and prevent its attack by

detouring around the infected node. The BHR detection was based on an acknowledge-

ment (ACK) from nodes two hops away to confirm successful forwarding of the packets.

In order to achieve a secure ACK, the packet confirmation, i.e. ACK, was signed by

bitwise-XORing the packet with a one time pad number shared between the two paired

penultimate routers. The ACK signature handler is assumed to be executed in a secure

module in the network interface of the NoC model. The experiments on a simulated 8×8
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NoC showed that the detection protocol identifies the BHR attack in runtime and avoids it

with an overhead of 26.90% in resource utilization and 21.31% in performance when it is

compared to a baseline NoC model for the same parameters.

The mechanism was further developed to provide an energy-efficient technique that

detected the BHR with negligible overhead in the NoC throughput and power consump-

tion based on an end-to-end (e2e) technique. The energy-efficient scheme was able to

detect data-packets or ACK-packets dropping attacks and could identify the BHR location

with minimal power overhead. The experiments, on an 8× 8 NoC, showed that this

expanded mechanism was more efficient than the traditional always-on hop-to-hop (h2h)

confirmation. The energy-efficient mechanism showed 2% and 1% overheads in the energy

consumption and the NoC throughput, respectively, compared to the baseline NoC model.

Chapter 6 focused on packet-tampering attacks due to a HT. The novel strategy main-

tained the packets’ integrity and authenticity. Packets are authenticated and encrypted at the

source node using the Advanced Standard Encryption (AES-128) [152]. The received pack-

ets are verified and validated at the destination node to check their integrity and authenticity.

With Regard to locating the source of the tampering attack, in the case of packet-alteration,

the destination node generates a special packet, the Scouting Packet (SP), to check the

correctness of path of the packet between the source and the destination nodes to locate the

HT router. Experiments showed that this technique can locate the tampering router within

90 to 730 clock cycles, based on the hop distance between the beginning of the localization

process and the HT.
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7.2 Future Work

This section discusses some potential future research directions. The future work concerns

deeper analysis of potential attacks and particular mechanisms. There are some ideas that

extend the Black Hole Router (BHR) attack and the tampering attacks.

7.2.1 Colluding Routers

The research documented in this dissertation concentrated only on a BHR attack where all

packets passing through it are discarded from the NoC. The proposed detection technique

is based on generating an acknowledgement (ACK) and sending it back to the penultimate

router, thus assuring that the intermediate router has forwarded the packet. In the colluding

routers attack, two adjacent routers may collude with each other to drop packets that are

passing through them, where the first rogue router sends a packet to the collaborating one,

which confirms its arrival while discarding the packet. The first rogue router forwards the

ACK to the intended node. In this scenario, it will not be possible for this dissertation’s

technique to detect such BHR due to the collusion of two adjacent routers. This can be

solved by extending the acknowledgement across the path of the packet. More precisely,

the ACK should be received from each single router in the path of the packet to the source

node. Although, the NoC will be more congested, this technique will identify the colluding

routers and detect the source of BHR attack.

7.2.2 Gray Hole Router

Another interesting problem may be raised in the detection of packet-dropping attacks. The

NoC may experience a special case of a packet-dropping attack by selectively discarding

a subset of packets and passing the others. This is known as a Gray Hole Router (GHR).
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In the current energy-efficient detection, a GHR could discard data packets during normal

routing, however, it allows packets to be forwarded when the detection technique is acti-

vated. This attack will be very hard to detect. Although, in this case, packets eventually

arrive to their destinations, the NoC-based system experiences degradation in the NoC

bandwidth.Therefore, a GHR needs more investigation in future work.

7.2.3 Replay Attack Detection

In the Authentic and Secure NoC model, packets are encrypted by the AES-128 [152]

before being injected in the network. At the receiver side, the packets are decrypted and

checked for their correctness. One possible attack which can be applied is a replay attack,

where a valid packet is stored by a malicious router for an attacking purpose. In this

scenario, the malicious router could retransmit this valid packet after a delay to deplete

the NoC bandwidth, degrade the NoC performance, or cause an undesired action from the

destination node. In the presented NoC model, since the packet has not been tampered

with, it will successfully pass the authentication check. However, it was not intended to

be sent or was repeatedly sent, leading to an unpleasant effect. In order to detect such an

attack, the packet should be time-stamped before being injected into the NoC. Therefore,

at the destination side, the time-stamp of the packet is checked for assurance of delivery

within a certain period of time, otherwise, the packet is more likely to have experienced a

replay attack. This scheme will be explored in the future design.

7.2.4 Routing Violation for Adaptive Routing

The presented Authentic and Secure NoC model can detect packet-tampering attacks and

locate the HT causing them. Packets are checked at each input port of the router for routing

violations for a deterministic X-Y routing protocol. Future work could focus on adaptive
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routing protocols and how a routing violation can be distinguished from the normal adaptive

routing.
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APPENDIX A

A GRAPHICAL EXAMPLE OF THE RECONFIGURABLE

ROUTING TECHNIQUE

In this appendix, a graphical example is shown to demonstrate the reconfigurable routing

technique for detouring around a specific node.

The following figures show the detouring path around a malicious node (2,2) of a packet

injected from the source node (4,2) to multiple destinations for a 5×5 NoC.

(a) A packet path to node (0,3) (b) A packet path to node (0,2) (c) A packet path to node (0,1)

(d) A packet path to node (1,4) (e) A packet path to node (2,4) (f) A packet path to node (2,0)

Figure A.1: A graphical path of a packet injected from node (4,2) with detours around
node (2,2).
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(a) A packet path to node (1,3) (b) A packet path to node (2,1) (c) A packet path to node (2,3)

(d) A packet path to node (1,0) (e) A packet path to node (0,4) (f) A packet path to node (1,2)

(g) A packet path to node (0,0) (h) A packet path to node (1,1)

Figure A.2: A graphical path of a packet injected from node (4,2) with detours around
node (2,2).
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APPENDIX B

KEY EXCHANGE SCALABILITY

In order to study the number of keys required for the NoC to achieve a secure architecture,

a 5×5 NoC is used as an example, shown in Figure B.1, where nodes are grouped into six

groups based on the number of keys required for each node.

In Figure B.1, the nodes are numbered into groups: G1, G2, G3, G4, G5, and G6 which

are named Corner, Side Corner, Side Middle, Inner Corner, Inner Middle, and Middle,

respectively. These groups are described as following:

G2 G3 G2 G1G1

G4 G5 G4 G2G2

G5 G6 G5 G3G3

G4 G5 G4 G2G2

G2 G3 G2 G1G1

Figure B.1: A 5×5 NoC with different group of keys.
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• G1, (Corner): This group contains the corner nodes of the NoC. Each node in this

group contains five different keys. Three distinct keys are shared with the penultimate

routers of the G3 and G4 groups. Two distinct keys are shared with the processor

elements of G2 group.

• G2, (Side Corner): This group contains the nodes that are adjacent to the corner nodes

of the NoC. Each node in this group contains seven different keys. Four distinct keys

are shared with the penultimate routers of other G2 and G5 groups. Three distinct

keys are shared with the processor elements of the G1, G3, and G4 groups.

• G3, (Side Middle): This group contains side nodes in the NoC. Each node in this

group contains eight different keys. Five distinct keys are shared with the penultimate

routers of the G1, G4, and G6 groups. Three distinct keys are shared with the

processor elements of the G2, and G5 groups.

• G4, (Inner Corner): This group contains the inner corner nodes of the NoC. Each

node in this group contains ten different keys. six distinct keys are shared with the

penultimate routers of the G1, G3, and G4 groups. Four distinct keys are shared with

the processor elements of the G2, and G5 groups.

• G5, (Inner Middle): This group contains the inner middle nodes of the NoC. Each

node in this group contains eleven different keys. Seven distinct keys are shared with

the penultimate routers of the G2 and other G5 groups. Four distinct keys are shared

with the processor elements of the G3, G4, and G6 groups.

• G6, (Middle): This group contains the middle nodes of the NoC. Each node in

this group contains twelve different keys. Eight distinct keys are shared with the
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penultimate routers of the G3 and G4 groups. Four distinct keys are shared with the

processor elements of the G5 group.

B.1 Derivation of the Total Number of Keys:

For the larger NoC size, the extra nodes will belong to G6 for middle nodes, G5 for inner

middle nodes , and G3 for side middle nodes. The number of nodes in groups G1, G2, and

G4 is fixed and equal to 4, 8, and 4, respectively. Therefore, the number of keys in these

groups is derived as:

5×G1+7×G2+10×G4 = 5×4+7×8+10×4 = 116

For a N×N NoC, the number of nodes in groups G3, G5, and G6 are equal to 4×(N-4),

4×(N-4), and (N − 4)2 , respectively. Therefore, the number of keys in these groups is

derived as:

4(N−4)× [G3+G5]+ (N−4)2×G6 = 4(N−4)× [8+11]+ (N−4)2×12

= 76(N−4)+12(N−4)2

Therefore, the total number of keys, Numkeys, equals: 116 + 76(N−4) + 12(N−4)2

Numkeys = 12N2−30N +4, ∀N ≥ 5

Since these keys are shared between a pair of nodes, the total number of distinguished

keys, NumdisKeys, is half of Numkeys.



150

NumdisKeys = (
Numkeys

2
) = 6N2−15N +2

.

Similarly, the total number of distinguished keys for NoC sizes equal to 2× 2, 3× 3,

and 4×4 was derived and is equal to 6, 26, and 58, respectively.
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Figure B.2: Scalability of the distinct seed-keys with the NoC size.
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APPENDIX C

NOC TRAFFIC PATTERNS

This appendix is dedicated to providing details for the NoC traffic patterns [64].

C.1 Synthetic Traffic Patterns

The traffic pattern defines the destination node (D) based on the source (S) node, the

network dimensions (dimx and dimy ), and number of nodes (N) in the NoC. si (di) denotes

the ith bit of the source (destination) address, whereas Sx (Dx) denotes the xth radix-k digit

of the source (destination) address. The bit length of an address is b = log2N. The traffic

patterns are described as follows:

• Random: The destination is chosen randomly following a uniform random distri-

bution.

• Transpose1: The destination is defined as follows:

tmpx = dimx - 1 - Sy,

tmpy = dimy - 1 - Sx

Dx =


0, if tmpx ≤ 0

dimx−1, if tmpx > dimx−1

tmpx, otherwise
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Dy =


0, if tmpy ≤ 0

dimy−1, if tmpy > dimy−1

tmpy, otherwise

• Transpose2: The destination is defined as follows:

Dx = Sy,

Dy = Sx

• Bitreversal: The destination is defined as follows for a source S = [sb−1...s1s0]:

D = [s0...sb−2sb−1], i.e., di = sb−i−1.

• Butterfly: 
d0 = sb−1

db−1 = s0

di = si, f or 0 < i < b−1

• Shuffle: 
d0 = sb−1

di = si−1, f or 0 < i < b
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APPENDIX D

ROUTING VIOLATION DETECTION FOR RECONFIGURABLE

ROUTING TECHNIQUE

In this appendix, the routing violation detection for the reconfigurable routing proposed

in section 6.2.3 is studied for the nodes that are surrounding the infected node. In the

presented Authentic and Secure NoC model, the routing technique is reconfigured to detour

around a HT node. Therefore, the surrounding nodes have a different routing method,

which their routing violation check is different.

Figure D.1 shows an 8× 8 NoC indicating the nodes of the different routing violation

checks. In this figure, the routing violation rule of the “Normal” nodes is the same as

the presented one for the X-Y routing. However, the “Surrounding” nodes have different

routing and, as a result, they have a different violation check algorithm. Though the

“Involved” nodes obey the X-Y routing, they are still involved in the routing violation

check of packets that detoured around the HT node. As an example, a packet is injected

from the source node (0,3) to the destination (6,3). It will follow the path [(0,3), (1,3), (2,3),

(2,4), (3,4), (4,4), (5,4), (6,4),(6,3)]. The packet is detoured at node (2,3). At node (5,4), it

will seem that the packet violated the routing, because it should not receive a packet from

source (0,3) unless it is received at the North input port and its destination is in the Y-South

direction.

There are thirteen different types of nodes that are involved in the new routing violation
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check presented in Figure D.1. They are given a distinct symbol (A, B, C, D, E, F, G, H, I,

J, K, L, M). The routing violation checker for these nodes is slightly different than the X-Y

routing and is presented as follows in Sections D.0.1 to D.0.13.

A B C

I D HT EI

J F G HJ

K K

L L

M M

K

L

M

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

X

Y

Normal Node

Surrounding Node

Involved Node

Figure D.1: An example of an 8× 8 NoC indicating nodes involved in a X-Y routing
violation.
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D.0.1 Routing Violation Check at Node “A”

Node “A” applies the X-Y routing violation check for packets received at the North and

West input ports. However, packets received at the East input port will follow a different

A

HT

Source Node

Destination Node

(a)

A

HT

Source Node

Destination Node

(b)

Figure D.2: Source nodes and their corresponding destination nodes for the East input port
of node “A”.

A

HT

Source Node

Destination Node

(a)

A

HT

Source Node

Destination Node

(b)

Figure D.3: Source nodes and their corresponding destination nodes for the South input
port of node “A”.



156

check, as shown in Figure D.2, where at the East input port, the algorithm should check

the source and destination of the received packets and they should match the demonstrated

ones in the figure. Similarly, for packets received at the South input port of the node “A”,

their source and destination should match what is presented in Figure D.3.

D.0.2 Routing Violation Check at Node “B”

Node “B” applies the X-Y routing violation check for packets received at the North, East,

and South input ports. However, packets received at the West input port will follow a

different check, as shown in Figure D.4, where at the West input port, the algorithm

should check the source and destination of the received packets and they should match

the demonstrated ones in the figure.

Source Node

Destination Node

B

HT

(a)

Source Node

Destination Node

B

HT

(b)

Figure D.4: Source nodes and their corresponding destination nodes for the West input
port of node “B”.
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D.0.3 Routing Violation Check at Node “C”

Node “C” applies the X-Y routing violation check for packets received at the North, East,

and South input ports. However, packets received at the West input port will follow a

different check, as shown in Figure D.5, where at the West input port, the algorithm

should check the source and destination of the received packet and they should match the

demonstrated ones in the Figure.

Source Node

Destination Node

C

HT

Figure D.5: Source nodes and their corresponding destination nodes for the West input
port of node “C”.

D.0.4 Routing Violation Check at Node “D”

Node “D” applies the X-Y routing violation check for packets received at the East and West

input ports. However, packets received at the North input port will follow a different check,

as shown in Figure D.6. Similarly, for packets received at the South input port of the node

“D”, their source and destination should match what is presented in Figure D.7.
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Source Node

Destination Node

D HT

(a)

Source Node

Destination Node

D HT

(b)

Figure D.6: Source nodes and their corresponding destination nodes for the North input
port of node “D”.

Source Node

Destination Node

D HT

(a)

Source Node

Destination Node

D HT

(b)

Figure D.7: Source nodes and their corresponding destination nodes for the South input
port of node “D”.

D.0.5 Routing Violation Check at Node “E”

Node “E” applies the X-Y routing violation check for packets received at the East and West

input ports. However, packets received at the North input port will follow a different check,
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as shown in Figure D.8. Similarly, for packets received at the South input port of the node

“E”, their source and destination should match what is presented in Figure D.9.

Source Node

Destination Node

HT E

Figure D.8: Source nodes and their corresponding destination nodes for the North input
port of node “E”.

Source Node

Destination Node

HT E

Figure D.9: Source nodes and their corresponding destination nodes for south input port
of node “E”.
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D.0.6 Routing Violation Check at Node “F”

Node “F” applies the X-Y routing violation check for packets received at the South and

West input ports. However, packets received at the North or East input port will follow a

Source Node

Destination Node

HT

F

(a)

Source Node

Destination Node

HT

F

(b)

Source Node

Destination Node

HT

F

(c)

Figure D.10: Source nodes and their corresponding destination nodes for the North input
port of node “F”.

Source Node

Destination Node

HT

F

(a)

Source Node

Destination Node

HT

F

(b)

Figure D.11: Source nodes and their corresponding destination nodes for East input port
of node “F”.
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different check, as shown in Figure D.10. Similarly, for packets received at the East input

port of the node “F”, their source and destination should match what is presented in Figure

D.11.

D.0.7 Routing Violation Check at Node “G”

Node “G” applies the X-Y routing violation check for packets received at the North and

South input ports. However, packets received at the East or input port will follow a different

check, as shown in Figure D.12. Similarly, for packets received at the West input port of

node “G”, their source and destination should match what is presented in Figure D.13.

Source Node

Destination Node

HT

G

(a)

Source Node

Destination Node

HT

G

(b)

Figure D.12: Source nodes and their corresponding destination nodes for North input port
of node “G”.
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Source Node

Destination Node

HT

G

(a)

Source Node

Destination Node

HT

G

(b)

Source Node

Destination Node

HT

G

(c)

Figure D.13: Source nodes and their corresponding destination nodes for the West input
port of node “G”.

D.0.8 Routing Violation Check at Node “H”

Node “H” applies the X-Y routing violation check for packets received at the East and

South input ports. However, packets received at the North or West input port will follow a

Source Node

Destination Node

HT

H

(a)

Source Node

Destination Node

HT

H

(b)

Figure D.14: Source nodes and their corresponding destination nodes for the North input
port of node “H”.
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Source Node

Destination Node

HT

H

(a)

Source Node

Destination Node

HT

H

(b)

Figure D.15: Source nodes and their corresponding destination nodes for the West input
port of node “H”.

different check, as shown in Figure D.14. Similarly, for packets received at the West input

port of the node “H”, their source and destination should match what is presented in Figure

D.15.

D.0.9 Routing Violation Check at Node “I”

Node “I” applies the X-Y routing violation check for packets received at the North, East,

and West input ports. However, packets received at the South input port will follow a

different check, as shown in Figure D.16.
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Source Node

Destination Node

I HT

Figure D.16: Source nodes and their corresponding destination nodes for the South input
port of node “I”.

D.0.10 Routing Violation Check at Node “J”

Node “J” applies the X-Y routing violation check for packets received at the North, South,

and West input ports. However, packets received at the East input port will follow a

different check, as shown in Figure D.17.

Source Node

Destination Node

HT

J

Figure D.17: Source nodes and their corresponding destination nodes for the East input
port of node “J”.
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D.0.11 Routing Violation Check at Node “K”

Node “K” applies the X-Y routing violation check for packets received at the North, East,

and South input ports. However, packets received at the West input port will follow a

different check, as shown in Figure D.18.

Source Node

Destination Node

HT

K

Figure D.18: Source nodes and their corresponding destination nodes for the West input
port of node “K”.

D.0.12 Routing Violation Check at Node “L”

Node “L” applies the X-Y routing violation check for packets received at the North, East,

and West input ports. However, packets received at the South input port will follow a

different check, as shown in Figure D.19.
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Source Node

Destination Node

HT L

Figure D.19: Source nodes and their corresponding destination nodes for the South input
port of node “L”.

D.0.13 Routing Violation Check at Node “M”

Node “M” applies the X-Y routing violation check for packets received at the North, East,

and South input ports. However, packets received at the west input port will follow a

different check, as shown in Figure D.20.

Source Node

Destination Node

HT

M

Figure D.20: Source nodes and their corresponding destination nodes for the West input
port of node “M”.




