
IMPROVING SCIENTIST PRODUCTIVITY,

ARCHITECTURE PORTABILITY, AND APPLICATION

PERFORMANCE IN PARFLOW

by

Michael Burke

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2020

c© 2020
Michael Burke

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Michael Burke

Thesis Title: Improving Scientist Productivity, Architecture Portability, and Appli-
cation Performance in ParFlow

Date of Final Oral Examination: 11th May 2020

The following individuals read and discussed the thesis submitted by student Michael
Burke, and they evaluated the presentation and response to questions during the final
oral examination. They found that the student passed the final oral examination.

Dr. Catherine Olschanowsky, Ph.D.

Dr. Michael Ekstrand, Ph.D.

Dr. Alejandro Flores, Ph.D.

Chair, Supervisory Committee

Member, Supervisory Committee

Member, Supervisory Committee

The final reading approval of the thesis was granted by Dr. Catherine Olschanowsky,
Ph.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate
College.

ACKNOWLEDGMENTS

I am sincerely grateful to my advisor, Dr. Catherine Olschanowsky, for her

support, guidance, and encouragement. She has greatly helped me develop my

technical, professional, and writing skills. The many opportunities she presented

to me have advanced my career to a point I previously found unimaginable, and

attending conferences and workshops I would have otherwise never considered. I

am additionally grateful to her for providing me with a graduate assistantship and

funding me over the course of my Master’s degree.

I would like to thank my supervisory committee members Dr. Michael Ekstrand

and Dr. Alejandro Flores for their feedback on my proposal, thesis, and oral defense.

Help refining specific contributions with Dr. Ekstrand was very valuable.

I would also like to thank Dr. Reed Maxwell at Colorado School of Mines and Dr.

Laura Condon at University of Arizona. Their direct participation enabled this thesis

and its research to be possible, providing valuable perspectives from a computational

scientist standpoint.

iv

ABSTRACT

Legacy scientific applications represent significant investments by universities,

engineers, and researchers and contain valuable implementations of key scientific com-

putations. Over time hardware architectures have changed. Adapting existing code

to new architectures is time consuming, expensive, and increases code complexity.

The increase in complexity negatively affects the scientific impact of the applications.

There is an immediate need to reduce complexity. We propose using abstractions to

manage and reduce code complexity, improving scientific impact of applications.

This thesis presents a set of abstractions targeting boundary conditions in iter-

ative solvers. Many scientific applications represent physical phenomena as a set of

partial differential equations (PDEs). PDEs are structured around steady state and

boundary condition equations, starting from initial conditions.

The proposed abstractions separate architecture specific implementation details

from the primary computation. We use ParFlow to demonstrate the effectiveness of

the abstractions. ParFlow is a hydrologic and geoscience application that simulates

surface and subsurface water flow. The abstractions have enabled ParFlow developers

to successfully add new boundary conditions for the first time in 15 years, and

have enabled an experimental OpenMP version of ParFlow that is transparent to

computational scientists. This is achieved without requiring expensive rewrites of key

computations or major codebase changes; improving developer productivity, enabling

hardware portability, and allowing transparent performance optimizations.

v

TABLE OF CONTENTS

ABSTRACT . v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xii

1 Introduction . 1

1.1 Problem Statement . 3

1.2 Case Study: ParFlow . 3

1.3 Contributions . 5

1.4 Organization . 5

2 Background . 6

2.1 ParFlow . 6

2.1.1 Boundary Conditions and CONUS . 8

2.2 Domain Specific Languages . 10

2.2.1 Existing ParFlow eDSL . 11

2.3 Architecture Portability . 12

2.3.1 OpenMP . 12

2.3.2 CUDA . 13

vi

3 Boundary Condition Abstractions . 17

3.1 Design and Approach . 17

3.1.1 Setting the source of Boundary Condition Values 18

3.1.2 Setting Data For Each Time Step . 19

3.1.3 Performing Boundary Condition Computations 20

3.2 Backend Development . 25

3.2.1 Dataflow and Profiling Analysis . 26

3.2.2 OpenMP . 29

3.2.3 Limitations . 32

4 Performance Study . 33

4.1 Benchmark Suite . 33

4.2 Experimental Setup . 34

4.3 Results . 35

4.3.1 CONUS-TFG . 36

4.3.2 CONUS-RU . 39

4.3.3 ClayL . 42

4.3.4 Summary . 45

5 Related Work . 47

5.1 Iteration Scheduling . 47

5.2 GPU Parallelization . 49

5.3 Separation of Computations . 50

5.4 Enforcing DSL Usage . 52

6 Conclusions . 54

vii

REFERENCES . 55

A Reproducibility . 60

B Data . 63

viii

LIST OF TABLES

4.1 . 36

B.1 Total Runtime in seconds for CONUS-TFG . 65

B.2 CONUS-TFG: Runtime in seconds for NL Function Eval 66

B.3 CONUS-TFG: Runtime in seconds for MGSemi 67

B.4 Total Runtime for CONUS-RU in seconds . 68

B.5 Runtime for NL Function Eval in CONUS-RU (in seconds) 69

B.6 Runtime for MGSemi in CONUS-RU (in seconds) 70

B.7 Total Runtime for ClayL in seconds . 71

B.8 Runtime for NL Function Eval in ClayL (in seconds) 72

B.9 Runtime for MGSemi in ClayL (in seconds) . 73

ix

LIST OF FIGURES

2.1 Example of a cube-like domain with an overland river on its surface

(Provided by Dr. Laura Condon, University of Arizona; Dr. Reed

Maxwell, Colorado School of Mines) . 7

2.2 The CONUS 1.0 Domain [29] . 10

2.3 An example of an iterative steady-state computation looping over the

interior cells of a domain . 11

2.4 Example of a streaming computation with a combined parallel-for

directive . 12

2.5 Example of the master and single directives inside an explicit parallel

region . 14

2.6 Memory transfer between CPU and GPU memory 15

2.7 Example of a CUDA kernel and the process for invoking it 16

2.8 Thread divergence on a GPU . 16

3.1 Setting the data source for a FluxConst boundary condition 19

3.2 Setting boundary condition data for a particular timestep 20

3.3 Example of a Flux boundary computation in Richards Jacobian 22

3.4 Example of a nested abstractions for setting up Flux Volumetric bound-

ary condition data . 24

3.5 Example of setting up Flux Volumetric boundary condition data after

a loop fusion . 25

x

3.6 Example of a subsection of a call graph generated by gprof 26

3.7 Subsection of a dataflow graph for NL Function Eval 28

3.8 Subsection of a dataflow graph for NL Function Eval after fusion 29

3.9 Truncated example of setting Flux Volumetric boundary condition

data, with OpenMP keywords inserted . 30

4.1 CONUS-TFG: Total runtime in seconds . 37

4.2 CONUS-TFG: Runtime for NL Function Eval in seconds 38

4.3 CONUS-TFG: Runtime for MGSemi in seconds 39

4.4 CONUS-RU: Total runtime in seconds . 40

4.5 CONUS-RU: Runtime for NL Function Eval in seconds 41

4.6 CONUS-RU: Runtime for MGSemi in seconds . 42

4.7 ClayL: Total runtime in seconds . 43

4.8 ClayL: Runtime for NL Function Eval in seconds 44

4.9 ClayL: Runtime for MGSemi in seconds . 45

5.1 Kernel stages with scheduling expressed in the STELLA DSL 48

5.2 2D Blur Algorithm Pseudocode . 50

5.3 2D Blur Algorithm in Tiramisu . 50

5.4 4th Order x-Flux Smoothing in STELLA . 51

xi

LIST OF ABBREVIATIONS

HPC – High Performance Computing

DSL – Domain Specific Language

eDSL – Embedded Domain Specific Language

CONUS – Continental United States

UVA – Unified Virtual Addressing

MPI – Message Passing Interface

GPU – Graphics Processing Unit

GPGPU – General Purpose Graphics Processing Unit

xii

1

CHAPTER 1

INTRODUCTION

Legacy scientific applications represent significant investments by universities, engi-

neers, and researchers and contain valuable implementations of key scientific compu-

tations. Such applications are used in a wide range of research fields including medical

imaging [25], industrial manufacturing, climate modeling [24, 2], geology, hydrology,

and others. Computational scientists continuously update these applications to im-

prove the underlying mathematical models and port the code to the latest hardware.

However, years of updates to mathematical formulations, porting to new hardware,

and optimizing for new hardware capabilities complicate code bases, making them

difficult to maintain and extend. Computational scientists need abstractions that

separate key computations from hardware specific implementation details, isolating

the code complexity that comes with these issues.

There is a significant need for abstractions to provide the three P’s: Produc-

tivity, Portability, and Performance. Productivity is paramount, representing how

well and easily a scientific programmer can implement new simulations of scien-

tific models; productivity directly correlates to scientific impact. As new hardware

emerges, implementation details in the code change. Abstractions must provide a

layer between computations and the necessary underlying implementations to allow

for architecture portability. This additionally contributes to scientific impact, as the

2

longer computations take the less research can be performed in a given period of

time. As new architectures develop, they offer potential increases in computational

throughput. Portability is the ability to run an application across multiple architec-

tures. Porting existing code to new architecture is time consuming and expensive.

Abstractions allow for core computations to be separated from architecture specific

implementation details. This allows for portability without the need to rewrite

computations. Therefore abstractions that manage this process are highly desirable.

Performance is a measurement of how long an application takes to solve a particular

problem. Abstractions must be flexible enough to allow for architecture specific

optimizations. Different architectures have different implementation requirements

to achieve good performance, and this must be realized without significant changes

to the computations themselves.

This thesis presents a series of abstractions designed to improve scientific program-

mer productivity by separating architecture specific code details from the primary

computations. This separation provides a way to implement architecture specific op-

timizations without obfuscating code, and without the need to rewrite computations.

The abstractions are generally applicable to many applications, and are demonstrated

with ParFlow, a hydrologic modeling platform.

ParFlow is representative of a class of scientific applications that solve partial

differential equations. These applications all include boundary conditions, and many

frameworks exist to handle them including CHOMBO [32, 28, 3], AMReX [48],

ForestClaw [10], and ClawPack [24]. Boundary conditions are critical to solving

partial differential equations. There is a clear need for abstractions that maintain

productivity while enabling architecture portability and improving performance.

3

1.1 Problem Statement

Code complexity in legacy scientific applications caused by years of updates prevents

computational scientists from implementing new computations and mathematical

models, degrades application performance, and impedes architecture portability.

1.2 Case Study: ParFlow

ParFlow is a hydrologic modelling application that simulates surface and subsurface

water flow through porous materials. It is a highly modular platform, allowing for

a wide range of simulations and research to be performed. The domains that are

simulated in ParFlow may be based on real world geometry, such as the Continental

United States, or may be synthetic. ParFlow first solves a steady state equation across

the domain, then performs calculations to handle boundary conditions. The original

developers of ParFlow saw the need for scalability, but presently this is limited to MPI

only. Part of this thesis is to provide portable on-node, shared memory parallelism

for multicore systems and accelerators.

Productivity. Over the course of its lifetime, the codebase in ParFlow has

become highly complex. As a result, computational scientists have had difficulties

in extending mathematical models. An instance of this is the addition of new bound-

ary conditions. Computational scientists have been unable to add new boundary

conditions to ParFlow models for 15 years due to code complexity issues. Boundary

conditions are crucial to the development of new watershed models, and this repre-

sents a significant loss of scientific impact. This demonstrates the immediate need for

productive abstractions.

4

Portability. Different problem models have different computational resource

requirements. A small problem may have very low computational requirements and

could be run on something like a laptop. Larger and more complex problems may

have significantly greater computational requirements, and necessitate the use of a

supercomputer. ParFlow must be able to run across these different compute resources,

from a laptop to a leading class supercomputer. Available hardware changes between

compute resources and over time, and different hardware architectures have specific

implementation requirements. Rewriting code to fit these architecture specific re-

quirements is prohibitively expensive. This is compounded over time as new hardware

architectures are developed, requiring rewrites for each one. ParFlow has a clear

need for architecture portable abstractions that do not require the rewriting of key

computations.

Performance. Applications that solve complex problems take time to execute.

The more complex the problem becomes, the longer it takes for the application to

solve. Computational resources consume significant amounts of electricity, and the

longer an application must run the most electricity is used. The world’s leading

supercomputer, Summit at Oak Ridge National Laboratory, consumes as much as 10

megawatts of energy [1]; as much as an entire city. This is both financially and envi-

ronmentally costly. As computational scientists extend their models in ParFlow, the

computational resources required increase. Performance must be improved to meet

these new requirements, reducing financial and environmental costs, and improving

scientific impact.

5

1.3 Contributions

This thesis contributes a proposed design of abstractions for boundary condition

computations. The abstractions are generalizable to other scientific applications.

ParFlow is used to demonstrate the effectiveness of the abstractions. The ab-

stractions have improved computational scientist productivity in ParFlow, and enable

architecture portability.

An experimental OpenMP version of ParFlow was implemented using the abstrac-

tions. This demonstrates a realization of architecture portability in the abstractions,

without significant rewriting of computations.

A performance study was conducted, comparing on-node shared memory per-

formance of MPI, OpenMP, and CUDA versions of ParFlow. This study examines

performance in different configurations of a real scientific application, and explores

the complexities involved.

1.4 Organization

This work is organized into several chapters and sections. Chapter 2 provides back-

ground on ParFlow, boundary conditions, and architecture portability. Chapter 3

covers the abstractions developed, their design, and the steps necessary to perform

boundary condition computations. Chapter 4 provides a performance study, compar-

ing the different experimental versions of ParFlow. Chapter 5 contains a review of

related work and other DSL abstractions. Chapter 6 concludes and summarizes this

work.

6

CHAPTER 2

BACKGROUND

The abstractions developed in this work are applicable to a wide range of scientific

applications. We demonstrate their effectiveness using the ParFlow application. This

section provides a brief overview of ParFlow, with a focus on boundary conditions

and domain decomposition. Challenges in architecture portability with respect to

OpenMP and CUDA are also presented.

2.1 ParFlow

ParFlow is a hydrologic and geoscience application that integrates multiple water-

shed models [30, 5, 27, 23], and is part of the HydroFrame [38] project. The Hy-

droFrame project aims to simulate ground water flow for the Continental United

States (CONUS) and increase accessibility of integrated hydrologic simulations to

a larger community of hydrologists and educators. ParFlow models the flow of

water through porous material using Richards’ equation integrated with overland

flow using Manning’s equation. ParFlow utilizes a coupled model for simulating

surface and subsurface overland flows. It is a well-established research tool within

the hydrology community, with on-going work to improve its mathematical models

for new simulations.

7

Figure 2.1: Example of a cube-like domain with an overland river on its surface
(Provided by Dr. Laura Condon, University of Arizona; Dr. Reed Maxwell, Colorado
School of Mines)

ParFlow simulates the flow of water through a domain. The domain may represent

a real area and include historical atmospheric data, a real area with predicted or

hypothetical atmospheric data, or represent a synthetic area that represents a physical

area. Once configured, ParFlow discretizes the problem domain into a collection of

grids. These grids are split across the X, Y, and Z axes. The Z axis represents

depth of the domain, while X and Y represent the horizontal regions of the domain.

Each grid is further discretized into subgrids, and each subgrid discretized into cells.

Figure 2.1 is an illustration of a domain that has been divided into grids, subgrids,

and cells. Cells represent the data points in the model, and are the operands to the

computations. This particular discretization is called an orthogonal grid, where cells

are equally distributed across the domain.

ParFlow uses Richards’ equation to solve for variably saturated groundwater flow

8

(2.1).

SSSw
∂ψp

∂t
+ φ

∂Sw(ψp)

∂t
= 5 · q + qs +

qe
m′ (2.1)

Richards’ equation is well known [40], and describes the relationship between

subsurface pressure heads, hydraulic conductivity, permeability of soil, saturation,

and exchange rates with the surface. The discretized form of this equation forms the

steady state stencil equation.

Computations are performed using stencil patterns. The use of stencil patterns in

scientific computing is common [18, 13, 37]. A stencil pattern involves reading a cell

and some set of neighbors to calculate a cell’s value in the next iteration.

Grids, and their associated subgrids and cells, may exist on the edge of the model

domain. Cells that reside in these locations are part of the boundary. Boundary cells

lack at least one neighbor needed to perform the stencil computation. A boundary

condition is the computations to be performed in place of the stencil, also called the

steady state equation. A boundary cell will have a condition for each face along the

boundary.

2.1.1 Boundary Conditions and CONUS

A cell in the very corner of a domain may have an overland flow boundary on its top

face, and constant flux boundary conditions on its horizontal faces. Boundary cells

represent areas with different physics and computational requirements. Examples of

boundary conditions include overland flow on the surface, such as a river, atmospheric

fluxes such as rainfall or snow, or constant flux values such as a river head. The cells

in these regions account for water flow into or out of the domain, and are essential

9

to scientific models. Boundary conditions can exist in surface regions, as well as

subsurface regions.

ParFlow uses a free surface overland flow boundary condition to swap between

solving subsurface and overland flow equations when water is ponded on the land

surface of the model [27]. This is a coupled model that handles boundary condition

cells on the surface that have water inflow or outflow occurring. As an example,

consider a boundary condition cell on the surface of a model with rainfall. There is

no immediate neighbor on the top of this cell, but the flow of rain into this cell must

be included in computations. This coupled surface-subsurface model accounts for

these overland boundary conditions. These are Neumann type boundary conditions,

but can be switched to Dirichlet if necessary.

The HydroFrame project aims to create a more comprehensive model of the

continental United States. CONUS 1.0 is a model that simulates subsurface and

groundwater flows across a large section of the continental United States, but as can

be seen in Figure 2.2 only a rectangular inset of the continent is modelled. CONUS

2.0 is an update to this model and will include more complex coastal regions and

geological areas. Boundary condition development is critical to this new model in

order to provide the necessary computations for these new regions.

Boundary conditions are computationally intensive, and the inclusion of large,

complex coastal regions in CONUS 2.0 creates a need for improved performance.

Additionally highly complex implementation details in the codebase prevent the

development of new boundary conditions, posing a direct barrier to the development

of CONUS 2.0. This highlights the immediate need for intuitive abstractions to

improve for computational scientists to use in developing new boundary conditions.

These abstractions must also provide architecture portability, and allow for improved

10

Figure 2.2: The CONUS 1.0 Domain [29]

performance in the CONUS 2.0 model.

2.2 Domain Specific Languages

A Domain Specific Language is a method of abstracting common idioms in a codebase.

This is most often seen in terms of expressing complex or common looping patterns,

but is also used for memory allocation and data structure manipulation. DSLs provide

an interface for developers that reduces code complexity, improving productivity.

Additionally, domain specific languages can help to enable architecture portability,

as the back-end structure can be modified to accommodate new architectures without

needing to significantly change the developer-facing interface. Similarly, domain

specific languages help improve application performance by allowing performance

optimizations to be done on the back-end. DSLs are often written in the form of a

11

1 GrGeomInLoop(i, j, k, gr_domain, r, ix, iy, iz, nx, ny, nz,

2 {

3 ip = SubvectorEltIndex(f_sub, i, j, k);

4 io = SubvectorEltIndex(x_ssl_sub, i, j, grid2d_iz);

5 fp[ip] += ss[ip] * vol * z_mult_dat[ip] *

6 (pp[ip] * sp[ip] * dp[ip] -

7 opp[ip] * osp[ip] * odp[ip]);

8 });

Figure 2.3: An example of an iterative steady-state computation looping over the
interior cells of a domain

library, but can also be embedded within a program, known as an eDSL (embedded

DSL). In this context embedded means specific to the application, with no external li-

brary dependencies or additional compiler required. Other DSL efforts in atmospheric

and hydrologic science are discussed in Related Work, Chapter 5.

2.2.1 Existing ParFlow eDSL

ParFlow contains an existing eDSL, primarily used for navigation of the model domain

when performing computations. The eDSL abstractions encapsulate steady state

computations, but leave boundary condition implementations exposed. As a result,

complex control flow must be manually configured and managed by scientific pro-

grammers, hampering productivity and preventing architecture portability to GPU

accelerators.

An example of the existing eDSL for steady state computations can be seen in

Figure 2.3. This example, GrGeomInLoop, is used to navigate through the interior

cells of the 3D model domain and perform computations accordingly. Iteration starts

at ix, iy, iz up through nx, ny, nz. The SubvectorEltIndex abstraction handles

mapping the iterators to memory locations for scientific programmers, providing a

usable accessor index for reading and writing into data.

12

2.3 Architecture Portability

Legacy scientific applications have long lifespans, and over the course of those lifetimes

hardware changes dramatically. ParFlow was originally developed for single core

processors and modern processors are much different. Abstractions provide a single

front-end view of computations, and allows complex architecture-specific code to

be hidden. This section describes two target paradigms: multi-threaded execution

through the OpenMP framework, and many-core GPU execution through CUDA.

2.3.1 OpenMP

OpenMP is a community driven API for directive based multi-threaded, shared-

memory programming [35]. Compile-time directives are inserted by the programmer

to indicate how work should be distributed and where threads must synchronize, or

when work can or cannot be done in parallel. Additional directives can be specified

to indicate whether a variable can be shared between all threads, or must be private

to each thread.

A set of commonly used directives, also called pragmas, include omp parallel, omp

for, omp master, and omp single. The omp parallel directive declares that a region of

code should be performed in parallel, with optional clauses to declare specific variables

shared or private. The omp for directive specifies that a loop should have its iteration

1 /* Create a parallel region with a work-sharing for on the loop */

2 #pragma omp parallel for

3 for(int i = 0; i < N; i++)

4 A[i] += B[i] * C[i];

Figure 2.4: Example of a streaming computation with a combined parallel-for direc-
tive

13

space divided among threads when inside of an omp parallel region. The omp parallel

and omp for directives can be combined into omp parallel for when only a loop needs

to be performed in parallel. Figure 2.4 shows an example of this, where a parallel

region is created and the for loop distributed among threads.

The omp master and omp single directives are used within parallel regions, and

indicate that only a single thread should execute a given block of code. The master

directive means only the thread with id 0 will execute, and all other threads can

continue without synchronization. The single directive means the first thread to

encounter the directive will execute, but all threads must synchronize at the end of

the directive. Figure 2.5 illustrates this by creating a parallel region, in which only

the master thread will print the first statement and only a single thread will print the

second.

OpenMP provides more directives, all with optional clauses to provide different

functionality including memory management, scheduling, and synchronization. Ex-

posed OpenMP directives introduce additional layers of complexity in managing par-

allelism and synchronization. As a result the directives must be abstracted away from

scientific programmers in order to reduce code complexity and maintain productivity.

2.3.2 CUDA

GPU accelerators offer enormous parallelism, but existing code must be carefully

adapted to make use of them. A GPU accelerator consists of thousands of threads

that are grouped together in warps, with 32 threads per warp. Execution on a GPU

accelerator is performed through the use of Kernels. A kernel is a function compiled

by the GPU compiler for execution on the accelerator. Invoking a kernel requires the

transfer of data in host (CPU) memory to device (GPU) memory, seen in Figure 2.6.

14

1 /* Create a parallel region */

2 #pragma omp parallel

3 {

4 /* Each thread gets its own ID */

5 int tid = omp_get_thread_num();

6

7 /* Only thread 0 executes, other threads don’t sync */

8 #pragma omp master

9 {

10 printf("Hello from master!\n");

11 }

12

13 /* First thread to reach this block executes */

14 #pragma omp single

15 {

16 printf("Hello from thread %d!\n", tid);

17 } /* All other threads implicitly sync here */

18 }

Figure 2.5: Example of the master and single directives inside an explicit parallel
region

This transfer can be done explicitly, or though the use of a memory manager such

as CUDA Unified Virtual Addressing [42] (UVA). UVA allows the CUDA runtime

to map host and device memory into a single address space, and automatically

transfer memory as necessary. This introduces costly overhead, but greatly simplifies

development. An example of a kernel performing a streaming computation can be

seen in Figure 2.7. This example assumes the transfer of data from host to device is

being done through UVA, or has otherwise already occurred. Memory transfers occur

through the PCIe bus, which has significant overhead costs. This transfer can become

prohibitively expensive and must be managed carefully to achieve good performance

on a GPU.

The layout of threads to be used in computation on the GPU must be specified.

GPU accelerators allow for threads to be configuring in different dimensions, affecting

memory access patterns. This configuration of threads can be seen in Figure 2.7 when

15

Figure 2.6: Memory transfer between CPU and GPU memory

the host invokes the kernel, lines 10 through 12. When the kernel is invoked, each

thread in the warp calculates a starting index based on the configured thread layout,

seen on line 3. A striding factor is calculated similarly on line 4. This makes the

loop parallel, with each thread accessing data in independent indices than all other

threads.

When a kernel is invoked, execution on the GPU begins. All threads in a warp

operate in lockstep, only differing in the data they operate on. This produces an issue

known as thread divergence, in which one thread encounters a conditional branch that

others do not. When this occurs, all other threads that do not enter this branch must

perform a no-op instruction [20], and do nothing until the branch is complete. This

then repeats for the threads that entered the branch in turn. Figure 2.8 illustrates

this, where a group of threads encounters a conditional branch. Half of the threads

will enter one branch, executing statements A and B, while the other half remains

idle and performs a no-op instruction. Once the first half has finished executing, the

second half will execute statements X and Y, with the first half similarly remaining

idle. All threads then synchronize and can continue in lockstep, executing statement

Z. Thread divergence results in loss of performance and wastes compute resources,

and is an area of active research [43, 19].

16

1 /* CUDA Kernel */

2 __global__ void foobar(int N, double *A, double *B, double *C) {

3 int start_idx = blockIdx.x * blockDim.x + threadIdx.x;

4 int stride = blockDim.x * gridDim.x;

5 for (int i = start_idx; i < N; i += stride)

6 A[i] += B[i] * C[i];

7 }

8 /* Invoking from host in some function */

9 void invoke_foobar(int N, double *A, double *B, double *C) {

10 int blockSize = 256;

11 int numBlocks = (N + blockSize - 1) / blockSize;

12 foobar<<<numBlocks, blockSize>>>(N, A, B, C);

13 }

Figure 2.7: Example of a CUDA kernel and the process for invoking it

Figure 2.8: Thread divergence on a GPU

The implementation details of GPU accelerators become complicated quickly,

increasing code complexity through memory management, synchronization, kernel

invocations, and control flow. These details must be abstracted from scientific pro-

grammers to ensure productivity, while still providing performance benefits.

17

CHAPTER 3

BOUNDARY CONDITION ABSTRACTIONS

The proposed boundary condition abstractions are designed to improve productivity,

provide portability, and allow architecture-specific optimizations to improve perfor-

mance. The abstractions separate architecture-specific implementation details from

primary computations. This reduces code complexity without requiring compu-

tational scientists to rewrite or reformulate computations, improving productivity.

Several architecture-specific backends can be implemented without changing forward-

facing code, providing portability. Different backend implementations can then have

architecture-specific optimizations applied, improving performance. Boundary con-

dition computations are used in several ways, and ensuring long-term productivity

improvements requires the abstractions provide full coverage. Full coverage means

that all use cases of boundary condition computations are fully encapsulated by the

abstractions. This chapter will cover the design approach for the new abstractions,

the abstractions themselves, and the architecture portable backends for OpenMP.

3.1 Design and Approach

Computational scientists actively participated in the design of the abstractions. Their

participation ensured that productivity goals were met, resulting in a clear and

intuitive design. We implemented backends iteratively during the development of

18

the frontend abstractions to verify minimal overhead, and ensure portability goals

were met. The result is a set of powerful abstractions that computational scientists

are comfortable working with, and that computer scientists are able to use to produce

efficient code.

Boundary conditions are interacted with in several sections of the application.

During the configuration stage the different types of boundary conditions are set

and the domain is defined. This involves setting the source of boundary condition

values (Section 3.1.1), and setting appropriate data for each time step in the model

(Section 3.1.2). The values are then used at each timestep to perform boundary

condition computations (Section 3.1.3). The following sections detail this process.

3.1.1 Setting the source of Boundary Condition Values

Boundary conditions must be configured before the execution of the model begins.

The first step in this configuration is to define the sources for boundary condition

values. Abstractions were provided to facilitate this step in an intuitive way that is

self-describing. These abstractions manage the allocation, storage, control flow, and

enumeration of the necessary data for different boundary condition types.

Figure 3.1 is an example of setting up source values for a FluxConst boundary con-

dition type. Do SetupPatchTypes (line 1) accepts a list of boundary condition types

and the details of how their source values are configured. Each boundary condition

type will have a SetupPatchType (line 4) entry inside of the Do SetupPatchTypes

interface. SetupPatchType contains the configuration details for a specified boundary

condition type and provides an interface for allocating memory, populating initial

values, and storing the data. NewTypeStruct (line 6) allocates a data structure

of the appropriate type used to store data source information. ForEachInterval

19

(line 9) iterates over all time steps for the model being executed, and contains the

implementation details to populate source values. StoreTypeStruct (line 13) stores

the data structure for later retrieval.

1 Do_SetupPatchTypes(public_xtra, num, i,

2 {

3 ...

4 SetupPatchType(FluxConst,

5 {

6 NewTypeStruct(FluxConst, data);

7 (data->values) = ctalloc(double, div);

8 ForEachInterval(div, num)

9 {

10 /* Populate data->values with the appropriate sources */

11 }

12 StoreTypeStruct(public_xtra, data, i);

13 });

14 ...

15 });

Figure 3.1: Setting the data source for a FluxConst boundary condition

3.1.2 Setting Data For Each Time Step

Once the source locations for each boundary conditions data has been set, data for

each time step in the model is prepared. Figure 3.2 shows an example of setting

initial timestep values for a FluxConst boundary condition. ForEachInterval (line

1) iterates over all timesteps in the model being executed. Do SetupPatchIntervals

(line 2) accepts a list of boundary condition types and the details of how their values

are configured. Each boundary condition type will have a SetupPatchInterval (line

5) entry inside of the Do SetupPatchIntervals interface. SetupPatchInterval contains

the configuration details for a specified boundary condition type and provides an

interface for allocating memory, retrieving source values, populating initial timestep

values, and storing data.

20

1 ForEachInterval(div, num) {

2 Do_SetupPatchIntervals(public_xtra, num, i,

3 {

4 ...

5 SetupPatchInterval(FluxConst,

6 {

7 NewBCPressureTypeStruct(FluxConst, i_data);

8 BCPressureDataBCType(bc_data, i) = FluxBC;

9 GetTypeStruct(FluxConst, data, public_xtra, i);

10 FluxConstValue(i_data) = (data->values[num]);

11 BCPressureDataInternalValue(bc_data, i, num) = (void*, i_data);

12 });

13 ...

14 });

15 }

Figure 3.2: Setting boundary condition data for a particular timestep

NewBCPressureTypeStruct (line 7) allocates a new data structure for the specified

boundary condition. BCPressureDataBCType (line 8) assigns the categorical type

of boundary condition, used to determine what computations to perform using the

data. For example the FluxConst and FluxVolumetric types have different details for

configuring initial values, but use the same mathematical computations and are of the

FluxBC category. GetTypeStruct (line 9) retrieves the source values that were pre-

viously configured. FluxConstValue (line 10) is an acccessor into the data structure,

used in this example to store the particular value for a given timestep. Each boundary

condition type has its own set of accessors accordingly. BCPressureDataInternalValue

(line 11) stores the timestep data structure for retrieval and use in computations.

3.1.3 Performing Boundary Condition Computations

Boundary condition computations are used in different ways throughout the ParFlow

codebase. It is necessary to be able to apply different computations for different types

of boundary conditions. There are instances in which all boundary condition types

21

perform the same set of computations, such as to adjust coefficients when dealing with

symmetric Jacobian matrices. Different computational use cases have been identified

and a set of consistent abstractions developed.

Boundary condition computations can be decomposed into five primary sections.

A simple example of a Flux boundary condition computation, pulled from the Richard-

sJacobianEval function in ParFlow, can be seen in Figure 3.3. The first section is

a block that must occur before looping over the cells of the boundary condition

patch, named BeforeAllCells (line 2). This allows for a block of code to be executed

unconditionally before boundary condition computations are performed across cells.

An example of this may be some uniform scalar setup from a function call, so that

the function call is not repeated for every cell iteration. Another example may be a

nested boundary condition loop that counts some number of values across all cells for

data allocation.

The next section is CellSetup (line 4). This is a region that is used for setting up

values to be used in the computation on the current cell, such as preparing accessor

indices or calculating a scalar used in computations. Previously control flow was

managed manually by computational scientists to determine which directions were

valid for the current boundary condition cell, increasing code complexity. This is

replaced with the next section, containing a set of FACE (lines 8 - 13) entries. Each

FACE specifies the direction it represents, and contains the appropriate computations

to be executed. A boundary condition cell may have multiple valid directions, but only

one is valid at a given iteration. For example a cell on the corner of the domain may

have two valid faces, but the appropriate face computations will happen in separate

iterations.

The final two sections are CellFinalize (line 14) and AfterAllCells (line 19).

22

CellFinalize is the counterpart to CellSetup, and is where the result of computations

performed in the FACE section are utilized. AfterAllCells is similarly the counterpart

to BeforeAllCells, and will unconditionally execute after every cell in the boundary

condition has been iterated over. The DoNothing keyword (lines 2, 19) is provided

for sections that are unnecessary for the computations being executed.

1 ForPatchCellsPerFace(FluxBC,

2 BeforeAllCells(DoNothing),

3 LoopVars(i, j, k, ...),

4 CellSetup(

5 {

6 im = SubmatrixEltIndex(i, j, k, J_sub);

7 }),

8 FACE(Left, { op = wp; }),

9 FACE(Right, { op = ep; }),

10 FACE(Down, { op = sop; }),

11 FACE(Up, { op = np; }),

12 FACE(Back, { op = lp; }),

13 FACE(Front, { op = up; }),

14 CellFinalize(

15 {

16 cp[im] += op[im];

17 op[im] = 0.0;

18 }),

19 AfterAllCells(DoNothing)

20);

Figure 3.3: Example of a Flux boundary computation in Richards Jacobian

Different regions of code in ParFlow loop over boundary condition cells at different

points. Control flow for branching on boundary condition types may be hoisted

far away from the loop itself, such as outside of the function. Computations may

also apply to all boundary condition types, such as for handling contributions for

a symmetric Jacobian matrix. For these cases, the ALL keyword (Figure 3.4 line

1) can be used in place of a specific boundary condition type, causing the loop to

execute unconditionally. There may also be no special computations for each face

23

direction. In this case, the ForEachPatchCell abstraction is provided (Figure 3.4,

lines 4 and 28). Finally, the iteration space may need to reach into ghost cells. A

ghost cell is used to exchange data between MPI processes. The ForPatchCellsPer-

FaceAndGhost abstraction is provided to facilitate this, and works identically to the

ForPatchCellsPerFace abstraction.

The use of these abstractions removes the need for computational scientists to

manage control flow manually, and separates implementation specific details from

the computations. This is done in a way that does not require computations to

be rewritten, and allowing computational scientists to continue writing code in a

way they are comfortable with, maintaining and improving productivity. These

abstractions are expressive and flexible, and can be nested within each other. An

example of this can be seen in Figure 3.4, where the patch is first iterated over to

count the number of cells for data allocation, iterated over a second time to calculate

a necessary scalar, and then iterated over a third time to compute and store data.

These abstractions separate the concerns of the mathematical computations used

in boundary conditions from the specific implementation details. Code complexity is

reduced, with cleanly separated blocks that clearly define what is being done inside

of them. Control flow is no longer dealt with directly by computational scientists.

This provides architecture portability, as the implementation and computations are

no longer tightly coupled.

The reduced code complexity helps to highlight potential loop fusions. An example

of this can be seen in Figure 3.4. This figure shows how the original code ordered

the sequences of loops. A full iteration over all cells in the boundary condition is

performed to count cells for data allocation. A second iteration over all cells in the

boundary condition performs an accumulation into a variable. Finally, if that variable

24

1 ForPatchCellsPerFace(ALL,

2 BeforeAllCells({

3 num_cells = 0;

4 ForEachPatchCell(LoopVars(i, j, k, ...),

5 {

6 num_cells++;

7 });

8 patch_values = ctalloc(double, num_cells);

9 area = 0.0;

10 }),

11 LoopVars(i, j, k, ...),

12 CellSetup(

13 {

14 ips = SubvectorEltIndex(z_mult_sub, i, j, k);

15 }),

16 FACE(Left, { area += dy*dz*z_mult_dat[ips]; }),

17 FACE(Right, { area += dy*dz*z_mult_dat[ips]; }),

18 FACE(Down, { area += dx*dz*z_mult_dat[ips]; }),

19 FACE(Up, { area += dx*dz*z_mult_dat[ips]; }),

20 FACE(Back, { area += dx*dy; }),

21 FACE(Front, { area += dx*dy; }),

22 CellFinalize(DoNothing),

23 AfterAllCells(

24 {

25 if (area > 0.0)

26 {

27 vol_flux = FluxVolVal(interval_data) / area;

28 ForEachPatchCell(LoopVars(i, j, k, ...),

29 {

30 patch_values[ival] = vol_flux;

31 });

32 }

33 })

34);

Figure 3.4: Example of a nested abstractions for setting up Flux Volumetric boundary
condition data

is not zero, a third iteration over all cells in the boundary condition populates values

for use in later computations. In the new abstraction it becomes clear that this first

iteration is unnecessary. The number of cells is not used until after the area variable

has been calculated, and so the first loop can be merged into the second. This can

be seen in Figure 3.5, reducing total iterations from 3N to 2N.

25

1 ForPatchCellsPerFace(ALL,

2 BeforeAllCells({

3 num_cells = 0;

4 area = 0.0;

5 }),

6 LoopVars(i, j, k, ...),

7 CellSetup({

8 ips = SubvectorEltIndex(z_mult_sub, i, j, k);

9 num_cells++;

10 }),

11 /* Face computations ... */

12 CellFinalize(DoNothing),

13 AfterAllCells({

14 patch_values = ctalloc(double, num_cells);

15 if (area > 0.0) {

16 vol_flux = FluxVolVal(interval_data) / area;

17 ForEachPatchCell(LoopVars(i, j, k, ...),

18 {

19 patch_values[ival] = vol_flux;

20 });

21 }

22 })

23);

Figure 3.5: Example of setting up Flux Volumetric boundary condition data after a
loop fusion

3.2 Backend Development

The new boundary condition abstractions have enabled the development of exper-

imental ParFlow builds for OpenMP. OpenMP was chosen for on-node memory

sharing performance, providing a wide range of compile-time hints and instructions for

improved threading performance. The complex control flow in the original boundary

condition implementations posed barriers to parallelism with OpenMP directives

and thread divergence on GPU accelerators. The proposed abstractions separate

computations from architecture specific details. This permits implementation details

to be hidden and prevent increased code complexity. Beyond boundary condition

loops, ParFlow contains several existing looping abstractions that were modified for

26

Figure 3.6: Example of a subsection of a call graph generated by gprof

portability with minimal forward-facing changes.

3.2.1 Dataflow and Profiling Analysis

Before implementing new backends, profiling of ParFlow was performed to identify

time-dominating functions and their subroutines. Due to the highly configurable

nature of ParFlow, this profiling focused on the test cases discussed further in chap-

ter 4. Initial profiling was performed using the GNU gprof [17] utility. Figure 3.6 is

a subsection of the call graph of one of the test cases, generated by gprof and run

through the gprof2dot [15] utility for visualization. Each node represents a function

and consists of the name of the function, percentages of total runtime, and number

of times the function was called. The first number is the percent of cumulative time

spent in the function or its subroutines against the total runtime of the application.

The second number, listed in parenthesis, is the percentage of time spent directly

within the function. The third number is total number of calls to the function.

Once time dominating functions were identified, dataflow analysis was performed.

This was done in order to identify serial optimizations that can be applied to all

versions of ParFlow, as well as to identify necessary synchronization barriers in

27

OpenMP. This was performed and recorded manually as a set of Macro Dataflow

Graphs, which represent data dependencies, computational statements, and data

points as nodes within a directed acyclic graph. Macro Dataflow Graphs and their use

for automatic, compile-time transformations and optimizations is an on going area of

research [14].

Graphs are read from left to right, top to bottom. Nodes indicate their meaning

by their shape, and directed edges indicate data dependencies and data flow. Nodes

that are shaded gray are immutable and cannot be transformed. Data nodes contain

the name of the variable they represent, with a subscript to indicate when they have

been assigned to in a single-static assignment view. In this context, commutative

operations such as addition (+ =) or subtraction (− =) into a data node is not

considered a new assignment, as they can be rearranged with the same mathematical

result. The full list of node types are:

• Rectangle - Data node, containing the variable name it corresponds to and a

subscript to indicate its assignment count.

• Trapezoid - Statement node. These are seen as inverted triangles in other work,

but due to software limitations a trapezoid was used in these graphs. These

nodes represent loop patterns in this context.

• Rectangle with side-bars - Function call node.

• Directed edge - Data dependency and data flow.

A directed edge going into a node indicates a data dependency. A directed edge

coming out of a node and into a data node indicates a new assignment to that

data. A subsection of the dataflow graph for the function NL Function Eval can

28

be seen in Figure 3.7. Starting from the top, a call to the Density function is made

reading data from the Pressure 0 node. This emits the data node Density 0. A call

to Saturation is made, similarly reading data from Pressure 0 and Density 0, and

emitting Saturation 0. Two loops occur sequentially, reading data as indicated by

the connected edges, and emitting nodes.

These graphs were prepared through analysis of the original codebase, and were

used to identify areas that required parallelism barriers such as MPI communication.

Potential loop transformations such as loop fusion [8, 7] or loop tiling [39] were also

identified using these graphs.

Figure 3.7 shows that there are no direct loop-carry dependencies between the

loops GrGeomIn 0 and GrGeomIn 1. A loop-carry dependency is where one loop

Figure 3.7: Subsection of a dataflow graph for NL Function Eval

29

Figure 3.8: Subsection of a dataflow graph for NL Function Eval after fusion

modifies data that is used in a subsequent loop. This indicates there is a potential for

loop fusion. Figure 3.8 is an example of the dataflow graph after performing a loop

fusion. The full dataflow graph for NL Function Eval can be found in the appendix,

showing it is possible to fuse 4 loops. This can be accomplished by reordering

loops in the function and performing temporary storage transformations. These

transformations were not applied in order to provide a baseline in the performance

study, detailed in Chapter 4.

3.2.2 OpenMP

The design of the new boundary condition abstractions enabled rapid development

of an OpenMP implementation. An additional parameter was added to abstractions,

indicating one of several sets of OpenMP directives to be used across the interior

30

looping structure. An example of this can be seen in Figure 3.9, where lines 4

and 13 contain an additional NewParallel clause. The NewParallel clause creates

a new OpenMP parallel region and distributes the loop computation across multiple

threads. Additional keywords exist to indicate that the loop is already in parallel

region, make certain variables thread-private, perform reductions, or to skip implicit

synchronizations with the nowait clause. This provides clear indications of what kind

of parallelism is being applied without increasing code complexity. This parame-

terization was applied similarly to other looping patterns, such as for steady state

equations.

1 ForPatchCellsPerFace(ALL,

2 BeforeAllCells(...),

3 LoopVars(i, j, k, ...),

4 NewParallel,

5 CellSetup(...),

6 FACE(Left, ...),

7 /* Other faces ... */

8 CellFinalize(DoNothing),

9 AfterAllCells(

10 {

11 ...

12 ForEachPatchCell(LoopVars(i, j, k, ...),

13 NewParallel,

14 {

15 /* Loop body ... */

16 });

17 })

18);

Figure 3.9: Truncated example of setting Flux Volumetric boundary condition data,
with OpenMP keywords inserted

Time dominating functions were analyzed and several challenges to the imple-

mentation of OpenMP identified. These challenges include but are not limited to

synchronization, data races, mixing MPI barriers with OpenMP, iteration calcula-

tions, and managing large parallel regions across multiple function calls.

31

Initial development was performed by analyzing each looping structure within a

function to determine possible parallelism. Looping structures that were not im-

mediately parallel had further analysis performed to identify methods that may

provide parallelism. Examples of these include storage duplication and managing

scatter-gather patterns. Once parallelizable, each looping structure was isolated

into individual parallel regions. This means that at the beginning of the iteration

space, a thread group would be requested. The body of the iteration space would

be divided amongst threads and performed in parallel. Temporary scalars can be

made thread-private with optional directives. At the end of the looping structure, all

threads synchronize, and the program returns to serial execution.

Next, explicit parallel regions would be declared at an appropriate place in the

beginning of the function. Parallel loops would be incrementally incorporated into

the region to help manage and debug race conditions and synchronization issues. The

use of a parallel region reduces the overhead associated with requesting thread groups

and unnecessary synchronizations. Because of the abstractions, typically only a single

keyword needed to be changed when moving a loop from an isolated parallel region

to an incorporated one, or to add and remove barriers.

Once a subroutine was able to be run in parallel from start to end, the process was

repeated in its parent function. Parallel regions were explicitly declared, and isolated

parallel loops would be incorporated. This followed by incorporating the subroutines

into the parallel region, with each thread entering it and maintaining the benefits of

OpenMP directives. Significant data analysis was required for this to identify race

conditions and eliminate unnecessary synchronization points.

As ParFlow was originally developed to be an MPI-Only application, there are

frequent calls to perform updates between MPI processes. MPI calls in a hybrid

32

MPI-OpenMP implementation require explicit synchronizations so that data being

exchanged between MPI processes is not modified by other threads. This is a common

challenge when moving an application from MPI-only to a hybrid MPI-OpenMP

implementation [36, 41]. The Scalasca performance tookit [16] was utilized to help

identify regions of code resulting in synchronization issues, as well as general multi-

threaded profiling.

3.2.3 Limitations

The use of keywords in development of OpenMP, such as NewParallel, poses limi-

tations in regards to productivity. In order to safely add new mathematical formu-

lations, computational scientists now need to understand parallelism concepts such

as synchronization, race conditions, and more. A possible solution is to perform

static analysis to determine where no synchronization is needed, or where a variable

needs to be declared thread private. Transformations on the backend could then

automatically be applied, such as removing synchronization barriers in OpenMP or

CUDA. Addressing these limitations through static analysis is beyond the scope of

this work.

33

CHAPTER 4

PERFORMANCE STUDY

This section details a performance study of experimental builds of ParFlow. A set

of test cases were chosen with computational scientists. This performance study

is done to examine the shared memory performance of MPI, OpenMP, and CUDA

implementations of ParFlow. The OpenMP and CUDA versions are experimental.

This study found that OpenMP outperforms or is competitive with MPI under certain

configurations, and that CUDA outperforms MPI in some configurations.

4.1 Benchmark Suite

ParFlow is highly configurable, and different configurations result in large variations

in performance characteristics. A model can be configured with different settings, in-

cluding maximum number of solver iterations, tolerance values, number of time steps,

domain sizes, and solver types. This creates an exponential number of combinations,

not all of which may make sense. Computational scientists were consulted and a set

of useful domains were chosen as test cases. These test cases were used to examine the

feasibility of the experimental versions of ParFlow; analyzing performance in different

domains and key sections of ParFlow. Performance was analyzed in the context of

a single compute node to measure shared memory and GPU performance compared

34

to the baseline MPI implementation. Selected test cases include: CONUS Terrain

Following Grid (CONUS-TFG), CONUS Runoff (CONUS-RU), and ClayL.

CONUS-TFG is a subsection of the CONUS 1.0 model in Colorado, with multi-

ple Z layers and real slope geometry. TFG stands for Terrain Following Grid. When

using a terrain following grid, the orthogonal grid discussed in 2.1 is transformed to

conform to the problem domain topography on both the surface and subsurface layers

to exclude inactive areas [31]. This is beneficial when overland flow closely follow the

topography.

CONUS-RU is a subsection of the CONUS 1.0 model in southern Colorado,

with a single Z layer and real slope geometry. CONUS-RU is known as a ”parking

lot” model where permeability is set to near 0, preventing water from entering

the subsurface of the domain. This pools water across the domain, and identifies

where rivers, streams, and sinks exist. Parking lot models are used frequently when

developing simulations for new domains.

ClayL is a synthetic domain consisting of homogeneous soil and a large Z depth,

with no complex terrain. ClayL is included in this study as it is used for acceptance

testing of supercomputers in Europe.

4.2 Experimental Setup

Testing was performed on the R2 cluster at Boise State University [44], running from

1 to 28 cores on a single node. A node on the R2 cluster is configured with two Intel

Xeon E5-2680 v4 14 core CPUs running at 2.4ghz, with 192GB of memory split into

two NUMA nodes (96GB per CPU socket). CUDA performance was measured on a

GPU node with two Intel Xeon E5-2680 v4 14 core CPUs running at 2.4ghz, with

35

256GB of memory split into two NUMA nodes, and an Nvidia Tesla P100 GPU. The

links to the specific git commits used for each version can be found in Appendix A.

ParFlow was compiled with GCC 7.2.0 using the O3 flag, and NVCC 10.0.130 was

used to compile the CUDA version. MPICH 3.2.1 was used for MPI.

Results compare ParFlow running with MPI, the experimental OpenMP imple-

mentation, and an experimental CUDA version. The experimental CUDA version

was provided by the Juelich Research Center in Germany. MPI communication is

currently not supported in the experimental CUDA version, and is only run on one

CPU core with one GPU accelerator. The CUDA version of ParFlow does not use

the abstractions presented, instead being hard coded to run on GPU accelerators.

However, the abstractions are able to support a unified CUDA implementation.

4.3 Results

This section presents the results of the performance study. It is important to note

that ParFlow utilizes KINSOL, a nonlinear solver for algebraic systems that is part of

the SUNDIALS library [21]. KINSOL is developed by Lawrence Livermore National

Laboratory, and analysis for implementing OpenMP or CUDA in it is beyond the

scope of this work. Analysis shows that the CUDA and OpenMP versions take a

significant performance penalty due to the KINSOL library being single threaded.

MPI does not see this penalty as every MPI process has its own copy of the application,

allowing KINSOL to be run in parallel. MPI does not see this penalty as every MPI

process has its own copy of the application, and so KINSOL can be run in parallel.

The results for two time dominating functions, NL Function Eval and MGSemi, are

included to exclude the overhead from KINSOL in OpenMP and CUDA. This is done

36

Table 4.1

MPI Timings with and without eDSL
Timer Timer No eDSL eDSL

CONUS-TFG Total 41.01s 43.34s
NL Function Eval 4.75s 5.31s
MGSemi 20.95s 20.93s

CONUS-RU Total 26.42 24.94s
NL Function Eval 13.20 13.25s
MGSemi 3.36 3.45s

ClayL Total 98.04s 95.35s
NL Function Eval 8.29s 8.34s
MGSemi 46.07s 45.19s

to examine the performance of OpenMP, CUDA, and MPI in parallel regions of code.

Configurations for each test case are detailed at the beginning of each subsection.

Total runtime, and runtimes spent in NL Function Eval and MGSemi are examined.

Full timing results for all test cases for 1 to 28 cores can be found in Appendix B.

A comparison between ParFlow without the abstractions and with the abstrac-

tions was run for each test case on 28 cores, seen in Table 4.1. The abstractions

involve changes to the codebase. This can result in different compiler optimizations

and execution orderings, resulting in time variations. System interrupts, file IO

operations, and general system noise contribute further variations in timings. These

results show that the abstractions do not have significant negative impact on runtime

using 28 cores.

4.3.1 CONUS-TFG

The CONUS-TFG test was run in several MPI configurations. These are denoted

as (X.1.1), (X.2.1), and (X.4.1) where X is a varying number of cores. ParFlow

decomposes a domain as the product of the provided configuration. For example a

37

Figure 4.1: CONUS-TFG: Total runtime in seconds

decomposition of 7.4.1 will split the domain along the X axis 7 ways and the Y axis 4

ways, and distribute data to 28 cores. Domain decomposition has impact on memory

layouts and domain traversal, and is under exploration. The OpenMP version was

run on one MPI process, with a varying number of threads. Full timing results for 1

to 28 cores can be found in Appendix B Table B.1.

Figure 4.1 shows the total runtime for the CONUS-TFG test case in seconds.

CUDA performed faster than MPI in all configurations until more than 8 cores are

in use. The CUDA version solved the problem domain in 95.14 seconds. The MPI

version performed equally between each of its configurations, with the fastest time

of 41.87 seconds in the 14.2.1 configuration for a total of 28 cores. OpenMP was

consistently slower than MPI in this test case, with 28 cores solving the problem

domain in 146.08 seconds.

38

Figure 4.2: CONUS-TFG: Runtime for NL Function Eval in seconds

Figure 4.2 shows timing results for NL Function Eval in seconds. The CUDA

version performed faster than all MPI configurations up to 28 cores, spending 2.14

seconds in this function. The MPI version performed equally between all configura-

tions. The fastest time for MPI was in the 14.2.1 configuration, spending 5.30 seconds

in the function. OpenMP performed faster than all MPI configurations until more

than 8 cores are in use, at which point it became competitive. OpenMP spent 6.51

seconds in this function on 28 cores. Full timing results can be found in can be found

in Appendix B Table B.2.

Figure 4.3 shows timing results for MGSemi in seconds. The CUDA version

performed faster until 4 ore more cores are in use, spending 55.50 seconds in this

function. MPI performed best in the X.4.1 configuration until 16 cores were in use,

at which point all configurations performed equally. The fastest time for MPI was in

39

Figure 4.3: CONUS-TFG: Runtime for MGSemi in seconds

the 14.2.1 configuration, spending 20.75 seconds in the function. OpenMP performed

slower than all MPI configurations, spending 31.78 seconds in the function on 28

cores. Both MPI and OpenMP versions saw very little performance gain once 14

cores were in use. Full timing results can be found in can be found in Appendix B

Table B.3.

4.3.2 CONUS-RU

The CONUS-RU test case was run in several configurations for the MPI and OpenMP

versions of ParFlow. For MPI the X in the configuration corresponds to total number

of MPI processes. For OpenMP the X in the configuration corresponds to OpenMP

threads per MPI process. For example an OpenMP configuration of X.4.1 on 28 cores

means 4 MPI processes, each with 7 threads. Full timing results for 1 to 28 cores can

40

Figure 4.4: CONUS-RU: Total runtime in seconds

be found in Appendix B Table B.4.

Figure 4.4 shows the total runtime for the CONUS-RU test case in seconds. The

CUDA version solved the problem domain in 300.48 seconds, and was slower after

more than 2 cores were in use. The MPI version performed equally between each of

its configurations with times only varying by 1 to 2 seconds, attributable to system

noise and IO. The fastest time for MPI was in the 28.1.1 configuration, solving in

31.80 seconds. The OpenMP version was slower in each configuration, up to 28 cores.

The fastest time for OpenMP was in the X.4.1 configuration with 28 cores in use,

solving in 42.11 seconds.

Figure 4.5 shows timing results for NL Function Eval in seconds. The CUDA

version was faster than the MPI version until more than one core was in use, spending

in 240.40 seconds the function. The MPI version performed equally between all

41

Figure 4.5: CONUS-RU: Runtime for NL Function Eval in seconds

configurations. The fastest time for MPI was in the 28.1.1 configuration, spending

17.33 seconds in the function. OpenMP was slower than all configurations up to

8 cores, at which point all configurations became competitive. The fastest time for

OpenMP was 16.60 seconds in the X.2.1 configuration on 28 cores. Full timing results

can be found in can be found in Appendix B Table B.5.

Figure 4.6 shows timing results for MGSemi in seconds. The CUDA version was

faster than the MPI version until more than 5 cores were in use, spending 7.88 in

the function. The MPI version performed equally between all configurations, with

the fastest time of 3.45 seconds in the 28.1.1 configuration. OpenMP was slower

than MPI in all configurations until 18 cores, at which point the X.2.1 configuration

became competitive. The fastest time for OpenMP on 28 cores was 3.77 seconds in the

X.2.1 configuration. Full timing results can be found in can be found in Appendix B

42

Figure 4.6: CONUS-RU: Runtime for MGSemi in seconds

Table B.6.

4.3.3 ClayL

The ClayL test case was run in several configurations for the MPI and OpenMP

versions of ParFlow, explained in section 4.3.2. Configurations presented for the

ClayL test case are grouped in terms of total core counts of 1, 2, 4, 8, 14, and 28.

Full timing results for 1 to 28 cores can be found in Appendix B Table B.7.

Figure 4.7 shows the total runtime results for the ClayL benchmark. In this

case, the experimental CUDA version of ParFlow performed best, solving the prob-

lem domain in 37.30 seconds. The MPI version of ParFlow performed best in the

7.4.1 configuration for 28 cores, solving the problem domain in 59.02 seconds. The

experimental OpenMP version solved the problem domain in 63.59 seconds in the

43

Figure 4.7: ClayL: Total runtime in seconds

X.4.1 configuration, with each MPI rank using 7 threads. This shows that the CUDA

version outperforms MPI in this problem domain, and that the OpenMP version stays

competitive when more than 8 cores are used. These results additionally show the

impact different domain decompositions have on performance. When the domain is

decomposed only along the X axis in a MPI 28.1.1 configuration, performance is 37%

slower compared to a 7.4.1 configuration.

Figure 4.8 shows the runtime results for NL Function Eval in ClayL. The CUDA

version spent 4.23 seconds of runtime in this function. The MPI version spent 6.66

seconds of runtime in its fastest configuration of 7.4.1. The OpenMP version spent

6.70 of runtime in its fastest configuration of X.4.1 on 28 cores. This corresponds to

what was seen in the total runtime results, with CUDA being faster than MPI and

OpenMP remaining competitive. Full timing results can be found in can be found in

44

Figure 4.8: ClayL: Runtime for NL Function Eval in seconds

Appendix B Table B.8.

Figure 4.9 shows the runtime results for MGSemi in ClayL. The CUDA version

spent 8.06 seconds of runtime in this function. The MPI version spent 20.74 seconds

in its fastest configuration of 7x4x1, and OpenMP 19.17 seconds similarly. The CUDA

version continues to perform better than MPI. The OpenMP version outperforms the

MPI version in certain configurations. With X.1.1 configurations OpenMP performed

faster than MPI more than 4 cores were in use, and faster in X.2.1 configurations when

at least 14 cores were in use. The X.4.1 configuration became competitive when 20

or more cores were in use. Full timing results can be found in can be found in

Appendix B Table B.9.

45

Figure 4.9: ClayL: Runtime for MGSemi in seconds

4.3.4 Summary

The results of this performance study indicate there is potential for improved on-node

shared memory parallelism with the experimental OpenMP and CUDA versions of

ParFlow. This study highlights the different performance characteristics of different

problem domains. Domain decomposition affects memory layout and memory access

patterns, which can have significant effect on performance results as seen in the ClayL

test case. For total runtimes, we see a mix of improved performance and competitive

performance for the different versions. In the ClayL test case, the CUDA version of

ParFlow is faster than the MPI version in its fastest configuration on 28 cores. The

OpenMP version remains competitive with the MPI version when at least 14 cores are

in use. The CONUS-RU test case shows the CUDA version is slower once more than

46

one core is in use, and that the OpenMP version is competitive up to 8 cores. In the

CONUS-TFG case, both the CUDA and OpenMP versions of ParFlow are slower than

the MPI version. Examining parallel regions to account for KINSOL performance

shows strong potential for improved performance using CUDA and OpenMP, and

indicate there is room for improvement in these experimental builds. This highlights

the importance of a varied suite of test cases when performing benchmarks in a

scientific application.

47

CHAPTER 5

RELATED WORK

Domain Specific Languages are frequently used in scientific applications. Typically,

they are presented as application-independent libraries or frameworks. Different DSLs

target different use cases, but have a shared interest in architecture portability and

performance. DSLs are often used to capture iteration scheduling, applying paral-

lel frameworks, and managing architecture specific details. The following sections

present several related domain specific languages, grouped by categories of features

they encapsulate.

The eDSL abstractions presented in this work focus on boundary condition compu-

tations. They are generalizable to other scientific applications, and are demonstrated

in the ParFlow application with no external library or compiler dependencies. Partic-

ular emphasis was placed on lifting scientific computations from the existing code and

inserting them into the new eDSL, with minimal rewrites. This is in contrast to most

other DSL frameworks, which often require significant rewriting of computations.

5.1 Iteration Scheduling

Domain specific languages are frequently used to abstract and automatically man-

age iteration domain scheduling. Frameworks such as STELLA [18], Tiramisu [6],

48

CHOMBO [28], and Intel Thread Building Blocks [26, 33] all provide interfaces for

domain scientists to automatically schedule their computations.

Abstracting loop scheduling removes the need for programmers to directly manage

optimizations such as loop fusion or tiling. A programmer can instead specify the

domain for a given computation or set of computations and have the DSL generate

applicable code. An example of this in the STELLA framework can be seen in

Figure 5.1. STELLA was developed for the COSMO [2] scientific application, used

in regional climate modelling. STELLA decomposes stencil computations into a set

of building blocks. Each stage of the computation is defined as a C++ templated

data structure. These stages are then combined in the form of a ”recipe”. Each

StencilStage entry contains the appropriate stencil computation as well as its iteration

domain. The iteration domain in STELLA is split into the XY axis and the Z axis,

or IJRange and KRange respectively.

This separation of iteration scheduling from the computations allows for backend

optimizations to be applied transparently to the programmer [4]. Loop iterations for

each stencil entry can be fused, tiled, or have other optimizations applied without

obfuscating key computations.

1 // Define stencil kernel stages using templated structs

2 template<typename TEnv> struct Lap { ... };

3 template<typename TEnv> struct Flx { ... };

4 template<typename TEnv> struct Fly { ... };

5 template<typename TEnv> struct Res { ... };

6 ...

7 // Extracted definition of kernels and their iteration domains

8 StencilStage<Lap, IJRange<cIndented,-1,1,-1,1>, KRange<FullDomain,0,0>>(),

9 StencilStage<Flx, IJRange<cIndented,-1,0,0,0>, KRange<FullDomain,0,0>>(),

10 StencilStage<Fly, IJRange<cIndented,0,0,-1,0>, KRange<FullDomain,0,0>>(),

11 StencilStage<Res, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,0,0>>()

Figure 5.1: Kernel stages with scheduling expressed in the STELLA DSL

49

5.2 GPU Parallelization

Different target architectures have different optimal scheduling patterns, especially

in the context of parallel computing. For instance a GPU accelerator may see better

parallel performance by ordering storage in a k > j > i fashion, compared to a more

typical layout of CPU iterations in a i > j > k order. Storage layout directly affects

memory access patterns. As processors have become faster, memory has increasingly

become the bottleneck in performance. Abstracting scheduling and storage is then

crucial to enabling performance portable parallel implementations.

STELLA, Tiramisu, Accelerate [12], AMReX [48], and ArrayFire [22] support

GPU parallelism in their DSL implementations. STELLA offers two backends for its

DSL, a CPU-based OpenMP backend and a CUDA based GPU backend. The frame-

work allows for either backend to be selected. Storage is automatically rearranged

by STELLA depending on this choice, optimizing memory access patterns for the

selected architecture at compile time.

Tiramisu and AMReX also offer GPU compute support, but require more input

from the programmer. Different storage choices must be explicitly stated, as opposed

to STELLA’s approach of specifying architecture type. Similarly iteration and loop

transformations must be stated by the programmer. Accelerate and ArrayFire are

both GPU-compute specific DSL extensions, with Accelerate being tailored to Haskell

vector computations and ArrayFire being a general-purpose API for the C, C++,

Python, and Fortran languages.

50

1 for (i in 0..N-2)

2 for (j in 0..M-2)

3 for (c in 0..3)

4 bx[i][j][c] = (in[i][j][c] + in[i][j+1][c] + in[i][j+2][c]) / 3

5 for (i in 0..N-2)

6 for (j in 0..M-2)

7 for (c in 0..3)

8 by[i][j][c] = (b[i][j][c] + bx[i+1][j][c] + bx[i+2][j][c]) / 3

Figure 5.2: 2D Blur Algorithm Pseudocode

1 // 2D Blur algorithm expressed in Tiramisu DSL

2 Var i(0, N-2), j(0, M-2), c(0, 3);

3 Computation bx(i, j, c), by(i, j, c);

4 bx(i, j, c) = (in(i, j, c) + in(i, j+1, c) + in(i,j+2,c))/3;

5 by(i, j, c) = (bx(i, j, c) + bx(i+1, j, c) + bx(i+2, j, c))/3;

Figure 5.3: 2D Blur Algorithm in Tiramisu

5.3 Separation of Computations

A major part of a domain specific language is the separation of computations from

their implementation details. Iteration scheduling, memory and storage manage-

ment, and other programming concerns must be moved away from the mathematical

computations. This allows for parallelism [4] and other optimizations to be applied

transparently to computational scientists.

This separation requires careful design, and often introduces a level of code com-

plexity itself. Domain specific languages are most often presented in the form of a

forward-facing API. This may result in computations needing to be reformulated to

match the API.

An example of a 2D blur algorithm used in image processing can be seen in

Figure 5.2. Translating this into the Tiramisu DSL requires a complete rewrite of the

computations. This can be seen in Figure 5.3. Tiramisu requires computational

51

1 // x-flux in the STELLA DSL

2 template<typename TEnv>

3 struct Flx {

4 STENCIL_STAGE(TEnv);

5 STAGE_PARAMETER(FullDomain, phi);

6 STAGE_PARAMETER(FullDomain, lap);

7 STAGE_PARAMETER(FullDomain, flx);

8 static void Do(...) {

9 double flux = ctx[lap::Center()] - ctx[lap::At(iplus1)];

10 double sign = ctx[phi::At(iplus1)] - ctx[phi::Center()];

11 ctx[flx::Center()] = flux*sign > 0 ? 0 : flux;

12 }

13 };

Figure 5.4: 4th Order x-Flux Smoothing in STELLA

scientists to reformulate computations into purely functional expressions. These

expressions are fed into the Tiramisu polyhedral compiler, and an optimized algorithm

is produced. STELLA requires similar rewriting of computations. An example of a

4th order flux smoothing in the X direction written in the STELLA DSL can be seen

in Figure 5.4. STELLA discretizes stages of the computation, and computational

scientists assemble the full formulation as a recipe, as described in Section 5.1.

Rewriting of computations is prohibitively expensive. As codebases become larger

infrastructure becomes more complex. This causes implementation issues to rise

quickly, potentially requiring additional rewriting of the program structure to fit a

particular DSL. The abstractions in this work were designed with this in mind. The

front-end API was designed first, specifically to minimize any rewriting of compu-

tations. Computations require little to no rewrites in the presented work, able to

be lifted directly from the existing code and placed in the proposed eDSL. There

is a tradeoff to this approach in that the backend becomes more complex to adapt

to different hardware architectures, but benefits computational scientist productivity

more directly.

52

5.4 Enforcing DSL Usage

DSLs provide abstractions for common computational idioms. Complex looping

structures, such as Octree navigation, offer performance benefits. A DSL can en-

capsulate these looping structures into more easily managed interfaces, improving

computational scientist productivity. Mixing non-DSL code, or ”exposed” code, such

as explicit loops or conditional branching, degrades the benefits of a DSL. A DSL

must encapsulate as much computation as possible, providing full coverage of the

necessary sections of code. It is thus highly desirable for a DSL to be designed in

such a way that it is either difficult, inconvenient, or less sensible to write exposed

code intermixed with the DSL. The more computational scientists can stay within

DSL abstractions, the greater impact they can produce.

Proto [34] is a meta-DSL provided as a library. The goal of Proto is to provide a

way to write an eDSL utilizng a Backus-Naur style grammar. This is accomplished

through C++ meta-templating features. Approaching the construction of an eDSL

in this manner means that stepping outside of DSL abstractions effectively requires

writing in a completely different language.

Delite [46, 9] is a framework embedded in the Scala programming language. A

set of common components is provided through the framework, such as parallel

loops, map functions, filtering, and reductions. Metaprogramming is leveraged to

emit intermediate representation code for different languages, such as C or C++.

Delite was designed with the intent of being able to write other, more specific DSL

libraries, such as Forge [47] or OptiML [11]. Forge aims to provide a declarative,

high-performance DSL for parallel computing. OptiML aims to provide a DSL for

machine learning, and provide GPU compute portability. By leveraging Scala in this

53

manner Delite helps to fully encapsulate computations, as well as provide a strong

basis for writing other more specific DSLs.

RDL [45] is a contract-based DSL for the Ruby programming language. Contracts

are implemented as a layer on top of different functions and objects. If a developer

attempts to perform some computation that violates a specified contracts, compile-

time checks will emit errors and prevent the program from building. This ensures

that developers stay within the context of the DSL and its features, and provides a

layer to ensure validity of the program.

54

CHAPTER 6

CONCLUSIONS

This thesis presents abstractions for boundary condition computations, demonstrated

in the ParFlow application and implemented as an eDSL with no external dependen-

cies. The abstractions are generalizable to iterative solvers that are frequently used

in scientific applications, and are demonstrated in the ParFlow application. These

abstractions have directly improved computational scientists productivity, enabling

new boundary conditions to be successfully added. Additionally, the abstractions

enable architecture portability. An experimental OpenMP version of ParFlow was

implemented using these abstractions, and enable the required flexibility to unify the

experimental CUDA version of ParFlow provided by the Juelich Research Center in

Germany.

A performance study was conducted on the experimental builds of ParFlow. This

study helps indicate what target architectures are worth exploring further. The

CUDA version of ParFlow is shown to be faster than the MPI version in certain

domains and configurations. The OpenMP version of ParFlow is shown to be com-

petitive with the MPI version in certain configurations. The differing results showcase

the complex nature of real world scientific applications, and highlights the need for

performance metrics to be established when optimizing applications and porting to

new hardware.

55

REFERENCES

[1] TOP500 Supercomputers List - June 2019.

[2] Cosmo: Regional climate modeling, cited August 2019.

[3] Mark Adams, Peter O Schwartz, Hans Johansen, Phillip Colella, Terry J Ligocki,
Dan Martin, ND Keen, Dan Graves, D Modiano, Brian Van Straalen, et al.
Chombo software package for amr applications-design document. Technical
report, 2015.

[4] Todd A. Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni, Jan Vitek, and
Tatiana Shpeisman. Parallelizing Julia with a Non-Invasive DSL (Artifact).
Dagstuhl Artifacts Series, 3(2):7:1–7:2, 2017.

[5] Steven F. Ashby and Robert D. Falgout. A parallel multigrid preconditioned
conjugate gradient algorithm for groundwater flow simulations. Nuclear Science
and Engineering, 124(1):145–159, 1996.

[6] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and
Saman Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In Proceedings of the 2019 IEEE/ACM International Symposium
on Code Generation and Optimization, CGO 2019, pages 193–205, Piscataway,
NJ, USA, 2019. IEEE Press.

[7] I. J. Bertolacci, M. M. Strout, S. Guzik, J. Riley, and C. Olschanowsky. Iden-
tifying and scheduling loop chains using directives. In 2016 Third Workshop on
Accelerator Programming Using Directives (WACCPD), pages 57–67, Nov 2016.

[8] I. J. Bertolacci, M. M. Strout, J. Riley, S.M.J. Guzi, E. C. Davis, and
C Olschanowsky. Using the loop chain abstraction to schedule across loops
in existing code. In Int. J. High Performance Computing and Networking,
volume 13, pages 86–104, 2019.

[9] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific languages.
In 2011 International Conference on Parallel Architectures and Compilation
Techniques, pages 89–100, Oct 2011.

56

[10] Donna A. Calhoun and Carsten Burstedde. Forestclaw: A parallel algorithm
for patch-based adaptive mesh refinement on a forest of quadtrees. CoRR,
abs/1703.03116, 2017.

[11] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.
Atreya, and Kunle Olukotun. A domain-specific approach to heterogeneous
parallelism. SIGPLAN Not., 46(8):35–46, February 2011.

[12] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and
Vinod Grover. Accelerating haskell array codes with multicore gpus. In Proceed-
ings of the Sixth Workshop on Declarative Aspects of Multicore Programming,
DAMP ’11, pages 3–14, New York, NY, USA, 2011. ACM.

[13] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and
autotuning framework for parallel iterative stencil computations on modern
microarchitectures. In 2011 IEEE International Parallel Distributed Processing
Symposium, pages 676–687, May 2011.

[14] Eddie C. Davis, Michelle Mills Strout, and Catherine Olschanowsky. Trans-
forming loop chains via macro dataflow graphs. In Proceedings of the 2018
International Symposium on Code Generation and Optimization, CGO 2018,
pages 265–277, New York, NY, USA, 2018. ACM.

[15] José Fonseca. gprof2dot.

[16] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker,
and Bernd Mohr. The scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience, 22(6):702–719, 2010.

[17] Susan L Graham, Peter B Kessler, and Marshall K McKusick. Gprof: A call
graph execution profiler. ACM SIGPLAN Notices, 39(4):49–57, 2004.

[18] Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas C.
Schulthess. Stella: A domain-specific tool for structured grid methods in
weather and climate models. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’15,
pages 41:1–41:12, New York, NY, USA, 2015. ACM.

[19] Tianyi David Han and Tarek S. Abdelrahman. Reducing branch divergence
in GPU programs. In Proceedings of the Fourth Workshop on General Purpose
Processing on Graphics Processing Units, GPGPU-4, pages 3:1–3:8. ACM. event-
place: Newport Beach, California, USA.

[20] A. Heinecke, M. Klemm, and H. Bungartz. From GPGPU to many-core: Nvidia
fermi and intel many integrated core architecture. 14(2):78–83.

57

[21] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban,
Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear
and differential/algebraic equation solvers. ACM Transactions on Mathematical
Software (TOMS), 31(3):363–396, 2005.

[22] Chris McClanahan Vishwanath Venugopalakrishnan Krunal Patel John Mel-
onakos James Malcolm, Pavan Yalamanchili. Arrayfire: a gpu acceleration
platform. 8403, 2012.

[23] Jim E. Jones and Carol S. Woodward. Newton–krylov-multigrid solvers for large-
scale, highly heterogeneous, variably saturated flow problems. Advances in Water
Resources, 24(7):763 – 774, 2001.

[24] Mandli K., Ahmadia A., Berger M., Calhoun D., George D., Hadjimichael Y.,
Ketcheson D., Lemoine G., and LeVeque R. Clawpack: building an open source
ecosystem for solving hyperbolic pdes. PeerJ Computer Science, 2016.

[25] Ramgopal Kashyap and Pratima Gautam. Fast level set method for segmentation
of medical images. In Proceedings of the International Conference on Informatics
and Analytics, ICIA-16, pages 20:1–20:7, New York, NY, USA, 2016. ACM.

[26] W. Kim and M. Voss. Multicore desktop programming with intel threading
building blocks. IEEE Software, 28(1):23–31, Jan 2011.

[27] Stefan J. Kollet and Reed M. Maxwell. Integrated surface–groundwater flow
modeling: A free-surface overland flow boundary condition in a parallel ground-
water flow model. Advances in Water Resources, 29(7):945 – 958, 2006.

[28] D. T. Graves J.N. Johnson N.D. Keen T. J. Ligocki. D. F. Martin. P.W.
McCorquodale D. Modiano. P.O. Schwartz T.D. Sternberg M. Adams, P. Colella
and B. Van Straalen. Chombo software package for amr applications design
document. Technical report, Lawrence Berkely National Laboratory, 2019.

[29] R. M. Maxwell, L. E. Condon, and S. J. Kollet. A high-resolution simula-
tion of groundwater and surface water over most of the continental us with
the integrated hydrologic model parflow v3. Geoscientific Model Development,
8(3):923–937, 2015.

[30] Reed M. Maxwell. A terrain-following grid transform and preconditioner for par-
allel, large-scale, integrated hydrologic modeling. Advances in Water Resources,
53:109 – 117, 2013.

[31] Reed M Maxwell. A terrain-following grid transform and preconditioner for par-
allel, large-scale, integrated hydrologic modeling. Advances in Water Resources,
53:109–117, 2013.

58

[32] Zdzis law Meglicki, Stephen K. Gray, and Boyana Norris. Multigrid fdtd with
chombo. Computer Physics Communications, 176(2):109 – 120, 2007.

[33] Chris J. Newburn, Byoungro So, Zhenying Liu, Michael McCool, Anwar Ghu-
loum, Stefanus Du Toit, Zhi Gang Wang, Zhao Hui Du, Yongjian Chen, Gansha
Wu, Peng Guo, Zhanglin Liu, and Dan Zhang. Intel’s array building blocks:
A retargetable, dynamic compiler and embedded language. In Proceedings of
the 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’11, pages 224–235, Washington, DC, USA, 2011. IEEE
Computer Society.

[34] Eric Niebler. Proto: A compiler construction toolkit for dsels. In Proceedings
of the 2007 Symposium on Library-Centric Software Design, LCSD ’07, pages
42–51, New York, NY, USA, 2007. ACM.

[35] OpenMP Architecture Review Board. OpenMP application program interface
version 4.5, 2015.

[36] R. Rabenseifner, G. Hager, and G. Jost. Hybrid mpi/openmp parallel program-
ming on clusters of multi-core smp nodes. In 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, pages 427–
436, Feb 2009.

[37] Shah M. Faizur Rahman, Qing Yi, and Apan Qasem. Understanding stencil
code performance on multicore architectures. In Proceedings of the 8th ACM
International Conference on Computing Frontiers, CF ’11, New York, NY, USA,
2011. Association for Computing Machinery.

[38] et al Reed M. Maxwell. Hydroframe: A national community hydrologic modeling
framework for scientific discovery, cited August 2019.

[39] Lakshminarayanan Renganarayanan, Daegon Kim, Michelle Mills Strout, and
Sanjay Rajopadhye. Parameterized loop tiling. ACM Trans. Program. Lang.
Syst., 34(1):3:1–3:41, May 2012.

[40] Lorenzo Adolph Richards. Capillary conduction of liquids through porous
mediums. Physics, 1(5):318–333, 1931.

[41] Gerhard Wellein Rolf Rabenseifner. Communication and optimization aspects
of parallel programming models on hybrid architectures.

[42] Nikolay Sakharnykh. Everything you need to know about unified memory, 2018.

[43] J. Sartori and R. Kumar. Branch and data herding: Reducing control and
memory divergence for error-tolerant GPU applications. 15(2):279–290.

59

[44] Kyle Shannon. bsurc/r2-doi: 1.0.17, November 2018.

[45] T. Stephen Strickland, Brianna M. Ren, and Jeffrey S. Foster. Contracts for
domain-specific languages in ruby. SIGPLAN Not., 50(2):23–34, October 2014.

[46] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture for
performance-oriented embedded domain-specific languages. ACM Trans. Embed.
Comput. Syst., 13(4s):134:1–134:25, April 2014.

[47] Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee, Tiark
Rompf, Martin Odersky, and Kunle Olukotun. Forge: Generating a high
performance dsl implementation from a declarative specification. SIGPLAN Not.,
49(3):145–154, October 2013.

[48] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke,
Cy Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel Graves, Max Katz,
Andrew Myers, Tan Nguyen, Andrew Nonaka, Michele Rosso, Samuel Williams,
and Michael Zingale. Amrex: a framework for block-structured adaptive mesh
refinement. Journal of Open Source Software, 4(37):1370, 5 2019.

60

APPENDIX A

REPRODUCIBILITY

61

This appendix covers steps to reproduce the results in this work. See Appendix B for

the full timing results of the performance study.

ParFlow was compiled using the basic instructions found in the user’s manual,

with the following CMAKE command

1 cd build

2 cmake ../$SRC -DCMAKE_BUILD_TYPE=Release -DPARFLOW_AMPS_LAYERS=mpi1 -

DCMAKE_INSTALL_PREFIX=${PARFLOW_DIR} -DPARFLOW_HAVE_CLM=ON -

DPARFLOW_ENABLE_TIMING=ON

For the CUDA version, the additional flag was enabled:

1 -DPARFLOW_ENABLE_CUDA=true

And similarly for the OpenMP version the additional flag was enabled:

1 -DPARFLOW_ENABLE_OMP=true

Libraries used were: GCC 7.2.0, MPICH 3.2.1, CMake 3.12, TCL 8.5, and CUDA

10.1. When compiling on R2, it may be necessary to explicitly tell CMake to use

mpicc and mpicxx as the C and CXX compilers in order to avoid a linking error.

This is an environmental issue, and can be resolved by exporting the CC and CXX

variables to point directly at mpicc and mpicxx.

The MPI version can be found at the following github repo and commit hash

https://github.com/hydroframe/ParFlow_PerfTeam/tree/pf_newbc

Hash: 983aadd45b83cce9272b971a7bbb960a7b602b92

The OpenMP version can be found at the following github repo and commit hash

https://github.com/hydroframe/ParFlow_PerfTeam/tree/pf_omp_newbc

Hash: 237198f999f190a41cc822b0166bdd973d8f02a2

https://github.com/hydroframe/ParFlow_PerfTeam/tree/pf_newbc
https://github.com/hydroframe/ParFlow_PerfTeam/tree/pf_omp_newbc

62

The CUDA version can be found at the following github repo and commit hash

https://github.com/hokkanen/parflow/tree/CUDA

Hash: a7d788deaefa285c31c9ab90accbbe6dca9b412f

https://github.com/hokkanen/parflow/tree/CUDA

63

APPENDIX B

DATA

64

Appendix B contains full timing results of the performance study.

65

Table B.1: Total Runtime in seconds for CONUS-TFG

CONUS-TFG: Total Runtime in Seconds
MPI

Cores CUDA (X.1.1) (X.2.1) (X.4.1) OMP (1.1.1)
1 95.1409 590.2626 713.5529
2 285.476 283.4181 423.6981
3 214.0199 320.5828
4 157.0586 148.3584 153.8221 284.6438
5 137.4555 234.347
6 114.5306 108.1736 213.5326
7 104.1622 198.7523
8 91.488 87.3281 86.6709 186.0985
9 86.4653 179.3417
10 77.7692 74.1324 171.2415
11 74.2479 166.0651
12 68.2774 65.0843 64.5945 163.8548
13 66.0936 157.6794
14 60.9969 58.5117 154.3853
15 59.8671 152.0902
16 54.4879 54.1956 54.0323 149.0282
17 54.342 149.1124
18 51.1796 50.5412 145.1628
19 51.9119 144.236
20 48.7314 47.982 47.9879 145.9078
21 48.7361 145.6109
22 47.3419 45.9227 144.2522
23 47.1239 142.7701
24 45.0306 44.6332 44.4736 144.0038
25 45.2892 141.6901
26 43.5721 42.5987 144.1152
27 43.9748 142.8256
28 43.3487 41.8776 42.3887 146.0815

66

Table B.2: CONUS-TFG: Runtime in seconds for NL Function Eval

CONUS-TFG: NL Function Eval Runtime in Seconds
MPI

Cores CUDA (X.1.1) (X.2.1) (X.4.1) OMP (1.1.1)
1 2.1444 114.7513 97.3628
2 57.0069 57.1074 50.4961
3 39.5161 34.9301
4 29.6847 30.2003 30.3302 28.7583
5 24.9522 22.4184
6 21.1407 21.1997 19.5306
7 18.6752 17.3392
8 16.4738 16.3324 16.607 15.4116
9 14.8655 14.1376
10 13.571 13.6148 12.9955
11 12.5142 11.9384
12 11.4566 11.325 11.4796 11.2612
13 10.5095 10.4997
14 9.7908 9.8397 9.8731
15 9.3067 9.3661
16 8.7043 8.7116 8.8203 8.8203
17 8.3918 8.5589
18 7.8096 7.8118 8.1263
19 7.5098 7.8269
20 7.1457 7.1234 7.1878 7.6355
21 6.8747 7.3943
22 6.6184 6.5293 7.1815
23 6.2681 6.8459
24 6.0435 6.0936 6.1128 6.8288
25 5.8615 6.5283
26 5.6091 5.6474 6.5097
27 5.4945 6.3326
28 5.3119 5.3036 5.3556 6.5148

67

Table B.3: CONUS-TFG: Runtime in seconds for MGSemi

CONUS-TFG: MGSemi Runtime in Seconds
MPI

Cores CUDA (X.1.1) (X.2.1) (X.4.1) OMP (1.1.1)
1 55.5078 178.3837 279.4478
2 81.7842 78.6208 144.3533
3 68.716 101.366
4 50.9912 43.2394 46.2671 81.4114
5 46.6414 67.3962
6 38.3691 34.6733 58.0295
7 36.6272 52.589
8 31.9408 29.6093 28.2555 47.7389
9 31.6934 44.9323
10 28.638 26.3018 41.5543
11 28.1891 39.4681
12 26.2193 24.6176 24.5193 38.0664
13 26.1297 36.4633
14 24.5824 23.0906 35.4101
15 24.5963 34.2352
16 22.3855 22.5857 22.6583 33.6273
17 22.7946 33.0489
18 21.8911 21.793 32.411
19 22.5442 31.9393
20 21.3651 21.4286 21.7411 32.0211
21 21.7346 31.8331
22 21.6715 21.1169 32.2058
23 21.701 31.8775
24 20.7951 21.0244 21.5078 31.4658
25 21.2023 31.2614
26 20.7218 20.6498 31.2784
27 20.681 32.0153
28 20.9361 20.7523 21.5886 31.7805

68

Table B.4: Total Runtime for CONUS-RU in seconds

CONUS-RU: Total Runtime in Seconds
MPI OpenMP

Cores CUDA (X.1.1) (X.2.1) (X.4.1) (X.1.1) (X.2.1) (X.4.1)
1 300.4864 431.1694 477.4971
2 213.1075 210.9833 273.3172 245.0813
3 153.5537 210.5096
4 111.5284 109.9218 110.0043 171.7766 140.656 130.4315
5 95.0964 157.5567
6 78.6069 77.4722 138.4557 109.4031
7 70.8204 132.6268
8 61.1082 60.3035 60.5381 121.5766 91.4095 80.1699
9 57.2208 116.2587
10 50.1687 48.94 110.8644 80.2777
11 47.8942 106.6913
12 43.4997 43.4556 43.4274 100.605 72.3488 61.6485
13 41.1259 101.6875
14 38.6181 38.7052 101.396 67.247
15 36.3584 99.1602
16 34.1278 34.503 34.6393 94.6351 62.8248 53.5078
17 33.2731 92.1198
18 31.5719 31.6636 90.4766 60.6641
19 30.6466 92.6945
20 28.9557 29.5561 28.887 92.3335 56.7026 46.5754
21 28.5131 88.5314
22 27.3472 27.8865 87.7378 54.969
23 26.4875 85.5517
24 25.8812 26.6156 26.0378 84.9141 54.5713 42.9873
25 25.302 84.1788
26 24.624 25.4004 84.1767 53.3349
27 24.3769 83.7941
28 24.9497 27.0428 26.1139 84.0194 53.5785 42.1132

69

Table B.5: Runtime for NL Function Eval in CONUS-RU (in seconds)

CONUS-RU: NL Function Eval Runtime in Seconds
MPI OpenMP

Cores CUDA (X.1.1) (X.2.1) (X.4.1) (X.1.1) (X.2.1) (X.4.1)
1 240.4099 302.5261 323.2018
2 150.3987 150.4901 167.1557 162.1828
3 104.1439 117.0322
4 77.2322 77.4269 77.0043 89.8518 83.8193 85.3287
5 64.9654 77.4109
6 53.8057 53.6859 64.5621 59.9235
7 47.4488 58.1626
8 41.898 41.2877 41.4103 52.8772 46.6726 47.9993
9 37.8984 48.8969
10 33.7321 33.7181 43.8333 38.627
11 31.1617 41.6734
12 28.6679 28.3173 28.4395 37.937 32.7262 33.9833
13 26.3162 36.9711
14 24.533 24.619 34.9573 28.471
15 22.9915 33.4715
16 21.6495 21.7547 21.908 30.9368 25.3957 26.8202
17 20.5604 30.561
18 19.3892 19.6974 28.4455 23.253
19 18.488 28.7874
20 17.6434 17.9502 17.8955 26.5413 21.0852 22.6573
21 16.8863 25.8796
22 16.1764 16.5171 24.9834 19.4564
23 15.5512 24.2727
24 15.136 15.4975 15.317 23.8621 18.5173 19.6114
25 14.4663 23.1727
26 14.0604 14.3383 22.8874 17.3456
27 13.5634 22.4859
28 13.2584 13.5891 13.7658 22.0074 16.6084 17.9609

70

Table B.6: Runtime for MGSemi in CONUS-RU (in seconds)

CONUS-RU: MGSemi Runtime in Seconds
MPI OpenMP

Cores CUDA (X.1.1) (X.2.1) (X.4.1) (X.1.1) (X.2.1) (X.4.1)
1 7.8803 28.1434 42.1077
2 13.7523 13.1941 21.8961 21.1881
3 11.6294 16.0321
4 8.8021 7.5292 7.7099 12.0788 11.5428 12.1255
5 8.5262 10.7607
6 6.4584 5.8002 9.1653 8.5101
7 6.1075 8.5638
8 5.3149 4.9425 4.6555 7.3846 6.8339 7.433
9 5.2372 6.9477
10 4.7406 4.4213 6.6886 5.8802
11 4.691 6.1321
12 4.3843 4.212 4.0017 6.1599 5.2026 5.7377
13 4.5486 5.6864
14 4.128 4.0093 5.5038 4.6545
15 4.1835 5.4744
16 3.8483 3.868 3.7993 5.5738 4.3255 5.287
17 3.8629 5.2486
18 3.7047 3.8959 5.4743 4.1856
19 3.6512 5.1438
20 3.557 3.7667 3.7034 5.2924 3.8828 4.5292
21 3.5771 5.3019
22 3.4745 3.8069 5.2502 3.7004
23 3.5649 5.3239
24 3.5035 3.7238 3.7205 5.3863 3.6919 4.1811
25 3.3685 5.2417
26 3.4424 3.7663 5.2187 3.6642
27 3.3801 5.3715
28 3.4579 3.7058 3.8653 5.3644 3.7715 4.5466

71

Table B.7: Total Runtime for ClayL in seconds

ClayL: Total Runtime in Seconds
MPI OpenMP

Cores CUDA (X.1.1) (X.2.1) (X.4.1) (X.1.1) (X.2.1) (X.4.1)
1 37.3058 828.4127 973.4922
2 416.6005 403.6559 509.7668 500.6202
3 320.1411 370.3056
4 240.0473 223.4608 218.5148 291.2624 268.3682 263.7105
5 219.6244 250.581
6 187.8712 164.894 213.2963 207.2249
7 174.9298 195.5182
8 156.0162 132.5499 127.092 174.8489 160.6282 160.3136
9 152.1796 166.1589
10 134.2828 112.9664 151.8845 143.1992
11 135.907 145.3784
12 123.2309 100.8743 93.4633 135.0958 119.3487 114.1549
13 122.0381 130.6556
14 115.9421 92.6176 124.561 108.2036
15 112.0145 121.8913
16 108.5176 85.3744 76.8138 116.0221 108.4994 93.4524
17 105.1744 112.4914
18 106.6106 81.8341 110.4656 98.181
19 103.1385 107.4411
20 98.3133 76.9272 66.6717 104.2156 95.3316 78.717
21 99.6445 105.3035
22 97.8716 75.7887 102.9644 81.5117
23 97.5337 102.0074
24 98.3294 73.3117 61.317 97.4313 85.3011 72.8016
25 97.8081 97.5747
26 98.5122 70.6949 94.5854 81.3627
27 93.4555 93.5686
28 95.3502 72.0447 59.0242 94.6501 78.82 63.5997

72

Table B.8: Runtime for NL Function Eval in ClayL (in seconds)

ClayL: NL Function Eval Runtime in Seconds
MPI OpenMP

Cores CUDA (X.1.1) (X.2.1) (X.4.1) (X.1.1) (X.2.1) (X.4.1)
1 4.2369 128.2303 134.3273
2 64.6123 64.5435 68.5107 68.652
3 45.995 47.7543
4 34.0452 34.7583 34.2437 37.5801 35.2405 35.543
5 29.3632 31.0214
6 25.1588 24.673 25.9052 25.3705
7 22.6781 23.2174
8 20.3561 19.2069 19.4977 20.5535 20.007 19.5322
9 18.8421 19.2371
10 16.623 15.884 17.2869 16.6132
11 16.1378 16.3078
12 14.9158 13.7248 13.5456 14.7161 14.1056 13.6969
13 13.7894 13.844
14 13.5154 12.1569 12.9981 12.2364
15 12.305 12.4238
16 12.1064 10.7807 10.6727 11.6691 10.9379 10.681
17 11.0615 11.3024
18 11.0415 9.987 11.0106 9.9144
19 10.8817 10.2544
20 9.7149 8.8165 8.5916 9.8387 9.1441 8.7446
21 9.7758 9.7432
22 9.578 8.5538 9.2654 8.5761
23 9.4235 9.1382
24 9.4208 7.958 7.3975 8.7575 7.8241 7.5242
25 8.45 8.5231
26 8.4589 7.2833 8.2873 7.3858
27 8.2795 8.0791
28 8.3447 7.2808 6.6667 8.1291 7.1221 6.707

73

Table B.9: Runtime for MGSemi in ClayL (in seconds)

ClayL: MGSemi Runtime in Seconds
MPI OpenMP

Cores CUDA (X.1.1) (X.2.1) (X.4.1) (X.1.1) (X.2.1) (X.4.1)
1 8.0668 166.3876 235.3667
2 81.1277 71.0781 115.0029 111.2949
3 78.3513 86.6416
4 58.6169 44.5635 41.1384 65.755 60.4402 60.7304
5 61.4124 56.67
6 51.6112 35.6064 46.5615 44.0998
7 51.0247 43.4315
8 45.1991 31.1486 26.0713 37.1057 37.4701 36.0915
9 48.685 35.9876
10 43.0082 28.1439 32.1952 31.4959
11 45.9763 31.5688
12 40.5915 27.2615 22.0781 28.8861 27.6507 28.5602
13 43.7246 28.281
14 40.5561 26.8293 26.9116 25.2818
15 41.5754 26.3364
16 39.6191 26.047 20.1237 25.3203 22.7993 24.0157
17 40.6912 24.0751
18 42.2592 26.9332 24.2176 21.5508
19 41.766 23.8234
20 40.9159 27.1614 19.531 23.0907 20.1996 21.0494
21 41.8416 23.1748
22 41.4027 27.6521 23.6919 19.8962
23 42.461 23.7226
24 42.8726 27.8447 19.9555 22.1985 19.4967 19.393
25 45.2082 22.4936
26 46.2817 28.0068 21.7466 19.0071
27 43.0156 21.5743
28 45.1973 29.6334 20.7464 22.2664 18.9432 19.1745

74

75

76

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Statement
	Case Study: ParFlow
	Contributions
	Organization

	Background
	ParFlow
	Boundary Conditions and CONUS

	Domain Specific Languages
	Existing ParFlow eDSL

	Architecture Portability
	OpenMP
	CUDA

	Boundary Condition Abstractions
	Design and Approach
	Setting the source of Boundary Condition Values
	Setting Data For Each Time Step
	Performing Boundary Condition Computations

	Backend Development
	Dataflow and Profiling Analysis
	OpenMP
	Limitations

	Performance Study
	Benchmark Suite
	Experimental Setup
	Results
	CONUS-TFG
	CONUS-RU
	ClayL
	Summary

	Related Work
	Iteration Scheduling
	GPU Parallelization
	Separation of Computations
	Enforcing DSL Usage

	Conclusions
	REFERENCES
	Reproducibility
	Data

