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Abstract

This thesis explores the problem of automatically detecting the presence of logos in

general images. Brand logos carry the goodwill of a company and are considered to be

of high value in the corporate world, and thus automatically determining whether or

not a logo is present in an image can be of interest for companies that wish to protect

their brand. The problem of automated logo detection is inherently complex, but is

further complicated through intentional obfuscation of logo images, for example by

color shifting or other slight image modifications that leave the logo intact and easily

recognizable by a human, but difficult to determine through automated techniques.

For our use case, we are interested in leveraging the basic Content-based image

retrieval (CBIR) approach to determine whether or not a brand logo is present within

a larger image. CBIR systems retrieve images based on their similarity to a given

query image/images. For example, this enables a user to retrieve images that contain

dogs by entering an image with a dog in it.

Of the multitude works done in this field, most use supervised and only a few

use self-supervised machine learning techniques. For our approach presented in this

thesis, we utilize an Autoencoder, which is one of the self-supervised techniques. It

is able to generate compressed representations of the original image and its variant

exposed to simple transformations such as Gaussian noise and near to zero degree

rotations. It, however, is not able to do so for complex transformations/noises. This

thesis addresses this problem by introducing a novel autoencoder based architecture

vi



that takes the encoding technique of an autoencoder one step further and produces a

semantic rich compressed latent representation for the transformed logo that is similar

to its original logo. This research work has achieved significant improvement over the

general autoencoder architecture, and over current CBIR-based approaches for logo

recognition.
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Chapter 1

INTRODUCTION

1.1 Overview

This thesis work is particularly focused on creating an image retrieval system that

can be used to assist in brand protection using a logo detection strategy. Brand

logo detection and protection is important because brands carry the goodwill of a

company and are considered of high value in the corporate world. Brand protection

is not only about protecting the reputation of a company, but also about preserving

trustworthiness among customers and partners.

Identifying and retrieving brand logos is difficult because there are no predefined

rules for designing logos. A logo may consist of numbers, letters, combinations of both,

or may just be a representation of an individual’s thought. Sometimes companies

present their logos differently by changing colors, fonts, backgrounds, etc. which

further increases the challenges of brand identification, and complicates the brand

protection task.

There are two popular types of image identification and retrieval techniques:

annotation-based image retrieval, and content-based image retrieval (CBIR). Annotation-

based image retrieval[1] searches and retrieves images based on the tags or names

similarly associated with the image. Annotating images and performing searches on

them may seem to give more promising results and make the retrieval system more
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robust. However, it is impossible to exhaustively annotate an image with all the ways

a user might view the information and want to be able to retrieve it. Furthermore,

the process of annotating becomes more complex as the number of images increase.

A recent boom in the production of various multimedia devices has created millions

of digital images. Moreover, with the multimedia and storage devices getting cheaper

every day, it is only going to increase the number of images produced and stored.

This ever-increasing volume of images makes manual annotation impractical and

unscalable.

CBIR[2] systems retrieve images that are visually similar to a given query image

presented by a user. The similarity is based on the content of the image such as colors,

textures, shape, and other features that are solely derived from the image itself rather

than names, tags or annotations associated with the image. For example, if a user

wants to find the picture(s) containing a Nike logo in a database, they will enter the

picture of the Nike logo as the query, and the system will (hopefully) retrieve pictures

containing Nike logo.

Even though the CBIR system is scalable compared to its annotation-based coun-

terpart, it is not without problems. One of the most difficult problems of any CBIR

system is the semantic gap problem. A machine or system may be able to perceive

low-level feature representations, but generally has difficulty to form a hierarchy of

concepts from images the way human beings do, which is popularly known as the

semantic gap problem. The semantic gap problem can be avoided by representing an

image properly with the meaningful features [4] and using proper distance metrics on

those features [5] to calculate the similarity between images, which is still an area of

active research.

One of the most popular emerging techniques for overcoming the semantic gap
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problem is through the use of deep learning. Deep learning is a member of the machine

learning family which consists of networks of neurons and tries to approximate the

human brain to generate features and abstractions of the underlying data [11, 12, 13].

Like the neurons in the human brain communicate with one another, the neurons

present in each layer of a deep learning model communicate with one another, learn

the pattern, and transfer the knowledge to the neurons present in the next layer in

a feed-forward scheme. A lot of work [6, 7, 8, 9] has been done in the field of image

recognition and retrieval using machine learning and deep learning techniques. The

supervised [23] method trains a system by mapping images to an integer value (also

known as a class), rather than mapping to the actual information present in the

image.

Autoencoders, introduced by Hinton et al. [24], is a self-supervised deep learning

method that allows a network of neurons to learn encodings (generally compressed)

of arbitrary data in a self-supervised manner. Denoising autoencoders [25] are a

kind of autoencoder that maps images to the contents present in the image by a

reconstruction process that generates a semantically rich compressed latent represen-

tation. For example, given a transformed image as input, an autoencoder takes the

original non-transformed image as the label and trains the system to reconstruct the

non-transformed image from the transformed input image. In the process of doing

so, it generates a compressed representation at the encoder layer. An autoencoder

has two parts - an encoder that generates the compressed representation of the input

image, and a decoder that reconstructs the image from the compressed representation.

This thesis is an effort to create a robust CBIR system for brand logo retrieval

that can be used for brand protection. In addition to using the system to detect

infringing logos or images, the proposed CBIR system for logo retrieval can also be
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used by people who want to design new logos for their companies. This can be done

by feeding the new logo just created as a query to the CBIR system to see if other

logos look similar for avoiding unwanted brand infringement. This thesis work has

developed an autoencoder based novel architecture for the CBIR task that is capable

of generating compressed representations of images that allow for fast image retrieval.

This research work lays the foundation necessary to create a CBIR system that is fast,

accurate, and can scale well to datasets containing large numbers of images.

1.2 Research Questions

Q1. How does the compression level of the encoding learned by the autoencoder affect

performance (speed, accuracy)? We are interested in training the proposed system

with varying compression factors and observing whether the system can be trained.

If it is trainable, how is the retrieval accuracy affected for each of the compression

factors, and how does it affect the speed of retrieval.

Q2. How does branching factor affect accuracy and speed of retrieval for a multilevel

clustering problem? One of the techniques of boosting the retrieval speed is through

the use of multilevel clustering for search and retrieval. Multilevel clustering divides

the data at each level into n related sub-clusters (if the branching factor is n) until a

stopping criterion is reached. We are interested in observing the effect of branching

factors on retrieval accuracy and also interested in understanding the change in

retrieval time with the increase in levels of the multilevel clustering.
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1.3 Thesis Outline

The remainder of this thesis is organized as follows: chapter 2 introduces the prelim-

inary works that were done to study the performance of the existing logo detection

systems and also the motivation to carry out further research, chapter 3 introduces

important terminologies and gives an overview of some of the closely related works,

chapter 4 covers the architectural details and gives an overview of the methods that

constitute the proposed system, chapter 5 walks through the different experiments

that are conducted and their results, and chapter 6 concludes this thesis.
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Chapter 2

PRELIMINARY WORK & MOTIVATION

Section 2.1 introduces some of the existing logo detection systems. Section 2.2

provides the preliminary work on existing logo detection systems that laid the ground-

work for this thesis. Section 2.3 explains the motivation to carry out further research.

2.1 Existing Systems

At the time of writing this thesis, some of the existing logo detecting systems are

Google logo detection, InVid [15], and Lucene Image Retrieval (LIRe) [37]. Their

respective details are given in the following sections.

2.1.1 Google Logo Detection

Google logo detection identifies popular brand logos present in an image. It is a

cloud-based API for logo detection which supports various programming languages:

c#, Go, Java, Node.js, PHP, Python, and Ruby. It also supports other options:

gcloud command, curl, and power shell. To identify logos in a given image, a user

has to send a query image using the underlying API. The Google logo detection then

returns a JSON response containing various attributes: the logo name present in

the image, the score representing the confidence of detection, and coordinates of a

bounding box to represent the area where the logo was detected.
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2.1.2 InVid

InVid is capable of identifying news logos in videos as well as in images. It is also

capable of identifying logos of a large number of media organizations and militant

organizations participating in the Syrian war. Moreover, it also provides a Wikipedia

link for the detected logo. InVid is a very easy to use web application as it does not

require any programming experience. As shown in figure 2.1, a user can upload an

image or drag and drop an image, or can enter the link of the image or video from

the web for logo detection. The URL to InVid is http://logos.iti.gr/logos/.

Figure 2.1: InVid User Interface

2.1.3 LIRe

LIRe is an open-source library, written in Java, that provides support for multiple

image descriptors to extract features from images. LIRe uses LUCENE [16] indexing

for the storage of the extracted image features and for faster retrieval of images. It

is important to note that LIRe is designed for a CBIR system but not particularly

designed to work for detecting logos. In our previous experiments, four LIRe image

descriptors, FCTH (Fuzzy Color and Texture Histogram) [17], CEDD (Color and

Edge Directivity Descriptor) [18], JCD (Joint Composite Descriptor) [19], and ACC

(Auto Color Correlogram) [20] showed superior performance, based on the area under

the curve values, at the identification of transformed logos. They will be referred to
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as the top 4 LIRe descriptors, moving forward. Thus, this thesis work treats LIRe as

an existing logo detecting system.

The overview of the top 4 LIRe descriptors are given in this paragraph. FCTH and

CEDD descriptors combine colors and edge descriptors, are suitable for a large image

database, and also maintain high accuracy even in the presence of deformations, noise,

and smoothing. Even though FCTH and CEDD both use the same color information,

FCTH uses more extensive edge descriptors and hence is less compact than CEDD

(CEDD has 6 edge descriptors, whereas FCTH has 8). JCD is a descriptor that

combines CEDD and FCTH. ACC counts how often a color appears in its immediate

neighborhood instead of counting the number of pixels associated with each color. As

ACC is based on colors, it is robust to rotations.

2.2 Preliminary Work

Preliminary work was done to determine the performance characteristics of the ex-

isting systems from section 2.1. To carry out the experiments, each of the images

was modified to produce 35 additional images using the transformations mentioned

in section 4.4 with two exceptions: the images for this experiment were only rotated

every 45 degrees, and none of the logo images were shrunk to insert into a colorful

background. Figure 2.2 shows transformed images generated from a single Instagram

image. These transformed images were then used as query images to determine

the ability of these systems to retrieve the correct logo image in the presence of

transformations. For this, the data set was divided into two categories: With News

Logos, and With General Logos. These categories are described in detail in the next

two sections.
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Figure 2.2: Different transformations of Instagram Logo

2.2.1 With News Logos

Figure 2.3 shows the non-transformed (or original) news logos that were downloaded

from the InVid website. To carry out the performance comparison of LIRe image

descriptors, InVid, and Google logo detection, they were tested on transformed news
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logos. Figure 2.4 shows the overall performance comparison of LIRe, InVid, and

Google Logo detection API on the news logos. The best performing image descriptor

was ACC with LIRe performance ranging between 45.139% and 51.667%. This

compares to Google’s performance of 51.11%. The descriptors of LIRe and Google

logo detection API out-performed InVid. InVid was able to get an accuracy of only

14.306%. Even though InVid was specially designed for news channel logo detection,

it performed poorly compared to the other two. The accuracy using the LIRe ACC

descriptor and Google logo detection were very close to each other. Thus, it was

decided to perform further experiments on a different dataset using LIRe and Google

logo detection.

Figure 2.3: News logos

Figure 2.4: Overall Performance on
News Logos

2.2.2 With General Logos

Due to the poor performance of InVid on news logos, even though it is designed to

work with news logos, it was decided not to carry out further experiments with InVid.

Further experiments were necessary to compare LIRe and Google logo detection on a
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different dataset. For this experiment, a performance comparison of four LIRe image

descriptors and the Google logo detection was done on brand logo images. For this,

the data set was divided into two categories, logos without text and logos with text.

These categories are described in detail in the next two sections.

Figure 2.5: Logo images without text
on it

Figure 2.6: Percentage detection of
brand logos without text on it

Logos without text

Figure 2.5 shows 17 original images without text on them that were transformed to

form 612 query images. Some of those images were obtained by manual cropping of

logos with text on them. To make the identification of a logo system a little harder

for LIRe, an additional 6984 images were added to the database to make a database

containing 7,001 images and were indexed using the top 4 LIRe image descriptors.

Among the 7,001 images, 17 images were the original images, and the rest of the

images were non-transformed but different from the original images. For testing the

performance of LIRe image descriptors, the query images were searched by the LIRe

searcher, and a query image was considered detected if it returned the original logo
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image in the first position. For testing the performance of the Google logo detection

API, a query image was considered detected if the first identified brand name matches

the brand name of the query image. Manual verification was necessary for the Google

logo detection API results because it had different textual representations for the same

brand name. For example, some of the Nike logos were identified as Swoosh, which

is also Nike.

Figure 2.6 shows the overall performance of the top four LIRe image descriptors

and Google logo detection on all query images. All of the LIRe image descriptors

out-performed Google logo detection. The accuracy of the top 4 LIRe descriptors

ranges from 63.235% to 65.36%, while that of Google logo detection is 48.693%. The

best performing LIRe descriptor is FCTH, which outperforms Google logo detection

by 16.667%.

Logos with text

Figure 2.7 shows the 17 original images with text that were transformed to form

612 query images. For testing the performance of the LIRe, a similar database of

7,001 images were created. However, this time, the 17 images from figure 2.5 were

replaced by the images from figure 2.7 in the data set mentioned in section 2.2.2. The

LIRe image descriptor and Google logo detection API were evaluated using the same

method as mentioned in the section 2.2.2.

Figure 2.8 shows the overall performance of the LIRe image descriptors and

Google logo detection API on all query images. This time, Google logo detection

outperformed all the top 4 LIRe image descriptors. The top 4 LIRe descriptors

showed the accuracy decrease in the range 1% to 8% compared to their accuracy on

logos without text. The highest accuracy drop, among the top 4 LIRe descriptors,
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was seen in FCTH, which heavily relies on the textures/edges present in the image.

As texts were added to the images, its texture content increased and also may add

more colors. In addition to that, feature extractors that rely on texture involving

edge directions usually cannot tolerate rotations greater than 15 degrees. These are

the reasons for the big drop in the accuracy of FCTH as it relies on colors and heavily

on edge directions.

It can easily be observed from the figure 2.8 that the Google logo detection

accuracy increased by over 23% compared to its accuracy on logos without text (as

shown in the figure 2.6). Thus, it became clear that Google logo detection was using

textual information available on the image along with optical character recognition

to aid in logo retrieval. This is because when the text was removed, Google’s logo

detection performance decreased drastically.

Figure 2.7: Logo images with text
on it

Figure 2.8: Percentage detection of
brand logos with text on it
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2.3 Motivation

From the preliminary analysis, it was also observed that even though the original

images were detected correctly, most of the transformed images were undetected or

detected incorrectly. In addition to this, it became obvious from the experimental

results that the current existing logo detection systems rely mostly on textual features

present in an image. Even though the top four LIRe detected rotated images properly,

it was unable to do so for color shifted and translated images. This was the motivation

to carry out this thesis work using machine learning techniques.



15

Chapter 3

BACKGROUND

Section 3.1 introduces the terminology and some of the core algorithms and ap-

proaches that are used in this thesis. Section 3.2 gives an overview of some of the

closely related works.

3.1 Algorithms and terminology

In solving the problem of logo recognition in this thesis, I utilized convolution neural

networks [26] and auto-encoder architectures to construct compressed representations

of images containing logos. A brief description of the algorithms and terminology that

is used is given in this section.

3.1.1 Convolution Networks

Convolution networks are feed-forward neural networks where the input of each

convolution layer is the output from the previous layer. Figure 3.1 shows the general

working mechanism of the convolution layers. It consists of a kernel (also called filter)

that slides over the input feature matrix (i.e. pixel value of the image in case of this

thesis) and calculates the sum of the products to output a new feature matrix. Boxes

with arrows indicate the formation of the upper-left element of the output matrix by

applying the kernel to the corresponding upper-left region of the input matrix.
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The values inside the kernels are the weights of the neuron. These are the weights

that are learned during the training process by the technique of backpropagation

using gradient descent. The learning process is affected by various parameters, which

are also known as hyperparameters. Choosing the best hyperparameters setting,

however, is an open problem and one of the challenging aspects of the machine learning

field. Some of the well-known hyperparameters are learning rate, weight decay, and

momentum. The learning rate controls how large of a step to take in the direction of

the negative gradient or towards a minimum loss value [27]. The parameters weight

decay and momentum determine how the learning rate should change during the

learning process.

For an input of size N × N , and a convolution layer with filter of size F × F ,

padding P and stride S, the size of the output is given by the following:

⌊
N + 2P − F

S
+ 1

⌋
×
⌊
N + 2P − F

S
+ 1

⌋
(3.1)

For a stride of size S, S pixels are skipped after every convolution operation in both

horizontal and vertical directions.

3.1.2 Activation Functions

Activation functions are usually present(or added) after each convolution layer. The

purpose of adding an activation function is to introduce non-linearity to the train-

ing process. There are various types of activation functions. ReLu [28] is one of

the popular activation function because it helps to avoid the problem of vanishing

gradients [29], and also helps the network to train faster.
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Figure 3.1: General working mechanism of convolution networks at a given layer

3.1.3 Max-Pooling Layers

Max-Pooling is one of the popular techniques for dimension reduction. This technique

divides the feature representation matrix into non-overlapping rectangular regions and

then takes the maximum value in each of those regions.

They are optional non-linear down-sampling layers that are usually added after

an activation function is applied to the convolution layer. It reduces the dimension
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of the input features (i.e. feature representation for the input image in the context

of this thesis), the number of parameters to be learned, and the computation time.

It can also make the model more robust by reducing the possibility of overfitting.

Figure 3.2 shows how the max-pooling layers works. The matrix on the left-hand

side of the figure is the output from the previous layer (or some input layer), and

the downsampled matrix on the right side is the output after applying max-pooling

layers with a filter size of 2x2 and a stride of 2. The elements in the output matrix

represent the maximum value from each of the 2x2 disjoint cells from the previous

layers, and hence the name max-pooling.

Figure 3.2: Working mechanism of max-pooling layers

3.1.4 Auto-encoders

An auto-encoder is a type of deep learning model architecture that reduces the

dimension of the input feature space and facilitates self-supervised feature learning

by a reconstruction process. It removes noise present in the input data, if any, and

reconstructs features that are exact or very close to the actual input representation.

In the process of reconstruction, it generates compressed low dimensional features
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at the middle layer. Ideally, compressed features are representative of the input

features. Figure 4.6 shows the general working mechanism of an autoencoder. It

takes a distorted input image and reconstructs the original image. In the process of

reconstruction, it learns to generate latent feature representations z, as shown in the

figure, such that the original and the distorted image have similar representations.

3.1.5 Training Set, Validation Set, and Test Set

Training data is a part of the total dataset used in training a machine learning model.

A model trains better if the training set is a good representative of the total data set.

A validation set is useful for the verification of the model under training after every

epoch. When the model has seen all the examples in the training data set, an epoch is

considered complete. The statistics from processing the validation set with the model

are used to estimate the generalization performance of the model. If the validation

set performance is not increasing or is not meeting some user-defined expectations,

the training process may be restarted, which may also involve the manipulation and

tuning of hyperparameters.

Finally, after the model is trained, a test set is used to estimate the performance

of the trained model on unseen data. In other words, it is intended to provide an

unbiased estimate of the generalization power of the model of interest.

3.1.6 Loss Functions

The loss function is a predictive indicator of the training process. At any point in the

training process, the deep learning model predicts an output for the given input such

that the difference between the predicted and expected output can be calculated using

one of the several loss functions or their combinations. The prediction at any point is
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based on the weights assigned to each of the neurons in the network. The amount of

error at the current iteration is used to update those weights by a backpropagation

technique that uses gradient descent(i.e. decrease the slope of the error) to reduce

the error in the next iteration.

3.1.7 Training Loss & Validation Loss

Training loss measures how well the machine learning model or the learning algorithm

learned from the training data while the test error measures its generalization power.

Lower the training and the test error, better the learning. An ideal model must have

low training error and low test error.

Figure 3.3: Overfitting & Underfitting
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3.1.8 Overfitting & Underfitting

Overfitting is a situation when a model fits to the training data to such a large extent

that it negatively impacts the generalization performance of the model on unseen

data. Underfitting is a situation when a model does not fit properly to the training

data as well as is unable to generalize to unseen data. A model is said to have properly

learned if there is no underfitting and overfitting. Figure 3.3 gives a general overview

of the overfitting, optimal, and underfitting conditions.

3.1.9 k-means Clustering

The K-means clustering algorithm [30] divides a given data set into k nonoverlapping

clusters where each cluster consists of similar data. The similarity between data is

calculated based on some distance metrics. Each of the clusters is representative of

the centroid of all the data points in the cluster.

The centroid value of the cluster updates every time a new datum gets assigned to

the cluster. The use of K-means clustering makes the retrieval system faster because

the necessity of finding similar data for a given datum by computing the similarity

scores with every other data in the data set is replaced by computing the similarity

score of the data with the centroid of the k-clusters. In theory, the retrieval process

should be n/k times faster, given that the data is equally divided among k clusters

where n is the number of data in the data set.

3.2 Related work

Extracting meaning features from images plays a very important role in the image re-

trieval process. Over the years, various feature extractors have been developed. Some
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of the most popular feature extractors for image retrieval are SIFT [32], Speeded-Up

Robust Features (SURF) [33], and Bag of Words (BoW) [34, 35, 36] which have

been used in various image retrieval tasks [31, 34]. Flexible Image Retrieval Engine

(FIRE) [41], which combines text and color features, reported performance improve-

ment of a CBIR system in medical images compared to their previous work [42],

which only used color features. Lucene Image Retrieval (LIRe) [37], introduced in

2008, provides support for multiple feature extractors for images and uses LUCENE

indexing for faster retrieval of images. The work by Markonis et. al. [43] uses

MapReduce for speeding up the indexing and retrieval process. Several works have

been done using LIRe. The work by Chen et. al. [40] combines LIRe and SURF

for a product identification task of a CBIR system on the Fribourg Product Image

Database (FPID) that contains more than 3,000 pictures of consumer products. In

addition to that, LIRe is also integrated with Apache Solr in the research work [38]

to support large scale visual data. The research work [39] by de Oliveira et. al. uses

LIRe to support content-based video indexing and retrieval. Even though a lot of

works have been done in increasing the accuracy and speed of image retrieval using

the hand-crafted features, none of them has been able to solve the semantic gap

problem.

Deep learning has emerged as a promising technique for overcoming the semantic

gap problem. The research works like ImageNet [44], VGGNet [46], and GoogleNet

[45] which uses deep learning architecture have shown that narrow deeper CNNs

achieve significant improvement in image classification, detection, and localization

task as compared to wider shallow CNNs. VGGNet has simple architecture and

yet outperforms ImageNet, and GoogleNet in terms of single-network classification

accuracy. VGGNet consists of a stack of convolutional layers followed by three Fully-
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Connected (FC) layers. The first two have 4096 channels each, while the third has

1,000 channels for classification of 1000 classes. VGGNet uses two 3x3 convolution

layer instead of one 5x5 convolution layer and three 3x3 convolution layers instead

of one 7x7 convolution layer to make the decision function more discriminative by

introducing more non-linearity. It also helps to decrease the number of parameters.

For example, using three 3x3 convolution layers instead of one 7x7 convolution layer

decreases the parameters to be learned by 81%. This inspired the use of VGGNet

architecture in creating an autoencoder for this thesis work.

In the thesis work by Singh [47], annotated images are segmented and trained

on eight classes using supervised [14] deep learning to generate an 8-bit binary

representation of the image where each bit corresponds to the class present on that

image. This method of representing each type of image by one bit is not scalable

because it needs n number of bits to represent n different types of class. The research

work [8] investigates the use of transfer learning using ImageNet for generating hash

codes such that similar images produce similar hash codes while the research work

[48] uses AlexNet for transfer learning, and represents each of the class labels using

the binary representation for supervised learning of binary hash codes. As both

of them learn binary hash codes in a point-wise approach, they are highly scalable

with data size. Even though both of the research works [8, 48] works well with

other deep standard architectures, and also scales well to the data size, they fail to

do the same if the number of classes increases. Thus, they are not suitable for a

task where the number of classes may increase. Similarly, the research work [52]

uses VGGNet architectures to help prevent the registration of trademarks similar

to the already registered trademarks. It makes use of transfer learning using two

different architectures of VGGNet: VGG19v, and VGG19c. The VGG19v is trained
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on conceptual similarities of trademarks, and VGG19c is trained on visual similarity

organized according to experts from the IP office. The results from both the networks

are combined using the Inverse Rank Position [53] to generate the final predictions.

These works are in the context of supervised learning and are not feasible when the

dataset does not have labels.

Deep Learning also finds its application in self-supervised learning of the feature

representation of the images. The research work [55] introduces that training on

patches of raw images using deep belief networks improves retrieval accuracy than

training on image features. As it trains on raw images, there is a high probability

of retrieving images with similar edge patterns, whether or not they are semantically

similar. It uses deep autoencoders formed by stacking Robert Boltzmann Machines

(RBMs) to generate binary hash codes. However, using RBMs for autoencoders are

complicated because they need to be trained with a contrastive divergence learning

algorithm. It has also been found that using a deep autoencoder built by stacking

convolutional neural networks has comparable performance for generating binary hash

codes [21].

The research work [56] uses autoencoder to detect irrelevant image blocks, in

medical images, by analyzing an error histogram. It makes use of shallow architectures

and only works on images that are free from noise. Hence, it cannot be used for

detecting logos from noisy (or transformed) images. The research work [57] applies

radon transformation to an image to generate projections at some angle. It then

trains autoencoder on those projections to generate barcodes and shows that deep

autoencoder achieves better accuracy than shallow networks. The research work [50]

uses autoencoders to generate sparse binary features by using a binary relaxation

at the encoder layer rather than thresholding to produce 0s and 1s. While the
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aforementioned works using autoencoders are mostly focused on generating binary

hash code or barcodes, this thesis work focuses on improving the quality of the latent

representation using an autoencoder.

The research work [51] uses convolutional autoencoder for detecting defective logos

from the manufacturer on the surface of mobile phones. The defective logos have a

slight variation from the production standard logos: varying intensity of illumination,

a different angle of rotations, and some Gaussian noise. Even though it is just a slight

variation, and also the number of defective logos are few, detecting them is very

important because they can jeopardize the reputation of a company. They use an

autoencoder to reconstruct the input image, and find the abnormal regions by com-

paring with the company standard input image based on threshold generated using

an OSTU [51] algorithm. It, however, is only applicable to simple transformations:

Gaussian noise, slight variation in rotations, and variation of illumination intensity.

This thesis work uses convolutional autoencoder to detect logos in the presence of

complex transformations.

Deep neural networks require a large amount of training data to learn properly.

Gathering training data is tedious work, and in some cases, it is very difficult to obtain

sufficient training data. Data augmentation is one of the methods to overcome such

a shortage of training datasets, and it also helps to avoid the problem of overfitting.

The paper [58] introduces basic transformations to create a dataset of 1 million

images from just 15,200 images. It was noted in research work by [60] that rotating

training images increased CNN performance. The research work by [59] [61] reports

that introducing cropped images in the training dataset increases accuracy.

Convolutional autoencoders are excellent in extracting meaningful features from

unlabeled data [49]. Most of the work using autoencoders has been to generate binary
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hashcodes from images, find irrelevant image patches, and generate barcodes from

images. All these works have achieved state of the art accuracy. However, there have

been no works done to enhance the quality of the compressed representation generated

using an autoencoder. Motivated by the simple architecture and high performance

of VGGNet in supervised learning, and effectiveness of autoencoders in extracting

meaningful features from unlabeled data, this thesis takes advantage of both worlds

to improve the quality of the compressed feature generated by the autoencoder.
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Chapter 4

METHODS

Figure 4.1: Architecture of the proposed CBIR system

4.1 General System Architecture

Figure 4.1 shows the overall architecture of the novel CBIR system. The autoencoder

is not learning just a simple mapping of input - input. It is learning to map trans-

formed input image, not just limited to the Gaussian noise, to the non-transformed

or original input image. The other innovation is that we reuse the encoder E1
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by applying it to the output of the autoencoder to reduce the output image to

a searchable vector. It consists of two main parts - a feature extractor and a

matching process. The feature extractor block extracts features from the query

logo image inserted by the user and also from labeled original (i.e. non-transformed)

images in the database. The matching process computes a similarity score between

the extracted features. The system then retrieves the top-k closest relevant results

based on the similarity score based on some distance metrics. The details about the

feature extractor and the matching process are given in the following subsections.

4.1.1 Feature Extractor

The novel feature extractor consists of two parts - a general denoising auto-encoder

and an encoder. The encoder, E1, produces a compressed representation from the

input image and the decoder, D, tries to reconstruct the original logo image from

the compressed representation of an arbitrary image containing the logo. The recon-

structed image may or may not look similar to the original image. The next encoder

E2 takes the encoding technique of a general denoising auto-encoder one step further.

E2 takes the output of D and generates a compressed latent representation of the

reconstructed image. The following subsections give architectural details about each

component of the feature extractor module.

General Denoising AutoEncoder

The general denoising auto-encoder, as shown in the dotted square box in figure 4.1,

has two parts- E1 and D.

The architecture of the E1 is inspired by the VGGNet[46] architecture. The red

box in figure 4.2 shows the internal architecture of the E1. There are 10 convolution
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layers. Each of the convolution layers has a kernel of size 3 x 3 with relu as the

activation function and 64, 64, 128, 128, 256, 256, 512, and 512 filters respectively.

There are 5 Max-Pooling layers and each of them have a kernel of size 2 x 2 and

strides of size 2 x 2. The E1 takes the input image and generates a feature at the

Compressed Representation layer as mentioned in the red box of figure 4.2.

The D is shallower than the E1. The blue box in the figure 4.2 show the internal

architecture of the D. It has 5 convolutional layers, each having a kernel size of 5 x 5

with relu as activation function except the last convolution layer which uses sigmoid

as an activation function, and the number of filters in each of the convolution layers

are 512, 256, 128, 64 and 64 respectively. There are 5 Max-Pooling layers and each of

them have a kernel of size 2 x 2 and strides of size 2 x 2. The D takes the compressed

representation generated by the E. The D then generates a reconstructed image at

the Conv5-3 layer of the Decoder part as shown in figure 4.2.

Figure 4.2: Internal Architecture of the AutoEncoder
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Encoder (E2)

The encoder E2 has the same architecture as that of the E1, and same weights. The

only difference between them is that E2 encodes reconstructed images whereas E1

encodes input images.

4.1.2 Matching Process

The Matching Process block computes the similarity between the query image and

images in the database and finds the top-k closest images from the database as relevant

images. One way of finding the relevant images to the query image is by exhaustively

computing the similarity score of the query image with each of the images in the

database and returning images with the highest similarity score to the given query

image. Given n images in the database, and the computing the similarity between a

query image and an image from the database takes unit time, the total time to find k

relevant images using exhaustive search takes n units of time, where 1 ≤ k ≤ n. This

may not be a problem with a smaller number of images in the dataset but will cause

severe performance issues as the size of the database increases. For example, consider

there are only 5 images in the database, and finding a similarity score between an

image from the database with the query image takes 1 second. Then the total time

to find the closest or relevant images takes 5 seconds. This might not be a problem

as the user can wait 5 seconds. If the dataset contains 10,000 images, waiting for

10,000 seconds is not feasible. This makes the exhaustive search not a good option

for datasets with a large number of images as the time complexity to find the relevant

images increases linearly.

The other way of finding relevant images is through the use of an approximate
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nearest neighbor finding techniques. K-Means[62] is one of such techniques that divide

n images (or samples) into k sets or clusters such that the mean square error between

the sample to the nearest cluster centroid is minimized. It is based on the hypothesis

that given a sample, its nearest neighbors reside in the same cluster. Figure 4.3 shows

k clusters formed from n samples where the clusters may or may not be of the same

size. The cluster formation using optimized k-Means can run in linear time [63].

Once the cluster is formed, there is no need to re-run the cluster formation again

unless a new image has been added to the dataset. During the time of searching the

relevant images for a given query image, it is only required to find the closest clusters

to the given query image using the distance metrics between the query image and

the k clusters centroid. Given that images are equally divided into clusters, the time

complexity to find the closest cluster will be reduced by a factor of k (i.e. n/k). Then,

the time to find the k relevant images to the query image from the closest cluster

takes (n/k) + k units of time. This is an improvement over exhaustively searching

for the closest images.

Figure 4.3: clusters formed using K-Means clustering
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The proposed architecture is equipped with multilevel clustering and searching,

and both of them help to make the retrieval systems faster than the previous two

methods. It reduces the problem of finding similar images from the database to the

given query image to the log of the total number of images in the database. They are

discussed in detail in the following sections.

Multilevel Clustering

The multilevel clustering treats each of the clusters generated using the K-Means

clustering scheme as separate data sets, and recursively generates sub-clusters based

on the branching factor until a certain desired level is attained or a minimum threshold

is reached.

Algorithm 1 shows how the multilevel clustering works. It takes in the parameter

desired level that indicates the level of the tree to form, the database of the original

images, and the root of the tree. As long as the value of the desired level is greater

than 1, and the size of the current cluster is greater than some user-defined threshold

value, it finds the optimum number of clusters at the current level, generates the

optimum number of clusters using KMeans clustering algorithm, and adds those

clusters to the current level of the tree. The process is recursive and is applied to

each of the clusters at every level until it satisfies the desired level and the threshold

values.

Figure 4.4 shows the multilevel clustering with a branching factor of 2 up to level

3. In the given figure, the multilevel clustering starts at level 1 with a cluster named

A. At level 2, two clusters A1 and A2 are formed from the data in cluster A. The

sum of the number of data in cluster A1 and A2 is equal to the number of data in

cluster A. Similarly 4 clusters are formed at level 3. Clusters A11 and A12 are formed
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Algorithm 1 MultiLevel Clustering Algorithm

1: procedure MultilevelClustering(desired level, data, root of tree)
2: root of tree.data← data
3: if desired level > 1 then
4: num of clusters← findOptimumNumberOfClusters(data) .

Generates # of clusters
5: clusters← KMeans(num of clusters, data) . Form clusters
6: Add clusters to tree at this level
7: for cluster in clusters do
8: if desired level > 1&size of(cluster) > THRESHOLD then
9: MultiLevelClustering(desired level−1, data, reference to cluster)
10: end if
11: end for
12: end if
13: return root of tree
14: end procedure

Figure 4.4: Multilevel clustering up to Level 3 and branching factor of 2

from cluster A1 and clusters A21 and A22 are formed from cluster A2. The sum of

the number of data in cluster A11 and A12 is equal to the number of data in cluster

A1. Similarly, the sum of the number of data in cluster A21 and A22 is equal to the
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number of data in cluster A2.

4.1.3 Multilevel Searching

The Matching Process block is also equipped with multilevel searching to search faster

for the retrieval. It is faster because the number of comparisons to find the closest

images to the given query image is reduced by a factor of the branching factor at each

level. This makes the retrieval time to the log-normal to the total number of images

in the dataset. The multilevel searching can only be performed after the clusters have

been formed using the multilevel clustering. For example, if a multilevel searching

is to be performed on the clusters formed by the multilevel clustering as shown in

figure 4.4, the searching first starts from Cluster A at level 1 which is the root for

this tree. Then, it computes the distance of the query image with the centroid of all

the clusters at level 2 (i.e. Cluster A1 and Cluster A2) and selects the cluster having

the smallest distance with the query image. Now, if the user-defined the desired level

of search up to level 2, and the Cluster A1 had the smallest distance with the query

image at level 2, the top-k relevant images from the cluster A1 will be returned. If the

user-defined desired level of search is greater than level 2, a similar step is repeated

recursively until the desired level has been achieved.

Multilevel searching is also a recursive algorithm as shown in the algorithm 2 .

Once the multilevel clusters of level L have been formed, the multilevel searching

find the cluster based on the user defined parameters. The parameters consists of

desired level that indicates the level up to which the search is to be performed, the

database of the original images, the level from which the search is to be started (it is

always 1 at the start of searching process), the query data, and the root of the tree

formed using the multilevel clustering. The algorithm recursively finds the clusters
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with the centroid value close to that of the query image at each level based on a

distance metric until a desired level has been achieved and returns the top-k relevant

images from the closest cluster. Even though the desire level has not been achieved

but the current closest cluster to the query image does not have sub-clusters, the

algorithm stops and returns the relevant images from the current closest cluster.

Algorithm 2 MultiLevel Searching Algorithm

1: procedure MultiLevelSearching(desired level, data, start level, query data, root)
2: if desired level == 1 or root.getNumberOfChildren() == 0 then
3: return root
4: end if
5: for cluster in start level.get clusters() do . start level is 1 at start
6: resulting cluster ← distance min(query data, cluster) . get cluster with

centroid having min distance with query data
7: end for
8: if desired level > 1 and root.getNumberOfChildren() > 0 then
9: root← root.child[indexOfChildWithMinDistance]
10: return MultiLevelSearching(desired level-1, resulting cluster.getDatas,

start level+1, query data, root)
11: end if
12: return root
13: end procedure

4.1.4 Architecture for more compression

The architecture of the autoencoder with more compression is similar to the one

shown in figure 4.2. The only difference is that it has three additional layers between

the last layer of the encoder and the first layer of the decoder of figure 4.2. The

additional layers consist of two dense layers and a dropout layer. The dropout layer

sits between the dense layers. The first dense layer, following the encoder, compress

the feature to the desired length by varying the number of neurons. The second

dense layer makes sure that the output from the dropout layer is converted to the
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proper feature-length to feed as input to the decoder. The dense layer consists of a

user-defined compression factor to further compress the feature coming from the last

layer of the encoder.

4.2 Training Architecture

Figure 4.5: Architecture for training autoencoder

The training architecture uses transformed images as the input and original images

as targets. Figure 4.5 shows the training architecture for the proposed model using a

Twitter logo (the original image). Transformed images consist of rotated, translated,

stretched, flipped, flopped, negated, cropped, added border, darken, lighten images,

and images with added Gaussian noise. It also consists of logo images inserted into

bigger images, and random images appended to the logo images. Details about

transformations for generating transformed images from the original images can be

found in section 4.4.
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As shown in figure 4.5, for training, transformed images are generated from an

original image. The transformed images are then selected randomly and fed to the

autoencoder as input, and the non-transformed (i.e. original logos) images are set as

labels (or target values) rather than using annotations (i.e. Twitter) as labels. For

example, if the image being fed to the model is X.png TEST rotate90.png, the image

named X.png acts as a label. For example, if the image being fed to the model is

X.png TEST rotate90.png then the image named X.png acts as a label.

Figure 4.6: Working Mechanism of Autoencoder

As shown in the figure 4.6, during the training process, the autoencoder takes in

the transformed image of the original image x, and generates a latent representation

z at the encoder layer. The decoder then tries to generate the reconstructed image

x’ from z. The training process continues as long as the quality of the reconstructed

image keeps on improving.

The quality of the reconstructed image is calculated using the mean square error

(MSE) loss function. It calculates the pixel wise difference between the original

image IO and the reconstructed image IR. The equation 4.1 shows the formula for

calculating the MSE loss where H and W are the heights and widths of an image

respectively.
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Lossmse =
1

HW

H∑
i=1

W∑
j=1

(
IOij − IRij

)2
(4.1)

4.3 Datasets

Most of the brand detection software available detects only popular brand logos.

This thesis is an effort in creating a detection and retrieval system that can be

easily trained and made to work on logos of interest. Thus the data are collected

by crawling online sources, primarily mobile app stores, which may or may not

contain popular logos. The collected dataset has approximately 13 million images.

From the collected dataset, 1900 images were selected randomly and divided into

four disjoint subsets: base500, set2, set3, and set4. The base500 dataset con-

sists of 400 crawled images with additional 100 popular logos, while the rest of the

datasets consist of 500 crawled images each. To form bigger datasets containing 1000

Images, three subsets; set2, set3, and set4 are combined to produce three sets of

1000 images: combined set2 3, combined set2 4, and combined set3 4. The

combined set2 3 implies a set formed by combining set2 and set3. The datasets

containing 500 original images are called smaller datasets, while those containing

1000 original images are called bigger datasets.

4.4 Transformations

ImageMagick, a free software, is used to generate transformed images. All of the

transformed images are still recognizable to the human eye. A total of 101 images,

including the original image, are created from a single image. The performance of any

deep learning model depends on the data set and may not perform to its potential if
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the dataset is not sufficiently large enough to train it. To create a data set that is

bigger and has all the important representation of an image, the following mentioned

transformations are applied to each of the data sets mentioned in section 4.3.

4.4.1 Rotations

The original image is rotated every 9◦ to generate transformed images having 9◦, 18◦,

27◦, 36◦, 45◦, 54◦, 63◦, 72◦, 81◦, 90◦, 99◦, 108◦, 117◦, 126◦, 135◦, 144◦, 153◦, 162◦,

171◦, 180◦, 189◦, 198◦, 207◦, 216◦, 225◦, 234◦, 243◦, 252◦, 261◦, 270◦, 279◦, 288◦, 297◦,

306◦, 315◦, 324◦, 333◦, 342◦ and 351◦ rotations. These transformations creates 38

additional images from single original image. The Figure 4.7 shows images that are

generated using rotations.

Figure 4.7: Rotated Images formed from the original Image
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4.4.2 Translation

This transformation puts the image icon at various locations in the image; the lower

left quadrant (LLQ), lower right quadrant (LRQ), upper left quadrant (ULQ), and

upper right quadrant (URQ). The figure 4.8 shows images that are translated to LRQ,

ULQ, LLQ, and URQ respectively.

Figure 4.8: Translations
Figure 4.9: Gaussian noise of various
levels

4.4.3 Added Gaussian Noise

This transformation adds various level of noise uniformly to the original image.

Transformed images generated using various levels of gaussian noises are shown in

the figure 4.9.

4.4.4 Stretching

This transformations stretches images by various amounts in x and y directions. The

left two transformed logos and the right two transformed logs of the figure 4.10 shows

images that are generated using stretching in x and y directions respectively.

4.4.5 Flipping and flopping

Flipping generates a mirror image of the original image while flopping generates a

mirror reversal of the original image. The left hand side and the right hand side of
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Figure 4.10: Stretching in X and Y
directions

Figure 4.11: Flipped and flopped im-
ages

the figure 4.11 shows the flipped and flopped images respectively.

4.4.6 Negate

Negate transformation converts the color present in the image to its respective com-

plementary color. The figure 4.12 shows the negated image that is formed from the

original image.

Figure 4.12: Negate Figure 4.13: Cropped Images

4.4.7 Cropping

It crops the logo images by various amounts. The images generated by using this

transformation are shown in the figure 4.13.

4.4.8 Inserting logo into another picture

For inserting an image into colorful background picture, the original image of size 224

x 224 is first reduced to size 56 x 56 and 112 x 112 respectively. Then they are placed
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Figure 4.14: Logo Images of size
56X56 inserted into colorful back-
ground Image

Figure 4.15: Logo Images of size
112X112 inserted into colorful back-
ground Image

at various location of colorful background pictures of size 224 x 224. This creates 35

additional transformed images. The figure 4.14 and 4.15 shows the images of size 56

x 56 and 112 x 112 inserted into the colorful background images.

4.4.9 Add border

It adds various amounts of border to the image. The image generated by using this

transformation is shown in the figure 4.16.

Figure 4.16: Added Border Figure 4.17: Darken and Lighten
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4.4.10 Darken and Lighten

These transformations changes the color intensities of the input image. The trans-

formed images generated using the darkening and lightening of the images are shown

in the figure 4.17.

4.4.11 Append

Appending inserts random images to the original logo image. The images generated

by appending are shown in the figure 4.18.

Figure 4.18: Various images appended to original logo Images

4.5 Creating ground truth

The ground truth is created by following a special naming convention - a transformed

image name must have the original image name followed by a postfix TEST and,

the type of transformation. For example, if the original image name is X.png then the

name of transformed image generated using 90◦ rotation will be X.png TEST rotate90.png.

This naming convention makes the verification of the correctness of the novel retrieval

system easy. This is because the verification system only needs to check whether or

not the retrieved original image name is contained in the query image name.
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4.6 Creating Training Set, Validation Set, and Test Set

The dataset of interest is divided into training, test, and validation set. Training,

validation, and test set constitute 60%, 20%, and 20% of the overall dataset respec-

tively.

For making each of these datasets to be as balanced as possible, a special technique

as shown in the figure 4.19 is applied. As shown in the figure, this process first

takes all the images and converts them into folders. This process makes sure that

each of these folders have equal proportions of all the applied transformations. The

number of folders is equal to the number of the original images. Then based on

the percentage, the images in folders are assigned to training, validation, and test

sets. This technique makes sure that each of these sets have equal proportion of all

the transformations, and also made sure that they have equal proportions of all the

images. The non-transformed images are then added to the training set to prevent

accidental addition of these images to the validation and the test set. Table 4.1 shows

the number of original, training, test, and validation images for each of the datasets.

Table 4.1: Number of Original Images, Training Images, Test Images, and Validation
Images in different datasets used in experiments
Datasets Original Images Training Images Test Images Validation Images
base500 500 30,500 10,000 10000
set2 500 30,500 10,000 10000
set3 500 30500 10,000 10000
set4 500 30,500 10,000 10,000
combined set2 3 1000 61,000 20,000 20,000
combined set2 4 1000 61,000 20,000 20,000
combined set3 4 1000 61,000 20,000 20,000
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Figure 4.19: Process of creating Training, Validation, and Test Set

4.7 Evaluation

The proposed CBIR system is evaluated based on the percentage of the total query

images detected correctly. The query images are mutated forms of an original image.

The hypothesis is that, because the system is trained to reconstruct the original

image for each of the mutated images, the CBIR system should be able to retrieve the

corresponding original image as the first retrieved image for a given query image. Even

if the system retrieves the corresponding original image within the top-k position,

it is still considered to be relevant. The label matching is performed based on the

special naming convention aforementioned in section 4.5. This metric has been chosen

because the number of relevant images in the database for a given query image is

always one. The accuracy of the system is calculated using the equation 4.2.
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Accuracy@k =
Number of queries detected at top k

Total number of queries
(4.2)

4.8 Creating Baselines

Baselines are necessary to understand the impact of a research work. The baselines

that uses the datasets used in this research work are not available. In order to

understand the feasibility of the proposed system, 2 baselines using LIRe, 1 baseline

using google logo detection, 1 baseline using autoencoder, and 1 using encoder only

are created and explained below.

Table 4.2: AUC value for each of the LIRe descriptors for the dataSets of 500 Images
Descriptors base500 set2 set3 set4 Average
ACC 0.889 0.905 0.909 0.905 0.905
BPP 0.680 0.678 0.680 0.683 0.68
CEDD 0.872 0.883 0.889 0.882 0.882
CL 0.790 0.792 0.799 0.792 0.793
EH 0.692 0.694 0.698 0.695 0.695
FCH 0.763 0.782 0.781 0.777 0.776
FCTH 0.859 0.876 0.881 0.873 0.872
Gabor 0.692 0.702 0.707 0.7 0.7
JCD 0.870 0.884 0.890 0.882 0.882
JCH 0.691 0.692 0.696 0.697 0.694
JH 0.813 0.815 0.820 0.820 0.817
LBP 0.659 0.639 0.640 0.638 0.644
LL 0.623 0.610 0.613 0.610 0.614
OH 0.830 0.850 0.856 0.849 0.846
PHOG 0.684 0.697 0.694 0.692 0.692
RILBP 0.689 0.697 0.699 0.694 0.695
SC 0.767 0.788 0.788 0.789 0.783
SCH 0.831 0.851 0.855 0.849 0.847
Tamura 0.690 0.661 0.664 0.664 0.67
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Table 4.3: AUC value for each of the LIRe descriptors for the dataSets of 1000 Images
Descriptors combined set2 3 combined set2 4 combined set3 4 Average
ACC 0.907 0.905 0.907 0.906
BPP 0.697 0.680 0.681 0.686
CEDD 0.885 0.882 0.885 0.884
CL 0.795 0.791 0.795 0.794
EH 0.696 0.695 0.697 0.696
FCH 0.781 0.779 0.779 0.780
FCTH 0.878 0.874 0.877 0.876
Gabor 0.705 0.701 0.704 0.703
JCD 0.886 0.882 0.885 0.884
JCH 0.694 0.694 0.696 0.695
JH 0.817 0.817 0.820 0.818
LBP 0.639 0.638 0.639 0.639
LL 0.611 0.610 0.611 0.611
OH 0.853 0.849 0.852 0.851
PHOG 0.696 0.695 0.693 0.695
RILBP 0.698 0.695 0.696 0.696
SC 0.788 0.788 0.788 0.788
SCH 0.853 0.850 0.852 0.852
Tamura 0.662 0.662 0.664 0.663

4.8.1 LIRe with individual descriptors

The baseline using individual LIRe descriptors is created in two steps. The first step is

to figure out 4 (out of 19) important LIRe image descriptors that perform best on the

available datasets. The importance of each of the LIRe descriptors is calculated by

using the area under the curve (AUC) score. To find out the AUC score, the problem

is treated as a binary classification problem i.e. whether the logo of interest is present

in the query image or not. To create the feature vector for the classification purpose,

the distance between each of the original image and all possible transformed images is

calculated using each of the image descriptors and labeled as ‘1’ if the original image

is present in the transformed image and ‘0’ otherwise. The total length of the feature
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vector for each pair of an original image and a transformed image is 19 because there

are 19 distance values for 19 image descriptors. The AUC scores for each of the

datasets containing 500 images are given in the table 4.2. Similarly, the AUC scores

for each of the datasets containing 1000 images are given in table 4.3. Observing the

results in tables 4.2, and 4.3, it can be seen that the top 4 LIRe descriptors with

highest AUC scores are ACC, CEDD, FCTH, and JCD.

The second step is to find the best among the four top-performing LIRe descriptors

by actually using them in image identification and retrieval problem. For this purpose,

the database of the original images is indexed using each of the 4 best descriptors.

After that, for each of the user inserted query image, the distance to the original image

is calculated using LIReś descriptor, and the original images are sorted in descending

order of the distance to the query image. Finally, the top-k images are returned

as retrieved images using each of the individual top 4 descriptors. The retrieval is

considered accurate if the relevant original image is found within the top-k retrieved

images.

The accuracy results for each of the datasets containing 500 images are given in

the table 4.4. Out of the top 4 performing descriptors, as shown in the table 4.4,

ACC outperformed all other image descriptors except for base500 image dataset at

top-10 accuracy. The average accuracy results for datasets containing 500 images,

as presented in table 4.4, show that ACC outperformed the other three descriptors.

The accuracy results for each of the datasets containing 1000 images are given in

table 4.5, which shows that ACC outperformed the other three descriptors for each of

the datasets containing 1000 original images. Thus, ACC turned out to be the best

among the top 4 performing LIRe descriptors.
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Table 4.4: Accuracy comparision using individual LIRe descriptors and MLP on
datasets containing 500 images

base500 set2 set3 set4 Average
Modes Acc

@1
Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

ACC 0.447 0.552 0.538 0.641 0.541 0.66 0.555 0.652 0.52 0.626

CEDD 0.3959 0.581 0.426 0.602 0.456 0.615 0.437 0.603 0.429 0.6

FCTH 0.362 0.504 0.429 0.561 0.449 0.580 0.427 0.565 0.417 0.553

JCD 0.420 0.571 0.47 0.603 0.482 0.613 0.468 0.608 0.46 0.599

MLP750 0.593 0.725 0.651 0.772 0.652 0.762 0.640 0.763 0.634 0.755

Table 4.5: Accuracy comparision using individual LIRe descriptors and MLP on
datasets containing 1000 images

combined set2 3 combined set2 4 combined set3 4 Average
Modes Acc

@1
Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

ACC 0.524 0.614 0.533 0.614 0.531 0.623 0.529 0.617

CEDD 0.401 0.563 0.396 0.558 0.408 0.565 0.402 0.562

FCTH 0.408 0.532 0.401 0.524 0.409 0.535 0.406 0.53

JCD 0.447 0.572 0.44 0.572 0.448 0.573 0.445 0.572

MLP750 0.633 0.743 0.626 0.737 0.637 0.744 0.632 0.741

4.8.2 LIRe with Multilayer Perceptron

Until now, each of the best four LIRe descriptors was used individually, and no meth-

ods were used to combine the LIRe descriptors for retrieval. Multilayer perceptron

(MLP) [64] is a feed-forward artificial neural network with one or more hidden layers.

LIRe with MLP makes use of the MLP classifier with one hidden layer to combine

19 LIRe descriptors. The feature vector is formed by combining the distance value

of a query image with all the original images using all the descriptors. As the total

number descriptors used are 19, the feature vector length is 19. The labels are set as

1 if the query image is the transformed version of the original image and 0 otherwise.

Once the feature vectors are formed, it is still treated as a classification problem,
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and the MLP is trained using variations of several neurons in the hidden layers: 5,

10, 20, 50, 100, 250, 500, 750, and, 1000. It is trained using a constant learning rate

of 0.001, Relu as an activation function, and adam as a solver or weight optimization,

which is a stochastic gradient-based optimizer.

The best accuracy is achieved when using a hidden layer with 750 neurons. The

accuracy results for datasets containing 500 and 1000 original images are reported

in tables 4.4, and 4.5 respectively. It can be observed from tables 4.4, and 4.5 that

using MLP to combine LIRe descriptors significantly increased the retrieval accuracy

over just using individual LIRe descriptors for all datasets. This is because of the

following reasons.

• Most of the descriptors are robust to lossless rotations: ACC, SC, SCH, Gabor,

and Tamura. ACC is also highly robust to noises or large blobs of same color.

• Descriptors CEDD, FCTH, and JCD are robust to scaling and rotation.

• Descriptors color layout and edge histogram are robust to scaling.

Combining all of the feature descriptors using the MLP helped to overcome the defects

of LIRe descriptors and making it more robust to rotations, noise, scaling, flips, and

flops. The reasoning above is also supported by the categorical accuracy plot for

various transformations on datasets containing 500 and 1000 original images as shown

in the figure 4.20. The figure provides the necessary evidence that the systems are

robust to rotations, flips, flops, shrink, stretch, and appending of images. The worst

performance was seen for transformations involving the inserting of logo images on

the colorful background (i.e. T112x112 and T56x56). Combining LIRe descriptors

using MLP resulted in an average increase in the accuracy by over 12% than just

using CEDD, for datasets containing 500 and 1000 original images, which is easily
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observable from tables 4.4, and 4.5 respectively. Thus, combining LIRe descriptors

using MLP outperformed the technique of using LIRe individual descriptors by a

greater margin.

Figure 4.20: Average categorical accuracy of MLP750 on datasets containing 500 and
1000 original images

4.8.3 Full Autoencoder

This procedure uses the decoder layer, D, of subsection 4.1.1 to generate features

from each of the images in datasets under consideration and also for query images.

Then it finds the top-k images from the database that are close to the query image

using the KNN and cosine similarity.

The details about the accuracy results using full autoencoder on datasets contain-

ing 500, and 1000 original images are reported in the table 4.6, and 4.7 respectively.
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Comparing the results from tables 4.6 and 4.7 with the results while using individual

LIRe descriptors, it can be observed that the baseline using full autoencoder generates

better average accuray and also generates better accuracy for all the datasets except

set2. Comparing the accuracy results using full autoencoder with the technique of

using MLP to combine LIRe descriptors (as mentioned in section 4.8.2), it can be

observed that the later not only generates better average accuracy but also better

accuracy for all the datasets except for combined set3 4 and base500. Combining

LIRe descriptors with MLP generates about 4% to 7% more accuracy than using full

autoencoder. This is because of the superior performance of MLP750 on rotated,

color shifted, flipped, flopped, and scaled images than the full autoencoder. It

can be easily observed by comparing the categorical accuracy of MLP750 with full

autoencoder from figure 4.20 and figure 4.21. Similarly, comparing the accuracy

results using full autoencoder with the technique of simply using individual LIRe

descriptors, it can be observed that the full autoencoder generates around 6% better

accuracy than the best performing LIRe descriptors for datasets containing 500 and

1000 original images. Thus, it can be said that the full autoencoder stands between the

techniques mentioned in section 4.8.1 and section 4.8.2 with the techniques mentioned

in section 4.8.2 being the top-performing technique.

Table 4.6: Full-Autoencoder & Encoder-Only accuracy on 500 images datasets
base500 set2 set3 set4 Average

Modes Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Full-Autoencoder 0.602 0.730 0.388 0.576 0.606 0.739 0.523 0.681 0.530 0.682

Encoder Only 0.358 0.554 0.137 0.278 0.377 0.576 0.358 0.558 0.308 0.517
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Figure 4.21: Average categorical accuracy of Full Autoencoder on datasets containing
500 and 1000 original images

Table 4.7: Full-Autoencoder & Encoder-Only accuracy on 1000 images datasets
combined set2 3 combined set2 4 combined set3 4 Average

Modes Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Full AutoEncoder 0.498 0.696 0.456 0.614 0.657 0.772 0.537 0.694

Encoder Only 0.195 0.363 0.306 0.485 0.356 0.527 0.286 0.459

4.8.4 Encoder Only

The encoder only baseline takes the output from the encoding layer, E1 of subsection

4.1.1, of the autoencoder, generates features and retrieves the top-k results using the

KNN and cosine similarity. The accuracy results for datasets containing 500, and 1000

original images are reported in the table 4.6, and 4.7 respectively. Comparing the

accuracy results with all the above-mentioned baselines, the encoder performs terribly.

Figure 4.22 shows the categorical accuracy of encoder only on various categories of
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transformations. It can be seen from the figure that the encoder only generates

results comparable to the full autoencoder for the color shift transformations except

for the negation. It can also be seen from the figure that the encoder only model

maintains high accuracy on the Gaussian noise. It performed terribly on rotated

images. After a careful examination of the accuracy of rotated images, it was found

that the encoder only shows high accuracy on near to zero degree rotations. Thus,

it can be claimed that even though the encoder only can generate a compressed

representation that is similar to the original image and its variant when it is exposed

to simple transformations such as Gaussian noise and near to zero degree rotations,

it is unable to do so for complex transformations. This might have been one of the

reasons for its poor performance.

Figure 4.22: Average categorical accuracy of Encoder Only on datasets containing
500 and 1000 original images
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4.8.5 Google Logo Detection

Google logo detection claims to detect only popular logos. As the logo datasets used

in this thesis may not contain popular logos, creating a baseline using Google logo

detection using the logo datasets used in this thesis was not an option. To create

this baseline, 100 popular logos were downloaded manually, and the transformations

were applied. 20% of the overall transformed images (i.e. 2000 transformed images)

were taken randomly and fed to the Google logo detection. The dataset named

base500 also contains these 100 popular logos. These logos were added to the base500

dataset to make a fair comparison between the Google logo detection and the proposed

architecture trained on the base500 dataset. The details of the training process are

given in the next chapter. Google logo detection achieved an accuracy of 0.6935.
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Chapter 5

EXPERIMENT & RESULTS

All of the experiments were carried out using Keras framework, with Tensorflow as

backend, on a machine having V100 GPU and Intel processor with 40 cores made

available from Idaho National Laboratory Galena node.

Section 5.1 and 5.2 explains how the training process were performed on datasets

containing 500 original images (referred to as smaller datasets moving forward) and

1000 original images (referred to as bigger datasets moving forward), respectively and

tabulates the accuracy results. Section 5.3 explains the process that has been used

to compress feature vectors, by using various compression factors (referred to as CF

moving forward), generated by training in section 5.1 and 5.2 further. Section 5.4

talks about combining models trained on smaller datasets to support bigger datasets

without retraining. Section 5.5 gives an overview of how the multilevel clustering

experiments were performed. Section 5.6 sheds some insights on the results obtained

from experiments.

5.1 Training on smaller datasets

It contained 30,500 training images, 10,000 validation images, and 10,000 test images.

The model used for training was initialized using the Glorot normal [22] as an

initializer with an initial learning rate of 0.01. Instead of loading the whole dataset
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in the memory at once, it was loaded in chunks using the ImageGenerator function

from Keras. The model was trained for 1000 epochs with a batch size of 80 using

an early stopping feature from Keras. The learning rate was decreased by a factor of

10 if the validation loss did not improve for 5 consecutive epochs. The training for

this model was stopped when the validation loss did not improve for 15 epochs. For

training, fit generator function from Keras was used. This training was carried out

for all the smaller datasets: base500, set2, set3, and set4. The details about these

datasets were already given in section 4.3. The first record in the table 5.1 shows the

accuracy obtained on smaller datasets and the average accuracy.

Table 5.1: Accuracy of the proposed model at different compression on smaller
datasets

base500 set2 set3 set4 Average
CF Acc

@1
Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

1 0.681 0.8866 0.4338 0.7255 0.674 0.8577 0.5946 0.8323 0.596 0.826

4 0.6202 0.8296 0.525 0.7303 0.5839 0.8038 0.5979 0.7871 0.582 0.788

8 0.5962 0.8247 0.6724 0.8579 0.575 0.7889 0.6308 0.8059 0.619 0.819

16 0.6733 0.8588 0.6585 0.8265 0.6019 0.8103 0.7016 0.8405 0.659 0.834

32 0.6056 0.8249 0.6538 0.829 0.534 0.7684 0.5829 0.773 0.594 0.799

64 0.4099 0.7343 0.6187 0.8149 0.6321 0.8176 0.7006 0.8365 0.59 0.801

128 0.5996 0.7905 0.5581 0.7431 0.687 0.8369 0.593 0.782 0.609 0.788

256 0.2851 0.6585 0.4674 0.7166 0.5335 0.785 0.485 0.7308 0.443 0.723

512 0.2214 0.5936 0.1617 0.5055 0.1953 0.5635 0.2227 0.5714 0.2 0.559

5.2 Training on bigger dataset

For training the model on bigger datasets, containing 1000 original images, the same

architecture that was used for training on the smaller dataset was used. The only

difference was that this uses a batch size of 160. The batch size of 160 was chosen

because the network did not train with a batch size of 80. It contained 61,000 training
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Table 5.2: Accuracy of the proposed model at different compression on bigger datasets
when trained from scratch

combined set2 3 combined set2 4 combined set3 4 Average
CF Acc

@1
Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

1 0.6409 0.8249 0.5343 0.755 0.6911 0.8559 0.622 0.812

4 0.6629 0.8049 0.5324 0.7312 0.6124 0.7728 0.603 0.77

8 0.6793 0.8172 0.5829 0.7358 0.6065 0.7793 0.623 0.777

16 0.6926 0.8269 0.409 0.6627 0.5996 0.7739 0.567 0.754

32 0.7776 0.8659 0.6785 0.8201 0.428 0.7331 0.628 0.806

64 0.5981 0.7709 0.5308 0.7334 0.5527 0.7585 0.561 0.754

128 0.698 0.8033 0.6635 0.7726 0.7414 0.831 0.701 0.802

256 0.4958 0.7168 0.1483 0.429 0.165 0.4728 0.27 0.54

512 0.2611 0.58 0.1229 0.398 0.3092 0.6106 0.231 0.529

images, 20,000 validation images, and 20,000 test images. The first record in the table

5.2 shows the accuracy obtained on bigger datasets and the average accuracy. The

average accuracy of bigger datasets with the proposed model is comparable to the

average accuracy on smaller datasets.

5.3 Training for more compression

The training process explained in sections 5.1 and 5.2 compressed an image size of

224 x 224 x 3 to generate a compressed feature of length 25088. These compressed

features were obtained from the encoder that had been attached to the decoder using

the novel approach after the training of the autoencoder. The feature vector of length

25,088, represented by CF of 1, was still long. Hence, it was decided to reduce the

feature of length 25088 to something smaller.

For this, a training process was carried out by adding two more dense layers to the

original architecture, as explained in section 4.1.4. A dropout layer with a dropout

value of 0.5 was placed between the two dense layers. The first dense layer was used



59

to vary the number of neurons to specify the length of the further compressed feature.

The number of neurons in the added dense layer was varied to specify the length of

the further compressed feature to be generated. The number of neurons used in the

dense layer is 25088, 6272, 3136, 1568, 784, 392, 196, 98, and 49. The second dense

layer was used to convert the output coming from the dropout layer back to length

25088 to feed to the decoder. That is why the number of neurons in the second

dense layer was always 25088. The weights of both the newly added dense layers were

initialized using the Glorot normal initializer.

The weights for all rest of the convolutional layers were initialized by copying

the weights from the corresponding model trained in either section 5.1 or 5.2. The

training parameters - learning rate, early stopping criteria, the number of training

epochs, method of changing the learning rate based on the validation loss remained

the same as that mentioned in sections 5.1 and 5.2. Once the model was trained, the

more compressed feature was obtained from the added dense layer using the novel

approach. The term CF of 1, 4, 8, 16, 32, 64, 128, 256, and 512 represents feature of

length 25088, 6272, 3136, 1568, 784, 392, 196, 98, and 49 respectively. The CF of 4,

8, 16, 32, 64, 128, 256, and 512 represents further compression.

For all of training methods explained in sections 5.1, 5.2, and 5.3, the retrieval

process remained the same. For a model trained on any dataset, the predictions for

the corresponding test set was first generated. After that, K-Means clustering was

used to form clusters based on cosine similarity, and the top-k closest images were

retrieved. If the expected images were retrieved within top-k results, the retrieval

was considered relevant. The accuracy reports for training the smaller and bigger

datasets with more compression are given in the table 5.1 and table 5.2, respectively.

It can be seen from tables 5.1 and table 5.2 that the average accuracy does follow
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any standard pattern of increase or decrease with the change in CF values. Similarly,

the accuracy of the individual datasets does not show any pattern. It, however,

can also be seen from tables that the best accuracy results after applying further

compression on smaller datasets are achieved at a compression factor of 16, while

for bigger datasets is best-achieved at a compression factor of 128. The accuracy for

bigger datasets at a compression factor of 128 is considered best based on both its

accuracy Acc@1 and Acc@10.

Even though the smaller and bigger datasets were trained using the same initial

weights, the later achieved better accuracy at higher compression. This was unex-

pected. After careful observation of the training stats, it was clear that there were

no consistencies in the number of epochs the datasets were trained, because of the

early stopping conditions. To understand this better, a scatter plot between the MSE

and the corresponding average number of epochs was plotted, as shown in figure 5.1,

which shows that the number of training epochs is inversely related to the MSE.

Figure 5.1: Effect of training epochs on Mean Square Error (MSE)

Thus, the early stopping criteria may have been one of the reasons for this unusual
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behavior. To verify this further, some of the experiments were run straight for 1000

epochs without the stopping conditions, but none showed improvements in neither

accuracy nor MSE. It is still not very clear at this point on why this behavior was

seen. The reason may have been that, when the deep learning model was trained

on the bigger dataset with a compression factor 128, it did not have a large degree

of freedom and was restricted to learn only the meaningful representations from the

image. There is still no proof to support this hypothesis.

As opposed to the accuracy change, retrieval time was found to decrease with the

increase in the compression. Greater the value of the compression factor, the more

compressed the features are. The shorter features of vector comparison take less time

compared to the longer vectors. This was the reason for the decrease in the retrieval

time with the increase in the compression.

5.4 Manual combining of smaller models

The training process, as mentioned in section 5.2, took a lot of time because to train

the system on bigger datasets, the training process needed to be started from scratch

even though the subsets that formed the bigger dataset had already been trained.

The manual combining of smaller models could be one possible solution to this as it

does not require further training. To understand the feasibility of this method, the

two models trained on smaller datasets were each allowed to make their predictions on

the bigger dataset. For example, the smaller datasets set2 and set3 were each allowed

to make their predictions on the combined set2 3 dataset. The same was done for the

datasets combined set2 4 and combined set3 4 using datasets that constitute them.

During the time of retrieval, each of the models generated features for the query
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Table 5.3: Accuracy on bigger datasets by manual combining of smaller models
combined set2 3 combined set2 4 combined set3 4 Average

CF Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

Acc
@1

Acc
@10

1 0.5405 0.799 0.5260 0.7962 0.6371 0.8606 0.568 0.819

4 0.5451 0.7913 0.5416 0.7675 0.5752 0.8108 0.554 0.79

8 0.6107 0.845 0.6267 0.8399 0.5879 0.8205 0.608 0.835

16 0.6049 0.8338 0.6441 0.8317 0.6219 0.8357 0.624 0.834

32 0.5791 0.8238 0.5879 0.8131 0.5312 0.7883 0.566 0.808

64 0.5979 0.8358 0.6213 0.8212 0.6278 0.8339 0.616 0.83

128 0.5921 0.8105 0.5389 0.7768 0.6063 0.8265 0.579 0.805

256 0.4809 0.7725 0.3574 0.6916 0.4869 0.7802 0.442 0.748

512 0.1943 0.5684 0.1986 0.5626 0.2169 0.5842 0.203 0.572

image and listed closest images based on the ascending order of their distance to the

given query image. If any model was able to retrieve the relevant images within top-k,

the retrieval was considered relevant. The accuracy results are reported in the table

5.3. Comparing the average Acc@10 results in the table 5.3 with the Acc@10 results

in the table 5.2, it can be seen that this method outperformed training from scratch

for all feature lengths. It is also observable that this does not necessarily guarantee

better accuracy on individual datasets as compared to training from scratch.

5.5 Multilevel retrieval and charts

Several experiments were run using branching factors of 2, 3, 4, and 5 to understand

if the retrieval speed can be made faster using multilevel clustering and retrieval. Ex-

periments were also run using Silhouette to generate an optimum branching factor in

the range of 2 to 20. These experiments were run on the best performing compression

factors. The threshold for the multilevel clustering was set at 10% of the original

number of images.
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Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9 below show the accuracy of the proposed

CBIR system with varying branching factors, and varying levels. From figures 5.2,

5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, it can be seen that the accuracy of the retrieval system

is best with a branching factor of 2, and also shows that the accuracy of the retrieval

system decreases with the increase in the levels.

Figure 5.2: Average accuracy on
smaller datasets at a compression fac-
tor of 1 with varying branching factor
at different levels of multilevel clusters

Figure 5.3: Average accuracy on big-
ger datasets at a compression factor
of 1 with varying branching factor at
different levels of multilevel clusters

Figure 5.4: Average accuracy on
smaller datasets at a compression fac-
tor of 8 with varying branching factor
at different levels of multilevel clusters

Figure 5.5: Average accuracy on big-
ger datasets at a compression factor
of 8 with varying branching factor at
different levels of multilevel clusters
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Figure 5.6: Average accuracy on
smaller datasets at a compression fac-
tor of 16 with varying branching factor
at different levels of multilevel clusters

Figure 5.7: Average accuracy on big-
ger datasets at a compression factor
of 16 with varying branching factor at
different levels of multilevel clusters

Figure 5.8: Average accuracy on
smaller datasets at a compression fac-
tor of 64 with varying branching factor
at different levels of multilevel clusters

Figure 5.9: Average accuracy on big-
ger datasets at a compression factor
of 64 with varying branching factor at
different levels of multilevel clusters

To calculate the retrieval time, each of the experiments was run for 10 iterations,

and the average time was calculated. For all of these experiments, the maximum

level of the multilevel clustering was set to be 4. Based on the figure 5.10, 5.11, 5.12,

and 5.13, it was also observed that the average retrieval time for each query followed

a non-linear logarithmic decrease with the increase in level. As already mentioned

before in section 5.3, the best average accuracy for smaller and bigger datasets was

found at a compression factor of 16 and 128, respectively. The corresponding retrieval

time per query, as seen from figures 5.12 and 5.14, for smaller and bigger datasets

were found to be 4.729 and 1.587 milliseconds at level 1, respectively. This retrieval
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Figure 5.10: Average retrieval time
per query at different levels of multi-
level clustering with Compression Fac-
tor of 1, threshold at 10% and branch-
ing factor of 2

Figure 5.11: Average retrieval time
per query at different levels of multi-
level clustering with Compression Fac-
tor of 8, threshold at 10% and branch-
ing factor of 2

Figure 5.12: Average retrieval time
per query at different levels of mul-
tilevel clustering with Compression
Factor of 16, threshold at 10% and
branching factor of 2

Figure 5.13: Average retrieval time
per query at different levels of mul-
tilevel clustering with Compression
Factor of 64, threshold at 10% and
branching factor of 2
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time is less than a blink of an eye (usually lasts 150 to 200 milliseconds [65]), and thus

can be considered very fast. Anything at level 1 means without multilevel clustering.

Thus, the best accuracy was achieved without multilevel clustering with significant

speed for datasets used in this thesis.

Figure 5.14: Retrieval time per query at different levels of multilevel clustering with
Compression Factor of 128, threshold at 10% and branching factor of 2

5.6 Observation

The table 5.4 shows the best accuracy of the proposed model and baselines on the test

datasets. It can be seen from the table that the proposed model performed better than

all the models; it exceeds the state-of-the-art for compression (i.e. full autoencoder)
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Table 5.4: Accuracy Comparision of Proposed Model with baselines
Smaller datasets Bigger Datasets

Modes Acc
@1

Acc
@10

Acc
@1

Acc
@10

ACC 0.52 0.626 0.529 0.617

LIRe with MLP750 0.634 0.755 0.632 0.714

Full autoencoder 0.5297 0.6817 0.5369 0.6937

Encoder Only 0.308 0.517 0.286 0.459

Proposed Model @ Compression 16 0.659 0.834 0.567 0.754

Proposed Model @ Compression 128 0.609 0.788 0.701 0.802

by over 10% in terms of accuracy while still maintaining compressed representations.

The high accuracy is because of the high-quality hash codes generated by the proposed

approach. The feature vector length generated by the autoencoder for an image size

of 224x224x3 is 150,528 long vector, whereas the feature vector generated by the

proposed model is 25,088. Thus, it can be said that the proposed model generated

greater accuracy while generating a feature vector that is 80% compressed than that

generated by the autoencoder. This also made the proposed system to have faster

retrieval speed than using the full autoencoder.

The feature vector generated by the proposed model, which already beat the

state-of-the-art, was further compressed, as explained in section 5.3. The accuracy

results for smaller and bigger datasets before further compression is represented by

the first row of tables 5.1 and 5.2, respectively. It can also be seen from tables that

the best accuracy results after applying further compression on smaller datasets are

achieved at a compression factor of 16, while for bigger datasets is best achieved at

a compression factor of 128. The proposed model still beat the state-of-the-art even

with further compression. The feature vector length at a compression factor of 16

is 98.958% compressed than the input image feature, and at a compression factor of

128 are 99.958% compressed than the input image feature. Therefore, the innovative
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approach of attaching the encoder next to the decoder still showed higher performance

than the state-of-the-art, even at higher compression.

Figure 5.15: Average categorical accuracy comparison of the proposed model at a
compression factor of 16 with baselines for smaller datasets

It can also be seen from table 5.4 that the second-best average accuracy for both

smaller and bigger datasets is given by MLP750. Figures 5.15 and 5.16 shows the

categorical accuracy comparison of the proposed system with all the baselines. It

can be seen from the figure 5.15 that the proposed model outperforms the base-

lines full autoencoder and encoder only in all the transformations category except

darken and shrink for datasets containing 500 original images. It is also observable

that the MLP750 produces better accuracy than the proposed model, for all the

transformations, except for transformations involving Gaussian noise (i.e. labeled as

noise in figures) and complex transformations like quadrant shifts, inserting of logo

images into colorful backgrounds (i.e. labeled as T112x112 and T56x56 in figures)

on smaller datasets. The proposed model outperforms all the baselines by a large
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Figure 5.16: Average categorical accuracy comparison of the proposed model at a
compression factor of 128 with baselines for bigger datasets

margin on complex transformations. As observable from figure 5.16, the proposed

model outperforms all other baselines by a heavy margin for complex transformations

even on bigger datasets. There has not been much research work that shows the

improvement in retrieval accuracy by combining LIRe descriptors using MLP. This is

also a finding of this research work.

The proposed model also surpasses Google logo detection on the base500 image

dataset. The proposed model achieved an accuracy of 0.8295 (i.e. 82.95%), which

is 13.6% greater than the accuracy generated by Google logo detection. Overall,

the proposed model surpassed all the baselines in terms of accuracy. The table 5.3

shows the accuracy found by combining models trained on smaller datasets to work

on bigger datasets without re-training. The average accuracy is greater than training

on larger datasets from scratch. Hence, this also made the proposed system scalable

to datasets.
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Chapter 6

CONCLUSIONS

6.1 What has been done so far?

This thesis work has introduced a novel architecture that has surpassed the quality of

the compressed feature vector generated by that of the state-of-art (i.e. autoencoder)

for self-supervised learning. The proposed system has obtained a higher average

accuracy than the state of the art, and also superior accuracy even on the complex

transformations. The biggest breakthrough of this research work is that the quality of

the compressed feature vector generated by the state of art can be improved without

further training. This can be achieved by using the proposed novel approach of

copying the architecture and weights of the encoder from the pre-trained autoencoder

and attaching it next to the decoder.

The research work has also explored some of the approaches to improve the

speed of retrieval: further compressing the generated features and using multilevel

clustering. While the proposed system is still able to maintain high accuracy even for

some higher level of compression, it shows monotonic decrease in the accuracy with

the increase in the branching factor and increase in level of the multilevel clustering.

The research work also introduces that combining models trained on smaller datasets

can be made to work with bigger datasets formed using the smaller datasets. This

makes the proposed system highly scalable.
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Thus, the innovation of attaching encoder after the decoder in this research work

has created a content-based image retrieval for brand protection that is robust,

accurate, fast, and highly scalable.

6.2 Limitations & Future Work

The primary limitation of the proposed system is that it is only able to detect the

presence of a single logo in a query image. It also expects unique logos in the dataset.

In addition to that, the current work is mostly focused on enhancing the quality of

the compressed features generated from the encoder of a denoising autoencoder such

that the feature generated for different transformations of the same logo will have

very close semantic representation. While it does a pretty good job of improving the

quality of the compressed features, it does not generate binary hash codes from the

compressed features.

Future work will enhance the proposed system to detect multiple logos in a query

image, generate binary hash codes from compressed features for faster retrieval, study

the use of LIRe in combination with the proposed system to see if it improves accuracy,

and use various other standard architectures such as AlexNet, GoogleNet, and ResNet

to create the autoencoder and compare their performances.
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