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ABSTRACT

In working towards accomplishing a human-level acquisition and understanding

of language, a robot must meet two requirements: the ability to learn words from

interactions with its physical environment, and the ability to learn language from

people in settings for language use, such as spoken dialogue. The second requirement

poses a problem: If a robot is capable of asking a human teacher well-formed ques-

tions, it will lead the teacher to provide responses that are too advanced for a robot,

which requires simple inputs and feedback to build word-level comprehension.

In a live interactive study, we tested the hypothesis that emotional displays are a

viable solution to this problem of how to communicate without relying on language

the robot doesn’t–indeed, cannot–actually know. Emotional displays can relate the

robot’s state of understanding to its human teacher, and are developmentally appro-

priate for the most common language acquisition setting: an adult interacting with a

child. For our study, we programmed a robot to independently explore the world and

elicit relevant word references and feedback from the participants who are confronted

with two robot settings: a setting in which the robot displays emotions, and a second

setting where the robot focuses on the task without displaying emotions, which also

tests if emotional displays lead a participant to make incorrect assumptions regarding

the robot’s understanding. Analyzing the results from the surveys and the Grounded

Semantics classifiers, we discovered that the use of emotional displays increases the

number of inputs provided to the robot, an effect that’s modulated by the ratio of

positive to negative emotions that were displayed.
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CHAPTER 1

INTRODUCTION

Wish I could see through, see deep into you

And know what you’re thinking now

And if I were to need it, I need some kind of

sign

Let me know ’cause I can’t read your mind

“Do You Feel Me”-

Anthony Hamilton, Diane Warren

1.1 A Child’s First Words, a Robot’s First Words

Imagine a child’s first words. Only, imagine that instead of saying, “Mom,” or “Dad,”

with a burst of delighted giggles, this child held up a stuffed animal and asked you,

what is this?, with a clarity that demonstrated not only an understanding of what each

word meant but also of the underlying structures they contain (and also a disapproval

of contractions): what indicating a question, is indicating existence, and this pointing

to a sensory phenomenon. Thankfully for parents, their children do not possess such

a preternatural level of language understanding right away. Yet this is precisely how

automated systems, such as robots, are currently programmed to “learn” words: they

ask explicit questions like what is this?

A system can’t ask a person questions like, “what is this?” because that leads a

person to assume the system not only understands the question it has just asked, but
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also possesses the commensurate knowledge and experience that would accompany

such language understanding in a human [32]. This would lead the human partner

to treat the system as a peer rather than a completely naive entity which possesses

a limited understanding of the world and requires their direct attention and support.

As a result, users would be less likely to provide the robot the simple inputs and

feedback and frustrate its attempt to learn language.

This is a type of cold-start problem. From recommender systems, the cold-start

problem refers to the beginning of a recommender’s history with a user, when the

recommender lacks data with which to make a recommendation. In language acqui-

sition, this cold-start problem can be understood as the beginning of the system’s

exposure to language, when it has the capacity to learn language but lacks the ability

to actually use language in such a way that would provoke a person into teaching it

correctly (e.g., by asking the person questions).

1.2 The Case of the Missing Co-located, Interactive Dialogue

Setting

One attempt to circumvent this cold-start problem is through offline training on reams

of labeled language data. This method is clearly artificial, which, although fitting for

the artificial robot that is learning the language, does skew the robot’s model of what

language is and how it is used.

Humans learn their first language by face-to-face transmission from an experienced

user within a shared (co-located) context [9]. Here, the learner is not only learning

a language, they are learning how to make connections between the language and

those things in the world that both they and the teacher are experiencing. This
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ability to build associations between symbols and the things they signify (termed

“grounded semantics”) is leveraged by language-learners to build links between words

and gestures, abstract words and emotions [27], and even to other words. But the first

crucial steps are taken in dialogue, grounding concrete words to their easily imageable

referents [29].

Training a language model strictly from text, or a static dataset, changes language

learning from being an interactive method humans use to engage with others vis a vis

the physical world, to an entirely abstract framework with no basis in concrete reality.

This may be appropriate for higher-levels of human conversation, when a majority

of words are in reference to entirely abstract concepts, but unless all knowledge is

shared equally among the speakers, a shared understanding of concrete concepts is

required if participants encounter a point in which one of them is unfamiliar. This

core set of concrete concepts – and their physical referents – are built in childhood;

developmentally, they should be the first concepts we strive to teach an artificial

system, such as a robot, in order to lay a plausible foundation for a human-level

understanding of language. Keeping language as an entirely abstract set of symbol-

patterns through text-only models may be sufficient for limited language tasks, such

as one-word prediction, but has been proven insufficient for novel language generation

or more extensive extrapolations on a theme [14].

The cold-start problem then remains: if we must train a robot to use language

in an interactive environment, and that robot cannot use words it doesn’t already

understand (otherwise violating the concept illustrated above by the gifted child),

how then is that robot meant to acquire language if it can’t use language?
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1.3 Thesis Statement

In a live interactive study, we tested the hypothesis that emotional displays are a

viable solution to an initial lack of language information. Our reasons are two-fold:

emotional displays can relate the robot’s state to its human teacher 2; also, emotional

displays are developmentally appropriate for the most common language acquisition

setting (an adult teaching a child), and would not lead a human user to make incorrect

assumptions regarding the robot’s comprehension.

We programmed a robot to independently and autonomously explore the world

and elicit relevant word references and feedback from the participants, who were tested

both with a robot that displayed emotions and a robot that did not. Analyzing the

results from the surveys and the Grounded Semantics classifiers, we discovered that

the use of emotional displays improved the quantity and quality of the inputs provided

to the robot, with the effect modulated by the valence (positive or negative) of the

emotional display, and the total number of emotional displays in the trial.

We will cover this experiment’s procedures in greater detail in Chapter 5 – an

overview of the relevant systems to this interaction task, and their dependencies, is

given here: For our interaction we make use of the Anki Cozmo robot as a learning

platform. The Cozmo contains a camera that we use to acquire visual information

about the world and to locate the study participant by identifying their face. The

researcher is located beside the interaction with a laptop; the researcher’s laptop

has a microphone that is used to record the words that are said by the participant.

Using these parallel streams of audio and visual data, a classifier is trained on the

researcher’s laptop. When it is the appropriate time to propose a word for the object

the Cozmo robot is currently seeing, the robot will refer to this classifier. The robot
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attempts to elicit feedback from the user by locating their face; if this is insufficient,

the researcher can prompt the participant to provide the Cozmo positive and negative

feedback to its word proposals. Based on this feedback, in the experimental condition,

pre-scripted emotional displays are triggered by a Reinforcement Learning module

that is training in the background.

The purpose of this study is to solve the cold-start problem, and also to provide fur-

ther inspiration for more engaging, flexible, responsive, and natural spoken dialogue

systems. These systems would include ‘language acquisition’ strategies, which may

use emotions for signaling confusion or understanding to alert the user to the system’s

state in the language-learning task, and also to reward them for their attention as

the system adapts and responds to their input.

In the next chapter, we show how our proposed solution has the theoretical support

to motivate further research in strategies for designing Spoken Dialogue Systems that

can double as “natural language acquisition” devices.
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CHAPTER 2

RELATED WORK

The work presented in this chapter attempts to resolve the cold-start problem and

leverages emotional display as a method of bootstrapping communicative cues for

word learning. Building off of Plane et al. (2018) [32], we are confident that the

Cozmo platform is the right platform for this task because prior work has shown

that study participants’ perceptions of age and the knowledge-level of this robot are

consistent with a human child who is still acquiring language (further motivating a

human user to adopt the ‘teacher’ role in a language-acquisition task). Moreover, the

robot’s affordances are likewise consistent with this perceived age and knowledge-level

(it can identify objects, recognize human faces, and navigate obstacles). The same

study showed that Cozmo is an agreeable social partner to a variety of users, who

find that it avoids the uncanny valley by its deliberately mechanical design combined

with its demonstrative “personality”. More recently, we demonstrated that humans

perceive the same emotions and positive or negative valences from Cozmo’s over 940

pre-scripted behaviors [27]. Taken together, these studies show that (1) we can safely

assume that human participants will treat Cozmo at an appropriate age level, and (2)

we can assume that human participants will properly interpret Cozmo’s emotional

displays.

In the following section, we explore the theories that form the background for our
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study with the Cozmo robot and its emotional interaction with a casual human user

for the express purpose of learning word meanings.

2.1 Background

In this section we explore those theories – pertaining to spoken dialogue, human-robot

interaction, language learning, and emotion – that form the background for our study

with the Cozmo and its emotional interaction with a casual human user.

2.1.1 Why Use Emotional Displays to Address the Cold Start in Lan-

guage Learning?

From Developmental Psychology, we learn that emotion is pre-linguistic, universal,

interpretable and imitated by infants [2]. This is relevant for the reasons stated in the

introduction: the user must interact with the robot as if it is learning its first language,

otherwise the context for the robot’s language will be skewed. From Neuroscience, we

see that emotions are composed, meaning that the experience of emotion is conscious

and not a reflex [1]. This is significant because if emotions were reflexive responses to

the environment they would be an entirely internal, autonomic process, and therefore

useless as communication, or as an intentional protocol between sender and receiver.

In Cognitive Science, The Interactive Brain Hypothesis is a framework for human

cognition that incorporates the enactive approach. According to this view, artificial

systems can only be thought of as ”thinking” insofar as they can interact with other

thinking systems; affect (as demonstrated by emotional displays) is an important

piece of this interactive cognition between humans [11]. “Situated dialogue between

2 embodied entities” is the original setting for language; all else is derived, according
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to Clark (1996) [9] and Fillmore (1981) [13]. According to the enactive approach

as explained in [36], cognition is not an act of passively processing information as

it encounters our brains, cognition is an active, embodied, and situated process of

engaging and relating to an external environment via sense and perception.

According to our background taken from a variety of different disciplines: emotion

is appropriate for the setting of language acquisition; emotions are within the scope

of a conscious interaction; understanding is not possible without interacting with

another thinking system.

If we are to use emotions as part of an extra-linguisitic communicative protocol

between a robot and a human user, we must observe the guiding principles from [16],

whose review of emotional displays by artificial agents found that in order for such

displays to effective they must be reliably recognized by people. According to [34],

humans can interpret humanlike affective nonverbal behavior in robots. We explore

these human interpretations of robot affect in greater detail – and their implications

for this thesis – in Chapter 3.

2.1.2 How to Represent Language on a Robot?

Grounded Semantics : Grounded semantics is the study of how the meaning of words

(“semantics”) is connected (“grounded”) into our human senses and experiences. For

example, when a child is learning their first words, those words often denote physical

objects, such as ball. Grounded semantics takes into account things like how the ball

looks, how it feels, etc. – features that are significant to a robot engaging a human

in dialogue in a real-world setting, to take the task from this thesis as an example.

This task is at the center of what this thesis is trying to accomplish: to program a

robot that can naturally engage and learn language from a human, “language” here
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represented by these grounded semantic mappings between words and the physical

objects detected by a robot an interactive, spoken dialogue setting.

In the words-as-classifiers model (WAC) [21], research conducted by the thesis

writer’s advisor, Dr. Casey Kennington, each word in a language is built into a

classifier. Each word’s classifier is trained on “not / is” examples of that word –

these examples are real-world referents that either exemplify the word or do not (e.g.,

in this paper, the classifier for “red” would be trained on pictures of things that are

red and pictures of things that are not red). In this paper, the referents are image

data taken from Cozmo’s camera.

The reasoning behind choosing WAC are itemized as follows:

• WAC is grounded – any semantic model that claims to learn words that children

learn needs to link the physical world with words spoken by an adult

• WAC can learn from minimal amounts of training data – children can “fast

map;” i.e., they can learn how words map to objects with only a few examples

[35]

2.1.3 How Can Robots Use Emotion to Acquire Language?

Reinforcement Learning : In Q-learning – a type of Reinforcement Learning (RL)

algorithm, and the method used in our experiment – the agent moves between states

by taking actions which are determined by reinforcement (positive or negative) from

the environment. We use reinforcement learning because it is adaptive; using a pre-

defined policy based on the environment’s feedback, an agent (i.e., our robot) can

learn the best actions to take given the environment’s feedback to prior actions given

whatever state the agent was in when it made the action. In this case, the environment
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is the human user – this means that the robot’s display of emotions is adaptive to the

user’s feedback to it. Within Human-robot interaction, it is important for the user to

have a “shared” sense of space with the robot, one in which the robot is aware of and

responsive to the user’s presence and actions [20]. For example, in [17], researchers

construct a mapping from basic “emotions” to RL primitives and demonstrate an

artificial agent behaves according to its emotions in a way that is consistent with

psychological and behavioral literature.

2.2 Work Relevant to Robotic Emotional Displays in Human

Interaction Studies

In this section we explore other researchers’ work that is comparable to our own:

an interactive study between a robot and a casual human participant, in which the

robot incorporates live grounding of semantics by gathering inputs from a dynami-

cally changing environment, which it then uses to inform separate decision-making

processes: a reinforcement learning regime (in the experimental condition) and a de-

terministically defined action model (in both the experimental and control condition).

Jekaterina Novikova found that emotionally expressive robot behavior improved

human-robot collaboration in [31]: “[W]hen the robot is acting in an emotionally

expressive way, the human puts more effort into the activities that add to the success

of the collaborative task so they last longer compared to the situation when the robot

is acting neutrally, without showing emotional expressions.” For their research, the

task was one in which a human and a robot had to work cooperatively to move

objects from one location to another, across a virtual environment. In this task,

emotional displays caused the average distance between the robot and the human to
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increase – this may have lead to an increase in self-reported enjoyment for the human

participant, but it also lead to a decrease in the human-robot team’s efficiency in

completing the task – they took longer. For a task like language acquisition, however,

this decrease in efficiency could lead to an increase in effectiveness; that is, when the

goal of the task is not externally focused, but is in fact interactional (give the robot

more words), we demonstrate this increase in human user enjoyment also leads to

improved task effectiveness.

The work of Mason Bretan, Guy Hoffman, and Gil Weinberg demonstrated it

was easier for users to recognize a robot’s intended emotion when that emotion was

presented as a dynamic embodied display, rather than a static pose [6]. Also, they

showed that “automatically generated affect responses cause participants to show

signs of increased engagement and enjoyment compared with arbitrarily chosen com-

parable motion parameters.” This research motivates our decision to select emotional

displays at random from a pre-selected list of understanding and confusion displays,

that have already been demonstrated to be interpreted with the appropriate emotion

by a group of people (our research group, in the Preliminary Work chapter). This

way we hope to increase user’s engagement and enjoyment with emotional displays

that feel spontaneous and appropriate.

The following works by Lola Canamero are essential to this thesis, in which she

directly asks – and answers – the question of why robots should have emotional

features. It is Canamero’s view that emotional features can make a robot appear

more life-like and believable to humans, and “therefore, humans [will be] more prone

to accept them and engage in interactions with them.” Canamero also lays out the

rationale for this thesis’ means of testing and evaluating emotional displays: “[W]e

must be able to show ... that emotions improved the performance or the interaction
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capabilities of our robot and how... [a]n obvious way of doing this is by running

control experiments in which the robot performs the same task ‘with’ and ‘without’

emotions and comparing the results” [7]. The latter two papers, however, are where

our thesis diverges. The goal of [25] is to imitate a neural “emotion circuit” with

their Reinforcement Learning module – according to Canamero’s view, this would

teach the robot which action to pursue according to a “hedonic reward.” In [26],

they use an “emergent neural network” that increases its number of nodes according

to the number of different stimuli the robot encounters . Our own experiment is in

contrast to these approaches – rather than modeling human emotions in a robot as

a means of better understanding the ways that humans process and respond to their

environments, our RL regime is designed to learn the emotional displays purely for

the purposes of engaging a user. It is assumed by our research that these processes are

understood well enough to be used in an interactive task such as language learning –

language learning being the true focus of this research.

Ada Kim et al. identified important design principles of an interaction between

a teenage user and a robot in [23]. These principles included collaboration and

characterization. Characterization is addressed by the Cozmo robot’s cartoonish

animated face design, and the expressiveness of its emotional displays. Collaboration

is addressed by our task, in which the user works with the robot toward it learning

which words it should use to describe different objects in the environment.

The work of Cynthia Breazeal must also be addressed here, for her groundbreak-

ing work in defining social robotics, and continuing on to more recent user studies

measuring user perceptions and acceptance of a social robot. Breazeal noted that

“emotion-inspired mechanisms” could be used to make a robot function better in

a complex environment, by allowing it to interact more appropriately with others
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“than it could with its cognitive system alone” [5, p. 5]. Predicting the design of

the Cozmo robot, Breazeal noted that such an emotion system could “implement

the style and personality of the robot” [5, p. 5]. Cozmo, with its 940 pre-scripted

emotional displays, each programmed by the same team of designers at Anki, bears

such a unique personality. This design was important to the success of our study

in that it would inform a user’s mental model for how the robot operated. “Social

and emotional factors also greatly affect the individual’s willingness to adopt the

technology,” Breazeal notes, citing the study of Kiesler and Goetz (2002) that suggests

that people apply a social model when observing and interacting with autonomous

robots [22]. Breazeal writes this may be because, paraphrasing the work of Don

Norman (1990), “in order for people to interact with another entity, they must have a

good conceptual model of how that entity operates” [5, p. 4] [30]. If they have such a

model, people can explain and predict what a robot may do, understand its reasons for

doing it, and know how to elicit the desired behavior from the robot. For our thesis,

by adhering to natural signals and mappings (e.g., emotional displays), the state of

our robot’s Grounded Semantics classifiers could “become intuitively understandable

to people” [5].

With J. M. Kory-Westlund, Cynthia Breazeal measured children’s views of a robot

over time, and found that children were slightly more accepting of the robot at the

posttest. Likewise, they noted that if a child’s acceptance of the robot is connected

to their view of it being animate, or human-like, than that view was less likely to

change. Although we conducted our study with adults rather than children, these

results have a direct bearing on our survey results of participants between the first

trial and the second – if in the first trial the robot displays emotions, it affects the

user’s responses more significantly in the second trial, when they will be less likely to
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back off their initial measurements of the robot as being more animate, likeable, and

human [24].

J.E. Michaelis and B. Mutlu (2019) demonstrated that a robot utilizing “socially

adept” behaviors, which included expressive speech and eye contact, found the robot

to be “friendlier and more attractive, reported a higher level of closeness and mutual-

liking for the robot, had higher situational interest,” and performed better on a

task-related evaluation. For our Cozmo robot, we incorporate eye contact in both

the control and experimental condition, considering this “socially adept” feature to

be a basic requirement of the language learning task, insofar as it demonstrates to

a user that their presence is noticed and required by the robot to continue at the

end of each episode. Additionally, researchers programmed their robot to produce

small semi-randomized head motions to demonstrate to the child that the robot was

working. For our thesis, we incorporate this same approach of producing small semi-

randomized movements with the Cozmo robot’s track wheels and lift, in the event

the robot identifies an object, or when a detected object fails to pass a check that

would warrant the robot navigating to it. This is done for the same reason as this

paper – to avoid the impression the robot has stopped working simply because it is

still [28].

A confounding factor that is not accounted for in this thesis but could be explored

in future research is the interpretation of emotions from robot behavior that is

purely task task-oriented. This concern is addressed by [8], in which a Pepper robot

was programmed to convey emotions simultaneously as it pursues a primary task,

such as completing a wave gesture or transporting an object. However, researchers

discovered that using this approach the emotions that were well conveyed to users were

limited to happiness and sadness, the motion features that mediated these emotions
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being jerkiness, activity, and gaze. Because these motion features were identical

for our experimental and control conditions, we take this to indicate that whatever

incidental perceptions of robot happiness or sadness were communicated to the study

participants, were equivalent across the trials, and did not effect our results.

The research of Ferreira et al. outlines the approach of our thesis to reinforcement-

learning based on “polarized user appraisals gathered throughout the course of a vocal

interaction between a machine and a human” [12]. As with the above-mentioned

research, this paper was outlining the design of a hypothetical experiment – we have

taken this a step further by actually implementing this design in a live interactive

study. We take user feedback to be the explicit reward signal (those user inputs that

match the explicit positive or negative feedback delineated in two separate lists). Our

research, however, does suffer the shortcoming addressed in this research: a lengthy

explore phase at the outset, during which the robot produces a jumble of confused

and understanding emotional displays that bear very little intelligible correspondence

to the state (i.e., termed below as Robot Confidence).The researchers of this paper

cite Williams (2008) as an example of how expert domain knowledge can be applied

to circumventing this explore phase [19].

The work of E. J. Jacobs et al. demonstrates the mapping of Reinforcement

Learning onto the corresponding emotional states of joy, distress, hope, and fear:

“[F]rom a human-robot interaction point of view the emotional signal can be expressed

to a human observer.” The authors of this paper, however, do not extend their

simulation beyond validating emotion dynamics established by the “psychological

and behavioral literature” [17], rather than measuring their effect on the human

participant of a live interactive study with a co-located robot.
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CHAPTER 3

PRELIMINARY WORK

Before we can answer the question of whether emotion can help a robot acquire

language, we first need to address the assumption that humans who interact with our

robot will:

• Interpret the Cozmo robot’s displays as emotional

• Assign predictable emotion labels to those displays

This chapter is based on the work of the author, David McNeill, and his advisor,

Casey Kennington, from: [27]. The work of that paper is presented in this thesis

to provide context for how we choose the emotional displays for the Cozmo robot

to display in our experiment, as well as informing our understanding of how humans

form their perception of the Cozmo’s overall affect and valence based on the particular

features of its emotional displays.

First, we explain the data we collected, and then provide analyses of that data to

answer the questions listed above.

3.1 Capturing Cozmo’s Emotional Displays

In this section, we explain the data we collected and offer some analysis of that data.

Our goal in this data collection is to better understand how people interpret the
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affective display of Cozmo as it performs its pre-scripted animations, and how their

perceptions of those animations differ from what we interpreted to be the affective

display that the animation designer intended the robot to portray.

For each of Cozmo’s 940 available, pre-scripted animations, we recorded video and

audio of the robot’s behavior. For each recording, we position Cozmo in a starting

position where it faced the camera, then initiated the animation. We kept the camera

as close to Cozmo as possible while still recording the animations from within a single

camera position (i.e., for some animations, Cozmo moved around, requiring wider

camera coverage).

Figure 3.1: Taken from [27]: Three example frames of a video recording of Cozmo for
a bored animation.

An example of three frames derived from one of these video recordings is in

Figure 3.1: though Cozmo does not appear to move, its eyes have the appearance of

looking around and portraying boredom.

In [27], we explored three sources of information that are available to people

when observing and interpreting the robot animations: (1) Cozmo’s produced sounds,
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(2) facial animations, (3) and movements. For the experiments below, we obtained

representations of each of these modalities.

3.1.1 Sounds

Obtaining Cozmo’s produced sounds was straightforward: we extracted the audio

from the recordings for each animation. The other two modalities required additional

steps which we explain in the following subsections.

3.1.2 Movement via Internal State

The Cozmo SDK allows developers to obtain the internal state of the robot at any

state change update event. Some examples are itemized below; the entire set of 47

state variables is listed in the Appendix:1

• left wheel speed

• lift position height

• accelerometer x

• gyro x

On average, animations had 73 state change updates with sorrow-labeled anima-

tions being the longest (92 on average), and surprise-labeled animations being the

shortest (58 on average). For each change in the state of the robot, we recorded the

entire state of the robot resulting in a sequence of state changes for each animation,

which we used to represent movement over time.

1We only considered variables that did not remain constant across all animations.
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3.1.3 Face Animations

The internal state updates do not include information about the state of the face.

Cozmo’s face display is an OLED (organic light-emitting diode) where the facial

animations are pre-defined and inaccessible through the SDK. To obtain facial infor-

mation for each animation, we passed the video recordings through a computer vision

processing script that located the eyes by color (which was unique to the scenes in

the recordings) and created a bounding box around them. Each frame of each video

recording for each animation was passed through the script, resulting in an extracted

face for each frame. An example of what this looked liked for a single frame is depicted

in Figure 3.2; Cozmo is facing the camera, the script located the face (i.e., the eyes)

and formed a bounding box, then extracted the contents of that bounding box into an

individual face image. Processing each animation recording in this manner resulted

in a sequence of face images, one for each frame where the face was found in the frame

(i.e., there were some frames where Cozmo was not facing the camera, and therefore

no face images were extracted).

Figure 3.2: Taken from [27]: Example of face tracking and the corresponding
extracted face frame.
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3.2 Amazon Mechanical Turk Worker Ratings

We then posted these recordings (i.e., containing the audio and video) on Amazon

Mechanical Turk with the following instructions for the workers:

“You will be shown a video of a small robot. Please describe what the robot is

doing in the video, and provide a selection of the emotions that you think the robot

is displaying (in this paper we only focus on the resulting emotion labels).

Following [33], we used the following 16 emotions:

• interest

• alarm

• confusion

• understanding

• frustration

• relief

• sorrow

• joy

• anger

• gratitude

• fear

• hope
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• boredom

• surprise

• disgust

• desire

Taking note from [3] that there is no mutual exclusivity between emotions, we allowed

workers to be able to select any number of these emotions using check boxes, thereby

not constraining the number of emotions they could assign, however we did not give

them a free-form input so as to keep the task within reasonable constraints. Each

worker was paid $1.00 to describe and label 10 randomly assigned videos and could

repeat the process for another set, if they desired. The emotion check boxes were

arranged randomly. Each animation recording was labeled by two workers.

This resulted in 1,870 labeled recordings (to ensure that each worker received the

same number of labels, some were labeled 3 times). Figure 3.3 shows the distribution

over the labels. The most common label is interest at 12.2%, the least common is

disgust at 2.82%, with a fairly uniform distribution over each of the 16 labels. We take

this to mean that no single label was either over- or under-favored by the workers.

Figure 3.4 shows a count of the number of labels for each animation. For example,

if an animation has a recording that the worker labeled as surprise and disgust, then

that animation received a count of 2. Of the 1,870 labeling tasks, 1008 only received

one label, 486 received 2, 165 received 3, and we found smaller counts for higher

numbers of labels. From this we infer something important: while more than half of

the workers assigned a single label to recordings, nearly half received more than one

label. This is the first evidence of ambiguity in interpreting the affective display of a

particular behavior.
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Figure 3.3: Distribution of emotion labels as assigned by the workers.

To further measure the challenge that people have in interpreting the robot’s affec-

tive display, we calculated inter-annotator agreement using Cohen’s Kappa statistic

[10]. As each recording received labels from two different workers, we treated the two

workers as two different annotators with one important proviso: when two workers

agreed on at least one label, we marked the two annotations as agreed upon. This

resulted in a Kappa score of 0.26, which is considered in the “fair agreement” range.

This agreement was not higher because the annotators could choose from among

sixteen difference choices. That this value is not below or equal to zero tells us that

there is some agreement in how people perceive a robot’s affective display.
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Figure 3.4: Total counts of labels per task.

3.3 Emotional Interpretation of Robot Displays

Though it is not possible to fully recover the intent of the designers who created

the animations, we can estimate the intended affective display of Cozmo from the

designer-written animation names. Below are some examples of these animation

names:

• bored event

• greeting happy

• explorer driving01 loop 01 head angle

• rollblock fail
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Note that some names have words that denote affective displays, while others

only focus on the function of the animation and not how it might be interpreted

as an emotion or affect. By taking the individual word tokens (i.e., between the

underscores) we identified the common words that we interpreted to denote affective

displays: bored, celebration, fail, focused, frightened, frustrated, happy, determined,

lose, neutral, success, surprise, upset, win; 145 of the 940 animation names had at

least one of these tokens in them.

Figure 3.5: Taken from [27]: Common designer name tokens compared with annotator
emotion labels; lower tokens map to counts on the left side of the bars.

We compared the annotator-labeled affects with the affective tokens in those cor-

responding animations. This comparison is shown in Figure 3.5, where the labels are
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on the y-axis and the count of tokens of intended affect interpretation is represented

in the bars. In some cases there are clear analogs to the emotion list we used from

[33], i.e., bored=boredom, frightened=fear, frustrated=frustration, happy=joy, and

surprise=surprise, but even for those pairings, affect was interpreted in many different

ways. The label for surprise, for example, was used to identify animations with bored,

fail, frustrated, happy, lose, success, upset, and win name tokens. In this case, surprise

as a token in an animation name was never actually interpreted as surprise by the

annotators. On the other hand, the token win was interpreted by workers as nearly

every affective display (see the red/rightmost items in each bar).

This answers the first question, by confirming that people do interpret emotions

from the robot’s behavior.

3.4 Consistent Interpretation of Displays

Though interpretation of affective display is not mutually exclusive, as shown in the

above section, certain affects can be treated as opposites. We therefore break apart

the task of classification of the 16 possible affective displays into 8 binary classifiers

for valence pairings, following [33] by coupling the emotions into positive and negative

valence pairs as shown in in Table 3.1. We hypothesize that doing so will allow us

to consider which modalities influence which affects and valence pairs more directly.

We can then make use of the individual binary classifiers to make graded predictions

about what affect a human would interpret.

Taking this approach, we were able to predict the likelihood that a user would

interpret the Cozmo’s robots emotional display as either representing “confusion” or

“understanding” with over 58% accuracy. For the understanding-confusion valence
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positive valence negative valence
interest alarm

understanding confusion
relief frustration

joy sorrow
gratitude anger

hope fear
surprise boredom

desire disgust

Table 3.1: Valence of 16 specific affects.

pair, only considering the face animations for a feature-set worked as well as using the

face animations and Cozmo’s sound effects. Clearly, some modalities have information

that is sometimes contributory or inhibitive when considered in conjunction with other

modalities. We interpret this to mean that when determining if a robot is displaying

understanding vs. confusion, showing some kind of display in a “face” (even if this

display only involves animated eyes) plays an important role.

By only including facial animations, this understanding-confused binary prediction

model scored a reasonable correlation of 0.24, when compared against the annotations

of human labelers for randomly generated animations.

3.5 Connections to Present Work

This result shows that our understanding-confused classifier yields reliable predictions

when compared to humans for novel animations. Though we did not use this model

specifically in this thesis, this classifier can be used in a specific tasks in which the

distinction between understanding and confused emotional displays is relevant to

the task, e.g., a task in which the robot is learning from a casual human user, and

the predictive accuracy of the robot’s model may not be apparent to the user, and a
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minimal level of social engagement with a person is important. A model that predicts

high confusion would need to alter its behavior if this did not reflect the robot’s model,

i.e., the robot could predict with great accuracy the correct word label to describe an

object.

We found those animations that both Amazon Mechanical Turk workers assigned

understanding and confusion; from these, we surveyed our research team to find

the animations that were the least ambiguous – that is, along a Likert scale from

Confused to Understanding, we selected those animations clustered at either end of

the ratings. We took the bottom ten as our Confused animations and the top ten for

our Understanding animations for the experiment.
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CHAPTER 4

METHODS

In this chapter, we explain the methodology of our experiment to answer the question,

do emotional displays on robots help engagement for language acquisition? The focus

of this methodology is not the implementation of any one module, but how those

modules can be used in combination to give a robot the ability to learn words as it

interacts with a human user.

This methodology was refined over the course of a short pilot study, completed

using volunteers from the author’s research group.

In this methodology, there are two areas where learning takes place:

• Learning the grounded meaning of words: the robot builds a Words-As-

Classifiers (WAC) Grounded Semantics model as it interacts with the human

user and also as it interacts with the world – the world here represented as

those objects the robot detects and approaches. WAC has not been tested in

this type of interactive scenario before.

• Learning which valence of an emotion to display: using a reinforcement

learning strategy, we author a learning policy for the robot to learn whether

it should display confusion or understanding based on a state variable – Robot

Confidence – that is affected by what the robot hears from the human par-
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ticipant. The specifics for this learning are explored in the Automatic Speech

Recognition section below.

The rest of this section describes the integration of the various modules to ensure

the robot could operate independently of any externally controlled commands for the

duration. These modules include

1. Visual Perception

2. Object Detection

3. Feature Extraction

4. Automatic Speech Recognition

5. Grounded Semantics

6. Robot Actions

• Navigation

• Emotional Displays

• Word proposals

7. Reinforcement Learning

Before examining these modules, we must introduce the concept of Robot Confi-

dence. Robot Confidence is a state variable tracked across all of the modules, which

is affected by positive and negative user feedback, as well as the number of times

Cozmo trains its Grounded Semantics classifiers. Specifically, Robot Confidence is an

integer instantiated at 0 and capped at -10 and +10. Robot Confidence is referred to

by several modules to determine the robot’s present level of success in the interaction

(or ’utility,’ for the Q-Learning algorithm in the Reinforcement Learning module).
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4.1 Visual Perception

The Visual Perception module handles the event of a new image being captured by

Cozmo’s camera. This is passed to the Object Detector.1

4.2 Object Detection

This object detection module is a Mask RCNN graph [15] adapted taken from the

tensorflow library. This graph is pre-trained on a dataset of sixty separately labeled

grocery items. We apply this configuration of the Mask RCNN model towards drawing

bounding boxes around pentomino blocks in images captured from the Cozmo camera,

from the Visual Perception module. We take the top (i.e., the most confidently

identified) object returned by the Mask RCNN graph and use this object’s bounding

box to guide the robot’s navigation and feature extraction for the Grounded Semantic

module. Though the Mask RCNN model also provides object labels, we ignore those

and only use the bounding box information.

This module is the bottleneck for the interaction – the average lag in processing a

cropped image through the Mask RCNN graph is 0.5 seconds. This was the reason for

limiting the number of images processed by the object detection module to one, for

each phrase transcribed from the user by the Automatic Speech Recognition module.

4.3 Feature Extraction

The Feature Extraction module contains an image classification model built on the

Keras implementation of VGG19. This model is trained using the ImageNet corpus

1This module tries to place the latest image in the Image Queue, a thread-safe queue with a size
limited to one, to be processed by the Object Detection module that is running in a separate thread.
If this fails, the except block runs a pass statement.
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weights.

This model is used to make predictions of what this cropped image contains – the

second-to-last layer is used as the feature representation of the object and returned

to train the classifiers of the Grounded Semantics module.

4.4 Automatic Speech Recognition

The Automatic Speech Recognition (ASR) module parses transcribed user speech.

User speech can be classified according to three exclusive dialogue acts: 1) descriptions

of objects that can act as labels for the Grounded Semantics model; 2) positive feed-

back affirming the robot’s most recent action; or 3) negative feedback disapproving

of the most recent action made by the robot.

This parsing is accomplished by comparing inputs captured from the Google ASR

to two lists to determine if an input can be classified as either positive or negative

feedback. These feedback words are excluded from the Grounded Semantics model

(which does not prevent the model from training classifiers based on homophones (e.g.,

learning “know” based on instances when the participant says, “no”)), and used to

determine which word models should be preserved or destroyed, as well as determining

if the robot should make a confused or an understanding emotional display, according

to the Q-Learning reinforcement learning module.

State variable Robot Confidence is affected by the ASR module. In the case of

positive feedback that is parsed from the input stream, Robot Confidence is boosted by

two; in the case of negative feedback parsed from the input stream, Robot Confidence

drops by four. Otherwise, for those inputs that are successfully matched to perceived

objects in the robot’s environment, Robot Confidence increases by one. In the ex-
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perimental condition, these changes in Robot Confidence are communicated to the

Reinforcement Learning module using a thread-safe queue of size one, the Stimulus

Queue. In turn, these ‘stimuli’ influence the training of the Q-Learning model and

the next emotion that is selected.

Due to the nature of the Google ASR and the user study, occasionally words of

an obscene or distracting nature are heard and then proposed by Cozmo. Words

are considered distracting due to the context of a robot speaking to a participant,

in which the robot’s statements could be construed as referring to the participant

themselves. We created a list of obscenities to prevent Cozmo from proposing words

that would interrupt the interaction and distract from the participant’s goal. This

list is built on an ad-hoc basis over the course of the studies, according to those words

that presented themselves.

Those inputs that don’t match any of the values present in the three lists are passed

on as labels to the Grounded Semantics module (along with the time that they were

heard), along with the object collected from the Match Queue at the beginning of the

process.

The feedback lists are defined in the appendix.

4.5 Grounded Semantics

The Grounded Semantics module follows the Words-As-Classifiers (WAC) [21] design

for grounded lexical semantics. WAC allows the robot system to possess a shared

grounding of a word label with the study participant. This means that each word

heard by a user becomes a classifier model trained on positive “is” or negative “is

not” examples of that word. Those labels that are spoken by a user and heard by
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Cozmo are assumed to be positive reference to the object that is contained within

the bounding box, if the time that the label is heard is less than 10 seconds after the

object is seen. This time period was chosen after a period of trial and error spent

testing the robot, and considering the lag introduced to its interaction by the ASR,

object detection, and feature extraction models. The largest square area outside of

the bounding box in the image is used as a negative example to train the word’s

classifier.

Both the features for the negative and positive examples are obtained from the

Feature Extraction module. These features and matching labels are used to construct

a temporary “language cache,” whose size is checked each time a match is made.

If the language cache has more than three matches, it is used to construct the

corresponding WAC classifiers. These classifiers are the scikit-learn implementation

of a logistic regression classifier. If a word’s classifier is already present in the WAC

model’s dictionary of classifiers, these new examples are used to update that classifier’s

weights; otherwise, a new classifier is constructed. Each time words are learned in this

manner the WAC model is saved as a pickle file and the temporary language cache

is cleared; also, the Robot Confidence state variable is incremented. This pipeline of

data inputs and transformations for the Grounded Semantics module is illustrated in

Figure 4.1.

The Grounded Semantic module is where the Reinforcement Learning’s policy is

set; i.e., the utility function that weighs the “quality” for an emotional display given

the current state (defined by Robot Confidence), based on changes in values to Robot

Confidence, which itself is dependent on the types of feedback the user provides. Here,

Robot Confidence is capped at positive ten and negative ten – based on the likelihood

of hearing positive or negative feedback (and the associated weights assigned to these



34

events (-4 for negative feedback; +2 for positive feedback)), along with the fact that

Robot Confidence increments each time the Grounded Semantics module builds an

association between a user input and the extracted features of a cropped image, the

value of two was selected as a threshold for when the Cozmo robot could make word

proposals of its own (i.e., the robot would utter the word) based on the classifiers

from the Grounded Semantics model. Based on this policy, two was selected as a

threshold to allow for the robot to make proposals quickly, but also to enforce a delay

in proposals upon receiving negative feedback. Once Robot Confidence is greater than

the value of two, it enables the Robot Actions module to make proposals using the

WAC classifiers constructed in the Grounded Semantics module. The labels captured

by the ASR module immediately following a prediction are interpreted as feedback to

that prediction. Any input that does not match one of the values from the positive

feedback list is interpreted as the participant’s disapproval of the proposed word, and

taken as a cue to destroy the existing classifier for that word in order to discourage

repeated incorrect proposals. Feedback matching an item from the positive feedback

list results in an addition of positive five to Robot Confidence.

4.6 Robot Actions

As many of the robot action calls are relegated to this module as possible, to prevent

sharing the robot across threads and bogging down the interaction with competing

calls to the single robot object.

The Robot Actions module is wrapped with an instance of a Dialogue Manager, a

decision modeling object defined within the PyOpenDial framework [18]. The Robot

Actions module is called whenever the Dialogue Manager is triggered, which occurs
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when the Dialogue Manager is passed state updates. This occurs at the conclusion

of each call to the Robot Actions module. The state variables that are passed

to the Dialogue Manager at the conclusion of each episode are “near object” and

“found object,” whose truth values determine the next action to be chosen by the

Dialogue Manager. This chosen action is then sent to the Robot Action module by

the subsequent call to trigger.

At the end of every call to the Robot Actions module – what we term an “episode”

– the robot orients itself to the participant’s face by using a random search pattern.

An overview of the order of the actions produced by the robot in an episode are given

in Figure 4.2.

Navigation The three possible actions that are defined by the task action model

are: “find object,” “go to object,” and “point to object.” Depending on which action

is sent to the Robot Actions module, the robot either enters a random search pattern

(“find object”) until the Navigation Queue is populated by an object found by the

robot’s object detection model; it drives towards an object until certain conditions

(detailed in the Appendix) are met that determine the object has been reached (“go

to object”); or the robot raises and lowers its lift repeatedly as a means of gesturing

to an object which it has already found and approached in the preceding episodes

(“point to object”).

To restrict the robot’s view to only include those objects that make it obvious

to the participant what the robot is looking at, the Cozmo resets its head to its

lowest angle at the beginning of each episode in order to minimize the potential to

be distracted by bounding boxes encapsulating entities that are not present directly

in front of it on the table and are therefore more difficult for a participant to discern.
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Additionally, the robot’s lift is raised to it maximum height so as not to block the

camera’s view, misdirect the object detection model, or influence the training of the

classifiers in its Grounded Semantics model.

Bounding box information for the nearest relevant object is obtained from the

Navigation Queue and passed to a method that checks if the bounding box passes

certain conditions that would ensure it encapsulates an object that would be of real

relevance to the robot, and not simply a random entity on the horizon that the

model has mistakenly perceived to be an object, and which an observing participant

would not be able to tell what the robot is looking at. These conditions are that

the bounding box is less than 40% of the area of the screen, the top of the bounding

box is greater than 1% of the screen-size away from the top of the screen, and the

bottom of the bounding box is less than 60% of the screen-size away from the top of

the screen.

Once these conditions are met, the coordinates are given to another function that

determines the amount that the robot should turn and drive in order to place the

center of the bounding box near the center of its field of view. If the x-coordinate

of the center of the box is within 56 to 44% the width of the screen, the robot stops

turning. Otherwise, 0.5 is subtracted from this value, the difference is then multiplied

by -50 degrees (Cozmo’s API determines a negative degree value to signal a turn to the

left), and this is divided by four to create more conservative movements on the part of

Cozmo, who – due to the time required by its Object Detection module – is operating

on at least a half-second lag behind the participant. If the y-coordinate of the center

of the bounding box is within 36 to 48% the height of the screen (these values being

less than 50% to account for Cozmo’s relatively short lens, which makes objects that

are nearby appear further away), then Cozmo stops driving to the object. If not,
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0.42 is subtracted from this y-coordinate (0.42 instead of 0.5 because of Cozmo’s

short lens which makes objects that are quite near appear further removed), the

difference is multiplied by -10 millimeters, the product is raised to the power of four

to account for parallax (objects that are further away move toward the center of

Cozmo’s viewfinder more slowly than those that are closer), and divided by two to

create more conservative movements for the same reasons stated for the turn decision.

If the Robot Actions module is processing the ”find object” action, Cozmo will only

implement the turn decisions, ignoring the drive commands entirely. If the module

is processing the ”go to object” action, Cozmo implements both the turn and drive

decisions. In either case, if the bounding box sent to the object check function fails

three times, the action is abandoned and the state variables “near object” and “found

object” are passed in a system update. However, after the first bounding box passes

the object check, this fail-counter is reset back to zero to account for any real object

that may have entered the frame. If more than two bounding boxes in the same

episode pass the object check, or the decision for the robot’s turn angle is less than two

degrees, then “found object” is set to True and the “find object” action is completed.

If the selected action is “go to object”, one additional condition must be met: the

chosen drive distance must be less than 5 millimeters. If this is the case, then “near

object” is also set equal to True and its value passed to the Dialogue Manager in a

state update.

Emotional Displays In the experimental condition, the robot performs an emo-

tional display once per episode following the completion of the navigation task within

the Robot Actions module. The Robot Actions module gets the emotion from

the queue and the robot performs the emotional display. Emotional displays are
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chosen within the Reinforcement Learning module. The displays are selected from

the Cozmo’s broad repertoire of pre-scripted animations to evince either ”confusion”

or ”understanding,” using the process explained in the Data Analysis section of the

Preliminary Work chapter.

Emotional Displays are determined by the Reinforcement Learning module, which

runs a separate Dialogue Manager on a different thread. Updates in the robot’s

confidence level are passed to the Reinforcement Learning module using a thread-

safe queue of size one, the Stimulus Queue, from the Automatic Speech Recognition

module, as it parses inputs for feedback.

Proposals Following an emotional display in the experimental condition, or the

navigation action in the control condition, the robot then checks its confidence level

to ascertain if it has received sufficient positive feedback – or if it has learned enough

recent words – in order to make a word prediction. The robot must have a confidence

greater than two in order to make a prediction. This low threshold is to encourage

early prediction of words, while also preventing the robot from speaking if it receives

negative feedback.

4.7 Reinforcement Learning

Our robot follows a Q-Learning algorithm in which the agent navigates between states

(an integer called Robot Confidence, which fluctuates according to the most recent user

feedbacks, as outlined in the ASR and Grounded Semantics sections above) by using

actions (either an understanding or confused emotional display). These actions are

weighted according to the present state, and the human partner’s previous feedback

to that state (positive or negative).
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The Reinforcement Learning module is reset for each trial. This is done in order

to properly frame the cold-start problem and model an agent that is beginning an

interaction with no prior knowledge of how to communicate with a human user.

The valence of the emotional display is decided by the Reinforcement Learning

module, implemented using the PyOpenDial framework and a separate Dialogue

Manager object that is running a Q-Learning algorithm (implemented as a Dynamic

Bayesian Network; specifically a Markov Decision Process) that is training simulta-

neously on a separate thread. Once the valence has been chosen by the Q-Learning

algorithm (either “understanding” or “confused”), the specific animation is selected

at random from the corresponding list of animations (understanding and confused

animation lists are in the appendix).
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Figure 4.1: The pipeline of data inputs and transformations for the Grounded Seman-
tics module. Step (1) Object Detection: taking an image captured with the Cozmo
robot’s camera, this module’s Mask RCNN model draws a bounding box around the
most likely object in the image. Step (2) ASR: from the audio inputs provided by
the laptop microphone, the Google ASR model creates a text transcription of the most
likely words said by the user. Step (3) Feature Extraction: using the bounding
box from Object Detection, crop the image from the Cozmo robot’s camera and pass
it to a pre-trained Image Classifier – the VGG19 – and take the second-to-last layer as
a vector representation for the object. Step (4) WAC: use the vector representation
from (3) as feature data to represent the word label obtained from the ASR; with
this labeled data, build a classifier trained on this example (in addition to a negative
example created in the same manner, but using the area outside the bounding box
found in (1). Step (5) Propose word: after training this classifier with two or
more examples of the same word (and their negative examples), use this classifier
to predict the best word label that describes the current object the Cozmo robot is
looking at.
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Figure 4.2: The four stages of an “Episode” for the Robot Actions module, moving
clockwise and beginning from the top-left: 1) Task action: find object, go to object,
or point to object; 2) Emotional display: emote understanding or confusion; 3) Word
proposal: receive positive or negative feedback; 4) Locate human face.
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CHAPTER 5

EXPERIMENT

In this chapter we explain the steps taken to conduct a live experiment with users

and ascertain the influence of emotional displays in a language learning task between

an embodied social robot and a casual human participant. We employ a within-group

study design, meaning that each participant goes through the same study twice, one

time in which the independent variable (i.e., with emotional display) is present, and

again when it is absent (i.e., without emotional display). To mitigate learning effects,

the order in which the test condition is presented is alternated.

Following [7], we investigate if a social robot’s use of emotional displays in a

language acquisition task mediates the robot’s acquisition of new words. To test

emotional displays, we conduct a live interactive study (explained in Section 3.1)

between a Cozmo robot and a study participant. We use a Reinforcement Learning

framework to enable Cozmo to learn which emotional display (understanding or

confusion) is more useful depending on the user’s most recent feedback to the robot.

The goal of this study is to answer the question of whether we need to consider the

user’s perception of the robot’s emotional state in future natural language tasks, or

if this factor can be ignored.
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5.1 Participant Recruitment

We recruited twenty-one study participants to interact with the Cozmo robot for two

fifteen-minute periods over the course of a single session. Following each fifteen-minute

interaction the participant is asked to answer every question of the same augmented

Godspeed Questionnaire (found in the appendix) [4]. The Godspeed Questionnaire

is a likert-scaled questionnaire with 24 questions ranging from negative to positive

ratings of a robot’s anthropomorphism, animacy, likeability, perceived intelligence,

and perceived safety. The entire study takes approximately one-hour; in exchange for

their time participants are paid eight U.S. dollars.

Study participants are largely college students recruited from Boise State Univer-

sity’s Computer Science department. Participants’ ages range from their late teens

to their forties. Eight of the participants are women; thirteen are men.

5.1.1 Study Setting

5.1.2 Study Task

First, the Cozmo robot is introduced to the participant, along with its affordances:

• Cozmo has a camera that can see them and the world.

• Cozmo has a microphone that can hear them.

• Cozmo doesn’t know anything, but is “curious” to learn more about the world.

• For the next 15 minutes, it is the participant’s job to try to teach Cozmo as

many words as they can, using the objects in the room, whatever they have on

them, and their imagination. The entire study takes approximately one-hour;

in exchange for their time participants are paid eight U.S. dollars.
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• If Cozmo gets off-track, they are allowed to pick Cozmo up and move it around.

• When Cozmo is looking up, it is looking for their face.

• When Cozmo “feels confident” enough, it will guess a word – if it gets it right,

say “Yes.” If not, say, “No.” This feedback will help Cozmo learn faster.

The researcher was present to monitor the state of the robot and the microphone,

troubleshoot any problems that might arise, and answer any questions the participant

might have over the course of the interaction. The researcher was permitted to

offer a constrained set of coaching tips to the participant during the interaction, if

the participant needs a reminder of the task or the initial instructions. The study

participant and the robot were observed with cameras, which recorded audio and video

from the interaction. Following the interaction the user moves to the researcher’s seat

and completes the augmented Godspeed questionnaire on the researcher’s laptop.

We justify our use of the Godspeed Questionnaire from Weiss and Bartneck (2015)

[37]. The browser is set to full-screen and the user is monitored by the researcher

to ensure that the user only sees the survey. Following the completion of both

interactions and subsequent surveys, the participant is paid eight dollars and signs a

form acknowledging receipt of payment.

5.1.3 Hypothesis

We employed a “within-group” design because it more effectively controlled for in-

dividual differences in study participants (if one individual is more attentive / em-

pathetic to the robot) and allowed us to recruit fewer study participants. For an

involved participatory study like the one we conducted, these strengths outweigh any

potential external learning effects, which can be easily controlled.
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We hypothesize that if the robot produces emotional displays the user will use

more words (i.e., be more engaged), in addition to producing more instances of

positive or negative feedback; as a result, the robot will have more reliable classi-

fiers in its Grounded Semantics model (i.e., it will have “learned” more words) to

identify the objects it perceives using the pipeline described in the methods section

(Visual Perception to Object Detection to Feature Extraction). The indicator of this

improvement in the classifiers can be seen in the number of proposals the robot makes.

5.2 Evaluation

5.2.1 Language data

We evaluate the robot’s performance in the task based on the number of words it hears

from the participant, the number of word proposals it makes, the number of instances

of positive feedback it hears, and the number of instances of negative feedback it hears.

5.2.2 Participant Surveys

We also evaluate the robot based on survey responses written by the study partic-

ipants following the both trial sessions of the study. These task-specific questions

are prepended to the standard Godspeed Questionnaire; the augmented Godspeed

questionnaire is attached to appendix B:

• How attached to the robot did the user feel?

• Were they engaged by the robot?

• What did they think the robot wanted?

• What did they think the robot was trying to do?
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• Would they like to spend more time with the robot?

• Why or why not?

5.3 Results

Table 5.1 shows the results of the effect that emotional displays had on heard words,

positive feedbacks, negative feedbacks, and proposals. Comparing the results of the

experimental trials in which the robot displayed emotions to the control trials, it is

apparent that the amount and quality of the user feedback to the robot improves in the

presence of emotional displays. The sole caveat is negative feedback, which was offered

the most on average by users interacting with a robot that wasn’t making emotional

displays. This is likely due to the valence of the emotional displays presented to the

user.

Table 5.1: The effect of emotional displays on a language-acquisition task
[Mean values] All trials Without emotions With emotions
Heard Words 62.3 58.0 66.0

Positive Feedbacks 13.3 11.8 14.7
Negative Feedbacks 6.7 7.7 6.0

Proposals 8.3 7.8 8.9

Exploring the effect of the positive or negative valence in Table 5.2 shows that there

is a marked difference between those experimental trials in which a majority of the

robot’s emotional displays were either positive (“Mostly understanding”) or negative

(“Mostly confused”). This table reveals that each emotional display has its own,

distinct impact on the language-acquisition task, perhaps modulated by the intensity

of the display itself. Those trials in which the robot was deemed “Mostly confused”

occurred when the total number of confused displays was higher than the median
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(more than four confused displays), and the number of confused displays was also

greater than the number of understanding displays (amounting to 10 trials in total).

The trials in which the robot was deemed to be “Mostly understanding” occurred in

those trials when the total number of understanding displays was greater than the

median (more than two understanding displays), and the number of understanding

displays was also greater than the number of confused displays (amounting to seven

trials in total).

Table 5.2: The effect of valence on a language-acquisition task
[Mean values] All emotion trials Mostly confused Mostly understanding
Heard Words 66.0 62.8 45.4

Positive Feedbacks 14.7 9.7 12.3
Negative Feedbacks 6.0 5.5 5.9

Proposals 8.9 9.8 8.7

Another important takeaway from Table 5.2 is that exhibiting “Mostly under-

standing” or “Mostly confused” emotional displays is not as effective a strategy as

a more even split of positive- and negatively valenced emotions, as evidenced by

Table 5.2. This supports the idea that the success of an emotional display is dependent

on context, as is the case for any form of communication. In overcoming the cold-start

problem, this context is informed by the success of the robot and human partner in

the language-learning task.

Next, we analyze the participant surveys to see if the presence of emotional

displays biased the participant toward higher estimations of robot intelligence. For

both the control and experimental trials, the average estimated age of the robot is two

years old, which follows prior work using Cozmo [32] which is an appropriate assigned

age range for this study. Additionally, the participant surveys reinforce the ambiguous

role of emotion in human estimations of robot intelligence, sense, and knowledge, as
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seen in Figures 5.2, 5.3, and 5.4. In these figures, we interpret the total number

of heard and proposed words by the robot as a proxy for the participant’s overall

level of success in the interaction (the participant’s own estimation of their success

as a teacher is a confounding factor outside the scope of this study to investigate).

What these figures demonstrate is that participant success in the teacher role (i.e.,

interacting with a robot that heard more words from them and made more word

proposals as a result) did not significantly effect their estimation of the robot’s

intelligence, sense, and knowledge.

Where a more successful interaction did influence participants was in their esti-

mation of the robot’s pleasantness, their attachment to the robot, how interesting the

robot was, if they liked the robot, and if they would like to spend more time with

the robot (Figures 5.5, 5.6, 5.7, 5.8, and 5.9). A participant’s success in the teacher

role (an increased number of heard and proposed words) appears to have a more

significant effect on participants’ positive estimations of the robot than the presence

of emotional displays. This effect is aided, however, by the boost that emotional

displays lends to the task itself, as can be seen by the higher peaks in the number of

heard and proposed words for those users.

In our Reinforcement Learning module, the Q-Learning algorithm learned to weigh

in favor of one emotional display to the exclusion of the other after only a few episodes,

without consideration of Robot Confidence. This may have been due to the training

batch size and training time for the Q-Learning algorithm being set significantly lower

than the default values set by PyOpenDial (10 max samples and a 5 ms sample rate,

instead of 3000 max samples and a 250 ms sample rate – the default values slowed

training to the point of the model was making imperceptible progress). This was done

in order to allow for live training of the model. In future work, we would want to
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re-write the Q-Learning algorithm to be specifically tailored to this task, for efficiency,

but also for readability and to allow for easier debugging.
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Figure 5.1: The setting for the interaction. Top: Cozmo sees an object. Bottom:
What the participant see upon entering the room.
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Figure 5.2: X-axis: Participant ratings from 1: unintelligent to 5: intelligent. Y-axis:
the % of participants that selected those responses; the % of the robot’s heard and
proposed words for those trials.
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Figure 5.3: X-axis: Participant ratings from 1: foolish to 5: sensible. Y-axis: the %
of participants that selected those responses; the % of the robot’s heard and proposed
words for those trials.
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Figure 5.4: X-axis: Participant ratings from 1: ignorant to 5: knowledgeable. Y-axis:
the % of participants that selected those responses; the % of the robot’s heard and
proposed words for those trials.
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Figure 5.5: X-axis: Participant ratings from 1: unpleasant to 5: pleasant. Y-axis:
the % of participants that selected those responses; the % of the robot’s heard and
proposed words for those trials..
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Figure 5.6: X-axis: Participant ratings from 1:not at all to 5:very much. Y-axis:
the % of participants that selected those responses; the % of the robot’s heard and
proposed words for those trials.
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Figure 5.7: X-axis: Participant ratings from 1: not at all to 5: very much. Y-axis:
the % of participants that selected those responses; the % of the robot’s heard and
proposed words for those trials.
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Figure 5.8: X-axis: Participant ratings from 1: dislike to 5: like. Y-axis: the % of
participants that selected those responses; the % of the robot’s heard and proposed
words for those trials.
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Figure 5.9: X-axis: Participant ratings from 1: not at all to 5: very much. Y-axis:
the % of participants that selected those responses; the % of the robot’s heard and
proposed words for those trials.



59

CHAPTER 6

CONCLUSION

We recognized a problem in how an artificial system, such as a robot, could engage a

casual human user in a language-learning task in a real-world, situated context with

a cold-start requirement. Based on relevant background, we hypothesized a solution:

emotional displays.

Having established that people do assign emotions to Cozmo’s behaviors ([27];

see chapter 3 of this thesis), we focused on the valence pair model that was the

most successful – confusion versus understanding – and also the pair of emotions

most useful to demonstrate in a learning task, when a robot learner might need to

communicate the state of the models that the user is training via emotional displays.

We take the lists of Understanding and Confused emotional displays created in

our preliminary work. We conducted an experiment with twenty-one participants,

who had to rely on the robot’s movement and their own performance in a language

acquisition task as context for what those emotional displays meant. We analyzed

our results by comparing the participants’ survey responses and the robots’ Grounded

Semantics classifiers between the experimental and control trials. We found that a

robot that displayed a combination of confused and understanding emotional displays

– positive- and negatively-valenced emotion – gathered more inputs, and more useful

inputs (positive feedback), than a robot that only engaged in task-specific actions
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(orienting to objects; seeking out the user’s face). This in turn led to the robot

making more word proposals, which consequently led to greater engagement and

more positive estimations of the robot on the part of the participant in the interaction

(without leading to over-estimations of the robot’s language understanding).

These results show that the presence of emotional displays can assist a robot in

overcoming the cold-start problem in a dialogue with a casual human user.

6.1 Limitations and Future work

In future work, we would like to test different policies for the reinforcement learning

regime. These could include a curiosity measure that would reward the robot more

for hearing novel words than for hearing words it deems that it already understands,

according to the accuracy of its Grounded Semantics classifiers. Additionally, this

would incorporate an analysis of the number of different words the robot hears, and

a measurement of how important repetition is on the part of the human teacher

in the language learning task. Whether or not a user repeated the same word is

indicative of their estimation of the robot’s sophistication, and how over-estimations

of robot language understanding could lead to fewer repetitions and weaker word

comprehension.

Another aspect that demands further investigation would be the timing of emo-

tional displays in the language learning interaction. Rather than having the robot

naively produce animations at the same time in every episode, we could have the

Reinforcement Learning regime take the previous task-action as input and make a

decision as to when is the best time to make an emotional display (in addition to

deciding the appropriate valence of emotion).
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Further analysis of the exact effect of the intensity of the emotion on the success of

the language-acquisition task would be enlightening. What is the difference between

a very negative emotional display and a slightly negative (or closer to ambiguous)

emotional display? Not every user interpreted “confusion” as confusion – many in

fact, saw it as either the robot being upset with itself or them, and this lead to higher

reported scores for anxiety in those trials in which the robot randomly selected those

more intense animations for its “confused” displays.

We would also like to directly evaluate the Grounded Semantics classifiers that

are trained by participants during their trials on novel data, as a means of better

estimating the success of the language learning task.

In future work, we will survey participants to understand their own beliefs regard-

ing their success as a teacher, and how this self-belief influences their estimation of

the robot and their interaction with it as a whole.
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APPENDIX A

PARSING FEEDBACK LISTS

Here is Appendix A. See Appendix C for a list of the Cozmo’s internal features used

to model its emotional displays.

positive feedback = [’yes’,’yeah’,’yep’,’right’,’correct’,’good’,’nice’]

negative feedback = [’no’,’nope’,’wrong’,’incorrect’,’stop’,’bad’,’not’]
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APPENDIX B

AUGMENTED GODSPEED QUESTIONNAIRE

Questionnaire

1. How attached to the robot did you feel? Mark only one oval.

Not at all 1 2 3 4 5 Very

2. How interesting was the robot to interact with? Mark only one oval.

Not at all 1 2 3 4 5 Very

3. Would you like to spend more time with the robot? Mark only one oval.

Not at all 1 2 3 4 5 Very much

4. Read the statement below and select one of the given options: The robot had

a goal. Mark only one oval.

Yes No

5. If you agreed, what do you think the robot’s goal was? Why do you think

that?

6. If you disagreed, why do you disagree? What do you think robot was doing?

7. How many years old do you think the robot is (in terms of its behavior)?

8. Please rate your impression of the robot on this scale: Mark only one oval.

Fake 1 2 3 4 5 Natural

9. Please rate your impression of the robot on this scale: Mark only one oval.

Machinelike 1 2 3 4 5 Humanlike
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10. Please rate your impression of the robot on this scale: Mark only one oval.

Unconscious 1 2 3 4 5 Conscious

11. Please rate your impression of the robot on this scale: Mark only one oval.

Artificial 1 2 3 4 5 Lifelike

12. Please rate your impression of the robot on this scale: Mark only one oval.

Moving rigidly 1 2 3 4 5 Moving elegantly

13. Please rate your impression of the robot on this scale: Mark only one oval.

Dead 1 2 3 4 5 Alive

14. Please rate your impression of the robot on this scale: Mark only one oval.

Stagnant 1 2 3 4 5 Lively

15. Please rate your impression of the robot on this scale: Mark only one oval.

Mechanical 1 2 3 4 5 Organic

16. Please rate your impression of the robot on this scale: Mark only one oval.

Inert 1 2 3 4 5 Interactive

17. Please rate your impression of the robot on this scale: Mark only one oval.

Apathetic 1 2 3 4 5 Responsive

18. Please rate your impression of the robot on this scale: Mark only one oval.

Dislike 1 2 3 4 5 Like

19. Please rate your impression of the robot on this scale: Mark only one oval.

Unfriendly 1 2 3 4 5 Friendly

20. Please rate your impression of the robot on this scale: Mark only one oval.

Unkind 1 2 3 4 5 Kind

21. Please rate your impression of the robot on this scale: Mark only one oval.

Unpleasant 1 2 3 4 5 Pleasant

22. Please rate your impression of the robot on this scale: Mark only one oval.
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Awful 1 2 3 4 5 Nice

23. Please rate your impression of the robot on this scale: Mark only one oval.

Incompetent 1 2 3 4 5 Competent

24. Please rate your impression of the robot on this scale: Mark only one oval.

Ignorant 1 2 3 4 5 Knowledgable

25. Please rate your impression of the robot on this scale: Mark only one oval.

Irresponsible 1 2 3 4 5 Responsible

26. Please rate your impression of the robot on this scale: Mark only one oval.

Unintelligent 1 2 3 4 5 Intelligent

27. Please rate your impression of the robot on this scale: Mark only one oval.

Foolish 1 2 3 4 5 Sensible

28. At the BEGINNING of the interaction, how did you feel on this scale: Mark

only one oval.

Anxious 1 2 3 4 5 Relaxed

29. At the END of the interaction, how did you feel on this scale: Mark only one

oval.

Anxious 1 2 3 4 5 Relaxed

30. At the BEGINNING of the interaction, how did you feel on this scale: Mark

only one oval.

Agitated 1 2 3 4 5 Calm

31. At the END of the interaction, how did you feel on this scale: Mark only one

oval.

Agitated 1 2 3 4 5 Calm

32. At the BEGINNING of the interaction, how did you feel on this scale: Mark

only one oval.
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Bored 1 2 3 4 5 Interested

33. At the END of the interaction, how did you feel on this scale: Mark only one

oval.

Bored 1 2 3 4 5 Interested

34. Of the following relations, which do you feel describe the robot best? Mark

only one oval.

Brother or Sister

Classmate

Stranger

Relative (e.g., cousin or aunt)

Friend

Parent

Teacher

Neighbor
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APPENDIX C

COZMO INTERNAL FEATURES

Here is Appendix C.

left wheel speed

right wheel speed

battery voltage

time

nav memory map sizes

nav memory map x

nav memory map y

pose 0

pose 1

pose 4

pose 5

pose 10

pose 12

pose 13

pose 14

is moving

is picked up
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is animating

lift in pos

head in pos

are wheels moving

is localized

pose angle rads

pose angle degs

pose angle abs rads

pose angle abs degs

pose pitch rads

pose pitch degs

pose pitch abs rads

pose pitch abs degs

head angle rads

head angle degs

head angle abs rads

head angle abs degs

lift position height

lift position ratio

lift position angle rads

lift position angle degs

lift position angle abs rads

lift position angle abs degs

dispatcher has in progress action

accelerometer x
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accelerometer y

accelerometer z

gyro x

gyro y

gyro z




