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ABSTRACT

Atomic swap facilitates fair exchange of cryptocurrencies without the need for a trusted 

authority. It is regarded as one of the prominent technologies for the cryptocurrency 

ecosystem, helping to realize the idea of a decentralized blockchain introduced by Bitcoin. 

However, due to the heterogeneity of the cryptocurrency systems, developing efficient 

and privacy-preserving atomic swap protocols has proven challenging. In this thesis, we 

propose a generic framework for atomic swap, called PolySwap, that enables fair ex-

change of assets between two heterogeneous sets of blockchains. Our construction 1) does 

not require a trusted third party, 2) preserves the anonymity of the swap by preventing 

transactions from being linked or distinguished, and 3) does not require any scripting 

capability in blockchain. To achieve our goal, we introduce a novel secret sharing signature 

(SSSig) scheme to remove the necessity of common interfaces between blockchains in 

question. These secret sharing signatures allow an arbitrarily large number of signatures to 

be bound together such that the release of any single transaction on one blockchain opens 

the remaining transactions for the other party, allowing multi-chain atomic swaps while 

still being indistinguishable from a standard signature. We provide construction details 

of secret sharing signatures for ECDSA, Schnorr, and CryptoNote-style Ring signatures. 

Additionally, we provide an alternative contingency protocol, allowing parties to exchange 

to and from blockchains that do not support any form of time-locked escape transactions. 

A successful execution of PolySwap shows that it takes 8.3 seconds to complete an atomic 

swap between Bitcoin’s Testnet3 and Ethereum’s Rinkeby (excluding confirmation time).
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Chapter 1

INTRODUCTION

Bitcoin [1], introduced in a landmark paper in 2008, is a decentralized digital currency

system for secure electronic payments. It relies on a public ledger called blockchain, which

is maintained by a peer-to-peer network of participants, following consensus rules based on

proof of work, where they expend some computation time to produce certain proofs that can

be verified easily. Bitcoin is a pseudonymous system with respect to user privacy. Accounts

(or addresses) are hashes of public keys of a public cryptosystem, and the transfer of funds

from one account to another is authorized through a signature on the spending (input)

transaction. There is nothing in the Bitcoin system that inherently links users to their real-

world identities. However, all transactions with their details (such as senders’ & receivers’

addresses, values) are published to the public ledger. This introduces several problems

concerning user privacy in Bitcoin and similar public ledger-based cryptocurrency systems.

For example, an adversary can link a cluster of addresses to a user [2], associate it to

their personally identifiable information [3], and view their transaction behavior [4]. It

also affects the fungibility of Bitcoin. Fungibility is a valuable property required for any

currency system, and it refers to the trait that each unit of a token in the system is equivalent

in value to another unit and is interchangeable.

In this thesis, we study how to enhance users’ privacy during token exchanges, and

propose a privacy-preserving protocol for atomic swap between two sets of blockchains.
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1.1 Motivation

Various blockchain-based cryptocurrency systems have been proposed and implemented

to address different limitations in Bitcoin such as user privacy [5, 6], transaction through-

put [7], and distributed applications [8]. With the continuous introduction of new cryp-

tocurrency systems, the demand for mechanisms facilitating interoperability among them

has risen; this is evident by the presence of a large number of cryptocurrency exchanges

and their daily trading volume [9]. Most of these exchanges are centralized and custodial1,

requiring the users to entrust them with their cryptocurrency assets in order for the users to

be able to use their services. However, centralized exchanges are often the target for hackers

and exit scams, resulting in users’ assets being lost [11, 12]. Atomic swap [13] is the

cornerstone of decentralized exchanges, enabling mutually distrusting parties to exchange

a cryptocurrency asset for another without requiring the involvement of a trusted third

party. Atomic swap is a type of fair exchange [14, 15] where two distrusting parties seek

to exchange assets on the condition that either both party receives the other party’s asset,

or neither party receives anything. It is known that a fair exchange protocol cannot be

constructed without a trusted third party (TTP) [16]. Atomic swap, being a fair exchange

of cryptocurrencies, is not exempt from this requirement. However, the blockchain itself

can be utilized as a TTP, which allows an atomic swap to be realized without an explicit

TTP.

The concept of atomic swap first surfaced in a BitcoinTalk forum [17], where Tier

Nolan proposed a Bitcoin-compatible atomic swap solution without an explicit TTP based

on linking transactions together with a secret. The solution uses Hashed Time-Locked

Contracts (HTLC) refering to a type of transaction which is only spendable in the network

1Out of the top 100 cryptocurrency exchanges, only 4 claim to be decentralized [10]
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by providing the hash after a fixed duration of time. A hash function is a one way function

which maps a pre-image (data of an arbitrary size) to a hash (binary string of fixed length).

Using HTLC, transactions can be locked until a pre-image to the hash is released. This

allows the two parties to lock two transactions in different blockchains with the same hash,

such that when one of the transactions is accepted by the blockchain, the pre-image of the

hash is revealed, allowing the other transaction to be redeemed on the other blockchain.

However, since the same hash is used to lock both transactions, it is trivial for an observer

(global passive adversary) to link them together to an atomic swap which is detrimental for

their privacy.

The Bitcoin Lightning Network [18]—a Payment Channel Network (PCN) [19]—has

also used HTLC transactions with a common pre-image to lock all the transactions in a sin-

gle channel. However, this enables an adversarial node within a payment channel to identify

all the other nodes in the channel, thus compromising their privacy. This privacy concern

was addressed by Malavolta et al. [20] by using a multi-hop HTLC. The authors later

improved on this concept by proposing an anonymous multi-hop lock (AMHL) [21], which

do not require HTLC. Nevertheless, their solution is not applicable to atomic swap between

heterogeneous blockchains, as it requires their ECDSA and Schnorr based construction to

be instantiated over the same cryptographic group. Other solutions for fair exchange of

assets in the context of cryptocurrencies have also been proposed [22, 23, 24, 25]. However,

these approaches are not generic as they require specific features such as rich scripting

capabilities and multisig accounts in the participating blockchain.

There are typically two main privacy concerns with respect to atomic swaps: 1) Link-

ability, where an observer is able to establish a link between atomic swap transactions

from different blockchains, due to the use of the same hash to lock claim transactions

(i.e. using HTLC to provide atomicity), and 2) Distinguishability, where an observer can
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Figure 1.1: Distinguishability and Linkability in HTLC-based atomic swap

distinguish an atomic swap transaction on a blockchain from normal transactions on the

same blockchain, which are illustrated in Figure 1.1. We define privacy-preserving atomic

swap as an atomic swap protocol that ensures both unlinkability and indistinguishability

(fungibility) of transactions.

1.2 Thesis Statement

The objective of this thesis is to answer the following research question: Can atomic swap

between blockchains be achieved at scale without a trusted-third party while preserving

users’ privacy? More specifically, given two mutually distrusting parties who are interested

in exchanging tokens between cryptocurrency blockchains, is it feasible to design an ef-

ficient and scalable atomic swap protocol that achieves the privacy-preserving properties,

unlinkability and indistinguishability, without the involvement of a trusted-third party?

We answer the research question affirmatively by designing and implementing a privacy-

preserving atomic swap protocol, PolySwap, without the presence of any trusted-third
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party using transactions that are both indistinguishable and unlinkable. We experimen-

tally evaluate PolySwap by executing atomic swap between test networks of Bitcoin and

Ethereum blockchains.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 introduces required background

necessary for the work in this thesis. Chapter 3 reviews different works relating to fair

exchange in Bitcoin and other cryptocurrency systems. Chapter 4 provides overview of the

protocol along with different building blocks required for the proposed protocol. Chapter 5

describes our solution for privacy-preserving atomic swap. Chapter 6 details the exper-

imental evaluation of proposed protocol. Chapter 7 concludes this thesis and provides

directions for future work.
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Chapter 2

BACKGROUND

In this chapter, we describe some of the crypytographic preliminaries required for the

construction of the proposed solution.

2.1 Shamir’s Secret Sharing

Shamir’s Secret Sharing scheme [26] is based on the fact that a polynomial of degree k− 1

requires k distinct points to evaluate. This property is used to implement a (k, n) threshold

scheme to share a secret, where at least k unique points out of n are required to determine

the secret. Let, q(x) be a polynomial of degree k − 1. For x ∈ [1, n], q(x) generates n

unique points, which represent the shares of the secret. When at least k of these n points

are known, the coefficients of the polynomial q(x) can be calculated to release the secret.

2.2 Time-Locked Puzzles

Time-locked Puzzles [27] are cryptographic puzzles which enable hiding messages for a

duration of time. These puzzles guarantee that the receiver cannot see the message until

the time duration has elapsed by making the process of solving them inherently sequential,

meaning a large number of machines running the solution algorithm cannot solve the puzzle

faster than a single machine.
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2.3 Commitment Schemes

A commitment scheme enables a party to commit to a chosen secret without revealing

it (hiding), while allowing the party to reveal the committed secret later without being

able to cheat (binding). Given an elliptic curve group G of prime order q, the Pedersen

commitment [28] of message m ∈ Zq is calculated as m · G + r · H , where r←$Zq and

G & H are base points in the curve. We define a commitment scheme with commitment

algorithm {JcK, κ} ← com(c,G) that produces a Pedersen commitment JcK on message c

and a key κ to open the commitment in group G. We also define the verification algorithm

as {0, 1} ← Vcom(JcK, c, κ).

2.4 Zero Knowledge Proofs

Zero Knowledge Proofs (ZKP) [29] are protocols run between a prover and a verifier,

where the prover convinces the verifier about the validity of an assertion without revealing

anything else besides the fact that the assertion is true. ZKP should satisfy three basic

properties: Completeness, Soundness and Zero-Knowledge. A prover can always convince

the verifier of the assertion if it is valid (completeness), the verifier rejects the proof with

high probability if the assertion is not valid (soundness), and the verifier does not learn

anything besides the validity of the assertion (zero-knowledge).

Given a relation R : {0, 1}∗ × {0, 1}∗ → {0, 1} in NP, and a language L such that

L = {x | ∃w s.t. R(x,w) = 1}, we assume there exists a non-interactive zero knowledge

functionality with a prover algorithm π ← Pzk(x,w) and a verifier algorithm {0, 1} ←

Vzk(π) where π is the proof additionally containing the public inputs x. We assume that

if the verifier has any public inputs included in π beforehand, they will confirm that the

public values from π match the values they have–allowing the proofs to be verified on
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their own. We additionally define a committed Non-Interactive Zero Knowledge Protocol

(NIZKP) functionality. The prover algorithm is {JπK, π, κ} ← Pcom-zk(x,w), where JπK

is the commitment of π and κ is the commitment key. The verifier algorithm is {0, 1} ←

Vcom-zk(JπK, π, κ). We use superscripts in the algorithms to distinguish different proofs;

DH for a Diffie-Hellman proof and DL for a Discrete Log proof.

Proof of Group Conversion (GC). As we work across different cryptocurrencies which

use different cryptographic groups, it is important to be able to prove that a hidden value

in one group is equivalent to a hidden value in another. We define a prover algorithm

π ← PGC
zk ({JmK1, JmK2}, {m,κ1, κ2}), where JmKj is a hidden form, a commitment

or encryption, of message m on key κj in group Gj for j ∈ {1, 2}. We also define its

accompanying verifier algorithm {0, 1} ← VGC
zk (π). Between discrete log groups, i.e.

elliptic curves, this can simply be done through a bit-wise comparison, to show that each

bit is the same, and a range proof, to show that the value hidden in the larger group is

within the range of the smaller group. We also require a group conversion from Paillier

encryption scheme to a smaller elliptic curve group. For this, we will utilize Lindell’s

proof for LPDL [30].

2.5 Signature Schemes

In the following, we briefly mention some signature schemes used in different cryptocur-

rencies.

ECDSA Signature. Let G be an elliptic curve group of prime order q with base point G

andH : {0, 1}∗ → Zq be a hash function. For a private key, x←$Zq and the corresponding

public key,Q = x·G, to compute an ECDSA signature [31] on messagem, sample k←$Zq

and compute R = k · G. Let, (rx, ry) ← R, then, the signature is (r, s), where r ← rx
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mod q and s ← k−1 · (H(m) + r · x) mod q. We are interested in distributed signing

by Lindell [30] and its use to achieve conditional signing by Malavolta et al. [21] Popular

cryptocurrencies like Bitcoin, Ethereum, Litecoin use ECDSA Signatures.

Schnorr Signature. Let G be an elliptic curve group of prime order q with base point G

andH : {0, 1}∗ → Zq be a hash function. For a private key, x←$Zq and the corresponding

public key, Q = x ·G, to compute an Schnorr signature on messagem, sample k←$Zq and

compute R = k · G. Also, compute e = H(R||Q||m), then, the signature is (e, s), where

s← k−e ·x mod q. Schnorr Signatures are currently not used in any cryptocurrency sys-

tem but due to their simplicity and various useful properties in context of cryptocurrencies,

different cryptocurrencies including Bitcoin are trying to use them.

Cryptonote-style Signature. Popular privacy focused cryptocurrency Monero uses cryptonote-

style signatures. For details of the signature scheme, we refer readers to [5].
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Chapter 3

LITERATURE REVIEW

In this chapter, we review the literature in domains which relate to fair exchange in Bitcoin,

viz., Fair exchange of digital goods, Secure Multiparty Computation, Payment channels

and Interoperability protocols. Table 3.1 summarizes the features of the related approaches,

including our proposed protocol.

3.1 Fair Exchange of Digital Goods

Fair exchange of digital goods refers to protocols which enable a customer to pay a mer-

chant for digital goods or services while ensuring that the customer gets what he paid

for and the merchant gets paid if the customer receives his goods. Numerous proto-

cols [22, 23, 25, 32, 33, 34] have been proposed for fair exchange of goods over blockchain,

most of which are enforced using smart contracts. Zero-Knowledge Contingent Payment

(ZKCP) [22] leverages Zero Knowledge Proofs (ZKP) to enable a seller to prove the

knowledge of a secret the buyer is interested in. The release of a payment to the buyer

is contingent on the seller presenting a key to a smart contract to be used by the buyer to

learn the secret. This is possible in blockchains that have rich scripting capabilities, such

as Ethereum. Campanelli et al. [23] point out a possible violation of the zero-knowledge

property in the NIZK proof used in ZKCP if the common reference string (CRS) is mali-

ciously constructed by the buyer, and present a different protocol to address the violation
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called Zero-Knowledge Contingent Service Payments (ZKCSP) for digital services. It

addresses a use case where the proof itself is the good being sold, so ZKCP cannot be

used. Banasik et al. [33] present ZKCP without scripts over Bitcoin’s blockchain, using a

standard cut-and-choose technique to construct contracts. Dziembowski et al. [25] propose

a solution to the same problem in an efficient manner without the use of computationally

expensive ZKP. The solution is based on proof of misbehavior—an idea that it is cheaper

to prove incorrect behavior than correct behavior—which can be presented to a judge

contract in case of disagreement. Goldfeder et al. [32] study security and privacy properties

offered by different escrow protocols and propose several schemes that are usable over a

blockchain. The authors define different metrics that can be used to describe the privacy

properties of fair exchange schemes. However, ZKCP and its enhancements are proposed

for the exchange of digital goods over blockchain and it is not clear how they can be

extended to accomplish atomic swap. In addition, scripting capabilities in the blockchain

is a requirement for most of these protocols, while a third party is also needed to enforce

fairness.

3.2 Secure Multiparty Computation

Secure multiparty computation over blockchain [35, 24, 36, 37] closely relates to fairness.

Bentov and Kumaresan [35] formalized a claim-or-refund functionality among others for

secure computation over Bitcoin. Andrychowicz et al. [24] describe fair two-party and

multi-party computations via bitcoin deposits using Bitcoin-based timed commitments.

The commiter pays a deposit to get involved in a computation that is returned only if he

opens his commitment within some specific time, introducing a penalty scheme to enforce

fairness. Kumaresan et al. [36, 37] explore this idea further by improving on its efficiency
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through the reduction of the total size and number of required transactions.

3.3 Payment Channels

Payment channels over blockchain comprises of off-chain payment protocols guaranteeing

eventual transaction finality on the blockchain while providing a varying level of secu-

rity and privacy. Payment Channel Networks [38, 20, 39, 18], and Payment Channel

Hubs [40, 41]—primarily proposed as scaling solutions to blockchain—tackle a similar

problem to our protocol concerning guaranteed payments using off-chain transactions.

Lightning network [18] enables off-chain payments between distrusting users, where pay-

ments are enforced using HTLC transactions. But in order to make cross-chain payments,

the participating blockchains must support similar hash-functions. Malavolta et al. [20]

propose Multi-Hop HTLC protocol to address privacy concerns in such PCNs, i.e., the

payment route could be derived if a common hash is used. However, Multi-Hop HTLC’s

privacy solution does not apply in the case of a single hop [19], which is essentially an

atomic swap. To address this issue, AMHL was recently proposed by Malavolta et al. [21].

Nevertheless, in order for AMHL to support heterogeneous blockchains, modifications

to the cryptocurrency systems are required so that the signature schemes are instantiated

over same elliptic curve group. Bolt [40] is an anonymous bidirectional payment channel

scheme that provides payment unlinkability and anonymity, but it does not support Bitcoin.

TumbleBit [41] is a mixing service that enables unlinkable payments using an untrusted

intermediary however, the presence of the intermediary is detrimental to the anonymity of

the users in case of collusion.
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Table 3.1: Comparative evaluation of techniques for fair exchange (3=supported property;
(3)=partially supported; 7=does not support ; * implies the swap is between more than
two heterogeneous blockchains; n/a=not applicable)

Protocol No Intermediaries # of Chains Privacy Required FunctionalityTrusted Untrusted Two Multi* Unlinkability Indistinguishability
Atomic swap [TierNolan] [48] 3 3 3 7 7 7 HTLC

Escrow Protocols [32] 7 n/a 3 3 7 (3) n/a
TumbleBit [41] 3 7 (3) 7 3 7 HTLC

Bolt [40] 3 3 7 7 3 3 Zcash
Lightning [18] 3 7 (3) 7 7 7 HTLC

AMHL [21] 3 7 3 3 3 3 ECDSA/Schnorr Signatures
Xclaim [43] 3 3 3 7 3 7 Scripting capabilities

Proposed Protocol: PolySwap 3 3 3 3 3 3 SSSig reducible signatures

3.4 Interoperability Protocols

Interoperability protocols focus on connectivity and data sharing across blockchains [42,

43, 44, 45, 46, 47]. HyperService [42] describes a platform for interoperability and pro-

grammability for heterogeneous blockchains as a third party service, with a focus on pro-

grammability of cross-chain decentralized applications for developers. Xclaim [43] pro-

poses interoperability by locking backing cryptocurrency in its native blockchain for equiv-

alent tokens in the issuing cryptocurrency. Nonetheless, fairly expressive scripting ca-

pabilities are required in the issuing blockchain. Arwen trading protocol [44] proposes

a non-custodial protocol for trading cryptocurrencies over a centralized exchange, but

it only supports Bitcoin-derived cryptocurrencies. Gazi et al. [46] study sidechains in

proof-of-stake blockchains for interoperability. Thomas et al. [45] propose an interledger

payment protocol; however, the protocol requires both an escrowed transfer mechanism in

each blockchain and third parties “connectors” to process payments. Delgado-Segura et

al. [47] present a data trading protocol in Bitcoin exploiting an ECDSA vulnerability to

reveal the private key on release of a signature on the blockchain. However, it requires

specific scripts to function which prevents indistinguishability.
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Chapter 4

PROTOCOL OVERVIEW AND BUILDING BLOCKS

In this chapter, we present definitions and assumptions for PolySwap, provide an overview

of PolySwap and present our building blocks required for the main PolySwap protocol.

4.1 Definitions

4.1.1 Adversarial Model

We assume that a probabilistic polynomial time adversary A can corrupt any of the parties

during the execution of the protocol. We consider the static corruption model where an

adversary controls either party throughout the execution and cannot change parties midway.

We further assume that the parties have instantaneous access to each blockchain’s mempool

and can extract signatures from a transaction not yet confirmed by the network. This

allows the adversaries to access the unlocking secrets for Secret Sharing Signature (SSSig)

prematurely and potentially create opposing transactions.

4.1.2 Security Definitions

In this section, we present general security definitions of a privacy-preserving multi-chain

atomic swap (PMAS).

Let, Lj represent a list of blockchains B(j)
i for a party Pj where j ∈ {1, 2} and i ∈

{1, 2, . . . ,L.size}.
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Definition 4.1.1. (Valid List pair) A list pair (L1,L2) is valid for a PMAS if it holds the

following:

• Each blockchain B(j)
i in either L1 or L2 for j ∈ [1, 2] supports escape transactions.�

Definition 4.1.2. Privacy-preserving Multi-chain Atomic Swap (PMAS). A privacy-preserving

multi-chain atomic swap is a probabilistic polynomial-time interactive protocol run be-

tween two partiesP1 andP2 without any trusted third party with assets in list of blockchains

L1 and L2 respectively which holds the following properties:

1. Effectiveness. A PMAS is effective if, after successful termination of the protocol

for parties (P1,P2) with valid list pairs (L1,L2), every asset locked in joint accounts

in blockchains B(1)
i in L1 is under the ownership of P2 and those in L2 is under the

ownership of P1.

2. Termination. For a party who follows the protocol, PMAS always terminates within

a reasonable time with either a success or abort state.

3. Fairness. A PMAS is fair if either party does not behave according to the protocol,

then an honest party Pj either retains ownership of all assets in blockchains B(j)
i in

Lj or gains ownership of all assets in blockchains B(3−j)
i in L3−j .

4. Privacy. An PMAS is privacy-preserving if the following holds:

• Indistinguishability Transactions created during execution of PMAS are indis-

tinguishable from majority of transactions in the blockchain.

• Unlinkability. Transactions created during execution of PMAS is unlinkable

to a global passive observer O if O cannot guess the link between T
(C)

B(1)
i

for

blockchains B(1)
i in L1 and T (C)

B(2)
i

for blockchains B(2)
i in L2 with probability

greater than negl(.). �
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4.1.3 Blockchain Model

Accounts in blockchains are defined with a public-key pair (pk, sk) where the public key

pk corresponds to the address of the account while the private key sk functions as the key

with which you can spend assets credited to the account by producing a valid signature on

a transaction. By assets we mean native tokens issued in the blockchain.

Transactions in a blockchain B are denoted by TB and defined by a tuple (pk1, pk2, [t])

representing a transaction spending from pk1 to pk2 on blockchain B, and the transaction

may be optionally locked for a time duration t. This time duration may be implemented

differently in different blockchains. In Bitcoin, block height is used to emulate time

duration. We refrain from denoting the payment value in the transaction tuple as it makes

referring to them cumbersome and is of no concern to us assuming that the parties can

verify the agreed value upon receiving the transaction in intermediate phases. Unless

otherwise specified, a transaction is unsigned–meaning it cannot be redeemed by publishing

to the blockchain. A transaction T is redeemable in the blockchain when coupled with

its corresponding valid signature, denoted by a tuple (T, σ) where T is the transaction

description and σ is a valid signature on T . We do not consider other complex spending

conditions as our protocol is based on this form of basic spending condition available

in most blockchains. For example, in Bitcoin, this is a simple Pay-to-Public Key Hash

(P2PKH) transaction.

Joint accounts are accounts whose asymmetric key pair (corresponding to accounts

and keys) is generated by parties using off-chain distributed key generation protocol, and

as such, requires distributed signing to generate valid signatures. These accounts are

indistinguishable from other accounts on the blockchain. Since they are joint accounts,

they can function as escrow to hold assets in the intermediate phases of the protocol. Some
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blockchains provide this functionality through “multi-signature” addresses. However, we

do not use such functionality as doing so may reduce the size of indistinguishability set for

transactions. For example, in Bitcoin, a multi-signature address has prefix 3 instead of 1

for a general address.

Escape Transactions. We say a blockchain supports escape transactions if it has native

support for creating transactions that spend from accounts not yet present in the system

but will be present after expiration of some time duration. Most blockchains that support

time-locks also support escape transactions. Monero is an exception to this property.

4.2 PolySwap Overview

PolySwap is a two-party protocol run by parties willing to exchange assets they own in a

set of blockchains at once without a trusted third party. The protocol is executed by parties

each with a set of blockchains, whose signature scheme is reducible to a secret sharing

signature (SSSig), where at least one set supports escape transactions. Figure 4.1 shows

the overview of the proposed solution.

Alice and Bob owning assets in Blockchain 1 and Blockchain 2 respectively want to

exchange assets. First, both parties jointly create distributed public keys used as joint

accounts on each blockchain (AB1 & AB2) using instances of SSSig for the signature

algorithm used in the blockchain. SSSig enables distributed signing on messages with

private outputs of unlocking secrets for each party along with a common partial signature.

The assets in joint accounts can only be spent by producing a complete signature which

requires unlocking secrets from both parties, thus functioning as an escrow. The SSSig

scheme provides indistinguishability of atomic swap transactions from majority of transac-

tions in the same blockchain as these joint accounts are derived from standard public keys
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Figure 4.1: Overview of PolySwap

and the complete signature computed jointly is verifiable by standard verification algorithm

for a given signature scheme. SSSig is described in details in Section 4.3.1 where we also

present constructions for ECDSA, Schnorr and Cryptonote signature which are most widely

used in cryptocurrecy systems.

Next, each party creates time-locked refund transactions from the joint accounts de-

noted by TxR1 and TxR2 . This is to prevent the loss of assets in case of malicious behaviour

of parties where a party terminates the protocol prematurely (before completion). Prior

solutions solved this problem by having time-locked transaction paying back to the owner

in case a time window expires within which the atomic swap should have successfully

terminated. We follow a similar approach for blockchains that support escape transactions.

But for a set of blockchains without support for escape transactions, we solve this problem

by releasing a private key share of the party for the joint accounts in such blockchains if

any escape transactions for the other set of blockchains is published using the polynomial
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locking scheme. This scheme is described in details in Section 4.3.3.

Then, each party posts deposit transactions TxD1 and TxD2 paying to joint accounts. To

transfer assets from a joint account to the other party, claim transactions TxC1 paying to Bob

in Blockchain 1 and TxC2 paying to Alice in Blockchain 2 are created. These transactions

are signed using SSSig with unlocking secrets for each transaction as output to each party.

Since, no party has ability to complete the signature themselves, they cannot post these

transactions to the blockchain to acquire assets in joint accounts. In order to enable each

party to complete these signatures atomically, we introduce a polynomial locking scheme

(PolyLock) for linking and locking unlocking secrets for signatures. The scheme binds

together partial signatures for different transactions in the sets of blockchains. Using this

polynomial scheme breaks the link between transactions involved in the swap operation

as seen in prior HTLC-based atomic swap solutions. This scheme is a key component to

enabling multi-chain atomic swap as incorporating multiple partial signatures is trivial by

using higher order polynomials. PolyLock is described in Section 4.3.2.

Finally, Alice creates a PolyLock locking her unlocking secrets for claim transactions

TxC1 and TxC2 . The lock is sent to Bob who upon verification sends back his unlocking

secret for Alice’s claim transaction, TxC1 . With this unlocking secret, Alice can complete

the signature and post her claim transaction TxC1 to the blockchain. After which Bob can

extract the full signature from the claim transaction to recover Alice’s unlocking secret used

to release the PolyLock which gives him the unlocking secret for his claim transaction TxC2

which he can post to the respective blockchain. This completes the atomic swap as Alice

owns Bob’s asset in Blockchain 1 and Bob owns Alice’s asset in Blockchain 2, after the

confirmation of claim transactions.
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4.3 Building Blocks

In this section, we describe the components: secret sharing signature scheme, polyno-

mial locking scheme and contingency protocol which are required as building blocks for

PolySwap.

4.3.1 Secret Sharing Signature (SSSig) Scheme

In any cryptocurrency system, cryptographic signatures are required to authorize and verify

the ability of a user to spend assets in the system. Recognizing this, we introduce a

cryptographic primitive called Secret Sharing Signatures (SSSig). Each of the two parties

involved in the creation of a signature work together to partially sign a message, producing a

partitioned signature. The partitioned signature consists of the public part (partial signature

σ̄), Party 1’s private part (unlocking secret φ1 or a), and Party 2’s private part (φ2 or b).

The three parts are combined to produce a full signature σ that can be verified using the

standard verification algorithm of the signature scheme. Additionally, given a full signature

σ, and one of the unlocking secrets φi, the other unlocking secret φ3−i can be computed.

These secrets can be chained together to allow the release of one signature to complete

another signature or release a key to other valuable information. The following is the

formal definition of an SSSig scheme.

Definition 4.3.1. A Secret Sharing Signature (SSSig) scheme:

S = (KeyGen,PSign,Complete,Reveal,Verify)

is run by parties P1 and P2 and consists of following algorithms and protocols:
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{(α, pk), (β, pk)} ← 〈KeyGenP1
(1n),KeyGenP2

(1n)〉: On input of security parameter

1n, the key generation protocol returns a shared public key pk and secret keys α & β to P1

& P1 respectively.

{(φ1,Φ1,Φ2, σ̄), (φ2,Φ2,Φ1, σ̄)} ← 〈PSignP1
(α, pk,m), PSignP2

(β, pk,m)〉: On input

of respective secret keys α & β, public key pk and message m, the partial signing protocol

returns unlocking secrets for signatures on message m as φ1 and φ2 along with their public

forms Φ1 and Φ2 to P1 & P1 respectively and σ̄ as partial signature to both parties.

σ ← CompletePj(φ1, φ2, σ̄): On input of the unlocking secrets φ1 & φ2 and partial

signature σ̄, the complete algorithm produces a full signature σ on message m.

φ3−j ← RevealPj(σ, φj): On input of the full signature σ and a unlocking secret φj , the

reveal algorithm produces the other unlocking secret φ3−j that completes the signature.

{0, 1} ← VerifyPj(σ, pk,m): On input of a signature σ on message m for public key pk,

the verification algorithm returns 1 for accept and 0 for reject.

Correctness. A SSSig scheme is correct if the verification algorithm Verify always accepts

a signature generated by the complete algorithm Complete. �

Our intuition for constructing an SSSig from a standard signature scheme is as follows.

We start with a two-party signing scheme which is executed until the last communication

such that the completion of the signature is protected by a hard problem for each party.

Then, each party takes a commitment of their last communication and proves to the other

party that it completes the signature. At this point, we have a perspective SSSig. We

now verify that this new protocol meets the requirements of an SSSig. If not, then more

signature-specific alteration may be required. For example, ECDSA requires an early value

within the signature to be altered.

We present SSSig constructions for the following common schemes: ECDSA, Cryptonote

Ring Signature, and Schnorr Signature.
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ECDSA-based SSSig Construction

ECDSA-based SSSig construction is based on the ideas of Fast Secure Two-Party ECDSA

Signing by Lindell [30] and the modifications by Malavolta et. al. [21] to realize AMHLs.

Our construction is presented in Protocol 4.1.

Let G be an elliptic curve group of order q with base pointG andH : {0, 1}∗ → {0, 1}|q|

be a hash function. Two parties (P1,P2) generate a shared public key Q = (x1 · x2) · G

where x1 is P1’s share of secret key and x2 is P2’s share of secret key. The distributed

key is generated by following the key generation protocol presented by Lindell [30] which

generates the public key Q = (x1 ·x2) ·G along with a Paillier key-pair (skhe, pkhe) owned

by P1.

For the Paillier homomorphic encryption scheme, we denote the encryption function

as Enc and decryption function as Dec. P1 encrypts their secret key as ckey = Enc(x1)

which is used by P2 to help P1 produce their half of the signature without revealing either

party’s key. Recall that multiplication of outputs from Enc denotes homomorphic addition

and exponentiating outputs from Enc results a scalar multiplication of the plaintext.

The signing protocol works similar to that presented by Lindell [30] where the secret

key is the multiplicative share of x and randomness is multiplicative share of k such that

x = x1 ·x2 and k = k1 ·k2 to compute signature (r, s) = (r, k−1 ·(H(m)+r ·x)) whereR =

(rx, ry) = k ·G is randomness and r = rx. We modify this signature by having P2 select a

random k3←$Zq and include it in multiplicative share of k such that k = k1 · k2 · k3. Then,

the shared signature is computed without k3 which will serve as the unlocking secret for P2

and since k3 was omitted, the shared signature (r, s′′) = (r, k−1
1 · k−1

2 (x1 · x2 · r +H(m))

received byP1 is an incomplete signature onm. For the sake of convenience in later proofs,

(s′′)−1 is used as the unlocking secret for P1 and k3 is the unlocking secret for P1.
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Given the other party’s unlocking secret, each party can trivially compute the full valid

signature as (r, s′′ · k−1
3 ) = (r, k−1

3 · k−1
1 · k−1

2 (x1 · x2 · r + H(m)). Additionally, given

a valid signature (r, s) and Pj’s unlocking secret φj , P3−j’s unlocking secret φ3−j can be

trivially calculated. However, due to the nature of ECDSA signature, both (r, s) and (r,−s)

are valid signatures. We perform a simple check with public forms of unlocking secrets,

φ3−j ·G
?
= Φ3−j , to ensure correct values are returned by the Reveal protocol.

Cryptonote-based SSSig Construction

Let G be the twisted Edwards curve Ed25519. Ed25519 is a group over a finite field Fq,

where q = 2255 − 19, with a base point G of prime order l. The equation for this curve E

is defined as −x2 + y2 = 1− 121665
121666

· x2y2 mod q, Hs : {0, 1}∗ → Fq be a cryptographic

hash function andHp : E(Fq)→ E(Fq) be a deterministic hash function. The construction

is presented in Protocol 4.2.

In the key generation step, the two parties (P1,P2) execute a distributed key generation

protocol in the malicious model to generate a distributed spend key B := (b1 + b2) ·G with

b1 as P1’s secret and b2 as P2’s secret. Also, a view key A = a · G is created by a party

with the discreet log a known to both parties so that each party can independently check to

recognize their transactions. However, in order to spend their output, knowledge of either

the full spend key or the full signature is required.

Since the signature scheme is a ring signature, other ring members are simulated as we

are only concerned with our part of the signature which we assume is indexed at s in the

ring for each ring members i ∈ [0, n], which is released by our signing scheme. This can

be achieved by having parties divide the one-time private key x = x1 + x2 where x1 = b1

for P1 and x2 = b2 +Hs(aR) for P2.
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Recall that the one-time private key for producing ring signatures in Cryptonote proto-

col is calculated as x = b +Hs(aR) where R is the randomness encoded into the transac-

tion. The corresponding public key is Ps = x ·G and is calculated as Ps = Hs(aR)G+B.

Similarly, parties jointly calculate intermediate values Ls = (qs,1+qs,2)·G andRs = (qs,1+

qs,2)·Hp(Ps) where qs,1 & qs,2 is randomly chosen by P1 & P2 respectively. Next, both par-

ties calculate the non-interactive challenge as c = Hs(m,L0, .., Ls, .., Ln, R0, .., Rs, .., Rn),

where all values except m,Ls, Rs are simulated values calculated with {qi, wi, Pi | i ∈

[0, n], i 6= s}. Next, each party calculates part of the the response cs = c−
∑n

i=1wi. With

this value, P1 calculates the other part of the response rs,1 = qs,1− cs ·x1 and P2 calculates

rs,2 = qs,1 − cs · x2 as their unlocking secrets. The verification of each intermediate value

is done using public forms of secrets and appropriate zero knowledge proofs. The value

σ̄ := {I, ci, ri | i ∈ [0, n], i 6= s} is output as partial signature to both parties. The signature

can then be completed trivially by calculating rs = rs,1 + rs,2 once a party has the other

party’s unlocking secret (to include it in the partial signature).

Schnorr-based SSSig Construction

Schnorr-based construction for SSSig is comparatively simpler due to the linear structure

of the signature. The construction is presented in Protocol 4.3.

Let G be an elliptic curve group of order q with base pointG andH : {0, 1}∗ → {0, 1}|q|

be a hash function. Two parties P1 and P2 generate a shared public key Q = (x1 + x2) ·G

with P1’s private key share x1 and P2’s private key share x2. To generate partial signatures

on a message, each party P1 and P2 selects k1←$Zq & k2←$Zq respectively to compute

R1 = k1 · G & R2 = k2 · G. Next, the two parties compute common randomness R =

R1 +R2 which is used by each party to locally compute e = H(Q||R||m).
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Next, P1 calculates their unlocking secret as s1 = k1 − x1 · e and P2 calculates their

unlocking secret as s2 = k2 − x1 · e. To check the validity of these unlocking secrets, P1

and P2 exchange the public form of these secrets as S1 = s1 ·G and S2 = s2 ·G along with

a proof of knowledge of discrete log and verify whether S1 + S2
?
= R − e · Q. In order to

compute the full signature, each party’s unlocking secrets s1 and s2 can be added resulting

in s = (k1 + k2) − (x1 + x2) · e which is a valid signature for the distributed secret key

x1 +x2. (Note that a similar approach can be followed to create SSSig scheme for EdDSA

since it is is a variant of Schnorr’s signature scheme.)

4.3.2 Polynomial Locking

In this section, we present the polynomial locking scheme, which is used to link the

unlocking secrets and eventually release the secrets at the same time. We modify Shamir

Secret Sharing [26] to create a polynomial locking scheme. The scheme is comprised of

three algorithms PolyLock, PolyVerify and PolyRelease, and is presented in Algorithms

1, 2 & 3 respectively.

The PolyLock algorithm links all the unlocking secrets to a polynomial. It takes as

input the list of unlocking secrets Lφ, the list of public forms of the secrets LΦ, and the

list of the order of the groups of the secrets Lλ. Lφ is in the form of a tuple (i, φi). Lλ

is comprised of order of groups used by the signature scheme in a cryptocurrency system.

For example, in Bitcoin, it is the order of base point G in secp256k1 curve. In line 1, we

set the degree of polynomial k to be one less than the size of Lλ, but it could be the size of

any of the inputs as they are the same. All secrets are converted to the largest group order

q in the list of group orders Lλ. If q is not a prime, then the next largest prime is selected.

After the group conversions, we obtain k + 1 values, with which we create a polynomial

f(x) over Zq of degree k:
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Algorithm 1 PolyLock(Lφ, LΦ, Lλ)
input : Lφ = list of secrets, LΦ = list of public forms of secret, Lλ = list of order of groups of

secrets
output : L−x = list of points in the polynomial, Lπ = list of group conversion proofs, πx = proof

for positive values of x, π−x = proof for negative values of x
1 Let LJcK, L−x, Lκc , Lκφ , Lπ, LJφK be empty lists.
2 k = Lλ.size− 1
3 q = max(Lλ)
4 if q is not prime, q = nextLargestPrime(q)
5 Let G be a discrete log group of order q
6 f(x) = solvePolynomial(Lφ, q)
7 Let Lc be the list of coefficeints of f(x)
8 for ci ∈ Lc do
9 {JciK, κci} = com(ci,G)

10 LJcK.concat(JciK)
11 Lκc .concat(κci)

12 end
13 for i ∈ {−1...− k} do
14 L−x.concat(i, f(i))
15 end
16 for i ∈ {0, 1, ...k} do
17 {JφiK, κi} = com(Lφ[i],G)
18 if LΦ[i] exists ∧LΦ[i] /∈ G then
19 πi = PGC

zk ({LΦ[i], JφiK}, {Lφ[i], κi})
20 else
21 πi = true proof
22 end
23 Lκφ .concat(κi)

24 Lπ.concat(πi)
25 LJφK.concat(JφiK)
26 end
27 πx = Pzk({LJcK, LJφK}, {Lκc , Lκφ})
28 π−x = Pzk({LJcK, L−x}, {Lκc})
29 return (L−x, Lπ, πx, π−x)

f(x) = c0 + c1x+ c2x
2 + ...+ ckx

k mod q

In line 6, we call the standard solvePolynomial function to obtain the polynomial

f(x) over Zq with its coefficients in Lc. Next, the coefficients are committed to generate
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the proofs for the point values of the polynomial. In lines 13-15, we calculate the negative

point values to be used as a partial key for the other party. In lines 16-26, we generate the

proofs for correct group conversions. However, if all groups are same, then we simply set

it to true proof that always verifies successfully. The algorithm outputs a list of points

L−x on the polynomial as a tuple in point-value representation (i, f(i)), along with a list of

proofs Lπ relating to the group conversion of secrets, proof πx relating to the correctness of

positive point values hiding the secrets, and proof π−x relating to the correctness of negative

point values.

Algorithm 2 PolyVerify(Lπ, πx, π−x, Lλ)
input : Lπ = list of group conversion proofs, πx = proof for positive values of x, π−x = proof

for negative values of x, Lλ = list of order of groups of secrets
output : 1 for accept or 0 for reject

1 k = Lλ.size− 1
2 q = max(Lλ)
3 if q is not prime, q = nextLargestPrime(q)
4 Select the smallest secure elliptic curve of with a cofactor of 1 and order q or greater. q =
5 for i ∈ {0, 1, ..., k} do
6 if Lλ[i] 6= q then
7 if VGC

zk (Lπ[i]) 6= 1 then
8 return 0
9 end

10 else
11 if Vzk(Lπ[i]) 6= 1 then
12 return 0
13 end
14 end
15 end
16 if Vzk(πx) ∨ Vzk(π−x) 6= 1 then
17 return 0
18 end
19 return 1

The PolyVerify algorithm verifies the proofs of well-formedness of the polynomial,

i.e., the polynomial hides the desired unlocking secrets and the partial key is the key to the
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proper polynomial. It takes the list of proofs Lπ, πx&π−x and the list of orders Lλ as input,

and it outputs 1 for acceptance or 0 for the rejection of the proofs.

Algorithm 3 PolyRelease(L−x, j, φj, Lλ)
input : L−x = list of points in the polynomial, φj = secret at position j, j = position of secret in

polynomial, Lλ = list of order of groups of secrets
output : Lφ = list of the original secrets

1 k = Lλ.size− 1
2 q = max(Lλ)
3 if q is not prime, q = nextLargestPrime(q)
4 Let Lφ be an empty list.
5 f(x) = solvePolynomial(L−x.concat(j, φj), q)
6 for i ∈ {0, 1, 2, ..., k} do
7 Lφ.concat(f(i)))
8 end
9 return Lφ

The PolyRelease algorithm releases the unlocking secrets locked in the polynomial.

It takes the list of points L−x along with a unique point (j, φj) and Lλ as input. Since

we already have k point values in the polynomial, with an additional point solving the

polynomial is trivial. It returns the original list of secrets Lφ as output.

In practice, a party runs the PolyLock algorithm to get the partial key L−x and the

proofs. This partial key along with the proofs are sent to another party willing to get the

unlocking secret who first verifies the proofs by running PolyVerify and after getting a new

point in the polynomial runs the PolyRelease algorithm to get the original secrets linked

and locked in the polynomial.

Since we use polynomials to link and lock a party’s secret values, increasing the number

of secrets locked by the polynomial is simply a matter of increasing the order of the

polynomial used. This property is crucial to enabling many-to-many atomic swaps as

secrets for claim transaction in different blockchains can be locked in a single polynomial

lock.
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4.3.3 Contingency Protocol

Contingency protocol ensures that assets of each party are recoverable in case either party

decides to abort before termination or acts maliciously. It is dependent upon the actual

cryptocurrency system used and the functionalities available. This protocol run between

two parties each with sets of blockchains works for cases where at least one supports escape

transactions. The contingency protocol is presented as follows.

If a blockchain supports escape transactions then, the contingency protocol is straight

forward. Each party Pj creates escape transaction TE
B(j)
i

= (pk
(j)
i ,Pj, tj) for blockchains in

lists Lj paying to their own address which is signed using distributed signing protocol to

produce signature σE
B(j)
i

for j ∈ {1, 2} and i ∈ {1, 2, . . . ,Lj.size}. Recall that the account

which funds the escape transactions are one time joint accounts created using two-party key

generation protocol, thus requiring a distributed signing protocol to create valid signatures.

At the end of the protocol, P1 gets (TE
B(1)
i

, σE
B(1)
i

) locked for time t1 in blockchains in list

L1 while P2 gets (TE
B(2)
i

, σE
B(2)
i

) locked for time t2 in blockchains in list L2 such that t1 >>

t2. In case of deviation from the protocol, each party can independently post the escape

transaction to the blockchain to recover their funds.

However, in cryptocurrency systems that do not support time-locked escape transac-

tions, the contingency protocol is more involved. We describe an alternative contingency

protocol for cases where at least one of the blockchains in L1 does not support escape

transactions and all blockchains in L2 support escape transactions. First, we select a prime

order q to be the largest order from the blockchains in L2. If the largest order is not prime

then, we select the next largest prime. The parties jointly agree on difficulties δ1 and δ2

for concealed time locks such that δ1 is much greater than δ2, e.g. δ2 takes about 12

hours to solve and δ1 take about a week. This is to ensure that P1 can not hold their
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escape transactions until P1 submits theirs and make the puzzle a race that P2 is capable of

winning.

Concealed Time-locked Puzzle: Conceal(m, JmK, κm, δ)
For party P1 to create a concealed time-locked puzzle Π′ hiding message m with difficulty δ
and prove its correctness to P2, parties follow the following steps:
1. P1 creates a Paillier Key (pkP , skP ) using the method from Lindell’s Keygen [30] with

security parameter 1n.
2. P1 sends pkP to P2. P1 and P2 parse N from pkP and chooses gP ←$Zn
3. P1 sends hP = g2δ

P to P2, along with an accompanying proof [49]
4. P1 and P2 agree on an integer k for the cut-and-choose size
5. P2 chooses j←$Zk and creates {JjK, χj} = com(j)
6. P2 sends JjK to P1

7. For each i ∈ Zk, P1 creates the following set for cut-and-choose:

(a) ri←$Zn
(b) wi = griP mod n

(c) xi ← Gen({1}256)

(d) {JxiK, κxi} = com(xi)

(e) ei ← Encxi(wi)

(f) mi←$Zq
(g) {JmiK, κi} = com(mi)

(h) vi = (N + 1)mi · hri·NP mod N2

8. P1 sends {(ei, JxiK, JmiK, vi)|i ∈ Zk} to P2

9. P2 sends j and χj to P1.
10. P1 verifies j ∈ Zk and Vcom(JjK, j, χj)
11. P1 sends {(xi, wi, κxi , ri,mi, κi)|i 6= j ∧ i ∈ Zk} to P2

12. P2 verifies griP = Decxi(ei), Vcom(JmiK,mi, κi), and (vi·h
−ri·N
P mod N2)−1

N = mi for all
i 6= j ∧ i ∈ Zk

13. P1 sends m′ = m−mj to P2

14. Both parties calculate JmK′ = JmjK + (m′)G

15. P1 sends π = PDL
zk (JmK · (JmK′)−1, κm − γ) to P2.

16. P2: If PDL
zk (JmK · (JmK′)−1) 6= 1, abort.

17. Return {xj , κxj} to P1 and Π′ = {vj , ej ,m′, JxjK} to P2

Protocol 4.4: Concealed Time locked puzzles
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For parties (P1,P2), the protocol takes as input their list of account keys for the joint

accounts α(j)
i & β

(j)
i for blockchains in Lj , the public keys for joint accounts pk(j)

i for

blockchains in Lj , the difficulties for concealed time locked puzzles δ1 & δ2 and the list of

blockchains Lj for j ∈ {1, 2}. Each party P1 and P2 first randomly chooses m1 and m2

from Zq. Each party Pj creates a polynomial lock Ωj linking their half of the secrets, ᾱ

for P1 and β̄ for P2 extracted from their unlocking secrets using extractkey(.), for

joint accounts in list L1 along with m1 for P1 and m2 for P2. For the locks each party

also needs to input the public forms of their secrets which they can trivially calculate. For

that, we assume a function publicform(pk). Similarly, we assume a function ord(.)

which returns the order of the group for its input. The outputs of PolyLock are sent to the

other party which is verified by each party i.e. Ω1 is sent to P1 and Ω2 is sent to P2. After

that, each party creates a concealed time with secret keys x1 and x2 and difficulty δ1 and δ2

concealing the values m1 and m2 respectively to receive Π′1 and Π′2 for P1 and P2.

Next, each party creates and signs escape transactions TE1

B(2)
i

= (pk
(2)
i ,P1, t1) for P1

and TE2

B(2)
i

= (pk
(2)
i ,P2, t2) for P2 for blockchains in list L2 such that t1 >> t2 using

corresponding PSign protocols. Once again with their unlocking secrets for each escape

transactions TE1
B2

paying to P2 along with the secret key to their concealed time-locked

puzzle x1, P1 creates a polynomial lock Ω3. Similarly, P2 creates polynomial lock Ω4 with

their unlocking secrets for each escape transaction TE2
B2

paying to P1 along with their secret

key x2 to concealed time-locked puzzle. The parties then send the polylock outputs Ω3 to

P2 and Ω4 to P1 and verifies it. Once verified, the parties send all their unlocking secrets

for the other party’s escape transaction to each other. P1 sends aE2

B(2)
i

to P2 while P2 sends

bE1

B(2)
i

to P2. With this the parties can complete the signatures for their escape transactions

using corresponding Complete protocols that can be posted to the blockchain when

required. The protocol returns each party with their signed escape transaction, concealed
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time locks and polynomial locks to each party. P1 gets (TE1

B(2)
i

, σE1

B(2)
i

,Π′2,Ω2,Ω4) and P2

gets (TE2

B(2)
i

, σE2

B(2)
i

,Π′1,Ω1,Ω3).

Escape Protocol. In the event of PolySwap failure after assets are in escrow, the mech-

anisms in the Contingency Protocol are used to recover the assets. When both sets of

blockchains support escape transactions, this is trivial. P1 submits their escape transactions

after t1 has elapsed and P2 submits their escape transactions after t2 has elapsed and the

protocol terminates on failure with both parties getting their assets back.

Otherwise, the escape protocol is more complicated. Once t2 elapses, P2 executes

their escape transactions on the blockchains in L2. P1 extracts the signature from this

transaction and uses Ω4 to recover x2. P1 uses x2 to reveal the concealed time-locked

puzzle Π′2, recovering Π2. P1 then solves the puzzle to extract m2 and uses m2 with Ω2 to

extractP2’s private keys to the joint accounts for the blockchains in L1. P1 then unilaterally

creates transactions out of the joint accounts from the blockchains from L1. If P2 does not

execute their escape transactions before t1 elapses, then this process is mirrored. Note that

the difficulty of Π1 is much higher than Π2 to prevent P2 from using superior hardware to

steal assets.
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Chapter 5

PolySwap: PRIVACY-PRESERVING ATOMIC SWAP PROTOCOL

Addressing our research question, we propose PolySwap, a generic framework for privacy-

preserving multi-chain atomic swap with the following properties:

• No trusted third party is required.

• No special features are required, such as scripting, besides the support for time-

locked escape transaction.

• An outside observer cannot confirm whether or not an atomic swap occurred.

• An outside observer cannot distinguish atomic swap’s transactions from normal ones.

• Supports atomic swap from any set of blockchains to any other set of blockchains.

We take advantage of the fact that all blockchains use digital signature as a common

cryptographic primitive to verify transactions. We introduce a novel secret sharing sig-

nature scheme to remove the necessity of common interfaces between the blockchains in

question and not limiting itself to common functionalities available on the blockchains.

These secret sharing signatures allow an arbitrarily large number of signatures to be bound

together, such that the release of any single transaction on one blockchain opens the re-

maining transactions for the other party, allowing multi-chain atomic swaps while still

being indistinguishable from a standard signature. We provide construction details of

SSSig for ECDSA, Schnorr, and CryptoNote-style Ring signatures. Out of the top 30

mainstream cryptocurrencies [50], the provided constructions for SSSig covers 23 based
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on the signature algorithm used. Additionally, we provide an alternative contingency

protocol, allowing parties to exchange to and from blockchains that do not support any

form of time-locked escape transactions.

5.1 PolySwap

PolySwap is a two-party protocol that enables a party to exchange any number of cryp-

toassets with another party without a trusted intermediary in a single run of the protocol.

PolySwap is presented in Protocol 5.1.

The protocol is jointly run by two partiesP1 andP2 holding assets in a list of blockchains

L1 and L2 respectively. We describe the protocol for when blockchains in L1 supports

escape transactions. However the protocol can be easily adjusted to address instances

where blockchains in L2 support time-locked transaction and L1 does not, meaning the

roles of P1 and P2 can be readily interchanged. In step 1, both parties run the KeyGen

functionality for each blockchain in lists L1 and L2 to create joint accounts with a shared

public key pk and corresponding secret keys as α and β respectively for parties P1 and P2.

The joint accounts function as escrows where a party deposits the assets to be exchanged as

a transaction from a joint account needs to be jointly signed by each parties. After creating

the joint accounts, both parties jointly run the contingency protocol as described in protocol

Section 4.3.3 to ensure that the assets are recoverable in case of unsuccessful termination

of the protocol. In step 3, each party deposits the agreed values of assets for exchange in

the respective joint accounts.

In step 4, parties P1 and P2 jointly create and sign claim transactions paying to the

other party from each joint account in each blockchain in lists L1 and L2 using PSign from

SSSig for respective blockchain. The claim transactions for blockchains in list L1 pays
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PolySwap: Privacy-Preserving Multi-chain Atomic Swap Protocol
For security parameter 1n, parties Pj , holding assets in a list Lj of blockchains B(j)

i for j ∈ {1, 2}
representing the parties and i ∈ {1, 2, ...Lj .size} representing a blockchain in the list, where L2

supports time-locked escape transactions, proceed in the following steps:

1. For each blockchain B(j)
i , P1 and P2 jointly run KeyGen which returns a shared public key pk(j)

i

and corresponding secret keys to each party, α(j)
i to P1 and β(j)

i to P2.
2. P1 and P2 jointly run Contingency protocol as described in Section 4.3.3 to receive signed

time-locked escape transactions to ensure fair termination of protocol.
3. P1 andP2 each post deposit transactions in their respective blockchains, depositing agreed values

to the public key, joint account, created in Step 1. If not all blockchains in L1 support time locks,
then P2 posts their deposit transactions first.

4. P1 and P2 create claim transactions and jointly generate secret sharing signatures for the claim
transactions in each blockchain:

(a) For each blockchain B(j)
i , P1 and P2 jointly create claim transactions TC

B(j)
i

=

(pk
(j)
i ,P3−j).

(b) For each blockchain B(j)
i , P1 and P2 jointly run the PSign protocol on transaction TC

B(j)
i

as message. Both parties receive a partial signature σ̄C
B(j)

i

. P1 receives an unlocking secret

aC
B(j)

i

and P2 receives unlocking secret bC
B(j)

i

.

5. P1 creates a PolyLock linking their SSSig unlocking secrets:

(a) P1 and P2 create a list of orders Lλ from the list of blockchains in L2 and L1.
(b) P1 runs PolyLock(Lφ, LΦ, Lλ) where Lφ = [aC

B(j)
i

] and LΦ = [AC
B(j)

i

], to receive Ω =

(L−x, Lπ, πx, π−x).
(c) P1 sends Ω to P2. P2 verifies by running PolyVerify(Lπ, πx, π−x, Lλ).

6. If P2 accepts, P2 releases all their secrets bC
B(2)

i

so that P1 can redeem their claim transactions

TC
B(2)

i

consequently making it possible for P2 to redeem their claim transactions TC
B(1)

i

:

(a) For each blockchain B(2)
i in L2, P1 computes the full signature σC

B(2)
i

by running Com-

plete(m, aC
B(2)

i

, bC
B(2)

i

, σ̄C
B(2)

i

) and posts the transaction (TC
B(2)

i

, σC
B(2)

i

) to B(2)
i .

(b) P2 retrieves a signature from a blockchain B(2)
i from L2, σC

B(2)
i

. P2 runs Re-

veal(bC
B(2)

i

, σC
B(2)

i

) to compute aC
B(2)

i

.

(c) P2 uses PolyRelease(L−x, aCB(2)
i

, i, Lλ) to get P1’s secrets, aC
B(1)

i

for each blockchain B(1)
i

in L1.
(d) For each blockchain B(1)

i in L1, P2 computes the full signatures σC
B(1)

i

by running Com-

plete(m, aC
B(1)

i

, bC
B(1)

i

, σ̄C
B(1)

i

) and posts the transaction (TC
B(1)

i

, σC
B(1)

i

) to B(1)
i .

7. If all transactions are posted and confirmed, return success.

Protocol 5.1: PolySwap
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to P2 while those in L2 pays to P1. PSign outputs unlocking secrets φ1 along with their

public forms Φ1 for P1 and unlocking secret φ2 with its public form Φ2 for party P2 for

each of the claim transactions in each blockchain. We represent the unlocking secret as a

with its public form as A for party P1 and unlocking secret as b with its public form as B

for party P2 for readability. In step 5, P1 creates a polynomial lock PolyLock with their

outputs from step 4 for claim transactions TC
B(1)
i

and TC
B(2)
i

for blockchains in list L1 and L2

respectively. P1 sends the outputs from this lock to P2 who runs the PolyVerify algorithm

to verify the validity of the polynomial.

After P2 accepts the proofs of PolyLock, in step 6, P2 sends all their unlocking secrets

from step 4 for claim transactions in L2 to P1. With these unlocking secrets P1 runs

Complete to recover signatures for the claim transactions for each blockchains in list L2.

P1 posts these signatures and transactions to the respective blockchains in list L2 to claim

the escrowed assets. After a transaction is confirmed by a blockchain in L2, P2 recovers a

full signature on any one of the claim transaction to get a unique point on the polynomial to

run PolyRelease. PolyRelease outputs the unlocking secrets of P1 for claim transactions

for blockchains in L1 along with those in L2. P2 is only concerned with the unlocking

secrets for claim transactions in list L1. With these unlocking secrets, P2 computes full

signatures and posts claim transactions to blockchains in list L1. Once all the transactions

are confirmed, P2 acquires the escrowed assets in joint accounts in L1 while P1 already

has acquired the assets in joint accounts in L2, thus completing the PolySwap protocol

returning success.

A step-by-step detail sequence diagram of PolySwap for one-to-one atomic swap be-

tween two party is shown in Figure 5.1.
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Figure 5.1: PolySwap details for atomic swap between Alice and Bob owning assets in
Blockchain 1 and Blockchain 2
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5.2 Discussion and Limitation

Optionality/Lockup Griefing. HTLC-based atomic swaps are asymmetric as only one

party, Bob–for an atomic swap between Alice and Bob, carries the secret and the com-

pletion of the swap is dependent upon Bob’s decision to release the secret or not. The

party holding the secret does not have any incentive, positive or negative, to complete

the swap, since after he waits for the time out, he can get his asset back. Therefore,

Bob now has an option to either continue or abort the swap depending upon the volatile

exchange rate for the asset under consideration. This provides Bob with an inadvertent call

option [51], weakening the definition of fairness in the protocol. Also, if Bob does not go

through the swap, then Alice’s asset will be locked until timeout, causing a lockup griefing

attack [44]. Our protocol also suffers from similar problems; however, techniques involving

holding collateral assets in joint accounts and subsequent penalties for misbehaving parties

could address these problems. Nonetheless, holding collateral reduces the usability of the

protocol, and this problem is a matter of trade-offs.

Linkability due to Payment Values and Time. Although it is impossible to prove a

link between transactions of an atomic swap between blockchains created by PolySwap,

it may be possible to infer that an atomic swap occurred due to the values associated

with the transactions (with a lower level of certainty). For example, an adversary who

sees $5 moving from one account to an intermediate account then, to another account in

one blockchain, and a similar structure and value, like $4.99 of value moving in another

blockchain at around the same time period, they might reasonably assume that this is an

atomic swap. When the values of the transactions are public, it is possible to make such

an analysis unless the values transferred are random. However, we can make such an

analysis less effective. When executing an atomic swap between two cryptocurrencies
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without hidden values, we recommend increasing the duration of the swap and treating

each blockchain as two blockchains, effectively executing a 2 blockchain to 2 blockchain

atomic swap (e.g. Bitcoin and Bitcoin to Litecoin and Litecoin). This makes the analysis

described above significantly harder and the conclusions less probable.

Indistinguishability. Transactions created by PolySwap are indistinguishable in the sense

that they look like majority of transactions in the respective blockchain network. This is

valid if we consider the transaction independently which is true for stateful cryptocurrency

systems like Ethereum. However, in cryptocurrency systems based on UTXOs like Bitcoin

where a transaction cannot exist on its own and must refer to previous transaction outputs,

an inevitable pattern exists [52] which could have adverse effects in user privacy. Nonethe-

less, for such cryptosystems, general recommendations for improving privacy like creating

transactions with multiple inputs and outputs can be used to thwart privacy attacks using

transaction pattern analysis.

Limitations. We require at least one of the sets of blockchains to support escape trans-

actions. As a result, a direct atomic swap between two such currencies like Monero

and ByteCoin is not possible atomically since neither blockchain supports escape trans-

actions. However, an exchange of Monero and ByteCoin can occur with an intermediary

blockchain, e.g. Bitcoin, where PolySwap is first executed between Monero and Bitcoin

and then between Bitcoin and ByteCoin. Our protocol also utilizes time-locked puzzles

based on repeated squaring in an RSA modulus. Such puzzles tend to be imprecise and be

partially dependent on the computational power of the parties in question.
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Chapter 6

EXPERIMENTAL EVALUATION

In this chapter, we discuss the experiments and results for PolySwap. First, we briefly

explain the experimental test bed. Next, we present the results from the execution of

PolySwap on Bitcoin and Ethereum testnets, and discuss different case studies. Finally,

we discuss the experiments relating to scalability and efficiency of PolySwap.

6.1 Experiment Test Bed

We perform our experiments on two environments: 1) Intel Core i7, 3.6GHz, 16 GB RAM,

Windows OS machine, and 2) 11 GB RAM, Arch Linux OS running on a virtual box in

the prior machine. We execute PolySwap on Arch linux and efficiency and scalability

experiments on Windows OS. We implement PolySwap in Java 1.8 using the following

libraries and APIs:

• Bouncy Castle Crypto API [53] bcprov-jdk15on:1.57

• BitcoinJ [54] bitcoinj-core:0.15.6

• JSON-RPC for Java [55] jsonrpc4j:1.5.3

• Web3j [56] web3j:core:4.5.5

• Solidity [57] solc:0.5.14

• Infura [58] (API access provider for Ethereum network)

• Bitcoin Core [59] v0.17.1
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6.2 PolySwap Execution on Testnet

We evaluate the correctness and privacy-preserving properties of the protocol by executing

instances of PolySwap for Bitcoin and Ethereum between two parties. To achieve this, we

develop a prototypical software implementation of PolySwap to swap between Bitcoin and

Ethereum blockchains. We perform the experiments on the testnet of each blockchain. We

setup a full node for Testnet3 to communicate with the Bitcoin test network. The size of

the downloaded blockchain data was 26 GB for Testnet3. On the other hand, we planned

to use the Ropsten testnet as it is based on Proof-of-Work, like Ethereum mainnet, while

all other testnets for Ethereum are based on Proof-of-Authority. However, because of large

size of blockchain data required to be downloaded and slower verification time, we opt

for an API endpoint service instead, provided by Infura to connect to Rinkeby testnet in

Ethererum. Time-locks for Bitcoin transactions are implemented using nLockTime field

in transactions. As Ethereum transactions do not have such fields, we emulate time-locks

by using Solidity smart contracts. Source code for a simple time-lock smart contract in

Ethereum is included in Appendix A. We use blockchain explorers: etherscan.io and

blockcypher.com to verify the acceptance of transactions into the test networks.

We successfully execute a one-to-one atomic swap between Bitcoin (Testnet3) and

Ethereum (Rinkeby) using PolySwap, which took 8.3 seconds to complete (excluding

confirmation time). Transactions used to execute the atomic swap using PolySwap are

shown in Table 6.1.

PolySwap has two terminal cases attributing to fair exchange: on success, each party

should end up owning other party’s assets, and on abort or failure, each party should retain

their own assets.

These terminal cases are tested by the following test cases and expected outcomes

etherscan.io
blockcypher.com
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Table 6.1: Transactions used to execute an atomic swap using PolySwap between Bitcoin
and Ethereum testnets.

Testnet Deposit Transaction hash Claim Transaction hash
Bitcoin: Testnet3 ad98cbbf7169b49238cb234326bb

632d5182dc3ae8210bb3f2ee501d
8aea27da

f86eefdc2327fcccefe2dc144c1d04
de0ae71a556491f1f4768def971f9
ed58f

Ethereum: Rinkeby 0x6e95b8cb10488415caec47caff3
a1da2c3f7514218b0f4893ea4e9e5
f603617a

0x468d62443a3f18b188cd56feea9
28c67da86de0e4e6ace4e8681037e
c81cdfb3

indicating successful evaluation of PolySwap:

The details of these case evaluations are shown in Table 6.2

Table 6.2: Transaction details for different test cases

Case Ethereum Bitcoin Remarks
Case I 0x468d62443a3f18b188cd56

feea928c67da86de0e4e6ac
e4e8681037ec81cdfb3

f86eefdc2327fcccefe2dc144c
1d04de0ae71a556491f1f476
8def971f9ed58f

Claim transaction
hash

Case II 0xfad9914081d6c347df81b
527c20e1892dd3029aa3fd
3e817bfd1625e04b5d048

0108bcc86b2f9f555d03ea71
54119dd27522b9f1bf8a66
ea1fda59d1f0e564aa

Refund transaction
hash

Case III 0x965737a7981ce27ebb816
38ff0dc4df0012882df0dc66
4ac22c7275a22c17018

- Refund transaction
hash

• Case I (Effectiveness): After party 1 receives their unlocking secret from party

2 and party 1 posts their claim transaction in blockchain 2, can party 2 recover

their unlocking secret from the signature in the claim transaction in blockchain

2 to complete the signature for their claim transaction in blockchain 1? In other

words, when party 1 gets party 2’s assets in blockchain 2, can party 2 get party

1’s assets in blockchain 1?

Given that both Polynomial locking scheme and SSSig are correct, party 2 should

be able to complete the signature for their claim transaction and post it on blockchain

https://live.blockcypher.com/btc-testnet/tx/ad98cbbf7169b49238cb234326bb632d5182dc3ae8210bb3f2ee501d8aea27da/
https://live.blockcypher.com/btc-testnet/tx/ad98cbbf7169b49238cb234326bb632d5182dc3ae8210bb3f2ee501d8aea27da/
https://live.blockcypher.com/btc-testnet/tx/ad98cbbf7169b49238cb234326bb632d5182dc3ae8210bb3f2ee501d8aea27da/
https://live.blockcypher.com/btc-testnet/tx/f86eefdc2327fcccefe2dc144c1d04de0ae71a556491f1f4768def971f9ed58f/
https://live.blockcypher.com/btc-testnet/tx/f86eefdc2327fcccefe2dc144c1d04de0ae71a556491f1f4768def971f9ed58f/
https://live.blockcypher.com/btc-testnet/tx/f86eefdc2327fcccefe2dc144c1d04de0ae71a556491f1f4768def971f9ed58f/
https://rinkeby.etherscan.io/tx/0x6e95b8cb10488415caec47caff3a1da2c3f7514218b0f4893ea4e9e5f603617a
https://rinkeby.etherscan.io/tx/0x6e95b8cb10488415caec47caff3a1da2c3f7514218b0f4893ea4e9e5f603617a
https://rinkeby.etherscan.io/tx/0x6e95b8cb10488415caec47caff3a1da2c3f7514218b0f4893ea4e9e5f603617a
https://rinkeby.etherscan.io/tx/0x468d62443a3f18b188cd56feea928c67da86de0e4e6ace4e8681037ec81cdfb3
https://rinkeby.etherscan.io/tx/0x468d62443a3f18b188cd56feea928c67da86de0e4e6ace4e8681037ec81cdfb3
https://rinkeby.etherscan.io/tx/0x468d62443a3f18b188cd56feea928c67da86de0e4e6ace4e8681037ec81cdfb3
https://rinkeby.etherscan.io/tx/0x468d62443a3f18b188cd56feea928c67da86de0e4e6ace4e8681037ec81cdfb3
https://rinkeby.etherscan.io/tx/0x468d62443a3f18b188cd56feea928c67da86de0e4e6ace4e8681037ec81cdfb3
https://rinkeby.etherscan.io/tx/0x468d62443a3f18b188cd56feea928c67da86de0e4e6ace4e8681037ec81cdfb3
https://live.blockcypher.com/btc-testnet/tx/f86eefdc2327fcccefe2dc144c1d04de0ae71a556491f1f4768def971f9ed58f/
https://live.blockcypher.com/btc-testnet/tx/f86eefdc2327fcccefe2dc144c1d04de0ae71a556491f1f4768def971f9ed58f/
https://live.blockcypher.com/btc-testnet/tx/f86eefdc2327fcccefe2dc144c1d04de0ae71a556491f1f4768def971f9ed58f/
https://rinkeby.etherscan.io/tx/0xfad9914081d6c347df81b527c20e1892dd3029aa3fd3e817bfd1625e04b5d048
https://rinkeby.etherscan.io/tx/0xfad9914081d6c347df81b527c20e1892dd3029aa3fd3e817bfd1625e04b5d048
https://rinkeby.etherscan.io/tx/0xfad9914081d6c347df81b527c20e1892dd3029aa3fd3e817bfd1625e04b5d048
https://live.blockcypher.com/btc-testnet/tx/0108bcc86b2f9f555d03ea7154119dd27522b9f1bf8a66ea1fda59d1f0e564aa/
https://live.blockcypher.com/btc-testnet/tx/0108bcc86b2f9f555d03ea7154119dd27522b9f1bf8a66ea1fda59d1f0e564aa/
https://live.blockcypher.com/btc-testnet/tx/0108bcc86b2f9f555d03ea7154119dd27522b9f1bf8a66ea1fda59d1f0e564aa/
https://rinkeby.etherscan.io/tx/0x965737a7981ce27ebb81638ff0dc4df0012882df0dc664ac22c7275a22c17018
https://rinkeby.etherscan.io/tx/0x965737a7981ce27ebb81638ff0dc4df0012882df0dc664ac22c7275a22c17018
https://rinkeby.etherscan.io/tx/0x965737a7981ce27ebb81638ff0dc4df0012882df0dc664ac22c7275a22c17018
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1. The expected outcome is an addition in party 1’s wallet balance on blockchain

2 & party 2’s wallet balance on blockchain 1, and a subtraction in party 1’s wallet

balance on blockchain 1 & party 1’s wallet balance on blockchain 2 by the agreed

upon exchange values.

In order to test this case, the setup of the experiment was as follows: Alice owning

BTC in Testnet3 of Bitcoin perform atomic swap with Bob owning Ether in Rinkeby

testnet of Ethereum. The account details are shown below:

– Alice’s Bitcoin account (sending):

tb1qga285nnwwe2288aprzdw9vlt77sdmsftmh95xy

– Bob’s Ethereum account (sending):

0x94f3854627826c37f5ba1f227ef42751e1e973b1

– Alice’s Ethereum account (receiving):

0xe98c5ab4b049df18d56ebc39f4e8e7549e3b6397

– Bob’s Bitcoin account (receiving):

tb1q39u0p9f0x2fujz44587v2has2tz7p7ujnzkv0c

– Joint Bitcoin account:

tb1q36kn9rl6lhnrntf6xsr3al7vjmwfakzd3cst70

– Joint Ethereum account:

0x9578BD6464B84e3ca3143041b267cDeC7f5BDA4F

Alice and Bob decide on swapping 0.00008 BTC for 0.0005 Ether. First, both parties

post deposit transactions in respective blockchains, transferring the agreed values to

the joint accounts. Blockchain explorer view of the respective deposit transactions

are shown in Figure 6.1 and Figure 6.2. Note that we use higher transaction fees

for faster confirmation time. In these figures, we see that Alice starts with value
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Figure 6.1: Blockchain explorer view of Alice’s Deposit Transaction for Bitcoin

0.0001 BTC and pays only 0.00009 BTC to the joint account paying 0.00001 BTC

as transaction fee for the deposit transaction.

Next, Alice sends her unlocking secrets for the claim transaction in Bitcoin to Bob

using what Bob posted about the claim transaction to the network, as shown in

Figure 6.3. By extracting the signature from this transaction, Alice calculates the

signature for her claim transaction in Ethereum and posts it to the network, as shown

in Figure 6.4. In order to reduce the swap time, Bob sends the transaction id (transac-

tion hash) of his Bitcoin claim transaction to Alice; eliminating the need for Alice to
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Figure 6.2: Blockchain explorer view of Bob’s Deposit Transaction for Ethereum

look up Bob’s claim transaction on Bitcoin’s blockchain. This completes the swap as

Alice’s Ethereum’s account and Bob’s Bitcoin’s account owns the respective agreed

upon exchange values.

• Case II (Fair Termination): After a party deposits their asset in the joint ac-

counts on their blockchain and either party aborts, can the party recover their

assets?

A party should be able to recover their assets by posting their escape transactions

in respective blockchains from the Contingency protocol run by the parties before

depositing their assets in the joint accounts, using a refund transaction after the

expiration of lock time.

We test this case by depositing funds to the joint accounts and then recovering those
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Figure 6.3: Blockchain explorer view of Bob’s Claim Transaction for Bitcoin

funds by posting time-locked refund transactions on blockchain. The setup of the

experiment is as follows. First, Alice and Bob owning assets in Bitcoin and Ethereum

respectively create a joint account in each blockchain. Next, they jointly run the

Contingency protocol to create refund transactions locked for 5 hours. Next, Bob

deposits his Ether to the joint account, while Alice aborts the protocol. Next, after

waiting for Alice to complete her deposit phase in Bitcoin for the 5 hours time period

and not receiving deposit transaction confirmation, Bob posts the refund transaction

in Ethereum network to recover his locked Ethereum.
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Figure 6.4: Blockchain explorer view of Alice’s Claim Transaction for Ethereum

• Case III (Fairness): Can party 1 post their claim transaction on blockchain 2

and escape transaction on blockchain 1 simultaneously to get party 2’s assets on

blockchain 2 and also retain their asset on blockchain 1?

The answer is No. That is, time locked escape transactions output from Contingency

protocol should prevent this from happening.

In the case of Bitcoin, time-locked transactions are not accepted by the network

until the expiration of the time period, so the possibility of party 1 retaining their

asset by posting refund transactions prematurely is highly unlikely in Bitcoin. As

for Ethereum, the time-locked transaction are emulated using Ethereum smart con-

tract, where refund is a functionality in the deployed contract. This function, even

though callable via transactions before the expiration of time lock, won’t execute
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successfully–meaning no value transfer occurs. The setup of the experiment is as

follows: Alice and Bob owning assets in Bitcoin and Ethereum follow PolySwap till

deposit phase. Alice sent her unlocking secret for Bob’s claim transaction to Bob.

Bob then posts the claim transaction to the Bitcoin blockchain along with his refund

transaction on the Ethereum blockchain. The claim transaction is accepted by the

Bitcoin blockchain while the Ethereum refund transaction failed to execute success-

fully. Using the signature on Bob’s claim transaction in Bitcoin, Alice completes her

claim transaction in Ethereum. Bob does not succeed in claiming Alice’s bitcoins

and retaining his assets in Ethereum.

6.2.1 Transaction indistinguishability and unlinkability

Due to the construction of PolySwap, transactions are indistinguishable from the nor-

mal ones and do not contain any information linking them to any other transactions in

either blockchain (privacy-preserving). We empirically verify that the transactions cre-

ated by PolySwap matches the majority of transactions found in respective blockchains.

PolySwap requires three types of transactions based on their functionality: Deposit trans-

action, Escape transaction, and Claim transaction. Each transaction pays from an account

to another spendable using normal signatures.

Transactions in Bitcoin can be distinguished based on their output scripts:

• Pay to Public Key Hash (P2PKH): A transaction of this type is locked with a hash

of a public key. It is spendable with a signature from the private key along with the

public key corresponding to the public key hash on the transaction.

• Pay to Public Key (P2PK): A transaction of this type is locked with a public key

instead of a public key hash, and is spendable with the signature of the transaction
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for the public key.

• Pay to Script Hash (P2SH): A transaction of this type is locked with the hash of an

arbitrary script, e.g. multi-sig, time-locked script, and HTLC. They are spendable by

fulfilling the conditions in the script using the redeem script.

• Pay to Witness Public Key Hash (P2WPKH): A transaction of this type is also

locked with the hash of the public key; however, it follows the segregated witness

structure proposed in BIP141 [60].

• Pay to Witness Script Hash (P2WSH): A transaction of this type is equivalent to

P2SH except its follows the segregated witness structure.

P2PKH

51.3%

P2WPKH
8.1%

P2WSH

0.6%

P2SH

39.7%

P2PK0.3%

Figure 6.5: Transaction types on Bitcoin blockchain

Transactions created by PolySwap for Bitcoin are either P2PKH or P2WPKH based

on whether the segregated witness proposal is followed or not. To empirically verify that

P2PKH or P2WPKH belong to the majority of transactions in Bitcoin, we randomly select

100 blocks from the Bitcoin mainnet having 391,544 transaction outputs from 203,552

transactions and plot the rates of each type of transaction as shown in Figure 6.5.
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We observe that the majority of transactions in Bitcoin blockchain are P2PKH (51.3%)

which are the type of transactions created by PolySwap for Bitcoin. Thus, PolySwap

transactions for Bitcoin are indistinguishable. P2WPKH (8.1%) transactions can also

be created by PolySwap, which are bound to increase with an increased adoption of

BIP141. Furthermore, since the transactions only contain the hash of the public keys and

the signatures for transaction verification (unlike HTLCs), these transactions are unlinkable

with Ethereum transactions used in PolySwap.

Call transaction

66.9%

Create transaction

0.3%

Value transaction

32.9%

Figure 6.6: Transaction types on Ethereum blockchain

On the other hand, transactions in Ethereum are distinguished based on the purpose of

the transaction:

• Call Transaction: Call transactions are transactions used to trigger a function call in

an Ethereum smart contract. They contain a data field which specifies the function to

be called and its arguments as a payload.

• Value Transaction: Value transactions are transactions paying from one externally

owned account (EOA) to another.



55

• Create Transaction: Create transactions are transaction used to deploy smart con-

tracts.

Transactions created by PolySwap for Ethereum are Call transactions. In order to

verify that Call Transactions are the majority of transactions in Ethereum, we randomly

select 100 blocks from Ethereum mainnet having 11,917 transactions and plot the rates of

each type of transaction as shown in Figure 6.6

We observe that the majority of transactions in Ethereum are Call transactions (66.9%),

which is the type of transactions created by PolySwap for Ethereum. Thus, PolySwap

transactions for Ethereum are indistinguishable from normal transactions. Furthermore,

since these transactions are verified by normal signatures and do not contain any informa-

tion regarding corresponding Bitcoin transactions, these transactions are unlinkable.

6.3 Scalability

For our scalability experiment, we study the run time of PolySwap with respect to the

number of blockchains involved in the swap. As PolySwap has three main protocols

viz. SSSig, PolyLock and Contingency, we plot the run time of each protocol and sum

them to get the total time for PolySwap, excluding the confirmation times of transactions

which may vary based on specific blockchain. For our experiments, we calculate run time

for different number of blockchains from 2 to 20 with an increment of 2. Run times

are considered for swaps between a blockchain in the secp256k1 curve using ECDSA

signature algorithm to other blockchains in the Curve25519 curve using the Cryptonote

signature algorithm.

The results of the experiment are shown in Figure 6.7. From the figure, we observe that

PolyLock is the most expensive protocol in PolySwap while SSSig and Contingency are
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Figure 6.7: Scalability evaluation of PolySwap

negligible in comparison. We also observe that the increase in total run time with respect

to the number of blockchains is linear.

Furthermore, we perform additional experiments by observing the performance of Poly-

Lock as it is the most dominant. We study the run time and communication size for

PolyLock by the changing the number of blockchains involved in the swap. We consider

the worst case scenario, where unlocking secrets from each elliptic curve group used in

the blockchain needs to be converted to a common group. We run the algorithm 50

times and obtain the average for a different number of blockchains ranging from 2 to 20

while observing different phases of PolyLock: Create, Prove, Verify and Release. For

these experiments, we convert unlocking secrets in Curve25519 to secp256k1. For

example, for 4 blockchains, 3 unlocking secrets are in Curve25519 which are converted

to secp256k1 during the PolyLock execution.

Figure 6.8 shows scalability evaluation of PolyLock w.r.t run time and communication
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Figure 6.8: Scalability evaluation of PolyLock

size. We observe that both run time and communication size grow linearly with the linear

increase in the number of blockchains involved in the swap. We also observe that Verify

is the most computationally expensive phase while Release is the least expensive w.r.t run

time as shown in Figure 6.8a. Figure 6.8b shows that the change in communication size is

also linear w.r.t the number of blockchains involved.

6.4 Efficiency

We study the efficiency of PolySwap by benchmarking SSSig. We instantiate our algo-

rithms in secp256k1 elliptic curve group for ECDSA and Schnorr signature-based SSSig

with 256 bit key size. In the ECDSA-based SSSig scheme, we use a 2048 bit key size

for the Paillier public key pair. For the Cryptonote signature scheme, we instantiate the

algorithm in the Curve25519 elliptic curve with 256 bit key size. We use SHA256 to

model the functionality C(x) = {SHA256(x||r) | r ← {0, 1}|q|} as a random oracle [61]

for the commitment scheme. We use Fiat-Shamir heuristic [62] for non-interactive zero-

knowledge protocols. We consider KeyGen & Psign protocols and Complete & Reveal
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algorithms for each construction of SSSig. We run 10,000 iterations for each algorithm

and compute the overall average for SSSig, which is shown in Table 6.3.

Table 6.3: Efficiency evaluation of SSSig

ECDSA Schnorr Cryptonote
KeyGen 414.6676 ms 1.1587 ms 0.2914 ms

607 bytes 33 bytes 128 bytes
PSign 80.8083 ms 3.2141 ms 11.6299 ms

1165 bytes 520 bytes 1305 bytes
Complete 0.0593 ms 0.0393 ms 0.0396 ms

Reveal 0.0141ms 0.0002 ms 0.0003 ms

We observe that the KeyGen and PSign protocols for ECDSA are the most dominant.

This is due to the fact that Paillier public key cryptography is used. Schnorr is about

25 times faster than ECDSA because it requires lesser computations and simpler Zero

Knowledge proofs. This is further supported by the communication size where we see that

the overhead for Schnorr is about half of that for ECDSA. Both Complete and Reveal

algorithms for all constructions take negligible computation time as they require trivial

computation and do not involve any sorts of zero knowledge proofs. Finally, we observe

that PSign for Cryptonote-based SSSig has the largest communication overhead while

Schnorr has the smallest.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we present PolySwap as a generic protocol framework for achieving privacy-

preserving atomic swap between two parties over multiple blockchains. PolySwap achieves

secure and private swap without requiring any trusted third party and extensive scripting

capability in the participating blockchain. PolySwap also provides significant user pri-

vacy benefits over HTLC-based atomic swap protocols which tend to be linkable across

blockchains and easily distinguished due to the special construction of its transactions. We

solve the linkability issue by delegating the atomicity requirement to a secure off-chain

two-party computation protocol called PolyLock. And as for distinguishability, we present

a novel cryptographic signature scheme called SSSig which enables secure two-party sign-

ing producing private outputs of unlocking secrets and public output of a partial signature.

These outputs can be combined together to produce a standard signature verifiable by stan-

dard verification algorithm over which SSSig is instantiated. As concrete instantiations of

SSSig, we present constructions for standard ECDSA, Schnorr and Cryptonote signature

scheme which are used by many cryptocurrency systems as their signature algorithm. Be-

cause of this, we can create transactions for atomic swap which are indistinguishable from

majority of transactions present in a blockchain employing cryptographic signatures for

transaction verification. This enables our protocol to be privacy-preserving against a global
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passive observer providing unlinkability and indistinguishability. PolySwap supports any

two sets of blockchains, even if they are heterogenous, given that at least one set supports

time-locked escape transactions and a construction for SSSig exists for the signature

scheme used in the blockchains. PolySwap does not require any scripting capabilities

in the blockchain as long as it supports time-locked escape transactions. With the provided

constructions for SSSig, PolySwap currently supports 23 out of the top 30 mainstream

cryptocurrencies. We instantiate PolySwap for atomic swaps between two parties over

Ethereum & Bitcoin protocol and evaluate it by executing atomic swaps in their respective

test networks. Our experiments show that PolySwap takes about 8.3 seconds for successful

completion between Testnet3 and Rinkeby without considering confirmation times for

Bitcoin-Ethereum atomic swap.

7.2 Future Work

In this work, PolyLock is constructed such that unlocking secrets from each group is

converted to the largest common group. Although simpler in construction, this can be

less efficient. The protocol can be further optimized to require least number of group

conversions by converting to the most common group instead of the largest group. Also,

PolySwap uses a number of zero knowledge proofs which tend to be computationally

expensive. Investigation into a newer more efficient zero knowledge proofs is required for

improving efficiency of PolySwap.

Other SSSig constructions for additional signature schemes, such as EdDSA, can be

created to support more existing cryptocurrency systems to increase adoption.

Finally, since PolySwap is privacy-preserving, its applicability as a mixing protocol

seems to be an interesting direction for further research.
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[47] S. Delgado Segura, C. Pérez-Solà, G. Navarro-Arribas, and J. Herrera-Joancomartı́,
“A fair protocol for data trading based on bitcoin transactions,” Future Generation
Computer Systems, 08 2017.

http://dl.acm.org/citation.cfm?doid=2976749.2978424
http://arxiv.org/abs/1702.05812
http://link.springer.com/10.1007/978-3-319-67816-0_19
http://link.springer.com/10.1007/978-3-319-67816-0_19
http://dl.acm.org/citation.cfm?doid=3133956.3134093
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/
https://arwen.io/whitepaper.pdf


65

[48] Atomic swap - bitcoin wiki. https://en.bitcoin.it/wiki/Atomic swap. Online; accessed
2018-12-20.

[49] W. Mao, “Timed-release cryptography,” in Selected Areas in Cryptography, S. Vaude-
nay and A. M. Youssef, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 342–357.

[50] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang, “Cryptographic primitives in
blockchains,” Journal of Network and Computer Applications, vol. 127, pp. 43–58,
Feb. 2019.

[51] Atomic Swaps and Distributed Exchanges: The Inadvertent Call Option. BitMEX
Blog.

[52] Ferrin, “A Preliminary Field Guide for Bitcoin Transaction Patterns Danno,” 2015.

[53] The Legion of the Bouncy Castle Java Cryptography APIs. https://www.bouncycastle.
org/java.html.

[54] Bitcoinj. https://bitcoinj.github.io/.

[55] Briandilley/jsonrpc4j. https://github.com/briandilley/jsonrpc4j.

[56] Web3j SDK - Where Java meets the Blockchain. https://www.web3labs.com/web3j.

[57] Solidity — Solidity 0.6.3 documentation. https://solidity.readthedocs.io/en/v0.6.3/.

[58] Ethereum API — IPFS API & Gateway — ETH Nodes as a Service. https://infura.io/.

[59] Bitcoin/bitcoin. https://github.com/bitcoin/bitcoin.

[60] Segregated witness (consensus layer). https://github.com/bitcoin/bips/blob/master/
bip-0141.mediawiki.

[61] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing
efficient protocols,” in Proceedings of the 1st ACM conference on Computer and
communications security. ACM, 1993, pp. 62–73.

[62] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification
and signature problems,” in Conference on the Theory and Application of Crypto-
graphic Techniques. Springer, 1986, pp. 186–194.

https://en.bitcoin.it/wiki/Atomic_swap
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html
https://bitcoinj.github.io/
https://github.com/briandilley/jsonrpc4j
https://www.web3labs.com/web3j
https://solidity.readthedocs.io/en/v0.6.3/
https://infura.io/
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki


66

Appendix A

ETHEREUM TIME-LOCK SOLIDITY SOURCE CODE
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1 pragma solidity >=0.5.0;

2 contract TimeLock {

3

4 address public owner;

5 uint256 public unlockTime;

6 uint256 public timeNow;

7

8 modifier onlyOwner {

9 require(msg.sender == owner);

10 _;

11 }

12

13 constructor(address own, uint8 timePeriod) public {

14 owner = own;

15 unlockTime = now + (timePeriod * 1 minutes);

16 timeNow = now;

17 emit Deposit(timePeriod, unlockTime, timeNow, own);

18 }

19

20 function refund(address payable receiver) onlyOwner public {

21 require(now >= unlockTime);

22 receiver.transfer(address(this).balance);

23 emit Refund(receiver, address(this).balance);

24 }

25

26 function claim(address payable receiver) onlyOwner public {

27 receiver.transfer(address(this).balance);

28 emit Claim(receiver, address(this).balance);

29 }

30
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31 //receive any Ether sent to this contract

32 function() payable external{

33 }

34

35 //log events definition in the transactions

36 event Deposit(uint timePeriod, uint unlockTime, uint timeNow, address

indexed owner);

37 event Refund(address indexed to, uint amount);

38 event Claim(address indexed payedTo, uint amount);

39 }
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