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ABSTRACT

One uses seismic interferometry (SI) to recover Green’s functions (i.e. impulse re-

sponse) from ambient seismic recordings and estimate surface-wave phase velocities

to investigate subsurface structure. This method has been commonly used in the last

20 years because this method only utilizes ambient seismic recordings from seismic

stations/sensors and does not rely on traditional seismic sources (e.g. earthquakes

or active sources). SI assumes that the ambient seismic wavefield is isotropic, but

this assumption is rarely met in practice. We demonstrate that, with linear-array

spatial sampling of an anisotropic ambient seismic wavefield, SI provides a better es-

timate of Rayleigh-wave phase velocities than another commonly used ambient seismic

method, the refraction microtremor (ReMi) method. However, even SI does not work

in some extreme cases, such as when the out-of-line sources are stronger than the in-

line sources. This is because the recovered Green’s functions and surface-wave phase

velocity estimations from SI are biased due to the anisotropic wavefield. Thus, we

propose to use multicomponent data to mitigate this bias. The multicomponent data

are vertical (Z) and radial (R) components, where the R direction is parallel to a line

or great circle path between two sensors. The multicomponent data can deal with

the extreme anisotropic source cases, because the R component is more sensitive to

the in-line sources than the out-of-line sources, while the Z component possesses a

constant sensitivity to sources in all directions.
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Estimation of source distributions (i.e. locations and strengths) can aid correc-

tion of the bias in SI results, as well as enable the study of natural ambient seismic

sources (e.g. microseism). We use multicomponent seismic data to estimate ambient

seismic source distributions using full-waveform inversion. We demonstrate that the

multicomponent data can better constrain the inversion than only the Z component

data, due to the di↵erent source sensitivities between the Z and R components. When

applying the inversion to field data, we propose a general workflow which is applicable

for di↵erent field scales and includes vertical and multicomponent data. We demon-

strate the workflow with a field data example from the CO2 degassing in Harstoušov,

Czech Republic. We also apply the workflow to the seismic recordings in Antarctica

during February 2010 and estimate the primary microseism source distributions.

The SI results include both direct and coda waves. While using the direct waves

in investigating subsurface structure and estimating source distributions, one can

utilize the coda waves to monitor small changes in the subsurface. The coda waves

include multiply-scattered body and surface waves. The two types of waves possess

di↵erent spatial sensitivities to subsurface changes and interact each other through

scattering. We present a Monte Carlo simulation to demonstrate the interaction in an

elastic homogeneous media. In the simulation, we incorporate the scattering process

between body and Rayleigh waves and the eigenfunctions of Rayleigh waves. This

is a first step towards a complete modelling of multiply-scattered body and surface

waves in elastic media.
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CHAPTER 1:

INTRODUCTION

Mechanical waves are a common type of physical phenomena. For example, when we

talk, we actually generate acoustic waves; the acoustic waves propagate through air

and then are received by another person’s ears, so the person hears us. The whole

process is similar to the seismic wave propagation. Seismic sources (e.g. earthquakes)

generate seismic waves; the seismic waves propagate through the solid Earth and then

are received by sensors (e.g. geophones or seismometers). One can use the wave prop-

agation to infer properties of the wave sources, as well as the structure through which

it propagates. For example, one can tell who is talking based on which direction

the acoustic waves are coming from and the vocal properties, usually frequency. In

seismology, one can study source mechanisms for earthquakes and ambient seismic

sources (e.g. microseisms caused by ocean activities) based on seismic recordings

(e.g. Aki & Richards, 2002). The wave propagation also enables one to investigate

subsurface structure, which is another important application in seismology. Subsur-

face investigations can provide estimates of subsurface structure to aid geotechnical

engineering (e.g. Kramer, 2002), hydrocarbon exploration (e.g. Yilmaz, 2001), and

solid earth studies (e.g. Dahlen & Tromp, 1998; Aki & Richards, 2002).

The basic idea underlying seismic methods is simple, but in practice is hard. A

seismic recording is a convolution between the seismic source(s) and seismic wave

r
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propagation along a path, which implies that the sources and propagation are cou-

pled. One can not study the sources without accurately knowing the propagation and

vice versa. Real wave propagating in the subsurface is extremely complex because

the subsurface in reality is viscoelastic, anisotropic and inhomogeneous at all spatial

scales. In order to study the propagation, one usually assumes that the subsurface

media is elastic and isotropic, and thus focuses on just imaging the subsurface het-

erogeneity. To investigate the heterogeneity, one commonly studies wave velocities

(e.g. P-/S-/surface-wave velocities) in the media.

One can use ”noise” in seismic recordings to estimate subsurface velocity mod-

els. In seismic recordings, besides transient signals (e.g. earthquakes), the contin-

uous ”noise” mainly are waves from ambient seismic sources, such as microseisms

(frequency<0.12 Hz) and tra�c (frequency>2 Hz). If the ambient seismic sources are

equal in strength and isotropically distributed in all directions around two sensors, one

can use a noise crosscorrelation between the two sensors to approximate the band-

limited Green’s function (impulse response) between the sensors. This method is

called Seismic Interfermoetry (SI, e.g. Wapenaar & Fokkema, 2006). As the Green’s

function represents the wave propagation, one can apply SI to subsurface investi-

gations. One commonly recovers surface-wave Green’s functions from the ambient

seismic noise (e.g. Shapiro et al., 2005) and thus uses surface-wave tomography to

investigate Earth’s crust (e.g. Yao et al., 2006; Lin et al., 2008). People have also ap-

plied this method in urban areas to estimate shallow shear-wave velocity (VS) models

(e.g. Halliday et al., 2008; Xu et al., 2013; Cheng et al., 2015).

The isotropic source assumption is rarely met in practice. To meet the assumption,

one usually has to use long-time (e.g. over 1 year) seismic recordings and preprocess-
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ing procedures (time-/frequency-domain normalization, e.g. Bensen et al., 2007) in

the SI method. Without this assumption, the crosscorrelation does not approximate

the Green’s function anymore (e.g. Yang & Ritzwoller, 2008), and thus the surface-

wave velocities estimated from the crosscorrelations will be biased (e.g. Yao & Van

Der Hilst, 2009). In this case, many solutions have been proposed (e.g. Stehly et al.,

2008; Yao & Van Der Hilst, 2009). The main idea beneath these solutions is either

normalizing source strengths in all directions (e.g. Stehly et al., 2008; Seydoux et al.,

2017) or correcting the crosscorrelations/velocities based on the dominate source di-

rection(s) (e.g. Yao & Van Der Hilst, 2009; Wapenaar et al., 2011; Nakata et al.,

2015; Cheng et al., 2016). Most of these solutions assume that the seismic waves

from ambient seismic sources are plain waves. However, the waves can not be treated

as plain waves if the sources are close to the sensors (e.g. Park & Miller, 2008) or the

subsurface is laterally heterogeneous (e.g. Froment et al., 2011).

One can also use ambient seismic noise to study the ambient seismic sources.

The ambient seismic sources in low frequencies (<0.12 Hz) are mainly microseisms,

including primary/secondary microseisms (e.g. Longuet-Higgins, 1950; Hasselmann,

1963) and Earth’s hum (e.g. Ardhuin et al., 2011b). Some microseismic source mech-

anisms are still unclear, such as the origins of Earth’s hum (e.g. Traer & Gerstoft,

2014; Ardhuin et al., 2015) and Love waves in microseisms (e.g. Nishida et al., 2008;

Juretzek & Hadziioannou, 2016). To study these source mechanisms, one would like

knowledge of these sources (e.g. strengths and locations). As stated above, however,

the source information and the wave propagation (i.e. Green’s function) are coupled

in the seismic crosscorrelations (e.g. Fichtner, 2015). Thus with a relatively accurate

subsurface structure model, one can simulate the wave propagation in the model and
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Figure 1.1: A crosscorrelation between ambient seismic noise of two sen-
sors. The black squares indicate structural anomalies (scatterers). The
black wiggles indicate a direct wave from sensor B to A directly and is
corresponding to the black arrow. The blue wiggles indicate multiply
scattered waves and are corresponding to the blue arrow. The dashed
waves represent the waves after the velocity reduction.

then isolate/estimate the source information from the crosscorrelaitons (e.g. Ermert

et al., 2017). The accuracy of the source information will be determined by many

factors, e.g. the accuracy of the subsurface model, the simulation method (ray theory

or wave-equation) and the isolation method (imaging or inversion).

One can also use ambient seismic noise to monitor time-lapse changes in the

subsurface. In monitoring, one commonly uses coda waves (later arrivals after direct

waves) in the crosscorrelations (e.g. Sens-Schönfelder &Wegler, 2006; Brenguier et al.,

2008), because coda waves propagate along longer paths and thus are more sensitive to
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small subsurface changes than direct waves (Figure 1.1). Monitoring small changes is

important for geological hazard early warning. For example, changes in soil saturation

can trigger landslides (Iverson, 2000) and thus monitoring the soil sti↵ness changes

can provide a diagnostic signal before the hazard happens (e.g. Mainsant et al., 2012).

When imaging small changes in the subsurface, one usually makes assumptions about

the wavefield composition (body or surface waves) in the coda (e.g. Obermann et al.,

2015). Importantly, three types of body waves (P, SV and SH) exist and interact

such as P-to-P, P-to-SV and P-to-SH scattering (e.g. Sato et al., 2012), in addition

to interacting with di↵erent types of surface waves such as P-to-Rayleigh, SV-to-

Rayleigh and SH-to-Rayleigh scattering (e.g. Maeda et al., 2008); these di↵erent types

of surface waves can also interact with each other such as Rayleigh-to-Rayleigh and

Rayleigh-to-Love scattering (Snieder, 1986a). Thus the energy ratio between any

two types of waves evolves with time, and studying the interactions is important

for imaging of the small changes and applying the time-lapse monitoring method in

practice.

My Ph.D. research covers the three ambient seismic areas mentioned above: in-

vestigation of subsurface structure, estimation of ambient seismic source distributions

and the time-lapse monitoring with coda waves. I divide the chapters in the following

ways.
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1.1 A comprehensive comparison between the

refraction microtremor and seismic

interferometry method for phase velocity

estimation

This chapter comes from Xu et al. (2017) and covers a comparison between two com-

monly used near-surface (depth<200 m) passive-source surface-wave methods, refrac-

tion microtremor (ReMi, Louie, 2001) and seismic interferometry (SI). We identify

artifacts in the SI and ReMi methods and explain the origins of these artifacts theo-

retically. We determine that SI provides a more accurate estimation of surface-wave

phase velocities than ReMi.

1.2 On the reliability of direct Rayleigh-wave

estimation from multicomponent

crosscorrelations

This chapter comes from Xu & Mikesell (2017) and covers estimation of Rayleigh-

wave phase velocities from multicomponent crosscorrelations. In the SI method, one

commonly uses vertical-component data. However, one can also use radial component

data where the radial component is parallel to a line or great circle path connecting

two sensors. We refer to the vertical- and radial-component crosscorrelations as mul-

ticomponent SI. We observe that the vertical component possesses a same sensitivity

to seismic sources in all directions, while the radial component is more sensitive to

in-line sources than out-of-line sources. We demonstrate that the multicomponent
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crosscorrelations can provide more accurate estimations of Rayleigh-wave phase ve-

locities than the vertical crosscorrelations.

1.3 Rayleigh-wave multicomponent

crosscorrelation-based source strength

distribution inversion. Part 1: theory and

numerical examples

This chapter comes from Xu et al. (2019) and covers estimation of seismic source

strength distributions by applying the full-waveform inversion theory to Rayleigh-

wave multicomponent crosscorrelations. In the full-waveform inversion theory, source

sensitivity kernels are necessary for the inversions, and one can derive source sen-

sitivity kernels from di↵erent misfit functions. We physically explain two types of

source sensitivity kernels: one derived from traveltime misfits and the other from

waveform misfits. We then use these kernels to invert for source distributions in

synthetic tests. We determine that the waveform misfits provide better estimations

of source distributions than the traveltime misfits; we also demonstrate that multi-

component crosscorrelations better constrain the inversion than vertical-component

crosscorrelations alone.
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1.4 Rayleigh-wave multicomponent

crosscorrelation-based source strength

distribution inversion. Part 2: a complete

workflow for real seismic data

This chapter covers a complete workflow for estimating seismic source distributions

from real seismic data through the source inversion in Chapter 4. Although the

source inversion theory is well developed, many challenges still exist in real data

processing, such as how to select high-quality crosscorrelations, how to isolate targeted

sources and how to estimate source spectral densities. Moreover, some processing

procedures commonly used in the SI studies of structures are inappropriate for the

source estimation method because these procedures can bias the source estimation.

We present solutions to the challenges and explain appropriate processing procedures

in the workflow. We demonstrate the whole workflow with a field data example from

CO2 degassing in Hartoušov, Czech Republic.

1.5 Estimation of primary microseism source

distributions around Antarctica

We apply the whole workflow in Chapter 5 to seismic recordings in Antarctica to

estimate the primary microseism source distribution around Antarctica in February

2010. The primary microseism (PM) is due to the interaction between sea currents

and the seafloor, and ranges in frequency between 0.04 Hz and 0.09 Hz. Thus, the PM

is an important physical phenomenon in ocean studies and provides the signals for
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ambient seismic noise tomography. We use the vertical component data and achieve

good CZZ waveform fits from our PM source estimation. We compare our estimation

to sea ice data from the same month and observe that our estimated sources are

mainly distributed outside of the floating sea ice around Antarctica. This spatial

relationship fits the blocking e↵ect of sea ice on microseism generations and deserves

further investigations.

1.6 Monte Carlo simulations of multiply

scattered body and Rayleigh waves in elastic

media

We use a Monte Carlo simulation method to simulate multiply-scattered P and

Rayleigh waves in an elastic homogeneous media. This research is helpful for study-

ing the temporal evolution of energy ratios between multiply-scattered body and

surface waves in coda waves and thus is important for coda-wave time-lapse monitor-

ing methods. The simulations provide an equipartition energy ratio which matches

the theoretical prediction from a homogeneous halfspace. We also incorporate a free

surface into the simulation. This research is a first step to a complete modeling of

coupled body- and surface-wave multiply scattering in elastic media.
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CHAPTER 2:

A COMPREHENSIVE COMPARISON

BETWEEN THE REFRACTION

MICROTREMOR AND SEISMIC

INTERFEROMETRY METHOD FOR PHASE

VELOCITY ESTIMATION

This chapter has been published as: Xu, Z., Dylan Mikesell, T., Xia, J., & Cheng, F.

(2017). A comprehensive comparison between the refraction microtremor and seis-

mic interferometry methods for phase-velocity estimation. Geophysics, 82(6), EN99-

EN108.

2.1 Summary

Passive-source seismic-noise based surface-wave methods are now routinely used to

investigate the near-surface geology in urban environments. These methods estimate

the shear-wave velocity of the near surface, and two methods that use linear recording

arrays are seismic interferometry (SI) and refraction microtremor (ReMi). These

two methods process noise data di↵erently and thus can yield di↵erent estimates of

the surface-wave dispersion, the data used to estimate the shear-wave velocity. In



11

this paper we systematically compare these two methods using synthetic data with

di↵erent noise source distributions. We arrange sensors in a linear survey grid, which

is conveniently used in urban investigations (e.g. along roads). We find that both

methods fail to correctly determine the low frequency dispersion characteristics when

out-line noise sources become stronger than in-line noise sources. We also identify

an artifact in the ReMi method and theoretically explain the origin of this artifact.

We determine that SI combined with array-based analysis of surface waves is the

more accurate method to estimate surface-wave phase velocities because SI separates

surface waves propagating in di↵erent directions. Finally, we propose a solution to

eliminate the ReMi artifact that involves the combination of SI and the ⌧ -p transform,

the array processing method that underlies the ReMi method.

2.2 Introduction

Geologic hazards in the near surface, such as faults and sink holes, pose large risks

to human lives and property. Hence geologic characterization of the near-surface

in urban areas is important for accurate hazard assessment. People commonly use

ambient seismic noise in geologic investigations (e.g. Shapiro et al., 2005; Pan et al.,

2016) because ambient seismic noise contains surface waves, which hold information

about the shear modulus of the Earth. Surface waves at di↵erent frequencies are used

to characterize di↵erent scales of Earth structure; 0.02-0.5Hz is used for crustal studies

(e.g. Yao et al., 2006; Lin et al., 2008) and 1-5Hz is used for near-surface studies (e.g.

Halliday et al., 2008; Cheng et al., 2015). Although 2D arrays provide more accurate

phase velocity estimation (e.g. Garofalo et al., 2016), it is often more convenient to

use one-dimensional (1D) linear arrays in urban areas, e.g. an array laid along the

side of a road. With a linear array, the raw noise data is often processed using the
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refraction microtremor (ReMi) method (Louie, 2001) or seismic interferometry (SI)

(e.g. Nakata et al., 2011; Cheng et al., 2015). In this paper we compare both of these

approaches for 1D arrays, starting with SI.

Seismic interferometry is used to estimate the Green’s function between two sen-

sors (Snieder, 2004) from the ambient seismic field. When an array of sensors exists,

one can generate a virtual shot record by applying SI to a single sensor (i.e. the

virtual source) and all other sensors in the array (e.g. Bakulin & Calvert, 2006). The

surface-wave part of the Green’s function is most commonly recovered (e.g. Bensen

et al., 2007; Lin et al., 2008) because surface waves dominate Earth’s ambient seismic

field. Seismic interferometry has often been formulated in the time domain and is

equivalent to the spatial autocorrelation method (SPAC) in the frequency domain

when noise sources are evenly distributed (e.g. Nakahara, 2006; Tsai & Moschetti,

2010; Haney et al., 2012).

When an array is present and virtual shot records are created by SI, the phase-

velocity dispersion characteristics of the surface waves, can be estimated by applying

array-based velocity analysis (e.g., McMechan & Yedlin, 1981; Song et al., 1989; Park

et al., 1998) to the virtual shot record (e.g. Xu et al., 2013). A common array-based

method used in surface wave analysis is multichannel analysis of surface waves or

MASW (Park et al., 1999). Array-based methods are used to image the surface-wave

dispersion in the frequency-velocity (f -v) domain and are preferred to two station

methods because the array helps to distinguish the fundamental mode from higher-

mode surface waves (Xia et al., 2003). This distinction is important because higher

modes can a↵ect the accuracy of the surface-wave phase velocity measurement (e.g.

Luo et al., 2015). For near-surface applications of SI combined with array-based

i
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velocity analysis, we refer the reader to Cheng et al. (2015) and Xu et al. (2016) and

the references therein.

Another approach that uses raw seismic noise to estimate surface wave dispersion

is ReMi. This is a 1D array-based method that directly utilizes passive-source surface

waves found in the ambient seismic field. The basic idea of ReMi (Louie, 2001) is to

apply the ⌧ -p transform (McMechan & Yedlin, 1981) to passive-source surface waves

in noise records. The ⌧ -p data are then transformed to the f -v or f -p domain to

pick the phase velocity. During the picking, one needs to be careful because the

true phase velocity lies somewhere between the coherence maximum and the first

increase in coherence above the noise level (e.g. Louie, 2001; Strobbia & Cassiani,

2011). This is di↵erent from the array-based methods used in SI, where the maximum

coherence in the dispersion image is picked. Because of its simple implementation,

the ReMi method has found wide-spread use in engineering applications and near-

surface geology surveys (e.g. Scott et al., 2004; Civilini et al., 2016). However, there

is no clear theoretical basis for where to pick the phase velocity in the ReMi-derived

dispersion image. Moreover, up to now it is not clear which method, SI or ReMi, is

more suitable in the urban noise environment.

Although both of these methods assume that noise sources are evenly distributed

in space, the processing procedures of the two methods are di↵erent, and thus the

two methods will likely yield di↵erent results. There has been no comprehensive

study that compares these two methods. Therefore, we compare these two methods

to determine which method more accurately estimates phase-velocity dispersion in

the urban noise environment. We compare SI and ReMi for classic noise source dis-

tributions in urban areas, where strong noise sources are unevenly distributed and
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the recording array is linear. We first introduce the underlying physics of these two

methods, and then we apply these two methods to three synthetic data sets and com-

pare results. Results based on the traditional ReMi method show an artifact in this

noise environment, which we explain in the Discussion. We further the comparison

with a field data example, and finally, we compare and contrast the accuracy of the

two methods and propose some best practices for the ReMi method.

2.3 Methods

2.3.1 Seismic interferometry and array-based velocity anal-

ysis

Researchers have shown that we can accurately recover surface waves by using seis-

mic interferometry both theoretically (Snieder, 2004; Halliday & Curtis, 2008) and

in practice (Shapiro et al., 2005; Bensen et al., 2007). In solid-Earth geophysics,

researchers usually calculate surface-wave phase velocities with methods that use

two stations (e.g. Yao et al., 2006; Lin et al., 2008). In near-surface geophysics, re-

searchers commonly use arrays to calculate surface-wave phase velocities (e.g. Xu

et al., 2013). Because near-surface geology is complex, higher-mode surface waves of-

ten arise. Array-based methods provide the ability to separate di↵erent mode surface

waves in the f -v domain (Xia et al., 2003). Thus researchers often combine seismic

interferometry and array-based methods to investigate the near-surface geology (e.g.

Cheng et al., 2015).

We use crosscorrelation seismic interferometry and array-based velocity analysis

in this paper. We crosscorrelate time windows of data and then stack to build virtual

shot gathers (e.g. Halliday et al., 2008). We apply velocity analysis directly to these
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surface-wave virtual shot gathers, instead of individual empirical Green’s functions.

We note that there is a constant phase di↵erence of ⇡/2 between a crosscorrelation

and its corresponding empirical Green’s function (Snieder, 2004), but the phase dif-

ference between two adjacent crosscorrelations remains constant. Velocity analysis is

based on phase di↵erences between adjacent channels in a shot gather (Xia, 2014),

so it is convenient for us to omit transforming crosscorrelations to empirical Green’s

functions, either by the Hilbert transform or the derivative of the crosscorrelation

function (e.g. Lin et al., 2008; Haney et al., 2012). One can do velocity analysis

with di↵erent strategies (e.g. McMechan & Yedlin, 1981; Park et al., 1998; Xia et al.,

2007; Luo et al., 2008); we use the phase-shift method (Park et al., 1998) to image

surface-wave dispersion in this paper. This method is a frequency-wavenumber (f -k)

transform applied to a one-dimensional array. The relationship between this method

and the more traditional two-dimensional f -k transform is covered in Appendix A.

2.3.2 ReMi

The fundamental method underlying ReMi is the ⌧ -p transform. Because there are

passive-source surface waves in the ambient seismic field, one can characterize the

surface-wave velocity by applying the ⌧ -p transform along a linear array. The surface

waves are assumed to propagate through the array in all directions, and therefore

one applies the ⌧ -p transform in two-directions (i.e. forwards and backwards along

the linear array), as proposed in the original ReMi method (Louie, 2001). We now

present the complete ReMi derivation because this background is needed to discuss

the ReMi artifact.

In the ReMi method, the ambient seismic noise data A(x, t) is transformed from

the space-time (x-t) domain to the ⌧ -p domain, assuming waves propagate from left
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to right across the array, as

mleft(p, ⌧) =
xmaxX

xmin

A(x, t = ⌧ + px), (2.1)

where t represents time, x is the o↵set between a sensor and the first sensor on the

left side of the linear array, ⌧ is the zero-o↵set intercept time, and p is the slowness.

We then take the Fourier transform in the ⌧ direction to achieve mleft(p, f), where f

represents frequency. We repeat the above procedures in the other direction, assuming

propagation from right to left, and we sum the power spectra of these two m(p, f)

transforms to create S(p, f):

S(p, f) = mleft(p, f)m
⇤
left(p, f) +mright(p, f)m

⇤
right(p, f), (2.2)

where ⇤ represents the complex conjugate. We then transform S(p, f) from the p-

f domain to f -v domain with the mapping v=1/p. Therefore, the ReMi method

actually constitutes a two-direction ⌧ -p transform. This is the common practice (e.g.

Scott et al., 2004; Richwalski et al., 2007; Civilini et al., 2016). If only in-line noise

sources exist, the energy maximum at each frequency in the f -v domain indicates the

real phase velocity (e.g. Strobbia & Cassiani, 2011); however, if out-line noise sources

also exist, the energy maximum is an overestimation of the phase velocity (Louie,

2001) (i.e. an apparent velocity). Therefore in practice, one picks the steepest point

between the maximum and the departure from the background noise at each frequency

(e.g. Louie, 2001; Civilini et al., 2016) to generate a dispersion curve. In this paper,

we pick both the steepest point and the maximum when using ReMi for a comparison

with the true phase velocity.
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Example N1 N2
1 500 0
2 500 500
3 500 1000

Table 2.1: In-line (N1) and out-line (N2) noise source number for the three
synthetic examples.

2.3.3 Numerical Simulation

We compare the SI and ReMi approaches using three synthetic examples and a field-

data example. We introduce the synthetic examples in this section and present the

field-data example in a later section. To mimic the urban environment, we consider an

uneven noise source distribution in the three synthetic examples. In practice, noise

sources are unevenly distributed (Yang & Ritzwoller, 2008; Yao & Van Der Hilst,

2009) and noise commonly occurs on one side of the sensors in urban environments

(Nakata, 2016; Cheng et al., 2016). In the first example, noise sources are distributed

to the right-side of the linear receiver array in the in-line direction, defined to be in

the direction of the linear array. This noise source distribution is commonly observed

(e.g. Xu et al., 2016). Because out-line noise sources can also exist, we use both

in-line and out-line noise sources in the other two synthetic examples. In the second

example, the in-line and out-line noise sources have the same strength, and in the

third example, the out-line noise sources are twice as strong as the in-line sources.

We define the in-line and out-line noise sources by their spatial distribution and

activation time. The in-line noise sources are randomly distributed within an angle

range from -⇡/12 to ⇡/12 (Figure 2.1). The out-line noise sources are randomly

distributed within an angle range from ⇡/4 to 5⇡/12 (Figure 2.1). We use the number

of noise sources as a proxy for the source strength. The number of in-line noise sources
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Figure 2.1: This figure illustrates the location of geophones and noise
sources. Blue triangles represent geophones near the origin; blue dots
represent noise sources. The in-line and out-line noise sources are located
away from the origin between 1km and 5km. See text for details about
the distribution.

is N1, and the number of out-line noise sources is N2 (Table 2.1). These in-line and

out-line noise sources are randomly activated during a 1-hour recording time.

We adopt the ambient noise numerical simulation method proposed by Lawrence

et al. (2013) to simulate vertical component data. We model the fundamental-mode

Rayleigh waves, and all noise sources emit a 10Hz Ricker wavelet with a 1-s delay

from the activation time. The Earth model has two layers (Table 2.2) and is from

Bonnefoy-Claudet et al. (2006). There are 24 geophones named H00, H01 to H23

(blue triangles arrayed from right to left near the origin in Figure 2.1); the interval

between geophones is 5m.
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Layer number Vp (m/s) Vs (m/s) Density (g/cm3) Thickness (m)
1 1350 200 1.9 25
2 2000 1000 2.5 1

Table 2.2: The two-layer Earth model parameters used in the simulation.

2.4 Synthetic examples

We apply SI and ReMi to the three synthetic models (Table 2.1). We divide the

raw data into 60s windows; we crosscorrelate these windows and stack the crosscor-

relations. Then we construct virtual shot gathers (Figure 2.2) and create dispersion

images (Figure 2.3a,e,i) by applying phase-shift velocity analysis to the acausal part of

these gathers. We also apply ReMi to the entire 3600s of raw data to create dispersion

images for each model (Figure 2.3b,f,j).

2.4.1 Example 1

We apply SI and ReMi to calculate surface-wave phase velocities when there are only

in-line noise sources (N1=500, N2=0; Figure 2.3a, b). We use SI to create a virtual

shot record (Figure 2.2a) and then do velocity analysis. Due to the fact that the

in-line noise source distribution does not satisfy the SI requirement that noise sources

be evenly distributed around the array, there is a ⇡/4 phase shift in the in-line noise

source Green’s function compared to the 3D Green’s function when noise sources

are distributed evenly (Lin et al., 2008). This phase di↵erence, however, does not

adversely a↵ect the velocity analysis (Figure 2.3a) because the phase-shift method

measures only phase di↵erences between adjacent geophones, not absolute phase.

In this noise source distribution, the surface waves propagate along the linear

sensor array (Figure 2.1) from right to left only. In this situation, the wave prop-

agation satisfies the ⌧ -p transform assumption that a plane wave travels along the
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Figure 2.2: The virtual shot gathers for each synthetic source distribution
model (Table 2.1). a) N1=500, N2=0; b) N1=500, N2=500; c) N1=500,
N2=1000. We crosscorrelate station H0 with all other stations, H1 to H23.
As the out-line sources increase in strength, artifacts begin to appear in
the virtual shot gathers with fast apparent velocities.
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Figure 2.3: Dispersion images for the three synthetic examples (Table 2.1).
We apply velocity analysis to the virtual shot gathers using the phase-shift
method (Park et al., 1998) to create a,e,i (seismic interferometry velocity
analysis, SIVA). We apply ReMi to the raw synthetic data to create b,f,j.
We use surface-wave propagation-direction (SWPD) ReMi to create c,g,k,
and we use opposite surface-wave propagation-direction (OSWPD) ReMi
to create d,h,l. Red ellipsoids in b and d highlight the artifact. Black dots
represent theoretical Rayleigh-wave phase velocities (Haskell, 1953). All
dispersion images in this paper are normalized per frequency.
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linear array; therefore, the true surface-wave phase velocity is given by the maxi-

mum of the dispersion trend (Figure 2.3b) in the f -v domain. However, there is

an artifact in the ReMi result (indicated by the red ellipsoid in Figure 2.3b). We

note that we applied the ⌧ -p transform in two directions, from right to left and from

left to right (Equation 2). Thus the dispersion image is a combination of these two

⌧ -p transforms. To investigate this artifact, we present these two transform results

separately (Figure 2.3c,d). We find that if we only use ReMi in the surface-wave

propagation direction, from right to left here, we observe the correct energy trend in

the f -v domain without the artifact (Figure 2.3c). The artifact only exist when we

apply ReMi from left to right, which is opposite the actual surface-wave propagation

direction (Figure 2.3d). From here on, we call these two one-direction ReMi meth-

ods “surface-wave propagation-direction (SWPD) ReMi” and “opposite surface-wave

propagation-direction (OSWPD) ReMi”. We theoretically explain the reason this

artifact exists in the Discussion; prior to this we will finish the investigation of the

noise source distribution.

2.4.2 Example 2

In the model with out-line noise sources (N1=N2=500), the dispersion image (Fig-

ure 2.3e) is extremely similar to the previous model (Figure 2.3a). This is because

the stationary-phase sources (Snieder, 2004) still dominate the virtual source recon-

struction. The noise sources in the stationary-phase zone constructively interfere for

the surface waves (e.g. Yao & Van Der Hilst, 2009), and hence we reconstruct clear

surface waves in the virtual shot gather (Figure 2.2b). We note that there are also

weak high-velocity waves in this virtual shot gather due to incomplete cancellation

over the truncated out-line and in-line noise source distributions. These high-velocity
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waves appear as spurious energy in the f -v domain, but this energy trend is weak

and lower than the amplitude threshold we apply in Figure 2.3. Thus the trend does

not appear in the f -v domain plot.

The dispersion estimate from ReMi is not as clear as SI over the low frequencies.

The energy trends in ReMi (Figure 2.3f,g) show higher velocities than the theoretical

surface-wave phase velocities. This di↵erence is due to the out-line surface waves

(Louie, 2001). Moreover, the velocity di↵erence increases as frequency decreases, and

the dispersion energy smearing increases as the frequency decreases. At frequencies

less than 5Hz, the energy trends are smeared and considerably less focused compared

to the SI result (Figure 2.3e). There are also identical artifacts in the ReMi and the

OSWPD ReMi results (Figure 2.3f,h).

2.4.3 Example 3

We begin to observe a more biased surface-wave phase velocity trend when the out-line

noise source strength increases beyond the in-line sources; here we model the out-line

noise as two times the in-line noise strength (N1=500, N2=1000). The high-velocity

waves in the virtual shot gather (Figure 2.2c) increase in amplitude, and after we

apply velocity analysis to the virtual shot gather, a spurious energy trend appears at

frequencies less than 5 Hz in the f -v domain (Figure 2.3i). This energy trend shows a

shift toward higher velocities. The correct surface-wave dispersion trend does actually

exist, but the trend is too weak to pass the amplitude threshold we apply to the image.

In this case, one would misidentify phase velocities at low frequency if the maximum

energy in the dispersion image is used to determine the pick. Thus it is di�cult

to calculate correct surface-wave phase velocities for frequencies less than 5Hz. We

will discuss further why the spurious energy trend is strong in the Discussion. In
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the ReMi method, the energy trend becomes even more smeared than in Example 2

due to the stronger out-line noise sources. Thus one will also pick inaccurate phase

velocities for the low frequencies in the ReMi results. The artifact also exists in the

ReMi and OSWPD ReMi results (Figure 2.3j,l).

2.4.4 Phase velocity dispersion errors

In order to quantify the accuracy of the two methods in our synthetic examples we

calculate the average error between the picked phase velocities and the theoretical

values (black dots in Figure 2.3). We pick phase velocities as 1) the maximum energy

in the SI dispersion images, 2) the maximum energy in the ReMi dispersion images

and 3) the largest gradient (i.e. steepest point) along a single frequency in the ReMi

dispersion images. We use two methods for ReMi so as to compare with previous

literature (e.g. Louie, 2001). We compute the error as

✏ =
1

N

NX

i

|c(fi)� ctheory(fi)|
ctheory(fi)

, (2.3)

where N is the number of the picked phase velocities, c(fi) is the picked phase velocity

at frequency fi, and ctheory(fi) is the theoretical value. We calculate the error between

3-5Hz and then all frequencies (3-25Hz, Table 2.3) because the energy trend fits the

theoretical values above 5Hz in all examples.

In the case of only in-line noise (Example 1), SI, ReMi (maximum) and SWPD

ReMi (maximum) give accurate (✏ < 5%) phase-velocity estimates below 5Hz. The

small error that we do observe is due to the limited receiver-array aperture. ReMi

(steepest) and SWPD ReMi (steepest) provide phase velocities with large error (✏ > 20%)

because the steepest-point picking rule (Louie, 2001; Civilini et al., 2016) is not appli-
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Method N1=500 N1=500 N1=500
N2=0 N2=500 N2=1000

(3-5Hz / 3-25Hz) (3-5Hz / 3-25Hz) (3-5Hz / 3-25Hz)
SI (maximum) 3.44 / 1.35 10.51 / 2.60 74.92 / 3.05

ReMi (maximum) 4.23 / 5.12 16.13 / 7.92 86.88 / 29.55
ReMi (steepest) 21.45 / 9.51 15.19 / 9.50 15.55 / 10.67

SWPD (maximum) 2.53 / 1.16 14.46 / 1.75 91.95 / 14.72
SWPD (steepest) 28.21 / 8.47 22.60 / 7.16 22.31 / 6.95

Table 2.3: The average error (✏) between the picked phase velocities and
the theoretical values (black dots in Figure 2.3) below 5Hz (left) and be-
tween 3Hz to 25 Hz (right). We calculate the error with Equation 2.3
in percentage. SWPD represents the surface-wave propagation-direction
ReMi.

cable in this case. The maximum of the ⌧ -p transforms defines the true velocity. We

neglect computing the error in OSWPD ReMi because the artifact is entirely wrong.

In the case of equal strength in-line and out-line sources (Example 2), the SI approach

results in smaller average errors than any of the ReMi approaches. This is due to the

ability of SI to focus the wavefield in the virtual shot record prior to creating the f -v

domain image, in essence suppressing the spurious energy that has a fast apparent

velocity. When the noise sources are dominantly out-line (Example 3), we observe

that SI, ReMi (maximum) and SWPD ReMi (maximum) have large errors below 5Hz;

however, ReMi (steepest) and SWPD ReMi (steepest) provide results with smaller er-

rors, which demonstrates the initial reasoning of the steepest-point picking approach.

In this case, no 1D velocity analysis method can provide accurate phase velocities in

the lower frequencies, which is critical to constrain deep area shear velocities (Louie,

2001). Finally, the artifact in ReMi a↵ects the auto-picking process and explains why

the averaged errors in the SWPD results are smaller than the ReMi results over the

entire frequency band (Table 2.3).
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Figure 2.4: a) Map of the experiment field. The field is near roads. The
red line represents the geophone array. The white dashed arrow represents
the dominate ambient seismic noise energy propagation direction (Cheng
et al., 2016); ✓ is the angle between the ambient seismic energy propagation
direction and the array.b) The virtual source is the geophone on the far
right of the array.

2.5 A field-data example

We acquired ambient seismic noise data in the city of Nantong, China. We placed

twelve 2.5 Hz vertical-component geophones along with RefTek digitizers in a linear

array (the red solid line in Figure 2.4a). The sampling rate is 500Hz, and the interval

between two adjacent geophones is 10m. The line is almost perpendicular to a main

road, and beamforming results indicate that the angle (✓) between the dominate

passive-source surface-wave propagation direction and the receiver line is less than

⇡/6 (Cheng et al., 2016). We divided the 2-hours of raw data into 60s windows;

then we removed the mean and linear trend in each window. We crosscorrelated

every window of the right-most geophone and the other geophones and then stacked

the crosscorrelations. The acasual part of this virtual shot record (Figure 2.4b) is
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Method ✏ (%)
SI (maximum) 2.85

ReMi (maximum) 36.18
ReMi (steepest) 5.27

SWPD (maximum) 10.89
SWPD (steepest) 7.87

Table 2.4: The errors associated with the picked phase velocities (Fig-
ure 2.5a,b,c). We calculate the error (✏) with Equation 2.3 in percentage
and use the Cheng et al. (2016) velocities as the theoretical values. SWPD
represents the surface-wave propagation-direction ReMi.

dominated by a single surface wave mode. This asymmetric virtual shot record further

confirms that most of the passive-source surface waves propagated along the array

from right to left, as indicated by the beamforming.

We create dispersion images from the acausal part of the virtual shot gather

(Figure 2.4b) with the phase-shift method and by applying ReMi to the raw data.

Seismic interferometry provides a more focused energy trend (Figure 2.5a) than ReMi

(Figure 2.5b,c,d) and results in a smaller error than ReMi (Table 2.4). Here we use

phase velocities corrected for the noise source distribution (Cheng et al., 2016) as the

theoretical velocity values in the error estimation. The artifact (indicated by the red

ellipsoid in Figure 2.5b) also exists in the ReMi results (Figure 2.5b,d). The artifact,

however, does not exist in the SWPD ReMi result (Figure 2.5c). Hence the SWPD

ReMi result provides a cleaner and more continuous energy trend in the f -v domain

than the traditional ReMi method and results in reduced error (Table 2.4).
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Figure 2.5: Surface-wave dispersion images based on ambient noise data
recorded in Nantong, China. a) We apply the phase-shift method to the
acausal virtual shot gather (Figure 2.4b). We also apply ReMi (b), SWPD
ReMi (c) and OSWPD ReMi (d) to the raw data. The energy trends in
a,b,c represent the Rayleigh wave. Two red ellipsoids indicate the artifact.
Black dots represent source-corrected Rayleigh-wave phase velocities from
Cheng et al. (2016).
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2.6 Discussion

2.6.1 The spurious energy in seismic interferometry

Spurious energy in the virtual shot record begins to dominate in the f -v domain

when the out-line sources are stronger than the in-line sources (N1=500, N2=1000,

Figure 2.3i). We observe that this dominance occurs at frequencies less than 5Hz, and

we explain this observation based on the noise source contributions in the framework

of SI. We first introduce the Green’s function that is recovered from noise, where the

far-field approximation to the surface-wave Green’s function in a laterally homoge-

neous media can be written as

G(HA, HB,!)�G
⇤(HA, HB,!) ⇡

j

4⇡⇢

Z 2⇡

0

e
j!rcos✓/c

d✓, (2.4)

where HA and HB are the two sensors being crosscorrelated, r is the distance between

these two sensors, j is the imaginary unit, ! is angular frequency, ✓ is the noise source

angle and c is the surface-wave phase velocity (Fan & Snieder, 2009). G(HA, HB,!) is

the causal Green’s function and G
⇤(HA, HB,!) is the acasual Green’s function. Here

rcos✓ is an apparent distance, and !rcos✓/c indicates the surface-wave phase at !

due to noise sources distributed in the angle ✓.

Surface-wave signals in crosscorrelations or empirical Green’s functions come from

coherent noise sources (Xu et al., 2013). The phase of these surface-wave signals is

determined by the distance di↵erence between the noise source and the two sensors,

HA and HB. Hence, noise source locations with the same phase lie along hyperbo-

las with foci at these two sensors. In the far field, these hyperbolas approximate

straight lines (Figure 2.6). Noise sources in the 2N⇡ iso-phase hyperbolas (blue lines
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in Figure 2.6) are maximums in the real part of the integrand in Equation 2.4 (Fig-

ure 2.7); noise sources in the (2N +1)⇡ iso-phase hyperbolas (red lines in Figure 2.6)

are minimums in the real part of the integrand in Equation 2.4 (Figure 2.7). Noise

source energy along di↵erent angles will destructively interfere and cancel when the

real (and imaginary) part of the integrand oscillates rapidly (Fan & Snieder, 2009).

When the out-line energy in our synthetic examples lies in these zones of oscillation,

these sources cancel each other in SI and the energy is not present in the virtual shot

records, nor in the f -v domain. Hence, there is frequency-dependent spurious energy.

When the frequency is less than 5Hz, the hyperbolas in the out-line direction are

sparser, or more separated, than at high frequencies (Figure 2.6), and the real part

of the integrand does not oscillate as quickly (Figure 2.7a). Therefore some out-line

noise energy remains after applying SI. We attribute the spurious energy trends in

frequencies less than 5Hz (Figure 2.3i) to this slow oscillation of the phase. As the

frequency increases, the iso-phase hyperbolas become more dense (Figure 2.6b,c),

which means the real part of the integrand oscillates more rapidly (Figure 2.7b,c).

As a result, the cancellation of out-line noise energy will be more e↵ective, and there

is no spurious energy trend at frequencies above 5Hz (Figure 2.3f).

2.6.2 The artifact in ReMi

We find that, even in the simplest case of in-line noise sources, there is artifact

in the dispersion image when we apply the traditional two-direction ReMi method

(Figure 2.3b, f and j). This artifact is also present in almost all other published work

and has been interpreted as f -k aliasing (e.g. Louie, 2001), but as evident in our

analysis, this artifact only exists because we adopt ReMi in the opposite surface-wave

propagation direction (Figure 2.3d, h and l). If we apply ReMi in only the surface-
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Figure 2.6: Three examples of iso-phase hyperbola for three di↵erent fre-
quencies: a) 5Hz, b) 10Hz and c) 20Hz. Red lines represent (2N � 1)⇡
phase; blue lines represent 2N⇡ phase (N = 1, 2, 3 . . .). Here the surface-
wave phase velocity is 200m/s. The two black triangles represent the two
sensors. The distance between these two sensors is 120m. One is located
in X=60m, Y=0; the other is located in X=-60m, Y=0.

wave propagation direction, the artifact does not exist (Figure 2.3c, g and k). Thus,

we investigate this artifact further to determine the origin as it pertains to ReMi

theory.

We first present the ⌧ -p transform in the frequency domain. We transform Equa-

tion 2.1 to the frequency domain:

m(p, f) =

Z
m(p, ⌧)e�j2⇡f⌧

d⌧ =
xmaxX

xmin

Z
d(x, t = ⌧ + px)e�j2⇡ft

e
j2⇡fpx

dt, (2.5)

where d represents a (virtual) shot gather and we have interchanged the order of the

summation and the integral. Evaluating the integral leads to

m(p, f) =
xmaxX

xmin

d(x, f)ej2⇡fpx. (2.6)

Equation 2.6 is the basic equation for the phase-shift method (Park et al., 1998). Thus
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Figure 2.7: The real part of the integrand in Equation 2.4 for the three
frequencies in Figure 2.6: a) 5Hz, b) 10Hz and c) 20 Hz. Surface-wave
phase velocities are all 200m/s. Blue diamonds represent the sources on
blue iso-phase hyperbola in Figure 2.6; green diamonds correspond to
green lines in Figure 2.6; red diamonds represent the sources on red iso-
phase hyperbola in Figure 2.6. Red dash lines represent the angle range
for out-line noise sources, from ⇡

4 to 5⇡
12 .
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the ⌧ -p transform has as good resolution as the phase-shift method (Shen et al., 2015).

We will use this spectral f -p equation (Equation 2.6) in the remaining discussion.

We focus here only on the surface-wave phase in the dispersion measurement (Park

et al., 1998; Xia, 2014), and thus we neglect the amplitude part in d so that

d(x, f) = e
j(�0�2⇡fp0�x)

, (2.7)

where �0 represents initial phase, x represents the receiver location, �x = x�x0 is the

source-receiver o↵set, where x0 is the source location (often 0), and p0 represents the

surface-wave slowness at frequency f . This gives the correct phase for a surface wave

propagating from x0 to x; we note that if the surface wave propagates in the other

direction, �x in Equation 2.7 becomes �x = xmax � x. If we apply the spectral f -p

equation to a (virtual) shot gather in the direction opposite to the actual surface-wave

propagation direction, Equation 2.6 becomes

m(p, f) =
xmaxX

xmin

e
j(�0�2⇡fp0(xmax�x))

e
j2⇡fpx = e

j(�0�2⇡fp0xmax)
xmaxX

xmin

e
j2⇡fx(p+p0), (2.8)

where ej(�0�2⇡fp0xmax) is a constant value for the gather. Equation 2.8 is the equation

of the artifact, and this artifact in the ⌧ -p transform leads to the artifact in the

traditional two-directional ReMi method.

Because the sensors in a linear array are commonly distributed at the same spatial

interval, Equation 2.8 can be rewritten as:

m(p, f) = e
j(�0�2⇡fp0xmax)

NX

n=1

e
j2⇡f(n�1)dx(p+p0), (2.9)
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where N is the number of the sensors and dx is the receiver spacing. If dx(p+ p0) =

1/f , Equation 2.9 reduces to m(p, f) = e
j(�0�2⇡fp0xmax), which is a maximum in the

dispersion image. Moreover, the artifact will appear not only when dx(p+p0) is equal

to 1/f , but also when dx(p+ p0) is equal to any integer times 1/f . This artifact was

recognized by Turner (1990) in wave records (Figure 2.8). To demonstrate that this

is indeed the equation of the artifact, we applied both the ⌧ -p and the phase-shift

methods to the acausal virtual shot record in Example 1 (Figure 2.2a), but in the

direction opposite the actual surface wave propagation direction. We also compute

the artifact using Equation 2.8 and compare the results to two virtual shot record

examples (Figure 2.9). The artifact is identical in all three images, although we see

variations in amplitude. Besides this artifact, the results of the ⌧ -p and the phase-shift

methods are not identical due to stacking in di↵erent domains.

2.6.3 Improvements to the SI and ReMi Methods

The spurious waves in SI and the artifact in ReMi arise from a lack of knowledge about

noise-source distribution, and the smearing in the f -v domain when the noise sources

are stronger from the out-line direction all lead to frequency dependent bias in phase

velocity estimates from 1D arrays. Park & Miller (2008) present a solution to this

problem whereby they scan over all azimuths to account for apparent velocities of out-

line energy propagating across the 1D array. Using two-dimensional (2D) arrays, the

source direction(s) can actually be determined, and this has been done in f -k analysis

applied to ReMi (e.g. Strobbia & Cassiani, 2011) and SI (e.g. Nakata et al., 2016). If

one can determine the source angle with f -k analysis, then a correction can be made

to the phase velocity to correct any bias (e.g. Cheng et al., 2016). Alternatively, if one

knows that both out-line and in-line noise sources exist, one can mute the spurious
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Figure 2.8: An illustration of the artifact in ReMi. For a monochromatic
wave (T=1/f) recorded on two receivers separated by distance dx, mul-
tiple slowness values will sum constructively during velocity analysis. A
slowness value of zero would be represented by a horizontal line. Here, the
blue line represents a positive slowness value (p0), which is in the actual
surface-wave propagation direction. The red line represents a negative
slowness (p), or conversely, a slowness in the direction opposite to the ac-
tual surface-wave propagation direction. Both slowness values would have
high amplitudes in the f-p domain, but only p0 would be real.
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Figure 2.9: a) We apply the ⌧-p transform to the acausal virtual shot
gather (Figure 2.2a) in the direction opposite the surface-wave propagation
direction. b) We also apply the phase-shift method in that direction. c)
We plot Equation 2.8 in the f-v domain with the same discretization as in
a) and b).

waves in the crosscorrelations (Figure 2.2c) prior to velocity estimation. Or if multi-

component data exists, the spurious waves in SI (Figure 2.3i) can be suppressed if one

applies SI to the radial components, which are more sensitive to in-line noise sources

than out-line noise sources compared to vertical components (Xu & Mikesell, 2017).

Finally, it is worth noting that a separate problem arises when sources lie near the

linear recording array and the incident plane wave assumption is not valid. A solution

to this is given by Park & Miller (2008), whereby a cylindrical wave f -v transform is

used rather than a plane wave transform. Even in this instance though, biases remain

at low frequencies due to the influence of non-stationary phase noise sources.

Regarding the ReMi artifact, if one knows that noise sources are only distributed

to one side of the geophone array, one can avoid the artifact in ReMi by apply-

ing ReMi only in the surface-wave propagation direction instead of both directions.

In this study we use crosscorrelations, not f -k analysis, to identify the surface-wave

propagation direction (Figure 2.2,2.4b) and to separate the left- and right-going wave-

fields. Therefore, with ReMi and the surface-wave propagation direction taken from

crosscorrelations, the artifact can be eliminated to improve continuity of the entire
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Figure 2.10: The ⌧-p transform applied to the virtual shot gather in
Figure 2.4b in the direction of surface-wave propagation. We achieve
a surface-wave dispersion image that is similar to the phase-shift result
(Figure 2.5a). Black dots represent the surface-wave phase velocities from
Cheng et al. (2016).

dispersion image (Figure 2.3c,g,k,2.5c). If noise sources are distributed on both sides

of the array, in order to eliminate the ReMi artifact, one must first separate left and

right propagating waves and then apply the ⌧ -p transform. Seismic interferometry

acts to separate the surface waves into the causal and acausal parts, depending on left

or right propagation directions, respectively. Therefore we can apply the ReMi or the

⌧ -p transform directly to the casual or acasual part of crosscorrelations that contains

strong surface waves (Figure 2.4b) instead of raw noise records. Because we have

demonstrated that the ⌧ -p transform (McMechan & Yedlin, 1981) in the frequency

domain is equivalent to the phase-shift method (Park et al., 1998), one should expect

to achieve very similar dispersion images using either the ⌧ -p (Figure 2.10) or phase-

shift (Figure 2.5a) methods, which indeed is the case. However, ambiguity remains as

to whether one should pick the maximum or the steepest point in the energy increase

in the f -v domain. Choosing the steepest point appears to work sometimes and other

times not. Therefore, in the case that only a linear array is available, we suggest

SI followed by phase-shift or ⌧ -p velocity analysis applied to the side of the virtual
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shot record with the dominant surface wave energy. In this way, SI first gathers the

coherent energy from the stationary-phase sources, and then the maximum in the

dispersion image can be picked, avoiding this ambiguity in the ReMi method.

2.7 Conclusion

We compare two approaches that use linear recording arrays to estimate surface-

wave phase-velocity dispersion from passive noise sources. We identify limitations in

the accuracy of estimation when the surface waves are generated by non-uniformly

distributed passive sources. This noise source distribution is meant to mimic the

highly heterogeneous source distribution one might find in an urban setting during

near-surface shear-wave velocity estimation experiments. We determine that accu-

rate surface-wave phase velocities can be estimated with SI and array-based velocity

analysis if out-line noise sources are not stronger than in-line noise sources. The SI

derived results provide more focused energy trends in the f -v domain and smaller

errors than the results of traditional ReMi. Therefore we recommend to use seis-

mic interferometry and array-based velocity analysis in this noise environment. We

also identify an artifact in the dispersion image if the traditional two-direction ReMi

method is applied to the data. This is regardless of the noise source direction, and

to avoid this artifact, one needs to determine the main passive-source surface-wave

propagation direction and then apply the surface-wave propagation-direction ReMi.

Otherwise, one can first separate the left and right propagating surface wavefields

with SI and then apply velocity analysis independently to the causal and acausal

virtual shot gathers. Either the ⌧ -p or the phase-shift method can be applied during

velocity analysis; we have shown that the two are equivalent.
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CHAPTER 3:

ON THE RELIABILITY OF DIRECT

RAYLEIGH-WAVE ESTIMATION FROM

MULTICOMPONENT CROSSCORRELATIONS

This chapter has been published as: Xu, Z., & Mikesell, T. D. (2017). On the

reliability of direct Rayleigh-wave estimation from multicomponent cross-correlations.

Geophysical Journal International, 210(3), 1388-1393.

3.1 summary

Seismic interferometry (SI) is routinely used to image and characterize underground

geology. The vertical component crosscorrelations (CZZ) are often analyzed in this

process; although one can also use radial component and multicomponent crosscor-

relations (CRR and CZR, respectively), which have been shown to provide a more

accurate Rayleigh-wave Green’s function than CZZ when sources are unevenly dis-

tributed. In this letter we identify the relationship between the multicomponent

crosscorrelations(CZR and CRZ) and the Rayleigh-wave Green’s functions to show

another point of view as to why CZR and CRR are less sensitive than CZZ to the

non-stationary phase source energy. We demonstrate the robustness of CRR with a

synthetic seismic noise data example. These results provide a compelling reason as



40

to why CRR should be used to estimate the dispersive characteristics of the direct

Rayleigh wave with SI when the signal-to-noise ratio is high.

3.2 Introduction

Characterizing underground geological structure is important for a variety of applica-

tions (e.g. geological hazard assessment, resource exploration, contaminant monitor-

ing, etc.). Nowadays one commonly uses seismic interferometry (SI) to characterize

elastic and anelastic properties of the subsurface. Vertical component (Z) data are

often used to compute CZZ crosscorrelations (e.g. Shapiro et al., 2005), where CZZ

indicates that the vertical channel at both stations is used. From CZZ , one can es-

timate an approximate fundamental-mode Rayleigh-wave Green’s function (GZZ) if

the seismic sources are distributed evenly (Snieder, 2004; Roux et al., 2005) or if the

wavefield is di↵use (Lobkis & Weaver, 2001; Weaver & Lobkis, 2006). However, seis-

mic sources are usually not evenly distributed, nor is the wavefield di↵use (Mulargia,

2012), and CZZ leads to a biased estimate of GZZ (e.g. Halliday & Curtis, 2008; Yao

& Van Der Hilst, 2009; Froment et al., 2010). One can correct the biased GZZ us-

ing multi-dimensional deconvolution (Wapenaar et al., 2011), the C3 method (Stehly

et al., 2008; Froment et al., 2011), information about the source distribution (e.g. Yao

& Van Der Hilst, 2009; Nakata et al., 2015), or signal processing methods (e.g. Baig

et al., 2009; Stehly et al., 2011; Melo et al., 2013). One can also use radial component

(R) data to retrieve GRR or a combination of vertical and radial components to re-

trieve GZR (e.g. Campillo & Paul, 2003; Lin et al., 2008; Stehly et al., 2009), where the

R direction is the in-line direction between the two receivers. van Wijk et al. (2011)

(empirically) and Haney et al. (2012) (theoretically) determined that CZR and CRZ

are less sensitive than CZZ to out-of-line sources, where out-of-line sources mean the

I
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non-stationary phase sources. Stationary-phase sources are defined as sources that

constructively interfere to produce the Green’s function during correlation; these are

sources that have an absolute phase di↵erence less than ⇡/4 when compared to the

real Green’s function.

In this letter, we investigate the reliability of crosscorrelations a↵ected by an

uneven source-energy distribution. Truncating the boundary of sources in seismic

interferometry leads to coherent noise (i.e. artifacts or spurious arrivals) (e.g. Snieder

et al., 2006; Mikesell et al., 2009). We investigate why CZR and CRR are more ro-

bust than CZZ to estimate the fundamental-mode Rayleigh wave from a theoretical

standpoint and determine why previous studies often find that CZZ has the largest

signal-to-noise ratio (SNR). We first review the relationship between the fundamental-

mode Rayleigh-wave Green’s function and the crosscorrelation function. We then

analyze how the source-energy distribution contributes to the crosscorrelation and

the estimate of the Green’s functions. We find that CZR and CRR attenuate the

non-stationary phase source energy and provide more reliable Rayleigh-wave Green’s

functions than CZZ . We further the discussion with a synthetic data example where

seismic noise sources are unevenly distributed. We consider how the uneven noise-

source distribution a↵ects the virtual shot records and coherent and incoherent noise,

as well as the resulting Rayleigh-wave dispersion images. We demonstrate that co-

herent noise is present prior to the direct wave arrival, and therefore, this type of

noise is often not take into account when the signal-to-noise ratio of correlations is

computed using incoherent noise that arrives after the direct wave.
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3.3 The Green’s functions and multicomponent

crosscorrelations

Under the far-field assumption, one can use crosscorrelations to approximate the

elastic-wave Green’s function as

Gim(rA, rB,!)�G
⇤
im(rA, rB,!) ⇡ �2j!

I

S

1

⇢c
G

⇤
ip(rA, rS,!)Gmp(rB, rS,!)dS, (3.1)

where Gim(rA, rB,!) is the Green’s function representing the ith component of par-

ticle displacement at location rA due to a point force in the m direction at rB, the

asterisk denotes the complex conjugation, S represents the surface where sources

are located, rS represents the source location, ! is the angular frequency, j is the

imaginary unit, ⇢ is the density and c is the phase velocity (Wapenaar & Fokkema,

2006). Here sources are uncorrelated (e.g. Lobkis & Weaver, 2001). In a homo-

geneous medium, and again under the far-field assumption, the vertical component

fundamental-mode Rayleigh-wave Green’s function can be written as (e.g. Fan &

Snieder, 2009; Haney et al., 2012)

GZZ(r) =

s
1

8⇡!r/c
e
j(!r/c+⇡/4)

, (3.2)

where r is the distance between the source and receiver. Regardless of the source

direction (i.e. subscript p in Equation 3.1), if two sensors record in the Z direction,
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Equation 3.1 becomes

GZZ(rA, rB,!)�G
⇤
ZZ(rA, rB,!) ⇡

�j

4⇡⇢

I

S

r
1

rSArSB
e
j!(rSB�rSA)/c

�(z)dS, (3.3)

where rSA is the distance between the source rS and the receiver rA (Figure 3.1), and

�(z) indicates that all sources are distributed on the z = 0 plane, which is the ground

surface.

The integrand in Equation 3.3 is the CZZ crosscorrelation for the source at rS.

When the source is far from the two sensors, rSB�rSA ⇡ r cos(✓) and rSA ⇡ rSB ⇡ rS.

Because dS = rSdzd✓, Equation 3.3 can be written as

GZZ(rA, rB,!)�G
⇤
ZZ(rA, rB,!) ⇡

�j

4⇡⇢

Z 2⇡

0

e
j!r cos(✓)/c

d✓, (3.4)

where the integrand now is the phase of CZZ for a point source in the ✓-direction.

Following the same logic, and using

GRZ(r) =
H

V

s
1

8⇡!r/c
e
j(!r/c�⇡/4)

, (3.5)

where H/V is the ratio of the horizontal-to-vertical motion (e.g. Haney et al., 2012),

we can write

GZR(rA, rB,!)�G
⇤
ZR(rA, rB,!) ⇡

�j

4⇡⇢

H

V

Z 2⇡

0

cos(✓)ej[!r cos(✓)/c�⇡/2]
d✓, (3.6)

GRZ(rA, rB,!)�G
⇤
RZ(rA, rB,!) ⇡

�j

4⇡⇢

H

V

Z 2⇡

0

cos(✓)ej[!r cos(✓)/c+⇡/2]
d✓, (3.7)
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Figure 3.1: Diagram of the location of a point source and the receivers.
The black star represents a point source; the black triangles represent the
receivers. The R direction is parallel to the line linking the two sensors,
rA and rB.

GRR(rA, rB,!)�G
⇤
RR(rA, rB,!) ⇡

�j

4⇡⇢

✓
H

V

◆2 Z 2⇡

0

cos2(✓)ej!r cos(✓)/cd✓. (3.8)

The integrands in Equations 3.6, 3.7 and 3.8 are CZR, CRZ and CRR for a point

source along the ✓ azimuth, respectively. Because GRZ(rA, rB,!)�G
⇤
RZ(rA, rB,!) =

e
j⇡[GZR(rA, rB,!)�G

⇤
ZR(rA, rB,!)] = �[GZR(rA, rB,!)�G

⇤
ZR(rA, rB,!)], GZR pos-

sesses the same information as GRZ . The actual source direction (subscript p in

Equation 3.1) is not important; rather the recording direction (subscript m) plays

the role of the source during correlation. Thus the Rayleigh waves can be generated

by either vertical or horizontal sources (e.g. Nishida et al., 2008).

3.4 The significance of the source angle

The source angle contributes to the three di↵erent kinds of crosscorrelations, CZZ ,

CZR and CRR, in di↵erent ways. One can assess the role of the source angle by

considering the integrands of the crosscorrelations (e.g. Fan & Snieder, 2009). The
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source distribution area can be divided into two parts: a stationary-phase area (near

✓ = 0, ⇡, 2⇡ in Figure 3.2a) and a non-stationary phase area (the rapid oscillation area

in Figure 3.2a). The sources in the stationary-phase area are important for retrieving

the Green’s functions; they contribute significantly to the integral in Equation 3.1

(Snieder, 2004; Snieder et al., 2008; Mikesell et al., 2012). If the sources are evenly

distributed, the integrands of the CZZ , CZR and CRR oscillate evenly in the non-

stationary phase area and completely cancel the non-stationary phase energy in the

integral from 0 to 2⇡. However, we are interested in the sources in the non-stationary

phase area; thus we consider an isolated number of sources in small angular range.

At a constant receiver separation the stationary-phase area increases as frequency

decreases; therefore, more sources can contribute to retrieval of the low frequency

Green’s function. However, the integrand of crosscorrelations (Equation 3.4, 3.6 and

3.8) oscillates slower as frequency decreases (Figure 3.3). Therefore, if the sources

only exist in some small part of the non-stationary phase area, frequency-dependent

energy will remain after the integration and lead to spurious waves (i.e. artifacts) in

the retrieved GZZ (e.g. Yang & Ritzwoller, 2008). In contrast, at high frequencies the

integrand oscillates rapidly (Figure 3.3), and the non-stationary phase source energy

cancels over small angular ranges (Xu et al., 2017). If we consider the integrands of

CZR and CRR (Figure 3.2b and c, respectively), we observe an interesting relationship

between source angle and the amplitude of the integrand.

The non-stationary phase sources are spatially down weighted in the CZR and

CRR crosscorrelations due to the occurrence of the cos ✓ in Equations 3.6 and 3.8. For

each source, the Rayleigh-wave energy is projected to the R direction and decreases

from the maximum to 0 as the source angle increases from ✓ = 0 to ⇡/2. Therefore



46

the integrand amplitude of CZR and CRR is reduced in the non-stationary phase area

compared to the amplitude of CZZ (Figure 3.2). Furthermore, the CRR amplitudes

are down weighted more than CZR outside the stationary-phase area due to the cos2 ✓

term. Because of the projection in the R direction, CRR is theoretically the most

robust Rayleigh-wave estimation for uneven source distributions. Haney et al. (2012)

pointed out that the cos ✓ term acts as a spatial filter for the CZR and CRZ components

in the spatial autocorrelation (SPAC) method. The idea of the spatial filter does not

only apply to CZR, but also to CRR (Figure 3.2).

The envelopes of the integrands also demonstrate that CZR and CRR attenuate the

non-stationary phase energy equally for all frequencies (Figure 3.3). The stationary-

phase energy in CRR and CZR is preferentially weighted more than the non-stationary

phase energy, and thus act as a spatial filter on the source distribution. This spatial

filter is identical for di↵erent frequencies (Figure 3.3), di↵erent inter-station distances

and di↵erent phase velocities because cos ✓ is independent of these parameters. Fur-

thermore, the filter does not a↵ect the stationary-phase sources because cos ✓ and

cos2 ✓ vary slower than the integrand (Figure 3.3). Finally, in the limit that the fre-

quency goes to zero, or the inter-sensor distance goes to zero, the correlation function

becomes an autocorrelation, and all space becomes the stationary-phase area. In that

case, the spatial filter no longer plays a significant role in the accuracy of the retrieved

Green’s function.

3.5 A synthetic-noise source example

The integral on the right hand side of Equation 3.1 also represents the crosscorrelation

between noise records of two receivers, rA and rB, if the noise sources are independent

of each other (i.e. mutually uncorrelated) (Wapenaar & Fokkema, 2006). One can
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Figure 3.2: The amplitudes of the integrands of CZZ, CZR and CRR (Equa-
tions 3.4, 3.6 and 3.8) change with the source angle (✓). The black solid
line represents the real part of the integrand, and the gray dashed line
represents the imaginary part. These examples are computed with a fre-
quency (!) of 5Hz, a phase velocity (c) of 200m/s, and an inter-station
distance (r) of 120m.
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Figure 3.3: The envelope of the integrand of CZZ (black line), CZR (blue
line) and CRR (red line) at 5Hz (a), 10Hz (b) and 20Hz (c). The envelope
is the L2 norm of the real and imaginary part of the integrands in Equa-
tion 3.4, 3.6 and 3.8. The gray line is the real part of the integrand of
CRR weighted by cos2 ✓. The oscillation rate of the phase of CZZ and CZR

is identical to CRR, and the phase varies much faster than the weighting
term. Here we assume the phase velocity is 200m/s and the inter-sensor
distance is 120m.
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Table 3.1: The two-layer Earth model parameters used in the simulation.

Layer Vp Vs Density Thickness
number (m/s) (m/s) (kg/m3) (m)

1 1350 200 1900 25
2 2000 1000 2500 1

then use Equation 3.1 to estimate the Rayleigh-wave Green’s functions GZZ , GZR and

GRR from seismic noise (e.g. Halliday & Curtis, 2008). We demonstrate the reliability

of CZZ , CZR and CRR with a synthetic example, where noise sources are unevenly

distributed. We compute virtual shot records along a linear array from correlations of

the noise. The noise sources are randomly distributed within two angle ranges (Figure

3.4): from �⇡/12 to ⇡/12 (the stationary-phase area) and from ⇡/4 to 5⇡/12 (the

non-stationary phase area). The number of noise sources is used as a proxy for the

noise energy strength, and the non-stationary phase noise energy is twice as strong

as the stationary-phase noise energy in this example.

The Earth model we use has two layers (Table 3.1) and is from Bonnefoy-Claudet

et al. (2006). All noise sources emit the same wavelet, and we model only the

fundamental-mode Rayleigh wave. Each noise source is randomly activated during

a 1-hour recording time. We simulate the response for every source using the algo-

rithm proposed by Michaels & Smith (1997) and project the response to the Z and

R components of the sensors. Then we stack all of these source projections to create

a 1-hour long synthetic noise recording at each of the 24 geophones, which are 5 m

apart from each other (Figure 3.4).

We assess the accuracy of the three crosscorrelations by comparing virtual shot

records and comparing the Rayleigh-wave phase-velocity dispersion images to the

true dispersion. We build virtual shot records (Figure 3.5a, b and c) from indi-
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Figure 3.4: The experiment geometry indicates the location of noise
sources (dots) and geophones (triangles). The noise sources are located
away from the origin between 100m and 500m. See text for more details.
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Figure 3.5: CZZ, CRZ and CRR virtual shot records (a,b,c) and the corre-
sponding phase-velocity dispersion images (d,e,f). The dominant energy
trends in a,b,c represent the Rayleigh wave. Black dots represent theoreti-
cal Rayleigh-wave phase velocities (Haskell, 1953) in d,e,f. The black dash
lines in d,e,f, indicate the resolvable image area, where the wavelength
is less than the array length. All dispersion images are normalized per
frequency.
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���� ����

Figure 3.6: The amplitude normalized CZZ, CRZ and CRR functions between
receivers H00 and H020. The inset shows a zoom of the spurious energy
time window from �0.1s to �0.3s. A ⇡/2 phase shift has been applied to
CRZ to facilitate the comparison with CZZ and CRR. The values in the
legend indicate the maximum amplitude of each crosscorrelation function.

vidual crosscorrelations (e.g. Halliday et al., 2008) and then map the data to the

frequency-velocity domain using the phase-shift method (Song et al., 1989) to gener-

ate phase-velocity dispersion images (Figure 3.5d, e and f). The virtual shot records

and the dispersion images indicate that CRR is the most robust among the three

crosscorrelations. The dominate waveforms in the three crosscorrelations are from

the stationary-phase area noise sources, and the high-velocity spurious wave before

the main waveform is due to the non-stationary phase area noise energy. We find

that CRR contains lower-amplitude spurious waves than CZR and CZZ (Figure 3.6).

The spurious waves in CZZ lead to the spurious energy trends at frequencies less than

7 Hz (Figure 3.5d), which is fully discussed in Xu et al. (2017). We also find that CZR

does not provide accurate information below 5 Hz (Figure 3.5e). However, we observe

accurate Rayleigh-wave phase velocities in the frequency-velocity domain of the CRR

below 5 Hz (Figure 3.5f), which matches the theoretical prediction in Section 3.4.
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3.6 Discussion

Although CZR and CRR attenuate non-stationary sources, the amplitudes of these two

crosscorrelations are determined by the H/V ratio (Equation 3.6 and 3.8). The H/V

ratio is normally less than 1; therefore, the CZZ amplitude is normally larger than

CZR and CRR. In our synthetic data example, the 3-15 Hz frequency-averaged H/V

ratio is 0.41, the standard deviation is 0.21, and the CRR peak amplitude is an order

of magnitude smaller than the CZZ peak amplitude (Figure 3.6). Relative to the

maximum amplitude of each correlation, the coherent noise (Figure 3.6, t >-0.4 s and

inset) is much larger in CZZ than CRR, while the incoherent noise (Figure 3.6, t <-

0.6 s) is approximately the same. Therefore, when discussing notions of signal-to-noise

ratio (SNR), one needs to consider both coherent and incoherent noise. Artifacts due

to an uneven source distribution should be considered coherent noise, while random

fluctuations should be considered incoherent noise.

In most studies, authors compute SNR as the ratio between the maximum Rayleigh

wave amplitude and the incoherent noise (e.g. Bensen et al., 2007; Lin et al., 2008).

The incoherent noise is measured based on a window of data after the direct arrival

(e.g. Bensen et al., 2007; Lin et al., 2008). If we assume that the random fluctuation

(i.e. incoherent noise) amplitude is the same on the Z component and the R com-

ponent, then the SNR of CZR and CRR will be less than that of CZZ any time the

Rayleigh wave H/V ratio is less than 1. Thus in practice, people observe (compute)

that CZZ has a higher SNR than CZR and CRR (e.g. Lin et al., 2008). However, this

SNR metric does not take into account the coherent noise that precedes the direct

Rayleigh wave. One approach to monitor the coherent noise is to use a continuous

SNR computation method (e.g. Larose et al., 2007; Clarke et al., 2011).

I 1



54

Finally, CZR and CRR can also aid the identification of fundamental and higher-

model surface waves when the two surface-wave dispersion curves are very close in

the frequency-velocity domain (Boué et al., 2016; Ma et al., 2016). The fact that

Rayleigh wave modes have di↵erent H/V ratios and particle motions enables one to

identify (e.g. Boaga et al., 2013) and separate these modes (e.g. Gribler et al., 2016)

to improve the reliability of dispersion estimation.

3.7 Conclusion

We present the relationships between the fundamental-mode Green’s functions (GZZ ,

GZR and GRR) and crosscorrelation functions (CZZ , CZR and CRR) within the far-

filed approximation. When estimating the fundamental-mode Rayleigh-wave Green’s

functions, the CZZ crosscorrelation weights source energy equally from all directions.

In contrast, the CZR and CRR crosscorrelations attenuate source energy in the non-

stationary phase area for all frequencies and thus act as spatial filters on the source

distribution. Therefore, more accurate Green’s functions (i.e. fewer spurious ar-

rivals or reduced coherent noise) are retrieved from CZR and CRR compared to CZZ

when the source energy is unevenly distributed. We demonstrate the validity of this

theoretical inference with a synthetic seismic noise example. Those interested in

characterizing velocity structure from ambient noise Rayleigh waves should use CRR

whenever possible to limit the e↵ect of non-homogeneous noise source distributions

on the frequency-dependent direct-wave phase velocity. Finally, we note that the

analysis presented here pertains to the direct-wave Rayleigh wave; we have neglected

how the multicomponent crosscorrelations influence scattered waves.
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CHAPTER 4:

RAYLEIGH-WAVE MULTICOMPONENT

CROSSCORRELATION-BASED SOURCE

STRENGTH DISTRIBUTION INVERSION.

PART 1: THEORY AND NUMERICAL

EXAMPLES

This chapter has been published as: Xu, Z., Mikesell, T. D., Gribler, G., & Mordret,

A. (2019). Rayleigh-wave multicomponent cross-correlation-based source strength

distribution inversion. Part 1: Theory and numerical examples. Geophysical Journal

International, 218(3), 1761-1780.

4.1 Summary

Crosscorrelation-based seismic interferometry is commonly used to retrieve surface-

wave Green’s functions from ambient seismic noise recordings. This approach requires

that seismic sources are isotropically distributed in all directions around two receivers.

However, this assumption is rarely valid in practice. Thus full-waveform inversion

theory has recently been applied to seismic noise crosscorrelation functions, functions

that include both source and structure information. Source information (like locations
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and strengths) are essential for accurate structure information estimation. In this

paper, we explain physically two types of source sensitivity kernels: one derived

from traveltime misfits and the other derived from waveform misfits. We use these

kernels for source inversion, and demonstrate the benefits of using multicomponent

crosscorrelations in this source estimation process.

4.2 Introduction

One nowadays commonly crosscorrelates ambient seismic recordings of two sensors to

retrieve the surface-wave Green’s functions between the two sensors (e.g. Snieder,

2004). Assuming the crosscorrelation function is the band-limited Green’s func-

tions, one can estimate subsurface geologic structures (e.g. Shapiro et al., 2005).

The crosscorrelation method, or seismic interferometry, requires that seismic sources

are isotropically distributed in all directions around two receivers (e.g. Wapenaar &

Fokkema, 2006). However, this assumption is rarely valid in practice. An anisotropic

source distribution will bias the retrieved Green’s functions and the resulting sub-

surface geologic inferences (e.g. Yang & Ritzwoller, 2008; Yao & Van Der Hilst,

2009). To reduce this bias, approaches have been developed to compensate for the

anisotropic source distribution. For example, one approach uses beamforming (e.g.

Rost & Thomas, 2002) to estimate the seismic source direction and then uses this di-

rection to correct the retrieved Green’s function or surface-wave dispersion estimates

(e.g. Nakata et al., 2015; Cheng et al., 2016). When using beamforming, one assumes

that the underground is isotropic and laterally homogeneous. This assumption for

the subsurface structures is also not always valid. For anisotropic seismic source dis-

tributions and laterally heterogeneous subsurface structures, it has been proposed not

to use the seismic crosscorrelations to approximate Green’s functions, but instead to
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apply full-waveform inversion theory to the seismic crosscorrelations (Tromp et al.,

2010; Fichtner, 2015). The seismic crosscorrelations include both source distribution

and subsurface structure information. If one wants to estimate the subsurface struc-

ture, one has to first (e.g. Nakata et al., 2015; Cheng et al., 2016), or simultaneously

(e.g. Yao & Van Der Hilst, 2009; Harmon et al., 2010), unravel the anisotropic source

information.

Source distribution estimation can aid studies of the dynamic processes that gen-

erate ambient seismic noise. For example, high-frequency (>1 Hz) ambient seismic

noise can be used to monitor underground hydrothermal acoustic sources (e.g. Cros

et al., 2011) and microseismic sources at the exploration scale (e.g. Corciulo et al.,

2012); 5-20 s period ambient seismic noise can be used to study the primary and sec-

ondary microseisms (e.g. Tian & Ritzwoller, 2015; Juretzek & Hadziioannou, 2016);

100 s period can be used to study the Earth hum (e.g. Rhie & Romanowicz, 2006;

Nishida & Fukao, 2007; Traer & Gerstoft, 2014; Ardhuin et al., 2015).

Rayleigh waves dominate ambient seismic noise. Multicomponent Rayleigh-wave

data can bring benefits for estimating both source distributions and subsurface struc-

ture. The important multicomponent data for Rayleigh waves are the vertical (Z)

and radial (R) components, where the R direction is parallel to a line or great-circle

path between two sensors. If we assume vertical-force seismic sources, the Z � Z

component crosscorrelation (CZZ) is sensitive to the seismic sources in all directions,

while the R � R component crosscorrelation (CRR) is more sensitive to in-line seis-

mic sources than out-of-line sources (e.g. Haney et al., 2012; Xu & Mikesell, 2017).

Multicomponent data can also help to characterize Rayleigh waves more accurately

than only the Z component data (e.g. Boaga et al., 2013; Gribler et al., 2016) and

I

r
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constrain the shear-wave velocity inversions (e.g. Arai & Tokimatsu, 2004). In this

paper, we focus on source estimation rather than structure estimation.

There are mainly two methods for locating seismic sources, an imaging method and

an adjoint-based inversion method. When using the imaging method, one applies time

reversal to recorded seismic waveforms and then finds the location where the reversed

waveforms are most similar to each other. This method includes backprojection (e.g.

Ishii et al., 2005), reverse-time migration (e.g. Artman et al., 2010) and matched-

field processing (e.g. Cros et al., 2011). These approaches do not involve so-called

inversion, as compared to the adjoint-based inversion method. The adjoint-based

inversion method combines time reversal and iterative optimization (e.g. Liu et al.,

2004). When using either of these two methods, one assumes that the subsurface

structure is known and then solves for the source parameters (e.g. location or moment

tensors). Thus we study multicomponent crosscorrelations in the context of ambient

noise full-waveform inversion in this paper.

We adopt full-waveform inversion theory to estimate seismic source distributions.

We compare the use of traveltime and waveform information in inversion, and we

discuss the source sensitivity kernels for CZZ and CRR. We present the complete

inversion scheme in Section 4.3. In Section 4.4, we present the kernels for a single

frequency and a frequency band, and we explain the physics behind these kernels.

We then apply the multicomponent source kernels in three synthetic data examples

and estimate the source distributions (Section 4.5). Finally, we discuss factors that

a↵ect the accuracy of the inversions in Section 4.6.

T
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4.3 Crosscorrelation inversion scheme

We use full-waveform inversion theory to estimate seismic source distributions. In an

inversion process, we define a misfit function to measure the di↵erence between the

synthetic and observed data (Section 4.3.1). The observed data in this paper are ob-

served Rayleigh-wave crosscorrelations. We compute synthetic crosscorrelations using

a forward modelling process based on the source model parameters, i.e. the source

strength distribution (Section 4.3.2). We then update the source model parameters

with an inversion method that minimizes the misfit function (Section 4.3.4). This is

a common strategy in non-linear inverse problems (e.g. Aster et al., 2011)

4.3.1 Misfit functions

One can define the misfit function (�) based on physical properties of waveforms, for

example traveltimes (e.g. Luo & Schuster, 1991; Dahlen et al., 2000), envelopes (e.g.

Fichtner et al., 2008; Bozdağ et al., 2011) or raw waveforms (e.g. Tromp et al., 2005).

Here we use two L2–norm misfit functions: Rayleigh-wave waveform crosscorrelation

di↵erence (Equation 4.1) and Rayleigh-wave traveltime di↵erence (Equation 4.2). We

define the waveform misfit function as

� =
1

2

X

mn

X

rArB

Z
[w(t)(Cmn(rA, rB, t)� C

o
mn(rA, rB, t))]

2
dt (4.1)

where w(t) is a time window, and Cmn(rA, rB, t) and C
o
mn are the synthetic and

observed crosscorrelations, respectively. The crosscorrelations are between sensor rA

and rB; m,n represent the components, vertical (Z) or radial (R), from each of the

two sensors, respectively. We use the time window to focus on certain parts of the

observed crosscorrelations (e.g. Maggi et al., 2009; Fichtner et al., 2017). We define
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the traveltime misfit function following Luo & Schuster (1991) as

� =
1

2

X

mn

X

rArB

(Tsyn(rA, rB)� Tobs(rA, rB))
2
, (4.2)

where Tsyn and Tobs represents the traveltime of the main Rayleigh-wave waveform in

the synthetic and observed crosscorrelations, respectively. Luo & Schuster (1991) and

Dahlen et al. (2000) describe how to measure the traveltime di↵erence, Tsyn � Tobs.

We restate this measurement procedure in Appendix B.1. In this paper, we call

the source inversions using the waveform and the traveltime misfit functions as the

waveform inversion and the traveltime inversion, respectively.

4.3.2 Forward modelling process

We need synthetic data to calculate the misfit function. We compute synthetic cross-

correlations from a source distribution with the forward modelling process. Peo-

ple have discussed the whole forward modelling process explicitly (e.g. Wapenaar &

Fokkema, 2006; Tromp et al., 2010; Fichtner et al., 2017). We here review the main

steps in the forward modelling process implemented in the frequency domain. We

first write the seismic record at one sensor (rA) due to many sources as

Ump(rA,!) =

Z

V

Gmp(rA, rs,!)Fp(rs,!)drs, (4.3)

where Gmp(rA, rs,!) is the Green’s function representing the mth component dis-

placement response at location rA due to a point force in the p direction at the

source position rs, ! is the angular frequency, and Fp(rs,!) is the the source wavelet
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spectrum. We then crosscorrelate two sensor (rA and rB) records as

Cmn(rA, rB,!) = Ump(rA,!)U
⇤
np(rB,!)

=

Z

V

Gmp(rA, rs,!)G
⇤
np(rB, rs,!)Sp(rs,!)drs, (4.4)

where the asterisk represents complex conjugation. Here we assume that all seismic

sources are independent, thus

Sp(rs,!) = Fp(rs,!)F
⇤
p (rs,!). (4.5)

We note that the source strength, Sp, should be nonnegative for all frequencies.

The forward modelling process is computationally expensive. Equation 4.4 re-

quires one simulation for one point force source at rs in the p direction. If we have

many seismic sources like tra�c, we have to conduct many simulations. Therefore

people have proposed to decrease the computation by using wavefield reciprocity (e.g.

Tromp et al., 2010; Ermert et al., 2017). With the reciprocity (e.g. Aki & Richards,

2002),

Gmp(rA, rs) = Gpm(rs, rA), (4.6)

and we can modify the forward simulations by activating seismic sources at sensors

(rA), instead of at real seismic sources (rs). The number of sensors is normally less

than the number of potential seismic sources in the source grid. This decreases the

forward computation dramatically.
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4.3.3 Fréchet derivative with respect to source strength

Source inversion requires the Fréchet derivative of the misfit function due to pertur-

bations in the source distribution (e.g. Fichtner, 2015; Sager et al., 2018). Here we

review the steps to derive the Fréchet derivative. First, we write the perturbation

of the misfit function due to a perturbation in the synthetic crosscorrelation as (e.g.

Fichtner, 2015)

��(rA, rB) =

Z

!

�Cmn(rA, rB,!)fd!, (4.7)

where f is the adjoint source. The adjoint source is derived from the misfit func-

tion, and we show how we derive the traveltime and waveform adjoint sources in

Appendices B.1 and B.2.

We then write the perturbation of the synthetic crosscorrelation (Equation 4.4)

with a first-order term as

�Cmn(rA, rB,!) =

Z

V

Gmp(rA, rs,!)G
⇤
np(rB, rs,!)�Sp(rs,!)drs

+

Z

V

�[Gmp(rA, rs,!)G
⇤
np(rB, rs,!)]Sp(rs,!)drs, (4.8)

where the first part in the right hand side is for perturbations in the source, and the

second part is for perturbations in the Green’s functions. These two parts provide

Fréchet source and structure derivatives (Fichtner, 2015). We focus on the source

derivative in this paper; thus we assume that the subsurface structure and the Green’s

functions are known, such that �[Gmp(rA, rs,!)G⇤
np(rB, rs,!)] = 0. This assumption

is common in source studies (e.g. Liu et al., 2004; Ishii et al., 2005; Artman et al.,

2010). We thus write the perturbation of the crosscorrelation with respect to source
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strength perturbations as

�Cmn(rA, rB,!) =

Z

V

Gmp(rA, rs,!)G
⇤
np(rB, rs,!)�Sp(rs,!)drs. (4.9)

We then write the Fréchet derivative of the misfit function due to perturbations in

the source strength by combining Equations 4.7 and 4.9 as

��(rA, rB) =

Z

!

Z

V

Gmp(rA, rs,!)G
⇤
np(rB, rs,!)�Sp(rs,!)fdrsd!, (4.10)

=

Z

!

Z

V

Kmn(rA, rB,!)�Sp(rs,!)drsd!, (4.11)

where

Kmn(rA, rB,!) = Gmp(rA, rs,!)G
⇤
np(rB, rs,!)f. (4.12)

Kmn is called the source kernel (e.g. Fichtner et al., 2017). The kernel indicates the

sensitivity of the misfit function to the source strength at rs, Sp(rs,!). In practice, it

is often assumed that the spectral shapes for all sources (Sp) are similar (e.g. Ermert

et al., 2017). Thus we assume that S
0
pN = Sp, where S

0
p is the assumed source

spectrum and N is a ratio. N is always positive due to Equation 4.5. Finally, we

rewrite Equations 4.11 and 4.12 as

��(rA, rB) =

Z

!

Z

V

Kmn(rA, rB,!)�N(rs)drsd! (4.13)
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with

Kmn(rA, rB,!) = Gmp(rA, rs,!)G
⇤
np(rB, rs,!)S

0
pf (4.14)

= [Gmp(rA, rs,!)F
0
p ][Gnp(rB, rs,!)F

0
p ]

⇤
f, (4.15)

where S
0
p = F

0
p (F

0
p )

⇤. Equation 4.15 is convenient to use because we can easily

compute synthetic seismic recordings (GmpF
0
p ) with the same numerical simulations

used to create synthetic crosscorrelation functions. Thus in the following context,

we use N(rs) as the source strength distribution model and use Equation 4.15 to

calculate source sensitivity kernels.

4.3.4 Inversion strategy

We use a gradient-descent strategy (e.g. Ermert et al., 2017), which is an iterative

method. The traveltime misfit function (Equation 4.2) is a non-linear problem and

thus requires an iterative method. We can, however, minimize the waveform L2–norm

misfit function (Equation 4.1) using direct methods because the source strengths are

linearly related to the crosscorrelation waveforms in the frequency domain (Equa-

tion 4.4). While it is useful to recognize this last point, the waveform misfit function

can be too large to solve with linear inversion methods directly due to the potential for

a large number of waveforms and source locations. Thus iterative methods are a bet-

ter option for the sake of memory in such large problems (e.g. Aster et al., 2011), and

we choose to solve the waveform misfit function with the same iterative method as the

traveltime mistfit function. Another way to address this problem is using the adjoint

operator (e.g. Thorson & Claerbout, 1985), for example, the matched-field processing

method (e.g. Cros et al., 2011; Corciulo et al., 2012) and microseismic reverse-timeI
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migration (e.g. Artman et al., 2010). We discuss the link between the waveform

inversion and the matched-field processing and reverse-time migration methods in

Appendix B.3.

In the waveform inversion, we sum the kernels among all sensor pairs in a frequency

band [!1,!2] as

K =
X

mn

X

rArB

Z !2

!1

Kmn(rA, rB,!)d!. (4.16)

If we only use vertical data, K is a summed KZZ among all sensor pairs; if we use

both CZZ and CRR, K = KZZ +KRR among all sensor pairs. We then multiply the

summed kernel (K) with a step size (p) to update the source distribution in the ith

iteration as

Ni+1(rs) = Ni(rs)� pK. (4.17)

However, if we subtract the product (pK) directly, negative source strength values

may appear. A negative source strength is not physical because of Equation 4.5.

Thus we need to make sure that the updated source strengths are nonnegative. To

achieve this, we apply a positivity constraint (Johansen, 1977) to the inversion, where

�ln[N(rs)] = �N(rs)/N(rs). Rearranging this relationship and replacing �N(rs),

Equation 4.13 becomes

��(rA, rB) =
X

mn

X

rArB

Z

!

Z

V

Kmn(rA, rB,!)N(rs)�ln[N(rs)]drsd!, (4.18)

where ln is the natural logarithm. We then update the source strength distribution

as

ln[Ni+1(rs)] = ln[Ni(rs)]� pNi(rs)K, (4.19)
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which is equivalent to

Ni+1(rs) = Ni(rs)e
�pNi(rs)K , (4.20)

and where the exponential term is always positive, thus ensuring the source model

will always be positive as long as the starting model is positive.

We choose the step size (p) from many potential step size values. We update the

source strength distribution (Ni) using Equation 4.20 and the potential step sizes (e.g.

p = 10�6
, 10�5

, ...10�1). For each step size, we have an updated source distribution

model (Ni+1), and we compute synthetic crosscorrelations using Equation 4.4. We

then calculate the corresponding misfit function. Among these misfit values, we

choose the step size that gives the minimum misfit. If the minimum misfit is less

than an update criteria (Cu), we adopt the step size and update the source model; if

not, we do not update this iteration and instead expand the frequency band. Details

about the inversion are presented in Section 4.5.

4.4 Rayleigh-wave source kernels

We present and describe the source kernels for Rayleigh waves of multicomponent

crosscorrelations (CZZ and CRR). In calculating the kernels, we require synthetic

seismic recordings and adjoint sources (Equation 4.15). We use a homogeneous elastic

halfspace model (Table 4.1 True model) and use SPECFEM3D (Komatitsch & Tromp,

2002) to simulate the synthetic seismic recordings. We set the model to be a 3km-

length cube. We set the top surface of the cube to be a free surface and the other

surfaces to be perfectly-matched layers. We discretize the whole cube into 30 m-length

cubes. In one simulation, the time step is 0.0005 s and we propagate signals for 5000

time steps (i.e. 2.5 s). We simulate Z and R component data on the two receivers (rA
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Table 4.1: The homogeneous and isotropic elastic Earth model parameters
used in the simulation.

Model Vp Vs Density Thickness
(m/s) (m/s) (kg/m3) (m)

True 2800 1500 2300 1
Higher 3800 2000 2300 1
Lower 1900 1000 2300 1

and rB) due to 6720 vertical-point-force sources on the free surface (Figure 4.1a). Each

source emits a 10 Hz Ricker wavelet with an amplitude factor of 1015 in SPECFEM3D

(Fz in Equation 4.5, also F
0
z in Equation 4.15). Following Section 4.3.2, we do 4

simulations (Z� and R� direction point forces at each receiver), and record at the

6720 seismic source locations. We compute CZZ and CRR (Equation 4.4). The phase

of CZZ is identical to that of CRR (Figure 4.1b).

We focus on the sensitivity kernels for synthetic data in this section to study the

kernel structure. Therefore we use two modified misfit functions:

�(rA, rB) = Tsyn (4.21)

and

�(rA, rB) =
1

2

Z
[w(t)Cmn(rA, rB, t)]

2
dt. (4.22)

These two misfit functions indicate the traveltime and energy for main waveforms in

the synthetic crosscorrelations, respectively (Fichtner et al., 2017). The corresponding

adjoint sources are presented in Appendix B.1 and B.2. The corresponding source

kernels determine how source strength changes a↵ect the traveltime or waveform

energy.
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Figure 4.1: a) Diagram of locations of the 6720 point sources and two
receivers on the free surface. The black points represent point sources; the
two black triangles represent the two receivers, rA and rB. b) The vertical-
vertical (CZZ) and radial-radial (CRR) crosscorrelation between the two
receivers due to all sources in a). The two crosscorrelations are normalized
by each maximum amplitude. The two gray blocks indicate two time
windows, �0.2 ⇠ 0.2 and 0.5 ⇠ 0.8 s.
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Figure 4.2: Diagram of the location of a point source (star) and two sensors
(triangles). The dashed hyperbola indicates potential source locations,
where rAs � rBs is constant. The radial direction, R̂, is parallel to the line
linking the two sensors, rA and rB.

4.4.1 Monochromatic source kernels

We now describe the monochromatic crosscorrelation source kernels from a physical

point of view. In a homogeneous and isotropic medium, under the far-field assump-

tion, the vertical-component fundamental-mode Rayleigh-wave Green’s function due

to a vertical point force can be written as (e.g. Fan & Snieder, 2009):

GZZ(r,!) =

s
1

8⇡!r/c
e
�i(!r/c+⇡/4)

, (4.23)

where ! is the angular frequency, i is the imaginary unit, c is the surface-wave phase

velocity and r is the distance between source and receiver. The negative sign in

the exponential part of Equation 4.23 is due to the Fourier transform convention we

use (Appendix B.4). If we consider a vertical-point-force seismic source on the free
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surface at rs, the surface-wave crosscorrelation between two sensors (rA and rB) can

be written as

CZZ(rA, rB,!, rs) =
1

8⇡!/c

r
1

rAsrBs
e
�i!(rAs�rBs)/c. (4.24)

Following the same logic, and using

GRZ(r,!) =
H

V

s
1

8⇡!r/c
e
�i(!r/c�⇡/4)

, (4.25)

where H/V is the ratio of the horizontal-to-vertical motion (e.g. Haney et al., 2012),

we can write

CRR(rA, rB,!, rs) =

✓
H

V

◆2 1

8⇡!/c

r
1

rAsrBs
cos(✓As)cos(✓Bs)e

�i!(rAs�rBs)/c, (4.26)

where ✓As is the angle between the surface-wave propagation path and the radial

direction (Figure 4.2). The phase of the Rayleigh wave is �!(rAs � rBs)/c in Equa-

tion 4.24 and 4.26. These phases remain constant if rAs � rBs remains constant;

rAs � rBs will be constant if rs is on a hyperbola with foci at rA and rB (Figure 4.2).

Thus a certain phase corresponds to a hyperbola, comprised of rs locations. For CZZ

and CRR, we focus on two specific phases:

�!(rAs � rBs)

c
= �obs + 2N⇡, (4.27)

and

�!(rAs � rBs)

c
= �obs + (2N � 1)⇡, (4.28)
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where �obs is the phase of the observed waveform at N = 0,±1,±2,±3... and fre-

quency !. The two phases lead to two kinds of hyperbolas (Figure 4.3): �obs + 2N⇡

phase leads to the same phase (�obs); the �obs+(2N �1)⇡ leads to the opposite phase

(�obs ± ⇡). These hyperbolas are determined by the value of �obs, which also change

with frequency (e.g. Xu et al., 2017).

These two kinds of crosscorrelations contribute ±1 to the amplitude spectrum, but

0 to the phase spectrum of the Rayleigh wave in CZZ over the time window w(t). If we

increase or decrease the source strength along one of these hyperbolas, the arrival time

of the Rayleigh waveform will not change because the corresponding phase spectrum

does not change; however, the waveform energy will increase or decrease, respectively.

This is because the sources along the hyperbola generate waveforms with exactly the

same phase and arrival time. Therefore the hyperbola is located along the zero value

in the traveltime kernels, and along the maxima and minima of the waveform-energy

kernels (Figure 4.3). Chmiel et al. (2018) observed similar source kernels with dense

active-source seismic recordings and calculated the surface-wave phase velocities by

fitting hyperbolas to the kernels using Equations 4.27 and 4.28.

We point out that the traveltime and waveform kernels for RR are stronger in the

in-line areas than out-of-line areas (Figures 4.3b and 4.3d). This azimuthal e↵ect is

due to the cos(✓As)cos(✓Bs) term in Equation 4.26. Xu & Mikesell (2017) observed

this e↵ect and noted that this e↵ect is frequency independent. The cos term can

change sign with the receivers. Therefore the RR kernels can also change the sign of

the kernel values, even if rs moves along the same hyperbola as seen in Figure 4.3b

and 4.3d. The absolute amplitude di↵erence in the sensitivities between ZZ and RR

kernels is due to the H/V ratio (Equation 4.26). Depending on the subsurface model,
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Figure 4.3: Traveltime (top row) and waveform-energy (bottom row)
source kernels computed at each grid node for 5 Hz direct Rayleigh waves
in the causal parts of CZZ (left column) and CRR (right column). The
solid hyperbolas represent 2N⇡ phase and the dashed represent (2N � 1)⇡.
The direct Rayleigh-wave time window is from 0.5 s to 0.8 s in Figure 4.1.
These hyperbolas are asymmetric due to the value of �obs in Equations 4.27
and 4.28.
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this indicates that either the ZZ or RR kernel could dominate the stacked kernel

(Equation 4.16) at a particular frequency depending on the H/V ratio.

4.4.2 Multi-frequency source kernels

We stack the monochromatic source kernels over a frequency band, during which

monochromatic kernels interfere with each other. In areas where these kernels share

common sensitivity, the magnitude of sensitivity increases due to stacking. In other

areas, the kernels destructively interfere and the magnitude decreases. Therefore, we

observe that the direct Rayleigh waves in CZZ and CRR are sensitive to sources in

the in-line areas (Figure 4.4a, 4.4b, 4.4e, and 4.4f), the so-called stationary-phase

zone (e.g. Snieder, 2004). In this case we observe the majority of the sensitivity on

the right-hand side of the model because we use a time window around the causal

direct Rayleigh waves (Figure 4.1b). If we increase the in-line source strength, the

traveltime and waveform energy will increase. This expectation fits the sensitivity

sign in the in-line areas (Figure 4.4a, 4.4b, 4.4e, and 4.4f). For arrivals near the

zero-time location (Figure 4.1b), we observe that both ZZ and RR taveltime and

waveform-energy kernels are sensitive to seismic sources between the two sensors

(Figure 4.4c, 4.4d, 4.4g, and 4.4h).

We also observe the azimuthal e↵ect in the RR kernels. Compared to the ZZ

source kernels (Figure 4.4a, 4.4c, 4.4e, and 4.4g), theRR source kernels (Figure 4.4b, 4.4d, 4.4f,

and 4.4h) possess less sensitivity to sources on the sidelobe areas. Thus for direct

Rayleigh waves, we can use RR to focus on in-line seismic sources (Figure 4.4b

and 4.4f) and decrease the error in Rayleigh-wave dispersion measurements due to

anisotropic source distributions (e.g. van Wijk et al., 2011; Haney et al., 2012; Xu &

Mikesell, 2017). For Rayleigh waves near the zero point in crosscorrelations, where
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Figure 4.4: 2-8 Hz traveltime (a,b,c,d) and waveform-energy (e,f,g,h)
source kernels for Rayleigh waves in CZZ (left) and CRR (right). a,b,e,f
are for direct Rayleigh waves (0.5 s to 0.8 s in Figure 4.1b); c,d,g and h
are for early-arrival Rayleigh waves (-0.2 s to 0.2 s in Figure 4.1b).
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seismic sources occur between sensors, RR should help to locate the sources better

than ZZ (Figure 4.4d and 4.4h vs 4.4c and 4.4g).

4.5 Source Estimation Synthetic examples

We present three synthetic source inversion examples to demonstrate that multicom-

ponent crosscorrelations (CRR and CZZ) better estimate anisotropic source distribu-

tions than CZZ . We use 9 sensors in a square array in all examples. The smallest

distance between two adjacent sensors is 450 m. We assume that all seismic sources

are distributed on the free surface. In the first two examples, the seismic sources

occur within the array area, with the sources distributed outside of the array in the

third example. Each source emits a 10 Hz Ricker wavelet with an amplitude factor

of 1015. The subsurface is the same homogeneous medium (Table 4.1 True model)

as in Section 4.4. We assume that we know the subsurface structure and the source

wavelet in the inversions. Thus we simulate the observed and synthetic crosscorre-

lations following Section 4.4. We use the simulated wavefield to calculate the source

kernels (Equation 4.15). We use both CZZ and CZZ + CRR in the inversions with

waveform and traveltime misfit functions (Equation 4.1 and 4.2). In using CZZ+CRR

in misfit functions, we weight the crosscorrelaions by normalizing the amplitudes of

CZZ and CRR by the corresponding CZZ and CRR waveform maxima of all sensor

pairs, respectively. We do this to both synthetic and observed data using their re-

spective maxima. As a consequence, we scale the ZZ and RR waveform kernels by

the synthetic CZZ and CRR waveform maxima, respectively. We conducted the inver-

sions without scaling the kernels and achieved similar results; however, to keep the

system of equations self-consistent the kernels should be scaled in the same way the

waveforms are scaled.



76

We present the entire inversion algorithm as pseudocode (Algorithm 1). We adopt

the frequency band extension strategy (e.g. Virieux & Operto, 2009). We use a large

time window in the waveform inversion (Table 4.2) because in the crosscorrelations

the Rayleigh waves can arrive between time zero and the direct-wave arrival time,

depending on the di↵erent source locations (e.g. Wapenaar & Fokkema, 2006). This

time-windowing strategy is in contrast to global earthquake seismology where we

have accurate predictions of arrival times for body waves and Rayleigh waves (e.g.

Maggi et al., 2009). If we use a narrow time window in the waveform inversion, ar-

tifacts appear outside the narrow time windows. However, the narrow time window

works well for the traveltime inversion, because the traveltime inversion simply move

waveforms forward or backward in time and thus no artifacts appear. We use the

same frequency band to calculate the waveform source kernels and waveform misfit

(Equation 4.1). We measure the traveltime misfits (Equation 4.2) over the whole

frequency band because this measurement is more robust than in narrow frequency

bands. We set the initial source strength at each sensor location to be zero,so we

can avoid singularity in receivers. We smooth the source strength distributions in the

traveltime inversions (see Algorithm 1), but not in the waveform inversions, because

the traveltime source kernels possess narrower sensitivity bands than the waveform

kernels (Figure 4.3 and 4.4). In practice, it is common to smooth the model param-

eters or gradients in wave-equation based tomography (e.g. Tape et al., 2007) and

active-source waveform inversion (e.g. Groos et al., 2017). The inversion results are

normalized by the maximum source strength, because we focus on relative source

strength distributions, instead of absolute strength distributions.
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Algorithm 1 Inversion algorithm

Normalize observed crosscorrelations by global maximums in CZZ and CRR;
for ith iteration do

forward source distribution model onNi using Equation 4.4 and normalize cross-
correlations;

calculate the misfit, �i, over time window using Equation 4.1 (waveform) or
Equation 4.2 (traveltime);

calculate adjoint source, f , using Equation B.15 (waveform) or Equation B.9
(traveltime);

calculate the kernel, K, using Equation 4.15;
for each step size, pj do

update Ni with pj using Equation 4.20, (smoothing the updated source
model with a 30 m 2D Gaussian filter in the traveltime inversion);

forward model using source distribution and Equation 4.4;
normalize crosscorrelations;
calculate the misfit, �j;

find the minimum misfit, min(�j), and the corresponding pj ;
if min(�j) < Cu�i then

update Ni and achieve Ni+1 using Equation 4.20,(smoothing the updated
source model with a 30 m 2D Gaussian filter in the traveltime inversion);

else
extend frequency band

In the last frequency band
if |Ni+1 �Ni|/|Ni| < Cs then

stop inversion

Table 4.2: Traveltime and waveform inversion scheme details

Traveltime Waveform
Frequency band used in calculating

misfit function and kernel 2-4/6/8/12/16 Hz
Time window 0.6 s centered at the

peak of crosscorrelation -1 to 1 s
Crosscorrelation normalization term Maximum in all CZZ or CRR

Smooth source strength per iteration Yes No
Update criteria, Cu 100% 99%
Stop criteria, Cs 0.01 0.01
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Figure 4.5: One source within array inversion results and the correspond-
ing CZZ waveforms. a) The true source strength distribution is zeros ev-
erywhere except an in-array source area (square). Triangles are receivers.
From the initial seismic source distribution model (d), we invert with
the ZZ traveltimes (b), ZZ + RR traveltimes (c), ZZ waveforms (e), and
ZZ+RR waveforms (f). We plot the synthetic CZZ based on the traveltime
inversion results in (g) and the waveform inversion results in (h), along
with the observed CZZ. Each waveform here is normalized by its maxi-
mum amplitude for comparison. Note that the initial source strength (d)
at each receiver location is zero and is masked by the triangles.
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4.5.1 Example 1: One source within array

The sensors surround one source area in this case (Figure 4.5a). The inversion re-

sults (Figure 4.5b, 4.5c, 4.5e, and 4.5f) estimate the source locations and strengths

accurately, although the initial source distribution model (Figure 4.5d) is far from

the true source model. We observe that the inverted source distribution from the

waveform inversion (Figure 4.5e and 4.5f) are closer to the true source distribution

than from the traveltime inversion (Figure 4.5b and 4.5c); the synthetic waveforms

(Figure 4.5h) from the waveform inversion results also fit the observed CZZ better.

This is because the waveforms contain not only traveltime information, but also in-

formation such as relative amplitudes. Thus, the waveform inversion performs better

than the traveltime inversion. We note that the multicomponent data does not im-

prove the source distribution estimation when we only use traveltime information.

The ZZ +RR traveltime inversion gives a similar source estimation to the ZZ inver-

sion. However, multicomponent data do help constrain the waveform inversion. In

the waveform inversions, ZZ +RR better estimates the source shape than ZZ alone.

Moreover, the synthetic CZZ waveforms from the multicomponent inversion are closer

to the waveforms of the observed CZZ (Figure 4.8g and h).

4.5.2 Example 2: Two sources within array

Two sources in the array make the observed crosscorrelation waveforms more complex

than in the one-source case. We observe that more arrivals exist in the crosscorrela-

tions from the two-source area (Figure 4.6h) than from one-source area (Figure 4.5h).

We use the same initial source model as in the one-source case. The initial source

strength model is far away form the true source model, so the corresponding syn-

thetic waveforms are not similar to the observed waveforms. As the traveltime in-
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Figure 4.6: Two sources within array inversion results and the correspond-
ing waveforms. a) The true source strength is zeros everywhere except two
source areas (squares) within the array (triangles). From the same initial
source distribution model (d) as in Figure 4.5, we invert the ZZ traveltimes
(b), ZZ + RR traveltimes (c), ZZ waveforms (e), and ZZ + RR waveforms
(f). We plot the synthetic CZZ based on the traveltime inversion results in
(g) and the waveform inversion results in (h), along with the observed CZZ.
Each waveform here is normalized by its maximum amplitude for compar-
ison. Note that the initial source strength (d) at each receiver location is
zero and is masked by the triangles.
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version mainly moves waveforms on the time axis, the synthetic waveforms from the

traveltime inversion do not fit the observed data. For complex waveforms in the

observed data (Figure 4.6g), where there are more than one arrival, we determine

that the synthetic data from the traveltime inversions will not fit the observed data.

Thus the traveltime inversion gives incorrect, single-location estimations (Figure 4.6b

and 4.6c). However, the waveform inversion can handle the complex observed data

because the waveform inversion can fit multiple arrivals. We estimate accurate source

locations and relative strengths with the waveform inversion, and the synthetic CZZ

from the inversion results fit the observed CZZ well (Figure 4.6h). ZZ+RR waveform

inversion recovers the source shapes better than ZZ waveform inversion.

4.5.3 Example 3: Sources outside of array

Seismic sources lie outside of the array in this example. Thus neither method per-

fectly recovers the source shape as in the two previous examples (Figure 4.7). With

the traveltime inversions, we determine that the inversion accurately provides an es-

timation of the directions of source locations, along with artifacts inside the array

(Figure 4.7b and 4.7c), while the waveform inversion recovers the source location de-

cently well (Figure 4.7e and 4.7f). Although the ZZ + RR waveform inversion gives

a similar result as the ZZ waveform inversion, the final misfit for ZZ + RR is less

than for ZZ (Figure 4.8f).

4.5.4 Analysis of inversion results

We observe that in the traveltime inversion examples, multicomponent data do not

help to resolve the source distribution. In Example 1, ZZ + RR gives a simiar

misfit over the whole frequency band (2-16 Hz) as ZZ (Figure 4.8a). We ignore

interpretation of Example 2 because the traveltime inversion does not work for this
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Figure 4.7: Source out-of-array inversion and the corresponding wave-
forms. a) The true source strength is zeros everywhere except the out-of-
array source area (square). From an initial source model (d), we invert
the ZZ traveltimes (b), ZZ + RR traveltimes (c), ZZ waveforms (e), and
ZZ+RR waveforms (f). We plot the synthetic CZZ based on the traveltime
inversion result in (g) and based on the waveform inversion result in (h),
along with the observed CZZ. Each waveform here is normalized by its
maximum amplitude for comparison.
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Figure 4.8: Traveltime and waveform inversion misfit comparisons. We
show Example 1 (a and b), Example 2 (c and d), and Example 3 (e and
f). The stars indicate when we extend the frequency bands (Table 4.2).
We show the misfits over the whole frequency band, 2-16 Hz, relative to
the initial misfit at each iteration.
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case as we explain in Section 4.5.2. When sources are outside of the array, ZZ +RR

gives a weaker artifact inside the array (Figure 4.7c) than does ZZ, but still neither

traveltime inversion gives a correct result.

The multicomponent data improve the waveform inversion in all three examples.

ZZ + RR better estimates the source shapes for in-array sources and gives lower

misfits than ZZ regardless of whether sources are in the array or not (Figure 4.8b, 4.8d

and 4.8f). In Example 3, we observe that ZZ + RR provides a similar estimation of

seismic source distribution and a close misfit to ZZ (Figure 4.8f).

We also present seismic source estimation using matched-field processing (MFP)

on the three examples (Figure B.2). The MFP results recover true source locations,

but also many artifacts. We demonstrate that MFP is equivalent to a waveform

source kernel where the initial source strengths are zeros everywhere (Appendix B.3).

These artifacts are suppressed by the waveform inversion and thus disappear in the

inversion results (Figure 4.5e, 4.6e and 4.7e). One could use MFP results as an initial

source model for the waveform inversion.

4.6 Discussion

In this paper we introduce the theory needed to estimate source strength distribution

from crosscorrelations using multicomponent full-waveform inversion. We apply this

theory to multicomponent field data in a companion paper, but here we comment on

common data processing notions for completeness. To calculate ambient seismic noise

crosscorrelations, one usually adopts pre-processing procedures, such as time-domain

normalization, frequency-domain normalization, or various stacking procedures (e.g.

Shapiro et al., 2005; Yao et al., 2006). The normalization procedures change the

crosscorrelation waveforms and spectra (e.g. Bensen et al., 2007; Groos et al., 2012),
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as well as the apparent source strength distribution (e.g. Fichtner, 2014). In order

to estimate true source strengths, we do not use these normalization procedures.

However, because the stacking procedure can mitigate random uncorrelated noise

(e.g. Bensen et al., 2007), in real crosscorrelations, stacking is used; keeping in mind

that it is di�cult to suppress the main source of noise in crosscorrelations, which is

localized correlated noise.

We present noise-free examples in this paper to demonstrate the physics of the

problem and the properties of the adjoints. We address the topic of noise more

thoroughly in our companion paper, noting that the quality of vertical- and horizontal-

component data can be improved by burying receivers below the surface (e.g. Hutt

et al., 2017). For clarity here, we present three simple examples of one or two seismic

sources within or outside of the array. The maximum number of sources we can

estimate depends on the chosen misfit function (i.e. traveltime or waveform), the

array geometry (i.e. the number of sensors and the inter-sensor distance), and the

complexity of the sources (if sources cancel each other, e.g. Wapenaar & Fokkema,

2006; Halliday & Curtis, 2008). Further study of the topic of how many sources can

one locate is beyond the scope of this research.

We make four assumptions in the crosscorrelation source distribution inversion

procedure presented here:

1. seismic sources are only distributed on the free surface;

2. seismic sources are independent from each other;

3. the subsurface velocity model is known;

4. the source spectral shapes are similar and known.
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We make the first assumption because we are concerned with only fundamental

mode Rayleigh waves (e.g. Halliday & Curtis, 2008). Moreover, the ambient seis-

mic noise > 2 Hz is mainly due to human activity (e.g. Yamanaka et al., 1993) and

composed of surface waves. These seismic sources (e.g. tra�c) usually occur on the

surface or at shallow depths. We note that could use the same theory and focus

on body waves in the crosscorrelations to locate seismic sources in depth. However,

reverse-time migration is commonly used to locate the microseismic sources (e.g. Art-

man et al., 2010). We present the link between the crosscorrelation source inversion

and microseismic reverse-time migration in Appendix B.3. The second assumption

is often made in seismic interferometry (e.g. Weaver & Lobkis, 2001). We discuss

the third assumption in this section, and a discussion of the fourth assumption is

provided in our companion paper, which considers field data.

Biased subsurface velocity models have been shown to lead to biased source lo-

cations (e.g. Billings et al., 1994; Eisner et al., 2009). We use two incorrect velocity

models (Table 4.1 Higher and Lower), where one has higher and the other has lower

velocities than the true velocity model. We use the same data, the same inversion

strategies and the same initial source models as in Section 4.5. We observe that we do

not recover accurate source locations, shapes of source areas, nor the number of source

areas with the incorrect velocity models (Figure 4.9 and 4.10). This phenomenon

is expected because with these incorrect velocity models, the crosscorrelations at-

tribute the source to incorrect locations. For the same phase of a crosscorrelation,

!(rAs � rBs)/c in Equation 4.24, if we use an incorrect velocity, the rAs � rBs will be

larger or smaller than when using true velocity. Therefore the source inversion will

place sources at the wrong locations (Figure 4.9 and 4.10).
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We observe that the waveform inversion for all three synthetic data achieves the

lowest final misfit with the true velocity model, as does the traveltime inversion for

one source within the array (Figure 4.11). This observation indicates that one can

potentially estimate the source distribution and subsurface velocity structures through

one inversion because the true source distribution and true subsurface velocities give

a global minimum in the misfit function (Figure 4.11a, 4.11d, 4.11e, and 4.11f). In

practice, one estimates the source and velocity model iteratively (e.g. Lee et al., 2014)

or simultaneously (e.g. Sager et al., 2018). We also observe that the multicomponent

data, ZZ+RR, constrain the estimation better because the final normalized waveform

misfit for the true velocity model is the smallest and for the incorrect velocity model

is larger than ZZ.

4.7 Conclusion

We estimate the anisotropic source distribution of Rayleigh waves with vertical and

multicomponent crosscorrelation inversion in this paper. We assume that we know

the subsurface structure. Through three synthetic examples, we show that multi-

component crosscorrelations (CZZ + CRR) do not help the traveltime inversion, but

do help to resolve seismic source distributions more accurately than only the vertical

crosscorrelations (CZZ) in the waveform inversion. For the waveform inversion, both

CZZ and CZZ + CRR provide accurate source distributions for seismic sources within

array, while CZZ +CRR estimate the source shapes better. The CZZ +CRR waveform

inversion gives a lower misfit than CZZ for sources within and outside of the array. We

also note that the crosscorrelation waveform inversion performs better than the trav-

eltime inversion. If the initial source model is far from the true source distribution,

the traveltime inversion can not fit the observed data, and thus gives biased estima-
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Figure 4.9: Source inversion results with a higher-velocity model (Table 4.1
higher). The black empty squares indicate the shapes and locations of the
true sources. We only show the Example 3 ZZ+RR waveform result in
a certain area because the source locations from the inversion are within
this area. The initial models are as same as in Section 4.5.
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Figure 4.10: Source inversion results with a lower-velocity model (Table 4.1
lower). The black empty squares indicate the shapes and locations of the
true sources. We only show the Example 3 results in a certain area because
the source locations from the inversion are within this area. The initial
models are as same as in Section 4.5.
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higher and lower velocity models (Table 4.1).
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tions. The waveform inversion is more robust to the initial source model because

the waveform inversion can fit complex observed waveforms with multiple arrivals. If

sources are outside of array, the traveltime and waveform estimate rough directions

instead of exact source shapes. Neither traveltime or waveform inversion works if the

subsurface velocity model is incorrect. However, for the waveform inversion and the

in-array one-source traveltime inversion, the true subsurface velocity model can give

lower final misfit compared to incorrect velocity models. CZZ +CRR makes the wave-

form misfit di↵erence even larger than CZZ , and thus better constrains estimation of

the seismic source distribution and subsurface velocity model. The source inversion

we use in this paper not only handles seismic sources located at the free surface, but

also in depth.
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CHAPTER 5:

RAYLEIGH-WAVE MULTICOMPONENT

CROSSCORRELATION-BASED SOURCE

STRENGTH DISTRIBUTION INVERSIONS.

PART 2: A COMPLETE WORKFLOW FOR

REAL SEISMIC DATA

This chapter has been submitted to Geophysical Journal International

5.1 Summary

Estimation of ambient seismic source distributions (e.g. location and strength) can aid

studies of seismic source mechanisms and subsurface structure investigations. One can

invert for the ambient seismic (noise) source distribution by applying full-waveform

inversion (FWI) theory to seismic (noise) crosscorrelations. This estimation method

is especially applicable for seismic recordings without obvious body-wave arrivals.

Data preprocessing procedures are needed before the inversion, but some preprocess-

ing procedures commonly used in ambient noise tomography can bias the ambient

(noise) source distribution estimation and should not be used in FWI. Taking this

into account, we propose a complete workflow from the raw seismic noise recording
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through preprocessing procedures to the inversion. We present the workflow with a

field data example in Hartoušov, Czech Republic, where the seismic sources are CO2

degassing areas at Earth’s surface (i.e. a fumarole or mofette). We discuss factors

in the processing and inversion that can bias the estimations, such as inaccurate ve-

locity model, anelasticity and array sensitivity. The proposed workflow can work for

multicomponent data across di↵erent scales of field data.

5.2 Introduction

Knowledge of the ambient seismic source distribution (e.g. strength and location)

is important in many research areas. For example, in investigating the subsurface

with crosscorrelation-based seismic interferometry, one needs the source information

to correct the empirical Green’s functions or surface-wave dispersion curves if the

seismic sources are not isotropically distributed in all directions around sensors (e.g.

Yao & Van Der Hilst, 2009; Nakata et al., 2015; Cheng et al., 2016). When monitoring

changes in the subsurface with direct waves in seismic crosscorrelations, one needs

to assess or revise the monitoring results based on changes in the seismic source(s)

(e.g. Delaney et al., 2017; Takano et al., 2019). In addition, spatial and temporal

distributions of natural seismic sources (e.g. ocean microseism) can aid studies of the

actual source mechanism (e.g. Cessaro, 1994; Juretzek & Hadziioannou, 2016).

To investigate the ambient (noise) seismic source distribution, one can use a tradi-

tional imaging method or an adjoint-based inversion method. The imaging methods

(e.g. matched-field processing) mainly focus on the source location, and do not pro-

vide physical source properties like strength or amplitude (e.g. Cros et al., 2011).

In contrast, the adjoint-based inversion method can estimate both source location

and strength. Tromp et al. (2010) and Fichtner et al. (2017) derived an adjoint for
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crosscorrelations, and Ermert et al. (2017) applied this crosscorrelation adjoint to long

period (over 100s) seismic crosscorrelations to study Earth’s hum. For seismic sources

such as tremors and ambient seismic sources, there are usually no clear body-wave

arrivals in the seismic recordings and mainly traditional imaging methods have been

applied to the seismic crosscorrelations (e.g. Obara, 2002; Zeng & Ni, 2010; Corciulo

et al., 2012), largely composed of surface waves.

To make a comparison between traditional methods and the adjoint-based inver-

sion, Xu et al. (2019) show that the matched-field processing method can be written

as the crosscorrelation waveform-adjoint sensitivity kernel with zero initial sources.

For surface wave studies, Xu et al. (2019) further demonstrated that Rayleigh-wave

multicomponent crosscorrelations can better constrain estimation of the source distri-

bution compared to vertical-component crosscorrelations alone. The multicomponent

data are vertical (Z) and radial (R) components, where the R direction is parallel to

a line or great-circle path between two sensors. We call the crosscorrelation adjoint

inversion for seismic sources as the source inversion method in this paper.

The source inversion method is well developed in theory, but in practice still

requires preprocessing of the raw seismic recordings. Some procedures are the same

as the preprocessing in ambient noise tomography (ANT, Shapiro et al., 2005), such as

stacking and excluding high-amplitude transient signals (i.e. earthquakes). However,

there are some di↵erences between the two sets of preprocessing procedures because

the final goal of ANT is to image structure (i.e. velocity models), which is di↵erent

from the source inversion method used to image source distributions. For example,

if one inverts for Earth’s hum, one has to remove not only earthquakes, but also the

primary microseism, which is normally the signal source for ANT. In addition, the



95

seismic source inversion method requires known Green’s functions, while the focus of

ANT is to recover Green’s functions. It is easy to misuse some ANT preprocessing

procedures (e.g. normalization) in seismic source studies (e.g. Tian & Ritzwoller,

2015) and these procedures can bias the consequent source estimation (e.g. Fichtner

et al., 2017). Thus the purpose of this study is to present clear data preprocessing

procedures in a workflow for the source inversion method. We use an L2 waveform

misfit function in the inversion, and we use observed ambient seismic noise data in

the Hartoušov mofette field (Figure 5.1), Czech Republic, as a field data example to

demonstrate the workflow. The parameters in the workflow are easy to adjust based

on di↵erent field scales.

We introduce the workflow from raw seismic recordings to the source inversion.

In the crosscorrelation adjoint-based inversion used here (e.g. Ermert et al., 2017; Xu

et al., 2019), there are two major assumptions:

1. the subsurface structure is known (i.e. the Green’s function);

2. all potential seismic sources share a similar shape in terms of energy spectral

density.

Thus in the workflow, we need to estimate both Green’s function for the subsurface

media and the source energy spectral density shape (Section 5.3). We then estimate

the spatial source distribution of fumaroles from the field data, and compare our

estimation to a field CO2 flux map (Section 5.4). We finally discuss the e↵ect of inac-

curate subsurface models, especially the anelastic property, and insu�cient sensitivity

of the data to the source estimation (Section 5.5).



96

Figure 5.1: A site map of the seismic array and CO2 gas-flux distributions.
Each triangle is a geophone. The empty triangle is the noisy one. The
red-edge triangle is the C601 sensor in Figure 5.3. The gas-flux data are
from Nickschick et al. (2015) and were acquired from 2007 to 2013. The
star in the inset shows the site location in Czech Repulic. The coordinates
are in WGS84/UTM zone 33.
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5.3 Workflow

We introduce the workflow in four steps. We first select data (i.e. observed cross-

correlations) based on a signal-to-noise ratio (SNR) criteria; process the data to

isolate targeted source types (Section 5.3.1). We then estimate Green’s functions

(Section 5.3.2) and present a novel method to calculate source energy spectral den-

sity shape (Section 5.3.3). After these three steps, we introduce the source waveform

inversion briefly (Section 5.3.4). The whole workflow is applicable for not only verti-

cal component (Z), but also radial (R) component seismic recordings. Thus we can

use Z-Z component crosscorrelations (CZZ) and/or R-R component crosscorrelations

(CRR) in the workflow.

5.3.1 Data selection

We refer to the crosscorrelations as the data in this source inversion method. Counter

to normal ambient seismic crosscorrelations for ANT, as our focus is the ambient

source location(s) and strength(s), we do not apply time-domain or frequency-domain

normalization to the raw data prior to crosscorrelation because these procedures bias

the source estimation result (e.g. Fichtner et al., 2017). Without the common ANT

processing procedures, however, the crosscorrelations for a seismic source study will

be far from the true Green’s functions if the source distribution is anisotropic. In

this case, direct body and surface waves can arrive any time between time zero and

the true (i.e. physical) direct-wave arrival time (e.g. Shapiro et al., 2006; Snieder &

Fleury, 2010). The events that arrive before the true direct wave are called spurious

or non-physical arrivals under the assumption that the correlation approximates the

Green’s function (e.g. Mikesell et al., 2009; Snieder & Fleury, 2010). In contrast to
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ANT though, the spurious energy here is actually the important signal, used in the

inversion to estimate the seismic source distribution.

In addition to so-called spurious arrivals in the correlations, noise can also be

strong and thus a↵ect the source estimation. This noise can consist of (1) uncorrelated

random noise and (2) correlated noise, which can be in a similar frequency band as the

targeted seismic sources. For the uncorrelated random noise, one can use stacking to

suppress this noise, similar to the ANT processing (e.g. Bensen et al., 2007). One can

also use a SNR criterion to choose the crosscorrelations with the least uncorrelated

noise among all crosscorrelations (e.g. Lin et al., 2008). We propose here a SNR

measurement similar to the SNR measurement algorithm in ANT (e.g. Bensen et al.,

2007).

We set two time windows – a signal and noise window. As stated above, the direct

wave signal can arrive between time zero and the true arrival time, thus our signal

window is di↵erent from the signal window in the ANT SNR algorithm, where the

signal window is around the true surface-wave arrival time. We set our signal window

be a wide time window that ranges from the acausal to causal times, encompassing our

estimate of the slowest possible physical surface wave arrivals (-2 s to 2 s in Figure 5.2

for the fumarole example). For our noise window, we select two noise windows outside

the signal window on both causal and acausal branches of crosscorrelations (-5 s to

-3 s and 3 s to 5 s in Figure 5.2). The noise windows are away from the signal time

window by one second in our case. We calculate the SNR as the ratio between the

peak value in the signal window and the root-mean-square (RMS) value in the two

noise windows. We set an SNR> 15 criteria to select the crosscorrelations which

we use in the source inversion method. The time parameters, such as time window
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Figure 5.2: An example of the SNR measurement. The blue dashed box
indicates the signal window. The two gray areas indicate the two noise
windows. SNR is defined as the ratio of the peak in the signal window and
the RMS in the two noise windows. We combine the recordings in the two
noise windows and then calculate the RMS from the combined recordings.
The black (left) and red (right) numbers in the gray areas indicate the
SNR for the two waveforms, respectively. The waveforms are band-pass
filtered between 3.5-10 Hz.

length, in the SNR measurements need to be adjusted based on di↵erent field data

and array properties (e.g. interstation spacing).

It is also necessary to separate the correlated noise from the signal of interest

as much as possible. Stacking works to suppress uncorrelated random noise, but

can increase the amplitude of correlated noise (e.g. Shapiro et al., 2006; Zeng & Ni,

2010). Thus the source inversion will not only image the targeted seismic source,

but also any correlated noise sources. Therefore it is important to reduce or remove

the correlated noise. For the continental-scale source studies like for microseisms,

earthquake events are usually the strongest among all correlated sources and need to
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be removed (e.g. Ermert et al., 2017). At the near-surface scale, as in this fumarole

example, the correlated noise is mainly due to anthropogenic activity (e.g. tra�c)

and tree waving. Unfortunately, these correlated noise sources and the fumaroles can

both emit high-frequency (>2Hz) Rayleigh and/or body wave energy (Cheng et al.,

2016; Roux et al., 2018; Estrella et al., 2016). We avoid the trees waving by using

data above the tree resonance frequency, approximately 2 Hz (e.g. Roux et al., 2018),

and we avoid the anthropogenic activity by using data recorded during the night

when there is less anthropogenic activity compared to daytime (e.g. Yamanaka et al.,

1993).

We first analyze the ambient seismic recordings from 01:00 to 04:00 local time on

23 November 2016. During this time period, there are usually smaller wind speeds

in inland areas than daytime (e.g. He et al., 2013), and we assume that the main

seismic sources during this time are fumaroles. We divide the 3-hour long raw data

(01:00 - 04:00) into 60-s sections; then we remove the mean and linear trend in each

section. Because all of the sensors in the array are the same, we do not need to

remove the instrument response. We crosscorrelate these sections and then stack all

crosscorrelations for each sensor pair. We bandpass filter the stacked crosscorrelations

between 3.5 and 10 Hz. We monitor the SNR improvement as we stack more sections

and find that the SNR drops dramatically around 03:30 (Figure 5.3a) in both CZZ

and CRR. The drop indicates that the number of station pairs with high-SNR (>15)

crosscorrelations decreases. This SNR change is due to a di↵erent strong seismic

source (Figure 5.3b, c), which has changed the correlation dramatically. This transient

source could be human activity or another fumarole. If one looks more closely at

the number of stations pairs, there are a few other small drops that are related to
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other high-amplitude transient signals. We do not investigate these transient signals

further, but because of this drop in SNR, we do not use the raw data after the 03:30

and study only the ambient seismic recordings from 01:00 to 03:30, a total of 2.5

hours, in this source inversion example.

We also winnow the CZZ waveforms based on the interstation distance. Small

interstation-distance CZZ waveforms are less sensitive to source changes compared to

large-distance waveforms (Appendix C.1). Furthermore, the ZZ sensitivity kernels

do not change much with source changes when the interstation distance is small.

However, due to the azimuth e↵ect of the R component (e.g. Haney et al., 2012; Xu &

Mikesell, 2017; Xu et al., 2019), the small-distance CRR waveforms are still sensitive

to source changes and help constrain source locations (Appendix C.1). Thus the

small-distance CZZ waveforms do not add much benefit to the source inversion, but

CRR waveforms do. Therefore we ignore small-distance CZZ waveforms, but do not

ignore CRR waveforms with small interstation distances. In this study, we use CZZ

waveforms when the interstation distance is larger than 50 m.

5.3.2 Green’s function estimation

Seismic source studies commonly assume that the subsurface velocity model is known

and thus use Green’s functions based on the assumed velocity model. For the continental-

scale source studies, one can choose a reference velocity model, like AK135 (Kennett

et al., 1995). However, for near-surface studies, one usually does not have a reference

model and thus has to estimate the velocity model somehow. There are many ap-

proaches to estimate near-surface velocity models from ambient seismic data (e.g. Lin

et al., 2013; Cheng et al., 2015). In this example, we estimate Rayleigh-wave phase

velocities (Appendix C.2) and then use the phase velocities to calculate Green’s func-
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Figure 5.3: a) The number of sensor pairs with SNR>15 changes with time
as we stack more time sections of correlations. The time axis is from 01:00
to 04:00 on 23 November 2016. The red line is the continuous seismic
recording for the C601 geophone during this time period. The recording
is bandpass filtered between 3.5 and 10 Hz. b) A zoom of the continuous
recording in the gray area in a). The inset shows a zoom of the first
event. c) The spectrogram of the C601 continuous recording in a) from
the short-time Fourier transform; the window for the Fourier transform is
60 s. The high-power signal in the black box corresponds to the strong
transient signal in b) and causes the drop in the ZZ and RR curves in a).
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tions. We assume that the subsurface at the Hartoušov field is laterally-homogeneous,

isotropic and elastic and thus use the far-field Rayleigh-wave Green’s function from

a vertical-force source to generate synthetic waveforms in the inversion:

GZZ(r,!) =

s
1

8⇡!r/c(!)
e
�i(!r/c(!)+⇡/4)

, (5.1)

and

GRZ(r,!) =
H(!)

V (!)

s
1

8⇡!r/c(!)
e
�i(!r/c(!)�⇡/4)

, (5.2)

where i is the imaginary unit, c(!) is the surface-wave phase velocity, and r is the

distance between the source and receiver. H(!)/V (!) is the ratio of the horizontal-

to-vertical motion (e.g. Haney et al., 2012). These two Green’s functions use the

Rayleigh-wave phase velocity function from Appendix C.2 and the H(!)/V (!) from

Section 5.3.3. Notice that although accurate Green’s functions are important for

seismic source studies, our focus for this paper is the whole workflow for the source

inversion, instead of estimating accurate individual Green’s functions. We discuss the

notion estimating both sources and structure together in Section 5.5.1.

5.3.3 Source energy spectral density estimation

We assume that all seismic sources share a similar energy spectral density shape (S0
p).

This assumption is valid in that the same types of natural ambient seismic sources

possess a similar source mechanism, such as a river (e.g. Tsai et al., 2012) or an ocean

(e.g. Ardhuin et al., 2011b). This assumption decreases the potential model space

because we only need a ratio (N) to indicate the strength of each potential source (e.g.

Ermert et al., 2017; Xu et al., 2019). To estimate S0
p , we present a novel, data-driven

approach.

r
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We write the autocorrelation for each sensor as

Cmm(rA,!) =

Z

V

Gmp(rA, rs,!)G
⇤
mp(rA, rs,!)Sp(!)drs,

= S
0
p(!)

Z

V

|Gmp(rA, rs,!)|2N(rs)drs, (5.3)

where Sp and S
0
p are nonnegative (e.g. Xu et al., 2019). We then combine the auto-

correlation (Equation 5.3) and the far-field Rayleigh-wave Green’s functions (Equa-

tions 5.1 and 5.2) as

CZZ(rA,!) = S
0
Z(!)

Z

V

1

8⇡!rAs/c(!)
N(rs)drs =

S
0
Z(!)

!/c(!)

Z

V

N(rs)

8⇡rAs
drs, (5.4)

and

CRR(rA,!) = S
0
Z(!)

Z

V


H(!)

V (!)

�2 1

8⇡!rAs/c(!)
N(rs)drs =

S
0
R(!)

!/c(!)

Z

V

N(rs)

8⇡rAs
drs,

(5.5)

where rAs is the distance between a source (rs) and the receiver (rA). Noting that

S
0
R(!) = [H(!)/V (!)]2 S0

Z(!) The integral over V in Equations 5.4 and 5.5 represents

a geometric relationship between the receiver and all seismic sources. The integral

is independent of frequency, and thus we can write this integral as an amplitude

normalization constant

D(rA) =

Z

V

N(rs)

8⇡rAs
drs. (5.6)
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Finally, we write:

S
0
Z(!) =

!CZZ(rA,!)

c(!)D(rA)
, (5.7)

S
0
R(!) =

!CRR(rA,!)

c(!)D(rA)
. (5.8)

We estimate S
0
Z(!) and S

0
R(!) using the same raw ambient seismic data in the

observed crosscorrelations. We calculate the autocorrelations (CZZ , CRR = CEE +

CNN) for each sensor following the processing procedures in Section 5.3.1. We then

transform the autocorrelations to the frequency domain. For each ZZ autocorrelation

we normalize by the value of that autocorrelation at the lowest targeted frequency (D

in Equations 5.7 and 5.8). For the corresponding RR autocorrelation we normalize

by the ZZ value to preserve the H/V information. We then average the normalized

autocorrelations among di↵erent sensors. We multiply the averaged autocorrelation

with !/c(!) to estimate S
0
Z(!) and S

0
R(!) (Figure 5.4). The S

0
Z is di↵erent from S

0
R

due to the H(!)/V (!) ratio as noted previously.

5.3.4 Source waveform inversion scheme

We are now ready to conduct the source inversion after the three previous steps.

The inversion scheme has already been stated in detail (e.g. Ermert et al., 2017;

Xu et al., 2019). Thus we describe the whole scheme briefly here. Notice one can

define the misfit function not only on crosscorrelation waveforms as we do, but also

on correlation symmetry (e.g. Ermert et al., 2015) or on correlation envelope (e.g.

Fichtner et al., 2008; Bozdağ et al., 2011). We choose the waveform misfit function

because the waveform inversion can potentially recognize multiple seismic sources

(e.g. Xu et al., 2019). We define an L2-norm waveform misfit function and present
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Figure 5.4: Normalized source energy spectral density estimations, S
0
Z

and S
0
R. We estimate S

0
Z (a) and S

0
R (b) (black lines) from the field data

waveform autocorrelations CZZ and CRR, respectively. We then use the
two estimates in the forward model. In the forward model, if we use
the elastic Green’s function (Equation 5.1 and 5.2), our estimated source
energy spectral densities (red dashed lines) are the same shape as the real
source energy spectral density. If we use the anelastic Green’s functions,
we estimate incorrect densities (blue lines). Here the spectral density is
for displacement wavefield (Appendix C.3). The gray areas indicate the
frequency range we use in the waveform inversion, 4.5-9 Hz. Note here
that we only focus on the shape, instead of the absolute values among
real, elastic and anelastic estimations. All S

0
Z and S

0
R in this figure are

normalized by the S
0
Z at the lowest frequency.
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both the time- and frequency-domain versions, respectively:

� =
1

2

X

mn

X

rArB

Z
[w(t)(Cmn(rA, rB, t)� C

o
mn(rA, rB, t))]

2
dt, (5.9)

=
1

2

X

mn

X

rArB

Z
|w(!) ⇤! (Cmn(rA, rB,!)� C

o
mn(rA, rB,!))|2d!, (5.10)

where w(t) is a time window, ⇤! denotes a convolution in the frequency domain, and

Cmn(rA, rB, t) and C
o
mn are the synthetic and observed crosscorrelations, respectively.

The crosscorrelations are between sensor rA and rB; m,n represent the components,

vertical (Z) or radial (R), from each of the two sensors, respectively. One can also use

the transverse component here if the noise source is thought to generate Love waves.

We use the time window in Equation 5.10 to focus on the main arrivals in the

observed crosscorrelations (e.g. Maggi et al., 2009; Fichtner et al., 2017). We set the

time window to be the signal window in our SNR measurement (Section 5.3.1). We

calculate the observed crosscorrelations as described in Section 5.3.1. We calculate

the synthetic crosscorrelations in the frequency domain as

Cmn(rA, rB,!) =

Z

V

Gmp(rA, rs,!)G
⇤
np(rB, rs,!)S

0
p(!)N(rs)drs (5.11)

where Gmp(rA, rs,!) is the Green’s function representing the mth component dis-

placement response at location rA due to a point force in the p direction at the source

position rs, ! is the angular frequency, and the asterisk denotes complex conjugation.

We estimate the Green’s functions in Section 5.3.2 and S
0
p(!) in Section 5.3.3. In

this study, we create a potential source grid that is 41 by 41 elements with a 5 m

grid distance. We also assume that all sources only emit vertical-direction forces on
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Earth’s surface.

In order to minimize the misfit function and ensure nonnegative solutions, we

apply an iterative waveform inversion methodology to update the ambient noise source

distribution model (N). We minimize the waveform misfit function using a gradient-

descent strategy (e.g. Ermert et al., 2017; Xu et al., 2019). The gradient is a sum of

source sensitivity kernels over the chosen sensor pairs

K =
X

mn

X

rArB

Z !2

!1

Kmn(rA, rB,!)d!. (5.12)

If we only use vertical data, K is a summed KZZ ; if we use both CZZ and CRR,

K = KZZ +KRR among the chosen sensor pairs. We normalize K by the maximum

of absolute values in K. We write the waveform source kernel for a sensor pair as

Kmn(rA, rB,!) = Gmp(rA, rs,!)G
⇤
np(rB, rs,!)S

0
pf, (5.13)

where f is the adjoint source (e.g. Fichtner, 2015; Ermert et al., 2017; Xu et al., 2019).

The adjoint source is derived from the waveform misfit function as

f(!) =
1

⇡
[w(!) ⇤! w(!) ⇤! (Cmn(rA, rB,!)� C

o
mn(rA, rB,!))]

⇤
, (5.14)

where w(!) is the window function. We update the source strength distribution as

Ni+1(rs) = Ni(rs)e
��Ni(rs)K , (5.15)

which is written this way to ensure positivity (e.g. Johansen, 1977; Xu et al., 2019).

We choose the step size (�) from many potential step size values (e.g. � = 10�3
, 10�2

, ...102).
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We also apply a Gaussian smoothing filter to the updated models. We set the stan-

dard deviation of the filter to be the length of one source grid, 5 m. For each step

size we generate an updated source distribution model (Ni+1) and compute synthetic

crosscorrelations using Equation 5.11. We then calculate the corresponding misfit.

Among these misfit values, we choose the step size that gives the minimum misfit;

this is the common line-search method. If the new minimum misfit is less than 99%

of the misfit in the last step, we adopt the step size and update the source model;

if not, we do not update this iteration and instead expand the frequency band. We

start from 4.5-6 Hz and then extend to 4.5-9 Hz.

5.4 Field data example

We process the ambient seismic recordings in the Hartoušov mofette field, Czech

Republic, as a near-surface example. Mofettes, or fumaroles, are openings in Earth’s

surface where carbon dioxide (CO2) flows from depths to the free surface and then

escapes. This CO2 degassing phenomenon generates high-frequency seismic waves at

depth and at the free surface (e.g. Estrella et al., 2016; Bussert et al., 2017). The

seismic waves behave like tremor (e.g. Umlauft & Korn, 2019) and thus in order to

estimate the mofette distributions, we can use the source waveform inversion. We

test the inversion with both synthetic and field data.

A seismic observation was conducted at the Hartoušov mofette field, Czech Re-

public. The seismic observations are continuous from 21 to 24 November 2016. In

this paper we use a subset of the observation, a sub-array that consists of 23 three-

component 4.5-Hz geophones (Figure 5.1). The recording sample rate is 250 Hz and

we downsample the data to 200 Hz to speed the crosscorrelation process. We aban-

don one of the 23 geophones because there is too much noise at the station. Thus we
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use the 22 geophones to estimate the ambient seismic source distribution. The area

under the array is relatively flat. The maximum elevation di↵erence is 1.5 m, which

is negligible compared to the shortest wavelength we use in this study, about 20 m.

Through the data selection (Section 5.3.1), we end up with 47 CZZ and 22 CRR as

the observed crosscorrelations, noting that we only use RR data that also had ZZ

data to ensure we focus on the Rayleigh wave.

5.4.1 Synthetic data tests

We examine our estimation algorithm for S0
p and the subsequent inversion for N(rs)

with synthetic data first to understand the resolution limits of the 22-station array.

We also compare the synthetic waveform inversions with and without the smoothing

filter because in practice one commonly smooths the model in waveform inversion

results (e.g. Tape et al., 2007; Groos et al., 2017), and here we investigate the ef-

fectiveness of smoothing in the waveform inversion for sources. We use the same

array and same available sensor pairs as in the field data (47 CZZ and 22 CRR). We

create a source strength distribution model with two in-array seismic sources (e.g.

Figure 5.5a). We use synthetic data generated with an elastic model as the observed

data and thus use elastic Rayleigh-wave Green’s functions (Equation 5.1 and 5.2) in

the inversion. We use the Rayleigh-wave phase velocities from the field data (Fig-

ure C.3) in the Green’s functions; then use the source energy spectral density shapes

(S0
Z and S

0
R) from the raw data (black lines in Figure 5.4) to calculate synthetic

crosscorrelations (Equation 5.11) and autocorrelations (Equation 5.3). Prior to the

inversion, we apply our algorithm to estimating the source energy spectral densi-

ties (Section 5.3.3). We observe that we recover the correct source energy spectral

densities (red dashed lines in Figure 5.4). This observation fits our theory. Notice
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the peaks in the spectra (Figure 5.4) do not a↵ect the source inversion because the

inversion already incorporates the spectra as S0
Z and S

0
R in Equation 5.13.

After estimating the source energy spectral densities, we use the elastic synthetic

data as the observed data and do the waveform inversion (Figure 5.5). For the elastic

data, we obviously use the correct S0
Z and S

0
R (red dashed line in Figure 5.4) in the

waveform inversions. We observe that the ZZ + RR inversion result (Figure 5.5e) is

closer to the true source model than the ZZ inversion result (Figure 5.5c) if we do

not use the smoothing filter. However, with smoothing, the ZZ +RR gives a similar

inversion result (Figure 5.5d and 5.5f) and a similar final misfit to ZZ (Table 5.1).

Hence smoothing acts to suppress the improved resolution from the RR sensitivity

kernels while helping to recover the shape of seismic sources within fewer iterations

(Table 5.1). Therefore, we adopt the smoothing in the waveform inversion of the field

data, recognizing that our results are perhaps overly smeared.

5.4.2 Source inversion results

We apply the waveform inversion to the Hartoušov observed data – 47 CZZ and 22

CRR waveforms, after the preprocessing procedures (Sections 5.3.1-5.3.3). We use the

estimated source energy spectral densities (black lines in Figure 5.4) in the forward

model. We compare the di↵erent waveform misfits for the di↵erent inversion models

in Table 5.2. For example, the waveforms from the ZZ inversion (Figure 5.6a) fit the

observed CZZ well, but do not fit the observed CRR as well as the ZZ+RR inversion

(Table 5.2 and Figure 5.7). The ZZ + RR inversion model gives a similar misfit for

CZZ waveforms and also a similar total misfit for CZZ and CRR compared to the ZZ

inversion. The ZZ inversion result (Figure 5.6b) indicates one strong and two weak

(east and west) sources. However, the ZZ + RR inversion only indicates one source
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Figure 5.5: The elastic and anelastic synthetic data inversion results. a)
The true source strength is zero everywhere except for the two source areas
within the array. Each triangle represents a geophone. From an initial
source model (b), for the elastic synthetic crosscorrelations, we invert ZZ

waveforms with and without smoothing (c and d, respectively) and ZZ+RR

waveforms with and without smoothing (e and f, respectively). For the
anelastic synthetic crosscorrelations, we invert ZZ waveforms with and
without smoothing (g and h, respectively) and ZZ + RR waveforms with
and without smoothing (i and j, respectively). The empty squares indicate
the true source areas. The gray lines in (a) indicate the 47 available CZZ

sensor pairs; the blue lines in (d) indicate the 22 available CRR sensor pairs
that passed the data selection criteria.
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Table 5.1: Final waveform inversion misfits from the ZZ/ZZ+RR inversions
in the synthetic data tests. We show the final misfits in the 4.5 to 9 Hz
band relative to the initial misfit (Equation 5.10). The number of itera-
tions is provided in parenthesis next to the mistfit value. The two-source
elastic examples are presented in Section 5.4.1 and the other examples are
presented in Section 5.5.

Method Elastic Elastic Anelastic Anelastic
without smoothing with smoothing without smoothing with smoothing

Two-source
example 0.08(21)/0.10(15) 0.09(2)/0.10(4) 0.52(2)/0.43(3) 0.27(2)/0.34(2)

Out-of-array
source - - - 0.41 (2)/0.24(3)

Three-source
example 1 - 0.13(4)/0.12(3) - -

Three-source
example 2 - 0.24(3)/0.20(7) - -

Three-source
example 3 - 0.08(14)/0.10(7) - -

in a similar location as the west weak source in the ZZ model (Figure 5.8b). Notice

that the ZZ +RR inversion result explains both CZZ and CRR waveforms, while the

ZZ model only explains the CZZ waveforms. Thus the one source estimation from

the ZZ + RR inversion is more reasonable than the ZZ inversion result. Moreover,

based on a synthetic test in Section 5.5.1, the strong source in the ZZ result is likely

due to the anelasticity of the subsurface

Table 5.2: Final waveform misfits from ZZ and ZZ + RR waveform inver-
sions on the Hartoušov crosscorrelations. We show the the final misfit
in the 4.5 to 9 Hz band. Misfit values are relative to the initial misfit
(Equation 5.10) in each case.

Data Iteration CZZ CRR CZZ and CRR

ZZ inversion 5 0.63 0.58 0.61
ZZ +RR inversion 4 0.69 0.47 0.62
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Besides the seismic data analysis, we use the CO2 flux data to validate our inver-

sion results. On top of the inversion results, we overlay the CO2 flux map (Nickschick

et al., 2015) collected 3 years before the seismic data here. The strong source in

the ZZ result is not close to any strong CO2 gas areas, acknowledging that we lack

complete data coverage of the gas data. However, the common source in the ZZ and

ZZ +RR results is near the strong gas sources to the East (i.e. fluxes>50 g/d/m
2),

but does not perfectly coincide with a high gas-flux area measured three years prior.

The location bias for the common source could be due to our simplified 1D velocity

model and/or the source actually occurring at depth or moving laterally since the gas

data were collected. We revisit the potential velocity model bias in Section 5.5.1, but

we assume that all seismic sources are on the Earth’s surface in this workflow, even

though the CO2 flux can generate seismic energy at depth (e.g. Bussert et al., 2017).

Both of these potentially invalid assumptions can lead to location biases. However we

also note that the CO2 data were not acquired at the same time as the seismic data,

and mofettes/fumaroles are known to turn on and o↵ through time (e.g. Nickschick

et al., 2015; Umlauft & Korn, 2019).

Based on the waveform misfits and the location of strong degassing, our conclusion

is that the common source in the ZZ and ZZ+RR inversion results is likely a seismic

source (or small region of sources) active during the 2.5 hours over which the ambient

seismic data were collected. The other seismic sources in the ZZ model can not

explain the CRR waveforms. Thus the ZZ + RR inversion provides a better result

than the ZZ inversion. We also note that the ZZ + RR inversion required one less

iteration than the ZZ inversion and from previous work (Xu et al., 2019) we know

that RR data have better resolution than ZZ data when the SNR of the two data
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are comparable.

5.5 Discussion

It is important to estimate the uncertainty in inversion problems. Uncertainty in in-

version results is due to (1) errors in data, (2) errors in the physics, and (3) insu�cient

sensitivity (resolution) of the inverse problem based on the spatial data sampling. We

focus on the latter two here, noting that it is di�cult to assess the true uncertainty

in the source waveform inversion. For instance, we have incorporated smoothing,

a type of regularization, into the inversion. Thus any estimated uncertainty would

be for the regularized solution rather than for the true solution (e.g. Aster et al.,

2011). To address the issue of uncertainty one could use Monte Carlo methods (e.g.

Sen & Sto↵a, 1991; Tarantola, 2005) because one does not necessary need to adopt a

regularization.

5.5.1 Inaccurate velocity model

We make two major assumptions in the waveform inversion method (listed in Sec-

tion 5.2), and any violation of these assumptions leads to errors in the physics of the

inverse problem. Here we consider the first assumption (that the subsurface structure

is known) and focus on the error due to (i) an inaccurate subsurface velocity model

or (ii) using an incorrect material model (e.g. elastic vs. anelastic). First, inac-

curate velocity models are known to lead to artifacts and biased source location in

traditional source imaging methods (e.g. Billings et al., 1994; Eisner et al., 2009). In

full-waveform inversion, one can not resolve a source distribution accurately with an

inaccurate velocity model because the two are coupled within the misfit function (e.g.

Fichtner, 2015). Here we have neglected that coupling, but Xu et al. (2019) study
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Figure 5.6: The data comparison and source distribution map from the
inversion of CZZ waveforms. a) The observed and synthetic CZZ waveforms
are arranged based on the interstation distance of sensor pairs. Each wave-
form is band-pass filtered between 4.5 and 9 Hz and then normalized by
its maximum amplitude for visual comparison. b) The red area indicates
the seismic source area and the red color indicates the source strength.
The blue color indicates measured CO2 gas fluxes in the unit of gram per
day per meter square (Nickschick et al., 2015). Black triangles are the
geophones. The coordinates are in WGS84/UTM, zone 33.
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Figure 5.7: The CRR waveform comparisons from the inversion of ZZ (a)
and ZZ +RR (b) crosscorrelations.
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Figure 5.8: The data comparison and source distribution map from the
inversion of CZZ and CRR waveforms. All inversion parameters match those
in Figure 5.6.
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the source waveform inversion using an incorrect elastic velocity model and find that

this increases the misfit and moves the estimated source location. In the field data

presented here, we assume that the subsurface is laterally-homogeneous and elastic,

but the real subsurface is laterally-heterogeneous and anelastic (e.g. Nickschick et al.,

2015).

The second violation we must consider is related to the latter, an anelastic ma-

terial. We know that wave propagation through anelastic media influences the array

sensitivity because, due to attenuation, some stations may not record signal from

a given source. Therefore, di↵erent stations will sense di↵erent sources, potentially

leading to competing source models within the inverse problem. Therefore, we study

the e↵ect of the anelasticity on the source waveform inversion here. Similar to the

synthetic tests (Section 5.4.1), we generate synthetic data with an anelastic model

to use as the observed data. From these data we estimate the incorrect S0
Z and S

0
R,

and then apply the source waveform inversion using an elastic model. In doing so, we

make the assumption that the observed data are elastic, directly leading to a violation

of the inverse problem physics.

To generate anelastic data, we use anelastic Rayleigh-wave Green’s functions:

G
↵
ZZ(r,!) =

s
1

8⇡!r/c
e
�i(!r/c+⇡/4)

e
�↵r

, (5.16)

and

G
↵
RZ(r,!) =

H(!)

V (!)

s
1

8⇡!r/c
e
�i(!r/c�⇡/4)

e
�↵r

, (5.17)

where ↵ is the attenuation coe�cient for Rayleigh waves (e.g. Lai et al., 2002; Xia

et al., 2002). We use ↵ = 0.01!/2⇡ here. For the source energy spectral density
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estimation, our estimations of S0
Z and S

0
R from the anelastic observed data autocorre-

lations (blue lines in Figure 5.4) are biased and should be corrected (e.g. Groos et al.,

2014) if possible. This bias is because our estimation procedure is based on an elastic

medium and does not compensate the amplitude loss due to the anelastic attenuation,

e
�↵r in Equation 5.16 and 5.17. Here we do not correct this bias in order to assess

the significance of this violation on the two-source example. We use the biased source

energy spectral density estimates in the source waveform inversion, and observe that

in all cases the misfits for the anelastic data are larger than the elastic model results

(Table 5.1). The non-smoothed ZZ and ZZ+RR anelastic data inversion results are

similar to each other (Figure 5.5g and 5.5i), and both models only resolve one source

instead of two. Thus the anelasticity can lead to missed sources, and in this case the

one-source model is likely due to the inter-station correlation coverage (Figures 5.5a

and 5.5b), which largely samples the one source that is resolved. Thus, in the case of

anelastic data, one should use an anelastic model (e.g. Groos et al., 2014, 2017).

We apply the above test to a model with one out-of-array source. This source

is in a similar location as the estimated source from the field ZZ + RR data (Fig-

ure 5.8b). The synthetic observed data come from the anelastic model, and we use

the elastic model in the inversion. We observe that the ZZ inversion images spurious

strong sources in the array and a weak source in the true source area (Figure 5.9a).

In contrast, the ZZ + RR inversion accurately estimates the true source location

(Figure 5.9b). This observation indicates that even when the source inversion uses

an elastic model, but the observed data come from an anelastic model, the multicom-

ponent data provide a more accurate source estimation than the vertical-component

data alone. Regardless of the lost resolution due to smoothing the kernels, this high-
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Figure 5.9: The anelastic synthetic data inversion results for one out-of-
array source. The true source strength is zero everywhere except for the
out-of-array source area which is indicated by the empty box. We invert
ZZ and ZZ + RR waveforms with smoothing (a and b, respectively). All
inversion parameters match those in Figure 5.5.

lights the usefulness of incorporating the multicomponent crosscorrelations into source

waveform inversion.

The last point to note related to violating the physics is that the subsurface

velocity model changes when the CO2 gas is moving through the subsurface and

escaping into the atmosphere (e.g. Ikeda et al., 2016). Thus it is likely necessary

to jointly estimate both the source distribution and subsurface velocity models from

ambient seismic noise data either iteratively or simultaneously (e.g. Sager et al., 2018)

to get the most accurate results. This is an area of future research and we plan to

work on a joint inversion in the future.

5.5.2 Insu�cient sensitivity

Besides attenuation, insu�cient sensitivity in the inverse problem is due to the array

geometry and the sensor pairs we choose based on the SNR of the crosscorrelations.

The array geometry can lead to a null space in the inverse problem and thus there is
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zero sensitivity to sources located in a particular region of the model. To determine

how significant the errors are in the final results, one could do synthetic tests to

characterize how the source location and strength changes with array geometry. Xu

et al. (2019) study sources inside the array and outside of the array and find that

sources outside of the array are smeared due to the lack of resolution.

To study the relationship between in- and out-of-array sources here, we complete

a third synthetic elastic test. We add an out-of-array source region to our previous

two-source synthetic elastic model (Figure 5.5) at three di↵erent locations. On the

one hand, we observe that the waveform inversion resolves the out-of-array source,

but with a reduced amplitude compared to the in-array sources (Figure 5.10), even

though the true amplitudes for all the sources are the same. On the other hand, the

waveform inversion may resolve out-of-array sources in biased locations when only the

ZZ waveforms are used (Figure 5.10e). This is in contrast to the ZZ+RR inversion,

which resolves the sources more accurately than the ZZ inversion (Figure 5.10f) in this

numerical experiment. Thus, although we have shown that ZZ and ZZ+RR inversion

result in similar models and misfits after applying regularization (i.e. smoothing), we

recommend using all possible data in order to image sources as accurately as possible.

We note that we have not tried more than three sources in our testing up to now.

5.6 Conclusion

We present a complete workflow to estimate the seismic source distribution from

ambient seismic noise data. In the workflow, we propose a SNR measurement and

apply a SNR criteria to select high-quality seismic crosscorrelations. We determine

that it is important to select time windows that contribute to the overall SNR of the

array, and to exclude correlated noise sources from the crosscorrelations. Under the
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Figure 5.10: The three out-of-array source inversion results. The true
source strength is zero everywhere except for the two fixed sources within
the array and the one moving source outside of the array. The sources are
represented by empty black squares. The initial inversion model is that
in Figure 5.5b. For the elastic model crosscorrelations, we invert the ZZ

waveforms (c,e,g) and ZZ+RR waveforms (d,f,h). We use the same sensor
pairs as in Figure 5.5: 47 CZZ sensor pairs (gray lines in a) and 22 CRR

sensor pairs (blue lines in b).
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assumption that the subsurface is elastic and laterally homogeneous, we estimate the

Green’s functions and develop a novel algorithm to retrieve the source energy spectral

density. Finally, we apply the waveform inversion to the highest quality crosscorre-

lations of field data and synthetic data sets using the same receiver geometries. We

determine that ZZ + RR better constrains the seismic source distribution than ZZ

in elastic medium, and for anelastic data both ZZ +RR and ZZ fail to recognize all

seismic sources. The field data inversion results indicate a strong seismic source near

the strong CO2 gas flux area. The workflow presented is applicable for both vertical

and multicomponent data, and also di↵erent scale field data.
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CHAPTER 6:

ESTIMATION OF PRIMARY MICROSEISM

SOURCE DISTRIBUTIONS AROUND

ANTARCTICA

6.1 Summary

Primary microseism sources around Antarctica are important for ambient noise to-

mography studies and ocean studies in Antarctica. We apply the source waveform

inversion method to the seismic recordings in Antarctica during February 2010 and

estimate the primary microseism source distribution. Our source estimation provides

good waveform fits to vertical-component crosscorrelations with interstation distances

less than 500 km. The main part of the estimated sources are distributed outside of

the sea ice surrounding Antarctica. Thus in terms of the spatial relationship with

sea ice, our source estimation fits the blocking e↵ect of sea ice on primary microseism

source generations. Our research provides a new tool for studying and monitoring

the primary microseism sources in Antarctica.

6.2 Introduction

Microseisms are low-frequency (<0.12 Hz) ambient seismic waves and one commonly

uses the microseisms to image the Earth’s crust with the ambient seismic tomography
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(ANT) method (e.g. Shapiro et al., 2005). One type of microseism is the primary

microseism (PM), which is generated by the interaction between ocean gravity waves

and the seafloor (Hasselmann, 1963). The PM ranges in frequency from about 0.04 Hz

to 0.09 Hz and thus is an important signal source for ANT in investigating Earth’s

upper to middle crust, e.g. volcano magma chambers (e.g. Stankiewicz et al., 2010)

and fault systems (e.g. Vassallo et al., 2016). As an improved geological understanding

of Antarctica becomes important, the ANT method has been recently applied to PM

data in Antarctica (e.g. An et al., 2015; Shen et al., 2018).

Seismic source distributions are important in the ANT method. The ANT method

assumes that seismic sources are isotropically distributed in all directions around two

sensors. Under this assumption, a key step in ANT is that one recovers Green’s

functions through seismic interferometry (e.g. Snieder, 2004; Wapenaar & Fokkema,

2006). However, this assumption is rarely met in practice (e.g. Stehly et al., 2006), and

thus the recovered Green’s functions are biased (e.g. Yang & Ritzwoller, 2008). Many

methods have been proposed to correct the bias based on seismic source distributions

(e.g. Yao & Van Der Hilst, 2009; Nakata et al., 2015). Therefore, in order to correct the

ANT results in Antarctica, one needs the PM source distribution around Antarctica.

Microseisms are still under investigation today. Although Hasselmann (1963)

theoretically explained the source mechanism of the PM, there are still many ques-

tions, e.g. the PM source distribution (locations and strengths). The beamforming

method (e.g. Rost & Thomas, 2002), an array-based method for estimating seismic

source direction, has been applied to locating PM sources (e.g. Cessaro, 1994; Juret-

zek & Hadziioannou, 2016). However, this method does not provide physical source

strengths. In locating sources, this method requires at least two separate arrays

f
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while the two arrays may be dominated by di↵erent PM sources (e.g. Gualtieri et al.,

2019). Thus, in this case, the beamforming method cannot even provide accurate PM

source locations. One can also simulate the PM source distribution by using data of

ocean gravity waves (e.g. Ardhuin et al., 2015). However, the ocean data are poorly

sampled in space around Antarctica and limit the accuracy of the simulation. Sea

ice in this area is common, and can a↵ect ocean gravity waves and also PM sources

(e.g. Ardhuin et al., 2011a). Therefore we propose another way to estimate the PM

source distribution by applying full waveform inversion to the seismic recordings in

Antarctica.

We apply the workflow described in Chapter 5 to process the PM data in Antarc-

tica. We adjust the workflow based on the field scale and estimate the PM source

distribution in February 2010. We use a sea ice map from the same time period to

support our source estimation results.

6.3 Preprocessing

We process the seismic recordings and calculate crosscorrelations, as well as model the

Green’s functions and estimate the PM source energy spectral density in Antarctica.

After these steps, we conduct the source waveform inversion.

6.3.1 Data selection

We process the raw seismic recordings to reduce uncorrelated and correlated noises.

Stacking can suppress uncorrelated noise (e.g. Bensen et al., 2007), but amplify cor-

related noise (e.g. Shapiro et al., 2006). Thus we use the stacking in processing and

meanwhile need to suppress or even remove the correlated noise, such as earthquakes.

We use the seismic recordings in February 2010 and then remove the instrument re-
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Figure 6.1: An example of the SNR changing with and without the date
selection. The blue dashed box indicates the signal window (-1500-1500 s).
The two gray areas indicate the two noise windows (-2000-1600 s and 1600-
2000 s). SNR is defined as the ratio of the peak in the signal window and
the RMS in the two noise windows. We combine the recordings in the two
noise windows and then calculate the RMS from the combined recordings.
The black (left) and red (right) numbers in the gray areas indicate the
SNR for the two waveforms, respectively. The waveforms are band-pass
filtered between 0.04-0.085 Hz.

sponse at each station. We cut the recordings into 4 h sections; then remove the mean

and linear trend in each section. We then check earthquake catalogs for the month

and remove the sections where earthquake occur, as well as the following sections. We

also dampen events (e.g. earthquakes and spikes) with a denoising code based on the

wavelet transform (Mousavi et al., 2016). We observe that the signal-to-noise ratios

(SNR) of crosscorrelations improve after removing the correlated noise (Figure 6.1).

We also winnow stations based on autocorrelations. We calculate the autocor-

relation for each station by following the same processing above and plot all the
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Figure 6.2: The autocorrelations of 81 available stations in the frequency
domain (black lines). We estimate the median at each frequency (red line).
We choose the autocorrelations which are similar to the red line with at
least 0.8 crosscorrelation coe�cient (blue lines).

autocorrelations in the frequency domain (Figure 6.2). We observe that the autocor-

relations of some stations are noisy, which can be due to site e↵ects as these stations

may be on sediments or even ice. Thus we remove these stations from the inver-

sion. We calculate the median at each frequency (the red line in Figure 6.2) and find

the common microseism energy spectral density shape. We then choose the stations

whose autocorrelations are similar to this shape with at least a 0.8 crosscorrelation

coe�cient between 0.05 and 0.08 Hz.
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6.3.2 Green’s function modeling and source energy spectral

density estimation

We use the AK135 1D Earth model (Kennett et al., 1995) and Instaseis (van Driel

et al., 2015) to model the Green’s functions between all the potential sources and

stations. In calculating the Green’s functions, we do not consider the topography of

Earth’s surface.

We use the source energy spectral density shape (the red line in Figure 6.3.1) in

the inversion.

6.4 Estimation of the primary microseism source

distribution

We are ready to conduct the source waveform inversion. We have 81 available stations

in February 2010 (Figure 6.3). After the data selection (Section 6.3.1), 26 stations

and 85 high-SNR (SNR>15) observed ZZ crosscorrelations remain. We set potential

seismic sources at underwater areas around Antarctica because the PM is generated

by interactions between sea currents and seafloors (Hasselmann, 1963). Each two

adjacent potential sources are apart by about 144 km in distance. We assume that the

PM sources are all point vertical forces (e.g. Gualtieri et al., 2019), and consider that

the Ross ice shelf precludes microseism generation (Figure 6.3). We apply the source

waveform inversion algorithm (e.g. Xu et al., 2019) to the observed crosscorrelations.

In the inversion, we use a gradient-decent algorithm (e.g. Ermert et al., 2017) and

extend the frequency band, from 0.05-0.055 Hz to 0.05-0.065 Hz and 0.05-0.075 Hz.

We also smooth source models in the inversions with a 2D Gaussian smoother (3-

source-point standard deviation along same latitudes and 1-source-point standard
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Figure 6.3: Initial 81 stations (blue triangles) and 955 potential sources.
Each transparent disk represents a potential PM source. We plot the sta-
tions, topography and sources using the Antarctica mapping tool (Greene
et al., 2017). We will use the same tool in the following figures.

deviation along same longitudes).

6.4.1 Synthetic test

We validate our inversion algorithm with synthetic data first. We create a source

strength distribution with one source in the Weddell sea (Figure 6.4) and then gen-

erate synthetic crosscorrelations using Equation 5.11. We use the same Green’s func-

tions and source energy spectral density shape (Section 6.3) in the forward modelling

and also in the source inversion. We use the synthetic data as the observed data

and then conduct the waveform inversion (Figure 6.5). We observe that the inversion

result is close to the true source model, but does not quite have the same shape,

and most of the estimated source strengths are lower compared to the true strengths.
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Figure 6.4: The true source strength distribution in the synthetic test. The
source strengths are zero everywhere except the red area. The blue trian-
gles represent the 26 stations which pass the data selection (Section 6.3.1).
The green and yellow background represent the bed topography of Antarc-
tica.

These discrepancies are because the source inversion cannot fully constrain out-of-

array sources (e.g. Xu et al., 2019).

6.4.2 Source inversion result

We apply the source waveform inversion to the real observed data, 85 ZZ crosscorrela-

tions. Our inversion result indicates that the source distribution is not isotropic. The

synthetic crosscorrelations from the inverse model fit the observed crosscorrelations

well at short distance station pairs (<500 km), but arrive earlier at long distance pairs

(>700 km). This arrival time di↵erence can be because our velocity model, AK135,

is not accurate for Antarctica. Despite of the arrival time di↵erence, the main wave-
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Figure 6.5: The red area is the source inversion result from the synthetic
test.
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Figure 6.6: The estimation of PM source distributions in February 2010.
The red dots represent the estimated PM sources. The white polygons
represent sea ices. The sea ice data is acquired on February 1st 2010
(Lavergne et al., 2019).

forms in the synthetic data are in the same causal branches as the observed data.

Thus the source directions in our source estimation are correct.

Besides the waveform fitting, we validate our source estimation using sea ice con-

centration data. Sea ice can block and reflect surface gravity waves (e.g. Ardhuin

et al., 2011a), and thus produce PM sources in the direction where the surface gravity

waves come (e.g. Ardhuin et al., 2011b). Most of our estimated sources are distributed

outside of the sea ice in Antarctica (Figure 6.6). Therefore, in terms of the spatial

relationship with the sea ices, our source estimation fits the theory for PM sources.

6.5 Conclusion

We apply our source inversion workflow to the vertical-component seismic recordings

in Antarctica during February 2010 and estimate the primary microseism source dis-

r
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Figure 6.7: The waveform fitting from the estimated source distribution
(Figure 6.6).

tribution. We select observed crosscorrelations based on signal-to-noise ratios and

station site e↵ects. We use the AK135 velocity model to calculate Green’s func-

tions. The waveform inversion provides an anisotropic source distribution. The syn-

thetic waveforms from the estimation fit the observed crosscorrelations well at short

interstation-distance (<500 km) station pairs, but not at long distance (>700 km)

pairs. Our source estimation also fits the theory of primary microseism generation

in terms of the spatial relationship with sea ice. Our source estimation provides a

potential tool to monitor primary microseism source changes with time.
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CHAPTER 7:

MONTE CARLO SIMULATIONS OF

MULTIPLY SCATTERED BODY AND

RAYLEIGH WAVES IN ELASTIC MEDIA

7.1 Summary

Time-lapse seismic monitoring exploits the sensitivity of coda waves to small changes

in the subsurface and images the temporal and spatial evolution of seismic properties

(e.g. density). This imaging method is complicated because the coda waves include

multiply-scattered body and surface waves. The complication arises because these two

types of waves possess di↵erent spatial sensitivities and can interact with each other

via scattering. As a consequence of the latter, the energy ratio between the two types

of waves evolves with time in the coda. Thus the estimation of this energy ratio is

critical to obtain accurate monitoring results; however, the spatio-temporal evolution

of energy partitioning in elastic media is not yet fully understood. In practice, one

has to fix the energy ratio or even ignore the contributions of either surface or body

waves. Based on scattering theory, we propose a Monte Carlo method to predict

the energy partitioning between multiply-scattered body and Rayleigh waves as a

function of time and depth in an elastic half-space. In the simulations, we use the
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single scattering conversion rates from body to Rayleigh waves (and vice-versa), which

rely on the depth-dependent eigenfunctions of the Rayleigh waves. We incorporate

the elastic Rayleigh-wave eigenfunctions into our research. This research is a first step

towards a complete modeling of coupled body- and Rayleigh-wave multiple scattering

in elastic media.

7.2 Introduction

Coda waves are arrivals after direct waves in seismic recordings or seismic crosscorre-

lations. One commonly uses coda waves to monitor the subsurface. In the coda wave

interferometry (CWI) monitoring method, one compares the coda waves in two event

recordings where the two events share similar source locations (e.g. Snieder, 2006),

and estimate di↵erences in the coda-wave arrival times (e.g. Snieder et al., 2002) or

waveforms (e.g. Larose et al., 2010). One can map these di↵erences to small changes

of seismic properties (e.g. density) in the subsurface (e.g. Pacheco & Snieder, 2005).

This monitoring method has been applied to repeated event data in nature (e.g. Grêt

et al., 2005) and in the lab (e.g. Larose et al., 2010); it is also commonly applied

to the coda waves in seismic crosscorrelations (e.g. Sens-Schönfelder & Wegler, 2006;

Brenguier et al., 2007, 2008).

One actually utilizes multiply scattered waves in the coda waves when using the

CWI monitoring method. Multiply scattered implies that these waves have scattered

many times in the subsurface while propagating from a (virtual) source to a receiver.

The multiply scattered waves propagate along longer paths in the changed subsurface

than the direct waves, and thus are more sensitive to subsurface changes. Both

body and surface waves exist during the scattering process. The two types of waves

convert to one another via scattering and possess di↵erent spatial sensitivities to

T
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the subsurface changes (e.g. Maeda et al., 2008). Thus the energy ratio between

the two types of waves evolves with time and one needs to have an estimate of the

ratio for accurate monitoring. However, the evolution of the energy ratio is not

fully understood yet. In seismic monitoring studies, one assumes that the coda waves

consist of either multiply-scattered body waves (e.g. Sens-Schönfelder &Wegler, 2006)

or multiply-scattered surface waves (e.g. Mainsant et al., 2012; Obermann et al.,

2015), where neither assumption is actually valid. One can also assume an energy

ratio, but still needs to know how the ratio evolves with time (e.g. Obermann et al.,

2019).

There are few studies about the multiply-scatted body and surface waves and

how they interact. Zeng (2006) studies the energy ratio, but unphysically simplify

the scattering process between body and surface waves. Maeda et al. (2008) de-

scribe the scattering process in detail, but ignored the depth-dependent sensitivity

of Rayleigh waves in deriving the scattering cross sections. Margerin et al. (2019)

consider both the scattering process and the Rayleigh-wave sensitivities, and present

the energy ratio temporal evolution using a Monte Carlo simulation method. How-

ever, the simulation is for scalar wavefields, instead of elastic wavefields. There is yet

another method to calculate the evolution with numerical modelling methods (e.g.

Obermann et al., 2013, 2016), but that method requires significant computation costs

compared to the Monte Carlo simulation method.

We present the evolution of energy partitioning between multiply-scatted body

and surface waves in elastic media. We focus on perturbations of the Lamé parameter

(�), where these perturbations (��) act as scatters in the media. Thus we only

have P-to-P (PP), P-to-Rayleigh (PR), Rayleigh-to-P (RP) and Rayleigh-to-Rayleigh

I
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(RR) scatterings. We use the Monte Carlo simulation method to model the multiple

scattering processing (e.g. Hoshiba, 1991; Margerin et al., 2000). We conduct the

simulation without a P-S coupling at the free surface, and then estimate the temporal

energy ratio between multiply-scattered Rayleigh and body waves. The temporal

energy ratio eventually reaches a steady value, an equipartition ratio. We verify the

simulation by comparing the equipartition ratio to a theoretical prediction. We also

conduct the simulation with the P-S coupling at free surface.

7.3 Scattering process

The Monte Carlo simulation of multiple scattering requires estimates of the single

scattering cross sections and multiply scattering mean free path/time. The intensity

of waves is the basis for the estimates. Thus we introduce the intensity, the cross

sections and then calculate the mean free path/time. All the equations in this study

are in the frequency domain.

7.3.1 Wave intensity

The intensity of an incident body wave (e.g. P wave) in a media is written as

IP (!) = ⇢0↵0!
2
A

2
0P , (7.1)

where ⇢0 is the media density, ↵0 is the P-wave velocity, ! is the angular frequency and

A0P is the P-wave amplitude (e.g. Aki & Richards, 2002). The intensity for a Rayleigh

wave is di↵erent from a body wave, because a Rayleigh wave possess displacements

in the whole depths while a body wave only possess displacement at one depth. Thus

the intensity of an incident Rayleigh waves is defined with a depth integral as (e.g.
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Aki & Richards, 2002)

IR(!) = ⇢0UR!
2

Z 1

0

A
2
0R[r

2
1(z) + r

2
2(z)]dz, (7.2)

where UR is the Rayleigh-wave group velocity at the frequency !, A0R is the Rayleigh-

wave displacement at the surface (z = 0). r1 and r2 are the horizontal and vertical

displacement eigenfunctions of the Rayleigh wave (Appendix D.1). The eigenfunctions

vary with the depth, also the frequency. Notice that the unit of IP and IR is J/(m2
s)

and J/(ms), respectively. The unit di↵erence is due to the depth integral.

7.3.2 Single scattering

We need to calculate the cross sections for four types of single scattering: PP, PR,

RP and RR. Calculation of each cross section requires the corresponding scattering

amplitude (e.g. Margerin et al., 2000). Maeda et al. (2008) derive the scattering

amplitudes, and we use the result here. For example, PR scattering indicates a

scattered Rayleigh wave from an incident P wave. The amplitude of a scattered

Rayleigh wave due to a perturbation of the Lamé parameter (��) is written as

A
PR
� (zs,!) = �A0P

!
2
pi(z,!)↵0

4
R
(r21 + r

2
2)dzU

2
RcR

✓
1� 2�2

0

↵
2
0

◆r
2

⇡kR�

Z

V

[r1(zs,!)+
1

kR

dr2

dzs
]
��

�0
drs,

(7.3)

where �0 is the S-wave velocity, cR is the Rayleigh-wave phase velocity at frequency !

and kR = !/c (Maeda et al., 2008). � is the scattered Rayleigh-wave travel distance

along Earth’s surface. pi is the Rayleigh-wave eigenfunction, r1 or r2 (Section 7.3.1).

zs is the depth of the scatter, ��. �0 is the unperturbed Lamé parameter of the

media. The volume integral,
R
V [r1+

1
kR

dr2
dzs

] ���0
drs, is an integral on the scatter body. We
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ignore the size of the scatter, and thus the volume integral becomes [r1+
1
kR

dr2
dzs

]
R
��drs
�0

.

Therefore we are working in the regime of so-called Rayleigh scattering (e.g. Wu &

Aki, 1985), where scatterer shapes are negligible for low-frequency waves.

We then calculate the intensity of scattered Rayleigh waves in all directions using

a cylinder surface integral:

I
PR
� (zs,!) = ⇢0UR!

2

Z

S

(APR
� )2�d⇠dz, (7.4)
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where ⇠ is the scattering azimuth and z is the depth. The scattering cross section

is defined as the ratio of intensities between all the scattered waves and the incident

wave. Thus we write the PR cross section as

�
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� (zs,!) =

I
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�
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=

k
3
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2
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[r1(zs) +
1

kR

@r2

@zs
]2
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V ��drs

�0

◆2

, (7.7)

where kp = !/↵0. The unit for this cross section is m2. Notice this cross section de-

pends on the scatterer depth (zs) and is linked to the depth-dependent eigenfunctions

of the scattered Rayleigh waves. Following the same logic, we can write the PP cross

section as:

�
PP
� (!) =

k
4
P

4⇡

✓
↵
2
0 � 2�2

0

↵
2
0

◆2 ✓R
V ��drs

�0

◆2

. (7.8)

Notice that, di↵erent from �
PR
� , �PP

� is independent of the scatterer depth.
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We then calculate the cross sections for incident Rayleigh waves. Following the

same steps above, we can write the RP cross section as

�
RP
� (zs,!) =

I
RP
�

IR
=

k
4
P (↵

2
0 � 2�2

0)
2

4⇡c2RUR↵0

R
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2
2)dz

[r1(zs) +
1

kR

@r2

@zs
]2
✓R

V ��drs

�0

◆2

. (7.9)

Notice the unit for �
RP
� is m, instead of m2 like �

PR
� or �

PP
� . This is because of

the unit di↵erence between IR and IP (Section 7.3.1). The incident Rayleigh wave

possess displacements and the scatters exist randomly both at all depths; thus the RP

scattering can also happen where the eigenfunctions are non-zero. Thus we need to

consider all possible scatterings and integrate �
RP
� over depth to achieve the average

cross section:

�
RP
� (!) =

Z 1

0

�
RP
� dzs (7.10)

=
k
4
P (↵

2
0 � 2�2

0)
2

4⇡c2RUR↵0

R
(r21 + r

2
2)dz

Z
[r1(zs) +

1

kR

@r2

@zs
]2dzs

✓R
V ��drs

�0

◆2

, (7.11)

where the cross section unit is m2. Following the same logic, we achieve �
RR
� as

�
RR
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7.3.3 Multiple scattering

Multiple scattering means that single scattering happens many times as a wave prop-

agates from a (virtual) source to a receiver, and thus single scattering is the basis

for multiple scattering. We link multiple scattering to single scattering using the

independent scattering approximation (e.g. Lagendijk & Van Tiggelen, 1996). In the
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approximation, we define a volume density of point scatters (n) and write the mean

free path (lw) for one incident wave as

l
w =

1

n�
, (7.13)

where � is the sum of all the single-scattering cross sections for the incident wave

(e.g. Margerin et al., 2000), such as �P (z,!) = �
PR
� (z,!)+�

PP
� (!) in this study. The

mean free path indicates the average distance between two scatters (e.g. Hoshiba,

1991) and has the unit of m. The corresponding mean free time (⌧w) is defined as

⌧
w =

l
w

v
=

1

n�v
, (7.14)

where v is the incident wave velocity (e.g. Margerin et al., 2000). The mean free time

indicates the average time interval between scattering.

7.3.4 Theoretical equipartition value

We calculate the theoretical equipartition ratio between two types of multiply-scattered

waves. For example, one can calculate the ratio between multiply-scattered P and S

waves based on P � to � S and S � to � P cross sections (e.g. Snieder, 2002). Fol-

lowing Margerin et al. (2019) and ignoring the P-S coupling at free surface, we write

the equipartition energy ratio between multiply-scattered P and Rayleigh waves as

¯̄
ER

ĒP
=

Z
⌧
RP
�

⌧
PR
�

dz =
⇡↵

3
0

!c
2
R

, (7.15)

where ¯̄
ER is the total Rayleigh-wave energy over the whole media, and ĒP is an

integral of P-wave energy over a constant-depth plane and is the same in all depths
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in the equipartition status (Margerin et al., 2019). We write U as cR because the two

are equal in a homogeneous isotropic elastic media.

7.4 Monte Carlo simulation

We simulate multiple scattering with a Monte Carlo method. The Monte Carlo sim-

ulation method has been applied to multiply scattered acoustic/elastic body waves

(e.g. Hoshiba, 1991; Margerin et al., 2000). We use the method to simulate multiply-

scatted P and Rayleigh waves in a homogeneous isotropic elastic media. The under-

lying idea for the Monte Carlo simulation is that we simulate a wave propagating like

a particle N times (Algorithm 2). We generate a wave each time, and the wave can

be either a P or a Rayleigh wave. We then let the wave propagate during a random

free time ⌧ , where ⌧ is the time before the next scattering happens. We calculate ⌧

as ⌧ = �⌧
w
ln(n) where n is a random number with a uniform possibility distribution

from 0 to 1 (e.g. Hoshiba, 1991). If ⌧w is constant in the whole media, we only need

one ⌧ before the next scattering. However, the P-wave mean free time (⌧P ) varies

with depth, because �
PR depends on depth (z). Thus we need to modify the mean

free time and free time for P waves in the propagation because �⌧
w
ln(n) changes.

This makes the simulation di�cult to be conducted because we need to always track

the P-wave depth and modify the free time when the P waves propagate to di↵erent

depths. To address this di�culty, we adopt a trick called delta collisions (Lux &

Koblinger, 1991). The idea of this method is to create an e↵ective and constant ⌧P .

The details of this method are in Algorithm 3. This di�culty does not exist for ⌧R

because both �
RP
� and �

RR
� are independent of depth. After ⌧ , the wave encounters

a scatterer, and scattering occurs. We generate a random value from 0 to 1 to deter-

mine if the wave converts to the other wave type (Algorithm 3 and 4). Notice that



145

for incident Rayleigh waves, if the RP conversion happens, we place the scattered P

wave at a depth based on the probability of �RP
� at all depths (Appendix D.2). We

also need to generate the scattering azimuths/angles. The four types of single scatter-

ing are all isotropic in the assumed frequency range which means the scattered-wave

amplitudes are independent of incident/scattered-wave angles/azimuths (e.g. Maeda

et al., 2008). Thus the scattering azimuth distributions are uniform. We repeat the

propagation and scattering until the sum of ⌧ reaches a certain time in the simulation.

After N simulations, we count how many P and Rayleigh waves exist at each time

step and the result is the P- and Rayleigh-wave energy.

We calculate the cross sections (Equation 7.7 7.8, 7.11 and 7.12) and mean free

times (Equation 7.14). We set the media parameters as: ↵0=5 km/s, �0=3 km/s and

thus cR=2.74 km/s (Rayleigh, 1885). We compute the Rayleigh-wave eigenfunctions

based on these velocities (Appendix D.1). We assume that the scatterers (��) are

randomly distributed in the media and set n = 2 m
�3.

7.4.1 Simulation without the free-surface P-S coupling

We first validate the simulation algorithm using a model without the P-S coupling

at the free surface. We simulate the multiply scattering process 107 times. We

place initial waves at 1 km depth and set the frequency to be 1 Hz. The boundary

condition at Earth’s surface is a total reflection. We conduct multiple simulations

with di↵erent initial wave types. We set the initial wave types to be all P waves, half

P and half Rayleigh waves, and all Rayleigh waves (Figure 7.1). In these three cases,

the energy ratios between the multiply-scattered Rayleigh and P waves all converge

to the theoretical prediction (Equation 7.15).
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Algorithm 2 Monte Carlo simulation algorithm

�
be = �

PP +max[�PR(z)] . E↵ective body-wave cross section
⌧
be = 1/n/�be

/vp . E↵ective mean free time
�
R = �

RR + �
RP ; . Rayleigh wave cross section

⌧
R = 1/n/�R

/vr . Rayleigh wave mean free time
for i = 1 : Nth particle/simulation do

generating a particle and its mode can be body (b) or surface (s) waves .

Initialization
if mode == b then

⌧ = �ln(rand) ⇤ ⌧ be . Generate a random free time from a random number
ang = acos(-1+2*rand) . A random angle in [0,⇡]
azi = 2*pi*rand . A random propagation azimuth in [0,2⇡]
kx = sin(ang)*cos(azi) . P-wave propagation vectors in x/y/z direction
ky = sin(ang)*sin(azi)
kz = cos(ang);

else
⌧ = �ln(rand) ⇤ ⌧R
azi = 2*pi*rand . A random propagation azimuth in [0,2⇡]
kx = cos(azi) . Rayleigh-wave propagation vectors in x/y direction
ky = sin(azi)

deltat = dt
while itime < Nstep do . ith simulation starts

if Mode == b then . P-wave propagation
if ⌧ > deltat then . No scatterings happen

x = x+deltat*vp*kx; y = y+deltat*vp*ky; z = z+deltat*vp*kz
if z < 0 then . Encount the free surface

z = -z; kz = -kz

it = it+1
deltat = dt

else . A scattering will happen
x = x+⌧*vp*kx; y = y+⌧*vp*ky; z = z+⌧*vp*kz
if z < 0 then . Encount the free surface

z = -z; kz = -kz

deltat = deltat - ⌧
scatterb() . P-wave scattering

if Mode == s then . Rayleigh-wave propagation
if ⌧ > deltat then . No scatterings happen

x = x+deltat*vr*kx; y = y+deltat*vr*ky
it = it+1
⌧ = ⌧ - deltat
deltat = dt

else . A scattering will happen
x = x+⌧*vr*kx; y = y+⌧*vr*ky
deltat = deltat - ⌧
scatters() . Rayleigh-wave scattering
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Algorithm 3 P-wave scattering subprogram: scatterb()

pbs = (�PR(z)+�
PP )/�be

. Possibility for real scatterings happening
if rand < pbs then

pbb = �
PP/(�PR(z)+�

PP ) . Possibility for P-P scattering
if rand < pbb then . P-P scattering

mode = b
⌧ = �ln(rand) ⇤ ⌧ be . Generate a random free time from a random number
ang = acos(-1+2*rand) . A random angle in [0,⇡]
azi = 2*pi*rand . A random propagation azimuth in [0,2⇡]
kx = sin(ang)*cos(azi) . P-wave propagation vectors in x/y/z direction
ky = sin(ang)*sin(azi)
kz = cos(ang);

else . P-Rayleigh scattering
mode = s
⌧ = �ln(rand) ⇤ ⌧ s
azi = 2*pi*rand . A random propagation azimuth in [0,2⇡]
kx = cos(azi) . Rayleigh-wave propagation vectors in x/y direction
ky = sin(azi)

else . Imaginary scattering happens
mode = b
⌧ = �ln(rand) ⇤ ⌧ be . The propagation direction stays the same
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Figure 7.1: The energy ratios evolve with time between the total Rayleigh-
wave energy and the average P-wave energy in the 1 km depth from the
surface. The time is normalized by the mean free time of Rayleigh waves
(⌧R). The values in the legend indicate the average energy ratio in the last
10 ⌧R in each simulation and the theoretical value.
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Algorithm 4 Rayleigh-wave scattering subprogram: scatters()

pss = �
RR/�R

. Possibility for R-R scattering
if rand < pss then . R-R scattering

mode = s
⌧ = �ln(rand) ⇤ ⌧ s
azi = 2*pi*rand . A random propagation azimuth in [0,2⇡]
kx = cos(azi) . Rayleigh-wave propagation vectors in x/y direction
ky = sin(azi)

else . R-P scattering
mode = b

. Generate a depth based on the distribution of R-P cross section in depth
z = interp1(zvec,�RP (zvec)/

R
�
PR(z)dz,rand)

⌧ = �ln(rand) ⇤ ⌧ be . Generate a random free time from a random number
ang = acos(-1+2*rand) . A random angle in [0,⇡]
azi = 2*pi*rand . A random propagation azimuth in [0,2⇡]
kx = sin(ang)*cos(azi) . P-wave propagation vectors in x/y/z direction
ky = sin(ang)*sin(azi)
kz = cos(ang);

7.4.2 Simulation with the free surface P-S coupling

We consider the P-S coupling in this simulation. We change the boundary condition at

the surface to the physical P-wave free-surface reflection (e.g. Aki & Richards, 2002).

P waves can continue as P waves or convert to S waves in the free surface reflection.

To deal with the reflection, we generate a random possibility from 0 to 1, and compare

the possibility to the ratio between reflected and incident P-wave intensities. If the

the possibility is lower, the incident P waves will not convert; if higher, the incident

P waves will convert to reflected S waves. The reflected/down-going S waves do not

interact with the scatters (��). Thus the reflected S waves will not covert to P or

Rayleigh waves and thus behave as leaky energy. Therefore, there are fewer P waves

in this simulation compared to the simulation without the free surface P-S coupling

and thus the energy equipartition ratio becomes higher (Figure 7.2).
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Figure 7.2: Same as Figure 7.1 but with the free surface P-S coupling in
the three simulations.

7.5 Conclusion

We present a Monte Carlo simulation for multiply-scattered P and Rayleigh waves

in an elastic homogeneous media. We consider perturbations in Lamé parameters

acting as scatters in the simulations. The simulations provide the temporal evolution

of the energy ratio between the multiply-scattered Rayleigh and P waves. The sim-

ulations without a free surface produce an energy equipartition ratio that matches

the theoretical prediction. The simulations with the free surface produce a higher

energy ratio than the simulations without the free surface, because of the leakage of

converted S waves from the P-wave reflection at the free surface. This study is a

first step toward a complete modeling of multiply-scattered body and surface waves

in elastic media.
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CHAPTER 8:

CONCLUDING REMARKS

My Ph.D. dissertation mainly covers three research areas in seismic interferometry

(SI): estimating accurate direct Rayleigh-wave phase velocities, estimating ambient

seismic source distributions with full-waveform inversion, and more accurately mod-

elling elastic multiply-scattered waves. I state the main conclusions in each chapter,

and thus I will not restate the conclusions here. However, I do state some ideas about

future research directions regarding the material covered in this disseration.

8.1 Joint inversion between source and structure

A joint inversion between seismic sources and structures is necessary because the

two are coupled (e.g. Valentine & Woodhouse, 2010; Fichtner, 2015). Thus we need

to update the two in inversions either simultaneously (e.g. Valentine & Woodhouse,

2010; Sager et al., 2018) or iteratively (e.g. Lee et al., 2014). In the inversions,

one would use low-resolution misfit functions in the beginning, such as symmetry

di↵erences (Ermert et al., 2015) and/or envelope di↵erences (e.g. Fichtner et al.,

2008; Bozdağ et al., 2011). These misfit functions are robust to starting models (e.g.

Sager et al., 2018) but do not possess the high resolution necessary for source and/or

structure imaging. Thus, in order to increase the resolution, one should switch to

high-resolution misfit functions like L2 waveform di↵erences at some point in the
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inversion (e.g. Pan et al., 2020).

Attenuation models, as well as velocity models, are important for subsurface in-

vestigation. We know that we should not use a crosscorrelation between two sensors

to approximate the Green’s function between the two sensors (e.g. Yang & Ritzwoller,

2008; Halliday & Curtis, 2008; Yao & Van Der Hilst, 2009). The amplitude from the

crosscorrelation is often biased, and estimating accurate attenuation information from

the biased amplitudes requires the seismic source distribution (e.g. Stehly & Boué,

2017). However, as we stated in Chapter 5, estimating the seismic source distribution

requires accurate subsurface attenuation models, which is our original goal. Thus the

whole logic is circular. We normally do not have good reference attenuation models to

break this circularity. Therefore, how to estimate seismic source distributions without

a reference attenuation model is a challenge for estimation of attenuation models and

requires further attention.

This challenge might be addressed with a joint inversion for velocity and atten-

uation models (e.g. Fabien-Ouellet et al., 2017) in active-source seismic studies, but

for ambient seismic (noise) research, the joint inversion should include the source

distribution, in addition to velocity and attenuation models.

8.2 Ambient seismic source solutions

Ambient seismic sources (e.g. primary microseism) usually possess both vertical and

horizontal forces (e.g. Ardhuin et al., 2015), even moment tensors if necessary. More-

over, current research suggests that horizontal-force sources may not be in the same

locations as vertical-force sources (e.g. Juretzek & Hadziioannou, 2016). Thus in

order to fully study these sources, we need more complicated (e.g. vertical and hori-

zontal force) source models than only vertical forces at Earth’s surface. However, this
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increase in the complexity of source models would increase the model space of the

source inversion and thus make the convergence to the global minimum harder in the

inversion. Furthermore, because of Rayleigh-wave eigenfunctions, the inverted source

strengths will be biased if the sources are in depth instead of at the Earth’s surface.

Therefore, in these cases, how to achieve accurate source distribution estimations is

a challenge. One option to reduce the model space is that we can set possible source

forces based on the knowledge of source mechanisms. For example, the interaction be-

tween sea current and the sea floor can generate vertical and horizontal forces on the

sea floor (e.g. Ardhuin et al., 2015). Therefore we will incorporate the vertical-, north-

and east-direction point forces into the source inversion for the primary microseism

in future.

8.3 Time-lapse monitoring

The coda-wave monitoring method is still rapidlly developing. Nowadays, one can

monitor changes in coda waves (e.g. Brenguier et al., 2007), but has no idea if the

changes are caused by multiply-scattered body or surface waves. Furthermore, one can

not accurately map the coda wave changes to the changes in the subsurface because

one does not have multiply-scattered elastic-wave sensitivity kernels, but instead only

acoustic-wave sensitivity kernels in homogeneous media (e.g. Larose et al., 2007). We

still need to work on the theory to calculating multiply-scattered body-/surface-wave

sensitivity kernels for ��/�µ/�⇢ in (laterally) homogeneous media. Besides these

issues, in practice, we also need to incorporate topography into the sensitivity kernels

because the topography can a↵ect coda wave propagation and wavefield scattering

(e.g. Snieder, 1986b; Takemura et al., 2015).

One can also use direct waves to monitor small changes in the subsurface (e.g.
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Takano et al., 2019). The advantages for using direct waves are that the wave type

for direct waves is clear and thus one can easily calculate the sensitivity kernels (e.g.

Dahlen et al., 2000; Tromp et al., 2005). However, compared to the coda waves,

the direct waves are less stable to the changes in seismic source distribution (e.g.

Hadziioannou et al., 2009). Thus how to assess or suppress the source e↵ect is key to

the direct-wave monitoring method.
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Lux, Iván, & Koblinger, László. 1991. Monte Carlo particle transport methods: neu-

tron and photon calculations. CRC Press.



167

Ma, Yiran, Clayton, Robert W., & Li, Dunzhu. 2016. Higher-mode ambient-noise

Rayleigh waves in sedimentary basins. Geophysical Journal International, 206(3),

1634–1644.

Maeda, Takuto, Sato, Haruo, & Nishimura, Takeshi. 2008. Synthesis of coda wave

envelopes in randomly inhomogeneous elastic media in a half-space: single scatter-

ing model including Rayleigh waves. Geophysical Journal International, 172(1),

130–154.

Maggi, Alessia, Tape, Carl, Chen, Min, Chao, Daniel, & Tromp, Jeroen. 2009. An

automated time-window selection algorithm for seismic tomography. Geophysical

Journal International, 178(1), 257–281.
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APPENDIX A:

A.1 f � k analysis with a linear array

The phase-shift method (Park et al., 1998) and the ⌧ -p transform (McMechan &

Yedlin, 1981) are related to frequency-wave number (f -k) analysis (e.g. Rost &

Thomas, 2002), which for two-dimensional arrays can be used to determine back

azimuth and phase velocity of incident plane waves. The array response function in

f -k analysis can be written as

|A(k� k0)|2 =

�����
1

N

NX

n=1

e
j(k�k0)·rn

�����

2

(A.1)

where k is the test wave vector, k0 is the observed wave vector, rn is the location

vector of the nth sensor and N is the number of sensors (Rost & Thomas, 2002). For a

linear array, if one assumes surface waves propagate along the array in the x-direciton

then k · rn = kx, where k = 2⇡fp. Thus we can write Equation A.1 as

|A(f(p� p0))|2 =

�����
1

N

xmaxX

xmin

e
j2⇡f(p�p0)x

�����

2

=

�����
1

N

xmaxX

xmin

d(x, f)ej2⇡fpx

�����

2

(A.2)

where d(x, f) = e
�j2⇡fp0x. Equation A.2 is identical to Equation 2.6, and therefore,

f -k analysis for a linear array is the phase-shift method or the ⌧ -p transform under

the assumption that waves propagate along the array.
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APPENDIX B:

B.1 Traveltime adjoint sources

We compute the perturbation of the traveltime misfit function (Equation 4.2) as:

�� = (Tsyn � Tobs)�(Tsyn � Tobs) = (Tsyn � Tobs)�T, (B.1)

where T = Tsyn � Tobs represents the travel-time di↵erence between synthetic and

observed waveforms. Fichtner et al. (2017) derived an expression for �T . We present

the main steps here. The travel-time di↵erence, T , is measured by crosscorrelation

(Figure B.1) and is determined as the crosscorrelation maximum (e.g. Luo & Schuster,

1991; Dahlen et al., 2000):

T = max

Z
Cmn(rA, rB, ⌧)[w(⌧ � t)Co

mn(rA, rB, ⌧ � t)]d⌧

�
, (B.2)

where w(t) is a time window and C
o
mn is the observed data. The time derivative of

the max function argument at t = T is zero. Thus we can write

Z
Cmn(rA, rB, ⌧)

d

dt
[w(⌧ � t)Co

mn(rA, rB, ⌧ � t)]t=Td⌧ = 0. (B.3)
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Figure B.1: An illustration of the traveltime di↵erence, T , between syn-
thetic and observed crosscorrelations.

We then write the traveltime perturbation to T and Cmn as:

Z
�Cmn(rA, rB, ⌧)

d

dt
[w(⌧ � t)Co

mn(rA, rB, ⌧ � t)]t=Td⌧

+

Z
Cmn(rA, rB, ⌧)

d
2

dt2
[w(⌧ � t)Co

mn(rA, rB, ⌧ � t)]t=T �Td⌧ = 0, (B.4)

! �T =�
R
�Cmn(rA, rB, ⌧)

d
dt [w(⌧ � t)Co

mn(rA, rB, ⌧ � t)]t=Td⌧R
Cmn(rA, rB, ⌧)

d2

dt2 [w(⌧ � t)Co
mn(rA, rB, ⌧ � t)]t=Td⌧

. (B.5)

One usually assumes that the observed waveform is a time-shifted copy of the syn-

thetic waveform, [w(⌧ � t)Co
mn(rA, rB, ⌧ � t)]t=T = w(⌧)Cmn(rA, rB, ⌧). In this case,

we can rewrite the integrand of Equation B.5 as

d

dt
[w(⌧ � t)Co

mn(rA, rB, ⌧ � t)]t=T = � d

d⌧
[w(⌧)Cmn(rA, rB, ⌧)],

and
d
2

dt2
[w(⌧ � t)Co

mn(rA, rB, ⌧ � t)]t=T =
d
2

d⌧ 2
[w(⌧)Cmn(rA, rB, ⌧)].
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Thus Equation B.5 becomes:

�T =

R
�Cmn(rA, rB, ⌧)

d
d⌧ [w(⌧)Cmn(rA, rB, ⌧)]d⌧R

Cmn(rA, rB, ⌧)
d2

d⌧2 [w(⌧)Cmn(rA, rB, ⌧)]d⌧
, (B.6)

or in the frequency domain on a frequency band, [!1,!2]:

�T = i

R !2

!1 !�Cmn(rA, rB,!)[w(!) ⇤ Cmn(rA, rB,!)]⇤d!R !2

!1 !2Cmn(rA, rB,!)[w(!) ⇤ Cmn(rA, rB,!)]⇤d!
. (B.7)

Finally, we write Equation B.7 with an adjoint source (f) for a single frequency

(!)

�T =

Z !2

!1

f(!)�Cmn(rA, rB,!)d!. (B.8)

where

f(!) = i
![w(!) ⇤ Cmn(rA, rB,!)]⇤R !2

!1 !2Cmn(rA, rB,!)[w(!) ⇤ Cmn(rA, rB,!)]⇤d!
. (B.9)

If we assume that we know the Green’s functions (Equation 4.4), we can write

�T =

Z !2

!1

Z

V

Gmp(rA, rs,!)G
⇤
np(rB, rs,!)f(!)�Sp(rs,!)drsd!, (B.10)

and we can write the source kernel for �T as

Kmn(!, rs) = Gmp(rA, rs,!)G
⇤
np(rB, rs,!)f(!). (B.11)

Equation B.11 does not require observed data. Thus we use Equation B.11 in Sec-

tion 4.4 to analyze the traveltime source kernels. This formulation assumes that the

observed waveform is close to the synthetic waveform. As the assumption is not valid

in our synthetic data examples, we do not adopt Equation B.11 in the actual inversion
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algorithm.

In the traveltime inversions (Section 4 and 5), we combine the kernel equation B.11

with Equation B.1 as:

K
o
mn(!, rs) = (Tsyn � Tobs)Kmn(!, rs)

= (Tsyn � Tobs)Gmp(rA, rs,!)G
⇤
np(rB, rs,!)f(!). (B.12)

B.2 Waveform adjoint sources

We write the perturbation of the waveform misfit function (Equation 4.1) following

Fichtner et al. (2017):

�� =

Z
[w2(t)(Cmn(rA, rB, t)� C

o
mn(rA, rB, t))]�Cmn(rA, rB, t)dt (B.13)

=
1

2⇡

Z
[w(!) ⇤ w(!) ⇤ (Cmn(rA, rB,!)� C

o
mn(rA, rB,!))]

⇤
�Cmn(rA, rB,!)d!,

(B.14)

where �C
o
mn(rA, rB,!) = 0. The corresponding adjoint source is defined as

f(!) =
1

2⇡
[w(!) ⇤ w(!) ⇤ (Cmn(rA, rB,!)� C

o
mn(rA, rB,!))]

⇤
. (B.15)

In Section 4.4 where there is no observed crosscorrelation, we write the adjoint source

as (Fichtner et al., 2017)

f(!) =
1

2⇡
[w(!) ⇤ w(!) ⇤ Cmn(rA, rB,!)]

⇤
. (B.16)
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B.3 The link among waveform source inversion,

matched-field processing and reverse-time

migration

We can relate the waveform source inversion with the matched-field processing. If

we assume that there are no seismic sources in the initial source distribution model,

Cmn(rA, rB,!) will be equal to zero. We can write the waveform source equation by

combining Equation 4.9 and B.14 as

�� = � 1

2⇡

Z Z

V

[Co
mn(rA, rB,!)]

⇤
Gmp(rA, rs,!)G

⇤
np(rB, rs,!)�Sp(rs,!)drsd!,

(B.17)

where we neglect the time window term w(!). We then rewrite the observed cross-

correlation, Co
mn(rA, rB,!) = U

o
m(rA,!)[U

o
n(rB,!)]

⇤, where U
o
m(rA,!) is the observed

m-direction component seismic recording at rA. The crosscorrelation at a single fre-

quency is a component of the cross-spectral density matrix in matched-field processing

(e.g. Cros et al., 2011). We now write the source kernel in Equation B.17 explicitly

as

K = �[U o
m(rA,!)]

⇤
U

o
n(rB,!)Gmp(rA, rs,!)G

⇤
np(rB, rs,!), (B.18)

and rewrite Equation B.17 as

�� = � 1

2⇡

Z Z

V

K�Sp(rs,!)drsd!. (B.19)

In practice, we stack the kernel among all sensor pairs and the stacked kernel
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reads as

K = �
X

rArB

[U o
m(rA,!)]

⇤
U

o
n(rB,!)Gmp(rA, rs,!)G

⇤
np(rB, rs,!). (B.20)

We can recognize the stacked kernel is a conjugation of the linear (Bartlett) processor

in matched-field processing (e.g. Cros et al., 2011; Corciulo et al., 2012) without

autocorrelation terms:

X

rArB

G
⇤
zz(rA, rs,!)U

o
z (rA,!)[U

o
z (rB,!)]

⇤
Gzz(rB, rs,!), (B.21)

where people usually use vertical component (Z) data. Therefore the matched-field

processing results are similar to the stacked waveform source kernels where the initial

source strengths are zero. We apply the matched-field processing to the ZZ data

in Section 4.5 and estimate the seismic source strengths shown in Figure B.2. We

calculate the Rayleigh-wave phase velocity for the halfspace model (Table 4.1 True),

1391 m/s (Rayleigh, 1885). We use Equation 4.23 as the Green’s function in MFP

(Equation B.21) and estimate source distributions for each example in Section 4.5

(Figure B.2a, Figure B.2b and Figure B.2c). We observe that high source strength

values concentrate near the sensors and the true source locations. This singularity

at the sensors is due to the amplitude term in the Green’s function,
q

1
8⇡!r/c . If we

also only use the phase part of the Green’s function, the singularities disappear (Fig-

ure B.2d, Figure B.2e and Figure B.2f). The singularity also exists in the waveform

inversion and that is why people adopt a taper near sources and receivers or smooth

the gradient (e.g. Groos et al., 2017).

We can also relate this kernel (Equation B.18) to reverse-time migration. If we
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Figure B.2: Matched-field processing (MFP) results from the ZZ data
in Section 4.5. We use the full Rayleigh-wave Green’s function (Equa-
tion 4.23) in MFP (a, b and c), and we only use the phase part of the
Green’s function (Equation 4.23) in MFP (d, e and f). The black empty
squares indicate the shapes and locations of the true sources.



191

assume that Co
mn(rA, rB,!) is due to a microseismic or secondary source, r0, we can

write the kernel as

K =[Co
mn(rA, rB,!)]

⇤
Gmp(rA, rs,!)G

⇤
np(rB, rs,!) (B.22)

=[U o
m(rA, r

0
,!)]⇤U o

n(rB, r
0
,!)Gmp(rA, rs,!)G

⇤
np(rB, rs,!) (B.23)

=[Um(rA, r
0
,!)G⇤

mp(rA, rs,!)]
⇤[Un(rB, r

0
,!)G⇤

np(rB, rs,!)]. (B.24)

We recognize that the kernel, Equation B.24, is the microseismic imaging condition

(e.g. Artman et al., 2010, Equation 4) in the frequency domain. Therefore the imaging

condition in reverse-time migration is similar to the waveform source kernel with zero

initial source strength.

B.4 Fourier transform convention

We use the following Fourier transform convention

U(!) =

Z 1

�1
U(t)e�i!t

dt, (B.25)

as opposed to

U(!) =

Z 1

�1
U(t)ei!tdt (B.26)

(e.g. Aki & Richards, 2002; Haney & Nakahara, 2014).
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APPENDIX C:

C.1 Source kernels

We compare the ZZ and RR source sensitivity kernels for two di↵erent interstation

distances, 20 m and 100 m. Although some previous studies discussed the interstation

distances (e.g. Bensen et al., 2007; Luo et al., 2015), these studies are for ANT not for

source estimation. Furthermore, these studies did not consider the source sensitivity

kernels. Thus it is still necessary to discuss the e↵ect of di↵erent interstation distance

on the source sensitivity kernels.

We set the observed data be zeros (Equation 5.10) and focus on the synthetic

waveform energy in the time window -2 to 2 s. We examine two initial source cases:

(i) an out-of-line source (small black box in upper right of Figures C.1a, C.1c, C.1e,

C.1g) and (ii) an in-line source (small black box on center right of Figures C.1b, C.1d,

C.1f, C.1h). From these initial distributions, we calculate synthetic crosscorrelations

using the forward model (Equation 5.11). The 20 m interstation distance synthetic

CZZ waveforms are similar for the two source cases (Figure C.2a), while the 20 m CRR

waveforms have significantly di↵erent amplitudes (Figure C.2b). For the 100 m sensor

pair, the CZZ waveforms are quite di↵erent for the two source cases (Figure C.2c),

as are the CRR waveforms (Figure C.2d) indicating that these correlations are more

sensitive to the source distribution than the small station spacing correlations.

From the waveforms, we can calculate source sensitivity kernels (Equation 5.13).
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The sensitivity kernels indicate how source strength changes a↵ect the synthetic wave-

form energy. We observe that the first Fresnel zone in the source sensitivity kernels for

the 20 m sensor pair (Figures C.1a, C.1b, C.1e and C.1f) is much larger than for the

100 m sensor pair (Figures C.1c, C.1d, C.1g and C.1h). For the small-distance sensor

pair, the ZZ sensitivity kernels are similar when the initial source location changes

(Figures C.1a and C.1b), while the RR sensitivity kernels change more dramatically

with initial source distribution (Figures C.1e and C.1f); the two ZZ sensitivity values

in the source locations are the same order (a factor of 2 di↵erent) while the in-line

RR sensitivity values are almost an order of magnitude di↵erent (a factor of 10) than

the out-of-line source. This variation in sensitivity is because of the azimuthal e↵ect

of the R component (e.g. Haney et al., 2012; Xu & Mikesell, 2017; Xu et al., 2019).

Thus, incorporating multicomponent crosscorrelations into the full-waveform inver-

sion provides additional sensitivity that helps resolve sources, even when the station

spacing is small.

C.2 Calculating Rayleigh-wave phase velocities

We estimate the phase velocity by combining classic ambient seismic noise processing

(e.g. Bensen et al., 2007) and surface-wave velocity analysis (e.g. McMechan & Yedlin,

1981; Park et al., 1998). In order to calculate accurate surface-wave phase velocities,

one needs to mitigate the e↵ects of an anisotropic source distribution by using long

recordings and/or time-/frequency-domain normalization (e.g. Yang & Ritzwoller,

2008). Here we use two days of geophone recordings (22 and 23 November 2016).

We divide the two-day data into 60 s sections and remove the mean and linear trend

from each section. We then apply one-bit amplitude normalization to the sections,

crosscorrelate, and linearly stack. Note that we focus on accurate Rayleigh-wave
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Figure C.1: ZZ and RR waveform energy source sensitivity kernels for out-
of-line (left column) and in-line (right column) initial source models. The
two sensors are separated by 20 m (a, b, e, and f) and 100 m (c, d, g, and
h). All the sensitivity kernels are normalized by the absolute maximum
value in (e). The black triangles are sensors. The black empty squares
indicate the source locations. In each subplot, the number in the top
left corner indicates the sensitivity value in the center of the square. We
calculate the kernels from 4.5 to 6 Hz and use the same Green’s functions
and S

0
Z (S0

R) as in the paper.
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Figure C.2: Comparison of synthetic CZZ and CRR waveforms between the
in-line and out-of-line source cases. The top row is for the 20 m interstation
distance sensor pair; the bottom row is for the 100 m interstation distance
sensor pair. Each waveform is band-pass filtered between 4.5 and 9 Hz and
then normalized by the maximum amplitude of the in-line crosscorrelations
so that relative amplitudes are preserved.
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phase velocities, not waveforms. Thus we use the one-bit time-domain normalization

procedure.

We stack all of the crosscorrelations into 1 m o↵set bins to generate a virtual

shot gather (Figures C.3a and C.3b). We sum the causal and acausal parts of the

gather and then create a dispersion image (Figures C.3c and C.3d) by applying the

phase-shift velocity transform (Park et al., 1998). We observe a clear Rayleigh-wave

dispersion signal in the CZZ waveforms (Figure C.3c). We pick the Rayleigh-wave

phase velocity based on the maximum of coherence every 0.5 Hz in the 3-10 Hz band

and smooth the phase velocities with an average window (black line in Figure C.3c).

Although the dispersion trend is continuous, these phase velocities can still be biased

due to an anisotropic seismic source distribution (e.g. Yang & Ritzwoller, 2008; Yao &

Van Der Hilst, 2009; Xu et al., 2017). We examine the accuracy of the phase velocities

in a qualitative way by comparing the CZZ-derived phase velocity (the black line in

Figure C.3d) to the dispersion trend from CRR (Figure C.3d). CRR is less sensitive to

anisotropic seismic source distributions (e.g. Xu & Mikesell, 2017). In the dispersion

image (Figure C.3d), we observe that the phase velocities from CZZ are close to CRR

in the 4-10 Hz band. This similarity indicates that the phase velocities are reliable.

Knowing that this dispersion estimation is an average phase velocity for the subsurface

(e.g. Wang et al., 2015), we use this dispersion estimation in the analytical Green’s

functions (Equations 5.1 and 5.2).
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Figure C.3: The virtual shot gathers of CZZ (a) and CRR (b) after applying
a 1 m bin-stack to all crosscorrelations. We apply the phase-shift transform
to the sum of causal and acausal parts of the crosscorrelations to generate
the dispersion images (c and d). The black lines in the two dispersion
images are the smoothed phase velocities from CZZ. The waveforms are
band-pass filtered between 2-12 Hz.
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C.3 Converting velocity recordings to

displacement recordings

The geophones in this study recorded the ground motion velocity at the geophone

locations, while the Green’s functions (Equation 5.1 and 5.2) are the displacement

Green’s functions instead of the velocity Green’s functions. Based on the Fourier

transform, there is a ratio i! that relates the spectra of velocity recordings (V ) and

the displacement recordings (U):

V = i!U. (C.1)

For crosscorrelations this relationship becomes

V V
⇤ = !

2
UU

⇤
. (C.2)

Thus in the estimation of the source energy spectral density (Equation 5.7 and 5.8),

because we use the autocorrelation of the geophone recordings, we have to divide

the estimation by !
2 to estimate the displacement source energy spectral density

(Figure 5.4).

The division is not necessary in the waveform inversions. Because the real crosscor-

relations are for velocity, we need to transfer GmpG
⇤
np from displacement to velocity

in the forward model (Equation 5.11) and the source kernel (Equation 5.13). The

transfer requires multiplying by !
2, and thus the division cancels with the multipli-

cation. Therefore, we do not need to divide or multiply by !
2 in the inversions. This

is only done in Figure 5.4 because we wish to show the source energy spectral density
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for the displacement Green’s function.
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APPENDIX D:

D.1 Rayleigh wave eigenfunctions

Rayleigh waves possess vertical (Z) and radial (R) components. In a 1D elastic media,

one can write the two component displacements at frequency ! and depth z as

uR = r1(z,!)exp[i(kR�� !t)], (D.1)

uZ = r2(z,!)exp[i(kR�� !t)], (D.2)

where r1 and r2 are the eigenfunctions, kR is the Rayleigh-wave wavenumber and �

is the propagation distance (e.g. Aki & Richards, 2002). One can calculate the two

eigenfunctions based on boundary conditions, vanishing traction at the free surface

and no motion at infinity (e.g. Aki & Richards, 2002). In a homogeneous halfspace,

the analytical expression for the two eigenfunctions are

r1(z,!) = �kRexp(�kR

s

1� c
2
R

↵
2
0

z) + kR
2�2

0 � c
2
R

2�2
0

exp(�kR

s

1� c
2
R

�
2
0

z), (D.3)

r2(z,!) = �kR

s

1� c
2
R

↵
2
0

exp(�kR

s

1� c
2
R

↵
2
0

z) + kR

2
q
1� c2R

↵2
0

2� c2R
�2
0

exp(�kR

s

1� c
2
R

�
2
0

z),

(D.4)
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Figure D.1: r1, r2 and 1
kR

@r2
@z vary with depths at 1 Hz.

where cR is the Rayleigh-wave phase velocity at frequency !, ↵0 is the P-wave velocity,

and �0 is the S-wave velocity in the media. For the velocity model in Section 7.4 where

↵0=5 km/s and �0=3 km/s, we calculate the eigenfunctions and 1
kR

@r2
@z (Figure D.1).

We will use these in Equation 7.7, 7.11 and 7.12.
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D.2 P-wave depth in the RP scattering

Rayleigh waves possess di↵erent displacements at all depths while P waves only pos-

sess displacement at one depth. Thus in the Monte Carlo simulation, we need the

coordinate information in a surface (i.e. x and y) to indicate the position of a Rayleigh

wave but need the coordinate information in a 3D space (i.e. x, y and z) for a P-wave

position. For a RP scattering, the scattered P wave shares a same surface position as

the incident Rayleigh wave, and we have to add a depth (z) to the P wave (i.e. place

the P wave at a depth).

We see �
RP
� as a probability distribution for the RP scattering in depth (Fig-

ure D.2). We can generate possible depths for the scattered P wave (i.e. realizations

of the distribution) using inverse transform sampling. This sampling method requires

the cumulative distribution function of �RP
� and a random number (rand) uniformly

distributed from 0 to 1. We then find a depth (z) which satisfies

R z

0 �
RP
� dzR1

0 �
RP
� dz

= rand, (D.5)

where the left hand side is the cumulative distribution (Figure D.2). The depth

is the scattered P-wave depth. In practice, we will not do the integral (
R z

0 �
RP
� dz

in Equation D.5), but calculate the cumulative distribution at some depths prior

to the Monte Carlo simulation and then interpolate the depth in the simulation

(Algorithm 4).
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Figure D.2: We plot �
RP
� normalized by the value in the free surface (red)

and the cumulative distribution function of �RP
� (black).


