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ABSTRACT 

Molecular markers prove to be an invaluable tool in assessing the introduction 

dynamics, pattern of range expansion, and population genetics of an invasive species. 

Ventenata dubia (Leers) Coss. (Aveneae; ventenata) is a diploid, primarily self-

pollinating, annual grass native to Eurasia and Northern Africa. The grass has a detailed 

herbarium collection history in the western United States since its discovery in eastern 

Washington in 1952. Genetic analysis of 51 invasive populations (1636 individuals) of V. 

dubia, coupled with historical records, suggests moderate propagule pressure from 

multiple introductions, followed by local or regional range expansion. Enzyme 

electrophoresis detected nine multilocus genotypes (MLGs) across eight western US 

states. A single MLG, referred to as the most common genotype (MCG), was detected in 

37 of 51 (72.5%) invasive populations across all states. The other eight MLGs were 

generally found in fewer populations, with limited geographic distributions. Despite 

multiple introductions, invasive populations exhibit low levels of genetic admixture, low 

levels of genetic diversity within populations (A = 1.03, %P = 2.94, Hexp = 0.007) and 

high genetic differentiation among populations (GST = 0.864). The apparent reduced 

evolutionary potential of most V. dubia populations did not preclude the initial 

establishment and rapid spread of this species across its new range in the western US. 
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INTRODUCTION 

Biological invasions occur when individuals are introduced into a new region, in 

which their descendants persist, proliferate, and spread beyond their original points of 

introduction (Mack et al. 2000; Lockwood et al. 2013).  Invasive organisms can be 

introduced through either deliberate or accidental means (Mack and Erneberg 2002; 

Hulme et al. 2008; Lehan et al. 2013).  Regardless of how they were introduced, the 

presence of many invasive species has resulted in severe negative ecological 

consequences (Simberloff et al. 2013), high economic costs (Pimentel et al. 2005), and is 

a leading threat to biodiversity worldwide (Sala et al. 2000). In extreme cases, invasive 

species can result in the extinction of native species (Novak 2007; Boyer 2008; Bellard et 

al., 2016).  Invasive species also can degrade ecosystems by altering community structure 

(Hejda et al. 2009), ecosystem processes (Gandhi and Herms 2010), nutrient fluxes (Liao 

et al. 2007; Clark et al. 2010), and disturbance regimes (e.g., the fire regime) (D’Antonio 

and Vitousek 1992; Balch et al. 2013, Gaertner et al. 2014).  

Due to the negative ecological consequences and high economic costs of invasive 

species, the need for predicting which non-native species will become invasive and which 

native communities will be invaded is of critical importance (Mack et al. 2000; Heger 

and Trepl 2003; van Kleunen et al. 2015).  Recently, attention has been focused on the 

“invasion process”, a series of stages by which biological invasions occur. Every stage in 

the invasion process is critical for an invasion to occur because all stages may be 

associated with small population sizes (Kolar and Lodge 2001; Lockwood et al. 2005) that 
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are inherently at high risk of extirpation (Shaffer 1981; Lande 1993). Thus, an emerging 

concept to best predict establishment success is propagule pressure (introduction effort) 

(Kolar and Lodge 2001; Lockwood et al. 2005; Colautti et al. 2006; Simberloff 2009; 

Novak 2011; Ricciardi et al. 2011; Blackburn et al. 2015). Propagule pressure is described 

as the number of individuals in any specific release event (propagule size), the number of 

discrete events per unit time (propagule number), as well the overall genetic variability of 

the founding populations (propagule richness) (Lockwood et al. 2005; Simberloff 2009; 

Ricciardi et al. 2011). High propagule pressure translates to large population sizes, high 

immigration rate, and high genetic diversity which can overcome stochastic processes, 

resulting in the establishment of non-native species (Simberloff 2009).  

Because an invasion can arise from a single, or multiple, source populations and 

potentially over a long period of time, an interdisciplinary approach can be useful in its 

reconstruction (Wilson et al. 2009; Estoup and Guillemaud 2010; Estoup et al. 2010; 

Pawlak et al. 2015). Collection history, as well as current distribution data, can provide 

insights about early introduction sites and the patterns of range expansion. In addition, 

the use of molecular markers can provide a detailed picture of the genetic signatures of 

propagule pressure, the amount and distribution of genetic diversity within and among 

populations, and the occurrence and consequences of post-introduction events (Kolbe et 

al. 2004; Novak 2011; Estoup and Guillemaud 2010; Gaskin et al. 2013). Evidence of 

high propagule pressure can be detected by the presence of 1) a large number of 

genotypes/haplotypes among invasive populations, 2) similar genetic diversity between 

native and invasive populations, with little evidence of founder effects, and 3) presence of 

admixtures in which invasive populations contain genotypes from different native 
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populations (Novak and Mack 2005; Huttanus et al. 2011). 

Ventenata dubia (Leers) Coss. (Poaceae, common names ventenata, wiregrass, 

North Africa grass) is a diploid (2n = 14), primarily self-pollinating (hereafter referred to 

as selfing), winter annual grass in the Aveneae (oat tribe). The species is native to central, 

southern, and eastern Europe, northern Africa, western Asia, and the Caucasus region 

(Prather 2018). In many parts of its range, V. dubia occurrences are scarce, and the plant 

is considered rare in Italy, Portugal, Ukraine, and Switzerland; near threatened in 

Slovakia, endangered in Germany and the Czech Republic, locally protected in France, and 

extinct in Serbia (R.F.H. Sforza and S.J. Novak, unpublished data). In its native range, V. 

dubia inhabits anthropogenically disturbed sites, basalt quarries, agricultural fields, 

pastures, and dry, open habitats (Contu 2013; Fryer 2017).   

There are eight described species in Ventenata  (The Plant List 2013), however V. 

dubia is the only species known to be introduced into the United States (US) (Fryer 

2017). Although the first occurrence record of V. dubia was only in 1952 in Spokane 

County, Washington (Flora of North America Editorial Committee 1993), the grass has 

spread rapidly across the western US (Wallace et al. 2015). Ventenata dubia now occurs 

throughout much of the Pacific Northwest (Idaho, Oregon, and Washington) as well as 

California, Utah, Montana, Wyoming and most recently Nevada. In addition, the plant is 

found in Canada, (British Columbia, Alberta, Ontario, Quebec, New Brunswick, and 

Saskatchewan) and several records exist near the Great Lakes and the Northeast (Ohio, 

Wisconsin, New York, and Maine), however limited records over time suggest that the 

persistence of the plant in these areas is incidental (Fryer 2017).   

In its invasive range, V. dubia grows in habitats ranging from sea level to mid-
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elevations (0-1800m) (Pavek et al. 2011), which receive 350-1,120 mm of annual 

precipitation (Prather 2009).  Ventenata dubia is most commonly found in dry, open, 

disturbed areas such as fields, pastures, roadsides and rangelands; however, it can also be 

found in moist swales, and vernal pools and roadside ditches that become dry in the 

summer (Fryer 2017).  In the Pacific Northwest, V. dubia replaces native vegetation and 

endangers native communities such as grasslands, sagebrush steppe, woodland, riparian 

shrub and Palouse prairie vegetation (Butler 2011; Wallace et al. 2015; Fryer 2017).  

Ventenata dubia can form dense stands, and has the potential to increase fuel 

load, alter fire regimes and promote further invasion, much like Bromus tectorum 

(cheatgrass) (Brooks et al. 2004). Economic losses associated with V. dubia include 20% 

decrease in crop yields, especially in Kentucky Bluegrass and Timothy hay production. 

Moreover, because contaminated hay bales are rejected for export, prices of $200-

$215/ton are reduced to $70-$100/ton (Fountain 2011).  In eastern Washington and 

northern Idaho, regional losses are estimated to be at least $6.7 million (Prather 2018).  

No previous studies have assessed the genetic diversity, introduction dynamics, 

and pattern of spread of V. dubia in its invasive range, and the species provides an 

excellent opportunity to obtain insights into the mechanisms of biological invasion and an 

initial assessment of the population genetic consequences associated with invasion. In this 

study we will 1) assess the introduction dynamics (single vs multiple introductions) and 

estimate propagule pressure for the invasion of V. dubia in the western US, 2) assess the 

pattern of range expansion of the species in its new range, 3) determine the level of 

genetic diversity within invasive populations of V. dubia, and 4) determine the genetic 

structure of these invasive populations. Results of this study will allow us to better 
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understand the invasion of V. dubia into the western US. These data will also allow for a 

comparison of introduction dynamics and population genetics of V. dubia with other 

primarily selfing, invasive, annual grass species in the western US such as B. tectorum and 

Taeniatherum caput - medusae (medusahead).
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MATERIALS AND METHODS 

Herbarium Specimens 

Historic records of V. dubia were accessed through online herbarium databases 

such as the Consortium of Pacific Northwest Herbaria (http://www.pnwherbaria.org), 

Consortium of California Herbaria (http://ucjeps.berkeley.edu/consortium/), 

Intermountain Regional Herbarium Network (http://intermountainbiota.org) and Global 

Biodiversity Information Center (http://www.gbif.org/). Vouchered specimen records 

from all years were targeted for population sampling, specifically the first record of 

occurrence in each county. When possible, verification of specimens was done visually 

via digitized vouchers, or by the species descriptions available on file. 

 

Plant Collections and Sampling 

In the invasive range, mature panicles (or entire plants) were collected from 51 

populations spanning eight western states during the months of June – August, prior to 

seed dispersal.  Samples from Oregon were collected in 2014-2016; Idaho, Montana, and 

Washington during 2015 – 2016, and California, Nevada, Utah and Wyoming during 2016.  

Collection localities were typically located in areas disturbed by human activities, 

especially roadsides where mowing operations take place. In each population, 27 – 40 

plants were collected haphazardly, based on the size of the population. To prevent the 

collection of full siblings, individuals were collected 1-3 m apart. For small populations, 

all individuals were collected. Plant material was placed individually in numbered 
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envelopes and stored at room temperature until analysis. 

All populations were collected by the procedure described above, apart from the 

population from Utah. Due to the time of collection, and the condition of the plants, V. 

dubia litter and debris was collected and placed in individual packets, with each litter 

sample collected approximately 20 meters apart. From the litter and debris, a single V. 

dubia seed was sampled from each packet and germinated for genetic analysis. 

The 51 invasive populations analyzed in this study were chosen based on their 

historical significance (early collection sites, see Fig.1, Appendix A & B), geographic 

distribution, as well as having enough viable seeds, and these populations were assigned 

to four sub-regions: 1) Coastal Range: populations generally located west of 

Cascade/Sierra Nevada Mountains; 2) Columbia Basin: populations from the Columbia 

Basin in eastern Washington and the Blue Mountains region of eastern Oregon; 3) Great 

Basin: populations from the Snake River Plains and the Great Basin; and 4) Rocky 

Mountains: populations from  and east of the Northern Rocky Mountains and north-

central Wyoming (Fig. 2). Populations were assigned to these four sub-regions based on 

geographic features which may prevent gene flow among populations from different sub-

regions.  

Voucher specimens were collected for each population to be digitized and 

processed at the Snake River Plains Herbarium at Boise State University, Boise, Idaho. 

 

Enzyme Electrophoresis 

Ventenata dubia caryopses (hereafter referred to as seeds) were stored in the 

laboratory for at least three months to allow for after- ripening. After this time, seeds were 
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extracted from the lemma and three seeds per individual were germinated in Petri dishes 

lined with moistened filter paper. Seeds germinated 36-48 hours after watering, and 

seedlings were harvested for analysis after 10-14 days of growth. Due to the small 

amount of tissue of V. dubia seedlings, it was necessary to use two to three seedlings 

from each maternal plant (family). It was not possible to grow seedlings for longer 

periods of time because of enzyme degradation within the plant tissue. In addition, the 

highly selfing mating system of V. dubia (see Results section) means that, in almost all 

cases, all progeny from the same maternal plant are genetically identical. 

Genetic analysis was performed using enzyme electrophoresis (allozymes), 

following the procedures of Soltis et al. (1983), with modifications described by Novak et 

al. (1991).   Root and leaf tissue were macerated in Tris-HCl grinding buffer- PVP 

solution (pH 7.5). Several buffer systems and various enzymes were tested to determine 

the optimal band visualization conditions for V. dubia. After optimization, plants were 

assessed for their allozyme diversity at 15 enzymes, and these enzymes were visualized 

using four buffer systems: buffer system 1, isocitrate dehydrogenase (IDH), 

glyceraldehyde-3-phosphate dehydrogenase (G3PDH) and glucose-6-phosphate 

dehydrogenase (G6PDH); buffer system 7, alcohol dehydrogenase (ADH), glutamate 

oxalacetate transaminase (GOT), and phosphoglucoisomerase (PGI); buffer system 8, 

aldolase (ALD), colorimetric esterase (CE), glutamate dehydrogenase (GDH), leucine 

aminopeptidase (LAP) and triosephosphate isomerase (TPI); buffer system 9, malate 

dehydrogenase (MDH), phosphoglucomutase (PGM), shikimate dehydrogenase (SKDH, 

and 6-phosphogluconate dehydrogenase (6PGD). 
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Multilocus Genotype Assignment 

Each V. dubia individual was assigned a multilocus genotype (MLG) based on the 

different alleles present at four polymorphic loci. One genotype is referred to as the “Most 

Common Genotype” (MCG) and occurs most frequently throughout the introduced range 

of V. dubia because it has the most common combination of alleles at all polymorphic loci. 

Individuals which varied by one allele from the MCG, were considered a different MLG.  

 

Data Analysis 

Genetic (Allozyme) Diversity 

Allozyme diversity of the 51 invasive populations of V. dubia located in the 

western US was analyzed using the programs POPGENE 1.32 (Yeh and Boyle 1997) and 

R package “PopGen Report” v 3.0 (Gruber and Adamack 2015).  For every individual, 

allozyme information was entered as their multilocus genotype.  Range-wide genetic 

diversity parameters for V. dubia populations in the invasive range include total number 

of alleles, number of alleles per locus, number of polymorphic loci, percentage of 

polymorphic loci and percentage of polymorphic populations. 

The Index of Association (IA) was used to test whether loci exhibit linkage 

disequilibrium (non-random association of alleles between loci) (Brown et al. 1980). 

The less biased version, rbarD, accounts for the number of loci sampled (Agapow and 

Burt 2001) where a value of 0.0 indicates no linkage disequilibrium, and a value of 1.0 

indicates complete disequilibrium. Both indexes are calculated with the program “poppr” 

(Kamvar et al. 2015), using 999 permutations. An additional test was run to “clone 

correct” the data., A pairwise IA over all loci was performed to ensure that linkage is not 
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the result of a single pair of loci.  

Within-population genetic diversity was quantified using the following parameters: 

the mean number of alleles per locus (A), the number of polymorphic loci within each 

population (#P), the percent polymorphic loci per population (%P), the expected mean 

heterozygosity (Hexp) which was calculated using the unbiased estimate method of Nei 

(1978), the mean observed heterozygosity (Hobs), and the number of multilocus 

genotypes detected with each population (#MLG). The means of these parameters are 

used to describe the level of genetic diversity (on average) within populations of V. dubia 

in its invasive range in the western US.   

To test for deviation from Hardy-Weinberg expectations, Wright's (1965) fixation 

index (F = 1 - Hobs/Hexp) was calculated for each polymorphic locus in a population 

using POPGENE 1.32 (Yeh and Boyle 1997).  The significance of any deviation was 

determined using a χ2 test. 

 

Genetic Differentiation Among Populations 

The R package “mmod” (Winter 2012) was used to calculate Nei and Chesser 

(1983) estimators of gene diversity and genetic differentiation. Using mmod, the total 

gene (allelic) diversity (HT) was partitioned into the within-population component (HS) 

and the among-population component (DST), with these parameters related by the 

following equation HT = HS + DST.  The parameter GST describes the proportion of the 

total gene diversity that is partitioned among populations, and was calculated as GST = 1 

- HS / HT.  GST is a measure of the level of genetic differentiation among populations. 

Analysis of molecular variance (AMOVA) was used to estimate the amount of 
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genetic variation partitioned within and among populations. In addition, a hierarchical 

analysis was performed to determine the amount of genetic variation partitioned within 

and among populations in the four geographic regions described above.  AMOVA was 

calculated using R package “poppr” (Kamvar et al. 2015). 

In order to graphically represent genetic differentiation among populations, an 

UPGMA phenogram was generated using the program POPGENE 1.32 (Yeh and Boyle 

1997) based on Nei’s (1978) unbiased genetic distance. This method was used as an 

alternative to Neighbor joining tree, as the UPGMA procedure assumes the same 

evolutionary rate for all lineages. 

Bayesian Assignment Analysis 

The Bayesian assignment software STRUCTURE (Pritchard et al. 2000) was used 

to determine the number of genetic clusters (K) for the 51 invasive populations of V. 

dubia using the method of Evanno et al. (2005).  A modified hierarchical approach was 

used to determine the most likely number of genetic clusters as described in Vähä et al. 

(2007) and Olafsson et al. (2014).  An initial partitioning STRUCTURE analysis was run 

with 10 repetitions, with K set to 1–10 with 10,000 iterations and 100,000 Markov Chain 

Monte Carlo (MCMC) simulations; this approach captures the major structure of invasive 

populations. In the second and third round of analysis, populations which were assigned 

to different subgroups were analyzed separately. For invasive populations, individuals 

with an assignment of 0.8 q or greater were included in the second and third round of 

analysis, while individuals with <0.8 q assignment were not used in subsequent runs. 

Hierarchical sub-structuring was completed when K was determined to be unequivocal (q 

assignment was equal among groups). 
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STRUCTURE results were run with the program “Pophelper 2.0”, an R package 

program specifically designed to analyze and visualize population structure as well as the 

online web app (http://pophelper.com/ ) (Francis 2016). Additional graphical 

representation was obtained using STRUCTURE HARVESTER (Earl 2012) by web 

service at http://taylor0.biology.ucla.edu/structureHarvester/#. 

 

Genotypic Diversity, Richness, and Evenness 

The R package “poppr” (Kamvar et al. 2015) was used to calculate the mean 

values as measures of genetic diversity, richness, and evenness: Shannon-Wiener Index 

of MLG diversity (H) (Pielou 1966; Grünwald et al. 2003), Simpson’s Index lambda (λ) 

(Simpson 1949) and E5 (Hill’s modified ratio) (Alatalo, 1981; Ludwig and Reynolds 

1988), where Simpson’s Index lambda (λ) is calculated as one minus the sum of squared 

genotype frequencies and range between 0 (no genotypes are different) to 1 (all 

genotypes are different). Additionally, the measure of genotypic richness was calculated 

by direct observation of the number of unique genotypes contained in populations 

(#MLGs). 

http://pophelper.com/
http://taylor0.biology.ucla.edu/structureHarvester/
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RESULTS 

Herbarium Specimens 

In Appendix A we list the first-collected herbarium specimens of V. dubia within 

counties across eight western US states, and this information reveals several patterns 

about its introduction and range expansion across the region (Fig 1).  The grass was first 

reported in Spokane County, Washington [No accession] in 1952, with the next 

specimens collected in Kootenai County, Idaho [WTU273715] in 1957 and in Benewah 

County, Idaho [WTU273743] in 1960. Another pre-1970 report of the grass occurred in 

south-central Washington (Klickitat County [WS247993] in 1962). In the decades of the 

1970s and 1980s, several records exist in areas near these five pre-1970 reports of the 

grass, as well as a few isolated records in California and southern Idaho (Placer County, 

California [UCD94425] 1983, Elmore County, Idaho [ID037447] 1986). In the 1990s, 

there was an increase in the number of V. dubia herbarium specimens across seven states 

in the western US: California, Idaho, Montana, Oregon, Utah, Washington, and 

Wyoming. Four specimens were collected in western Oregon (Willamette Valley) and 

three specimens were collected in northern California, with additional specimens 

collected in Washington and northeast Oregon. Simultaneously, several new state records 

also occurred in Montana, Utah and Wyoming (Ravalli County, Montana [MONT79339] 

1995, Cache County, Utah [UTC00216696] 1995, Sheridan County, Wyoming 

[RM655052] 1997). More recent records (2000s, and forward in time) appear to expand 

from neighboring counties in most states, while most records were collected in southern 
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Idaho and northwestern and southern Montana. The most recent state records occurred in 

three counties in Nevada in the year 2016 (Washoe County, [V84851], Douglas County, 

[SRP58611], Elko County, [SRP61395] (Appendix A). 

Allozyme Diversity Patterns 

Of the 51 invasive populations (1636 total individuals; 32.1 individuals per 

population) of V. dubia from the western US analyzed at 26 allozyme loci, 15 

populations (29.4 %) were polymorphic at one or more loci.  Among all 1636 

individuals, 30 alleles were identified (1.15 alleles/locus) and four loci were polymorphic 

(15.4%): Ce-2, Ce-5, Pgi-2, Tpi-2. Each polymorphic locus had two alleles. Six of 15 

polymorphic populations exhibited diversity at four loci (Appendix C). 

An analysis of the modified index of association (rbarD) revealed varying degrees 

of linkage disequilibrium among polymorphic loci (Fig. 3a), and the range-wide total for 

invasive populations yielded a value of rbarD = 0.5217638, with a p = 0.001, showing 

significant support for the hypothesis that overall, alleles across different loci are linked 

(Fig. 3a).  Clone corrected data confirmed these results (rbarD = 0.4207867, p = 0.001) 

(Fig. 3b), further supporting the evidence of significant linkage disequilibrium among loci.  

A graphical representation of the degree of linkage among loci reveals that most alleles 

observed at different loci (four of six loci pairs) are associating somewhat randomly in 

invasive populations of V. dubia (rbarD = ~ 0.5) and range from 0.4386– 0.5185.  The loci 

which show the highest association of linkage are CE5: PGI2 (rbarD = 0.5185) (Fig. 3c).  

Loci which show the least degree of linkage are CE2:PGI2 (rbarD = 0.2518) (See 

Appendix D for rbarD values).  While linkage disequilibrium between loci does occur 

among invasive populations, we did not detect complete disequilibrium (1.0), thus all loci 
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will be retained in all analyses according to the recommendations of Flint-Garcia et al. 

(2003). 

 

Multilocus Genotypes 

Across 51 invasive populations of V. dubia, nine MLGs were detected (Fig. 4a), 

with 36 of 51 populations (70.6%) contained a single MLG (Table 1).  Twenty-seven of 

51 (52.9%) populations were composed of only the MCG (depicted by dark blue) (Fig. 

4b), while 70.5% (36 of 51) of populations contained at least one individual with the 

MCG.  Of all 1636 individuals analyzed, 1030 (63%) were found to have the MCG.  

Populations containing the MCG are widespread and found in every state: California 

(five of eight populations), Idaho (all eight populations), Montana (all four populations), 

Oregon (eight of 16 populations), Washington (seven of 10 populations), and the only 

MLG detected in Utah, Nevada and Wyoming (Fig. 4b). 

The second most frequent MLG (depicted by yellow) was found in 11 of 51 

(21.6%) populations, with 10 of these populations located in Washington and Oregon 

(Fig. 4b).  The yellow MLG makes up 14.2% of all individuals analyzed (232 of 1636).  

The other seven MLGs were more locally distributed and occurred at lower frequencies: 

red (5.6%), orange (4.4%), black (4.1%), dark grey (2.8%), green (2.2%), teal (1.8%) 

and light grey (1.8%). These low-frequency genotypes occur primarily in the western 

portion of the invasive range in western portions of California, Oregon, and Washington.  

For instance, populations which contain the red and black MLGs were primarily found in 

northern California and western Oregon, with only a few individuals in a population in 

eastern Oregon also having this MLG. Two MLGs (teal and green) were each found in 
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only one population, in California and Oregon, respectively. The locations and 

distributions of the remaining three MLGs (orange, dark grey and light grey) are shown 

in Fig. 4b. 

Genetic Diversity Within Populations 

Among the 51 invasive populations analyzed, the mean number of alleles (A) was 

1.03, the number of polymorphic loci (#P) and percent polymorphic loci (%P) are 0.76 

and 2.94, respectively, expected mean heterozygosity (Hexp) was (0.0072) and mean 

observed heterozygosity (Hobs) was 0.00009 (Table 2). Only two of the 1636 V. dubia 

individuals analyzed in this study were heterozygous (Pgi - 2ab), and both individuals 

were in the population from Mosquito Creek, Oregon (Hobs = 0.0044). The Hobs value 

for all other populations is 0.0000 (Table 2). The populations with the highest amount of 

genetic diversity were Joe Rausch’s Shaketable, Oregon (A = 1.15, %P = 15.38, Hobs 

0.0764), Mosquito Creek, Oregon (A = 1.15, %P = 15.38, Hobs = 0.0608) and Starkey, 

Oregon (A = 1.15, %P = 15.38, Hobs = 0.0311); all three of these populations 

contained four polymorphic loci. Other populations with four polymorphic loci included 

Little Squab Creek, Idaho, Pullman, Washington, and Kalama, Washington. Thirty-eight 

populations lacked any allozyme diversity (Table 2). All populations which contained at 

least one polymorphic locus showed a significant (p < 0.001) deviation from Hardy-

Weinberg equilibrium. Significant deviations from Hardy–Weinberg equilibrium were 

observed in 39 polymorphic loci. Wright’s fixation index (F) values for Pgi-2 and Tpi-2 in 

the population from Mosquito Creek, Oregon (0.850), is due to the presence of two 

heterozygous individuals at both loci (Table 3). 

On average, populations from the Columbia Basin sub-region had the highest 
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level of genetic diversity (A = 1.05, %P = 4.61, Hobs = 0.0140), followed by populations 

from the Coastal Range sub-region (A = 1.03, %P = 3.53, Hobs = 0.0075) and the Great 

Basin sub-region (A = 1.02,%P = 2.66, Hobs = 0.0043). Populations from the Rocky 

Mountains sub-region had the lowest genetic diversity (A = 1.00, % P = 0.35, Hobs = 

0.0012) (Table 2). 

 

Genetic Differentiation Among Populations  

Averaged across the four polymorphic loci, Nei’s (1987) total gene (allelic) 

diversity (HT) is 0.349, the within-population component of gene diversity (HS) is 0.048, 

and the among–population component of gene diversity (DST) is 0.301. The proportion of 

total gene diversity partitioned among populations (GST) is 0.864 (Table 4), indicating 

that 86.4% of the tot al allelic diversity is partitioned among populations. All four 

polymorphic loci had relatively high values for total gene diversity (HT = 0.248 – 

0.395), and values for the proportion of total gene diversity partitioned among 

populations (GST) ranged from 0.849 – 0.881, indicating high genetic structure at all four 

loci (Table 4). 

Analysis of molecular variance (AMOVA) was used to partition genetic diversity 

within and among populations (Table 5a) and showed that 14.59% of the genetic diversity 

was partitioned within populations, while 85.23% of the genetic diversity was partitioned 

among populations. A second AMOVA analysis was conducted to determine how much 

genetic diversity was hierarchically partitioned (Table 5b). This analysis showed that 

14.14% of the genetic diversity was partitioned within populations, 72.66% of the 

diversity was partitioned among populations within regions, and 13.03% of the diversity 
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was partitioned among regions. 

A UPGMA dendrogram, based on Nei’s (1978) genetic distance values, showed 

the genetic relationships among the 51 invasive populations of V. dubia analyzed in this 

study (Fig. 5). Most populations occurred in four distinct clusters. The largest cluster 

contains populations representing predominantly the Columbia Basin, Great Basin, and 

the Rocky Mountains sub-regions. The second and third cluster contains populations 

which are distributed in the Coastal Range sub-region exclusively. Cluster 4 contains 

populations predominantly assigned to the Columbia Basin and Coastal Range sub-

regions. Populations from Hamilton, Montana, Joe Rausch’s Shaketable, Oregon, Lake 

Pillsbury, California, and JB Charbonneau GS, Oregon, were excluded from clustering 

assignment as the populations were the only populations on their respective branches. 

 

Bayesian Assignment Analysis  

STRUCTURE analyses were run for invasive populations using the method of 

Evanno et al. (2005) to determine the number of genetic clusters (K). The first analysis 

included two simulations, one run with K 1-10 with 10,000 iterations and 100,000 Markov 

Chain Monte Carlo (MCMC) repetitions, and the second set at K 1-8 with 100,000 

iterations and 1,000,000 Markov Chain Monte Carlo (MCMC) repetitions. Both 

simulations resulted in similar support for K=2 (Appendix E). The second simulation 

produced two clusters (red and green) (Fig. 6a). Approximately 63% of individuals (1033 

of 1636) were assigned to the red cluster with 0.8 or greater q assignment. The 

hierarchical sub-structure analysis of red cluster alone resulted in unequivocal assignment 

(approximately 50/50 probability) and could not be subdivided further. Approximately 

file://geofiles1/vol1/gradcoll/common/innap/Desktop/Pervukhina-Smith%20et%20al.%202019%20Thesis.docx#_bookmark78
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37% (603) of the individuals were assigned to the green cluster and only one individual 

was discarded from the next round of analysis. 

The second round of independent STRUCTURE analyses of the green cluster 

included 603 individuals, and resulted in a SubK=2, (Appendix E)  Although the ΔK 

figure generated by STRUCTURE HARVESTER showed the greatest change between 

K=3 and K=4, (Appendix E), the greatest value of ΔK obtained using the method of 

Evanno et al. (2005) (not shown) determined a K = 2.  Approximately 62% individuals 

(372 of 602) were assigned to the light blue cluster, and approximately 38% (230 of 602) 

were assigned to the orange cluster with > 0.8 q probability (Fig. 6b). Further sub-

structuring of the orange cluster yielded unequivocal assignment and could not be 

subdivided further. No individuals were discarded for the third round of analysis. 

The analysis of the light blue cluster (n = 372) showed a SubK=2 (Appendix E) 

which assigned 159 individuals to the dark blue cluster (43%), and 146 individuals (39%) 

to the lilac cluster with > 0.8 q probability (Fig. 6c). Approximately 18% (67) of 

individuals were discarded in the final analysis; however, both clusters (dark blue and 

lilac) could not be subdivided further and showed unequivocal results (approximately 

50/50 probability) and were not rerun. The total number of clusters by hierarchical sub-

structuring analysis of populations in the invasive range resulted in four genetic clusters 

(indicated in red, orange, dark blue, and lilac in Fig. 6). 

These four genetic clusters do not correspond to the four population sub-

regions, rather membership in these clusters appears to be based on the MLGs 

present in invasive populations of V. dubia.  For instance, the red genetic cluster 

consisted of populations and individuals with the MCG (Fig. 6a); whereas, the green 
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cluster contained populations and individuals composed of the remaining eight MLGs. 

Sub-structuring analysis of the green genetic cluster assigned populations and individuals 

with the yellow MLG (see Fig. 4a) to the orange cluster, and populations that contained 

individuals with the seven low-frequency MLGs were the assigned to the light blue 

cluster (Fig. 6b).  Sub-structuring analysis of the light blue genetic cluster assigned 

individuals in the 13 remaining populations to the dark blue and lilac clusters (Fig. 6c), 

with many of these 13 populations exhibiting varying amounts of admixture. 

 

Genotypic Richness, Diversity, and Evenness 

Shannon-Wiener index of MLG diversity ranged from 0.14 to 0.74 in 

polymorphic populations, and was highest in Mosquito Creek, Oregon (H = 0.74), 

followed by Joe Rausch’s Shaketable, Oregon, and Lower Lake, California (H = 0.69).  

Simpson’s Index (λ) ranged from 0.06 to 0.50 in genetically variable populations and was 

highest in Joe Rausch’s Shaketable, Oregon and Lower Lake, California (λ = 0.50), 

followed by Wilderness Village, Washington (λ = 0.47).  Hill’s modified ratio for 

evenness (E5) ranged from 0.44 to 1.0, among polymorphic populations, with an overall 

mean value of 0.69 (Table 6). The 36 populations which had no allozyme variability had 

a value of zero for both indices, while evenness cannot be computed for populations 

lacking genetic diversity.  Populations which had multilocus genotypes in near equal 

abundance were detected at Lake Pillsbury, California (E5 = 1.0), followed by Joe 

Rausch’s Shaketable, Oregon (E5 = 0.99), and Wilderness Village, Washington (E5 = 

0.95).  

Compared to the overall mean of all populations (H = 0.14), populations from the 
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Coastal Range had the highest diversity values (H = 0.21), followed by populations from 

the Columbia Basin (H = 0.17), while populations from the Rocky Mountains had the 

lowest diversity (H = 0.05). Populations from the Rocky Mountains showed the highest 

values for evenness (E5 = 0.80), followed by populations from the Columbia Basin (E5 = 

0.72); populations from the Great Basin had the lowest evenness value (E5 = 0.60) (Table 

6). 
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DISCUSSION 

Multiple Introduction and Spread 

The western US has an extensive history of biological invasions. Eurasian annual 

grasses such as B. tectorum and T. caput-medusae have invaded millions of hectares 

throughout the western US and become dominant across the landscape (Novak and Mack 

2001; Mack 2011; Germino et al. 2016). The relatively recent introduction and rapid 

range expansion of V. dubia suggests that this grass joins the ranks of these other invasive 

annual grasses that have caused severe ecological damage and high economic costs 

across much of the western US. Therefore, this and other research projects involving V. 

dubia are timely for gaining a better understanding of this invasion; especially if this 

information is implemented in the management of the species to reduce its ecological and 

economic harm. 

The use of herbarium specimens to reconstruct the introduction and spread of an 

invasive plant can sometimes be challenging (e.g., records can be fragmentary) (Delisle 

et al. 2003), however herbarium specimens also provide unequivocal information 

concerning the occurrence of a plant at a certain place and time.  Ventenata dubia has a 

detailed collection history in the western US (Fig. 1), and this history is consistent with 

the pattern often associated with multiple introductions and local or regional range 

expansion (Lambrinos 2001; Chauvel et al. 2006).  Based on herbarium records and 

population collections made during this study, V. dubia now appears to occur in at least 
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22 Oregon, 18 Idaho, 15 Washington, 10 California, nine Montana, three Nevada, one 

Wyoming, and one Utah counties. 

Any inferences drawn from the collection history of an invasive species can be 

further assessed using molecular data. The detection of nine homozygous multilocus 

genotypes among the 51 invasive populations of V. dubia analyzed in this study (Table 1, 

Fig. 4) suggests that multiple and separate introduction events into the western US have 

occurred.  The most common genotype (MCG, blue color) was found to be widespread 

across the western US (Fig. 4b), it was detected in V. dubia populations in every state.  

Moreover, this genotype occurs in the localities where the grass was first reported 

(Spokane County, Washington and Kootenai County, Idaho) and now predominates in 

populations in the Rocky Mountains, Great Basin and Columbia Basin sub-regions. The 

occurrence of the MCG across this large area may reflect the following sequence of 

events: the introduction of this multilocus genotype into Spokane County, and its 

subsequent spread as range expansion of V. dubia proceeded eastward and southward 

through several major highways (e.g., Interstate 90 and the Highway 95/55 corridors, 

respectively). 

An alternative scenario for the widespread distribution of the MCG in the eastern 

portion of the study area involves independent (multiple) introductions of this multilocus 

genotype into various locations in the region. Such a scenario may explain the occurrence 

of the MCG in the isolated and localized populations of the grass in Wyoming and Utah. 

This alternative scenario involves the independent uptake of individuals with the MCG 

from a native population (or populations), their transport from the native range in Eurasia 

to the western US, and their release and establishment into several locations in the new 
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range. Although our allozyme data does not allow us to differentiate between these two 

scenarios, this latter scenario appears less parsimonious.  

The second most common genotype (yellow) shows a different geographic pattern 

of distribution (Fig. 4b).  This multilocus genotype has been detected in 11 of 51 invasive 

populations of V. dubia, with 10 of these populations located in Oregon and Washington. 

Several scenarios may explain the distribution of this genotype. In the first scenario, this 

genotype was introduced into Klickitat County, Washington, in 1962, and spread from 

this original point of introduction as range expansion of the grass proceeded in several 

directions. In an alternative scenario, this genotype may have been independently 

introduced into several localities where it now occurs. For instance, the yellow genotype 

was found in two populations in western Washington (Kalama and Toledo), and both 

populations are separated from Klickitat County by the Cascade Mountain Range. In 

addition, this genotype was also detected in a population near Klamath Lake, OR, which 

is located far south of Klickitat County. 

Additional evidence for multiple introductions exists in the distribution of low-

frequency genotypes which are found throughout the four sub regions. For instance, the 

light grey genotype is found in only two populations, Hamilton, Montana (Rocky 

Mountains sub-region) and Eugene, Oregon (Coastal Range sub-region) (Table 1, Fig. 

4b).  Multiple introductions also appear to have occurred into populations in the Coastal 

Range sub-region: eight of the nine multilocus genotypes detected among all 51 invasive 

populations from the western US were detected among the 12 populations analyzed from 

this sub-region. Three of these eight genotypes (dark grey, black and teal) were only 

detected within populations from this sub-region. All 12 populations assigned to the 
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Coastal Range sub-region are located west of the Cascade and Sierra Nevada mountain 

ranges and are therefore geographically isolated from the other populations analyzed in 

this study. In general, the genotypes detected among Coastal Range sub-region 

populations have limited geographical distributions. For instance, in Oregon, the red 

genotype was detected in Monmouth (where the grass was first collected in 1984) and 

Sherwood, and the black genotype was detected in Eugene and Roseburg. In the Coastal 

Range sub-region, the red and black genotypes were also detected in the population 

sampled near Lower Lake, California. These results suggest that these genotypes may 

have been introduced independently into Oregon and California.   

 

Propagule Pressure 

The number of multilocus genotypes or haplotypes found among invasive 

populations can provide an estimate of propagule pressure (Novak and Mack 2005; 

Huttanus et al. 2011).  The detection of nine multilocus genotypes among the 51 invasive 

populations of V. dubia analyzed here (Table 1, Fig. 4) suggest moderate propagule 

pressure associated with the introduction of this species into the western US. And if each 

multilocus genotype is the product of an independent introduction event, the detection of 

nine genotypes translates into a minimum of nine separate introduction events. Our 

estimate of propagule pressure would increase if the same genotype was introduced into 

different portion of the species’ invasive range. For instance, the broad distribution of the 

MCG across much of the eastern portion of the study area may result from independent 

introductions into several localities in this area. Our estimate of propagule pressure can 

be considered reliable due to the detection of different genotypes in localities associated 
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with the earliest herbarium specimens of the grass in the western US. 

Similar with collection history information, the distribution of these nine 

multilocus genotypes among invasive populations (Fig. 4b) suggests that range expansion 

of V. dubia in its invasive range has occurred at a regional or local geographical scale.  If 

the MCG was introduced just once in the eastern portion of the study area, its distribution 

would most likely have occurred through regional range expansion.  If, as stated above, 

the widespread distribution of the MCG in this region is the result of multiple 

introductions, range expansion of the grass in this area would have occurred at a more 

local scale. The distribution of other multilocus genotypes among invasive populations of 

V. dubia, especially genotypes in the Coastal Range sub-region, appears to be the result 

of mostly local range expansion. Evidence for regional and/or local range expansion is 

provided by the lack of genetic admixture among invasive populations; only 15 of 51 

(29.4%) invasive population have two or more multilocus genotypes.  Among all 51 

invasive populations analyzed in this study, the populations from Eugene and Roseburg, 

OR, are the only populations which possess three multilocus genotypes. 

 

Genetic Diversity and Genetic Structure 

The genetic diversity and genetic structure of invasive populations is influenced 

by multiple factors: the level and structure of genetic diversity within and among native 

populations, propagule pressure, and the pattern of range expansion of a species in its 

new range (Novak and Mack 2005; Taylor and Keller 2007; Keller and Taylor 2008; 

Pawlak et al. 2015; Novak and Mack 2016). With small founder population size, a single 

or a few introduction events (low propagule pressure) and local range expansion, invasive 
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populations often exhibit reduced genetic diversity and increased genetic differentiation, 

in comparison to native populations (Brown and Marshall 1981; Novak and Mack 2005; 

Wares et al. 2005; Dlugosch and Parker 2008; Barrett 2015).  In addition, the level and 

structure of both native and invasive populations is strongly influenced by the mode of 

reproduction and mating system of a species (Stebbins 1957; Barrett et al. 2008; Pannell 

2015). For instance, plant species with higher rates of selfing have lower levels of genetic 

diversity within populations and higher genetic differentiation among populations, 

compared to predominantly outcrossing species (Brown and Burdon 1987; Slatkin and 

Barton 1989; Hamrick and Godt 1996; Sork et al. 1999).  

The allozyme data reported here provides an initial assessment of the genetic 

consequences of the introduction and range expansion of V. dubia in the western US.  

Despite evidence for multiple introductions into its invasive range (i.e., moderate 

propagule pressure),  the level of genetic diversity, on average, within the 51 invasive 

populations of V. dubia reported here (Table 2: A = 1.03, #P = 0.76, %P = 2.94, Hexp = 

0.007 and Hobs = 0.00009) is low in comparison with the level of diversity reported for 

other plant species.  For a comparison of the genetic diversity of the study species with 

other plant species, that possess various life-history traits, see Hamrick and Godt (1996).  

These results for V. dubia are consistent with theoretical predictions (Nei et al. 1978; 

Watterson 1984; Novak and Mack 2005) and suggest that even moderate propagule 

pressure was not enough to overcome founder effects, the reduction and/or alteration of 

genetic diversity expected with introduction events.  In addition, the low level of genetic 

diversity detected within these invasive populations likely stems from the local and/or 

regional pattern of range expansion described above.  With local and/or regional range 
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expansion, the multilocus genotype(s) introduced into a geographic area would not 

intermix with the genotype(s) introduced into another area (genetic admixture would be 

reduced). The low level of genetic diversity detected within these invasive populations is 

also associated with the highly selfing mating system of V. dubia. Evidence for the 

selfing mating system of this species is provided by the detection of only two 

heterozygous individuals in a single population (Mosquito Creek, Oregon) among all 51 

invasive populations (and 1636 individuals) from the western US.  All F values for the 

polymorphic loci detected in these populations were significantly different from 0.0 

(indicating a significant deviation from Hardy-Weinberg equilibrium) (Table 3) and the 

mean value of Hobs for all 51 invasive populations is 0.00009. 

The values for the genetic diversity parameters reported here for V. dubia are 

similar with the values reported for invasive populations of B. tectorum and T. caput-

medusae, two highly selfing, annual grasses invasive in the western US, using the same 

molecular marker (allozymes). As summarized by Novak and Mack (2016), the range in 

genetic diversity parameters for invasive populations of B. tectorum from different sub-

regions across the US and Canada (A = 1.01 – 1.05, %P = 1.05 – 5.14, Hexp 0.002 – 

0.014, Hobs = 0.0000 – 0.0002) are comparable to the values reported here for V. dubia. 

The values of genetic diversity parameters for 46 invasive populations of T.  caput-

medusae in the western US (A = 1.02, %P = 1.90, Hexp = 0.005, Hobs = 0.0001) are 

similar to those of V. dubia (S.J. Novak, unpublished data). 

The genetic structure of invasive populations is determined by propagule 

pressure, pattern of range expansion and the mating (reproductive) system of the species 

(Brown and Marshall 1981; Hamrick and Godt 1996; Novak and Mack 2005).  In this 
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study we have documented multiple introductions (moderate propagule pressure), local 

and/or regional range expansion from these putative points of introduction, and the highly 

selfing mating system of V. dubia. In combination, these factors have resulted in the 

regional distribution of certain genotypes as revealed in the UPGMA cluster diagram 

(Fig. 5) and the results of our STRUCTURE analysis (Fig. 6).  

These factors have also produced the relatively high genetic structure reported 

here for invasive populations of V. dubia. For instance, the results of AMOVA indicate 

that 85% of the total genetic diversity is partitioned among populations and only 15% of 

the total diversity is partitioned within populations (Table 5). Similar results are reported 

for gene diversity statistics (Nei and Chesser 1983) (Table 4), which indicates that 86.4% 

of the total diversity is partitioned among populations (GST = 0.864). This level of genetic 

differentiation among populations of V. dubia is greater than that reported for invasive 

populations of other selfing grass species such as B. tectorum (Novak and Mack 2016) 

and Brachypodium stacei (Shiposha et al. 2016), but very similar to the level reported for 

T. caput-medusae (GST = 0.907) (S.J. Novak, unpublished data). 

 

Conclusion 

Much like other invasive annual grasses (e.g., B. tectorum and T. caput-medusae), 

results of this genetic analysis indicate that V. dubia was introduced multiple times into 

the western US.  Despite multiple introductions, invasive populations exhibit low levels of 

genetic admixture, low levels of genetic diversity within populations and high genetic 

differentiation among populations; most likely due to a local and/or regional pattern of 

range expansion. However, this putative reduced evolutionary potential did not preclude 
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the initial establishment of V. dubia and has not limited its rapid spread across its new 

range.  

Gaining insights into other aspects of this invasion will require the genetic 

analysis of native populations, using the same genetic marker (Bossdorf et al. 2005; 

Novak and Mack 2005; Novak 2011). Identifying the same multilocus genotypes within 

and among native populations will provide evidence confirming the multiple introduction 

hypothesis and will aid in identifying the geographic origins (source populations) of this 

invasion (Novak 2011).  Population genetic data from native populations will also allow a 

more precise estimate of the degree to which founder effects have influence the genetic 

diversity and structure of invasive populations (Novak and Mack 2005; Dlugosch and 

Parker 2008), and will allow an assessment of the role of post-introduction evolution 

versus prior adaptation in this invasion (Hufbauer et al. 2011; Rey et al. 2012). Finally, 

the genetic analysis of native and invasive populations within the same experimental 

framework can inform programs aimed at managing the invasion of V. dubia in the 

western US, especially efforts to search for effective and specific biological control 

agents (Gaskin et al. 2011).  

  



31 

 

LITERATURE CITED 

Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol 

Notes 1:101–102 

Alatalo RV (1981) Problems in the measurement of evenness in ecology. Oikos 37:199–

204 

Balch JK, Bradley BA, D'antonio CM, Gómez‐Dans J (2013) Introduced annual grass 

increases regional fire activity across the arid western USA (1980–2009). Global 

Change Biol 19:173–183 

Barrett SCH (2015) Foundations of invasion genetics: The Baker and Stebbins legacy. 

Mol Ecol 24:1927–1941 

Barrett SCH, Colautti, RI, Eckert CG (2008) Plant reproductive systems and evolution 

during biological invasions. Mol Ecol 17:373-383. 

Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent 

extinctions. Biol Lett 12:20150623-1-20150623-4 

Blackburn TM, Lockwood JL, Cassey P (2015) The influence of numbers on invasion 

success. Mol Ecol 24:1942–1953 

Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and 

genetic differentiation between native and introduced plant populations. 

Oecologia 144:1–11 

Boyer AG (2008) Extinction patterns in the avifauna of the Hawaiian Islands. Divers 

Distrib 14:509–517 

Brooks ML, D'antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs 

RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. 

BioScience 54(7):677-88 



32 

 

Brown AHD, Burdon JJ (1987) Mating systems and colonizing success in plants. Brit 

Ecol Soc Symp 26:115-131 

Brown AHD, Marshall DR (1981) Evolutionary changes accompanying colonization in 

plants. In: Scudder GGE and Reveal JL (eds) Evolution Today, Carnegie-Mellon 

University, Pittsburg, pp 351–363 

Brown ADH, Feldman MW, Nevo E (1980) Multilocus structure of natural populations 

of Hordeum spontaneum. Genetics 96:523– 536 

Butler MD (2011) Rehabilitating Ventenata infested rangelands using herbicides in 

conjunction with bunchgrass seedings. In: Proceedings of Western Society of 

Weed Science 64:108 

Clark KL, Skowronski N, Hom J (2010) Invasive insects impact forest carbon dynamics. 

Global Change Biol 16:88–101 

Chauvel B, Dessaint F, Cardinal-Legrand C, Bretagnolle F (2006) The historical spread 

of Ambrosia artemiisiifolia in France from herbarium records. J Biogeogr 33:665-

673. 

Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for 

biological invasions. Biol Invasions 8:1023–1037 

Contu S (2013) Ventenata dubia. The IUCN Red List of Threatened Species. 

https://www.iucnredlist.org/species/44392189/44414263  

D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the 

grass/fire cycle, and global change. Annu Rev Ecol Syst  23:63–87 

Delisle F, Lavoie C, Jean M, Lachance D (2003) Reconstructing the spread of invasive 

plants: taking into account biases associated with herbarium specimens. J 

Biogeogr 30:1033-1042 

Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, 

adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449 



33 

 

Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing 

STRUCTURE output and implementing the Evanno method. Conserv Genet 

Resour 4:359–361 

Estoup A, Baird SJ, Ray N, Currat M, Cornuet JM, Santos F, Beaumont MA, Excoffier, 

L (2010) Combining genetic, historical and geographical data to reconstruct the 

dynamics of bioinvasions: application to the cane toad Bufo marinus. Mol Ecol 

Resour 10:886–901 

Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: 

why, how and so what. Mol Ecol 19:4113–4130 

Evanno  G,  Regnaut  S,  Goudet  J  (2005)  Detecting  the  number   of  clusters  of  

individuals  using  the  software  STRUCTURE:  a simulation study. Mol Ecol 

14:2611-2620 

Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium 

in plants. Annu Rev Plant Biol 54:357–374 

Flora of North America Editorial Committee (1993) Flora of North America: 

Magnoliophyta: Commelinidae (in part): Cyperaceae (Vol. 23). Oxford University 

Press on Demand, New York 

Fountain B (2011) Producing timothy hay and managing for the impacts for Ventana. 

In: Proceedings of the Western Society of Weed Science 64:107-108 

Francis RM (2017) pophelper: An R package and web app to analyse and visualize 

population structure. Mol Ecol Resour 17:27–32 

Fryer JL (2017) Ventenata dubia. Fire Effects Information System. US Department of 

Agriculture, Forest Service, Rocky Mountain Research Station, Missoula Fire 

Sciences Laboratory (Producer). https://www. 

fs.fed.us/database/feis/plants/graminoid /vendub/ all. Pdf.  

Gaertner M, Biggs R, Beest MT, Hui C, Molofsky J, Richardson DM (2014) Invasive 

plants as drivers of regime shifts: identifying high-priority invaders that alter 

feedback relationships. Divers Distrib 20:733–744 



34 

 

Gandhi KJ, Herms DA (2010) Direct and indirect effects of alien insect herbivores on 

ecological processes and interactions in forests of eastern North America. Biol 

Invasions 12:389– 405 

Gaskin JF, Bon MC, Cock MJ, Cristofaro M, De Biase A, De Clerck-Floate R, Ellison 

CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011) Applying molecular 

based approaches to classical biological control of weeds. Biol Control 58:1–21 

Gaskin JF, Schwarzlander M, Kinter CL, Smith JF, Novak SJ (2013) Propagule pressure, 

genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): an 

apomictic invader on three continents. Am J Bot 100:1871-1882  

Germino MJ, Belnap J, Stark JM, Allen EB, Rau BM (2016) Ecosystem impacts of exotic 

annual invaders in the genus Bromus. In: Germino MJ, Chambers JC, Brown CS 

(eds) Exotic brome-grasses in arid and semiarid ecosystems of the Western US. 

Springer,  Switzerland, pp 61–95 

Gruber B, Adamack AT (2015) Landgenreport: a new R function to simplify landscape 

genetic analysis using resistance surface layers. Mol Ecol Resour 15:1172-1178 

Grünwald NJ, Goodwin SB, Milgroom MG, Fry WE (2003) Analysis of genotypic 

diversity data for populations of microorganisms. Phytopathology 93:738–746 

Hamrick JL, Godt MW (1996) Effects of life history traits on genetic diversity in plant  

species.  Phil Trans R Soc Lond B: Biological Sciences 351:1291-1298. 

Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321 

Hejda M, Pyšek P, Jarošík V (2009)  Impact  of  invasive  plants  on the species richness, 

diversity and composition of invaded communities. J Ecol 97:393–403 

Hufbauer RA, Facon B, Ravigné V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A. 

(2012) Anthropogenically induced adaptation to invade (AIAI): Contemporary 

adaptation to human-altered habitats within the native range can promote 

invasions. Evol Appl 5:89–101 

Hulme PE, Bacher S, Kenis M, Klotz S, Kühn  I,  Minchin  D, Nentwig W, Olenin S, 

Panov V, Pergl J, Pyšek, P (2008) Grasping at the  routes of  biological  



35 

 

invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–

414 

Huttanus TD, Mack RN, Novak SJ (2011) Propagule  pressure and introduction pathways 

of Bromus tectorum (Cheatgrass; Poaceae) in the central United States. Int J Plant 

Sci 172:783–794 

Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel R tools for analysis of genome-wide 

population genetic data with emphasis on clonality. Front Genet 6:208–208 

Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: 

separating stochastic phenotypic evolution from response to selection. Ecol Lett 

11:852–866 

van Kleunen M, Dawson W, Maurel N (2015) Characteristics of successful alien plants. 

Mol Ecol 24:1954–1968 

Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends 

Ecol Evol 16:199–204 

Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2004) Genetic variation 

increases during biological invasion by a Cuban lizard. Nature 431:177-181 

Lambrinos JG (2001) The expansion history of a sexual and asexual species of Cortaderia 

in California, USA. J Ecol 89:88-98 

Lande R (1993) Risks of population extinction from demographic and environmental 

stochasticity and random catastrophes. Am Nat 142:911–927 

Lehan NE, Murphy JR, Thorburn LP, Bradley BA (2013) Accidental introductions are an 

important source of invasive plants  in the continental United States. Am J Bot 

100:1287–1293 

Liao C, Luo Y, Jiang L, Zhou X, Wu X, Fang C, Chen J, Li  B  (2007) Invasion of 

Spartina  alterniflora enhanced  ecosystem carbon and nitrogen stocks in the 

Yangtze Estuary, China. Ecosystems 10:1351–1361 

Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in 

explaining species invasions. Trend Ecol Evol 20:223–228 



36 

 

Lockwood JL, Hoopes MF, Marchetti MP (2013) Invasion ecology. John Wiley & Sons. 

Ludwig JA, Reynolds JF (1988) Statistical ecology: a primer in methods and computing 

(Vol. 1).  John Wiley & Sons, New York, pp 94 – 95 

Mack RN (2011) Fifty years of waging war on cheatgrass: research advances, while 

meaningful control languishes. In: Richardson DM (ed) Fifty years of invasion 

ecology: the legacy of Charles Elton. Wiley-Blackwell, Oxford, pp 253–265 

Mack RN, Erneberg M (2002) The United States naturalized flora: largely the product of 

deliberate introductions. Ann Mo Bot Gard 89:176–189 

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic 

invasions: causes, epidemiology, global consequences, and control. Ecol Appl 

10:689–710 

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small 

number of individuals. Genetics 89:583– 590 

Nei M, Chesser RK (1983) Estimation of fixation indices and gene diversities. Ann Hum 

Genet 47:253–259 

Novak SJ (2007) The role of evolution in the invasion process. P Nat Acad Sci 

104:3671– 3672 

Novak S (2011) Geographic origins and introduction dynamics. In: Simberloff D and 

Rejmanek M (eds) Encyclopedia of biological invasions. University of California 

Press, Berkeley California, pp272-280 

Novak SJ, Mack RN (2001) Tracing plant introduction and spread: genetic evidence from 

Bromus tectorum (Cheatgrass) . Bioscience 51:114–122 

Novak S, Mack R (2005) Genetic bottlenecks in alien plant species: influence of mating 

systems and introduction dynamics. In: Sax DF, Stachowicz JJ, Gaines SD (eds) 

Species invasions: insights into ecology, evolution, and biogeography. Sinauer 

Associates Inc, Sunderland, MA, pp 201-228 

Novak SJ, Mack RN (2016) Mating system, introduction and genetic diversity of Bromus 

tectorum in North America, the most notorious product of evolution within 



37 

 

Bromus section Genea. In: Germino MJ, Chambers JC, Brown CS (eds) Exotic 

Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer, 

Switzerland pp 99–132 

Novak SJ, Mack RN, Soltis DE (1991) Genetic variation in Bromus tectorum (Poaceae): 

population differentiation in its North American range. Am J Bot 78:1150–1161 

Olafsson K, Pampoulie C, Hjorleifsdottir S, Gudjonsson S, Hreggvidsson GO (2014) 

Present-day genetic structure of Atlantic salmon (Salmo salar) in Icelandic rivers 

and ice-cap retreat models. Plos One 9:86809–86809 

Pannell JR (2015) Evolution of the mating system in colonizing plants. Mol Ecol 

24:2018–2037 

Pavek P, Wallace J, Prather T (2011) Ventenata biology and distribution in the Pacific 

Northwest. In: Proceedings of Western Society of Weed Science 64:07–107 

Pawlak AR, Mack RN, Busch JW, Novak SJ (2015) Invasion of Bromus tectorum (L.) 

into California and the American Southwest: rapid, multi-directional and 

genetically diverse. Biol invasions 17:287–306 

Pielou EC (1966) Shannon’s formula as a measure of specific diversity: its use and 

misuse. Am Nat 100:463– 465 

Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic 

costs associated with alien-invasive species in the United States. Ecol Econ 

52:273–288 

Prather T (2009) Ventenata dubia: Increasing concern to the Inland Northwest Region. 

Center for Invasive Plant Management. June:1-2. 

Prather T (2018) Ventenata dubia (North Africa grass). CABI. Invasive Species 

Compendium https://www.cabi.org/isc/datasheet/117772.  

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using 

multilocus genotype data. Genetics 155:945– 959 

Rey O, Estoup A, Vonshak M, Loiseau A, Blanchet S, Calcaterra L, Chifflet L, Rossi JP, 

Kergoat GJ, Foucaud J, Orivel, J (2012) Where do adaptive shifts occur during 



38 

 

invasion? A multidisciplinary approach to unravelling cold adaptation in  a 

tropical ant species invading the Mediterranean area. Ecol Lett 15:1266–1275 

Ricciardi A, Jones LA, Kestrup AM, Ward JM (2011) Expanding the propagule pressure 

concept to understand the impact of biological invasions. In Richardson DM (ed) 

Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, 

Hoboken, New Jersey, USA, pp 225–235 

Sala O, Chapin III FS, Armesto JJ, and others (2000) Global biodiversity scenarios for 

the year 2100. Science 287:1770-1774  

Shaffer ML (1981) Minimum population sizes for species conservation. BioScience 

31:131–134 

Shiposha V, Catalán P, Olonova M, Marques I (2016) Genetic structure and diversity of 

the selfing model grass Brachypodium stacei (Poaceae) in Western 

Mediterranean: out of the Iberian Peninsula and into the islands. PeerJ 4 e2407 

Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev 

Ecol Evol S 40:81-102 

Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, 

Galil B, García-Berthou E, Pascal M, Pyšek P (2013) Impacts of biological 

invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66 

Simpson E (1949) Measurement of diversity. Nature 163:688 

Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating 

average levels of gene flow. Evolution 43:1349–1368 

Soltis DE, Haufler CH, Darrow DC, Gastony GL (1983) Starch gel electrophoresis of 

ferns: a compilation of grinding buffers, gel and electrode buffers, and staining 

schedules. Amer Fern J 73:9–27 

Sork VL, Nason J, Campbell DR, Fernandez JF (1999) Landscape approaches to 

historical and contemporary gene flow in plants. Trends Ecol Evol 14:219–224 

Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Am 

Nat 91):337–354 



39 

 

Taylor DR, Keller SR (2007) Historical range expansion determines the phylogenetic 

diversity introduced during contemporary species invasion. Evolution 61:334–345 

The Plant List (2013) Ventenata dubia. http://www.theplantlist.org/  

Vähä JP,  Erkinaro J, Niemelä E, Primmer CR (2007) Life-history  and habitat features 

influence the within-river genetic structure of Atlantic salmon. Mol Ecol 

16:2638–2654 

Wallace JM, Pavek PL, Prather TS (2015) Ecological characteristics of Ventenata dubia 

in the Intermountain Pacific Northwest. Invas Plant Sci Mana 8:57–71 

Wares JP (2005) Mechanisms that drive evolutionary change. Insights from species 

introduction and invasions. In: Sax DF, Stachowicz JJ, and Gaines SD (eds) 

Species invasions: insights into ecology, evolution, and biogeography. Sinauer 

Associates, Sunderland, Massachusetts, pp 229-257 

Watterson GA (1984) Allele frequencies after a bottleneck. Theor Popul Biol 26:387–407 

Wilson JR, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the 

way you move: dispersal pathways affect invasion success. Trends Ecol Evol 

24:136–144 

Winter DJ (2012) MMOD: An R library for the calculation of population differentiation 

statistics. Mol Ecol Resour 12:1158–1160 

Wright S (1965) The interpretation of population structure by F-statistics with special 

regard to systems of mating Evolution 19:395-420 

Yeh FC, Boyle (1997) Population genetic analysis of co-dominant and dominant marker 

and quantitative traits. Belgian J Bot 130:129–157 



40 
 

 

 

TABLES AND FIGURES 



  

 

41 

Ta
bl

e 
1 

Id
en

tit
y 

an
d 

fr
eq

ue
nc

y 
of

 m
ul

til
oc

us
 g

en
ot

yp
es

 (M
LG

) d
et

ec
te

d 
w

ith
in

 5
1 

in
va

siv
e p

op
ul

at
io

ns
 V

en
te

na
ta

 d
ub

ia
 

fr
om

 th
e 

w
es

te
rn

 U
S.

   
N

 is
 th

e 
nu

m
be

r 
of

 in
di

vi
du

al
s i

n 
ea

ch
 p

op
ul

at
io

n,
 a

 d
es

cr
ip

tio
n 

of
 th

e c
ol

or
 o

f e
ac

h 
M

LG
 is

 p
ro

vi
de

d 
in

 
Fi

g.
 4

, M
LG

 c
ou

nt
 r

ef
er

s t
o 

th
e 

nu
m

be
r 

of
 in

di
vi

du
al

s i
n 

a 
po

pu
la

tio
n 

w
ith

 e
ac

h 
ge

no
ty

pe
, a

nd
 M

LG
 fr

eq
ue

nc
y 

re
fe

rs
 to

 th
e 

pr
op

or
tio

n 
of

 in
di

vi
du

al
s i

n 
a 

po
pu

la
tio

n 
w

ith
 e

ac
h 

M
LG

. 

  Re
gi

on
 

Po
pu

la
tio

n 
N

 
M

LG
 

M
LG

 C
ou

nt
 

M
LG

 fr
eq

ue
nc

y 
Co

as
ta

l R
an

ge
 

1.
W

ild
er

ne
ss

 V
ill

ag
e,

 W
A

 
34

 
B

lu
e 

21
 

0.
62

 
 

 
 

 
D

ar
k 

G
re

y 
13

 
0.

38
 

 
2.

 T
ol

ed
o,

 W
A

 
28

 
Y

el
lo

w
 

28
 

1.
00

 
 

3.
 K

al
am

a,
 W

A
 

25
 

B
lu

e 
1 

0.
04

 
 

 
 

 
Y

el
lo

w
 

24
 

0.
96

 
 

4.
 S

he
rw

oo
d,

 O
R 

30
 

Re
d 

30
 

1.
00

 
 

5.
 M

on
m

ou
th

, O
R 

33
 

Re
d 

33
 

1.
00

 
 

6.
 E

ug
en

e,
 O

R 
42

 
Li

gh
t G

re
y 

1 
0.

03
 

 
 

 
 

O
ra

ng
e 

3 
0.

07
 

 
 

 
 

B
la

ck
 

38
 

0.
9 

 
7.

 R
os

eb
ur

g,
 O

R 
39

 
D

ar
k 

G
re

y 
1 

0.
03

 
 

 
 

 
B

la
ck

 
9 

0.
23

 
 

 
 

 
O

ra
ng

e 
29

 
0.

74
 

 
8.

 B
ig

el
ow

, O
R

 
32

 
O

ra
ng

e 
32

 
1.

00
 

 
9.

 T
en

na
nt

 R
d,

 C
A

 
30

 
B

lu
e 

30
 

1.
00

 
 

10
. H

id
de

n 
V

al
le

y 
Rd

, C
A

 
30

 
Te

al
 

30
 

1.
00

 
 

11
. L

ak
e 

Pi
lls

bu
ry

, C
A

 
32

 
D

ar
k 

G
re

y 
32

 
1.

00
 

 
12

. L
ow

er
 L

ak
e,

 C
A

 
38

 
Re

d 
18

 
0.

47
 

 
 

 
 

B
la

ck
 

20
 

0.
53

 
Co

lu
m

bi
a 

Ba
sin

 
13

. H
us

um
, W

A
 

29
 

Y
el

lo
w

 
29

 
1.

00
 

 
14

. L
yl

e,
 W

A
 

35
 

Y
el

lo
w

 
35

 
1.

00
 



  

 

42 

 
15

. S
im

s C
or

ne
r, 

W
A

 
35

 
B

lu
e 

28
 

0.
8 

 
 

 
 

O
ra

ng
e 

7 
0.

02
 

 
16

. S
pa

ng
le

, W
A

 
35

 
B

lu
e 

35
 

1.
00

 
 

17
. R

os
al

ia
, W

A
 

29
 

B
lu

e 
29

 
1.

00
 

 
18

. P
ul

lm
an

, W
A

 
35

 
B

lu
e 

33
 

0.
94

 
 

 
 

 
Y

el
lo

w
 

2 
0.

06
 

 
19

. A
na

to
ne

, W
A

 
30

 
B

lu
e 

30
 

1.
00

 
 

20
. F

lo
ra

, O
R 

30
 

B
lu

e 
30

 
1.

00
 

 
21

. M
ill

 C
re

ek
, O

R 
33

 
B

lu
e 

33
 

1.
00

 
 

22
. S

ta
rk

ey
, O

R 
35

 
B

lu
e 

31
 

0.
89

 
 

 
 

 
Y

el
lo

w
 

4 
0.

11
 

 
23

. M
os

qu
ito

 C
re

ek
, O

R 
35

 
B

lu
e 

8 
0.

23
 

 
 

 
 

Y
el

lo
w

 
25

 
0.

71
 

 
 

 
 

H
et

: B
lu

e,
 Y

el
lo

w
 

2 
0.

06
 

 
24

. K
ee

ny
 M

ea
do

w
s, 

O
R 

19
 

B
lu

e 
19

 
1.

00
 

 
25

. J
oe

 R
au

sc
h’

s S
ha

ke
ta

bl
e,

 O
R

 
35

 
B

lu
e 

19
 

0.
54

 
 

 
 

 
Y

el
lo

w
 

16
 

0.
46

 
 

26
. N

or
th

 F
in

ge
r R

d,
 O

R 
35

 
Y

el
lo

w
 

35
 

1.
00

 
G

re
at

 B
as

in
 

27
. O

ch
oc

o 
M

ou
nt

ai
ns

, O
R 

30
 

B
lu

e 
30

 
1.

00
 

 
28

. S
ilv

er
 L

ak
e,

 O
R 

34
 

B
lu

e 
34

 
1.

00
 

 
29

. K
la

m
at

h 
La

ke
, O

R 
31

 
O

ra
ng

e 
1 

0.
03

 
 

 
 

 
Y

el
lo

w
 

30
 

0.
97

 
 

30
. P

in
e 

Cr
ee

k,
 C

A
 

30
 

B
lu

e 
30

 
1.

00
 

 
31

. A
hj

um
aw

i L
av

a 
SP

, C
A

 
30

 
B

lu
e 

30
 

1.
00

 
 

32
. S

us
an

vi
lle

, C
A

 
27

 
B

lu
e 

19
 

0.
70

 
 

 
 

 
Re

d 
8 

0.
30

 
 

33
. E

m
ig

ra
nt

 G
ap

, C
A

 
30

 
B

lu
e 

30
 

1.
00

 
 

34
. S

ta
te

lin
e,

 N
A

 
31

 
B

lu
e 

31
 

1.
00

 



  

 

43 

 
35

. E
lk

o,
 N

V
 

36
 

B
lu

e 
36

 
1.

00
 

 
36

. M
ou

nt
ai

n 
C

ity
, N

V
 

30
 

B
lu

e 
30

 
1.

00
 

 
37

. J
B 

Ch
ar

bo
nn

ea
u 

G
S,

 O
R 

39
 

Re
d 

3 
0.

08
 

 
 

 
 

G
re

en
 

36
 

0.
92

 
 

38
. L

itt
le

 S
qu

ab
 C

re
ek

, I
D

 
35

 
B

lu
e 

32
 

0.
91

 
 

 
 

 
Y

el
lo

w
 

3 
0.

09
 

 
39

. L
uc

ky
 P

ea
k,

 ID
 

36
 

B
lu

e 
36

 
1.

00
 

 
40

. H
ill

 C
ity

, I
D

 
30

 
B

lu
e 

30
 

1.
00

 
Ro

ck
y 

M
ou

nt
ai

ns
 

41
. O

ld
 S

ar
di

ne
 C

an
yo

n 
Rd

, U
T 

30
 

B
lu

e 
30

 
1.

00
 

 
42

. K
irk

ha
m

 C
am

pg
ro

un
d,

 ID
 

30
 

B
lu

e 
30

 
1.

00
 

 
43

. S
ug

ar
lo

af
 P

en
in

su
la

, I
D

 
31

 
B

lu
e 

31
 

1.
00

 
 

44
. T

en
se

d,
 ID

 
35

 
B

lu
e 

35
 

1.
00

 
 

45
. B

ea
ut

y 
Ba

y,
 ID

 
30

 
B

lu
e 

30
 

1.
00

 
 

46
. B

iso
n 

Ra
ng

e,
 M

T 
33

 
B

lu
e 

33
 

1.
00

 
 

47
. H

am
ilt

on
, M

T 
36

 
B

lu
e 

8 
0.

22
 

 
 

 
 

Li
gh

t G
re

y 
28

 
0.

78
 

 
48

. G
ib

bo
ns

vi
lle

, I
D

 
30

 
B

lu
e 

30
 

1.
00

 
 

49
. B

oz
em

an
, M

T 
30

 
B

lu
e 

30
 

1.
00

 
 

50
. T

rip
le

 T
re

e,
 M

T 
27

 
B

lu
e 

27
 

1.
00

 
 

51
. S

ol
di

er
 C

re
ek

, W
Y

 
27

 
B

lu
e 

27
 

1.
00

 
  

 



  

 

44 

Ta
bl

e 
2 

 
W

ith
in

-p
op

ul
at

io
n 

ge
ne

tic
 d

iv
er

sit
y 

pa
ra

m
et

er
s f

or
 5

1 
in

va
siv

e 
po

pu
la

tio
ns

 o
f V

en
te

na
ta

 d
ub

ia
 fr

om
 th

e 
w

es
te

rn
 

U
S 

an
al

yz
ed

 in
 th

is 
st

ud
y.

 P
ar

am
et

er
s a

re
 th

e 
sa

m
pl

e 
si

ze
 o

f e
ac

h 
po

pu
la

tio
n 

(N
), 

m
ea

n 
nu

m
be

r 
of

 a
lle

le
s p

er
 lo

cu
s (

A
), 

nu
m

be
r 

of
 p

ol
ym

or
ph

ic
 lo

ci
 p

er
 p

op
ul

at
io

n 
(#

P)
, p

er
ce

nt
 p

ol
ym

or
ph

ic
 lo

ci
 p

er
 p

op
ul

at
io

n 
(%

P)
, m

ea
n 

ob
se

rv
ed

 
he

te
ro

zy
go

sit
y 

(H
ob

s)
, a

nd
 e

xp
ec

te
d 

m
ea

n 
he

te
ro

zy
go

sit
y 

(H
ex

p)
 (u

nb
ia

se
d 

es
tim

at
e 

m
et

ho
d 

of
 N

ei
 (1

97
8)

. P
op

ul
at

io
ns

 a
re

 
or

ga
ni

ze
d 

ba
se

d 
on

 th
e 

fo
ur

 g
eo

gr
ap

hi
c 

re
gi

on
s, 

an
d 

th
e 

re
gi

on
al

 m
ea

n 
va

lu
es

 a
nd

 to
ta

l m
ea

n 
of

 a
ll 

pa
ra

m
et

er
s a

re
 p

ro
vi

de
d.

 
  Re

gi
on

 
Po

pu
la

tio
n 

N
 

A
 

#P
 

%
P 

H
ob

s 
H

ex
p 

Co
as

ta
l R

an
ge

 
1.

W
ild

er
ne

ss
 V

ill
ag

e,
 W

A
 

34
 

1.
04

 
1 

3.
85

 
0.

00
00

 
0.

01
82

 
 

2.
 T

ol
ed

o,
 W

A
 

28
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

3.
 K

al
am

a,
 W

A
 

25
 

1.
15

 
4 

15
.3

8 
0.

00
00

 
0.

01
18

 
 

4.
 S

he
rw

oo
d,

 O
R 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

5.
 M

on
m

ou
th

, O
R 

33
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

6.
 E

ug
en

e,
 O

R 
42

 
1.

08
 

2 
7.

69
 

0.
00

00
 

0.
01

17
 

 
7.

 R
os

eb
ur

g,
 O

R 
39

 
1.

12
 

3 
11

.5
4 

0.
00

00
 

0.
02

92
 

 
8.

 B
ig

el
ow

, O
R

 
32

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
9.

 T
en

an
t R

d,
 C

A
 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

10
. H

id
de

n 
V

al
le

y 
Rd

, C
A

 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
11

. L
ak

e 
Pi

lls
bu

ry
, C

A
 

32
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

12
. L

ow
er

 L
ak

e,
 C

A
 

38
 

1.
04

 
1 

3.
85

 
0.

00
00

 
0.

01
92

 

Co
as

ta
l R

an
ge

 M
ea

n 
 

33
 

1.
04

 
0.

9 
3.

53
 

0.
00

00
 

0.
00

75
 



  

 

45 

Co
lu

m
bi

a 
Ba

sin
 

13
. H

us
um

, W
A

 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
14

. L
yl

e,
 W

A
 

35
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

15
. S

im
s C

or
ne

r, 
W

A
 

35
 

1.
08

 
2 

7.
69

 
0.

00
00

 
0.

02
46

 
 

16
. S

pa
ng

le
, W

A
 

35
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

17
. R

os
al

ia
, W

A
 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

18
. P

ul
lm

an
, W

A
 

35
 

1.
15

 
4 

15
.3

8 
0.

00
00

 
0.

01
66

 
 

19
. A

na
to

ne
, W

A
 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

20
. F

lo
ra

, O
R 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

21
. M

ill
 C

re
ek

, O
R 

33
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

22
. S

ta
rk

ey
, O

R 
35

 
1.

15
 

4 
15

.3
8 

0.
00

00
 

0.
03

11
 

 
23

. M
os

qu
ito

 C
re

ek
, O

R 
35

 
1.

15
 

4 
15

.3
8 

0.
00

44
 

0.
06

08
 

 
24

. K
ee

ny
 M

ea
do

w
s, 

O
R 

19
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

25
. J

oe
 R

au
sc

h’
s S

ha
ke

ta
bl

e,
 O

R
 

35
 

1.
15

 
4 

15
.3

8 
0.

00
00

 
0.

07
64

 
 

26
. N

or
th

 F
in

ge
r R

d,
 O

R 
35

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
27

. O
ch

oc
o 

M
ou

nt
ai

ns
, O

R 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

Co
lu

m
bi

a 
Ba

sin
 M

ea
n 

32
 

1.
05

 
1.

2 
4.

61
 

0.
00

03
 

0.
01

40
 

G
re

at
 B

as
in

 
28

. S
ilv

er
 L

ak
e,

 O
R 

34
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

29
. K

la
m

at
h 

La
ke

, O
R 

31
 

1.
08

 
2 

7.
69

 
0.

00
00

 
0.

00
48

 



  

 

46 

 
30

. P
in

e 
Cr

ee
k,

 C
A

 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
31

. A
hj

um
aw

i L
av

a 
SP

, C
A

 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
32

. S
us

an
vi

lle
, C

A
 

27
 

1.
04

 
1 

3.
85

 
0.

00
00

 
0.

01
60

 
 

33
. E

m
ig

ra
nt

 G
ap

, C
A

 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
34

. S
ta

te
lin

e,
 N

A
 

31
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

35
. E

lk
o,

 N
V

 
36

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
36

. M
ou

nt
ai

n 
C

ity
, N

V
 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

37
. J

B 
Ch

ar
bo

nn
ea

u 
G

S,
 O

R 
39

 
1.

08
 

2 
7.

69
 

0.
00

00
 

0.
01

09
 

 
38

. L
itt

le
 S

qu
ab

 C
re

ek
, I

D
 

35
 

1.
15

 
4 

15
.3

8 
0.

00
00

 
0.

02
41

 
 

39
. L

uc
ky

 P
ea

k,
 ID

 
36

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
40

. H
ill

 C
ity

, I
D

 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

G
re

at
 B

as
in

 M
ea

n 
 

32
 

1.
02

 
0.

7 
2.

66
 

0.
00

00
 

0.
00

43
 

Ro
ck

y 
M

ou
nt

ai
ns

 
41

. O
ld

 S
ar

di
ne

 C
an

yo
n 

Rd
, U

T 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
42

. K
irk

ha
m

 C
am

pg
ro

un
d,

 ID
 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

43
. S

ug
ar

lo
af

 P
en

in
su

la
, I

D
 

31
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

44
. T

en
se

d,
 ID

 
35

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
45

. B
ea

ut
y 

Ba
y,

 ID
 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

46
. B

iso
n 

Ra
ng

e,
 M

T 
33

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 



  

 

47 

 
47

. H
am

ilt
on

, M
T 

36
 

1.
04

 
1 

3.
85

 
0.

00
00

 
0.

01
33

 
 

48
. G

ib
bo

ns
vi

lle
, I

D
 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

49
. B

oz
em

an
, M

T 
30

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

 
50

. T
rip

le
 T

re
e,

 M
T 

30
 

1.
00

 
0 

0.
00

 
0.

00
00

 
0.

00
00

 
 

51
. S

ol
di

er
 C

re
ek

, W
Y

 
27

 
1.

00
 

0 
0.

00
 

0.
00

00
 

0.
00

00
 

Ro
ck

y 
M

ou
nt

ai
ns

 M
ea

n 
31

 
1.

00
 

0.
1 

0.
35

 
0.

00
00

 
0.

00
12

 

O
ve

ra
ll 

M
ea

n 
 

32
 

1.
03

 
0.

76
 

2.
94

 
0.

00
00

9 
0.

00
72

3 



 
 
  48 

 

 

 

Table 3 Fixation indices (F) for each polymorphic locus in 51 invasive 
populations of Ventenata dubia from the western US. Values of 1.00 indicate 
complete deviation from Hardy-Weinberg equilibrium. All values are 
significant at P < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Population Locus F*  
Wilderness Village, WA Pgi-2 1.0  
Kalama, WA Ce-2 1.0  

 Ce-5 1.0  
 Pgi-2 1.0  
 Tpi-2 1.0  
    

Eugene, OR Ce-2 1.0  
 Pgi-2 1.0  

Roseburg, OR Ce-2 1.0  
 Ce-5 1.0  
 Pgi-2 1.0  

Lower Lake, CA Ce-5 1.0  
Sims Corner, WA Ce-5 1.0  

 Pgi-2 1.0  
Pullman, WA Ce-2 1.0  

 Ce-5 1.0  
 Pgi-2 1.0  
 Tpi-2 1.0  

Starkey, OR Ce-2 1.0  
 Ce-5 1.0  
 Pgi-2 1.0  
 Tpi-2 1.0  

Mosquito Creek, OR Ce-2 1.0  
 Ce-5 1.0  
 Pgi-2 0.8504  
 Tpi-2 0.8504  

Joe Rausch’s Shaketable, OR Ce-2 1.0  
 Ce-5 1.0  
 Pgi-2 1.0  
 Tpi-2 1.0  

Klamath Lake, OR Ce-2 1.0  
 Tpi-2 1.0  

Susanville, CA Ce-2 1.0  
JB Charbonneau, OR Ce-5 1.0  

 Pgi-2 1.0  
Little Squab, OR Ce-2 1.0  

 Ce-5 1.0  
 Pgi-2 1.0  
 Tpi-2 1.0  

Hamilton, MT Ce-5 1.0  
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Table 4 Nei’s (1987) gene diversity statistics of 51 invasive populations 
of Ventenata dubia from the western US. See text for a description of the 
Nei’s gene diversity statistics parameters. 
 

 

 

 

 

 

 

 

 

 

 

 

Locus HT HS DST GST 
     
Ce-2 0.395 0.049 0.346 0.876 
Ce-5 0.376 0.056 0.320 0.851 
Pgi-2 0.375 0.057 0.318 0.849 
Tpi-2 0.248 0.030 0.218 0.881 
Mean 0.349 0.048 0.301 0.864 
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Figure 1 Date and location of first detection of Ventenata dubia in each county 
in California, Idaho, Montana, Nevada, Oregon, Utah, Washington and Wyoming, 
based on herbarium specimens.  Collection dates are color coded by decade. Black 

dots with no dates represent new county record specimens acquired over the course 
of this study (2015 – 2016).  
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Figure 2 Collection locations for the 51 invasive populations of Ventenata 

dubia from the western US analyzed in this study. Population numbers correspond 
to the locality data provided in Supplemental Information Table 2.  Dashed lines 

represent regional population groups: Coastal Range, Columbia Basin, Great Basin, 
and Rocky Mountains.  
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Figure 3 RbarD values for 51 invasive populations of Ventenata dubia from the 

western US.  a.) RbarD distribution scale; b.) RbarD values for clone corrected 
data; and c.) Heatmap depicting the extent of linkage disequilibrium among 

polymorphic loci only, pairwise rbarD over all loci. Values shown in color range 
between rbarD 0.2518 – 0.5185, see appendix for complete values. Colors in grey 

represent monomorphic pairs of loci. 
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a.) 
 

 

 

 

 

b.) 

 
Figure 4 a.) Multilocus genotypes detected in all invasive populations of 

Ventenata dubia from the western US analyzed in this study. Letters represent 
different alleles at each of nine homozygous polymorphic loci: Ce-1, Ce-2, Ce-5, 

Gdh, G3pdh, Pgi-2, 6Pgd-1, Tpi-1, Tpi-2.  Genotype number and color are assigned 
by order of discovery. b.)  Map showing the distribution of multilocus genotypes 

(MLG) detected in 51 invasive populations of Ventenata dubia. Color of each 
multilocus genotype follows Fig. 4a. The most common genotype (MCG) is shown in 

blue. Sizes of the pie diagrams vary only to enhance legibility. 
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Figure 5 Unweighted pair-group method with arithmetic averaging (UPGMA) 
phenogram for the 51 invasive populations of Ventenata dubia analyzed in this 
study. Populations indicated by (*) are the only populations on their respective 

branches and are therefore not assigned to a cluster. 
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Figure 6 STRUCTURE (Pritchard et al. 2000) bar plots of the genetic clusters 

identified for invasive populations of Ventenata dubia.  a) the initial partitioning 
analysis of 51 invasive populations (K=2), b) results for invasive populations based on 
the hierarchical sub-structuring analysis of the green cluster (subK=2), and c) results 
for invasive populations based on the hierarchical sub-structuring analysis of light 

blue cluster (subK=2). 
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Table A Collection records of Ventenata dubia from years 1952–2016. Earliest 
detection record vouchers for each county are provided in Fig. 1. 
               Date Location Herbarium Accession Number 
California   

1983 Emigrant Gap, Placer Co. UCD94425 
1993 Lake Pillsbury, Lake Co. CHSC105744 
1996 Susanville, Lassen Co. CHSC66423 
1998 Tennant, Trinity Co. CHSC71517 
2000 Burney, Shasta Co. CDA18976 
2006 Alturas, Modoc Co. CDA20820 
2010 Weaverville, Trinity Co. HSC100214 
2013 Disnmore, Humboldt Co. HSC102701  
2015 South Lake Tahoe, El Dorado Co. SRP56807 
2016 Crescent Mills, Plumas Co. SRP58604 

Idaho   
1957 Beauty Bay, Kootenai Co. WTU273715 
1960 Tensed, Benewah Co. WTU273743 
1972 White Bird, Idaho Co. ID037448 
1985 Moscow, Latah Co. ID037451 
1986 Sandpoint, Bonner Co. ID037460 
1986 Mountain Home, Elmore Co. ID037447 
2002 Kamiah, Lewis Co. BLMMD1249 
2004 Lake Cascade, Valley Co. CIC38244 
2006 Weippe, Clearwater Co. ID037446 
2006 Craig Mountain, Nez Perce Co. ID037445 
2010 Lowman, Boise, Co. CIC40660 
2010 Bald Mountain, Owyhee Co. BBLM-OWY4595 
2011 Ola, Gem Co. SRP43453 
2012 Meadows Hill, Adams Co. CIC44591 
2014 Hidden Springs, Ada Co. SRP50879 
2015 Midvale, Washington Co. SRP57957  
2015 Hill City, Camas Co. SRP 61731 
2016 Gibbonsville, Lemhi Co. SRP 61378 

Montana   
1995 Black Bear Point, Rivalli Co. MONT79339 
2005 Grubb Mountain, Flathead Co. MONTU131024 
2005 Bozeman, Gattalin Co.  MONT84964  
2007 Fort Smith, Big Horn Co. RM804695 
2008 Plains, Sanders Co. MONT82301 
2008 Wildhorse Island, Lake Co. MONT82299  
2009 Judith Gap, Wheatland Co. MONT82328 
2016 DeBorgia, Mineral Co. SRP 61379 
2016 Missoula, Missoula Co. SRP 61380 

 
Nevada   

2016 Nat. Antelope Refuge, Washoe Co. V84851 
2016 Stateline, Douglas Co. SRP58611  
2016 Mountain City, Elko Co. SRP61395 
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Oregon   
1979 Rowena, Wasco Co. OSC186835  
1984 Monmouth, Polk Co. OSC166735 
1993 Eugene, Lane Co. OSC188567  
1994 Dryden, Josephine Co. CIC27691 
1996 Sweet Home, Linn Co. SRP22816  
1996 Corvallis, Benton Co. OSC186302 
1996 Flora, Wallowa Co. ID037444 
1997 Jackson Co. SOC17438 
1999 Meacham, Umatilla Co. RM640513 
2001 Dale, Grant Co. RM1922673 
2003 Baker City, Baker Co. OSC202084 
2007 Tillamook, Tillamook Co. OSC226440  
2007 Cove, Union Co. GBIF614972113 
2008 Roseburg, Douglas Co. SRP043284  
2008 Beacon Rock, Multnomah Co. OSC228315 
2012 Willamina, Yamhill Co. WTU393886 
2015 Silver Lake, Lake Co. SRP057987 
2015 Arock, Malheur Co. SRP057975  
2015 Stinkwater Summit, Harney Co. SRP057959 
2015 Ochoco Mountains, Crook Co. SRP057961  
2015 Sherwood, Washington Co. SRP 61626 

Utah   
1995 Paradise, Cache Co. UTC00216696  

Washington   
1952 Spokane Co. No specimen 
1962 Lyle, Klickitat Co. WS247993 
1980 Creston, Lincoln Co. WS283941 
1990 Kalama, Cowlitz Co. WTU331454 
1993 Pullman, Whitman Co. WTU345391 
1997 Umatilla National Forest, Garfield Co. WTU348093 
2008 Stevenson, Skamania Co. WTU383805 
2010 Ritzville, Adams Co. WTU382093  
2010 Metaline Falls, Pend Oreille Co. WTU382128 
2015 Anatone, Asotin Co. SRP057724  
2016 Yakima Co. SRP 61382 
2016 Toledo, Lewis Co. SRP 61381 
2016 Wilderness Village, King Co. SRP 61386 
2016 Easton, Kittitas Co. SRP 61387 
2016 Sims Corner, Douglas Co. SRP61384 

Wyoming   
                1997 Sheridan Co. RM655052 
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Table D Summary of pairwise IA and rbarD values for all loci. Values 
correspond to the heatmap shown in Fig. 3c. 

 

 

 

 

 

 

 

 

 

Loci IA rbarD 

CE2:CE5 0.3689408 0.3689424 

CE2:PGI2 0.2517471 0.2517699 

CE2:TPI2 0.4715804 0.4746439 

CE5:PGI2 0.5184812 0.5185506 

CE5:TPI2 0.4356351 0.4386123 

PGI2:TPI2 0.4842231 0.4866699 
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APPENDIX E 
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Figure E STRUCTURE results to determine the most likely number of genetic 

clusters (K), using the ΔK method of Evanno et al. (2005), for the 51 invasive 
populations of Ventenata dubia. a) cluster analysis (K=2) first simulation (10,000 

iterations, 100,000 MCMC), b.) cluster analysis (K=2) for simulation 100000 
iterations, 1,000,000 MCMC  c.) substructure of the green genetic cluster (SubK=2) 
from Fig. 6a.d.) substructure of the light blue genetic cluster (SubK=2) from Fig. 6b. 

 


	GENETIC ANALYSIS OF INVASIVE POPULATIONS OF VENTENATA DUBIA (POACEAE): AN ASSESSMENT OF PROPAGULE PRESSURE AND PATTERN OF RANGE EXPANSION IN THE WESTERN UNITED STATES
	DEDICATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	MATERIALS AND METHODS
	Herbarium Specimens
	Plant Collections and Sampling
	Enzyme Electrophoresis
	Multilocus Genotype Assignment
	Data Analysis
	Genetic (Allozyme) Diversity
	Genetic Differentiation Among Populations
	Bayesian Assignment Analysis
	Genotypic Diversity, Richness, and Evenness


	RESULTS
	Herbarium Specimens
	Allozyme Diversity Patterns
	Multilocus Genotypes
	Genetic Diversity Within Populations
	Genetic Differentiation Among Populations
	Bayesian Assignment Analysis
	Genotypic Richness, Diversity, and Evenness


	DISCUSSION
	Multiple Introduction and Spread
	Propagule Pressure
	Genetic Diversity and Genetic Structure
	Conclusion

	LITERATURE CITED
	TABLES AND FIGURES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E

