
ACUTE EXPOSURE TO TCDD INCREASES LIVER DISEASE PROGRESSION IN 

MICE WITH CARBON TETRACHLORIDE-INDUCED LIVER INJURY 

 

by 

Giovan N. Cholico 

 

 

 

 

 

 

 

 

 

A dissertation  

Submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Biomolecular Sciences 

Boise State University 

 

December 2019  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2019 

Giovan N. Cholico 

ALL RIGHTS RESERVED  



 

BOISE STATE UNIVERSITY GRADUATE COLLEGE 
 
 

DEFENSE COMMITTEE AND FINAL READING APPROVALS 
 
 

of the dissertation submitted by 
 
 

Giovan N. Cholico 
 
 

Dissertation Title: Acute Exposure to TCDD Increases Liver Disease Progression In 
Mice With Carbon Tetrachloride-Induced Liver Injury 

 
Date of Final Oral Examination: 2 December 2019 
 
The following individuals read and discussed the dissertation submitted by student Giovan 
N. Cholico, and they evaluated the student’s presentation and response to questions during 
the final oral examination. They found that the student passed the final oral examination.  
 
Kristen A. Mitchell, Ph.D.   Chair, Supervisory Committee 
 
Kenneth A. Cornell, Ph.D.   Member, Supervisory Committee 
 
Allan R. Albig, Ph.D.    Member, Supervisory Committee 
 
Daniel Fologea, Ph.D.    Member, Supervisory Committee 
 
Denise G. Wingett, Ph.D.   Member, Supervisory Committee 

 
The final reading approval of the dissertation was granted by Kristen A. Mitchell, Ph.D., 
Chair of the Supervisory Committee. The dissertation was approved by the Graduate 
College. 
 
 



 

iv 

DEDICATION 

 

This dissertation is dedicated to my father and mother, Pedro and Angelica Cholico, my 

grandparents, Miguel and Irene Martin, and Pedro and Maria de Jesus Cholico, and my 

surrogate grandparents, Salvador and Carolyn Romero. Thank you for your never-ending 

love and support, as well as your efforts to raise a wonderful and successful family.  

 

 

Esta disertación está dedicada a mi padre y mi madre, Pedro y Angélica Cholico, mis 

abuelos, Miguel e Irene Martin, y Pedro y María de Jesus Cholico, y mis abuelos 

suplentes, Salvador y Carolina Romero. Gracias por su amor y apoyo sin fin, y también 

por sus esfuerzos para formar una familia maravillosa y exitosa. 



 

v 

ACKNOWLEDGEMENTS 

First and foremost, I would like to thank my advisor and mentor, Dr. Kristen 

Mitchell for her continuing guidance as I strive to become a scientific professional. I am 

eternally grateful for the guidance she gave me that helped me become the scientist I am 

today. In addition to my mentor, I would like to thank the members of my defense 

committee, Drs. Kenneth Cornell, Allan Albig, Daniel Fologea, and Denise Wingett, for 

also giving me valuable scientific input.  

I am also incredibly grateful for members of the Mitchell lab that helped get my 

project off the ground. A special thanks to Wendy Harvey, Sarah Kobernat, Shivakumar 

Rayavara Veerabadriah and Dr. Cheri Lamb. I would also like to thank the many students 

that worked in our lab and helped me with my work; these include Megan Sarmenta, 

Madison Dupper, Deb Weakly, Samantha Peterson, Justin Nelson, Jade VanTrease, 

Bradley Heidemann, Cooper Hensen, Paul Stegelmeier, David Maldonado, Victoria 

Davidson and Natalie Johnson. I would also like to thank Brynne Coulam for all her hard 

work on investigating melanoma induction mechanisms in our lab. 

My mouse work could not have been possible without the help of the Boise State 

Research Vivarium staff, with special thanks to the Sarah McCusker. Many thanks for the 

technical expertise of researchers at the Biomolecular Research Center, including Drs. 

Shin Pu, Cindy Keller-Peck, and Julie Oxford. The histopathological scoring could not 

have been done without the help of researchers at the Idaho Veterans Research and 

Education Foundation including Victoria Galarza and Dr. Frederick Bauer.  



 

vi 

Funding for this project was supported by Institutional Development Awards 

(IDeA) from the National Institute of General Medical Sciences of the National Institutes 

of Health under Grants #P20GM103408 and P20GM109095, as well as support from the 

Biomolecular Research Center at Boise State with funding from the National Science 

Foundation, Grants #0619793 and #0923535; the MJ Murdock Charitable Trust; the 

Idaho State Board of Education; and a bioinformatics seed grant through the Idaho 

INBRE program.  

I would like to give a special thanks to the scientists at the University of Nevada 

School of Medicine that sparked my interest in research in the first place. This includes 

my former graduate student mentor, Scott Barnett, my former post-doctoral fellow 

mentors, Drs. Chad Cowles and Craig Ulrich, and my former principal investigator 

mentors, Drs. Heather Burkin and Iain Buxton. May you continue to inspire the next 

generation of scientific researchers.  

I would also like to thank the many friends that have given me constant support 

and encouragement. These include my longtime childhood friends, Camille Lyon and 

Alyssa Parks. As well as the many friends I made in college, but most importantly Taylor 

Cohen, and Nick and Lara Vargas. I would like to give a special thanks to Steven Burden 

and the Burden-Kartchner family for inviting me into their family, as I encountered many 

hurdles in graduate school. I would like to thank the many other friends I made in Boise 

that helped me get to where I am today, including Jonathan Reeck, Clémentine Gibard-

Bohachek, Hagen Shults, Jessica Roberts, Mary Witucki, Blaire Anderson, Kate 

Grosswiler, Desiree Self, Phil Moon, Mila Lam, Ashley Poppe, and Jerrett and Kelsey 

Holdaway.  



 

vii 

I would also like to thank the many members of my family that have helped get 

me to this point in life. A special thanks to my two brothers, Steven and Bryan for the 

time they gave me in the summers and winters to go on a myriad of adventures. I also 

thank my grandparents, Miguel and Irene Martin, for letting me spend part of my 

summers at their home in Mexico. Thanks to my surrogate grandparents, Sal and Carolyn 

Romero, for their constant financial and recreational support, and truly defining and 

exemplifying the phrase “spoil the grandkids”.  

Finally, I would like to thank my parents, Pedro and Angelica Cholico, for putting 

their children’s well-being above anything else. From their leap of faith in immigrating to 

the United States in search of a better life, to the constant sacrifice that they endured 

during my childhood to raise a family. The push for their kids to obtain a higher 

education has truly made their dreams a reality in which their kids and grandkids will live 

a more comfortable life. May they always know that I hold a deep appreciation for their 

hard work and sacrifice.  

 



 

viii 

ABSTRACT 

Liver disease is a worldwide problem and the 9th leading cause of death in the 

United States. Common causes of liver disease include alcohol abuse, virus infection, and 

nonalcoholic fatty liver. Regardless of etiology, liver damage elicits inflammation and 

drives the activation of hepatic stellate cells (HSCs), which deposit collagen throughout 

the liver. During chronic injury, excessive collagen deposition, referred to as fibrosis or 

“scarring”, can progress to cirrhosis, cancer, and organ failure. Emerging evidence 

indicates a strong association between liver disease and exposure to environmental 

chemicals. This research investigated mechanisms by which exposure to the 

environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impacts liver 

disease. TCDD is representative of a family of chemicals that elicit toxicity through the 

aryl hydrocarbon receptor (AhR). A mouse model system was used in which liver 

damage was first induced with carbon tetrachloride, and TCDD was administered as a 

“second hit.” We used mice with the AhR selectively removed from either HSCs or 

hepatocytes. Results indicate that TCDD treatment exacerbated injury, inflammation and 

HSC activation through a mechanism that required AhR signaling in hepatocytes. 

Furthermore, TCDD treatment produced changes in gene expression consistent with a 

condition called non-alcoholic fatty liver disease. The results raise the intriguing 

possibility that exposure to environmental contaminants may facilitate liver disease 

progression in an already-injured liver. 
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CHAPTER ONE: INTRODUCTION 

 

The Aryl Hydrocarbon Receptor 

The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates gene 

expression during a wide variety of physiological processes, including xenobiotic 

metabolism, development, and adaptation to environmental and cellular stress (Mulero-

Navarro & Fernandez-Salguero, 2016). This receptor is widely recognized for its role in 

mediating the toxicity associated with exposure to environmental contaminants, such as 

polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons, but 

mechanisms of toxicity remain poorly understood. While the physiological role of the 

AhR is unclear, recent evidence indicates that targeting the AhR with therapeutic ligands 

may prove useful in treating autoimmune diseases, inflammation, and cancer (Safe et al., 

2017; Burezq, 2018; Neavin et al., 2018). The goal of this research was to investigate the 

cellular and molecular mechanisms by which AhR activation impacts wound healing 

responses in the liver, including the regulation of gene expression important for 

inflammation, metabolism, and fibrogenesis.   

 

AhR Structure 

The AhR is a ligand-activated transcription factor that belongs to the basic helix-

loop-helix (bHLH), Per-ARNT-Sim (PAS) family. Proteins in the PAS superfamily share 

a conserved dimerization domain that was originally identified in the three founding 
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proteins (Gu et al., 2000). The “period” protein Per was originally discovered in 

Drosophila melanogaster and found to control basic circadian rhythm functions (Reddy 

et al., 1986; Citri et al., 1987). The aryl hydrocarbon receptor translocator (ARNT) 

protein was determined to be a vital component of transcription regulation (Hoffman et 

al., 1991). The Drosophila single-minded (Sim) protein was shown to regulate midline 

cell lineage in the central nervous system (Jackson et al., 1986; Nambu et al., 1991). 

Typically containing 250-300 amino acids, the PAS domain contains two highly 

conserved, 50-amino acid subdomains termed A and B (Jackson et al., 1986; Hoffman et 

al., 1991; Nambu et al., 1991). In eukaryotes, PAS domains serve as recognition sites for 

interactions with other PAS proteins and cellular chaperones. In general, bHLH-PAS 

proteins function as transcription factors that detect and respond to environmental and 

physiological signals, such as xenobiotic exposure, hypoxia and circadian rhythm 

(Kolonko & Greb-Markiewicz, 2019).  

Within the bHLH PAS family, the AhR is unique because it is the only protein 

that is conditionally activated by ligand binding (Lamas et al., 2018). As shown in Figure 

1.1, the PAS-B domain of the AhR includes a ligand-binding domain, where binding of 

endogenous and exogenous ligands initiates AhR activation (Coumailleau et al., 1995). 

The AhR is the only bHLH-PAS protein that functions as a receptor.  
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Figure 1.1 Functional Domains of the AhR 
 

The functional domains and corresponding amino acids of the mouse AhR protein are 
shown above. Hsp90, heat shock protein 90. 

 

 

Yet another important domain in the AhR protein is the heat shock protein 90 

(Hsp90) binding domain, which enables the AhR to interact with two Hsp90 proteins 

(Coumailleau et al., 1995; Fukunaga et al., 1995). Binding of Hsp90 proteins to the AhR 

occurs in the cytoplasm and prevents the unliganded AhR from translocating into the 

nucleus (Soshilov & Denison, 2011). Upon ligand binding, the AhR undergoes a 

conformational change that releases the Hsp90 complex and reveals a nuclear localization 

signal, which results in AhR translocation to the nucleus (Ikuta et al., 1998; Petrulis et 

al., 2003).  

 

AhR Allelic Variations 

In humans and mice, the AhR gene (Ahr) is located on chromosome 7p15 (Micka 

et al., 1997) and 12 (Schmidt et al., 1993), respectively. In both organisms, Ahr has 11 

exons that span about 50 kilobases. Once fully translated, the corresponding AhR protein 

has a molecular weight of about 96 kDa (Dolwick et al., 1993; Bennett et al., 1996). Four 

Ahr alleles have been identified in mice, and they are distinguished based on the ligand 

binding affinity of the AhR proteins they encode. Three of these alleles are variants of a 
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“b” allele and encode AhR proteins with high binding affinity (KD ~7 pM) for the 

radioligand 2-[125I]iodo-7,8-dibromo-p-dioxin. These allelic variants, which are referred 

to as Ahrb-1, Ahrb-2, Ahrb-3, produce proteins that differ in length at the C-terminus. In 

contrast, the AhR protein encoded by the fourth “d” allele possesses a ligand-binding 

affinity that is 4-5 times lower (KD ~35 pM), due to a point mutation in the ligand-

binding domain. The most prominent mutation in the Ahrd allele is an A375V mutation, in 

which an alanine residue is replaced by a valine residue at position 375 of the primary 

protein sequence (Poland et al., 1994). Although four Ahr alleles have been identified in 

mice, only one has been identified in humans, and it appears to most closely resemble the 

Ahrd allele found in mice (Moriguchi et al., 2003).  

 

Classical AhR Activation  

In the absence of ligand, the AhR resides in the cytoplasm in a complex that 

includes an Hsp90 dimer (Denis et al., 1988), an Hsp90 co-chaperone called p23 (Cox & 

Miller, 2004), and the AhR interacting protein (AIP), also known as ARA9 and XAP-2  

(Carver & Bradfield, 1997; Ma & Whitlock, 1997; Meyer et al., 1998) (Figure 1.2). 

Association of the AhR with Hsp90 and AIP prevents proteolysis and nuclear 

translocation of AhR in the absence of ligand (Ikuta et al., 1998; Kazlauskas et al., 2000; 

Petrulis et al., 2003; Pappas et al., 2018). The p23 protein functions as an Hsp90 co-

chaperone and stabilizes the interaction between AhR and the Hsp90 proteins (Cox & 

Miller, 2004). Upon binding to a ligand, the AhR undergoes a conformational shift that 

causes the Hsp90 dimer to dissociate (Ikuta et al., 1998). This process exposes a novel, 
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bipartite nuclear translocation signal (NLS) that allows the AhR to migrate to the nucleus 

(Ikuta et al., 1998; Lees & Whitelaw, 1999).  

Upon translocation to the nucleus, the AhR forms a heterodimer with ARNT, 

which is another bHLH-PAS protein (Card et al., 2005). The name ARNT is a misnomer, 

as this protein does not function in translocating the AhR to the nucleus but instead binds 

to AhR in the nucleus (Evans et al., 2008). Binding of ARNT to the AhR confers DNA-

binding ability, which consequently retains AhR in the nucleus (Pollenz et al., 1994). The 

AhR/ARNT complex binds to DNA at a conserved sequence, 5'-GCGTG-3'. This 

sequence has been termed the xenobiotic response element (XRE) or dioxin response 

element (DRE) (Shen & Whitlock, 1992). It has been shown that residues in both AhR 

and ARNT interact with this core sequence. If dimerization between AhR and ARNT is 

prevented, then the AhR cannot binding to the XRE, and transcriptional regulation of 

AhR-dependent genes ceases.  
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Figure 1.2 Classical AhR Activation.  
 

When a ligand is absent, the AhR is localized to the cytosol in a complex with co-
chaperone proteins, which include an HSP90 dimer, p23 protein, and the AhR interacting 
protein (AIP). Upon binding to ligand, the AhR releases the HSP90 dimer, translocates 
into the nucleus, where it forms a heterodimer with ARNT, and sheds the remaining co-
chaperones. The AhR/ARNT heterodimer then binds to one or more xenobiotic response 
elements (XREs) to modulate expression of AhR target genes. 
 

The molecular events involved in AhR-mediated transactivation have been 

particularly well studied in the AhR-mediated induction of Cyp1a1 expression in 

response to the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is 

depicted in Figure 1.2. Cyp1a1 encodes the xenobiotic metabolizing enzyme, cytochrome 

P4501A1, and its expression is considered a hallmark of AhR activation. The events that 

lead to expression of this AhR-regulated gene represent what is often referred to as 

“classical AhR activation.” However, studies over the past two decades add significant 

complexity to the mechanisms of AhR-regulated gene expression. For example, the 
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transcription of some AhR-regulated genes occurs when the AhR/ARNT complex 

associates with transcription factors bound to DNA at other, non-XRE-containing 

response elements. This has been shown for the AhR-dependent induction of 

NAD(P)H:quinone oxidoreductase-1 (NQO1) in response to the AhR ligand 

benzo[a]pyrene (Lin et al., 2011). In this instance, induction of NQO1 gene expression 

requires the interaction between the AhR/ARNT heterodimer and another protein 

complex comprised of nuclear factor erythroid 2-related factor-2 (Nrf2) and Maf, which 

binds to a nearby antioxidant response element (ARE) (Lin et al., 2011). Another 

example of non-classical AhR activation occurs when the AhR/ARNT heterodimer binds 

to the XRE and then interacts with protein complexes at other response elements, such as 

the estrogen receptor (ER) complex bound to the estrogen receptor element (ERE) (Safe 

& Wormke, 2003).  In this example, the activated AhR indirectly impacts gene 

expression by inhibiting the transcription of ER-dependent genes (Safe & Wormke, 

2003).  

To further add to the complexity of AhR transcriptional activity, it was recently 

demonstrated that the AhR can initiate the transcription of genes that do not contain 

XREs (Jackson et al., 2015). This is not entirely surprising because TCDD treatment 

reportedly modulated the expression of 5307 genes in mouse liver, yet chromatin 

immuno-precipitation studies revealed that only 3369 of these genes contained a 

functional XRE (Dere et al., 2011). For example, Serpine1 was found to be a TCDD-

induced gene and yet, it does not contain an XRE (Son & Rozman, 2002). Subsequent 

studies demonstrated that, in response to TCDD, the AhR interacts with the Serpine1 

gene promoter at a novel sequence comprised of a tetranucleotide repeat of 5'-GGGA-3'. 
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This sequence is now referred to as non-consensus XRE (NC-XRE) (Huang & Elferink, 

2012). Subsequent studies have shown that the AhR interacts with the NC-XRE 

independently of ARNT and instead partners with Krueppel-like factor 6 (Wilson et al., 

2013).  

 

Non-Genomic AhR Activation 

In addition to regulating gene transcription, AhR activation has also been shown 

to induce non-genomic cellular events. For example, TCDD-induced AhR activation has 

been shown to mitigate an influx of extracellular Ca2+ in various cell types through 

opening T-type calcium channels (Hanneman et al., 1996; Karras et al., 1996; Dale & 

Eltom, 2006; Kim et al., 2009). In addition, the activated AhR has been shown to initiate 

activation of the tyrosine kinase c-Src through a transcription-independent method 

(Tomkiewicz et al., 2013). c-Src has been shown to associate with the AhR complex in 

the cytoplasm (Mehta & Vezina, 2011). When TCDD binds to the AhR, c-Src is activated 

and is released from the complex (Mehta & Vezina, 2011). Downstream signaling events 

mediated by c-Src include the activation of focal adhesion kinase, restructuring of 

integrins and, ultimately, increased cell migration (Tomkiewicz et al., 2013). 

Collectively, these examples demonstrate that AhR-mediated activity extends beyond 

transcriptional control of gene expression.  

 

Regulation of the AhR Activity and Expression 

AhR activity can be repressed by a protein called the AhR repressor (AhRR). The 

gene encoding this protein contains an XRE and is expressed in response to AhR 
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activation (Sakurai et al., 2017). The AhRR functions as a repressor by competing with 

AhR to form a heterodimer complex with ARNT, which prevents formation of the 

transcriptionally active AhR/ARNT complex (Mimura et al., 1999; Vogel et al., 2016). 

The AhRR/ARNT heterodimer can then bind XRE sites, where this protein complex 

recruits Ankyrin-repeat protein2 and histone deacetylases (HDAC4 and HDAC5) to 

induce chromosomal remodeling and prevent AhR/ARNT complexes from binding to the 

XRE (Gradin et al., 1999; Oshima et al., 2007).  

AhR expression is regulated post-translationally through proteasomal degradation 

(Ma et al., 2000). For example, activation of the AhR by TCDD induces AhR 

degradation through ubiquitination of AhR (Ma et al., 2000). After being tagged with 

ubiquitin, the AhR is translocated into a proteasome for degradation and recycling of 

amino acids (Ma et al., 2000). Treatment of mouse hepatoma cells with TCDD has been 

shown to increase AhR degradation via this mechanism (Ma et al., 2000). In this study, 

AhR was determined to have a half-life of 28 hours before being ubiquitinated for 

proteasomal degradation, and treatment with 1 nM TCDD decreased the half-life of AhR 

to 3 hours (Ma et al., 2000). Regulation of AhR activity is a complex process that occurs 

through many molecular mechanisms. 

  

Phenotype of the AhR Knockout Mouse 

In an attempt to discover the endogenous role of the receptor, AhR knockout mice 

were produced independently in three separate labs (Fernandez-Salguero et al., 1995; 

Schmidt et al., 1996; Mimura et al., 1997). Global AhR knockout produced no overt 

consequences on the organism but did result in several physiological and anatomical 
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anomalies. The most prominent feature in these mice were livers that were 50% smaller 

than those of wild-type counterparts (Schmidt et al., 1996; Mimura et al., 1997). AhR 

knockout mice also exhibited subtle portal liver fibrosis and decreased body size during 

the first 4 weeks of age. Additionally, these mice showed a decrease in fertility and had 

litters that were smaller and less viable than wild-type mice. Another feature common to 

all three lines of AhR knockout mice was the reduction of gene expression for 

constitutively expressed xenobiotic metabolizing enzymes, such as cytochrome P4501A2 

(Lahvis & Bradfield, 1998). AhR knockout mice also exhibited a myriad of vascular 

deformities, which included a patent ductus venosus, a persistent hyaloid artery in the 

eye, and abnormal vascularization in the kidneys (Lahvis et al., 2000; Lin et al., 2001; 

Walker et al., 2002). Reproductive organs also showed abnormalities in terms of 

development and function of the prostate and ovaries (Lin et al., 2002; Hernández-Ochoa 

et al., 2009). The final abnormality that was observed in these strains of AhR knockout 

mice was the severe alteration of hematopoietic stem cell development (Lindsey & 

Papoutsakis, 2011).  

 

AhR Ligands 

 

Endogenous AhR Ligands  

Over the past several decades, the search for endogenous agonists of the AhR has 

been the subject of intense investigation. Five classes of endogenous AhR ligands have 

been identified: indigoids (indigo and indirubin), heme metabolites (bilirubin, hemin, and 

bilirubin), eicosanoids (lipoxin A4 and prostaglandin G2), tryptophan derivatives 
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(tryptamine) and equilenin (Figure 1.3) (Stejskalova et al., 2011). These compounds have 

diverse chemical structures and have several origins. For example, dietary sources such 

as plant matter are the origin for indigoids (Stejskalova et al., 2011). Heme metabolites, 

such as biliverdin and bilirubin, are byproducts of heme degradation (Otterbein et al., 

2003). Eicosanoids, such as the anti-inflammatory compounds lipoxin A4 and 

prostaglandins, are derivatives of arachidonic acid, a fatty acid that is a major component 

of the cell membrane (in phospholipid form) (Stejskalova et al., 2011). 

 

Figure 1.3 Structures of Endogenous AhR Ligands. 
 

Figure adapted from Stejskalova et al., 2011.  
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Exogenous AhR Ligands  

The AhR is activated in response to many xenobiotic compounds including 

halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons 

(PAHs) (Stejskalova et al., 2011). Examples of HAH compounds include dioxins, furans, 

and biphenyls (Figure 1.4). In contrast to known endogenous ligands, these exogenous 

ligands are structurally similar, possessing aromatic carbon rings with differences in 

secondary chemical structures and halogenation. The large family of HAH compounds 

represent environmental contaminants, that in most cases, originate from industrial 

processes (Kearney et al., 1973). These compounds find their way into the food chain of 

many ecosystems and are resistant to degradation (Poland & Knutson, 1982). The most 

toxic HAH is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (Figure 1.5), which serves as 

the prototypical compound for studying HAH toxicity because of its high binding affinity 

for the AhR as well as being non-metabolizable (Poland & Knutson, 1982).  

 

 

Figure 1.4 Structures of HAHs 
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Figure 1.5 Structure of TCDD 

 

Selective Aryl Hydrocarbon Receptor Modulators 

Another class of AhR ligands is selective aryl hydrocarbon receptor modulators 

(SAhRMs). In general, SAhRMs function as an agonist in one tissue and an antagonist in 

another (Smith & O’Malley, 2004). One of the first compounds identified as a SAhRM 

was 1,3,8-trichloro-6-methyldibenzofuran (6-MCDF) (Pearce et al., 2004). Initially, this 

compound was identified as an AhR antagonist that prevented TCDD-induced expression 

of Cyp1a1, TCDD-induced immunotoxicity, and hepatic porphyria (Astroff et al., 1987; 

Harris et al., 1988; Bannister et al., 1989). However, later studies showed that 6-MCDF 

also functions as an AhR agonist by activating inhibitory crosstalk between the AhR and 

ERα (McDougal et al., 2001). Recent studies have suggested that SAhRMs can 

potentially modulate AhR activity through non-canonical mechanisms (Narayanan et al., 

2012). Furthermore, because SAhRM-induced AhR activity does not occur through XRE-

dependent mechanisms, potentially cytotoxic gene expression changes seen with 

canonical AhR activation are absent (Patel et al., 2009; Narayanan et al., 2012). These 

novel mechanisms of mediating AhR activity have potential therapeutic use. 
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The Exogenous AhR Ligand, TCDD 

 

TCDD possesses one of the highest binding affinities of any ligand for the AhR 

(Poland & Knutson, 1982). Although TCDD induces the transcription of Cyp1a1, TCDD 

is not a viable substrate for this enzyme and therefore cannot be degraded.  This accounts 

for the long half-life of TCDD within cells, which can be up to ten days in hepatocytes 

(Håkansson & Hanberg, 1989). TCDD has never intentionally been produced but is 

instead generated as an unintentional byproduct of several industrial and manufacturing 

processes, such as the chlorine bleaching of paper pulp, incineration of biomedical and 

municipal waste, and herbicide manufacturing (Schecter, 1994; Silkworth & Brown, 

1996). For example, TCDD was found to be a contaminant in the herbicide Agent 

Orange, which was sprayed from 1961 to 1971 during the Vietnam war. Agent Orange 

contained a mixture of two herbicides, 2,4-D and 2,4,5-D, the latter of which was found 

to contain trace amounts of TCDD as a byproduct of the manufacturing reaction (Institute 

of Medicine, 1994).   

 

TCDD Toxicity in Humans  

As a persistent environmental contaminant, TCDD poses a potential health risk to 

humans. As a lipophilic compound, TCDD is stored in adipose tissue for extended 

periods of time leading to an overall increased health risk. Most of what is known about 

TCDD toxicity in humans is limited to retrospective epidemiological studies of people 

who were exposed to the chemical during industrial accidents. Throughout history there 

have been several industrial accidents that led to high exposure of TCDD. For example, 
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in 1976, TCDD was released during an explosion at a trichlorophenol manufacturing 

facility in Seveso, Italy (Bertazzi et al., 1998). It was estimated that several kilograms of 

TCDD were released into the atmosphere, which resulted in the exposure of 220,100 

people in the surrounding communities (Caramaschi et al., 1981). In the United States, in 

1949, 226 employees of Monsanto Company were exposed to dioxin after an herbicide 

storage container exploded (Tucker et al., 1981). Finally, one of the most infamous cases 

of human TCDD exposure is that of former Ukrainian president Victor Yushchenko, who 

was poisoned with TCDD during a state dinner in 2004. Based on measurement of TCDD 

in Yushchenko’s bodily fluids, the half-life of TCDD in humans was determined to be 

about 15 months (Sorg et al., 2009).  

 

TCDD Toxicity in Rodents  

 

Reproductive/Developmental Toxicity 

Acute toxicity of TCDD in mice and rats has been studied for several decades. 

Results indicate that all TCDD toxicity is mediated through the AhR (Mimura & Fujii-

Kuriyama, 2005). In mice expressing the b allele and d allele of Ahr, the LD50 has been 

reported to be 159 µg/kg and 3351 µg/kg, respectively (Birnbaum et al., 1990). In other 

studies, chronic administration of TCDD has been reported to elicit hepatomegaly 

(enlargement of the liver), steatosis, and thymic atrophy (Gupta et al., 1973; Tucker et 

al., 1981). Studies dating back to the 1970s characterized the fetotoxicity of TCDD on 

both mice and rats. These studies found that TCDD could lead to cleft palate, irregular 

kidneys, intestinal hemorrhages, and prenatal mortality (Courtney & Moore, 1971; 
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Sparschu et al., 1971; Khera & Ruddick, 1973; Moore et al., 1973; Smith et al., 1976).  

Fertility was also found to be hindered in cohorts that had been treated with TCDD. 

Decreases in fertility, postnatal pup survival, and litter size were all common 

characteristics in female rats that were exposed to 0.01 µg/kg/day TCDD  90 days prior 

to pregnancy (Murray et al., 1979).  

 

Carcinogenicity 

Experiments using rodent systems have demonstrated carcinogenic effects of 

TCDD. In studies dating back several decades, it was discovered that chronic 

administration of 0.001 µg/kg/week for 78 weeks led to cancerous tumors in male rats 

(Van-Miller et al., 1977). The types of cancer that were characterized include ear duct 

carcinoma, leukemia, kidney adenocarcinoma, peritoneal histiocytoma, skin 

angiosarcoma, and hard palate, tongue and nasal carcinoma (Van-Miller et al., 1977). 

Female rats that were dosed with 0.1 µg/kg/day for two years had increased incidence of 

liver and squamous cell carcinoma of the lungs, hard palate, tongue and nasal carcinoma 

(Kociba et al., 1978). Similar studies were conducted in male mice treated with 0.05 

µg/kg/week of TCDD for two years and demonstrated that TCDD caused liver cancer 

(National Toxicology Program, 1982b). Female mice of the same study develop both 

liver cancer and thyroid adenomas (National Toxicology Program, 1982b). In studies 

where TCDD was applied topically for two years, female mice showed increased levels 

of a fibrosarcoma type of skin cancer (National Toxicology Program, 1982a). TCDD is 

listed as a group 1 human carcinogen based on the IARC (Steenland et al., 2004). 

Liver Toxicity 
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One of the hallmarks of acute TCDD toxicity is hepatomegaly, a condition in 

which the liver weight increases in comparison to an organism’s body weight (Safe, 

1986). TCDD also increases serum levels of alanine aminotransferase (ALT) (Triebig et 

al., 1998) which is a hepatocyte-specific enzyme that is released into circulation upon 

necrosis (Giboney, 2005). Although hepatomegaly and increased serum ALT are the two 

major indicators of acute liver toxicity, other physiological and pathological anomalies 

are present in the liver of TCDD-treated mice.   

 

Inflammation 

Exposure to TCDD induces hepatic inflammation. For instance, C57BL/6J female 

mice that were treated with a single dose of 30 µg/kg showed histological patterns of 

inflammatory foci (Shen et al., 1991). Upon closer investigation it was discovered that 

these foci were primary composed of mononuclear and neutrophil cells (Olivero-Verbel 

et al., 2011). TCDD-induced focal inflammation has been reported to be localized in the 

periportal region of the hepatic lobules (Vos et al., 1974; Jones & Greig, 1975). The 

influx of inflammatory cells into the liver of TCDD-treated mice appears to be driven by 

increased production of pro-inflammatory cytokines, such as interleukin (IL)-1β and 

tumor necrosis factor (TNF)α (Fan et al., 1997; Vogel et al., 1997). Increased levels of 

the pro-inflammatory keratinocyte chemoattractant (KC) and monocyte chemoattractant 

protein-1 (MCP-1) were also reported in mice treated with TCDD (Vogel et al., 2007).  
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Dysregulation of Vitamin A Homeostasis 

Vitamin A contributes to the regulation of numerous important physiological 

functions, such as the transduction of light into nerve signals (Saari, 1994), maintenance 

of epithelial cell integrity (Gudas et al., 1994), embryonic development (Hofmann & 

Eichele, 1994; McCaffery & Drager, 1995), and maintenance of the immune system 

(Trechsel et al., 1985; Katz et al., 1987). The liver stores as much as 90% of the body’s 

vitamin A (Raica Jr. et al., 1972). Most of the vitamin A storage occurs in lipid droplets 

within hepatic stellate cells (HSCs), which are non-parenchymal cells that comprise about 

8% of the cells in the liver (Hendriks et al., 1985). TCDD treatment disrupts vitamin A 

homeostasis. For example, administration of TCDD to rats reduced vitamin A stores in 

the liver (Thunberg et al., 1980). Following TCDD treatment, vitamin A concentrations 

increase in the kidneys, serum, testes and epididymis (Håkansson & Hanberg, 1989).  

 

Steatosis 

Hepatic steatosis is defined as the accumulation of triglycerides in vacuoles 

within hepatocytes. Chronic administration of TCDD (25 µg/kg/week) has been shown to 

induce hepatic steatosis in mice, with initial occurrence observed at day 4 and maximal 

effect observed at week 4 (Jones et al., 1981). Hepatic steatosis most likely occurs 

because TCDD enhances the uptake of triglycerides in hepatocytes through upregulation 

of fatty acid transporters, such as CD36 (Lee et al., 2010). Furthermore, mice that had a 

double CD36 knockout were protected against TCDD-induced steatosis (Lee et al., 

2010). TCDD also suppresses the secretion of very low density lipoproteins (VLDL), 

which are lipoproteins that form complexes with triglycerides to circulate fats throughout 
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the body (Lee et al., 2010). Therefore, TCDD increases uptake of lipids while inhibiting 

their secretion in mice.  

 

Aberrant Wound Healing – Regeneration  

TCDD exposure suppressed the ability of cultured mouse hepatoma cells to 

proliferate (Weiss et al., 1996; Kolluri et al., 1999). Furthermore, studies conducted using 

a murine model system found that treatment of TCDD stunted the regenerative ability of 

livers (Bauman et al., 1995; Mitchell et al., 2006). In these cases, suppression of liver 

regeneration occurred due to an AhR-mediated G1 cell cycle arrest in hepatocytes 

(Kolluri et al., 1999; Jackson et al., 2014). The AhR interacts with retinoblastoma protein 

(pRb) to regulate G1/S phase progression in the cell cycle. Exposure to TCDD elicits a G1 

cell cycle arrest in primary hepatocytes, mouse hepatoma cells, and in the regenerating 

mouse liver (Bauman et al., 1995; Kolluri et al., 1999). Possible mechanisms include the 

TCDD-induced upregulation of p21 and p27, which are Cip/Kip family proteins that 

regulate the G1/S phase checkpoint. Furthermore, endogenous AhR signaling has been 

linked to cell cycle progression, as primary mouse embryonic fibroblasts from AhR 

knockout mice proliferate more slowly than their wild-type counterparts (Elizondo et al., 

2000). However, TCDD has also been shown to increase proliferation of liver cells. For 

example, AhR activation by TCDD increased hepatocyte proliferation during mitogen-

induced hyperplasia induced by 1,4-Bis-[2-(3,5-dichloropyridyloxy)]benzene,3,3′,5,5′-

tetrachloro-1,4-bis(pyridyloxy)benzene (TCPOBOP), an agonist for the constitutive 

androstane receptor (Mitchell et al., 2010). This was attributed to increased assembly of 

cyclin/Cyclin-dependent kinase (CDK) complexes that facilitate S-phase progression. 
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Based on these results, it stands to reason that the mechanisms by which AhR signaling 

impacts cell cycle progression may depend on the type of model system (e.g., 

compensatory hyperplasia induced by partial hepatectomy or direct hyperplasia in 

response to mitogens). As a result, it has been difficult to understand how exogenous 

AhR ligands could impact the human liver.  

 

Aberrant Wound Healing – Fibrogenesis 

In addition to hepatocyte proliferation, another physiological response to liver 

damage is fibrogenesis, which is a normal wound-healing mechanism characterized by 

deposition of extracellular matrix (ECM) proteins (Kisseleva & Brenner, 2008). 

Fibrogenesis is initiated by tissue injury and inflammation (Wynn, 2008). During 

fibrogenesis, ECM proteins, such as collagens, are synthesized and secreted into the 

ECM. Upon removal of the injurious stimulus, the ECM is degraded. However, in the 

presence of chronic injury and unresolved inflammation, the deposition of ECM proteins 

exceeds turnover, resulting in a pathological condition referred to as fibrosis (Wynn, 

2008).  

TCDD has been shown to increase collagen gene expression in the liver, increase 

soluble mediators important for fibrogenesis (TGFβ), and modulate expression and 

activity of enzymes important for ECM remodeling (Pierre et al., 2014; Nault et al., 

2016; Han et al., 2017; Lamb et al., 2016a). Understanding how TCDD and AhR 

signaling impact liver fibrosis is a relatively new area of research, and it is the focus of 

the research described in this dissertation. The processes involved in liver fibrosis are 

described in further detail below. 
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Liver Fibrosis 

 

Liver disease is a broad term that refers to any pathology of the liver. Generally 

speaking, it occurs in response to chronic injury and/or inflammation (Pellicoro et al., 

2014). A multitude of insults can produce liver disease, including viral infection, toxicant 

exposure, idiosyncratic drug reactions, chronic alcohol consumption, autoimmune 

disease, cholestasis, and metabolic diseases (Pellicoro et al., 2014). Regardless of 

etiology, the progression of chronic liver disease occurs through similar stages. In 

response to injury and inflammation, myofibroblast precursors, namely hepatic stellate 

cells (HSCs), become activated and secrete ECM proteins. During chronic injury and 

inflammation, the deposition of ECM proteins exceeds ECM turnover, which produces a 

pathological condition in the liver called fibrosis. Fibrosis could potentially progress into 

cirrhosis, which is characterized by impeded blood flow and pockets of regeneration that 

result in nodules that could progress to cancer (Ginès et al., 2004). The only type of 

clinical intervention for cirrhosis is liver transplantation (Figure 2.1). 

 

Figure 2.1 Stages of Liver Disease 
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The first stage of liver disease, liver fibrosis, can be characterized by gross 

deposition of ECM proteins such as fibrillar collagens (types I and III) (Pellicoro et al., 

2014). Excessive collagen deposition results in portal hypertension that is characterized 

by elevated blood pressure of the portal vein (Sherman et al., 1990). Liver fibrosis is 

mediated by a population of non-parenchymal liver cells called hepatic stellate cells 

(HSCs) (Wells, 2008). In the healthy liver, HSCs function to store vitamin A (Blomhoff 

et al., 1992). However, in response to injury, HSCs become activated and transition to a 

myofibroblast-like phenotype (Wells, 2008). This phenotype is characterized by loss of 

vitamin A stores, proliferation, motility, secretion of chemokines and production of 

extracellular matrix proteins, such as collagen (Friedman, 2000; Wells, 2008). In addition 

to secreting ECM proteins, activated HSCs also synthesize a myriad of proteases that lead 

to the turnover and remodeling of the ECM (Duarte et al., 2015). It is believed that 

increased protease secretion and subsequent ECM remodeling allow for better 

myofibroblast and inflammatory cell mobilization during liver repair (Han, 2006). 
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Evidence that TCDD/AhR contributes 

to the regulation of liver fibrosis 

 

TCDD increases HSC activation  

Several studies have shown TCDD treatment reduces the level of vitamin A that 

is stored in the liver (Thunberg et al., 1980; Håkansson & Ahlborg, 1985; Håkansson & 

Hanberg, 1989; Hanberg et al., 1998). Vitamin A loss is one of the hallmark features of 

HSC activation. In vitro studies using human HSC lines have also demonstrated that 

TCDD promotes the activation of HSCs (Harvey et al., 2016; Han et al., 2017). In one of 

these studies, TCDD-treated HSCs were shown to proliferate and produce alpha-smooth 

muscle actin (αSMA), both indicators of HSC activation (Harvey et al., 2016). In 

addition to this evidence, other studies show that TCDD treatment of mice induces the 

production of activated HSC markers such as αSMA and collagen type I (Pierre et al., 

2014; Lamb et al., 2016b). It is possible that HSCs may be a direct cellular target for 

TCDD in the mouse liver. The half-life of TCDD in hepatocytes in about 13 days, while 

the half-life of TCDD in HSCs is about 52 days (Håkansson & Hanberg, 1989). The 

shear fact that it takes HSCs about 4 times longer than hepatocytes to eliminate TCDD 

could give TCDD a longer timespan to modulate gene expression in HSCs.  

 

TCDD impacts ECM remodeling 

ECM-related genes that are known to be modulated by AhR activation include 

those that encode collagens, matrix metalloproteases (MMPs), tissue inhibitor of 

metalloproteases (TIMPs) and profibrotic cytokines (Andreasen et al., 2007; Pierre et al., 
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2014). As previously mentioned, there is some evidence that TCDD induces fibrogenesis 

in the liver. However, there is also evidence to suggest that TCDD modulates MMP 

activity directly which could limit fibrogenesis (Haque et al., 2005; Villano et al., 2006; 

Andreasen et al., 2007; Lamb et al., 2016a).  

 

Chronic TCDD administration elicits fibrosis. 

In 2014, it was reported that chronic exposure of mice to TCDD produced liver 

fibrosis (Pierre et al., 2014). In these experiments, male mice were treated with 25 µg/kg 

of TCDD once a week for 6 weeks. Mice were euthanized after 42 days. Results 

indicated that TCDD treatment increased the deposition of collagen protein in the liver 

and promoted hepatic inflammation. Production of the inflammatory cytokines IL1β and 

MCP-1 were also observed in TCDD treated samples. Another study used mice that were 

treated with varying concentrations (0-30 µg/kg) of TCDD every 4 days for 28 or 92 days 

(Nault et al., 2016). The results of those studies indicated that at 28 days, 30 µg/kg of 

TCDD elicited portal fibrosis. Inflammation was observed at 28 days with only 10 µg/kg 

of TCDD. Steatosis was also observed in this model upon TCDD treatment. This study 

indicated that a TCDD dose of 0.3 µg/kg was sufficient to elicit hepatic lipid 

accumulation after 28 days.  

 

 

TCDD increases fibrogenesis in bile duct ligation-induced liver fibrosis 

Cholestasis is a type of liver disease characterized by the accumulation of bile 

acids and bilirubin in the liver, which induces liver damage and fibrosis (Hirschfield et 
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al., 2010).  An experimental model used to induce cholestasis is bile duct ligation (BDL), 

in which the common bile duct is ligated to prevent bile acid export. The accumulation of 

bile acids in the liver causes injury and inflammation, which promotes the activation of 

portal fibroblasts and HSCs, leading to fibrosis (Hirschfield et al., 2010). TCDD 

treatment was shown to increase liver damage in mice subjected to BDL (Ozeki et al., 

2011). Additionally, TCDD-treated BDL mice showed increased hepatic accumulation of 

bile acids and bilirubin compared to vehicle-treated BDL mice. Histopathological 

assessment identified widespread necrosis, which was attributed to the accumulation of 

bile acids.  

 

TCDD increases pathology in liver of mice fed a high fat diet  

Consuming a Western diet high in sugar and fat can promote steatosis in the liver 

(Arisqueta et al., 2018; Jensen et al., 2018). A recent study examined how AhR 

activation might exacerbate liver disease in mice that had steatosis (Duval et al., 2017). 

This study utilized mice that were fed a high fat diet (HFD) to promote steatosis. It was 

reported that treatment with TCDD exacerbated steatosis and hepatic triglyceride stores 

in the liver of HFD mice. However, it remains unclear what mechanism leads to elevated 

fat stores in the liver. TCDD treatment of HFD mice also increased serum ALT levels 

and promoted inflammatory cell infiltration, which was accompanied by increased 

mRNA levels of inflammatory marker genes CCl2, Il1b, Itgam, and Cd68. TCDD was 

also shown to increase expression of the fibrosis-related genes Tgfb1, Col1a1 and Col3a1 

(Duval et al., 2017) and increase collagen protein deposition (Pierre et al., 2014). 
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Overall, this study supports the notion that TCDD treatment exacerbates steatosis and 

promotes liver fibrosis. 

 

TCDD increases fibrogenesis during CCl4-induced liver fibrosis. 

One model system that is widely used to study liver fibrosis is chronic 

administration of carbon tetrachloride (CCl4) (Weber et al., 2003). In this model system, 

mice are typically exposed twice weekly to CCl4 for 4-8 weeks. CCl4 is metabolized by 

the enzyme cytochrome P450E1 to a trichloromethyl radical, which elicits lipid 

peroxidation in the cell membrane (Wong et al., 1998). Chronic exposure to CCl4 elicits 

widespread centrilobular necrosis and inflammation in the liver, which ultimately drive 

the activation of HSCs and the promotion of liver fibrosis (Mederacke et al., 2013). 

Using a “two-hit” system of chronic CCl4 treatment followed by TCDD, Lamb et al. 

showed that TCDD treatment increased HSC activation and liver fibrosis in CCl4-treated 

mice (Lamb et al., 2016a; Lamb al., 2016b). Results obtained with this model system are 

described in further detail in Chapter 2 of this dissertation.  

 

Conclusion 

In mouse models of liver fibrosis, AhR activation by TCDD promotes liver injury, 

inflammation, HSC activation, and ECM deposition and turnover. Studies described in 

this dissertation determined the cellular and molecular mechanisms by which AhR 

signaling mediates the effects of TCDD on these endpoints.  
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CHAPTER TWO:  

SUMMARY OF THE EFFECTS OF TCDD DURING  

CARBON TETRACHLORIDE-INDUCED LIVER FIBROSIS1 

 

 

In previous studies from our lab, male C57BL/6 mice were treated with 0.5 ml/kg 

CCl4 twice a week for 8 weeks to induce liver injury. Mice were then treated with 20 

μg/kg TCDD once a week during weeks 7 and 8 to activate the AhR. Mice were 

euthanized at the end of the 8-week experiment. Liver-to-body weight ratios and serum 

ALT levels measured to characterize the extent of TCDD hepatotoxicity. TCDD 

treatment was found to elicit hepatomegaly regardless of CCl4 treatment (Figure 2.2A). 

Treatment with either CCl4 or TCDD alone increased serum ALT levels (Figure 2.2B). 

These results are consistent with other reports of hepatotoxicity in mice treated with CCl4 

or TCDD (Mejia-Garcia et al., 2013; Scholten et al., 2015). Co-treated mice 

(CCl4/TCDD) exhibited a 40% mortality rate during the final week of the experiment, 

while death was not observed in any other treatment group. 

                                                
1 Data from this chapter were published as part of the following manuscripts: 

Lamb, C. L., Cholico, G. N., Perkins, D. E., Fewkes, M. T., Oxford, J. T., Morrill, E. E. and Mitchell, K. A. (2016). 
Aryl hydrocarbon receptor activation by TCDD modulates expression of extracellular matrix remodeling genes 
during experimental liver fibrosis. BioMed Res. Int., 2016. 

Lamb, C. L., Cholico, G. N., Pu, X., Hagler, G. D., Cornell, K. A. and Mitchell, K. A. (2016). 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not 
exacerbate experimental liver fibrosis in mice. Toxicol. Appl. Pharmacol., 311, pp. 42–51. 
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Figure 2.2 Gross Markers of TCDD Hepatoxicity.  

(A) Liver-to-body weight ratios. (B) Serum ALT levels. Data represent mean ± SEM from six mice per 
treatment group. Asterisks (*) denote a significant difference when compared to vehicle-treated mice   
within same treatment group. (p < 0.05)  

 

 

Liver fibrosis is mediated by myofibroblast precursors that become activated in 

response to injury and inflammation (Pellicoro et al., 2014). During CCl4-induced liver 

fibrosis, the primary type of myofibroblast precursor are hepatic stellate cells (HSCs) 

(Iwaisako et al., 2014). To test the hypothesis that TCDD increased HSC activation, we 

measured expression of the HSC activation marker, alpha-smooth muscle actin (αSMA). 

CCl4 treatment increased αSMA protein expression in the liver (Figure 2.3A). Whereas 

TCDD treatment alone had no impact on αSMA expression, it produced a two-fold 

increase in αSMA immunofluorescence compared to mice treated with CCl4 alone 

(Figure 2.3B). Analysis of αSMA mRNA levels revealed that neither TCDD nor CCl4 

treatment alone impacted αSMA transcript levels, but when administered together, a 40-

fold increase in αSMA mRNA was detected (Figure 2.3C). 

A B 
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Next we investigated how TCDD impacts the extent of fibrogenesis in the CCl4-

injured liver by measuring expression of genes encoding procollagen types I and III, 

which are the most abundant types of collagen deposited by HSCs during liver injury 

 
 

 
Figure 2.3 TCDD increases markers of HSC activation.  

(A) Immunofluorescence was used to measure αSMA expression (red) in paraffin-embedded liver tissues 
(200X magnification).  Cell nuclei were counterstained with DAPI (blue). (B) Pixel densitometry for 
αSMA immunofluorescence. (C) Hepatic αSMA mRNA levels. Data were normalized to GAPDH and 
expressed as fold-change relative to the Ctrl/Veh treatment group.  Data represent mean ± SEM (n=4). Bars 
with different letters are significantly different from each other (p < 0.05) (Lamb et al., 2016b). 
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(Maher & McGuire, 1990). Treatment with TCDD alone significantly increased mRNA 

levels of Col1a1, while CCl4 alone significantly increased mRNA levels of both Col1a1 

and Col3a1. TCDD treatment in CCl4 mice increased the expression of these genes even 

further (Fig. 2.4). 

 

 

Given that TCDD increased HSC activation and procollagen gene expression in 

CCl4-treated mice, we hypothesized that liver fibrosis would likewise be more severe. To 

visualize the extent of liver fibrosis, paraffin-embedded liver sections were stained with 

picrosirius red, which specifically binds to collagen fibrils. Collagen deposition was 

detected in mice treated with CCl4 but, contrary to our hypothesis, TCDD treatment did 

not consistently increase deposition (Figure 2.5A, B). Liver fibrosis was further evaluated 

using the Ishak Modified Histological Activity Index system, which produced similar 

results (Figure 2.5C) (Ishak et al., 1995). Hepatic collagen protein levels were further 

measured using Western blot (Figure 2.5D) and mass spectrometry (Figure 2.5E). Results 

 
 

Figure 2.4 TCDD treatment increases collagen gene expression. 
Col1a1 and Col3a1 mRNA levels in the mouse liver were measured by qRT-PCR. Data were normalized to 
GAPDH and expressed relative to the Ctrl/Veh treatment group. Data represent mean ± SEM (n=3).  Bars 
with different letters are significantly different from each other (p < 0.05). (Lamb et al., 2016b). 
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from these techniques confirm that TCDD treatment did not markedly impact collagen 

content compared to mice treated with CCl4 alone.  

 

 

 
 

Figure 2.5 TCDD does not increase collagen deposition in  
the liver of CCl4-treated mice. 

(A) Liver tissue was stained with Sirius red to visualize collagen deposition (100X magnification). (B) 
Sirius red staining was quantified and expressed as a percentage of total area. (C) Sirius-red-stained liver 
tissue was scored according to the Ishak Modified Histological Activity Index. Bars for (B, C) represent 
mean ± SEM for mice (n=6). Bars with a different letter denote a significant difference (p < 0.05). (D) 
Western blot to detect collagen type I in pepsin-digested liver homogenates (n=3). Actin levels were 
measured in undigested liver homogenates (25 ug protein/lane). (E) Average hydroxyproline content in 
liver based on mass spectrometry analysis (n=3). 
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In the CCl4 model of experimental liver fibrosis, fibrogenesis is driven not only 

by liver injury, but also by inflammation (Weber et al., 2003). We therefore sought to 

characterize how TCDD treatment impacted inflammation and subsequent progression of 

liver disease.  Inflammation was evaluated based on the presence of inflammatory foci in 

H&E-stained liver tissue (Figure 2.6). Foci containing infiltrating leukocytes were 

detected in the liver of mice treated with TCDD alone (Figure 2.6 C, D). Analysis of the 

liver of CCl4-treated mice revealed areas of injury that included ballooning hepatocytes, 

coagulation necrosis and necrotic bridge formation (Figure 2.6 E, F). Administration of 

TCDD to CCl4-treated mice appeared to produce widespread coagulation necrosis and 

inflammation (Figure 2.6 G, H). We further addressed the extent of hepatic necrosis and 

inflammation using the Ishak Modified Histological Activity Index system. In this 

scoring system, necroinflammation is assessed based on four endpoints: 1) periportal or 

periseptal interface necrosis; 2) confluent necrosis; 3) focal lytic necrosis, apoptosis, and 

focal inflammation; and 4) portal inflammation (Ishak et al., 1995). Treatment with either 

TCDD or CCl4 alone slightly increased all four endpoints, resulting in a “mild” 

necroinflammation score (Table 2.3). However, co-treatment of mice with CCl4 and 

TCDD resulted in a marked increase of confluent necrosis, portal inflammation and 

periportal or periseptal interface hepatitis, resulting in an overall necroinflammation score 

that was twice as high.   



50 
 

 

 
Figure 2.6 TCDD increases liver injury and necroinflammation.  

Representative sections of liver tissue stained with H&E were imaged at 100x (A, C, E, G) and 200x (B, D, F, 
H). H&E-stained liver tissue allows for visualization of necrotic bridges, NB; inflammatory foci, IF; 
ballooning hepatocytes, B; and coagulation necrosis, CN. 
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Table 2.1 TCDD increased necroinflammation in CCl4-treated mice. 

 Ctrl/Veh Ctrl/TCDD CCl4/Veh CCl4/TCDD 
Periportal or periseptal interface 
hepatitis (0-4) 0 1.86 ± 0.34a 1.50 ± 0.22a 4 ± 0a,b 

Confluent necrosis (0-6) 0 1.14  ± 0.26a 1.33  ± 0.21a 5 ± 0a,b 
Focal lytic necrosis, apoptosis, 
and focal inflammation (0-4) 0 1.71 ± 0.29a 1 ± 0 1.33 ± 0.33a 

Portal inflammation (0-4) 0 1.86 ± 0.34a 1.83 ± 0.17a 3.33 ± 0.33a,b 

Combined necroinflammation 
score: 0 6.57 ± 0.81a 

(mild) 
5.67 ± 0.33a 

(mild) 
13.67 ± 0.33a 

(severe) 
 

Necroinflammation was assessed using the Ishak Modified Histological Activity Index 
System. Numbers in parentheses indicate the scoring range for each feature. ap < 0.05 
when compared to Ctrl/Veh; bp < 0.05 when compared to CCl4/Veh. Six mice were 
assessed per treatment group. 
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Objectives and Hypothesis 

Previous studies from our laboratory indicate that TCDD treatment increases liver 

injury, inflammation, and HSC activation during CCl4-induced liver fibrosis. These 

results support other reports that TCDD treatment activates HSCs both in vitro and in 

vivo (Harvey et al., 2016; Han et al., 2017). However, what remains unclear is whether 

TCDD increases HSC activation through a direct or indirect mechanism. For example, it 

is possible that TCDD directly interacts with AhR in the HSCs to produce transcriptional 

changes that result in activation of these cells. Alternatively, TCDD could indirectly 

activate HSCs through other methods, such as by increasing damage to parenchymal 

hepatocytes and/or by increasing inflammation. These possible mechanisms are depicted 

in Figure 2.7, which forms the basis for the project described in Chapter 3. The specific 

goal for this project was to determine the cell-specific consequences of TCDD/AhR 

signaling on HSC activation and fibrosis in the CCl4-injured liver. To accomplish this, we 

used conditional AhR knockout mice, in which the AhR was removed from either 

hepatocytes or HSCs. Mice were treated with CCl4 for 5 weeks to elicit initial liver 

injury, and then a single dose of TCDD was administered during the final week to 

activate the AhR. Liver damage, inflammation, HSC activation and fibrosis were 

measured. Understanding the cell-specific role of AhR signaling in fibrosis is important 

for determining mechanisms of TCDD toxicity. Furthermore, this information could 

potentially be used for the future development therapeutic AhR ligands to target and 

diminish HSC activation and alleviate fibrosis.  

In Chapter 4, we tested the hypothesis that TCDD elicits a condition similar to 

non-alcoholic fatty liver disease (NAFLD) in the liver of CCl4-treated mice. We assessed 
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histopathological markers of NAFLD, which included steatosis, inflammation, and 

fibrosis. Transcriptome RNA-sequencing was conducted to identify patterns of gene 

expression known to be associated with NAFLD, such as metabolic pathways related to 

insulin signaling, glucose metabolism and lipid metabolism. The extent to which AhR 

activation contributes to NAFLD progression remains unclear, but this is an important 

area of research, as NAFLD is a growing health concern that is expected to become the 

leading cause of liver transplantation by the year 2030. Furthermore, exposure to 

environmental contaminants, such as those that activate the AhR, has been proposed as a 

possible mechanism to explain NAFLD progression (Bertot & Adams, 2016).  

Results from the studies in Chapter 3 and Chapter 4 are summarized, and future 

studies are discussed, in the final chapter of this dissertation.  
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The goal of this project is to determine if TCDD directly targets HSCs in mice with CCl4-
induced liver injury. Alternate mechanisms were also assessed, such as the possibility 
that TCDD enhances liver injury induced by CCl4, subsequently driving the activation of 
HSCs. Enhanced liver injury could also elicit an inflammatory response which could 
indirectly drive HSC activation. It is also possible that TCDD treatment directly elicits an 
inflammatory response, which could drive HSC activation. 
  

Figure 2.7 Project Objective 
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CHAPTER THREE:  

HEPATOCYTE AHR EXPRESSION IS REQUIRED FOR TCDD-INDUCED HSC 

ACTIVATION IN THE LIVER OF CCL4 TREATED MICE 

 

Abstract 

The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription 

factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Chronic 

TCDD treatment has been shown to induce liver fibrosis, which is characterized by the 

activation of myofibroblasts, namely hepatic stellate cells (HSCs), and subsequent 

deposition of collagen. We previously reported that exposure to TCDD increased HSC 

activation during liver injury induced by chronic carbon tetrachloride (CCl4) 

administration. However, it remains unclear if TCDD directly activates HSCs or if 

increased HSC activation results from TCDD-induced damage to parenchymal 

hepatocytes. The goal of this project was to determine the cell-specific consequences of 

TCDD treatment on HSC activation during liver fibrosis. To accomplish this, we used 

Cre-Lox recombination to generate male mice in which the AhR was removed from 

either hepatocytes or HSCs. In this study, mice were treated with 1.0 ml/kg CCl4 every 

four days for 5 weeks, and TCDD (100 μg/kg) was administered during the final week. 

Results indicate that AhR functionality in hepatocytes is required for maximal HSC 

activation in CCl4-treated mice. Likewise, TCDD treatment evoked a maximal 

inflammatory response in CCl4-treated mice with a functional AhR in hepatocytes. 
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Additionally, TCDD treatment induced liver damage in CCl4-treated mice only when 

hepatocytes possessed a functional AhR. Based on these findings, we conclude that 

maximum TCDD-induced HSC activation requires hepatocyte-specific AhR signaling. 

We further speculate that AhR-dependent events in hepatocytes increase HSC activation 

through a mechanism that involves increased liver damage and possibly inflammation.  
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Introduction 

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that 

belongs to the basic-helix-loop-helix (bHLH) Per/Arnt/Sim (PAS) superfamily of 

proteins (Beischlag et al., 2008). As a bHLH-PAS protein, the AhR mediates gene 

expression for a wide array of biological functions such as developmental processes, 

xenobiotic metabolism and adaptation to environmental stress (Gu et al., 2000; Beischlag 

et al., 2008). In the absence of a bound ligand, the AhR localizes to the cytoplasm of a 

cell within a protein complex containing a p23, a XAP-molecule 2 and two heat shock 

protein 90 (Larigot et al., 2018). However, upon binding to a ligand, the AhR translocates 

into the nucleus where it heterodimerizes with the aryl hydrocarbon nuclear translocator 

(ARNT) protein (Larigot et al., 2018). This AhR/ARNT dimer then binds to the 

xenobiotic response element (XRE) in the promotor region of many genes to facilitate 

transcription (Larigot et al., 2018). Alternate mechanisms of AhR activation have also 

been identified in which the AhR dimerizes with other transcriptional co-regulator 

proteins (Jackson et al., 2015). It has also been shown that the AhR heterodimer complex 

can bind to non-XRE sites to mediate gene transcription (Huang & Elferink,  2012). 

Accumulating evidence has implicated AhR signaling in mediating the 

progression of liver disease. For example, chronic exposure to 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD), a prominent environmental contaminant and potent 

AhR agonist, has been shown to elicit liver fibrosis (Pierre et al., 2014; Fader et al., 

2015). Chronic exposure of TCDD was also shown to induce steatosis and steatohepatitis 

(Fader et al., 2015). Furthermore, in a mouse model of cholestasis induced by bile duct 

ligation, TCDD treatment was shown to increase hepatic bile acid and bilirubin levels, as 
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well as markers of liver injury, such as serum alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) activity (Pierre et al., 2014).  TCDD treatment was also 

shown to exacerbate steatosis in a mouse model of fatty liver induced by a high fat diet, 

as well as promote an increase in serum ALT and hepatic inflammatory cell infiltration 

(Duval et al., 2017). We recently showed that the administration of TCDD elicits more 

pronounced markers of liver disease in a “two-hit” model where liver injury was initiated 

using carbon tetrachloride (CCl4) (Lamb et al., 2016b).  

Administration of carbon tetrachloride (CCl4) is a well-established model of liver 

injury that directly leads to the onset of liver fibrosis. In this model, CCl4 is metabolized 

by cytochrome P4502E1 into a trichloromethyl radical (CCl3•) thereby exerting oxidative 

stress on the liver tissue (Rechnagel & Glende, 1973). Chronic treatment of CCl4 induces 

centrilobular necrosis (Bruckner et al., 1986) and inflammation (Weber et al., 2003) 

which ultimately leads to the activation of quiescent HSCs. When paired with CCl4 

treatment, administration of TCDD has been shown to increase liver injury as evidenced 

by increased hepatomegaly and increased serum ALT levels (Lamb et al., 2016a). It was 

also shown that TCDD treatment exacerbated necroinflammation in the liver and elicited 

robust hepatic stellate cell (HSC) activation, the main hepatic cell type responsible for 

producing a liver fibrosis pathology (Lamb et al., 2016a,b). Interestingly, despite 

observing an increase in liver injury, inflammation and HSC activation, exacerbated 

fibrosis was not observed with CCl4/TCDD co-treatment (Lamb et al., 2016b). It remains 

unclear what the cellular target of TCDD is, or how it increases markers of liver disease 

and HSC activation. 
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It is possible that administration of TCDD could directly activate HSCs in this 

liver injury model. Evidence to support this notion is that TCDD has been shown to 

activate human HSCs in vitro (Harvey et al., 2016; Han et al., 2017). For example, 

TCDD treatment was shown to increase cell proliferation (Harvey et al., 2016) and 

αSMA expression, (Harvey et al., 2016; Han et al., 2017) both hallmark characteristics 

of activated HSCs. It stands to reason that TCDD might have a more profound effect on 

HSCs as the half-life of TCDD in these cells is 52 days, while the half-life in hepatocytes 

is 13 days (Håkansson & Hanberg, 1989). Although it is possible that TCDD acts directly 

on HSCs, we cannot dismiss the possibility that TCDD could activate HSCs indirectly.  

Alternative mechanisms could also be responsible for eliciting HSC activation 

with TCDD treatment in a CCl4-induced model of liver injury. For example, TCDD-

induced hepatotoxicity such as hepatomegaly, elevated serum ALT, increased hydropic 

vacuolation and increased neutrophil infiltration were shown to be mediated by AhR 

signaling in hepatocytes (Walisser et al., 2005). Because HSCs are known to become 

activated in response to hepatocyte apoptosis (Jiang & Török, 2013), it is possible that 

widespread livery injury exacerbated by TCDD is what activates HSCs. There is also 

some evidence to suggest that hepatocytes can produce proinflammatory chemokines in 

response to environmental stress which could result in increased activation of HSCs. For 

example, hepatocytes have been observed to release the neutrophil chemoattractant 

CXCL1 in response to peripheral cell necrosis (Su et al., 2018). HSC activation via direct 

and indirect effects of TCDD in a liver injury model were assessed in this study. 

In this study, we sought to identify the cellular target of TCDD and determine if 

markers of liver disease progression were exacerbated as a result of AhR signaling in 
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HSCs or hepatocytes. The objective of this study was to identify if HSC activation 

occurred as a direct TCDD effect, or if HSC activation occurred indirectly through 

increased liver injury and/or inflammation. To accomplish this, we used a Cre-lox system 

to create transgenic mice in which AhR functionality was knocked out of either HSCs or 

hepatocytes. By using Cre-recombinase under the control of a glial fibrillary acidic 

protein (GFAP) or albumin promotor, functionality of double-floxed AhR was ablated in 

HSCs and hepatocytes, respectively. Our results suggest that HSCs are not the direct 

cellular target of TCDD in mice. Rather TCDD-induced HSC activation occurs as a result 

of liver injury and inflammation mediated by AhR signaling in hepatocytes.  
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Materials and Methods 

Generation of conditional AhR knockout mice 

The following strains of mice were purchased from The Jackson Laboratory (Bar 

Harbor, Maine): mice that were homozygous for the floxed AhR allele (Ahrfl/fl; strain 

B6.129S-Ahrtm3.1Bra/J), mice that expressed Cre recombinase driven by the albumin gene 

promoter (CreAlb; strain B6.Cg-Tg(Alb-cre)21Mgn/J), and mice that expressed Cre 

recombinase driven by the human glial fibrillary acidic protein (GFAP) gene promoter 

(CreGFAP; strain FVB-Tg(GFAP-cre)25Mes/J). Male Ahrfl/fl mice were bred to female 

mice carrying either the CreAlb transgene or the CreGFAP transgene. Offspring that were 

heterozygous for the floxed Ahr allele and hemizygous for Cre were bred to Ahrfl/fl mice 

to produce mice with AhR-deficient hepatocytes (designated Ahr∆Hep mice) or with AhR-

deficient HSCs and cholangiocytes (designated Ahr∆HSC). Genotypes were determined 

using DNA extracted from an ear punch, and PCR was carried out according to the strain-

specific genotyping protocols provided by The Jackson Laboratory. Animals were housed 

in a selective pathogen-free facility in a temperature- and humidity-controlled room with 

a 12:12 hr light-dark cycle and given ad libitum access to food and water. 

 

Animal treatment 

All animal studies were conducted with the approval of the Institutional Animal 

Care and Use Committee at Boise State University. Male AhR∆Hep or AhR∆HSC mice were 

used in experiments at 8 weeks of age. Age-matched Ahrfl/fl mice, which were 

phenotypically equivalent to wild-type mice, were used as controls. CCl4 (Sigma-Aldrich, 

St. Louis, MO) was diluted 1:4 (v/v) in corn oil and administered by oral gavage (1 
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ml/kg) twice weekly for 5 weeks (10 treatments total; Figure 3.1). TCDD (≥98% purity; 

Cambridge Isotope Laboratories, Tewksbury, MA) was dissolved in anisole (1 mg/ml) 

and diluted in peanut oil to create a 20 µg/ml working stock. At the beginning of the fifth 

week, mice were gavaged with TCDD at 100 µg/kg body weight or with an equivalent 

volume of vehicle, which consisted of peanut oil spiked with anisole. This dose of TCDD 

was chosen because the mice used in these experiments expressed the d-allele of the AhR 

gene, which encodes an AhR protein with low ligand binding affinity (Supplementary 

Data, Supplementary Table 3.1; Poland et al., 1994). In order to produce TCDD toxicity, 

mice with this allele require a dose of TCDD that is approximately 10-fold higher than 

doses administered to mice with the more sensitive b-allele (Poland et al., 1994). In mice 

with the d-allele, 100 µg/kg of TCDD elicits classic endpoints of TCDD hepatotoxicity 

(Walisser et al., 2005) and is well below the LD50, which was determined to be 2,570 

ug/kg (Chapman & Schiller, 1985). At the end of the fifth week (7 days after TCDD 

administration), mice were euthanized by isoflurane overdose followed by cervical 

dislocation. Blood was collected by cardiac puncture, and serum was extracted. The liver 

was excised and weighed. Sections from the liver were fixed in formalin buffer (PSL 

Equipment, Vista, CA) for paraffin-embedding or else embedded in optimal cutting 

temperature (OCT) compound and frozen. The remaining liver tissue was snap-frozen in 

liquid nitrogen and stored at -80°C until RNA was prepared.  
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Figure 3.1 Mouse treatment schedule  
Mice were gavaged 1.0 ml/kg of CCl4 twice per week and received a single dose of 100 
μg/kg TCDD during the final week of the experiment.  

 

Alanine Aminotransferase (ALT) Activity Assay 

Serum was diluted 1:10 in phosphate buffered saline (PBS). ALT content was 

measured using the InfinityTM ALT (GPT) Liquid Stable Reagent according to the 

manufacturer’s protocol (Thermo Fisher Scientific, Waltham, MA). Samples were run in 

duplicate, and ALT content was expressed as activity in U/L. 

 

Histological analysis 

Formalin-fixed, paraffin-embedded liver tissue was cut into 5-μm sections at the 

Biomolecular Research Center at Boise State University. Tissue staining with 

hematoxylin and eosin and picrosirius red, as well as immunofluorescence staining to 

detect αSMA, were performed as previously described (Lamb et al., 2016b). Images were 

acquired using an Olympus BX45 dual-headed compound microscope, and densitometry 

was performed using ImageJ software (National Institute of Health, Bethesda, MD). To 

assess inflammation, images (100x magnification) were analyzed, and areas containing 

inflammatory cell nuclei were highlighted. Image J was used to quantify these areas, and 

the extent of inflammation was estimated based on the percent of highlighted area per 

total field. Five fields of view were assessed per liver sample. Liver damage was also 
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assessed using the Ishak modified histological activity scoring index. A pathologist from 

the Idaho Veterans Research and Education Foundation (IVREF) who was blinded to 

each treatment used picro-sirius red-stained sections to score for fibrosis (Ishak 0–6) and 

H&E-stained sections to score for periportal or periseptal interface hepatitis (Ishak 0–4), 

confluent necrosis (Ishak 0–6), focal lytic necrosis, apoptosis, and focal inflammation 

(Ishak 0–4) and portal inflammation (Ishak 0–4) (Ishak et al., 1995; Lamb et al., 2016b). 

 

RNA isolation and quantitative real-time polymerase chain reaction (qPCR) analysis 

Total RNA was extracted from liver tissues using an E.N.Z.A® Total RNA kit 

(Omega Bio-Tek, Norcross, GA), and purity was assessed by ultraviolet spectroscopy. 

First-strand cDNA was synthesized from 1 ug total RNA using an applied biosystems 

high capacity cDNA reverse transcription kit with random primers (Thermo Fisher 

Scientific, Waltham, MA). cDNA was quantified by qPCR using Roche FastStart 

Essential DNA Green Master hotstart reaction mix (Roche Diagnostics, Indianapolis, IN) 

with the primers listed in Table 3.1. Duplicate reactions from eight biological replicates 

per treatment group were amplified on a LightCycler® 96 thermocycler (Roche). 

Expression of mRNA for each target gene was normalized against Gapdh, and 

differences in gene expression were calculated using the 2-ΔΔCt method (Livak et al., 

2001).  
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Table 3.1 Primer Sequences 

Gene Primer sequence (5′ to 3′) Annealing 
Temp. (°C) 

Ahrtm3.1Bra 
GGT ACA AGT GCA CAT GCC TGC 60 
CAG TGG GAA TAA GGC AAG AGT GA 

Alb (WT) TGC AAA CAT CAC ATG CAC AC 60 
TTG GCC CCT TAC CAT AAC TG 

Alb-Cre GAA GCA GAA GCT TAG GAA GAT GG 60 
TTG GCC CCT TAC CAT AAC TG 

αSMA 
TCC TCC CTG GAG AAG AGC TAC 60 
TAT AGG TGG TTT CGT GGA TGC 

Col1a1 
GTC CCT GAA GTC AGC TGC ATA 

60 
TGG GAC AGT CCA GTT CTT CAT 

Col3a1 
CCT GGT GGA AAG GGT GAA AT 

62 
CGT GTT CCG GGT ATA CCA TTA G 

Cyp1a1 GCC TTC ATT CTG GAG ACC TTC C 60 
CAA TGG TCT CTC CGA TGC 

Cyp1b1 TGG CCT AAC CCA GAG GAC TT 60 
ATT GCA CTG ATG AGC GAG GA 

Gapdh CAA TGA CCC CTT CAT TGA CC 60 
GAT CTC GCT CCT GGA AGA TG 

Ccl2 
ACT GAA GCC AGC TCT CTC TTC CTC 

60 
TTC CTT CTT GGG GTC AGC ACA GAC 

Tgfb1 TGC TAA TGG TGG ACC GCA A 55 
CAC TGC TTC CCG AAT GTC TGA 

Tgfb2 
TGA GCC ACC AGA AGA ACA CG 

54 
GCA GAT CCT GAG CAA GCT G 

 
 

Quantification of hydroxyproline by LC/MS 

Frozen liver tissue (10 mg) was homogenized in 100 µl reagent-grade water and 

hydrolyzed with 100 µl of 12 M HCl at 95°C for 20 hr. Debris was removed from 

hydrolyzed samples using Phree® phospholipid removal columns (Phenomex, Torrance, 

CA) (Lamb et al., 2016b). Linear calibration curves were created by spiking control 

samples with known concentrations of trans-4-hydroxy-L-proline (Sigma-Aldrich). 

Hydroxyproline levels were then analyzed by LC-MS as previously described (Lamb et 

al., 2016b) at the Biomolecular Research Center at Boise State University. 
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Hyaluronan binding protein (HABP) assay 

Formalin-fixed, paraffin-embedded liver tissue was cut into 5-µm sections and 

rehydrated in CitroSolvTM Hybrid Solvent and Clearing Agent (Decon Labs, Inc., King of 

Prussia, PA) followed by immersion in a graded series of ethanol solutions, running 

water, and PBS. Endogenous biotin, biotin receptors, and avidin-binding sites were 

blocked with a commercially available kit (Vector Laboratories, Burlingame, CA), and 

tissues were incubated with normal goat serum (150 μl/10ml) in PBS for 20 min. 

Sections were then incubated with biotinylated-HABP (MilliporeSigma, Burlington, MA) 

at a 1:100 dilution in normal goat serum for 1 h at room temperature. After washing with 

PBS 4 times, the signal was amplified using VECTASTAIN® ABC reagent (Vector 

Laboratories) for 30 minutes. After 4 additional PBS washes, a second amplification step 

was performed using a 1:400 dilution of a TSA® fluorescein reagent (Perkin Elmer, 

Waltham, MA) for 5 min. Sections were then washed in PBS, and nuclei were 

counterstained with VECTASHIELD® mounting medium with DAPI (Vector 

Laboratories). Images of each liver were taken at 100x magnification using an Olympus 

BX51 fluorescence microscope with an Olympus BH2RFLT3 burner and an Olympus 

DP71 camera operated by DP Controller software (Olympus, Waltham, MA). ImageJ was 

used to quantify the area of fluorescence from three fields on each slide.   

 

In situ zymography 

Frozen, OCT-embedded liver tissue was cut into 7-μm thick sections, adhered to 

glass slides, and stored at -80°C for 18 h.  Slides were then treated with developing buffer 

(100 mM Tris, pH 7.4, 100 mM NaCl, 5 mM CaCl2, 0.05% Brij® 35, 1 mM 
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phenylmethylsulfonyl fluoride (PMSF), and 0.1 mg/mL of gelatin conjugated to Oregon 

Green® 488 dye (Thermo Fisher).  Serial sections were incubated in developing buffer 

containing 50 mM EDTA to inhibit calcium-dependent zinc-containing endopeptidase 

(matrix metalloproteinase) activity. Slides were then incubated in a humid chamber at 

37°C for 22 hours, then rinsed three times in water. VECTASHIELD® with DAPI was 

applied to the slides. Images were taken at 100x magnification on an Olympus BX51 

microscope. ImageJ was used to quantify the area of fluorescence from 5 fields from each 

slide.   

 

Western Blotting 

Liver tissue was homogenized as previously described (Lamb et al., 2016b). 

Protein concentration was determined, and 25 µg of protein from each sample was 

resolved on an 8% SDS-polyacrylamide gel and transferred to a polyvinylidene difluoride 

membrane. Membranes were incubated with anti-CYP1A1 or anti-GAPDH antibodies 

and species-specific, horseradish peroxidase-conjugated secondary antibodies (Santa 

Cruz Biotechnology, Dallas, TX). Bands were visualized using an enhanced 

chemiluminescent reagent (Thermo Fisher).  

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 7.0d (GraphPad 

Software, La Jolla, CA). Mean values were compared among genetic backgrounds and 

treatment using a two-way ANOVA and Bonferroni post hoc test. Differences were 
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considered significant when p values were ≤ 0.05. Unless otherwise stated, error bars on 

graphs represent standard error of the mean (SEM). 
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Results 

To ensure that AhR-ablation had occurred in AhRΔHep mice, we measured gene 

expression levels of the hallmark markers for AhR activation, Cyp1a1 and Cyp1b1 

(Figure 3.2A, B). In AhRfl/fl mice, where TCDD was used to activate AhR, mRNA levels 

of Cyp1a1 exceeded a minimum of 200-fold when compared to the vehicle treated mice. 

Similarly, AhRfl/fl mice treated with TCDD showed a minimum of 100-fold increase of 

Cyp1b1 gene expression when compared to the vehicle treated mice. However, in 

AhRΔHep mice where hepatocyte-specific AhR-ablation should have occurred, TCDD 

increased Cyp1a1 and Cyp1b1 mRNA levels by only 20-fold and 10-fold, respectively. 

The slight induction of Cyp1a1 and Cyp1b1 mRNA expression in AhRΔHep mice can 

likely be attributed to AhR activation in non-parenchymal liver cells, such as HSCs, 

cholangiocytes, Kupffer cells and endothelial cells. Protein expression of Cyp1a1 were 

verified by Western blot (Figure 3.2 C, D). Similar to the mRNA expression, cytochrome 

P4501A1 protein levels induced by TCDD in AhRfl/fl mice and markedly decreased in 

TCDD-treated AhRΔHep mice. These results indicate that AhRΔHep mice have decreased 

responsiveness to TCDD, as has been previously reported (Walisser et al., 2005).  
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Figure 3.2 AhR activation is decreased in AhRΔHep mice 
TCDD-induced expression of Cyp1a1 (A) and Cyp1b1 (B) was used as an indicator of 
AhR activation in response to TCDD. Bars represent mean ± SEM (n=8). Asterisks (*) 
denote a significant difference (p < 0.05). Cytochrome P4501A1 protein expression 
levels were measured by Western blot (C) and quantified by pixel densitometry (D). 
Results are representative of three replicate assays. 
 

 

We then sought to investigate how TCDD treatment impacted liver damage in 

mice treated with CCl4. Gross hepatotoxicity was evaluated based on hepatomegaly, 

serum ALT, and confluent necrosis. The livers of CCl4/TCDD-treated AhRfl/fl mice 

exhibited significant hepatomegaly when compared to CCl4/Veh AhRfl/fl mice (Figure 

3.3A). CCl4/TCDD-treated AhRΔHep mice showed no indication of hepatomegaly. 

Hepatocellular necrosis was measured based on serum ALT (Figure 3.3B). Treatment 

with CCl4 or TCDD did not impact serum ALT levels. However, TCDD administration to 

CCl4-treated AhRfl/fl mice significantly increased serum ALT levels. This increase in 
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serum ALT levels was completely absent in co-treated AhRΔHep mice. Finally, we 

assessed mRNA expression for Cyp2e1, the gene encoding cytochrome P450 2E1 (Figure 

3.3C). Cytochrome P450 2E1 metabolizes CCl4 into CCl3•, which induces liver injury 

through lipid peroxidation. Expression of Cyp2e1 decreased in mice treated with 

CCl4/Veh and co-treated with CCl4/TCDD. 

 

 
 

Figure 3.3 Hepatotoxic effects of TCDD in a CCl4 liver injury  
model are absent in AhRΔHep mice 

Hepatotoxicity was assessed based on (A) liver-to-body weight ratios and (B) serum ALT 
levels. (C) Cyp2e1 mRNA levels were measured using qRT-PCR. Bars represent mean ± 
SEM for mice (n=8). Asterisks (*) denote a significant difference (p < 0.05). 

 

We determined to what extent hepatic inflammation impacted myofibroblast 

activation (Figure 3.4). Results indicate that treating mice with CCl4/Veh elicited no 

significant hepatic inflammatory response, while TCDD treatment a minor inflammatory 

effect. However, CCl4/TCDD treatment in AhRfl/fl mice, which possess hepatocytes with 

a functional AhR, elicited a robust inflammatory response (Figure 3.4A, B). A significant 

decrease in inflammation was observed in co-treated AhRΔHep mice when compared to 

AhRfl/fl mice. The same trend was observed when assessing necroinflammation (Figure 

3.4C). Necroinflammation was prominent in the CCl4/TCDD-treated AhRfl/fl mice when 

compared against the CCl4/Veh counterparts. When comparing co-treated AhRΔHep mice 
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against the co-treated AhRfl/fl mice, we observed a significant decrease of 

necroinflammation in the AhRΔHep mice. We looked at gene expression for monocyte 

chemoattractant protein 1 (Ccl2) and discovered that AhRfl/fl mice treated with 

CCl4/TCDD expressed this gene in high abundance when compared against any other 

treatment group (Figure 3.4D). AhRΔHep mice that underwent CCl4/TCDD co-treatment 

showed practically no increase in Ccl2 expression when compared against the other 

treatment groups in this genotype. TCDD increased the expression of the macrophage 

marker CD68 in AhRfl/fl mice but not in the AhRΔHep mice. (Figure 3.4E). 
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Figure 3.4 Hepatocyte-specific AhR ablation alleviates some of the 
inflammatory effects of TCDD  

(A) H&E-stained liver tissue reveals the presence of inflammatory cells (200X 
magnification). Portal vein (PV) is labeled in each frame. Scale bars represent 250 μm. 
(B) Inflammation was quantified by selecting areas with inflammatory cells and 
expressing this as a function of percent area. Eight mice were assessed per treatment 
group and five fields were assessed per mouse. (C) A clinical pathologist scored tissue 
for necroinflammation using the modified Ishak scoring method. (D/E) Gene expression 
of the inflammatory chemoattractant CCL2 and macrophage marker CD68 was 
quantified using qRT-PCR. Bars represent mean ± SEM for mice (n=8). Asterisks (*) 
denote a significant difference (p < 0.05). 
 



76 
 

 

αSMA protein levels were assessed using immunofluorescence staining as a 

marker of HSC activation (Figure 3.5A, B). Results indicate that CCl4/Veh and TCDD-

alone did not elicit a robust HSC activation in either mouse genotype. In co-treated 

AhRfl/fl mice, HSC activation increased significantly compared to mice treated with CCl4. 

However, in co-treated AhRΔHep mice, only a slight increase in HSC activation was 

observed compared to mice treated with CCl4. This could, in part, be due to the decreased 

inflammation seen in this group of mice to begin with. Markers of HSC activation were 

assessed using qRT-PCR (Figure 3.5C-E). Results from mRNA expression levels of 

αSMA were similar those of αSMA protein levels in immunofluorescence staining. We 

looked at mRNA expression of Col1a1 and Col3a1, the major components of collagen 

type I and collagen type III, respectively. The expression levels of these genes were 

similar to those of αSMA, showing a rise in expression for co-treated AhRfl/fl mice, but 

not a significant increase for AhRΔHep mice. These results indicate that HSC activation 

could be, at least partially, an indirect consequence mediated by AhR signaling in 

hepatocytes. 

Activated HSCs are also known produce the ECM component hyaluronan 

(Vrochides et al., 1996). Co-treated AhRfl/fl mice showed a marked increase in 

hyaluronan distribution throughout the liver (Figure 3.5). Results indicate that hyaluronan 

distribution shows a similar trend as HSC activation further validating that TCDD fails to 

elicit robust HSC activation if AhR is knocked out of hepatocytes. These results suggest 

that the AhR in hepatocytes is required for maximal response upon co-treatment. 
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(A) Immunofluorescence staining was used to measure αSMA expression (red), which is a 
hallmark of HSC activation (100X magnification). Cell nuclei were counterstained with DAPI 
(blue). Scale bars represent 500 μm. (B) Pixel densitometry for αSMA immunofluorescence 
staining was assessed as percent of total fluorescence per field. Eight mice were assessed per 
treatment group and five fields were assessed per mouse. (C-E) mRNA levels of HSC activation 
markers in the mouse liver were measured by qRT-PCR. Bars represent mean ± SEM for mice 
(n=8). Asterisks (*) denote a significant difference (p < 0.05). (F) Immunofluorescence staining 
was conducted for HABP (green) to assess hyaluronic acid (100X magnification). Cell nuclei 
were counterstained with DAPI (blue). Scale bars represent 500 μm. (G) Pixel densitometry for 
HABP immunofluorescence staining was assessed as percent of total fluorescence per field. 
Four mice were assessed per treatment group and three fields were assessed per mouse. Bars 
represent mean ± SEM for mice (n=3). Asterisks (*) denote a significant difference (p < 0.05). 

 
 

Figure 3.5 AhR signaling in hepatocytes is required for maximal HSC activation 
induced by TCDD  
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Despite all of these previous differences between the two genotypes, no overt 

differences were seen in levels of fibrosis (Figure 3.6A). Densitometry quantifying Sirius 

red histological staining showed a slight increase in collagen deposition between 

CCl4/Veh and CCl4/TCDD-treated in both genotypes of mice (Figure 3.6B). Hepatic 

hydroxyproline content demonstrated a similar trend, with mice that were co-treated with 

CCl4/TCDD exhibiting an increase in hydroxyproline content when compared against the 

CCl4/Veh group in the respective genotype (Figure 3.6C). Histological scoring also 

determined that fibrosis was similar between both co-treated genotypes of mice (Figure 

3.6D). Assessment of gene expression for the pro-fibrotic markers TFGβ1 and TGFβ2, 

indicated that co-treated AhRfl/fl mice showed a slight increase in expression when 

compared against the CCl4/Veh-treated group in this genotype (Figure 3.6E, F). Gene 

expression did not increase for TFGβ1 and TGFβ2 in the AhRΔHep mice. Taken together, 

all analyses indicated the same degree of fibrosis to be present in AhRΔHep and AhRfl/fl 

mice. 

Gelatinase activity was assessed to characterize ECM turnover (Figure 3.7). Our 

results suggest that TCDD treatment elicited slight gelatinase activity in both genotypes. 

Co-treatment of CCl4/TCDD in the AhRfl/fl mice elicited widespread gelatinase activity 

throughout the entire liver. A minimal increase of gelatinase activity was observed in co-

treated AhRΔHep mice.  
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Figure 3.6 AhR signaling in hepatocytes has no overt impact on fibrosis induced 
by TCDD treatment  

(A) Sirius Red staining was used to visualize collagen deposition in paraffin-embedded 
liver sections (100X magnification). Scale bars represent 500μm.  (B) Densitometry was 
performed to quantify the amount of Sirius red staining present in each treatment group 
and was expressed as percent of total staining per field. Eight mice were assessed per 
treatment group and five fields were assessed per mouse. (C) Collagen content in each 
treatment group was further quantified by measuring the amount of hydroxyproline using 
tandem mass spectrometry. Five mice assessed for hydroxyproline content of the liver.  
(D) Sirius-red-stained liver tissue was scored according to the Ishak Modified 
Histological Activity Index. (E, F) mRNA levels of TGFβ1 and TGFβ2, both pro-
fibrogenic growth factors, were assessed by qRT-PCR Bars represent mean ± SEM for 
mice (n=8). Asterisks (*) denote a significant difference (p < 0.05). 
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Figure 3.7 Gelatinase activity is diminished in mice  
lacking functional AhR in hepatocytes  

(A) Gelatinase activity was assessed with DQ-Gelatin (green); 100X magnification. Cell 
nuclei were counterstained with DAPI (blue). Scale bars represent 500μm. (B) Pixel 
densitometry for DQ-Gelatin immunofluorescence staining was assessed as a percent of 
total fluorescence per field. Three mice were assessed per treatment group and five fields 
were assessed per mouse. Bars represent mean ± SEM for mice (n=8). Asterisks (*) 
denote a significant difference (p < 0.05). 
 

 

AhR signaling was also assessed in mice lacking a functional AhR in HSCs 

(Figure 3.8). ALT levels in AhRΔHSC mice followed a similar trend as their AhRfl/fl 

counterparts, depicting only an increase of serum ALT upon co-treatment (Figure 3.8A). 

AhR activation was verified by measuring Cyp1a1 mRNA expression (Figure 3.8B). 
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Knocking out the AhR from HSCs had a marginal effect on overall Cyp1a1 transcription, 

as both AhRΔHSC and AhRfl/fl mice demonstrated similar expression levels amongst 

TCDD and CCl4/TCDD treatment groups. When then assessed how AhR ablation in 

HSCs would contribute to liver inflammation (Figure 3.8C). Histopathological 

densitometry assessment indicated that only significant increases in inflammatory cell 

infiltration were similar in both genotypes of co-treated mice (Figure 3.8D). HSC 

activation was assessed by αSMA immunofluorescence staining (Figure 3.8E). We 

observed similar trends for αSMA content in the livers of AhRΔHSC and AhRfl/fl mice 

(Figure 3.8F). Only co-treated groups elicited markedly increased αSMA deposition 

through the liver. Lastly, we assessed if knocking out the AhR from HSCs alleviated 

fibrosis in the liver by staining histological slides with picro-sirius red (Figure 3.8G). 

Staining was quantified by densitometry (Figure 3.8H). We observed similar levels of 

picro-sirius red staining amongst all treatment groups that had undergone CCl4/Veh and 

CCl4/TCDD treatment.  
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Figure 3.8 Knocking out AhR functionality from HSCs produces similar 
pathology to control mice. 

(A) Hepatotoxicity was assessed using serum ALT. (B) AhR activation was verified by 
quantifying gene expression levels of Cyp1a1. (C) Inflammation was assessed using 
H&E staining (200X magnification). Scale bars represent 250 μm. (D) Inflammation was 
quantified using inflammatory cell densitometry denoted as percent area per frame. Eight 
mice were assessed per treatment group and five fields were assessed per mouse. 
(E) HSC activation was assessed using immunofluorescence staining to visualized αSMA 
(red); 100X magnification. Cell nuclei were counterstained with DAPI. Scale bars 
represent 500 μm. (F) Densitometry was used to quantify αSMA percent area per frame. 
Eight mice were assessed per treatment group and five fields were assessed per mouse. 
(G) Sirius red histological staining was used to visualize collagen deposition (100X 
magnification). Scale bars represent 500 μm. (H) Sirius red was quantified by 
densitometry. Staining is expressed as percent area per frame. Eight mice were assessed 
per treatment group and five fields were assessed per mouse. Bars represent mean ± SEM 
for mice (n=8). Asterisks (*) denote a significant difference (p < 0.05). 
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Discussion 

The CDC reports that as of 2017, 4.5 million Americans suffer from chronic liver 

disease or cirrhosis. As the 12th leading cause of death in the United States, not only do 

chronic liver disease and cirrhosis have a major impact on human health, but they also 

cause a major economic burden on the American healthcare system. Treating liver 

fibrosis before it progresses into cirrhosis is crucial for a patient’s health because fibrosis 

is generally regarded to be reversible, while cirrhosis is not. Fibrosis in the liver is 

mediated by HSCs, which are cells that remodel the ECM of the tissue in response to 

injury and inflammation. There is some evidence to suggest that activation of the AhR 

can regulate HSC activation (Yan et al., 2019). A common method of activating the AhR 

experimentally is through TCDD administration. Furthermore, there is some evidence to 

suggest that TCDD treatment can modulate the activation of HSCs, however, it is unclear 

whether this happens through a direct mechanism, or if indirect processes such as 

necrosis and inflammation play a major role (Harvey et al., 2016; Lamb et al., 2016b; 

Han et al., 2017.) Understanding the role AhR plays in mediating HSC activation is 

crucial because if HSC activation can be reversed, then liver fibrosis will not progress 

into cirrhosis.  

In this study, we determined that AhR signaling in hepatocytes plays a role in 

mediating HSC activation with TCDD treatment. We discovered that for maximal HSC 

activation to occur in response to TCDD treatment, the AhR must be present in 

hepatocytes in our liver injury model. However, removal of the AhR from hepatocytes 

does not completely abolish HSC activation in an injured liver with TCDD treatment. In 

fact, HSC activation is still present, albeit very minimal, indicating that activation of 
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these cells must occur through multiple mechanisms. Interestingly, similar levels of liver 

fibrosis were observed despite seeing different levels of HSC activation upon 

CCl4/TCDD co-treatment with the AhR either present or absent in hepatocytes. It is 

unclear why differences in HSC activation elicit a similar fibrogenic response. It is 

possible that increased gelatinase activity prevents a more robust fibrotic response in co-

treated AhRfl/fl mice. Furthermore, the source of these gelatinase could be from 

inflammatory cells, which are known to release gelatinases and collagenases thereby 

having a major impact on ECM remodeling (Fallowfield et al., 2007; Ramachandran et 

al., 2012).  

Our study also demonstrated that hepatoxic effects of TCDD must be mediated by 

hepatocytes. A previous study found similar results by showing that TCDD elicited 

almost no hepatotoxic effects in mice when the AhR was knocked out of hepatocytes 

(Walisser et al., 2005). In that study, ALT levels were assessed from serum, and liver-to-

body weight ratios were calculated. In both metrics, only wild-type strain of mice that 

had undergone TCDD treatment showed elevated markers of hepatoxicity. Our study 

demonstrated similar effects upon only treating with TCDD. However, mice that 

underwent co-treatment showed an even more remarkable trend. AhRfl/fl mice showed 

exponentially greater levels of serum ALT than compared against their AhRΔHep mice 

counterparts. Similarly, AhRfl/fl mice that underwent co-treatment showed significantly 

higher liver-to-body weight ratios than their AhRΔHep mice counterparts. These findings 

are interesting because they highlight a major role for AhR activation in exacerbating 

liver injury. It stands to reason that the hepatotoxic effects of TCDD in a liver injury 

model system are what drive HSCs to maximal activation. However, it also possible that 
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the observed hepatotoxic effects elicited a secondary response – such as inflammation – 

which ultimately mediated HSC activation.  

Although liver injury can lead to HSC activation, inflammation is also known to 

modulate HSC activity (Tsuchida & Friedman, 2017). Our results suggest that 

inflammation could be a driving force for HSC activation. In this study, inflammatory 

markers were present in higher abundance in AhRfl/fl co-treated mice than in AhRΔHep 

counterparts. It is possible that higher levels of inflammation were a driving factor 

leading to higher levels of HSC activation. These AhRΔHep co-treated mice that 

demonstrated significantly reduced levels of inflammation also demonstrated reduced 

levels of HSC activation. This raises the possibility that HSC activation levels which 

were still present in AhRΔHep co-treated mice were the direct result induced by the 

inflammation. The inflammation seen during liver injury could be a direct result of 

TCDD treatment, as TCDD is known to promote the induction of proinflammatory 

cytokines (Vogel et al., 2007; Han et al., 2017). On the other hand, it is possible that 

these reduced levels of inflammation in the AhRΔHep co-treated mice are in response to 

the activated HSCs. Given that there is some evidence to suggest that HSCs can regulate 

hepatic inflammation, (Harvey et al., 2013; Fujita & Narumiya, 2016; Fujita et al., 2016) 

it stands to reason that the inflammation seen in these livers is secondary to HSC 

activation, and not vice-versa.  

Taken together, our research demonstrates that there are multiple mechanisms for 

which TCDD elicits a robust HSC activation response in a liver injury model. We cannot 

rule out any direct effects TCDD might have on HSCs. Several studies have shown 

TCDD promotes HSC activation in vitro (Harvey et al., 2016; Han et al., 2017). Our data 
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shows that TCDD treatment in our AhRΔHep mice elicits slight gene expression of Cyp1a1 

and Cyp1b1. This response must be attributed to other non-parenchymal cells in the liver 

still possessing a functional AhR. AhR signaling through these other cell types could play 

a role in mediating HSC activation. This includes AhR signaling within HSCs. It stands 

to reason that TCDD might have a more profound effect on HSCs as the half-life of 

TCDD in these cells is 52 days, while the half-life in hepatocytes is 13 days (Håkansson 

& Hanberg, 1989). 

In conclusion, results from this study highlight a major role for hepatocyte-

specific AhR signaling in mediating several pathologies associated with liver disease. 

TCDD-mediated liver toxicity and inflammation are heavily dependent on there being a 

functional AhR in hepatocytes. Furthermore, TCDD appears to elicit HSC activation 

through multiple mechanisms. However, differences in HSC activation do not necessarily 

elicit differences in the severity of fibrosis using a CCl4/TCDD model. It appears that 

although AhR signaling in hepatocytes significantly impacts the severity of liver damage, 

inflammation and HSC activation, fibrosis levels remain consistent. This in part could be 

as a result of a more aggressive ECM remodeling. Future studies are needed to 

characterize how AhR signaling in hepatocytes directly affects these ECM remodeling 

events.  
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Supplementary Data 

 
AhR allele identification in AhRΔHep, and AhRfl/fl mice: 

Whole DNA was isolated. The part of exon 11 containing the point mutation that 

distinguishes between the d and b allele was amplified using PCR (FWD: 

CGAAAGACTTAGCCATGAGC, RVS: GAAGTTACTGAGCAGGGAACC). The 

cleaned PCR products were quantified using the Qubit 2.0 Fluorometer. PCR products 

were prepared for sequencing using the BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, Cat# 4337455) and sequenced on an Applied Biosystems 3130xl 

Genetic Analyzer with a 3130xl⁄3100 Genetic Analyzer 16-Capillary Array, 50 cm; 

sequencing basecalls were determined by Sequence Analysis Software v6.0 using the 

default analysis settings.    

 

Supplementary Table 3.1 Genotype of AhR allele expressed in mice 

Genotype Exon 11 Sequence Type of allele 

AhRfl/fl GTGCAGAGTCGA Ahrd-1 allele 
AhR∆Hep GTGCAGAGTCGA Ahrd-1 allele 
AhR∆HSC GTGCAGAGTCGA Ahrd-1 allele 
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CHAPTER FOUR:  

TRANSCRIPTOME RNA-SEQ REVEALS NON-ALCOHOLIC FATTY LIVER 

DISEASE MEDIATED BY AHR ACTIVATION IN A CCL4-INDUCED LIVER 

INJURY MODEL 

 

Abstract 

Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disorders ranging 

from simple steatosis to non-alcoholic steatohepatitis (NASH). Complications from 

NASH include the development of fibrosis or cirrhosis. During fibrosis, chronic injury 

and inflammation drive the activation of myofibroblast precursors, namely hepatic 

stellate cells (HSCs), which produce collagen. We have previously shown that AhR 

activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases HSC activation in 

vitro and in a mouse model of liver fibrosis elicited by chronic carbon tetrachloride 

(CCl4) administration. The goal of this project was to determine the cell-specific 

consequences of TCDD/AhR signaling on the progression of liver disease. Initial results 

demonstrated that CCl4/TCDD co-treatment in double floxed control mice (AhRfl/fl) led 

to an end state pathology possessing steatosis, inflammation and fibrosis. Mice with AhR 

knock-out from hepatocytes (AhRΔHep) however alleviated these pathologies except for 

fibrosis. To elucidate what molecular mechanisms might different liver pathologies in 

control mice but not in AhRΔHep mice, RNA-seq was conducted. In this study, mice were 

treated with 1.0 ml/kg CCl4 every four days for 5 weeks, and TCDD (100 μg/kg) was 
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administered during the final week of the experiment. RNA-seq revealed that co-

treatment of CCl4 and TCDD produced a NAFLD-like gene expression profile in AhRfl/fl 

mice, consistent with our pathological data. Further investigation revealed changes in 

gene expression promoting liver triglyceride accumulation in co-treated AhRfl/fl mice, but 

not in AhRΔHep mice. Dysregulation of glucose metabolism is a risk factor for the 

development of NAFLD. RNA-seq revealed glycolysis-, gluconeogenesis-, and glycogen 

synthesis-related genes to be transcriptionally inactive in AhRfl/fl mice and unchanged in 

AhRΔHep mice. Based on these findings, we conclude that AhR signaling in hepatocytes is 

essential for promoting NAFLD progression in a liver injury model system.  
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is prevalent in approximately one-

third of the population and is characterized by excessive lipid accumulation in the liver 

(steatosis) of individuals who consume little to no alcohol (Loomba & Sanyal, 2013). 

NAFLD refers to a spectrum of histological conditions, ranging from simple steatosis to 

non-alcoholic steatohepatitis (NASH), in which steatosis is accompanied by hepatocyte 

ballooning, lobular inflammation, and varying degrees of fibrosis. NAFLD/NASH 

patients with progressive fibrosis are at increased risk for developing cirrhosis, liver 

failure, and hepatocellular carcinoma (Neuman et al., 2014). NAFLD has become a major 

concern for public health as it is projected to be the most common cause of liver 

transplantation needs by the year 2030 (Jayakumar, 2018). 

The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed, ligand-activated 

transcription factor that is widely recognized for mediating the toxicity of environmental 

contaminants, including benzopyrene, coplanar polychlorinated biphenyls (PCBs) and 

dioxins (Duval et al., 2018). The AhR can also be activated by endogenous metabolic, 

dietary and microbial ligands (Seok et al., 2018). Several compelling lines of evidence 

indicate that AhR activity may contribute to the development of NAFLD. For example, 

mice with a constitutively active AhR (C-AhR) were found to exhibit spontaneous 

hepatic steatosis that was attributed to the AhR-mediated induction of CD36 (fatty acid 

translocase) (Lee et al., 2010; Angrish et al., 2012). Steatosis was accompanied by 

decreased fatty acid oxidation, increased peripheral fat mobilization, and increased 

hepatic oxidative stress. Similarly, exposure of mice to the high-affinity, exogenous AhR 

ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was found to elicit steatohepatitis, 
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based on increased hepatic triglyceride levels and liver pathology with ballooning 

degeneration, lobular inflammation, and microvesicular steatosis (Lu et al., 2011).  

Activation of the AhR can also impact fibrogenesis, which is a wound-healing 

response characterized by the deposition of extracellular matrix proteins such as collagen. 

AhR deficiency is associated with increased collagen deposition and liver fibrosis, which 

indicates that endogenous AhR activity may be important for limiting fibrogenesis 

(Fernandez-Salguero et al., 1995; Fernandez-Salguero et al., 1997; Zaher et al., 1998; 

Peterson et al., 2000). This is supported by recent reports that AhR activation with the 

endogenous ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester 

(ITE) suppressed liver fibrosis in mice treated with carbon tetrachloride (CCl4) (Yan et 

al., 2019). In contrast, exogenous activation of the AhR with TCDD is associated with 

increased fibrogenesis. For example, chronic treatment of mice with TCDD produced 

liver fibrosis, increased production of the pro-fibrogenic soluble mediator transforming 

growth factor-beta (TGFβ), and increased inflammation and myofibroblast activation, all 

of which were not observed in AhR knockout mice treated with TCDD (Pierre et al., 

2014).  

Despite the prevalence of NAFLD, only a small portion of patients will develop 

inflammation, progressive fibrosis, and chronic liver disease (Bertot & Adams, 2016). 

Although NAFLD pathogenesis is not yet fully understood, risk factors include obesity, 

dyslipidemia, and insulin resistance (Loomba & Sanyal, 2013). A “two-hit hypothesis” 

has been proposed for NAFLD progression, in which a “first hit,” such as insulin 

resistance, obesity or genetic factors, causes excess triglycerides to accumulate in the 

liver, which sensitizes the organ to a “second hit” (oxidative stress, proinflammatory 
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cytokines, mitochondrial dysfunction), leading to inflammation and fibrogenesis (Marra 

& Lotersztajn, 2013). Another hypothesis is that interruption of triglyceride synthesis 

initiates free fatty acid (FA)-mediated lipotoxicity, which then leads to NASH and 

fibrosis (Jou et al., 2008; Trauner et al., 2010). It has been proposed that exposure to 

environmental contaminants could contribute to NAFLD progression (Marrero et al., 

2005; Zein et al., 2011). It is possible that TCDD-induced AhR activation could function 

much like the second hit and increase progression to NASH and advanced liver injury. 

For example, in a mouse model of diet induced obesity, chronic administration of a low 

dose of TCDD increased liver fibrosis and steatosis and altered gene expression related to 

hepatic lipid metabolism (Duval et al., 2017). Mice in this study were treated with carbon 

tetrachloride (CCl4) for four weeks to produce mild liver damage and fibrosis. Then, mice 

were given a single dose of TCDD at the beginning of the fifth week. At the end of the 5-

week experiment, it was observed that TCDD exacerbated liver damage, steatosis, 

inflammation, myofibroblast activation, and expression of fibrogenesis-related genes, 

consistent with advanced liver disease (Lamb et al., 2016; Chapter 3).   

In this study, we tested the hypothesis that acute exposure to TCDD provides the 

second hit needed to cause NAFLD progression in CCl4-treated mice. We used RNA-

sequencing to identify differentially expressed genes between CCl4-treated mice with and 

without TCDD. Genes pertaining to insulin signaling, glucose metabolism and lipid 

homeostasis were severely modulated in CCl4-treated mice with TCDD. Furthermore, 

progression of NAFLD, and dysregulation of NAFLD-associated genes were found to be 

absent when the AhR was conditionally knocked-out from hepatocytes. Results from this 

study highlight a cell-specific role for AhR signaling in regulating NAFLD progression. 
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Animal Treatment:  

Mice with AhR-deficient hepatocytes (AhRΔHep) were created using a Cre-Lox 

system as previously described (Chapter 3). Double AhR floxed mice were used as 

controls (AhRfl/fl). Treatment groups (n=8) were set up with mice that were 8 weeks of 

age. Briefly, mice were treated twice per week with 1 ml/kg CCl4 (Sigma-Aldrich, St. 

Louis, MO) diluted 1:4 in corn oil by gavage for a total of 5 weeks. During the final 

week, mice were gavaged with 100 μg/kg TCDD (Cambridge Isotope Laboratories, 

Andover, MA) diluted in peanut oil or peanut oil alone (Veh). Necropsies were 

performed at the end of week 5 and mouse livers were excised out and snap-frozen in 

liquid nitrogen. Mice were housed in a 12:12 h light:dark cycle, with food and water 

available ad libitum. All animal experiments were approved by the Institutional Animal 

Care and Use Committee at Boise State University and were conducted in compliance 

with the regulations and institutional policies that govern animal care and use. 

 

Histopathology: 

Histopathological slides were prepared as previously described (Chapter 3). 

Briefly, 5μm paraffin embedded sections were stained with hematoxylin and eosin 

(H&E) for visualization of steatosis. Slides were imaged on an Olympus BX45 dual 

headed compound microscope at 400x magnification.  
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Glucose Quantitation Assay: 

Serum glucose was quantified using a glucose colorimetric assay kit according to 

the manufacturer’s specifications (Cayman Chemical, Ann Arbor MI). Quantitation for 

each sample (n=5) was conducted in duplicate.  

 

Triglyceride Quantitation Assay: 

Triglyceride content from total liver homogenate was quantified using a 

triglyceride colorimetric assay kit (Cayman Chemical, Ann Arbor MI). Quantitation for 

each sample (n=5) was conducted in duplicate.  

 

RNA Extraction: 

RNA was extracted from cryogenically stored total liver (20 mg). Samples were 

homogenized using a dounce homogenizer and total RNA was extracted using an 

E.N.Z.A.® Total RNA kit (Omega Bio-Tek, Norcross, GA). Quality of RNA was 

verified on a 2100 Bioanalyzer using with an RNA 6000 Nano kit (Agilent, Santa Clara, 

CA).  

 

RNA-sequencing, Mapping and Analysis: 

RNA-sequencing was performed at the University of Oregon, GC3F 

(https://gc3f.uoregon.edu/).  Briefly, Illumina libraries from three biological replicates  

(n = 3) were prepared using a QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, 

Vienna, Austria)., after which, all samples were sequenced using an Illumina Hiseq 4000 

sequencer. Reads of 1 × 75 bp were demultiplexed and adapter sequences were removed 
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using Trim Galore v0.5.0. Trimmed reads were then assessed for quality using FASTQC 

v0.11.8. Reads were then mapped to a mouse reference genome (version GRCm38.p6) 

using Hisat2 v2.1.0 (Kim et al., 2015). Gene counts were determined using HTSeq 

v0.11.0 (Anders et al., 2015) after which, counts were normalized using the median-of-

ratios method with Deseq2 v1.22.2 (Love et al., 2014). Genes with an adjusted p-value < 

0.05 were considered differentially expressed. Differentially expressed genes (DEGs) 

were enriched for KEGG pathways using the ClueGO plug-in v2.5.1 (Bindea et al., 2009) 

in Cytoscape v3.7.0 (Shannon et al., 2003). Pathways with an FDR-adjusted p-value < 

0.05 were considered enriched. 

 

Qualitative real-time RT-PCR: 

Qualitative real-time PCR (qRT-PCR) was conducted as previously described 

(Chapter 3). Briefly, cDNA libraries were prepared from isolated RNA using an Applied 

Biosystems High Capacity cDNA Reverse Transcription kit (Thermo Fisher Scientific, 

Waltham, MA). Gene-specific primer sets (Table 4.1) were used in conjunction with 

Roche FastStart Essential DNA Green Master (Roche, Indianapolis, IN). Five biological 

replicates were used per treatment group. Gene expression was normalized to GAPDH 

and was quantified using the 2-ΔΔCq (fold-change) method normalized to the AhRfl/fl Veh 

treatment group. 
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Table 4.1 Primer Sequences 

Gene Primer sequence (5′ to 3′) Temp. (°C) 
Cd68 CCA ATT CAG GGT GGA AGA AA 

52 
CTC GGG CTC TGA TGT AGG TC 

Dgat2 GCG CTA CTT CCG AGA CTA CTT 
59 

GGG CCT TAT GCC AGG AAA CT 
G6pc TTC AAG TGG ATT CTG TTT GG  

53 
AGA TAG CAA GAG TAG AAG TGA C 

Gapdh CAA TGA CCC CTT CAT TGA CC 
60 

GAT CTC GCT CCT GGA AGA TG 
Gys2 GAG GCT GAG AGG GAT CGG CTA AA 

60 
TGG ACT TGG GGC AGC TCA TTT 

Insr TTT GTC ATG GAT GGA GGC TA 
54 

CCT CAT CTT GGG GTT GAA CT 
Irs1 TCC CAA ACA GAA GGA GGA TG 54 

CAT TCC GAG GAG AGC TTT TG 
Mttp AGC CAG TGG GCA TAG AAA ATC 

57 
GGT CAC TTT ACA ATC CCC AGA G 

Pklr CCG CAT CTA CAT TGA CGA CG 
53 

CCG TGT TCC ACT TCG GTC AC 
Slc2a2 ACC GGG ATG ATT GGC ATG TT 

57 
GGA CCT GGC CCA ATC TCA AA 

 
 

 

 

Statistical Analysis: 

Analyses were conducted using GraphPad Prism 7.0d (GraphPad Software, La 

Jolla, CA). Multiple comparisons between treatment groups were conducted using a two-

way ANOVA followed by a Bonferroni’s test. Statistical significance is reported in data 

with p < 0.05.  
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Results 

RNA-sequencing was conducted to assess differences in transcriptomes between 

TCDD-treated AhRfl/fl and AhRΔHep mice in our model system utilizing TCDD with CCl4-

induced liver injury. Specifically, we tried to identify what transcriptional changes 

occurred when the AhR was activated upon liver injury and what role AhR played in 

hepatocytes. RNA samples from each mouse liver had an average read depth of 12 M 

resulting in about 9.7 M high quality reads. When comparing the gene expression profiles 

of AhRfl/fl mice livers that had undergone CCl4/Veh or CCl4/TCDD, it was determined 

that 8,022 genes were differently expressed. When comparing the gene expression 

profiles of co-treated AhRΔHep mice against the CCl4/Veh, 1,128 genes were differentially 

expressed genes (Figure 4.1). These differences in sheer number of DEGs between the 

two mice genotypes indicate that AhR signaling in hepatocytes plays a major in 

mediating a major role of liver pathology progression in a CCl4/TCDD model system. 
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Figure 4.1 Knocking out AhR functionality from hepatocytes greatly reduces 
modulation of gene expression upon TCDD treatment in a liver injury model 

MA-plots depicting differentially expressed genes (red markers) per pairwise comparison 
in RNA-seq data. Pairwise comparisons are defined in the top right corner. Number of 
differentially expressed genes are listed in the bottom right corner.  

 

 

To elucidate what might have caused these major discrepancies in number of 

differentially expressed genes between the treatment groups, we enriched DEGs for 

KEGG pathways. Enrichment data for AhRfl/fl co-treated mice (referenced against 

CCl4/Veh AhRfl/fl mice) proved to have 51 KEGG pathways with an enrichment p-value 

< 0.05 (Supplementary Table 4.1). Alternatively, when enriching DEGs for co-treated 

AhRΔHep mice (referenced against CCl4/Veh AhRΔHep mice), only the pathway for D-

glutamine and D-glutamate metabolism was enriched (data not shown). It is remarkable 

that TCDD treatment in a CCl4 liver injury model has strikingly different effects on 

transcript expression in mice that have a functional AhR in hepatocytes when compared 

against mice that do not have a functional AhR in hepatocytes.  
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The most significant enriched KEGG pathway for the AhRfl/fl co-treatment group 

compared against AhRfl/fl CCl4/Veh was Non-Alcoholic Fatty Liver Disease (NAFLD). 

Significant enriched KEGG pathways pertaining to NAFLD are depicted in Table 4.2. 

We had never considered that we might be promoting the onset of NAFLD in our CCl4 

liver injury model system upon treatment with TCDD. We therefore looked for overt 

markers of NAFLD progression in histopathological data. The first stage of NAFLD is 

steatosis, characterized by the accumulation of fat droplets in the hepatocytes of the liver. 

H&E stained slides were used to assess steatosis in our model system (Figure 4.2). 

Histopathological scoring for steatosis was then conducted by a pathologist (Table 4.3). 

All non-Veh treatment groups elicited at least a mild steatosis pathology. However, 

TCDD and CCl4/TCDD treated AhRfl/fl mice demonstrated a more pronounced 

pathological response, with the co-treated group showing a significant increase against 

the CCl4-only treatment group. Based on this evidence, it stands to reason that steatosis is 

exacerbated in a liver injury model when AhR activation occurs.  

 

Table 4.2 Enriched KEGG Pathways from DEGs related to NAFLD 

KEGG Pathway Nr. Enriched 
Genes 

Upreg. 
Genes 

Downreg. 
Genes 

% Assoc. 
Gene -Log(P) 

Non-alcoholic fatty liver disease (NAFLD) 103 30 73 68.21 12.80 
Pyruvate metabolism 32 8 24 84.21 6.76 
Fatty acid degradation 35 1 34 70.00 3.71 
Insulin signaling pathway 73 42 31 52.14 1.98 

 
Differentially expressed genes in AhRfl/fl CCl4/TCDD (compared against AhRfl/fl 

CCl4/Veh) were enriched for KEGG pathways. NAFLD was the most significant 
pathway. Depicted pathways are those relevant to NAFLD. A full list of enriched 
pathways is available in Supplementary Table 1.  
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Figure 4.2 TCDD treatment worsens steatosis in mice with liver injury 
H&E liver sections were assessed for steatosis (400X magnification). Scale bar represents 
100μm. 

 
 

 
Table 4.3 Histopathological scoring results 

 Veh   TCDD   CCl
4
/Veh   CCl

4
/TCDD 

  AhR
fl/fl

 AhR
ΔHep

   AhR
fl/fl

 AhR
ΔHep

   AhR
fl/fl

 AhR
ΔHep

   AhR
fl/fl

 AhR
ΔHep

 

Steatosis (0–6)  0.63 ± 0.32 0.25 ± 0.16   2.75 ± 0.37 1.29 ± 0.29   1.29 ± 0.36 1.38 ± 0.42   3.18 ± 0.62
a
 2.11 ± 0.20 

Combined 
Necroinflammation 
Score (0-18) † 

0.88 ± 0.44 1.50 ± 0.63   2.75 ± 0.86 2.86 ± 0.94   1.29 ± 0.36 3.13 ± 0.97   11.45 ± 1.53
a
 4.00 ± 0.85

b
 

Fibrosis Score  
(0–6) †  0.38 ± 0.18 0.38 ± 0.18  0.63 ± 0.18 0.57 ± 0.20  3.00 ± 0.31 2.88 ± 0.30  3.55 ± 0.25 3.67 ± 0.24 

 
The Ishak scoring method was used to assess histopathological sections for gross markers 
of steatosis, necroinflammation and fibrosis (Ishak et al., 1995). Values represent mean ± 
SEM. ap-value < 0.05 when compared against AhRfl/fl CCl4/Veh. bp-value < 0.05 when 
compared against AhRfl/fl CCl4/TCDD. Eight individual mice were assessed were 
histological scoring. †Histological sections for these data can be found in Chapter 3. 
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Histopathological markers for later stages of NAFLD were assessed. 

Histopathological scoring for inflammation and fibrosis can be found in Table 4.3. The 

most robust necroinflammatory response was observed in co-treated AhRfl/fl mice. A 

necroinflammatory pathology was also observed in co-treated AhRΔHep mice, however, 

the response is significantly reduced when compared against the AhRfl/fl counterpart. A 

different trend was observed for fibrosis, however. CCl4/Veh induced a fibrosis 

pathology in either genotype. This seemed reasonable as CCl4 metabolism and toxicity is 

not dependent on AhR signaling. However, a similar degree of fibrosis was observed in 

co-treated mice in either genotype. This was unexpected because CCl4/TCDD treatment 

in AhRfl/fl mice elicited greater levels of steatosis and inflammation.  

 To investigate what molecular mechanisms might have yielded the co-treated 

AhRfl/fl mice to demonstrate a more aggressive steatosis response, we conducted RNA-

seq and assessed gene sets involved in lipid metabolism (Figure 4.3A). Expression of 

genes pertaining to lipid accumulation showed both an upregulation and downregulation 

trend. Cd36 is a fatty transporter that was upregulated in most treatment groups, more 

than likely leading to a larger intake of circulating lipids. Mttp encodes the protein 

microsomal triglyceride transfer protein which is essential for the formation of LDLs and 

VLDLs. These lipoproteins are essential for the release and circulation of triglycerides 

from the liver. RNA-seq reveals that Mttp gene expression was inhibited in co-treated 

AhRfl/fl mice. Triglycerides are synthesized by two evolutionary unrelated enzymes 

DGAT1 and DGAT2. RNA-seq reveals that gene expression of Dgat1 was almost 

unchanged across treatment groups and expression of Dgat2 was downregulated in co-

treated AhRfl/fl mice. qRT-PCR was used to verify gene expression levels of Cd36, Mttp, 
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and Dgat2. Cd36 qRT-PCR results are very similar to RNA-seq data. Although not 

statistically significant, an increase in expression of CD36 was observed in co-treated 

AhRfl/fl mice compared against their CCl4/Veh counterparts. Expression of Mttp was 

observed to decrease in either co-treated treatment group, although only co-treated 

AhRfl/fl mice showed a significant decrease. Gene expression for Dgat2 decreased slightly 

with most treatment groups compared against Veh, although co-treated AhRfl/fl mice 

showed a significant decrease when compared against their CCl4/Veh counterparts. Fatty 

acid synthesis was also assessed using RNA-seq. Although all fatty acid synthesis genes 

in co-treated AhRfl/fl mice were found to have been downregulated, Acaca and Acacb, 

both genes encoding the rate limiting enzyme acetyl-CoA carboxylase were found to be 

profoundly downregulated. Similarly, most genes involved in β-oxidation were 

downregulated in co-treated AhRfl/fl mice. Total liver triglycerides were assessed in all 

treatment groups (Figure 4.4). TCDD and CCl4/TCDD treated mice in AhRfl/fl genotype 

showed the greatest increase in liver triglyceride content, with co-treated AhRfl/fl mice 

showing a significant increase when compared against the CCl4/Veh counterparts. These 

results are show a strikingly similar trend when compared against the steatosis scoring 

conducted by a pathologist.  

  



108 
 

 

 
 

Figure 4.3 AhR signaling impedes fatty acid metabolism in control mice treated 
with TCDD in a liver injury model 

(A) Gene expression for markers of lipid metabolism was measured using RNA-seq from 
total liver homogenate. All treatment groups were compared against AhRfl/fl Veh for 
relative expression.  (B-D) Genes pertaining to lipid homeostasis were assessed via qRT-
PCR. Bars represent mean ± SEM for mice (n=5). Asterisks (*) denote a significant 
difference (p < 0.05). 
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Figure 4.4 Liver triglyceride accumulation occurs in control mice with upon 
TCDD treatment 

Steatosis is defined as the accumulation of fat droplets within hepatocytes. Liver 
triglycerides were quantified from total liver homogenates. Bars represent mean ± SEM 
for mice (n = 5). Asterisks (*) denote a significant difference (p < 0.05). 
 

 

There is some evidence to suggest that NAFLD is associated with dysregulation 

of insulin signaling (Marchesini et al., 1999; Pagano et al., 2002; Lomonaco et al., 2012). 

RNA-seq was used to assess expression of genes associated with insulin signaling (Figure 

5A). Gene expression for both the insulin receptor (Insr) and insulin receptor substrate 

(Irs1) were found to decrease upon co-treatment in either genotype, however, a more 

profound decrease was observed in AhRfl/fl mice. When bound to the insulin receptor, 

insulin receptor substrate recruits binding of p85/p55 proteins (Pik3r1, Pik3r2, Pik3r3). 

Expression of these three genes remained almost unchanged for Pik3r2 and showed a 

decrease in co-treated AhRfl/fl mice for Pik3r1 and Pik3r3. PI3-kinases (Pik3ca, Pik3cb, 

Pik3cd) are then recruited and bind to p85 which produce the cell signaling molecule 

PIP3. Gene expression for only Pik3cd increased with co-treatment in both genotypes, 

while expression for the other two genes remained unchanged for all treatment groups. 

Upon release, PIP3 binds to phosphoinositide dependent kinase (Pdpk1), which then 

phosphorylates atypical protein kinase C (Prkci, Prkcz) and protein kinase B (Akt1, Akt2, 
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Akt3). Gene expression of Pdpk1 remained unchanged across all treatment groups. 

Expression of Prkci overall remained unchanged, while Prkcz showed a large decrease in 

expression for the co-treated AhRfl/fl mice. Atypical protein kinase C functions to activate 

SREBP-1C (Srebf1) which activates fatty acid synthesis and glycolysis. Srebf1 

expression was found to decrease in co-treated AhRfl/fl mice. Glycogen synthesis is 

largely controlled by protein kinase B. Hepatocytes mainly produce Akt2 (Morales-Ruiz 

et al., 2017) which was found to decrease in gene expression in both co-treated groups. 

Hepatic stellate cells (HSCs) mainly produce Akt1 but can also produce Akt3 if the cells 

are activated (Morales-Ruiz et al., 2017). Expression for both of these genes increased in 

mainly co-treated AhRfl/fl mice. All three isoforms of protein kinase B activate PP1. The 

PP1 complex then activates glycogen synthase. The two hepatic regulatory subunits of 

PP1 – Ppp1r3b and Ppp1r3c – were found to greatest decrease in expression in co-treated 

AhRfl/fl mice, although a decrease can be seen in other treatment groups as well. 

RNA-seq gene expression for key mediators in insulin signaling and glucose 

intake were verified by qRT-PCR (Figure 5B/C). Although not statistically significant, 

TCDD, CCl4, and CCl4/TCDD treated AhRfl/fl mice all showed a decrease in Insr 

expression, with the greatest decrease occurring in the co-treated mice. Although a slight 

decrease for Insr gene expression was observed in AhRΔHep mice, it was not as much of a 

decrease as that seen in the AhRfl/fl mice. Irs1 gene expression in AhRfl/fl mice was 

observed to decrease with TCDD or CCl4/TCDD treatment, while only co-treated 

AhRΔHep mice showed a decrease.  
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Figure 4.5 Insulin signaling is impeded in control mice that were treated with 
TCDD in a liver injury model 

Dysregulation of glucose metabolism is a risk factor for the development of NAFLD. 
Insulin signaling plays a major role in glucose uptake of cells. (A) RNA-sequencing was 
used to assess insulin signaling from total liver homogenates. All treatment groups were 
compared against AhRfl/fl Veh for relative expression. (B/C) qRT-PCR was used to verify 
gene expression levels of select genes pertaining to insulin signaling. Bars represent 
mean ± SEM for mice (n=5). Asterisks (*) denote a significant difference (p < 0.05). 
 

 

Because changes in gene expression for insulin signaling were severely 

dysregulated in co-treated AhRfl/fl mice, we investigated glucose levels in the serum of 



112 
 

 

mice (Figure 4.6). Serum glucose levels were fairly consistent across all treatment levels 

except for co-treated AhRfl/fl mice, which depicted hypoglycemic levels. Changes in 

insulin signaling probably resulted in changes of blood serum glucose levels leading to 

the possibility that glucose metabolism was altered in the liver.  

 

 
Figure 4.6 Co-treated control mice demonstrate decreased 

 levels of serum glucose 
Serum glucose levels were evaluated in mice at the end of the study. Bars represent mean 
± SEM for mice (n=5). Asterisks (*) denote a significant difference (p < 0.05). 

 
 

 

We investigated dysregulation of glucose metabolism using RNA-seq (Figure 

4.7A). Select gene expression can be observed in a metabolic pathway in Supplementary 

Figure 1. Glucose metabolism begins with transport of the sugar across the cell 

membrane. In the liver, glucose transport occurs in an insulin-independent manner 

through the use of the constitutively expressed glucose transporters GLUT2 (Slc2a2) and 

GLUT9 (Slc2a9). Although most treatment groups showed a slight increase in gene 

expression for Slc2a2, co-treated AhRfl/fl mice showed downregulation of this gene. 

Similarly, expression of Slc2a9 was found to greatly decrease in co-treated AhRfl/fl mice.  
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An important regulatory step in glycolysis involves the conversion of glucose to 

glucose-6-phosphate. In the liver, this step is controlled primarily by Glucokinase (Gck), 

a low affinity isoform of hexokinase that is typically upregulated with elevated blood 

glucose.  Gene expression of Gck was profoundly decreased in the co-treated AhRfl/fl 

mice, consistent with decreased levels of serum glucose in this set of mice. Another 

important regulatory step in glycolysis involves the production of pyruvate from 

phosphoenolpyruvate by the enzyme pyruvate kinase. There are four isoforms of this 

enzyme encoded by two genes, Pklr and Pkm. In the liver, this step of glycolysis is 

primarily catalyzed by the isoform PKL, an alternatively spliced product of Pklr. Our 

data suggests that expression of this gene decreased in co-treated AhRfl/fl mice but 

slightly increased in co-treated AhRΔHep mice. The gene Pkm encodes the two isoforms 

PKM1 and PKM2 and are primarily expressed in muscle and brain, but can be expressed 

in liver during circumstances of cell proliferation such as during tumorigenesis (Mendez-

Lucas et al., 2017). Interestingly, Pkm gene expression increased with TCDD and 

CCl4/TCDD treatment in both genotypes, although the increase was greatest in AhRfl/fl 

mice. We also assessed gene expression changes in gluconeogenesis. The enzymes 

controlling the two regulatory steps, fructose-bisphosphatase 1 (Fkp1) and glucose-6-

phosphatase (G6pc) both showed a decrease in gene expression in co-treated AhRfl/fl 

mice, and minimal changes across other treatment groups.  

Long term storage of glucose involves the production of glycogen in the liver and 

skeletal muscle. Glycogen synthesis is regulated primarily by the enzyme glycogen 

synthase (Gys1, Gys2), in which this enzyme polymerizes glucose onto a nucleation site 

on the protein glycogenin (Gyg). Gys2 expression decreased in only co-treated AhRfl/fl 
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mice, while Gys1 showed a slight increase in only co-treated AhRΔHep mice. Interestingly, 

Gyg expression increased at least slightly in most treatment groups, with the greatest 

increase seen in co-treated AhRfl/fl mice. Gene expression regulatory steps in glucose 

metabolism were verified with qRT-PCR (Figure 4.7B-E). Gene expression for Slc2a2 

was found to slightly decrease in co-treated AhRfl/fl mice and slightly increase in co-

treated AhRΔHep mice. Pklr expression was shown to decrease with TCDD and 

CCl4/TCDD treatment in AhRfl/fl mice, while a slight increase was observed in co-treated 

AhRΔHep mice. G6pc gene expression decreased in both genotypes of co-treated mice. 

Lastly, Gys2 expression decreased with TCDD and CCl4/TCDD treatment in AhRfl/fl 

mice, with a greater decrease seen in the co-treatment group.  
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Figure 4.7 AhR signaling dysregulates central carbon  

metabolism in co-treated control mice. 
(A) Glucose metabolism was assessed using RNA-seq from total liver homogenates.  
(B) qRT-PCR was also conducted to evaluate gene expression levels of the non-insulin 
dependent GLUT transporter SLC2A2 (GLUT2). (C-E) qRT-PCR was used to validate 
regulatory steps in glycolysis, gluconeogenesis, and glycogen synthesis. Bars represent 
mean ± SEM for mice (n=5). Asterisks (*) denote a significant difference (p < 0.05). 
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Discussion 

We previously showed that administering a single dose of TCDD to mice with 

CCl4-induced liver damage resulted in contrasting pathologies between AhRfl/fl (control) 

mice and AhRΔHep mice (hepatocyte-specific AhR knockdown) (Chapter 3). In this 

previous study, it was verified that liver toxicity mediated by TCDD, as demonstrated by 

increased hepatomegaly, elevated serum ALT levels, and increased confluent necrosis, 

relies on AhR signaling in hepatocytes. Furthermore, this study demonstrated that TCDD 

treatment partially mediates liver inflammation in mice with CCl4-induced liver damage. 

This inflammation, in part, occurs through AhR signaling in hepatocytes, as AhRΔHep 

mice showed a partial, albeit not total, decrease in liver inflammation when compared 

against their AhRfl/fl counterparts. Furthermore, we demonstrated that AhR signaling in 

hepatocytes is required for a maximal HSC activation when mice were co-treated with 

CCl4/TCDD. HSC activation (which occurs in response to liver injury and inflammation) 

was greater in co-treated AhRfl/fl mice than in AhRΔHep mice. It stands to reason that 

higher levels of HSC activation observed in co-treated AhRfl/fl mice are a result of the 

higher levels of hepatic injury and inflammation observed in this same treatment group. 

Furthermore,  because the AhR functions as a transcription factor, gene expression could 

be altered by TCDD in our model system that elicit cellular dysfunction and ultimately 

induce hepatic necrosis and inflammation. We conducted RNA-sequencing to identify 

these transcriptional changes in gene expression. 

Enrichment of differentially expressed genes in TCDD treated AhRfl/fl mice that 

had CCl4-induced liver injury suggested that a high number of genes pertaining to non-

alcoholic fatty liver disease (NAFLD) had been modulated. NAFLD progression begins 
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with simple steatosis, which is an accumulation of fats packaged into lipid vacuoles in the 

hepatocytes of the liver. Several studies have demonstrated that administration of TCDD 

can result in steatosis. For example, subchronic administration of TCDD (30 μg/kg) for 

28 days has been shown to induce lipid accumulation in the livers of mice, as 

demonstrated by oil red O histopathological staining (Nault et al., 2016). In another study 

where mice were fed a high fat diet for 14 weeks, which itself promotes hepatic steatosis, 

weekly administration of TCDD (5 μg/kg) for the final 6 weeks resulted in increased 

triglyceride content of liver (Duval et al., 2017). Our results suggest that a single dose of 

TCDD administered to mice with CCl4-induced liver damage also promotes steatosis as 

we observed increased liver triglyceride levels in co-treated AhRfl/fl mice. Furthermore, 

TCDD did not induce triglyceride accumulation when the AhR was knocked out of 

hepatocytes, suggesting that AhR signaling in hepatocytes drives TCDD-induced lipid 

accumulation in the liver.  

Previous studies have demonstrated that dietary or circulating lipids are the major 

source of fatty acids that accumulate in the liver in response to TCDD treatment (Angrish 

et al., 2012; Yao et al., 2016). In these studies, it was shown that TCDD induces gene 

transcriptional upregulation of the fatty acid (FA) transporter Cd36 allowing for 

circulating fatty acids to be in taken into the liver (Lee et al., 2010; Yao et al., 2016; 

Nault et al., 2017). Our data is in agreement with these other studies, demonstrating that 

TCDD treatment in mice with CCl4-induced liver injury elicits gene transcriptional 

upregulation of Cd36, suggesting that circulating fatty acids are a source of lipids for 

hepatic steatosis in our model. Furthermore, our data also suggest that TCDD 

administration inhibits de novo fatty acid synthesis which is in agreement with other 
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studies as well (Lee et al., 2010; Angrish et al., 2012; Tanos et al., 2012; Nault et al., 

2017). Steatosis occurs not only because of increased lipid storage but also because of 

decreased lipid usage and export. TCDD has been shown to inhibit β-oxidation of free 

fatty acids (Lee et al., 2010; Nault et al., 2017) as well as inhibit secretion of very low 

density lipoproteins (VLDL) containing triglycerides (Nault et al., 2017). TCDD 

administration to mice with CCl4-induced liver injury elicited transcriptional 

downregulation of genes pertaining to β-oxidation, suggesting that the degradation of free 

fatty acids was impaired in our study. Furthermore, genes pertaining to triglyceride 

synthesis and export, such as Dgat2 and Mttp, respectively, decreased in expression with 

TCDD treatment. Overall, transcriptional data in our study suggests that TCDD promotes 

steatosis through the accumulation of circulating fatty acids while preventing degradation 

or export of lipids. Furthermore, these transcriptional changes in lipid metabolism are not 

observed in AhRΔHep mice suggesting that TCDD steatosis in mice through AhR 

signaling in hepatocytes.  

Accumulation of free fatty acids has been shown to be lipotoxic in rodent models 

when triglyceride synthesis was inhibited (Listenberger et al., 2003; Yamaguchi et al., 

2007). In one of these studies, obese mice that underwent DGAT2 antisense 

oligonucleotide treatment demonstrated decreased levels of steatosis than their untreated 

counterparts due to decreased triglyceride vacuolation (Yamaguchi et al., 2007). 

However, these mice with decreased steatosis went on to develop increased lobular 

necroinflammation and fibrosis, while demonstrating increased hepatic free FAs and 

markers of lipid peroxidation (Yamaguchi et al., 2007). Free FAs in the liver are typically 

non-covalently bound to soluble fatty acid carriers termed fatty acid binding proteins 
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(FABPs). FABPs function to sequester free FAs and aid in their transport and 

metabolism. Recent studies have shown that FABP1, the predominant FABP in the liver, 

functions to reduce the lipotoxic effect of free FAs (Guzmán et al., 2013). Co-treated 

AhRfl/fl mice in our study demonstrated a log2 fold-change of -3.94 for the expression of 

Fabp1 when compared against vehicle treated AhRfl/fl mice (data not shown).  It is 

possible that the necroinflammation observed in our mice co-treated with CCl4/TCDD is 

a direct result of free FA lipotoxicity, as mice in this treatment group demonstrated gene 

transcriptional patterns of increased FA uptake and decreased lipid export along with 

decreased expression of Fabp1. 

Lipid metabolism in the liver is closely regulated by insulin signaling. 

Furthermore, insulin resistance has been linked to the development of NAFLD 

(Marchesini et al., 1999; Pagano et al., 2002; Lomonaco et al., 2012). Since lipid 

metabolism appeared to be severely dysregulated in our model, we assessed in insulin 

signaling which regulates not only lipid metabolism in the liver, but also glucose 

metabolism. RNA-seq enrichment data indicated that insulin signaling was 

downregulated on a transcriptional level while repressors of insulin signaling were 

upregulated. These changes in insulin signaling potentially impact glucose metabolism, 

as is seen in patients with NAFLD. For example, silencing SREBP-1C, a downstream 

insulin signaling target, reduces expression of glycogen synthesis related genes (Ruiz et 

al., 2014). Our data suggests that a single dose of TCDD decreases in Srebf1 expression 

in AhRfl/fl mice with CCl4-induced liver injury. Furthermore, a study suggested that 

overexpression of the insulin targets PPP1R3B and PPP1R3C both promote glycogen 

storage (Agius, 2015). PPP1R3B and PPP1R3C are both the hepatic regulatory 
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components of PP1, a phosphatase which activates glycogen synthase. Our data suggests 

that treatment with TCDD downregulates the expression of the hepatic regulatory 

components of PP1, Ppp1r3b and Ppp1r3c, which indicates suppression of glycogen 

production. It is unclear whether glycogen reserves had been depleted, however, it stands 

to reason that because hypoglycemia was observed in our co-treated AhRfl/fl mice, this 

treatment group must have depleted hepatic glycogen stores. However, it is important to 

note that these observations were not present in co-treated AhRΔHep mice, indicating that 

the negative consequences of AhR signaling in a CCl4 liver injury model occurs 

presumably through the AhR in the hepatocytes.  

In summary, our results suggest that TCDD treatment elicits a NAFLD-like 

phenotype in mice with CCl4-induced liver injury. Furthermore, NAFLD progression is 

dependent on AhR signaling in hepatocytes in this model. Our results suggest that TCDD 

treatment elicits steatosis by enhancing free FA uptake and impeding the export of 

triglycerides. This buildup of free FAs has the potential to elicit oxidative stress 

(Friedman et al., 2018) which could be a driving factor for promoting the 

necroinflammation observed in our model. Although our study demonstrated that a single 

dose of TCDD administered to mice with CCl4-liver injury is enough to promote the 

onset of NAFLD, the exact changes in gene expression that ultimately drive liver injury 

and inflammation remain unknown.  
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Supplementary Data 

Supplementary Table 4.1 Enriched KEGG Pathways from DEGs  

KEGG Pathway Nr. Genes % Assoc. 
Gene -Log(P) 

Non-alcoholic fatty liver disease (NAFLD) 103 68.21 12.80 
Complement and coagulation cascades 63 71.59 8.75 
Parkinson disease 89 61.80 7.33 
Huntington disease 112 57.73 7.01 
Pyruvate metabolism 32 84.21 6.76 
Oxidative phosphorylation 83 61.94 6.73 
Peroxisome 57 67.85 6.36 
Alzheimer disease 101 57.71 6.15 
Thermogenesis 125 53.87 5.44 
Propanoate metabolism 26 83.87 5.14 
Valine, leucine and isoleucine degradation 40 71.42 4.82 
Fatty acid degradation 35 70.00 3.71 
Prion diseases 26 76.47 3.64 
Glyoxylate and dicarboxylate metabolism 24 77.41 3.36 
Arginine and proline metabolism 34 68.00 3.25 
AGE-RAGE signaling pathway in diabetic complications 59 58.41 3.24 
Tryptophan metabolism 32 69.56 3.13 
Focal adhesion 102 51.25 2.88 
Small cell lung cancer 54 58.69 2.83 
p53 signaling pathway 44 61.97 2.81 
ErbB signaling pathway 50 59.52 2.78 
Glycine, serine and threonine metabolism 28 70.00 2.76 
Glutathione metabolism 40 62.50 2.70 
FoxO signaling pathway 72 54.54 2.69 
Fc gamma R-mediated phagocytosis 51 58.62 2.64 
Proteoglycans in cancer 103 50.49 2.53 
Autophagy 70 53.84 2.40 
Salmonella infection 46 58.97 2.39 
AMPK signaling pathway 68 53.96 2.35 
Ferroptosis 28 68.29 2.35 
Chronic myeloid leukemia 45 59.21 2.31 
Apoptosis 72 52.94 2.24 
Insulin signaling pathway 73 52.14 1.98 
Protein processing in endoplasmic reticulum 83 50.92 1.94 
Cholesterol metabolism 31 63.26 1.93 
Histidine metabolism 18 75.00 1.93 
B cell receptor signaling pathway 42 58.33 1.85 
Bile secretion 42 58.33 1.85 
Drug metabolism 49 56.32 1.85 
Arginine biosynthesis 15 78.94 1.85 
Osteoclast differentiation 67 52.34 1.83 
Insulin resistance 59 53.63 1.82 
Colorectal cancer 49 55.68 1.81 
Pancreatic cancer 43 57.33 1.75 
Retinol metabolism 50 54.94 1.70 
Citrate cycle (TCA cycle) 22 68.75 1.70 
Legionellosis 35 60.34 1.70 
Cysteine and methionine metabolism 31 62.00 1.69 
PPAR signaling pathway 47 55.29 1.58 
TNF signaling pathway 58 52.72 1.53 
Central carbon metabolism in cancer 37 57.81 1.42 

 
Differentially expressed genes in AhRfl/fl CCl4/TCDD (compared against AhRfl/fl 

CCl4/Veh) were enriched for KEGG pathways.  
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CHAPTER 5: CONCLUSION 

 

Concluding Remarks 

The AhR is an interesting receptor as it is widely known for mediating toxicity of 

TCDD and other chemicals, yet many of the mechanisms remain unknown. One of the 

reasons it has been difficult to identify specific mechanisms of TCDD toxicity is that the 

direct cellular targets are not necessarily clear, and many of the toxic effects appear to be 

tissue-specific. Furthermore, while TCDD toxicity is attributed to AhR-mediated changes 

in gene expression, mechanisms of transcriptional regulation by the AhR are not 

necessarily straightforward. The goal of this project was to use mice with cell-specific 

AhR knockdown to determine how TCDD impacted individual types of cells in the liver. 

Furthermore, we used global transcriptome analysis to determine how removing AhR 

signaling in a particular type of liver cell impacted TCDD-induced transcriptional 

changes.  

The research described in Chapter 3 focused on understanding how TCDD 

exposure impacted the activation to HSCs, which are the central mediators of liver 

fibrosis. We previously found that TCDD treatment increased HSC activation in vitro, 

which led us to speculate that these cells were direct targets for TCDD (Harvey et al., 

2016). Work from our lab also determined that TCDD increased HSC activation in mice 

with CCl4-induced liver injury (Lamb et al., 2016). These findings led us to speculate that 

HSCs could be a direct cellular target of TCDD. This notion is supported by the finding 
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that TCDD has a half-life of 52 days in HSCs, which is four times longer than the half-

life in hepatocytes (13 days) (Håkansson & Hanberg, 1989). Increased duration of 

exposure to TCDD increases the likelihood that these cells will be impacted by TCDD. 

However, results from this study indicate that, whatever is happening to HSCs in TCDD-

treated mice is not occurring through direct effects on these cells. In other words, TCDD 

treatment probably does not induce HSC activation directly, based on our finding that 

TCDD exacerbated HSC activation in CCl4-treated mice regardless of whether or not 

HSCs contained the AhR. Furthermore, removing the AhR from HSCs had no impact on 

liver damage and inflammation, which are the two main drivers for HSC activation 

(Tsuchida & Friedman, 2017). It seems likely that TCDD increases either one or both of 

these processes to exacerbate HSC activation in CCl4-treated mice. Under these 

circumstances, it would be accurate to say that TCDD indirectly increases HSC activation 

in the injured liver. Furthermore, we found evidence that these indirect effects are 

mediated by AhR signaling in hepatocytes. We found that knocking out the AhR from 

hepatocytes completely abolished the hepatonecrotic effects of TCDD and diminished 

hepatic inflammation, which corresponded to lower levels of HSC activation. From these 

results, we envision a model in which TCDD treatment exacerbates injury and 

inflammation in an already injured liver to exacerbate HSC activation.   

Another major finding of this work is that administration of TCDD to CCl4-

treated mice produced histopathological endpoints and gene expression profiles that are 

consistent with non-alcoholic fatty liver disease (NAFLD) and, more specifically, a 

subset of this disease called non-alcoholic steatohepatitis (NASH). Although the precise 

mechanisms that underlie NAFLD/NASH development are unknown, they are perhaps 
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best explained by a “multiple-hit” mechanism. Under this model, dietary, environmental, 

and genetic factors collectively promote the development of insulin resistance, obesity 

and changes in gut microbiota, which in turn result in NAFLD pathologies (Tilg & 

Moschen, 2010). Insulin resistance has been shown to promote fatty acid (FA) uptake in 

the liver (Bugianesi et al., 2010). Accumulation of free fatty acids cause lipotoxicity, 

which exerts oxidative stress and subsequent mitochondrial dysfunction (Cusi, 2009). 

Few studies have explored the possibility that exposure to TCDD could be a sufficient 

“hit” for producing NAFLD in a predisposed (i.e., CCl4-injured) liver. Our results 

demonstrate that exposure of CCl4-treated mice to TCDD produced endpoints of 

NAFLD/NASH, whereas no evidence of NAFLD was found in mice treated with either 

CCl4 or TCDD alone. Furthermore, RNA sequencing revealed that CCl4/TCDD-treated 

mice also had dysregulated insulin signaling, and insulin resistance is a known risk factor 

for NAFLD development. FA metabolism was also altered in these mice, as evidenced by 

increased gene expression for fatty acid translocase (Cd36), and decrease expression of 

all genes related to β-oxidation. Based on transcriptome data alone, it is impossible to 

determine if hepatic FA levels increased lipotoxicity. However, one could speculate that 

an increased expression of fatty acid translocase would increase peripheral FA intake into 

the liver, and a decrease in β-oxidation would prevent subsequent degradation of these 

FAs. These events would be expected to increase lipotoxicity, which could be another 

mechanism by which TCDD produces NASH. Finally, we found that TCDD have no 

impact on NAFLD development if the AhR was conditionally knocked out of 

hepatocytes. Thus, results from this study raise the possibility that TCDD exposure could 
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function as one of the “hits” required to promote the development of NAFLD, and that 

this occurs through AhR signaling in hepatocytes.  

 

Future Directions 

 One of the biggest questions that arose as a result of this project was why does 

TCDD activate certain gene networks in a damaged liver but not in a healthy liver? For 

example, transcriptome analysis revealed that 8022 genes were differentially expressed 

when a single dose of TCDD was administered to CCl4-treated mice (Chapter 4). 

However, when a single dose of TCDD was administered to mice with a healthy liver, 

only 255 genes were differentially expressed (data not shown). This raises the intriguing 

possibility that, when activated by TCDD, the AhR binds to different XREs, and possibly 

even more XREs, in the injured liver compared to a healthy liver.  

 TCDD could induce AhR to bind to a more diverse repertoire of XREs in an 

injured liver through the increased accessibility of XREs. This could occur as a result of 

liver injury itself, as oxidative stress has been shown to induce heterochromatin loss 

(Kreuz, 2016). Loss of tightly packed chromatin could expose more XREs that the AhR 

can bind to, which would increase the diversity of gene expression. In addition, TCDD 

treatment has been shown to increase histone acetylation, which promotes the formation 

of euchromatin to expose the promoter regions for the genes Cyp1a1 and Cyp1b1 

(Morgan & Whitlock., 1992; Okino & Whitlock, 1995; Beedanagari et al., 2010). The 

histone acetyltransferase protein p300 was identified to be responsible for these 

acetylation events (Beedanagari et al., 2010). Since TCDD has already been shown to 

directly induce chromatin remodeling events around the promoter regions of Cyp1a1 and 
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Cyp1b1, it stands to reason that other promoter regions would also be affected. Proving 

that AhR-regulated gene expression in an injured liver is more diverse due to increased 

accessibility of chromatin binding sites could be achieved by identifying AhR binding 

locations in the injured and healthy liver. ChIP-sequencing (ChIP-seq) is a method used 

to determine interactions between proteins and DNA. It harnesses both capabilities of 

chromatin immunoprecipitation (ChIP) and next generation sequencing, and would 

enable the selective sequencing of the specific DNA fragments that were bound to the 

AhR. By using this method, it would be possible to enrich locations of the genome for 

which AhR bound in a healthy vs an unhealthy liver. Results from these ChIP-seq studies 

could prove that the TCDD-activated AhR is more transcriptionally active in an injured 

liver than in a healthy liver. 

In addition to chromatin remodeling, it would be useful to look at DNA 

methylation between a healthy and an unhealthy liver. DNA methylation is an epigenetic 

modification in which cytosine residues throughout a genome are methylated. DNA 

methylation events occur at CpG sites, which are sites in which a cytosine is immediately 

followed by a guanine (Moore et al., 2013). Furthermore, most (~70%) promoters reside 

within CpG islands, which are areas in a genome that are rich in CpG sites (Saxonov et 

al., 2006). Methylation of CpG sites has been shown to induce gene silencing (Bird, 

2002). A study looking at differential methylation sites in patients with advanced 

NAFLD found that 69,247 sites were differentially methylated when compared to 

patients with mild NAFLD (Murphy et al., 2013). Approximately 70% of those sites were 

determined to be hypomethylated, although the mechanisms remain unclear as to why 

such aggressive demethylation occurs. This raises the possibility that patients with 
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advanced NAFLD could have different transcription patterns compared to healthy 

patients, simply because of differences in DNA methylation. In our study, TCDD was 

shown to induce a NAFLD-like pathology in mice with pre-existing (CCl4-induced) liver 

injury, and this corresponded to a radically different transcriptome compared to mice 

treated with CCl4 alone. Furthermore, the genetic sequence for XREs (the location in 

which activated AhR canonically binds to) is 5'-GCGTG-3', which itself contains one 

CpG. It stands to reason that TCDD could induce differences in transcription patterns by 

promoting the onset of NAFLD and subsequent demethylation of the genome, potentially 

in regions that are rich in XREs. Bisulfite sequencing is a method used to identify areas 

of methylation within a genome. This method utilizes a bisulfite treatment of DNA to 

convert any unmethylated cytosines to uracil prior to sequencing. Using this method, it 

would be possible to determine if promoter regions of genes were demethylated after 

TCDD treatment. Demethylation of promoter regions could indicate that downstream 

genes were more transcriptionally active. Furthermore, data from this study could be 

compared against data from a ChIP-seq study to determine if AhR binding occurs more 

frequently in areas of hypomethylation in CCl4/TCDD-treated mice. 

Results from future studies could shed light on mechanisms of AhR-mediated 

gene regulation and provide information about how such regulation could differ 

depending on the disease. This information will be important for identifying mechanisms 

of toxicity of exogenous AhR ligands, such as TCDD, which often elicit tissue-specific 

effects. Furthermore, understanding how the AhR regulates transcription in the presence 

of confounding factors, such as inflammation, oxidative stress or fibrogenesis, will be 

particularly important for the development of novel AhR ligands for therapeutic use.  
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