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ABSTRACT 

The work presented in this thesis contributes to ongoing development of an 

efficient workflow for identification of lead compounds, based on the molecular scaffold 

of α-conotoxin MII, for drug therapies targeting nicotinic acetylcholine receptors. 

Nicotinic acetylcholine receptors (nAChRs) are pentameric, ligand-gated ion channels 

with distribution throughout the central nervous system and are implicated in a variety of 

neurological diseases including schizophrenia, nicotine addiction, Alzheimer’s disease, 

and Parkinson’s disease. However, ligand effect on nAChR function is not well 

understood. Consequently, drug therapies for neurological diseases either do not exist, or 

have short-lasting efficacy and/or severe side effects. Barriers to the comprehension of 

nAChR function, pharmacology, and detailed knowledge of their ligand binding domains 

are limited due to difficulties expressing functional receptors in heterologous systems, 

inability to crystallize their structures, and difficulty efficiently assessing predicted 

binding paradigms using current wet-lab experimental methods. To better understand the 

effect α-CTx binding to nAChRs has on cell signaling, we utilized a combination of 

computational tools to predict binding affinity and a PC12 cell-based assay the ability to 

qualitatively assess real-time bioactivity of predicted ligands. The computational tools 

permitted screening of α-CTx MII analogs for optimal characteristics for binding to the 

α3β2 nAChR isoform, producing the KTM peptide. The PC12 cell assay was developed 

to quickly and economically pre-screen ligands for nAChR bioactivity qualitatively prior 

to resource-intensive electrophysiology or animal studies, increasing efficiency of 
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investigations into nAChR binding and function. The work in this thesis demonstrates the 

merit of computational prediction in nAChR ligand binding, provided an accessible 

qualitative bioassay to efficiently validate predicted ligand bioactivity on nAChRs, and 

presents a case study of the rationally designed KTM peptide including structure activity 

relationship results in cell-based assay and electrophysiology experiments. Future studies 

will involve using computational programs to identify pharmacophore features required 

as ligand binding determinants to discover small molecule scaffolds based on peptide 

model compounds, and characterizing these small molecules for desired activity in cell 

lines heterologously expressing disease-relevant nAChR subtypes. 
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CHAPTER ONE: A REVIEW OF MUTAGENESIS OF ALPHA-CONOTOXINS FOR 

ENHANCING ACTIVITY AND SELECTIVITY FOR NICOTINIC 

ACETYLCHOLINE RECEPTORS 

Published in Toxins (Open access) 

Matthew W. Turner,1 Leanna A. Marquart,2 Paul D. Phillips,2 and Owen M. 

McDougal2 

1 Biomolecular Sciences Graduate Programs, Boise State University 

2 Department of Chemistry and Biochemistry, Boise State University 

 

Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian 

body and have been studied extensively because of their implication in a myriad of 

diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine 

snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR 

isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes 

capable of differentiating between closely related nAChR subtypes and have contributed 

greatly to understanding the physiological role of nAChRs in the mammalian nervous 

system. Here, we review the amino acid composition and structure of several α-CTxs that 

selectively target nAChR isoforms and explore strategies and outcomes for introducing 

mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific 

nAChRs. This chapter will focus on structure-activity relationship studies involving native 
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α-CTxs that have been rationally mutated and molecular interactions that underlie binding 

between ligand and nAChR isoform.1 

 

Keywords: conotoxins (α-CTxs); nicotinic acetylcholine receptors (nAChRs); 

mutational analysis; positional scanning synthetic combinatorial libraries (PS-SCL); 

acetylcholine binding protein (AChBP); protein surface topography (PST); genetic 

algorithm managed peptide mutant screening (GAMPMS); molecular dynamics (MD); 

solid phase peptide synthesis (SPPS) 

 

Introduction 

Snails of the genus Conus inhabit tropical and subtropical waters, where they hunt 

prey by injection of a venom rich in pharmacologically active peptides, referred to as 

conopeptides.2-4 Cone snails are relatively slow moving aquatic organisms and have 

evolved venom to serve as an efficient chemical cocktail for prey incapacitation, retrieval 

and predator protection. The diversity of conopeptides is staggering. With >700 known 

Conus species, the venom of each species is comprised of hundreds to thousands of distinct 

conopeptides, equating to an estimated hundreds of thousands of unique, 

pharmacologically active conopeptides.5-7 As of December 2018, the database for 

conopeptides, ConoServer, contained 6274 entries for conopeptide proteins with 220 

protein structures.8  

Conotoxins (CTxs) are a subset of conopeptides that are small, disulfide rich 

peptides that primarily target voltage or ligand gated ion channels.9, 10 CTxs are classified 

by their molecular targets, as indicated by the first letter in Greek in the naming convention 
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based on the International Union of Basic and Clinical Pharmacology Committee on 

Receptor Nomenclature and Drug Classification system.11, 12 For example, ω-CTxs target 

voltage gated calcium channels, δ- and μ-CTxs target voltage gated sodium channels, χ-

CTxs target norepinephrine transporter channels, ρ-CTxs target α1A-adrenoreceptor, and 

α-CTxs target nicotinic acetylcholine receptors (nAChRs).12, 13 Conopeptides are also 

classified into 16 genetically distinct superfamilies, to which α-CTxs primarily belong to 

the A and O superfamilies.12 This diversity in molecular targets make CTxs particularly 

useful research tools for understanding the physiological role of indigenous mammalian 

receptors and ion channels, thereby making CTxs appealing as prospective selective 

therapeutics for human diseases. The therapeutic potential of CTxs is illustrated in the 

example of ω-CTx MVIIA. ω-CTxs have been investigated as therapeutic drugs due to 

their ability to selectively bind voltage-gated calcium channels (VGCCs), which are 

directly associated with pain pathways.14 ω-CTx MVIIA, marketed by Elan Corporation 

under the trade name PrialtⓇ, is a nonaddictive pain analgesic, 1000 times more potent than 

morphine.15 Following twenty years of research, the United States Food and Drug 

Administration accepted the use of PrialtⓇ to treat chronic pain in 2004.16 

The focus of this chapter is to review α-CTxs, which target and act as competitive 

antagonists of nAChRs. α-CTxs generally contain between 12–20 amino acid residues, 

including four cysteines that form two highly conserved disulfide bonds. In native α-CTxs, 

the disulfide bonds are formed between Cys1 to Cys3, and Cys2 to Cys4. The first and 

second cysteine residues are always adjacent, but the number of amino acid residues 

between Cys2 and Cys3, and between Cys3 and Cys4 can vary, resulting in two loops of 

intervening amino acids denoted m and n, respectively. The cysteine framework refers to 
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the number of residues in the m and n loops. For example, α-CTxs with a 4/7 cysteine 

framework contain four and seven residues in their respective m and n loops.  

nAChRs are a class of ligand-gated ion channels in the Cys-loop superfamily, to 

which γ-aminobutyric acid (GABA), glycine and 5-HT3 receptors also belong.17, 18 

nAChRs are pentameric ligand-gated ion channels found in both the central and peripheral 

nervous systems in mammals.19 To date, 16 human nAChR subunit genes coding for 

subunits α1-α7, α9, α10, β1-β4, γ, δ, and ε have been identified.20 nAChR subunit 

expression varies by tissue, with α1, β1, γ, δ, and ϵ subtypes being expressed in muscle. 

α2–α7, α9, α10, and β2–β4 subunits are referred to as “neuronal,” despite their presence in 

non-neuronal tissues.19, 21 nAChRs can be composed of heterogeneous or homogenous 

combinations nAChR subunits, forming different nAChR isoforms, with distinct 

physiological properties. Heteromeric combinations of α2–α6 and β2–β4, complexes of 

α9α10, and homomeric combinations of α7 or α9 subunits are known to exist.22 nAChR 

subunits are composed of an N-terminal extracellular domain that contains the 

acetylcholine (ACh) binding site, four hydrophobic transmembrane domains that form the 

ion-pore and an intracellular loop.23-25  

nAChRs are pharmaceutically important because they modulate the release of 

neurotransmitters (e.g., glutamate, norepinephrine, dopamine, acetylcholine), and because 

particular nAChR isoforms are expressed within specific neuronal pathways.26 Different 

nAChR subunits may be expressed in defined regions in the mammalian body.26 For 

example, dopaminergic neurons of the midbrain express α3-α7 and β2-β3 subunits, 

resulting in expression of nAChR isoforms such as α4α6β2β3, α4α6β2 and α6β2β3 that are 

highly and specifically expressed in select neuronal pathways.27, 28 Dopaminergic pathways 
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are involved in numerous processes, including reward/reinforcement, attention, cognition, 

and voluntary movement. The well-defined and specific expression of α6-containing 

nAChRs in these neuronal types suggests they may be candidate drug targets for more 

selective approaches to treating disorders involving dopamine transmission.29-31 

The significance of ligands that selectively bind to nAChRs lies in the variety and 

severity of neurological disorders in which degradation or altered activity of nAChRs is 

associated. Examples of neurological disorders associated with nAChRs are schizophrenia, 

nicotine addiction, Alzheimer’s disease and Parkinson’s disease.29, 32-34 Therefore, 

differentiating between nAChR isoforms is an important step in better understanding 

neurological disorders.35, 36 The high degree of sequence homology between different 

nAChR subunits makes discovery of selective antagonists for particular nAChR isoforms 

challenging. The lack of selectivity for the intended channel subtype may cause serious 

side effects and represents a major hurdle in the application of α-CTxs in pharmacological 

context. Frequently, a particular α-CTx is capable of inhibiting multiple nAChR isoforms.37 

For example, α-CTx MII blocks both α3β2 nAChR and α6-containing nAChRs isoforms, 

α-CTx ImI blocks α3β2, α7, and α9 nAChR subtypes, and α-CTx OmIA block α7, α3β2, 

and α6/α3β2β3 nAChRs. Although it may be evolutionarily advantageous for CTxs to be 

promiscuous amongst related receptors, this is undesirable in pharmaceutical and 

biotechnological applications.  

For this reason, much effort has gone into the mutation of native CTxs to enhance 

their selectivity and potency to specifically target individual nAChR subtypes. 

Mutagenesis can also provide information regarding the significance of a given amino acid 

in the potency and selectivity of a CTx, as well as provide information regarding the 
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molecular determinants that govern ligand/receptor interactions. Researchers have 

explored many strategies to mutate CTxs for improved selectivity and potency with the 

aim of understanding the structure-function relationships that govern ligand-receptor 

interaction. Mutations introduced to synthetic α-CTxs to improve their pharmacological 

properties have been reviewed previously.38 However, recent insights into the molecular 

structure of nAChRs and the development of contemporary computational tools capable of 

rational mutagenesis of α-CTxs merit an additional review of this topic. Table 1.1 includes 

the primary sequence and the activity of the CTxs discussed in this chapter. Recent 

excellent reviews have summarized the activity of native CTxs in a more comprehensive 

manner.12, 14, 37-41 We start with a general discussion of different strategies used to 

rationalize and inform α-CTx analogue development and then provide a brief review of 

structural data available for nAChRs, followed by specific structure-activity relationship 

examples of the mutational analysis of individual α-CTxs designed to target specific 

nAChR isoforms.  

Mutagenesis Strategies for Alpha-Conotoxins 

Various approaches have been employed to alter the primary sequence of α-CTxs 

to enhance their affinity and selectivity for particular nAChR subtypes. Alanine scanning 

mutagenesis has been used extensively to determine the importance of a given amino acid 

in binding of a particular α-CTx to a particular receptor. Changes in activity for a mutated 

amino acid provide information on the significance of a given residue in the binding event 

and provide insight to the interaction between the α-CTx and the corresponding structural 

features in the nAChR binding pocket. Systematic replacement of residues with non-Ala 

amino acids also provides more subtle detail regarding the ligand/receptor interactions of 



7 

 

CTxs with nAChRs. Most mutagenesis studies of α-CTxs have focused on single amino 

acid substitutions, with a more limited number of reports describing synthesis and analysis 

of α-CTx analogs. Recent approaches have applied mixture-based combinatorial methods 

as a high throughput strategy to synthesize α-CTx analogs. The use of positional scan 

synthetic combinatorial libraries (PS-SCLs) has provided a way of acquiring functional 

information regarding all possible variable positions within the α-CTx framework.42 This 

approach relies upon medium to high throughput screening assays for particular nAChR 

subtypes, and screening of pooled mixtures of α-CTx analogs to determine which amino 

acid positions confer higher activity. PS-SCL allows for the determination of a consensus 

sequence, which is an α-CTx peptide with multiple site mutations, intended to exhibit 

greater affinity for the desired nAChR subtype. The consensus sequence peptide can then 

be synthesized for focused pharmacological analysis using electrophysiology recordings.  

Computational modeling of α-CTx/nAChR interactions have emerged as a useful 

tool for rationalizing mutagenesis design. In particular, the use of computational docking 

methods coupled with molecular dynamics (MD) simulations has proven useful for 

accelerating the discovery α-CTx analogues with enhanced binding affinity and selectivity 

for target nAChRs. In this methodology, the most energetically favorable binding poses 

predicted by computational docking are used as a starting point for MD simulations. The 

affinity of the α-CTx/nAChR interactions can be increased by inspecting the 

ligand/receptor binding paradigm and mutating those residues on the peptide that could 

lead to more, or stronger, contacts with the residues in the receptor’s binding site. Because 

such structure-based virtual screening protocols depend upon structural data for nAChRs 

on the atomic scale, we will briefly review the advances in the structural data available for 
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nAChRs and the application of these data to generated models for particular nAChR 

subtypes. 

nAChR Structural Data to Rationalize Alpha-Conotoxin Mutagenesis 

Electron microscopic analysis of nAChRs isolated from the electric ray organ of Torpedo 

marmorata provided the first structural insights into human nAChRs.43 This study revealed 

the overall organization of the pentameric assembly and the architecture of the extracellular 

domain and the pore region of nAChRs. However, in-depth information about the fine 

molecular details of the ligand binding domain was limited by the low resolution of the 

nAChR structure at 4 Å.44 Figure 1.1A-D shows the general structure of the 

heteropentameric nAChR, including the side view of the receptor, in parallel with the cell 

membrane in a two-subunit interface showing the ligand binding domain, a view through 

the ion pore perpendicular to the cell membrane, and the α3β2 nAChR dimer bound to α-

CTx MII. Another breakthrough in the understanding of the atomic structure of nAChRs 

was the discovery of acetylcholine binding protein (AChBP), a non-channel homolog of 

the extracellular domain of nAChRs, first isolated and crystalized from the fresh water 

snail Lymnea stagnalis (Ls).45 Other AChBPs were subsequently identified in Bulinus 

truncatus (Bt) and Aplysia californica (Ac).46, 47 Many crystal structures of AChBPs have 

been solved in different ligand-bound states, providing atomic-resolution details of the 

interactions between the extracellular domain and a variety of agonists and antagonists,48 

including α-CTx PnIA47 and cobratoxin.49 Combined, these studies provided a wealth of 

structural information upon which homology models for human nAChRs have been 

constructed. However, AChBPs do not function as ion channels and may lack the necessary 

structural features required for ligand-binding signals across the protein body. 
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Additionally, AChBP shares only 20–38.1% sequence homology with the nAChRs, further 

limiting their utility as structural templates for homology models of nAChRs. More 

recently, the x-ray structure of the extracellular domain of the mouse α1 nAChR was 

solved, revealing two hydrophilic residues conserved in nAChRs (and not AChBP) that are 

buried in the internal portion of the protein.50 These observations strongly suggest that the 

hydrophilic interior of nAChRs is important for channel function, probably by conferring 

the receptor-specific structural flexibility required for the allosteric channel gating. 

Additionally, the crystal structures of homopentamers of human α751 and α952 nAChRs 

were solved. The X-ray crystallographic structure of the human α4β2 nAChR with nicotine 

bound was recently solved.53 Several studies have used the 3D structure of AChBP as a 

template for homology model creation of nAChRs,54, 55 and a few examples exist where 

the mouse α1 subunit was used as a template.56, 57 Recently, studies have used the crystal 

structure of the homomeric human α9 nAChR subtype,58, 59 as well as the crystal structure 

of the heteromeric human α4β2 nAChR subtype60 to inform the homology models of 

heteromeric nAChR subtypes. However, because effective virtual screening requires that 

the conformation of the ligand bound complex be known to high accuracy, AChBPs still 

represent the most commonly used template for the characterization of α-CTx binding to 

the extracellular ligand-binding domain of nAChRs.61-64 

The following section provides specific structure-activity relationship examples 

chosen to most clearly illustrate mutational analysis of individual α-CTxs designed to target 

specific nAChR isoforms.
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Figure 1.1. The general structure of the nAChR, from the crystal structure of 
Torpedo marmorata (PDB: 2BG9). A) View from the side of the nAChR, parallel with 
the cell membrane, showing the extracellular, transmembrane, and intracellular 
domains. B) Dimer of two subunits showing the ligand binding site and select loops 
and helical regions. C) Top view of the pentametic nAChR looking through the 
conducting pore. D) A homology model of the ligand-binding domain (LBD) of an α3 
(shown in green) and β2 (shown in yellow) dimer with α-CTx MII bound, illustrating 
the orientation of CTx binding in context of the structural features of the nAChR 
subunits. Figures were prepared using UCSF Chimera.65 
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Alpha-Conotoxin Mutational Analysis 

α-CTx Vc1.1 

α-CTx Vc1.1, with primary sequence GCCSDPRCNYDHPEIC, was first 

discovered using PCR screening of cDNAs isolated from the venom ducts of Conus 

victoriae in 2003.66 Later, this α-CTx peptide was identified in the venom of C. victoriae 

using mass spectrometry, and found to contain an amidated C-terminus, as well as post-

translationally modified hydroxyproline and γ-carboxyglutamate in positions Pro6 and 

Glu14, respectively.67 The native, post-translationally modified peptide was designated 

vc1a to distinguish it from the synthetic Vc1.1 containing the same primary sequence.  

Synthetic Vc1.1 was shown to antagonize neuronal nAChRs in bovine chromaffin 

cells and was demonstrated to alleviate neuropathic pain in rat models of human 

neuropathic pain, as well as accelerate the functional recovery of injured neurons.68 Clark 

et al. determined the NMR solution structure of α-CTx Vc1.1 and characterized the 

inhibition of individual nAChRs using electrophysiology with Xenopus oocytes expressing 

various rat nAChR subtypes.69 α-CTx Vc1.1 demonstrated inhibition of α3α5β2, α3β2, and 

α3β4 nAChRs, with IC50 values of 7.2, 7.3, and 4.2 μM, respectively. No inhibition was 

demonstrated for α3α5β4, α4β2, α4β4, α7, or αβγδ nAChRs up to >30 μM. Although it was 

initially thought that α-CTx Vc1.1 targets α3-containing nAChR, subsequent reports 

demonstrated a much higher affinity for the α9α10 nAChR subtype, suggesting this may 

be the basis for the reduction in neuropathic pain upon α-CTx Vc1.1 administration.70, 71  

  



12 

 

Table 1.1 CTxs and analogs discussed in the text, with primary sequence and 
nAChR isoform target shown. Mutations in analog CTxs are shown in red. Non-
natural amino acids are indicated as follows: B: 2-aminobutyric acid; Z: norvaline; 
O: hydroxyproline; γ: γ-carboxyglutamic acid; P/5(R)-Ph: proline-5-(R)-phenyl; 
Aph: 4-aminophenylalanine; Nle: norleucine. IC50 values were determined by 
electrophysiology, unless otherwise noted.  

α-
CTx Primary sequence nAChR isoform (IC50) Ref. 

Vc1.1 

GCCSDPRCNYDHPEIC 

rα3β4(4.2 μM) > rα3α5β2(7.2 μM) > 
rα3β2(7.3 μM) 

69 

rα9α10(109 nM) > hα9α10(549 nM) > 
rα3β2(5.5 μM) 

72 GCCSDPRCAYDHPEIC rα9α10(13 nM) > hα9α10(27 nM) > 
rα3β2(185 nM) 

GCCKDPRCAYDHPEIC hα9α10(19 nM) > rα9α10(93 nM) > 
rα3β2(>3 μM) 

PeIA 

GCCSHPACSVNHPELC* rα9α10 (6.9 nM) > rα6/α3β2β3 (17.2 nM) > 
rα3β2 (19.2 nM) > rα3β4 (480 nM) 

73 

GCCSHPVCHARHPALC* rα6/α3β2β3 (2.16 nM) > rα3β2 (30.9 μM) 42 

ArIB 

DECCSNPACRVNNPHVCRRR* rα7 (1.81 nM) > rα6/α3β2β3 (6.45 nM) > 
rα3β2 (60.1 nM) 

74 DECCSNPACRLNNPHACRRR* rα7 (0.356 nM) > rα3β2 (74.5 nM) > 
rα6/α3β2β3 (120 nM) 

DECCSNPACRLNNPHDCRRR* rα7 (1.09 nM) > rα6/α3β2β3 (828 nM) > 
rα3β2 (>10 μM) 

ImI 

GCCSDPRCAWRC* 
rα7 (220 nM) > rα7 (1.8 μM) > mα1β1γδ 

(51 μM) 
hα3β2(40.8 nM) > hα7 (595 nM) 

75 
76 

GCCSDP/5(R)-PhRCAWRC* hα7 (0.70 μM) | native (2.6 μM) > rα3β4 
(3.7 μM) | native (>300 μM) 

77δ 

BuIA 
GCCSTPPCAVLYC* rα6/α3β2 (0.258 nM) > rα6/α3β4 (1.54 

nM) > rα3β2 (5.72 nM) > rα3β4 (27.7 nM) 
78 

GCCSAOPCAVLYC* rα6/α3β4 (58.1 nM) > rα3β4 (1.2 μM) > 
rα6/α3β2β3 (>10 μM) 

79 
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GCCSHPBCFBZYC* α3β4 (2.3 nM) > α3β2 (>10 μM) ≈ α7 (>10 
μM) 

80 

Lt1.3 

GCCSHPACSGNNPYFC* rα3β2 (44.8 nM) 

81 GCCSHPACAGNNPYFC* rα3β2 (35.4 nM) 

GCCSHPACSGNNPAFC* rα3β2 (216 nM) 

TxIB 
GCCSDPPCRNKHPDLC* rα6/α3β2β3 (28 nM) 82 

GCCSDPPCRNAHPDLC* rα7 (200 nM) > hα7 (>10 μM) 83 

GIC 

GCCSHPACAGNNQHIC* hα3β2 (1.1 nM) > hα4β2 (309 nM) > 
hα3β4 (755 nM) 

84 

GCCSHPACAGNNAHIC* hα3β2 (8.41 nM) > hα3β4 (660 nM) 85 

GCCSPHVCSAMSPIC* rα3β4 (12.5 nM) > rα6/α3β4 (94 nM) > 
rα3β4 (4.5μM) 

86 

TxID 

GCCSPHVCSAMSPIC* rα3β4 (3.6 nM) > rα6/α3β4 (34 nM) 60 

GCCSPHVCAAMSPIC* rα3β4 (3.9 nM) > rα6/α3β4 (178 nM) 59 

GCCSPHVCRAMSPIC* rα3β4 (5.4 nM) > rα6/α3β4 (350 nM) 60 

GCCSPHVCDAMSPIC* rα3β4 (380 nM) > rα6/α3β4 (>10 μM) 60 

GCCSPHVCSAISPIC* rα6/α3β4 (50 nM) > rα3β4 (75 nM) 59 

GCCSPHVCKAMSPIC* rα3β4 (6.9 nM) > rα6/α3β4 (>10 μM) 60 

GID 
IRDγCCSPNACRVNNOHVC rα3β2 (3.1 nM) > rα7 (4.5 nM) > rα4β2 

(152 nM) 
87 

----CCSPNACRVNNOHVC rα3β2 (4.6 nM) > rα7 (5.5 nM) > rα4β2 
(670 nM) 

55θ 
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IRDECCSPNACRVNNOHVC rα3β2 (36 nM) > rα4β2 (4.8 μM) 

IRDECCSPNACRVNNOHNC rα4β2 (1.85 μM) > rα3β2 (>100 μM) 

IRDECCSPNACRVNNOHVC hα3β2 (10 nM) > hα7 ( 100 nM) > hα4β2 
(3 μM) 

88θ 
IRDECCSPNACRYNNOHVC hα3β2 (20 nM) > hα4β2 (3 μM) > hα7 ( 4 

μM) 

PnIA 

GCCSLPPCAANNPDYC-* rα3β2 (9.56 nM) > rα7 (252 nM) 
89 

GCCSLPPCALNNPDYC-* rα7 (12.6 nM) > rα3β2 (99.3 nM) 

GCCSLPPCANleNNPDYC-* rα3β2 (0.7 nM) > rα7 (4.3 nM) 
90 

MII 

GCCSNPVCHLEHSNLC-* rα6/α3β2β3 (0.39 nM) > rα3β2 (2.18 nM) 

GCCSNPVCHLAHSNLC-* rα6/α3β2β3 (0.16 nM) > rα3β2 (8.72 nM) 
36 

GCCSNPVCALAHSNAC-* rα6/α3β2β3 (0.16 nM) > rα6/α3β4 (269 
nM) > rα3β2 (4850 nM) 

GCCANPVCHLAHSNAC-* rα6/α3β2β3 (1.2 nM) > rα3β2 (1400 nM) 91 

 

A scanning mutagenesis study in 2009 by Halai et al. aimed to determine the key 

residues and interactions that govern the binding of α-CTx Vc1.1 to the α9α10 nAChR 

subtype, because of the α9α10 nAChR was sought after as a therapeutic target for the 

treatment of neuropathic pain.72 It was determined the IC50 of Vc1.1 for rat (r)α9α10, 

human (h)α9α10, and rα3β2 nAChR isoforms at 0.109, 0.549, and 5.532 μM, respectively. 

They performed a two-stage mutation screen on each non-Cys residue to either an “inert” 

residue (Ala), a negatively charged residue (Asp), or a positively charged residue (Lys) to 

identify key amino acids in the interaction of Vc1.1 with the r/hα9α10 nAChR isoforms. 
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All mutations imposed on Vc1.1 showed clear selectivity for r/hα9α10 over rα3β2. They 

first identified Asp5–Arg7 and Asp11–Ile15 as the key residues essential to maintain 

functional activity. When Asn9 was replaced with a hydrophobic Ala, Leu, or Ile, the IC50 

was reduced for rα9α10, hα9α10, and rα3β2 nAChR isoforms from 109, 549, and 5,532 

nM to 13, 27, 185 nM, respectively. Mutation of Ser4 with a positive residue, either Lys or 

Arg, shifted the selectivity of Vc1.1 from rα9α10 to hα9α10 and lowered the IC50 for 

hα9α10 to 19 nM. Ser4 is highly conserved among many α-CTxs (see Table 1.1), and a 

smaller surface hydrophobic patch in loop 1 of 4/7 α-CTxs is thought to increase specificity 

for rα3β2.72  

In an electrostatic map of Vc1.1, when Asn9 was replaced with a hydrophobic 

residue (Ala), the two smaller hydrophobic patches on opposite ends of the α-helix merged 

into a larger hydrophobic surface across one side of the α-helix. The result of the N9A 

mutation to Vc1.1 was a 30-fold increase in potency to inhibit the function of rα3β2 and 

roughly a 10-fold increase in inhibition of r/hα9α10, suggesting that extending the 

hydrophobic patch on this side of the peptide is favorable for binding to rα3β2 as well as 

r/hα9α10. 

α-CTx PeIA  

α-CTx PeIA was originally cloned from a cDNA library of Conus pergrandis and 

has the primary sequence GCCSHPACSVNHPELC.92 α-CTx PeIA demonstrated 

inhibition of rα9α10, α6/α3β2β3, α3β2, and α3β4 with IC50 values of 6.9, 17.2, 19.2, and 

480 nM, respectively.73 The sequence of PeIA has a proline residue in position 6, which is 

consistent with α-CTxs MII and GIC.84, 93 Pro6 initiates the α-helix in PeIA, consistent with 

observations for MII and GIC, indicating that the peptide backbone of PeIA may have a 
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similar molecular scaffold. In addition, PeIA has a His12 residue that is essential for 

biological activity; the same ligand activity dependency has been reported for the His12 in 

MII, and similar to Asn12 in GIC. Consequently, these three peptides exhibit comparable 

activity with α3β2 nAChR isoforms: PeIA and MII inhibit the rα3β2 nAChR isoform with 

IC50 values of 9.7 and 0.5 nM respectively, and GIC inhibits the hα3β2 nAChR isoform 

with an IC50 of 1.13 nM.84, 93 Unlike MII or GIC, PeIA also inhibits rα9α10 with an IC50 

of 6.9 nM. Thus, the amino acids unique to PeIA (S8, V9, N10, P13, and E14) are suspected 

to be the determinants of its high selectivity for the rα9α10 nAChR isoform. 

α-CTx LvIA, GCCSHPACNVDHPEIC, has the same composition of amino acids 

in loop 1 as PeIA, but differs by three amino acids (LvIA:PeIA, N9S, D11N, and I15L) in 

loop 2.57 The IC50 values of PeIA and LvIA for rα3β2 were determined to be 9.7 and 8.65 

nM, respectively. LvIA also has high divergence to other α-CTxs in loop 2 and is the first 

report of an α-CTx with a strong rα3β2 selectivity over rα6/α3β3β2. Both PeIA and LvIA 

have similar residues at positions 7 and 10, but PeIA inhibits rα9α10, while LvIA does not. 

Luo et al. propose that this discrepancy could be explained by PeIA binding at a different 

site on the rα9α10 nAChR isoform than LvIA.57 The rα9α10 nAChR isoform has two α-

CTx binding sites, one at the α9α10 subunit interface and another at the α10α9 subunit 

interface. The α10α9 subunit interface displays more charged residues than the α9α10 

subunit interface. For example, four charged side chains of Vc1.1 (R7, D11, H12, and E14) 

would be expected to have electrostatically favorable binding to the α10α9 subunit 

interface. By contrast, PeIA has only one charged side chain (Glu14) in loop 2 and would 

be expected to bind to the more hydrophobic binding site at the α9α10 subunit interface. 

The observation that LvIA does not inhibit rα9α10 containing nAChRs may be explained 
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by the fact that LvIA has charged side chains at Glu14 and Asp11 that could reduce affinity 

for the α9α10 interface, and binding to the α10α9 interface is unlikely due to poor shape 

complementarity to the binding site. 

Yu et al provided insight into PeIA binding with rα9α10 using a computational 

homology model generated to describe the binding paradigms for Vc1.158 based on the 

crystal structure of Ac-AChBP in complex with PnIA [A10L, D14K] (PDB: 2BR8)47 and 

the crystal structure of hα9 (PDB: 4UY2).57 Similar to Vc1.1, PeIA residues H12 and E14 

interact with residues E197 of α10(+) and R113 of α9(−), respectively. (+) corresponds to 

the subunit that provides the C-loop of the binding site, and (−) corresponds to the subunit 

that provides the β-sheet of the binding pocket. However, in contrast to Vc1.1, PeIA does 

not interact with N154 of α9(+) because the side chain of N154 is not in close proximity to 

PeIA, and PeIA has an additional hydrogen bond between residue N11 (D11 in Vc1.1) and 

T152 in both α10(+) and α9(+). This suggests PeIA has a lack of binding site preference 

between α10(+)-α9(−) and α9(+)-α9(−). Indeed, PeIA showed no stoichiometric-dependent 

activity with hα9α10, suggesting it has no preferred binding to α9(+)-α9(−) versus α10(+)-

α9(−). 

α-CTx PeIA was used as a starting point to conduct a positional scanning 

mutagenesis study by Hone et al. to develop a ligand that selectively bound α6β2β3 vs 

α3β2.42 Substitution of His5 and His12 with alanine, and Pro6 with hydroxyproline 

dramatically reduced potency for both receptor types. Alanine substitution with Glu14 and 

Leu15 modestly decreased affinity for α3β2, and substitution of Asn11 with alanine, and 

Pro13 with hydroxyproline had little effect on the potency at either receptor isoform. In 
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summary, substitution of non-cysteine residues with alanine had no significant impact on 

the ability of α-CTx PeIA to discriminate between α6β2β3 and α3β2.  

This led the authors to use amino acid substitutions based on the primary sequence 

of other α-CTxs, including α-CTx MII and α-CTx TxIB, to guide the development of a 

peptide capable of discriminating between these closely related nAChR subtypes. Based 

on the sequence of α-CTx MII, H5N, A7V, V10L, N11E, and P13S were analyzed. Of 

these, the A7V mutation increased the potency for α6β2β3 while decreasing potency for 

α3β2, resulting in a ~12-fold enhanced selectivity for α6β2β3. α-CTx TxIB is exclusively 

selective for α6β2β382 and differs from α-CTx PeIA by only six residues, leading to several 

interesting single mutations. The α-CTx PeIA [S9R] increased potency for both subtypes, 

whereas α-CTx PeIA [V10R] significantly reduced potency at both subtypes. The N11R 

substitution eliminated activity at α3β2, while minimally affecting the potency at α6β2β3. 

Combining these novel mutations that preferentially bind α6β2β3 over α3β2 with [S9H, 

V10A] analog previously identified with enhanced potency against both α6β2β3 and α3β2 

resulted in the combined substitution mutant α-CTx PeIA [A7V, S9H, V10A, N11R, 

E14A]. This mutant resulted in a >15,000-fold higher affinity for α6β2β3 over α3β2 and 

enhanced potency at α6β2β3 (IC50 2.16 nM).  

To determine the specific amino acids of the α6-subunit that α-CTx PeIA interacts 

with, three residues of the α6-subunit were mutated to corresponding non-homologous 

residues of the α3-subunit. These mutations were E152K, D184E, and T195Q, and resulted 

in a >2000-fold reduced potency for the α-CTx PeIA [A7V, S9H, V10A, N11R, E14A] 

analog compared to α6β2β3-nAChR. An interesting feature of these mutagenesis analyses 

was implication of the importance of the positively charged amino acid in position 11 
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toward selectivity for the α6-subunit. Computational analysis using a homology model of 

PeIA bound to rα6 and rα3 subunits (based on the crystal structure of AChBP complexed 

with PnIA [A10L, D14K] (PDB: 2BR8)) indicates that this positive charge interacts with 

the negatively charged Glu-152 of the α6-subunit. This residue is Lys152 in the α3-subunit, 

and the E152K mutation significantly reduced potency for α-CTx PeIA [N11R], 

presumably due to repulsive like charges. This finding is corroborated by α6β2β3-nAChR 

specificity observed in α-CTx TxIB, in which the amino acid in position 11 is lysine. It 

may be concluded that α-CTxs with positively charged amino acids in the 11th position, 

such as α-CTx TxIB or α-CTx PeIA [N11R], interact favorably with the Glu152 of the α6-

subunit while binding is disfavored to α3-containing nAChRs due to a repulsive charge-

charge interaction with Lys152. Furthermore, the negative charge of Asp11 of α-CTx LvIA 

and its corresponding interaction with Lys152 has been speculated to be important for α3β2 

selectivity.57 These studies contribute to evidence supporting residue 11 in α-CTxs as being 

a key contributor to peptide selectivity and potency for nAChR subtypes. Figure 1.2 shows 

a structural comparison of select α-CTxs LvIA, MII, PeIA and TxIB that bind α3β2 and/or 

α6α3β2β2 nAChR isoforms. 
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Figure 1.2. Structural comparison of select α-CTxs A) LvIA B) MII C) PeIA and 
D) TxIB. These bind α3β2- and/or α6α3β2β2-nAChR. LvIA selectively binds α3β2-
nAChR, MII and PeIA bind α3β2- and/or α6α3β2β2-nAChRs with approximately 
equal affinity, and TxIB is selective for only α6α3β2β2-nAChR. 

A 

B 

C 

D 
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In both the α3 and α6 subunits, receptor residues 184 and 195 are located in the C-

loop of strands 9 and 10 (see Figure 1.1B and 1.1D), respectively, but do not appear to 

interact directly with PeIA because their side chains are oriented away from it. This C-loop 

is proposed to act like a hinge allowing it to move toward the complementary subunit upon 

α-CTx binding. Residues 184 and 195 are smaller (Asp184 and Thr195) in α6 and bulkier 

(Glu184 and Gln195) in α3. This may allow the C-loop of α6 to be more flexible and allow 

more α-CTxs to be well-accepted in the binding pocket, while causing the C-loop of α3 to 

be more rigid and hinder α-CTx binding. 

Luo et al. proposed computational receptor-toxin binding models for α-CTx LvIA 

bound to rα3β2 and rα3β4.57 The docking trials were conducted using a homology model 

of Vc1.1 in complex with the rα9α10 nAChR (originally created by Yu et al. 201394) as a 

template. Their model shows that the negatively charged Asp11 is buried in a cluster of the 

charged receptor residues Asp151, Lys154, and Glu194 in α3, and Lys78 and Arg80 in β2. 

However, when LvIA binds to the β4 subunit, a salt bridge between Lys58 and Glu35 

becomes buried from the solvent. Luo et al. suggest this desolvation energy cost may 

account for the lower binding of LvIA with rα3β4 compared to rα3β2. 

α-CTx ArIB 

Native α-CTx ArIB, DECCSNPACRVNNPHVCRRR, was originally identified 

from the genomic DNA of Conus arenatus and exhibited IC50 values for rα7 > rα6/α3β2β3 

> rα3β2, of 1.81, 6.45, and 60 nM, respectively.74 Since the peptide has high affinity for 

all three isoforms, ArIB mutants were designed with the intention of enhanced selectivity 

for rα7. Because the [A10L] mutation in PnIA shifts selectivity to rα7 over rα3β2,89 it was 

reasoned that the [V11L] mutation in the homologous position of ArIB would improve 
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selectivity for rα7 and reduce activity for rα3β2. Indeed, the α-CTx ArIB [V11L] mutation 

increased selectivity for rα7 relative to rα3β2, yielding IC50 values of 0.539 nM and 38.8 

nM, respectively. Secondly, because the [L15A] mutation of MII weakens potency for 

rα3β2, a [V16D] mutation in the homologous position of ArIB was expected to reduce 

selectivity for rα3β2.36, 95 Indeed, potency for rα3β2 (IC50 >10 μM) was lowered without 

significantly lowering the potency for rα7 (IC50 1.09 nM). 

α-CTx ImI 

α-CTx ImI, with sequence GCCSDPRCAWRC, has 12 amino acids and contains a 

4/3 m to n loop spacing pattern. α-CTx ImI was isolated from the crude venom of the 

worm-hunting Conus imperialis and was shown to inhibit heterologously expressed rat 

neuronal α7 and α9 homopentametic nAChRs with IC50 values of 220 nM and 1.8 µM, 

respectively.75, 96 Low affinity activity toward the mouse muscle type nAChR receptor 

α1β1γδ was also observed, with an IC50 of 51 µM. Subsequent pharmacological 

characterization reported an IC50 of 595 nM toward heterologously expressed hα7 nAChR, 

and 40.8 nM toward hα3β2 nAChRs.76 Activity towards hα3β2 nAChRs was surprising, 

because no effect was observed towards rα3β2 nAChRs at 5 µM.96 Various mutagenesis 

experiments to probe the structure-activity relationship between ImI potency and 

selectivity toward particular nAChR subtypes have been performed.77, 97-99 The Asp5, Pro6, 

and Arg7 present in the m-loop, as well as Trp10 in the n-loop were demonstrated to be 

critical for binding to a human α7/5HT3 chimera expressed in HEK293 cells.76 

Replacement of the DPR motif in the m-loop resulted in a two to three order of magnitude 

decrease in activity. The ImI [W10T] mutant demonstrated a 30-fold loss of activity, 

whereas maintenance of the aromatic side chain in the [W10F] mutant resulted in a modest 
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three-fold decrease of affinity. α-CTx ImI [R7L] and [D5N] mutations resulted in two 

orders of magnitude diminished activity towards hα7 expressed in Xenopus oocytes.97 

Further investigation into the role of the aromatic side chain in position 10 demonstrated 

that the analogue [W10Y] maintained activity toward rat α7 expressed in Xenopus oocytes, 

indicating that substitution of Trp10 for other aromatic residues does not strongly influence 

the activity of ImI.98 To probe the interaction between Pro6 and a hydrophobic binding 

pocket observed in co-crystallization structures of α-CTxs in complex with AChBP, 

analogues of α-CTx ImI containing non-natural Pro6 derivatives were synthesized and 

pharmacologically characterized.99 Activity was evaluated in tsA-201 cells transiently 

expressing α7/5-HT3 chimera using a [3H]-methyllycaconitine completion binding assay, 

HEK293 cells stably expressing rα4β2, rα3β4, or rα4β4 nAChRs using a [3H]-epibatidine 

competition binding assay, and GH3 cells stably expressing hα7 nAChR using the Fluo-

4/Ca2+ assay. Addition of polar and charged groups on Pro6, such as 4-amino, 4-guanidino, 

and 4-betainamidyl, resulted in no significant binding or antagonistic activity toward hα7 

nAChRs. Most aromatic and hydrophobic substituents to Pro6, such as 3-phenyl, 4-phenyl, 

4-benzyl, and 4-naphthylmethyl resulted in varying degrees of diminished binding to hα7 

nAChRs. The loss of activity depended upon both the position and stereochemistry of the 

substitution. For example, the 4-(R)-phenyl analogue resulted in an ~six-fold reduction in 

binding, while the 4-(S)-phenyl showed no significant binding at 100 µM. However, the 5-

(R)-phenyl substitution resulted in significantly enhanced binding and antagonistic activity 

toward hα7 nAChR compared to the native conotoxin, with an observed 10-fold increased 

affinity compared to the wild type. None of the analogues demonstrated significant binding 

to hα4β2 or hα4β4 nAChR subtypes at 100 µM.  
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Computational chemistry was used to elucidate the mechanism behind the 

enhanced affinity of α-CTx ImI [P6/5-(R)-phenyl] substituent toward hα7 nAChR. A 

homology model of the hα7 nAChR ligand binding domain (LBD) was generated using 

Modeller 9 version 3,100 based on the crystal structures of mouse LBD of α1 nAChR (PDB: 

2QC1)49 subunit and Ac-AChBP in complex with α-CTx ImI as templates (PDB: 2BYP).46 

Docking of α-CTx ImI [P6/5-(R)-phenyl] to the hα7 nAChR LBD model was performed 

using Schrödinger Glide.101 Results of computational modeling and docking experiments 

suggest that the observed enhanced affinity may be due to π-stacking interactions between 

the P6/5-(R)-phenyl and Tyr93 in the receptor. This study was inspired by crystallographic 

data of α-CTxs in complex with AChBPs and demonstrates the utility of rational 

mutagenesis of α-CTxs to enhance binding affinity. Results of this rational design method 

demonstrate the utility of computational chemistry to broaden molecular insights of 

structure-activity relationships for the interaction of mutated CTxs with target receptors.  

In contrast to the rational design approach focused on chemical modification of a 

single amino acid described in the previous study, α-CTx ImI has also been used as a 

template in an expansive PS-SCL experiment.102 This experiment acquired information 

about three amino acids mutated in the n-loop of the α-CTx ImI framework, with the goal 

of generating α-CTx ImI analogues with improved activity and selectivity for the hα7 

nAChR.103 Using this approach, the amino acids Ala9, Try10, and Arg11 were mutated to 

any of 22 natural and non-natural amino acids using the “tea bag” synthetic strategy. The 

PS-SCL resulted in a total of 10,648 combinations, which were screened for activity in 

GH3 cells stably expressing hα7 nAChR using the Fluo-4/ Ca2+ assay. In the initial 

screening process, 66 PS-SCL mixtures, each containing 484 unique compounds, were 
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evaluated to determine the amino acid at a given position that resulted in the greatest 

potency for that mixture and were selected as promising candidates for more potent 

analogs. From this initial screen, the most active amino acids at position 9 were determined 

to be norvaline (F), with Leu and Ile at this position resulting in mixtures with high 

antagonist potency. In position 10, Trp was determined to be most potent, with Phe and 

Tyr also resulting in potent mixtures. In position 11, substitution with His proved most 

impactful, with Trp and α-aminobutyric acid (Abu) also resulting in potent mixtures. 

Thirty-six individual analogs were synthesized with position 9 occupied by Phe, Leu, or 

Ala (native), position 10 occupied by Trp, Phe, or Tyr (native), and position 11 occupied 

with Abu, His, Trp, or Arg (native). Sixty additional individual analogs were synthesized 

resulting in a subsequent screening of 96 compounds. The result of this study was creation 

of a α-CTx ImI mutant with 14-fold greater potency than native peptide; the mutant peptide 

contained Leu9, 4-aminophenylalanine (Aph) in position 10, and Abu11. The consensus 

sequence of the most potent mixtures from the initial screen –Nva9, Trp10, His11– had 

nearly a nine-fold enhanced potency and was one of the most effective analogs tested for 

inhibition of hα7 nAChR. A key observation from this study is that no single substitution 

resulted in increased antagonist potency, but rather, multiple substitutions acted 

synergistically to achieve significant increases in antagonist potency. This implies that 

although native toxins are well optimized for their interactions with the receptors, 

antagonist activity can be significantly enhanced by substitution with combinations of two 

or three residues. 
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α-CTx BuIA 

α-CTx BuIA, with sequence GCCSTPPCAVLYC, was originally discovered by 

reverse transcription of RNA isolated from the venom duct of Conus ballatus. This peptide 

has a 4/4 m/n loop framework and can block multiple rat nAChR isoforms with nanomolar 

potency.78 Chemical synthesis of the mature toxin allowed for pharmacological 

characterization through electrophysiology experiments in Xenopus oocytes expressing 

multiple rat nAChRs. Inhibition of several different nAChR subtypes was demonstrated, 

with the greatest potency shown for α6/α3β2 (IC50 0.258 nM), α6/α3β4 (IC50 1.54 nM), 

α3β2 (IC50 5.72 nM), and finally α3β4 (IC50 27.7 nM). Notably, it was discovered through 

kinetic studies that α-CTx BuIA can differentiate between rβ2 versus rβ4 containing 

nAChRs. It was shown that blockage of rβ2-containing nAChRs is quickly reversible (<10 

min), while blockage of rβ4 containing nAChRs is slowly reversible (>25 min). With this 

knowledge of kinetic data, researchers designed mutant analogs of α-CTx BuIA to 

determine if selectivity with respect to potency, not just koff, could be achieved. This led to 

the creation of the α-CTx BuIA [T5A, P6O] double mutant, which is ~200 fold more 

selective for the rα6/α3β4 nAChR (IC50 58.1 nM) as compared to rα6/α3β2β3 nAChR, 

(IC50 >10,000 nM).79 Figure 1.3 shows the differences in electrostatic surface between α-

CTx MII [S4A, E11A, L15A], an analog of α-CTx MII that is highly selective for 

α6/α3β2β3-nAChR isoform discussed below,91 and α-CTx BuIA [T5A, P6O] that exhibits 

different selectivity for the rα6/α3β2β3-nAChR isoform. 
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Figure 1.3. Differences in electrostatic topography for two conotoxins A) α-CTx 
BuIA and B) α-CTx MII [S4A, E11A, L15A] that exhibit different selectivity for 
nAChR subtypes. The increased positive charge, contributed by Asn14, His12 and 
His9, on α-CTx MII [S4A, E11A, L15A] as compared to α-CTx BuIA is thought to 
contribute to the different selectivity profile of these peptides (see Table 1.1). The 
negatively charged surface surrounding Tyr12, Thr5 and Ser4 of α-CTx BuIA is 
thought to contribute to binding affinity for α6α3β4-nAChR. 

To understand how α-CTx BuIA differentiates between nAChR isoforms, another 

study mutated the rα4 subunit receptor residues 185-205 corresponding residues in the rα6 

subunit.104 Specifically, mutation of three rα4 residues—Y185, T187, R188—to the 

corresponding rα6 residues (K185, T187, and I188) showed ~2000-fold increase in α-CTx 

BuIA potency.  

To explain the increase in peptide binding affinity, molecular modeling was used 

to build a model of BuIA bound to rα4-α6(185-188)-α4β2 extracellular domain from the 

A 

B 
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structure of the Torpedo marmorata AChR (PDB: 2BG9) and BuIA/AChBP co-crystal 

structure (PDB: 4EZ1) as the templates. While the potency profile implicates these 

residues, the molecular modeling experiment showed α-CTx BuIA binding more than 10 

Å away from K185, D187, and I188. It was hypothesized that these critical three residues 

of the α6 subunit do not interact with BuIA directly, but instead potentially alter the 

structure and flexibility of the C-loop, which in turn may account for heightened potency. 

Figure 1.3 shows the sequence alignment of human α3, α4 and α6 subunits with conserved 

residues highlighted. 

In order to enhance selectivity and potency toward inhibition of α3β4 nAChRs, α-

CTx BuIA has been used as the framework for a PS-SCL experiment by Chang et al.80 

α3β4 nAChRs have been implicated in nicotine addiction and drug abuse, and potent and 

selective antagonists of these receptors may help elucidate the role of the receptors in these 

conditions.105, 106 Chang et al. replaced six residues in the primary sequence of α-CTx BuIA 

with 22 natural and non-natural amino acids, while conserving the four cysteine residues, 

Gly1, Ser4, and Pro6. In total, 113,379,904 sequences were generated using the “tea bag” 

method with solid phase peptide synthesis (SPPS).102 The initial screening was performed 

on 132 PS-SCL mixtures, each containing 5,153,632 compounds using the fluorescent 

membrane potential assay in HEK293 cells stably expressing either rat α3β4, α3β2, or α7 

nAChRs. 

A second generation of analogues was chosen based upon the two amino acid 

residues identified in each position that exhibited the greatest inhibition of α3β4 nAChR 

subtypes. The second-generation library consisted of 64 sequences, and screening was 

again conducted using the fluorescent membrane potential assay in α3β4 nAChRs 
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expressing HEK293 cells. Eleven sequences exhibited greater than 80% inhibition 

compared to 10 μM mecamylamine, which was the control treatment defined as 100% 

inhibition. Four compounds were further analyzed by competitive inhibition of [3H]-

epibatidine with α3β4 nAChR and α4β2 nAChR expressing HEK293 cells, with no 

significant binding to α4β2 nAChR observed. Ultimately, this experiment resulted in the 

discovery of the novel mutant peptide, named TP-2212-59, with the sequence α-CTx BuIA 

[T5H, P7B, A9F, V10B, L11Z], where B is 2-aminobutyric acid and Z is norvaline. 

Functional characterization of TP-2212-59 was undertaken using electrophysiology in 

Xenopus oocytes heterologously expressing α3β4, α3β2, or α7 nAChRs. The approach 

taken by researchers to mutate this non-selective conotoxin to selectively bind the target 

receptor, resulted in ~10-fold improvement in IC50 from 27.7 nM to 2.3 nM in α3β4 

nAChRs. No inhibition was observed for α3β2 and α7 nAChRs at 10 μM, meaning a 

>1,000-fold selectivity for the α3β4 nAChR subtype had been established.  

α-CTx Lt1.3 

Recently, Chen, et al. identified and synthesized α-CTx Lt1.3, 

GCCSHPACSGNNPYFC.81 They characterized the peptide with rα3β2 nAChR and found 

it to have an IC50 of 44.8 nM. As previously stated, smaller hydrophobic residues at 

position 10 in α-CTxs have been found to increase selectivity for rα3β2 nAChRs. It follows 

that Lt1.3 has Gly in position 10, and consequently selectively targets the rα3β2 nAChR 

isoform. The α-CTx Lt1.3 [S9A] mutant exhibits slightly enhanced potency, while [Y14A] 

has decreased potency by nearly five-fold. Given this level of nAChR activity adjustment, 

with minor primary sequence alteration, future characterization of this peptide is 

anticipated. 
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α-CTx TxIB 

Native α-CTx TxIB, with sequence GCCSDPPCRNKHPDLC, is selective for 

rα6/α3β2β3 nAChRs (IC50 28 nM).82 This peptide demonstrated little or no inhibition of 

other tested nAChR subtypes at concentrations up to 10 μM. The [K11A] mutant of α-CTx 

TxIB exhibits selectivity for rα7 nAChRs with an IC50 of 200 nM.83 While most α-CTxs 

have a hydrophobic patch in loop 1, the hydrophobic patch in TxIB, composed of only the 

four amino acids SDPP, is comparatively smaller. TxIB has two patches of positive charge 

character on either side of its hydrophobic patch. When rβ4 rather than rβ2 was co-

expressed with α6/α3, inhibition by TxIB dropped by 400-fold, indicating that slight 

residue differences between homologous β2 and β4 subunits significantly influence 

binding.83 Similarly, when α3 rather than α6/α3 was co-expressed with β2, antagonism by 

TxIB was 400-fold lower, indicating that slight residue differences between homologous 

α6 and α3 nAChR subunits also significantly influence binding. 

Yu et al. studied TxIB binding with hα7 and rα7.83 The ligand binding domain 

sequence of rα7 differs from the ligand binding domain sequence of hα7 by only 10 

residues. The α-CTx TxIB [K11A] mutation (in loop 2) improved the potency towards rα7, 

but not hα7. Computer models of toxins complexed with a hα7-AChBP chimera indicate 

the importance of Arg185 to this result: receptor mutation R185K drastically decreased the 

activity of α-CTx TxIB [K11A] to inhibit rα7, whereas the inverse R185K mutation in hα7 

essentially conferred onto hα7 the affinity level of rα7. The importance of R185 has also 

been implicated in modeling studies of PnIA [A10L, D14K] and ImI with hα7.  
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α-CTx GIC 

α-CTx GIC, GCCSHPACAGNNQHIC, has a nearly identical sequence to Lt1.3 

[S9A], differing by only the last four C-terminal residues.84 α-CTx GIC inhibits hα3β2, 

hα4β2 and hα3β4 nAChRs, with IC50 values of 1.1 nM, 309 nM, and 755 nM, respectively. 

As with TxIB, the hydrophobic patch in GIC is comparatively smaller than most α-CTxs, 

suggesting GIC may have high selectivity for hα3β2. Indeed, GIC has remarkably high 

potency for hα3β2 nAChR isoforms (IC50 ~1 nM), compared to its next closest rival α-CTx 

MII, which has been the model antagonist for this receptor with an IC50 of 0.5 nM.93 GIC 

and MII share identical m-loops but differ in seven out of eight residues in the n-loop, such 

that GIC is significantly more hydrophilic than MII. 

Lin et al. built a model of the rα3β2 nAChR with bound GIC, based on the crystal 

structure of GIC bound to Ac-AChBP as a template (PDB: 5CO5), and proposed the key 

binding interactions between ligand and receptor.85 Compared with TxIA [A10L] and ImI, 

GIC does not contain the same Arg5 or Trp10 residues conferring rα3β2 nAChR 

selectivity, but rather His5 (on the principal side of the receptor binding interface) and 

Gln13 (on the complementary side) in the homologous positions. According to this model, 

the residues in GIC that are most likely to interact with rα3β2 are His5, Ala7, Asn11, 

Asn12, and Gln13. An alanine scan was performed on various residues (H5A, A7G, A7L, 

N11A, N12A, and Q13A) that concluded all mutations except Q13A decreased activity 

with rα3β2. The model showed Gln13 of GIC surrounded by Glu61, Val111, Ser113, 

Ser117 and Phe119 of the rβ2 subunit. The corresponding residues in rβ4 are Glu62, Ile113, 

Arg115, Ser119 and Leu121; these are all the same or similar residues as those found in 

rβ2 except for Arg115. It is suspected that the long side chain of Arg115 may decrease the 
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activity with GIC in the rα3β4 nAChR subtype due to steric hindrance with Gln13 in GIC. 

Other interactions identified by the authors were between Asn11 of GIC and Asp152 in the 

rα3 subunit, and between His5 of GIC and three tyrosine residues (Tyr93, Tyr190 and 

Tyr197) in the rα3 subunit. Indeed, α-CTx GIC [H5A] showed decreased activity with 

rα3β2, likely from an absence of the tyrosine interactions. 

α-CTx TxID 

α-CTx TxID with sequence GCCSPHVCSAMSPIC, is a α-4/6-CTx identified from 

the genomic DNA of Conus textile that inhibits rα3β4, rα6/α3β4 and rα2β4 with IC50 values 

of 12.5 nM, 94 nM and 4.5 μM, respectively.86 A series of activity assessment experiments 

for TxID were performed, similar to those described for TxIB.81 By replacing rβ2 for rβ4 

during co-expression with rα3, it was found that TxID potency was >800-fold lower, 

indicating that slight residue differences between highly homologous β2 and β4 subunits 

significantly influence binding, although the specific receptor residues involved in binding 

remain to be elucidated. Similarly, when α4 rather than α3 was co-expressed with β4, 

potency was >1000-fold lower, again indicating that amino acid residue differences 

between homologous α3 and α4 (for example, residues 148 and 196) significantly influence 

binding. TxID has a three amino-acid sequence of SHP in loop 1, which is present in several 

other α-CTxs with differing nAChR selectivity. Conversely, loop 2 of TxID contains the 

five amino-acid sequence SAMSP, which is not found in other pharmacologically tested 

α-CTxs and may be important for the unique selectivity and potency for rα3β4 nAChR 

exhibited by TxID. 

Wu et al. performed an alanine screen to evaluate analog selectivity for rα3β4 and 

rα6/α3β4 and found that α-CTx TxID [S9A] had the greatest selectivity for rα3β4 as 
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compared to rα6/α3β4.59 They found that S9A did not inhibit a range of other nAChR 

subtypes at a threshold of 10 μM, including α7, α9α10, α1β1δε, α2β2, α2β4, α3β2, α4β2, 

and α4β4. α-CTx TxID [S9A] appears to have a more tightly coiled α-helical between P6 

and A10 as compared to native TxID. By contrast to Ser9, the hydroxyl group of Ser4 is 

not involved in any perceived interaction with the rα3β4 binding site, and S4A mutation 

was predicted to have no impact, which was consistent with experimental IC50 

measurement of 10.8 nM compared to 3.6 nM for native TxID. Another mutation, α-CTx 

TxID [M11I], achieved preferential binding for rα6/α3β4 over rα3β4. According to the 

model produced by Wu et al of TxID in the binding pocket of the rα3β4 and rα6β4 nAChR 

interfaces (a homology model based on the crystal structure of AChBP bound to a TxIA 

variant, and the crystal structure of hα9 [PDB: 2UZ6]), Met11 contacts Cys218 of the α3 

C-loop and [M11A] would be expected to result in a change of binding mode, due to the 

steric hindrance induced by the larger Met11 side chain is relieved. By contrast, M11I 

would not be expected to create a significant steric clash with α6 in the rα6β4 model, 

suggesting that this mutation would not be detrimental to rα6β4 binding. Indeed, α-CTx 

TxID [M11I] resulted in 20-fold decreased potency with rα3β4 but did not reduce 

inhibition of rα6/α3β4. 

Yu, et al took previous α-CTx TxID studies further by mutating Ser9 with a series 

of 14 different amino acids.60 The α-CTx TxID [S9K] mutant exhibited the greatest 

selectivity for rα3β4 over rα6/α3β4 of all the variations tested. The ligand binding domains 

of rα3β4 and rα6β4 with native TxID differ by only α subunit positions 148 and 196, where 

196 is a bulkier Gln in α3 and a less bulky Thr in α6. The bulkier Gln196 interacts with the 

β8 strand of the α3 subunit, “pushing” the C-loop and TxID further toward the bottom of 
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the orthosteric binding site than in the TxID−rα6β4 model, resulting in a shift of the 

location of Ser9 in TxID to be within the binding site. In the TxID−rα3β4 model, the Ser9 

side chain does not contact the β-strands of the β4 subunit, and the binding cavity is partly 

solvated, suggesting Ser9 substitution with an Ala or a long side chain amino acid, such as 

Lys or Arg, should be well accepted. The mutation data obtained by Yu et al. indeed show 

that Ser9 substitutions with Ala, Lys, or Arg are innocuous to rα3β4 binding. The Ser9 side 

chain of TxID in the TxID−rα6β4 model faces a positively charged Lys81 in β4 and is also 

in close proximity to a negatively charged Glu58 in β4. Substitution of Ser9 with a charged 

residue is expected to result in charge repulsion with either Glu58 or Lys81 of the β4-

subunit. Additionally, in the TxID−rα6β4 nAChR complex, the Ser9 side chain of TxID 

establishes a hydrogen bond with the β4 Lys81 side chain. Indeed, Ser9 mutation to a 

charged residue such as Asp, Lys, or Glu shows a >300-fold decrease in rα6β4 activity in 

all three cases.  

α-CTx GID 

Native α-CTx GID, IRDγCCSPNACRVNNOHVC, was originally isolated by 

assay-directed fractionation from the crude venom Conus geographus.87 The primary 

sequence is notable for the four-residue extended N-terminus, the post-translationally 

modified residues γ-carboxyglutamate (γ) and hydroxyproline (O), and because GID does 

not contain the amidated C-terminus typical of most α-CTxs. α-CTx GID was shown to 

inhibit rat α3β2, α7, and α4β2 with IC50 values of 3.1 nM, 4.5 nM and 152 nM, respectively. 

Deletion of the extended N-terminus decreased activity at α4β2 (IC50 670 nM) but did not 

significantly decrease activity at α3β2 (IC50 4.6 nM) or α7 (IC50 5.5 nM). To determine the 

residues that are important for α-CTx GID inhibition of rat α3β2, α4β2, and α7 nAChRs, 
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alanine-scanning mutagenesis was employed.107 Asp3, Arg12, and Asn14 were determined 

to be critical for inhibition of α7, while Pro9 was essential for α3β2 nAChR inhibition. 

More recently, Banerjee et al. measured α-CTx GID antagonist activity of rα3β2 and rα4β2 

nAChRs, with IC50 values of 36 and 4800 nM, respectively using fluorescent membrane 

potential assays in HEK293 cells expressing rat nAChRs.55 With the goal of obtaining 

further insights into α-CTx GID/nAChR interactions that could lead to the design of GID 

analogues with improved affinity for α4β2 nAChRs, a homology model of GID bound to 

hα4β2 was constructed. The model was created using an X-ray co-crystal structure of a 

PnIA variant bound to Ac-AChBP as a template (PDB: 2BR8). The models created by 

Banerjee et al. show that Asp3, Arg12, and Asn14 in α-CTx GID are required for binding 

the hα4β2 nAChR. Close proximity between the side chains of Arg2 and E189, the side 

chain of Asp3 and the backbone NH atom of Y188, and the side chains of Glu4 and R186 

and K143 were observed. Banerjee et al. synthesized mutants of these key charged GID 

residues to either a smaller, less bulky, side chain or a neutral side chain, both to abolish 

the respective receptor-peptide interaction. Each mutation resulted in loss of activity for 

hα4β2 and/or hα3β2, indicating the importance of these interactions in receptor binding. 

The negatively charged carboxylate side chain of GID Glu4 is suspected to form salt 

bridges with the positively charged side chains of R186 and K143 residues in the α4 

binding pocket. The α-CTx GID [E4Q] mutation introduced electrostatic repulsion 

between the amide hydrogen atoms of the Gln4 side chain and the positively charged R186 

and K143 side chains. Additionally, Ser7 is in proximity for formation of a hydrogen bond 

between its side chain hydroxyl group and both the S36 hydroxyl and D169 carboxyl 



36 

 

groups of the β2-subunit, explaining the decreased potency of α-CTx GID [S7A] with 

hα4β2.  

Steric hindrance frequently overwhelmed many of the hypotheses made by 

Banerjee, et al.55 For example, the model produced by Banerjee et al. with hα4β2 also 

shows Val13 of GID in proximity to a cluster of aromatic residues consisting of F104 in 

the β2-subunit and W118 and W147 in α4-subunit, but mutation to aromatic residues 

decreased activity with hα4β2, presumably due to unfavorable steric interactions. 

Additionally, the Ala10 side chain of GID is oriented toward a polar pocket in the hα4β2 

in such a way that mutation of Ala10 to serine or threonine may establish an interaction 

with the backbone carbonyl of S146 in α4, but the α-CTx GID [A10T] mutation resulted 

in loss of activity for both hα4β2 and hα3β2, which is attributed to steric hindrance of the 

β-methyl group of Thr10. Conversely, the α-CTx GID [A10S] mutation had comparable 

potency with hα4β2 and a 10-fold decrease in potency with hα3β2, indicating position 10 

may still play an important role in determining the selectivity of GID between hα4β2 and 

hα3β2. Banerjee reported other important interactions including a polar contact between 

Asn15 and Y195 in α4, and a salt bridge between Arg12 and E59 in β2, suggesting α-CTx 

GID [R12A] would eliminate a key binding interaction. Indeed, this is observed 

experimentally, resulting in a more than three-fold increase in the IC50 for rα3β2, an almost 

10-fold increase in the IC50 for rα7, and a loss of activity with rα4β2.107 

The α-CTx GID [V18N] mutation exhibited comparable activity with rα4β2 (IC50 

1.85 µM) to the native peptide (IC50 4.8 µM), while the [V18Q] mutation eliminated 

inhibitory activity for both rα4β2 and rα3β2. Banerjee et al. explains this result by 

suggesting the longer glutamine side chain experiences greater steric hindrance upon 
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binding as compared to the shorter side chain of asparagine. Important to note is that the 

GID [V18N] mutation exhibited no activity with rα3β2, indicating position 18 is essential 

for determining selectivity between rα4β2 and rα3β2. α-CTx GID [V18N] is the most 

selective α-CTx for rα4β2 over rα3β2 identified to date, with an IC50 of 1.85 µM and >100 

µM, respectively. The hα4β2 model created by Banerjee et al. rationalizes the observed 

selectivity for rα4β2, showing a potential hydrogen bond interaction between the Asn18 

amide in GID [V18N] and the hydroxyl group of Y195 of the α4 subunit, which is not 

present in hα3β2. This interaction seems to shift the position of the C-loop in the binding 

site of hα4β2 compared to hα3β2.  

α-CTx GID inhibition of α4β2 nAChR was recently used for the development and 

validation of a docking algorithm integrated into ToxDock.88 ToxDock uses ensemble-

docking and conformational sampling to dock α-CTxs to nAChR homology models. The 

objectives of this study were to determine if an algorithm could perform two functions: (1) 

accurately dock α-CTx GID to the α4β2 nAChR by accounting for the conformational 

flexibility of these complexes, and (2) discover new α-CTx GID derivatives with 

functionally enhanced affinity or selectivity for α4β2 nAChRs. Three bioactive GID 

mutants (A10V, V13I, and V13Y), predicted by virtual screening using ToxDock, were 

experimentally validated. ToxDock employs two existing protocols in the Rosetta 

macromolecular suite,108 Rosetta FastRelax and Rosetta FlexPepDock,109, 110 to provide 

extensive conformational sampling of both the nAChR homology model and the conotoxin 

to refine models of these complexes. The α4β2 nAChR extracellular domain dimer was 

generated using Modeller version 9.11 based upon the X-ray structures of AChBP from A. 

californica in complex with the α-CTxs PnIA [A10L, D14K] (PDB: 2BR8), ImI (PDBs: 
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2C9T, 2BYP), BuIA (PDB: 4EZ1), and TxIA [A10L] (PDB: 2UZ6).47, 48, 111-113 Docking 

and virtual screening of α-CTx GID and its analogs were based upon the NMR structure of 

α-CTx GID (PDB: 1MTQ).107 To generate α-CTx GID analogs, non-conserved, 

hydrophobic, and buried GID residues were identified as candidates for mutation. The 

authors identified two residues, Ala10 and Val13 of α-CTx GID as promising candidates 

for point mutations. Based upon these two candidate residues, a library of 256 GID point 

mutants was prepared in silico using PyRosetta.114 ToxDock was used to refine the α-

CTx/α4β2 nAChR complexes. Twenty-five percent of the GID mutants were predicted to 

be active at the α4β2 nAChR, and the four mutants, [A10V], [A10Q], [V13I] and [V13Y] 

were selected for synthesis and experimental characterization. The α-CTx GID [A10Q] 

mutant was predicted to be inactive, while the other mutants were predicted to be active at 

the α4β2 nAChR subtypes. Pharmacological characterization was performed using the 

fluorescent membrane potential assays in HEK cells stably expressing human α7, α3β2, 

α3β4 or α4β2 nAChR subtypes. Electrophysiology was also conducted in Xenopus oocytes 

expressing human α4β2 nAChR subtypes. Two of the three α-CTx GID analogs identified 

by the virtual screening, GID [A10V] and GID [V13Y], had reduced activity at the human 

α7 nAChR without diminished activity at the α4β2 nAChR. The IC50 of α-CTx GID 

[A10V] and α-CTx GID [V13Y] were measured at 30 μM and 3 μM, respectively, for the 

α4β2 nAChR subtypes, while the wild type IC50 was demonstrated to be 3 μM. However, 

the IC50 for the α7 nAChR were observed to be diminished, with GID [A10V] measured at 

>10 μM, and α-CTx GID [V13Y] measured at 4 μM, compared to wild type IC50 of 0.1 

μM. Activity was maintained in the α-CTx GID [V13I] mutant at both receptor subtypes, 

with IC50 values of 8 μM and 0.2 μM, for the α4β2 and α7 nAChR subtypes, respectively. 
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Potency was maintained at the α3β2 nAChR subtype for all three active mutants, with IC50 

ranging from 1-3 nM, which is slightly more potent than the wild type, measured at 10 nM. 

This study demonstrated the feasibility of a predictive computational screening and 

experimental validation for the identification of novel α-CTx mutants with enhanced 

selectivity for a nAChR subtype. Further application of this approach could be used for 

additional peptide toxins and their ion channel targets.  

α-CTx PnIA 

α-CTx PnIA is a 16 amino-acid peptide originally isolated from the venom of 

Conus pennaceus.115 Pharmacological characterization of α-CTx PnIA in Xenopus oocytes 

expressing rα3β2 and rα7 nAChRs demonstrated IC50 of 9.56 and 252 nM, respectively. 

The single mutation α-CTx PnIA [A10L] resulted in an altered receptor affinity with IC50 

values of 12.6 nM for rα7 and 99.3 nM for rα3β2.89 The finding that the subtle change in 

the hydrophobic side chain at position 10, from Ala to Leu, significantly altered receptor 

affinity was corroborated by additional studies.116, 117 Modification to the structural 

characteristics at the Ala10 position through the incorporation of natural and non-natural 

amino acids, focusing on linear and branched aliphatic or aromatic residues provided 

detailed insights to the distinctions between the binding pockets of α3β2 and α7 nAChRs.90 

These receptor differences were further explored using electrophysiology measurements in 

Xenopus oocytes expressing either rat or human α3β2 and α7 nAChRs, and by evaluating 

affinity for α7 nAChRs using rat brain homogenate and measuring displacement of 125I-α-

bungarotoxin, which is known to bind selectively to the α7 nAChR subtype.118 Polar and 

aromatic substitutions at Ala10 residue were found to result in a large reduction in affinity 

for both receptor subtypes. Molecular docking using the program AutoDock indicated 
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hydrophobic interactions with several α7 and α3β2 receptor residues via a hydrophobic 

funnel that is capable of accommodating linear and branched side chains, but not aromatic 

chains. Extending the Ala10 to norleucine (Nle) resulted in an increased binding affinity at 

both α7 and α3β2 receptor subtypes, with observed IC50 values of 4.3 nM and 0.7 nM, 

respectively. The α-CTx PnIA [A10Nle] mutation reverted selectivity back to the α3β2 

nAChR. The binding affinity of the A10Nle was determined to be 44 nM as determined by 

125I-α-bungarotoxin radioligand competition studies of rat brain homogenate. Further 

lengthening the Ala10 side chain beyond the Nle mutant through the incorporation of 

amino heptanoic acid (Aha) or amino octanoic acid, extensions of one or two carbon-

carbon bond lengths, respectively, resulted in decreased affinity for the α7 nAChR isoform 

of 136 nM and 756 nM, respectively. This study demonstrated that a single mutation to α-

CTx PnIA [A10L] flips its selectivity profile from the α3β2 nAChR to the α7 nAChR, and 

showed the placement of a single methyl group can drastically alter binding affinity of the 

toxin. The impact of this finding is valuable detailed structure information about the α7 

nAChR binding pocket, which may inform the development of more selective ligands in 

the future. This study also demonstrated the utility of computational experiments in 

understanding the molecular basis for ligand selectivity between α7 and α3β2 nAChRs, 

where the residue located at the equivalent position to R208 in α7 (equivalent to I186 in 

α3) is one of the key determinants for ligand selectivity. 

α-CTx PnIA was recently used as a starting point to design mutants with enhanced 

affinity for α7 nAChR using protein surface topography (PST).119 PST is a computational 

method used to understand ligand/receptor interactions that addresses bioactive peptides 

and their targets as interacting surfaces.120 Ligand surfaces are simplified and transformed 
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into a machine-tractable format of 2D projection maps, which enable group analysis and 

produce a pattern that defines activity/selectivity for a group of molecules. The PST 

approach was initially used to study neurotoxic peptides from scorpion venom.121 The 

extension of PST to α-CTxs inhibiting the α7 nAChR benefits from the considerable 

number of 4/7 α-CTxs identified and structurally characterized that are available to be used 

for structure-function analyses aimed at mapping ligand pharmacophores. The PST 

computational strategy began by establishing a database of 39 α-CTxs known to block α7 

nAChRs and dividing this database into three groups based upon inhibition activity: “good” 

(IC50 < 16 nM), “average” (IC50 39-390 nM), and “bad” (IC50 > 390 nM). A structural 

database was generated for the 39 α-CTxs either obtained from the PDB or built using 

homology modeling, and 2D spherical maps were generated of hydrophobic and 

electrostatic properties distributed over the peptide surface using PST.119 Correlation of the 

relationship between the activity and properties of each α-CTx that was visualized in the 

2D spherical maps resulted in group-averaged maps for the “good” and “bad” groups were 

generated. Differential maps were constructed to emphasize the prominent differences 

between “good” and “bad” groups, and these results were used to inform the design of α-

CTx PnIA variants. Three α-CTx PnIA analogs were synthesized: PnIA [A9R], PnIA 

[A9R, A10L], and PnIA [L5R, A9R, A10L, D14R]. The L5R, A9R, and D14R mutations 

were chosen because of the observation that “good” 2D spherical maps contained more 

positive electrostatic potential compared to “bad” maps, and the A10L mutation was 

chosen due to literature precedent for increased α7 nAChR affinity.89, 116, 117 The three PnIA 

analogs were synthesized and pharmacologically characterized using radioligand analysis 

and electrophysiology. The competitive radioligand assay with [125I]-labeled α-Bgt and 
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[125I]-labeled PnIA analogs were conducted in GH4C1 cells transfected with human α7 

nAChR, and electrophysiology was conducted using two-electrode voltage clamp in 

Xenopus oocytes following rat α7 nAChR cDNA injection. The IC50 values for the three 

mutants were ~20 nM each, demonstrating high affinity binding to the α7 nAChR isoform. 

However, native α-CTx PnIA was not evaluated in this study, so a direct effect of these 

mutations on the potency of PnIA cannot be concluded. This study demonstrated that the 

PST approach can be applied to α-CTxs and may provide another computational strategy 

to design highly active and selective compounds for other nAChR subtypes.  

α-CTx MII 

α-CTx MII, originally isolated from the venom of Conus magus, is a 16 amino-acid 

peptide with the sequence GCCSNPVCHLEHSNLC.93 α-CTx MII has a reported IC50 for 

the rα3β2 nAChR isoform of 0.5 nM as determined by electrophysiology voltage clamp 

experiments in Xenopus oocytes expressing rat α3β2 nAChRs. Alanine-screening of α-CTx 

MII identified three residues, Asn5, Pro6, and His12, as key to the potency of α-CTx MII, 

with diminished activity of >2,700-fold, 700-fold, and >2,700-fold, respectively for the 

single site mutants.95 Shortly after the high affinity of α-CTx MII for the rα3β2 nAChR 

subtype was reported, the single site mutant, α-CTx MII [E11A] was shown to exhibit 

preferential binding for α6/α3β2β3 nAChR isoforms compared to α3β2 nAChR isoforms, 

with IC50s of 0.160 nM and 8.72 nM, respectively, with an observed preference for 

α6/α3β2β3 of >50-fold.35, 36, 122 The double mutant α-CTx MII [H9A, L15A], was found to 

be even more selective for α6/α3β2β3 versus α3β2, with IC50 values of 2.40 nM and 4850 

nM, respectively, a 2020-fold preference for α6/α3β2β3 nAChRs. α-CTx MII [E11A, 

L15A] also demonstrated ~100-fold preference for the α6/α3β2β3 versus α6/α3β4 
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nAChRs, with an observed IC50 for the later of 269 nM. Through mutagenesis experiments 

of both the α-CTx MII ligand and the α3β2 nAChR isoform, the residues that play a critical 

role in CTx ligand binding to the α6 containing nAChRs were speculated to be E152, D184, 

K185, I188, and T195.91 The α-CTx MII triple mutant, α-CTx MII [S4A, E11A, L15A] has 

been shown to block a chimeric receptor α6/α3β2β3 nAChR (IC50 = 1.2 nM) with threefold 

less potency than native α-CTx MII (IC50 = 0.39 nM), but also blocked the α3β2 nAChR 

isoform with >600-fold lower affinity (IC50 = 1400 nM) than native α-CTx MII (IC50 = 

2.18 nM). These combined alanine substitutions resulted in mutant with >1000-fold 

preference for α6/α3β2β3 vs the α3β2 nAChR isoform. The potency of α-CTx MII to intact 

pentameric transmembrane spanning α3β2 nAChRs has been determined to require 

interaction with K185 and I188 residues on the α3 subunit of the receptor.123 These two 

residues are present in both α6 and α3 subunit proteins, necessitating additional 

investigation into root determinants of α-CTx differentiation between the α3 and α6-

containing nAChR isoforms. Figure 1.4 shows the sequence alignment of α3, α4, and α6 

subunits with conserved residues highlighted in green for human nAChR proteins. Through 

mutating site-specific residues of the α3 subunit into the counterpart residues of the α6, it 

has been shown that E152, D184, and T195 play a critical role in ligand differentiation 

between α3β2 and α6β2 nAChR isoforms.79 The triple mutant, α-CTx MII [S4A, E11A, 

L15A], showed ~150-fold increase in affinity to the α3 [K152E, E184D, Q195T] triple 

mutant as compared to the native α3 receptor (IC50s of 9.7 nM and 1400 nM, respectively). 

The three order of magnitude preference for α6/α3β2β3 vs the α3β2 displayed by α-CTx 

MII [S4A, E11A, L15A] resulted in a CTx that can clearly differentiate between these 

closely related nAChR subtypes. 
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A subsequent study aimed to alter α-CTx MII to achieved higher affinity and 

specificity for α6β2 containing nAChR subtypes by identifying amino acid residues in the 

primary sequence of α-CTx PIA (RDPCCSNPVCTVHNPQIC) that could alter the binding 

profile of MII.124 α-CTx PIA was cloned from DNA isolated from the hepatopancreas of 

Conus purpurascens using PCR primers for the 3´ end of the intron preceding the toxin 

region of the toxin prepropeptides and the 3´ untranslated region sequence of the α-

prepropeptides.125 α-CTx PIA was the first CTx found to discriminate between α6-

containing and α3-containing nAChRs, with IC50 values for rα6/α3β2β3, hα6/α3β2β3, 

rα6/α3β2 and rα3β2 of 0.95 nM, 1.72 nM, 0.69 nM, and 74.2 nM, respectively, as 

determined by electrophysiology in Xenopus oocytes heterologously expressing nAChRs. 

α-CTx PIA has an N-terminal RDP sequence, and to determine if this extended N-terminus 

is important in α6β2 selectivity, the hybrid peptide RDP-MII was synthesized. 

Additionally, docking studies suggested the importance of Glu11 in MII that may 

determine α6β2-containing vs α3β2-containing nAChR selectivity. Both the α-CTx MII 

[E11R] and RDP-MII [E11R] were synthesized, and their binding affinity was evaluated 

in native rα6β2-containing nAChRs isolated from rat brain striatum, and in native rα3β2-

containing nAChRs isolated from rat brain superior colliculus, and measured by 

displacement of [125I]-epibatidine. Ki for native α-CTx MII was determined to be 5.6 nM 

and 62 nM for α6β2-containing and α3β2-containing nAChRs, respectively. The RDP-MII 

hybrid peptide demonstrated a 13-fold increased affinity for α6β2-containing nAChRs (Ki 

0.43 nM), but similar affinity for α3β2-containing nAChRs (Ki 50 nM). The α-CTx MII 

[E11R] mutation did not alter affinity for α6β2-containing nAChRs (Ki 50 nM), but 

drastically reduced binding affinity for α3β2-containing nAChRs (Ki 4230 nM). The RDP-
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MII [E11R] resulted in enhanced binding to α6β2-containing nAChRs, with a Ki of 0.9 nM, 

and drastically reduced affinity α3β2-containing nAChRs, with a Ki of 4410 nM. The 

results of this study were discovery of the novel RDP-MII [E11R] and MII [E11R] analogs 

selective for α6β2-containing nAChRs, and demonstration of the utility of CTx 

mutagenesis based on the detailed examination of the primary sequence of other CTxs.  

 
Figure 1.4. α-Subunit sequence alignment for human nAChRs; α4 and α6 have 
60.00% sequence homology, α4 and α3 have 61.43% sequence homology, and the α6 
and α3 have 66.67% sequence homology. Homologous residues are highlighted in 
green. Stars are placed above residues that were mutated to assess the influence of 
residues of the α4 versus α6 responsible for the selectivity of α-CTx BuIA. 

Our collaborator, Dr. Tim Andersen, and his students have developed an algorithm 

to search exceptionally large mutant libraries for sequences with optimal binding affinities 

for ion channel receptors.126 The Genetic Algorithm Managed Peptide Mutant Screening 

(GAMPMS) program was used to search an α-CTx MII mutant library composed of 

approximately 41 billion possible peptide sequences for those peptides exhibiting the 
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greatest binding affinity for the α3β2 nAChR subtype. GAMPMS is a genetic algorithm 

designed for comprehensive structure-based high throughput virtual screening of very large 

mutant libraries.10 Genetic algorithms have found utility in computational and 

combinatorial chemistry applications.127-130 GAMPMS uses the popular AutoDock 4.0 

molecular docking software to provide fitness scores and uses the results of previous 

docking jobs to make an informed decision as to which mutations increase or decrease 

peptide binding affinity.131, 132 The use of AutoDock 4.0 additionally provides the added 

advantage of making the molecular docking results reproducible by other researchers. 

GAMPMS and the additional ancillary programs have been integrated into the open source 

DockoMatic v 2.1 software package, making this methodology readily available to the 

research community.133 The α-CTx MII sequence was used as the base sequence for 

mutation, with Cys2, Cys3, Pro6, Cys8, and Cys16 residues being conserved during these 

simulations because of their importance in maintaining the molecular scaffold of the native 

peptide. The remaining 11 residues in α-CTx MII were constrained to mutations that 

maintained the polar/nonpolar character at each residue. Therefore, Ser4, Asn5, His9, 

Glu11, His12, Ser13, and Asn14, were mutated into any polar or charged amino acid 

excluding cysteine, and nonpolar residues Gly1, Val7, Leu19 and Leu15 residues were 

mutated to any nonpolar amino acids excluding proline. The result of these mutations was 

a large library consisting of 40.96 billion possible peptide sequences. Three-dimensional 

peptide mutant structures were generated by copying the coordinates of the mutable residue 

and two adjacent residues into a new pdb file, removing the side chain atoms of the mutable 

residue from the generated tripeptide pdb file, adding the substituted side chain atoms, 

submitting the peptide analogue to TreePack, and grafting the modified peptide segment 
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back into the original ligand pdb file. TreePack determines the appropriate orientation of 

the new side chain to eliminate side-chain spatial overlaps.134 The fitness of an individual 

sequence is determined by the AutoDock score produced when the ligand is docked against 

the target receptor. The receptor structure used in the docking calculations was a homology 

model of the α3β2-nAChR isoform constructed from the amino acid sequences of the α3 

and β2 subunits of rat neuronal nAChR using the Torpedo marmorata nAChR X-ray 

structure (PDB: 2BG9) as a structural template.44 The homology models were created using 

the DockoMatic v 2.1 and MODELLER packages.100, 133 In the GAMPMS workflow, three 

genetic operators derived from the natural evolutionary processes of elitism, crossover, and 

mutation are used in determining peptide sequences with the highest “fitness,” which is 

binding affinity in this context. In determination of binding affinity, forty pose evaluations 

were used in the AutoDock docking simulation for ligand/receptor binding. Because of 

uncertainty in values of predicted binding free energies from molecular docking scoring 

functions, the best indicator that a side-chain mutation resulted in a beneficial effect on the 

predicted binding affinity is not the docking score directly but rather the conservation of 

any particular mutation that is observed among a population exhibiting the best docking 

scores. The conservation of residues across the peptides with the highest binding affinities 

was used to determine the final top sequence. The residue occurring with the highest 

frequency in the top 50 peptides, with all residues having a conservation of at least 50%, 

was included in the consensus sequence: WCCSYPGCYWSSSKWC. This consensus 

sequence, given the trivial name KTM, was subjected to further investigation and 

validation using molecular dynamics (MD) simulations and compared to sequences with 

known binding affinities with the α3β2 nAChR isoform. MD simulations were performed 
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using the GROMACS 5.0.4 software package with the AMBER03 force-field parameter 

set.135-140 The GAMPMS-derived molecular docking results were used as the input 

structures for the MD simulations. The calculated ΔGbind for KTM was −45.59 kcal/mol, 

which is more than double that of MII at a predicted ΔGbind of −20.42 kcal/mol. The 

binding free energies of the reference PnIA and TxIA peptides were -31.53 kcal/mol and -

32.20 kcal/mol, respectively. Although the calculated binding free energies of PnIA and 

TxIA are difficult to correlate with that of MII in absolute terms since there is no direct 

translation between ΔGbind and experimentally obtained IC50 values, the relative ΔGbind 

is in agreement with experimental results showing the significant predicted enhancement 

in binding affinity of these peptides for the rα3β2 nAChR.112 Figure 1.5 shows a 

comparison between the 3D structures of α-CTx MII and KTM.  

 

 
Figure 1.5. Structural comparison between A) α-CTx MII and B) the 
computationally predicted structure of KTM. Select amino acids are labeled. The 
backbone scaffold is predicted to be maintained by conserving the structurally 
important cysteine and proline residues. The cysteine pattern in both peptides is C1-
C3 and C2-C4. 

B A 
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The GAMPMS protocol was used in this study to produce an α-CTx MII analogue 

with computationally predicted optimal binding to the rα3β2 nAChR by heuristically 

searching a vast set of amino acid residue combinations. The resulting consensus mutant 

peptide, KTM, was shown to have considerably higher binding affinity for the α3β2 

nAChR than the precursor α-CTx MII peptide. However, the assumption that the allowed 

mutations would not alter the secondary structure of the α-CTx MII template is dubious, 

and the correlation between binding affinity and IC50 requires experimental validation to 

confirm channel pore influence. The KTM peptide was synthesized for structure and 

bioactivity evaluation. 

Conclusions 

The work described herein exemplifies the value of conotoxins as molecular probes to 

understand the delicate intricacies of nAChR isoform selectivity and inhibition of channel 

pore proteins required to develop treatments for neurological disorders. Despite the large 

number of α-CTxs that have been characterized, either through isolation from Conus 

venom, or synthesis based on sequences identified in Conus transcriptomes, designing 

potent and selective ligands for a particular nAChR subtype is still a challenge. The purpose 

of this chapter was to summarize strategies undertaken by researchers to alter the primary 

sequences of α-CTxs to enhance their affinity and selectivity for particular nAChR 

subtypes. Numerous examples of alanine scanning mutagenesis were illustrated. 

Mutagenesis inspired by detailed comparison of the primary sequence of several CTxs was 

illustrated in the examples of PeIA42 and the MII.124 Mutation of multiple amino acids 

through positional scanning synthetic combinatorial libraries was illustrated for ImI103 and 

BuIA.80 Particular attention was paid to novel computational strategies that hold promise 
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in limiting the cost and time required to develop more potent and selective α-CTx analogs, 

such as the novel ToxDock program used to introduce mutations to GID,88 the Protein 

Surface Topography approach used for PnIA,119 and the Genetic Algorithm Managed 

Peptide Mutant Screening utility in DockoMatic used for extensive mutation of MII.126 

Collectively, the work summarized in this chapter demonstrates the unique value provided 

by conotoxins to enhance our understanding of complex molecular systems. 
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CHAPTER TWO: QUALITATIVE ASSAY TO DETECT DOPAMINE RELEASE BY 

LIGAND ACTION ON NICOTINIC ACETYLCHOLINE RECEPTORS 
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A pheochromocytoma of the rat adrenal medulla derived (PC12) cell-based assay 

for dopamine measurement by luminescence detection was customized for the qualitative 

evaluation of agonists and antagonists of nicotinic acetylcholine receptors (nAChRs). The 

assay mechanism begins with ligand binding to transmembrane nAChRs, altering ion flow 

into the cell and inducing dopamine release from the cell. Following release, dopamine is 

oxidized by monoamine oxidase generating hydrogen peroxide that catalyzes a 

chemiluminescence reaction involving luminol and horseradish peroxidase, thus producing 

a detectable response. Results are presented for the action of nAChR agonists 

(acetylcholine, nicotine, and cytisine), and antagonists (α-conotoxins (α-CTxs) MII, ImI, 

LvIA, and PeIA) that demonstrate a luminescence response correlating to the increase or 

decrease of dopamine release.141 A survey of cell growth and treatment conditions, 

including nerve growth factor, nicotine, ethanol, and temperature, led to optimal assay 

requirements to achieve maximal signal intensity and consistent response to ligand 

treatment. It was determined that PC12 cells treated with a combination of nerve growth 
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factor and nicotine, and incubated at 37°C, provided favorable results for reduction in 

luminescence signal upon treatment of cells with α-CTxs. The PC12 assay is intended for 

use as a fast, efficient, and economic qualitative method to assess the bioactivity of 

molecules that act on nAChRs, in which testing of ligand-nAChR binding hypotheses and 

computational predictions can be validated. As a screening method for nAChR bioactivity, 

lead compounds can be assessed for their likelihood of exhibiting desired bioactivity prior 

to being subjected to more complex quantitative methods such as electrophysiology, or live 

animal studies. 

 

Keywords: PC12 cells; alpha-conotoxin; nicotinic acetylcholine receptor; 

dopamine; luminescence assay 

 

Introduction 

Nicotinic acetylcholine receptors (nAChRs) are pentameric transmembrane 

proteins present throughout the nervous system, brain, and muscle. Neuronal nAChRs are 

involved in critical brain functions, and have been implicated in a variety of neurological 

diseases and disorders.34, 122, 142-144 Treatment options for neurological diseases including 

Parkinson’s, Alzheimer's, schizophrenia, and nicotine addiction are limited by insufficient 

understanding of nAChR-mediated cell signaling in response to ligand binding.145, 146 This 

gap in knowledge exists due to a multitude of factors, which include the lack of nAChR 

structure data due to difficulty in crystallizing these integral membrane proteins, the 

absence of robust heterologous non-recombinant expression systems,147 and the 

complexity and accessibility of experimental methods to study ion flow through nAChRs 
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across cell membranes.148, 149 Current methods of identifying ligand binding paradigms 

with nAChR subtypes include computational docking and molecular dynamics 

simulations,57, 88, 94, 100, 101, 119, 120, 126, 133, 150-153 two-electrode voltage clamp 

electrophysiology with Xenopus oocytes that express the desired nAChR isoform,154 patch 

clamping in cells over-expressing nAChRs such as HEK and neuroblastoma cells,155 model 

studies using acetylcholine binding proteins (AChBPs),46, 47, 49, 54 radiolabeling of nAChR 

antagonists, investigations using mouse brain slices,156-158 and in vivo trials with animals159 

or humans.160 Cell-based assays using fluorescent indicators, such as the FLIPR fluorescent 

membrane potential assay or the Flou-4AM calcium indicator assay are being used with 

increasing frequency to study nAChR activation.161 Each of these strategies to study 

nAChR bioactivity are challenging to implement in their own unique ways. The use of 

computational docking and molecular dynamics simulation software programs to study the 

interaction of ligand binding to nAChRs has been significantly limited in the prediction of 

bioactivity, because binding affinity indirectly correlates with the physical dynamic 

changes associated with pore opening and closing of the membrane-bound channel.1 

Computational methods can be used to calculate the binding affinity for small molecule 

drugs by screening compound libraries, but correlating binding affinity to bioactivity is 

inherently inaccurate, and fails further in the assessment of a compound as an agonist or 

antagonist, necessitating wet-lab validation. Studies utilizing AChBPs allow assessment of 

ligand binding, but not the ion flow across a membrane required to trigger signaling 

mechanisms within a cell that result in dopamine release, because the AChBP lacks a 

transmembrane component. Electrophysiology experiments require extensive expertise, 

highly specialized equipment, and significant investment of time to obtain results. Using 
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electrophysiology to evaluate a wide range of compounds in order to test hypotheses about 

binding paradigms is impractical, either because the time and expense required to screen 

the compounds is so intensive, or because of the inaccessibility of high throughput and 

automated methods.148, 149, 162, 163 Mouse brain studies involve probing slices of mammalian 

brain with fluorescently labeled conotoxin (CTx) to observe localized binding regions.27, 

158 However, the resources required to work with mammalian tissue or living animals, 

including animal centers and oversight boards, can present prohibitive challenges for 

researchers at many institutions. There is a need to establish methods that bridge the gap 

between computational results and extensive experimentation, such that predicted 

compounds can be proven to demonstrate desired bioactivity prior to exhaustive and 

expensive laboratory evaluation. An accessible, time and cost efficient, and reliable PC12 

cell method to qualitatively assess ligand effect on nicotinic acetylcholine receptor-

mediated control of dopamine release is presented.  

The PC12 protocol reported in this study is an adaptation of a luminescence 

bioactivity assay that permitted measurement of dopamine release from rat PC12 cells, 

following activation by acetylcholine (ACh), bradykinin, muscarine, and ATP.164, 165 

Acetylcholine binds to both nicotinic and muscarinic acetylcholine receptors (mAChRs), 

bradykinin activates bradykinin receptors B1 and B2, muscarine activates mAChRs, and 

ATP activates P2X and P2Y purinoreceptors. Acetylcholine stimulates only n/mAChRs to 

release dopamine, while the other agonists (bradykinin, muscarine, and ATP) operate by 

alternative signaling pathways to release neurotransmitters that contribute to the signal 

measured by luminescence detection. The original work by Shinohara et al. demonstrated 

that real-time dopamine release by PC12 cells, upon stimulation by ACh, permitted 
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luminescence detection in a dose-dependent manner, and enhancement of dopamine release 

was achieved by augmentation of assay conditions to include nerve growth factor (NGF). 

Shinohara et al. presented their assay as a useful tool to assess drugs that affect the nervous 

system. Building upon the precedent set by Shinohara et al., our lab has adapted the PC12 

assay for assessment of ligands that specifically target nAChRs, as opposed to muscarinic 

or ATP receptors that induce dopamine release through alternate pathways. In the presence 

of agonists including ACh, nicotine, or cytisine, nAChR channels will open to permit 

sodium ions into the cell. This influx of ions stimulates calcium ion influx resulting in 

vesicle expulsion of dopamine from PC12 cells. When dopamine is released from the cell, 

monoamine oxidase (MAO) oxidizes dopamine to generate hydrogen peroxide, which 

reacts with luminol in the presence of horseradish peroxidase (POD) to generate 

chemiluminescence, which can be measured by absorbance (Figure 2.1). 

 
Figure 2.1. Chemical changes proposed to occur in the PC12 assay, from nAChR-
induced dopamine release to luminescence detection. More dopamine release leads to 
a greater signal. Antagonists of nAChRs block dopamine release, diminishing signal. 
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In the present investigation, the PC12 assay protocol of Shinohara et al. was adapted 

for measurement of increased response following stimulation with ACh, nicotine, and 

cytisine.164, 165 Acetylcholine is a neurotransmitter that acts as the principal biological 

agonist of nAChRs. Nicotine and cytisine are alkaloids widely used in addiction studies 

involving nAChRs, because they both act as nAChR agonists due to their similar structural 

and pharmacological attributes. ACh, nicotine, and cytisine are all nonspecific agonists of 

most nAChR isoforms. EC50 and Emax values for agonist-stimulated 86Rb+ efflux in NGF-

treated PC12 cells, as reported by Avila et al., are shown in Table 2.1.166 While it is now 

recognized that some nAChRs can bind G-proteins and induce neurotransmitter release 

through a G-protein coupling mechanism as opposed to the more rapid ion translocation 

mechanism described above,167 extracellular ligand effect on intracellular G-protein 

coupling of nAChRs remains unknown. However, numerous examples of associations 

between nAChRs with several types of G-proteins have been demonstrated, which may 

contribute to cross-talk between nAChRs and G-proteins.168-170 

Table 2.1. EC50 and Emax values for agonist-stimulated 86Rb+ efflux in NGF-
treated PC12 cells for acetylcholine, nicotine, and cytisine. EC50 and Emax values are 
in units of μM.166 

Agonist EC50 Emax 

Acetylcholine 118±23 307±24 
Nicotine 33±1.5 232±23 
Cytisine 42±8.6 256±21 

 

α-Conotoxins (α-CTxs) are known to be highly potent and selective for nAChR 

isoforms, and have been used extensively by scientists seeking to understand ligand 

binding paradigms for nAChR subtypes.1 The reason α-CTxs were selected as antagonists 

of nAChRs is because PC12 cells express mRNA coding for α3, α5, α7, β2, and β4 subunits 
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but not α2, α4, α6, or β3.171, 172 These subunits assemble into a variety of functional homo- 

and heteropentameric nAChRs, including predominantly α7, α3β4, and α3β2.166, 171, 173 

Nery et al. used a strategy of non-specific nAChR stimulation followed by specific 

inhibition of the α7 nAChR isoform by methyllycaconitine citrate to inform the extent of 

activity for which the α7 isoform was responsible.171 They concluded that PC12 cells 

induced to neuronal differentiation are a good model for studying α7 expression and 

activity in which various nAChR isoforms are expressed. This present study aimed to use 

the same strategy of non-specific nAChR stimulation followed by specific inhibition of a 

targeted nAChR isoform to demonstrate the same conclusion regarding the rα3β2 nAChR 

isoform after optimizing PC12 cell growth conditions to favor its expression. Thus, to 

target ligand activity on rα3β2 nAChR subunits and demonstrate optimal assay conditions 

for its expression in PC12 cells, α-CTx ligands that selectively but differentially target the 

rα3β2 nAChR isoform were chosen. Suppression of rα3β2 nAChR-mediated cell signaling 

was evaluated using α-CTxs MII, ImI, LvIA, and PeIA (Figure 2.2). α-CTx MII is a 16-

amino acid, 4/7 framework peptide, with primary sequence GCCSNPVCHLEHSNLC and 

disulfide bonds between C2-C8 and C3-C16, that selectively binds and inhibits rα3β2 

nAChRs with an IC50 of 0.5 to 2.2 nM.36, 93 α-CTx MII has a >200-fold selectivity for the 

α3β2 isoform over both the α3β4 and α7 isoforms.93, 123 When used in the PC12 assay, 

suppression of luminescence response by α-CTx MII was broadly interpreted as a measure 

of relative rα3β2 nAChR expression in the cell system. Of the nAChR subtypes expressed 

in the PC12 system, α-CTxs ImI, LvIA, and PeIA were chosen for their high selectivity for 

the rα7 (IC50 = 220 nM),75 rα3β2 (IC50 = 8.7 nM),57 and rα3β2 (IC50 = 19.2 nM)73 nAChR 

subtypes, respectively. The IC50 values for ImI, LvIA, and PeIA with rα3β2 nAChR are >5 
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µM,75 8.7 nM,57 and 19.2 nM,73 respectively. The IC50 values for ImI, LvIA, and PeIA with 

rα3β4 nAChR are >5 µM,75 148 nM,57 and 480 nM,73 respectively. This sampling of α-

CTx antagonists was used to establish the reliability of achieving a qualitative 

luminescence response from ligand interaction with nAChRs that led to the excretion of 

dopamine. Each of these α-CTxs acts on nAChRs, but their effect can only be qualitatively 

assessed using this assay, due to their activity on multiple nAChR isoforms with varying 

affinity. 

 
Figure 2.2. α-CTx peptide sequence and disulfide connectivity for rα3β2 nAChR 
antagonists evaluated in the PC12 assay. 

PC12 cell growth and ligand treatment parameters were evaluated for enhanced 

response to the rα3β2 nAChR isoform selective antagonist α-CTx MII. PC12 assay results 

were assessed for influence by nerve growth factor, nicotine, ethanol, and temperature. 

Rogers et al. revealed that PC12 cells express the rα3β2 nAChR isoform among other 

receptor subtypes, and that NGF treatment provides growth conditions that favor 

expression of the β2 subunit.174 In a complementary study, Shinohara et al. showed that 

NGF treatment enhanced luminescence response in the PC12 bioactivity assay, suggesting 

that NGF may increase nAChR expression.165 Nerve growth factor treated cells were 
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evaluated in the presence of agonist and antagonist to determine whether NGF treatment 

would enhance the signal-to-noise ratio for the luminescence response. A separate 

investigation by Dohrman et al. demonstrated that addition of nicotine and ethanol to PC12 

cells amplified nAChR expression.175 Walsh et al. were able to enhance upregulation of 

rα3β2 nAChR expression, in HEK cells transfected with cDNA, upon long-term exposure 

to nicotine.176 Cooper et al. observed that when TSA201 cells co-transfected with α4 and 

β2 cDNA were incubated at 30°C instead of 37°C, a 12-fold increase in α4β2 nAChR 

radioligand binding was observed with no changes in binding affinity, and a 5-fold increase 

in cell-surface receptors was achieved with no increase in total protein.177 Avila et al. 

demonstrated through epibatidine binding and 86Rb+ efflux studies that NGF treatment 

predominantly increases expression of an α3β4 receptor subtype in PC12 cells, while 

nicotine treatment predominantly increases expression of an α3β2 receptor subtype, and 

that these two treatments combined have a supplemental effect on increasing nAChR 

expression.166 However, radioligand binding and 86Rb+ efflux studies do not provide real-

time observation of dopamine release through nAChR stimulation or suppression by 

ligands such as the study by Shinohara et al., which the current study aimed to achieve. 

Given the wealth of data associated with nAChR expression in PC12 cells reported 

in literature, the PC12 cell assay conditions optimized in the present study were performed 

to achieve two objectives. The first objective was to obtain optimal response for nAChR 

agonist and antagonist activity by alteration of the PC12 assay experimental parameters 

including NGF, nicotine, ethanol, and temperature. The second objective was to establish 

optimal α-CTx suppression of dopamine release by inhibition of nAChRs in the context of 

the PC12 cell line expression system, as recorded by luminescence response. 
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Results 

Figure 2.3 (A-C) shows the luminescence response following stimulation by ACh 

for PC12 cells under standard conditions (2.3A), treated with NGF (2.3B), and a 

combination of NGF and nicotine (2.3C). Treatment conditions were sustained for 3-4 

days. Stimulated response by ACh is indicated by white diamonds and the suppression of 

response in the presence of α-CTx MII is indicated by black squares. ACh and α-CTx MII 

were used as a representative agonist/antagonist pair for non-specific nAChR stimulation 

and selective rα3β2 nAChR suppression in order to provide the clearest sensitivity of α-

CTx effect on rα3β2 nAChR-induced dopamine release.  

 
Figure 2.3. Integrated luminescence response versus ACh for (A) NGF(-), (B) 
NGF(+), and (C) NGF/nicotine. ACh response at 0 µM is not shown; the first point in 
each plot corresponds to the 10 µM ACh treatment to maximize visualization of data 
points and error bars. 

Non-NGF-treated cells (Figure 2.3A) gave a lower luminescence response than 

NGF-treated cells (Figure 2.3B), and addition of α-CTx MII led to a decrease in 

luminescence response for both non-NGF and NGF-treated cells. Treatment with nicotine 
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relatively decreases luminescence, but increases sensitivity to α-CTx MII (Figure 2.3C). 

An additional PC12 assay was performed for combined treatment with NGF, nicotine, and 

ethanol, which increased the relative luminescence response, but decreased sensitivity to 

α-CTx MII. Unfortunately, the variability in the luminescence response under these 

treatment conditions did not lead to a reliable result and data are not shown here. 

Effective NGF treatment was confirmed by cell morphology, in which NGF-treated 

cells contained neurite extensions indicative of neuron-like differentiation (Figure A.1). 

According to the treatment study in Figure 2.3, chemical treatment with NGF and nicotine 

provided the most apparent non-specific stimulation of nAChRs by ACh and most obvious 

suppression of nAChR-induced dopamine release by α-CTx MII (Figure 2.3C). The 

optimal PC12 assay conditions consisting of NGF and nicotine were further evaluated for 

temperature dependence at 37°C, 30°C, and 21°C for 1-2 hrs before detection of the 

luminescence response (Figure 2.4). 
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Figure 2.4. Luminescence response in the PC12 assay for normal cells incubated at 
37°C (A), and cells incubated at 30°C for 1 hr (B) and room temperature (21°C) for 
2 hrs (C) before detection. Incubating cells at a lower temperature before detection 
significantly increases response in a temperature-dependent manner, but decreases 
sensitivity to α-CTx MII. 

Cells incubated at a lower temperature before luminescence recording showed a 

significantly increased response in a temperature-dependent manner, but sensitivity to α-

CTx MII treatment was appreciably diminished. The luminescence response for cells 

incubated at 37°C was appreciably higher as compared to those incubated at lower 

temperatures. 

Finally, Figure 2.5 shows the results of a compound screen with select nAChR agonists 

(ACh, nicotine, cytisine) and antagonists (α-CTxs MII, ImI, LvIA, PeIA) upon ACh 

stimulation, using the optimal conditions identified as a result of the investigations in 

Figures 2.3 and 2.4, which included chemical treatment with NGF and nicotine and 

incubation at 37°C. 
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Figure 2.5. PC12 assay screen using (A) 50 µM nAChR agonists (acetylcholine, 
nicotine, cytisine), and (B) 10 µM nAChR antagonists (α-CTxs MII, ImI, LvIA, PeIA) 
upon stimulation with ACh, under the optimal growth conditions identified in Figures 
2.3 and 2.4 (treatment with NGF and nicotine, and incubation at 37°C). The PC12 
assay provided qualified bioactivity assessment for each agonist and antagonist. 

Figure 2.5 shows that agonists amplified the luminescence response and antagonists 

suppressed the luminescence response, demonstrating that this PC12 assay may be used 

for qualitative assessment of ligands that bind nAChRs. 

Discussion 

Decreased luminescence response upon treatment with α-CTx MII indicates that α-

CTx MII inhibition of rα3β2 nAChR-mediated release of dopamine in the PC12 cell assay 

can be observed and measured (Figure 2.3). Sensitivity to α-CTx MII antagonism was used 

as a measure of the relative expression of the rα3β2 nAChR isoform, because α-CTx MII 

is a highly selective and potent inhibitor of rα3β2 nAChR isoforms, while other nAChR 

isoforms expressed in PC12 cells are inhibited by α-CTx MII to a much lesser degree. 

Additionally, the increased luminescence response with NGF treatment (Figure 2.3B) 
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suggests that NGF increases the population of functional nAChRs on the surface of the 

PC12 cells. Increasing the concentration of nAChRs expressed is favorable for increasing 

the sensitivity of the PC12 assay. An increase in luminescence upon NGF treatment is 

consistent with the findings of Shinohara et al.165 

Sensitivity to α-CTx MII treatment increased when both nicotine and NGF were 

used, suggesting that rα3β2 nAChR isoform expression is greater under this combined 

treatment condition (Figure 2.3C). This result is consistent with the findings of Walsh et 

al., who reported higher rα3β2 nAChR expression upon long-term exposure to nicotine in 

HEK cells transfected with cDNA.176 Slightly decreased luminescence response upon 3-4 

days of treatment with nicotine in combination with NGF can be interpreted as a decrease 

in the number of functional cell-surface nAChRs as a result of nicotine treatment, as 

compared to solely NGF-treated cells (Figure 2.3C). These results correlate well with the 

findings of Dohrman et al., who demonstrated that chronic nicotine induces overall 

upregulation of nAChRs in PC12 cells.175 To detect the presence of nAChRs on the cell 

surface, Dohrman et al. used 125I-labelled epibatidine, which binds more potently to α3β2, 

α3β4, and α4β2 nAChR subtypes than ACh. Additionally, epibatidine binding requires 

incubation at room temperature for 1 hour, which our results have shown drastically 

increases response (Figure 2.4), and suggests a subtype-nonspecific increase in nAChR 

cell-surface expression. It is possible the observation by Dohrman et al. of overall 

upregulation of nAChRs in PC12 cells does not specifically reflect physiological 

expression of functional cell-surface nAChRs at 37°C. An increase in cell-surface 

expression upon incubation at lower temperatures is consistent with the findings of Cooper 

et al., who observed that when TSA201 cells co-transfected with α4 and β2 cDNA were 
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incubated at 30°C instead of 37°C, there was a 5-fold increase in cell-surface receptors 

with no increase in total nAChR protein. Further support for this hypothesis is provided by 

Lukas et al., who found that chronic (3-72 hrs) nicotine treatment led to nearly a complete 

loss of functional nAChR response in PC12 cells by nicotine and the cholinergic agonist 

carbamylcholine.178 It is possible with the combination of the PC12 cell line, treatment 

exposure time, and dosage used, that functional inactivation is seen instead of functional 

upregulation. 

For normal cells treated with nicotine for 3-4 days and incubated at 37°C (Figure 

2.4A), a >50% suppression of response to 50 µM ACh by α-CTx MII was observed. Cells 

incubated at lower temperatures (Figure 2.4B and 2.4C) before luminescence detection 

showed a significantly increased response compared to cells at 37°C. This is consistent 

with the findings of Cooper et al., who observed that when TSA201 cells co-transfected 

with α4 and β2 cDNA were incubated at 30°C instead of 37°C, there was a 5-fold increase 

in cell-surface receptors with no increase in total nAChR protein. While PC12 cells did not 

survive at 30°C for 24 hrs or more, incubating at 30°C and 21°C for only 1-2 hrs before 

detection showed a significant and temperature-dependent increase in luminescence 

response; however, sensitivity to α-CTx MII was essentially eliminated. Decreased 

sensitivity to α-CTx MII may suggest a subtype-nonspecific increase in nAChR cell-

surface expression. 

In summary, combined treatment with NGF and nicotine and incubation at 37°C 

provides the greatest level of sensitivity to α-CTx MII. Despite extensive repetition to 

obtain the results presented, it appears the PC12 assay may be limited to comparison of 

results within the same well plate. It is hypothesized that the rapid growth of PC12 cells 
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changes their condition too dynamically from subculture to subculture to permit 

comparison of luminescence intensity directly across well plates. Inconsistent expression 

from cell-to-cell, high background noise, and dynamic changes between subcultures can 

complicate results and cause absolute luminescence intensities and integrated 

luminescence response to differ widely across well plates, explaining the variability in 

absolute luminescence measurements in Figures 2.3-2.5. Regardless of these limitations, 

the PC12 assay conditions presented here can be applied to qualitative characterization of 

bioactivity of lead compounds with affinity for nAChRs.  

The PC12 assay was examined for use as a qualitative bioactivity test for a range 

of known nAChR agonists (acetylcholine, nicotine, and cytisine) and antagonists (α-CTxs 

MII, ImI, LvIA, PeIA) (Figure 2.5). The PC12 assay accurately provided signal 

amplification in the presence of nAChR agonists (Figure 2.5A), and signal suppression 

upon treatment with nAChR antagonists (Figure 2.5B). These results further reflect relative 

potency between α-CTx MII and other less potent antagonists, with α-CTx MII showing 

the highest antagonistic activity. The responses obtained by this collection of α-CTx 

antagonists indicate that nAChR-mediated channel closing may be assessed qualitatively. 

α-CTx MII is known to potently and selectively suppress luminescence response generated 

by rα3β2 nAChR isoform, and was interpreted in this study as a measure of relative rα3β2 

nAChR expression in the cell system. α-CTx MII achieved 50% suppression of 

luminescence response, suggesting a relatively high level of expression of functional rα3β2 

nAChR subtypes in the cell system. The levels of suppression observed in Figure 2.5 by α-

CTxs MII, ImI, LvIA, and PeIA reflect their relative specificities for rα3β2, rα7, 

rα3β2>rα3β4, and rα3β2>rα3β4, respectively, and suggest that rα3β2, rα3β4, and rα7 
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nAChRs are present to a high detectable degree in PC12 cells, consistent with previous 

literature.166, 171, 173 

This study presents an accessible, time and cost efficient, and reliable 

luminescence-based method for detection of nAChR bioactivity, and demonstrates 

decreased response upon addition of α-CTx antagonist. As a result of the alterations made 

to the PC12 protocol (see Appendix A), this assay can be performed at any institution with 

a microplate reader that can detect luminescence. Simplifications to the protocol, such as 

reduction in the amount of required enzymes and eliminating the need for trypsinization, 

significantly reduce material costs. This study provides a simple method for measurement 

of nAChR bioactivity response that can be quickly and easily performed. Because PC12 

cells grow quickly, the time from cryopreservation recovery to assay can be achieved 

within one week with 3-4 days of treatment. One response curve can be obtained within 

minutes, enabling evaluation of an entire 96-well plate within an hour. Optimal growth 

conditions for expression of rα3β2 nAChRs were measured by the degree of sensitivity to 

α-CTx MII suppression. According to the results of this study, combined treatment with 

NGF and nicotine and incubation at 37°C provides the greatest level of sensitivity to α-

CTx MII. This adapted PC12 assay can be applied to qualitative characterization of 

bioactivity of lead compounds with nAChR, as demonstrated by the compound screen 

performed here under optimized growth conditions with non-specific agonists and selective 

antagonists of nAChRs. 

Shinohara et al. permitted real-time detection of dopamine release upon stimulation 

of nAChR and bradykinin receptor agonists in PC12 cells without NGF treatment, as well 

as upon stimulation of mAChR, ATP receptor, and bradykinin receptor agonists in PC12 
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cells treated with NGF. The present investigation improves upon Shinhoara’s original 

assay164, 165 by exploring and identifying optimal growth conditions for nAChR expression, 

and the use of selective α-CTxs to assess nAChR isoforms responsible for assay response 

upon stimulation with ACh, demonstrating that nAChR expression can be easily 

manipulated by chemical treatment and growth conditions in order to qualitatively 

characterize the real-time ligand effect on nAChR-induced dopamine release. While we 

demonstrated that this assay provides accurate bioactivity validation, it is apparent that the 

assay’s sensitivity is limited by a response resulting from the presence of non-rα3β2-

nAChR subtypes. Additionally, inconsistent expression from cell-to-cell, and high 

background noise can complicate results. Possible reasons for such background noise in 

the response include inherent base-level activity of predominantly expressed nAChRs such 

as rα7, rα3β4, and rα3β2, as well as G-protein coupled activation of nAChRs as opposed 

to ion translocation.167 While this mechanism of nAChR activation is now recognized in 

the literature, it is uncertain how the ligands evaluated here, which are responsible for 

affecting nAChR activity through ion translocation, might affect nAChR coupling to G-

proteins. Thus, it is expected that the response obtained from G-coupled activation of 

nAChRs is corrected for with the negative controls used in this study. Future research 

directions include the adaptation of this assay coupled to overexpression of individual 

nAChR isoforms, or knockout or knockdown of particular nAChR subunits, resulting in an 

assay in which the pharmacology of a single nAChR subtype may be evaluated. This assay 

serves as a foundation for the design of engineered PC12 cell lines expressing specific 

human nAChR isoforms to enable the study of lead compounds for the treatment of 

neurological diseases in which non-rα3β2-nAChR isoforms are implicated (e.g., 



69 

 

Parkinson’s, schizophrenia, and Alzheimer's). The ease and simplicity with which PC12 

cells can be cultured and manipulated is widely reported,179 and makes PC12 cells an ideal 

cell line for the investigation of ligands that act on nAChRs. 

Conclusions 

A simple method for the measurement of ligand induced bioactivity on nAChRs 

that can be quickly and easily performed was presented. Because PC12 cells grow quickly, 

the time from cryopreservation recovery to assay can be achieved within one week with 3-

4 days of treatment. Assay response curves can be obtained within minutes, enabling 

evaluation of an entire 96-well plate within an hour. Optimal growth conditions for 

expression of rα3β2 nAChRs were measured by the degree of sensitivity to α-CTx MII 

suppression. According to the results of this study, combined treatment with NGF and 

nicotine, and incubation at 37°C provides the greatest level of sensitivity to α-CTx MII. 

This adapted PC12 assay can be applied to qualitative characterization of the bioactivity of 

lead compounds with nAChRs, as demonstrated by the compound screen performed here 

under optimized growth conditions with non-specific agonists and antagonists of nAChRs. 

Materials and Methods 

The materials and methods for this PC12 assay represent an adaptation and 

modification of the foundational work originally reported by Shinohara et al.164, 165 Key 

variations to their reported method are discussed in greater detail in Appendix A. Assays 

were performed using a Biotek Synergy H1 microplate reader (Winooski, VT, USA). All 

chemicals were purchased at the highest purity available (>95%) from Fisher Scientific, 

except for synthetic α-CTxs, which were purchased from CS Bio Inc. (Menlo, CA, USA). 
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ATCC® CRL1721™ PC12 cells were provided by the Biomolecular Research Center at 

Boise State University. 

Cell Culture 

PC12 cells were recovered from cryopreservation, seeded, and cultured into 

laminin-coated flasks according to Shinohara et al. with the exception that cells were not 

trypsinized to detach them from laminin.164 Instead, cells were triturated from the bottom 

of the flask. Cells were initially grown in a T-75 flask until dense enough to plate onto 

either a laminin-coated flat-bottom 96-well plate at 10,000 cells per well, or 48-well plate 

at 30,000 cells per well, taking care to sufficiently disperse cell clumps when triturating. 

Plating at sufficiently low density and ensuring distribution of cells to evenly cover each 

well bottom was crucial to obtaining consistent assay response. After subculturing into a 

well plate, cells were allowed to equilibrate for 24 hrs before exchanging complete growth 

media for treated starvation media (30 ng/mL NGF 2.5S, 1 µM nicotine, 100 mM ethanol, 

in the desired combinations of treatment) and treating for 3-4 days before performing the 

assay, switching out fresh starvation media daily. Treatment concentrations of nicotine and 

ethanol were based on those used by Dohrman et al.175 Well plates were sealed with 

Parafilm during treatment to prevent evaporation of ethanol from treatment media. 

Cell Assay 

Cells were washed with Locke’s solution before introducing assay solution. An 

assessment of Modified Hank's Balanced Salt Solution was performed, but results were 

unfavorable (Figure A.2). Assay solution included 10 µM α-CTx MII, 0.8 ng/mL 

horseradish peroxidase (POD), 25 ng/mL monoamine oxidase (MAO), and 50 µM luminol 

to quench any dissolved oxygen in the cell environment and the assay solution. Cells were 



71 

 

allowed to sit for 5-10 min to allow equilibration, before adding 2 mM luminol and 50 µM 

agonist (acetylcholine, nicotine, or cytisine) immediately before detection, for a total well 

volume of 100 µL. Cells were allowed to sit for 5-10 min to allow equilibration, before 

adding 2 mM luminol and 50 µM agonist (acetylcholine, nicotine, or cytisine) immediately 

before detection, for a total well volume of 100 µL. (-)MAO and (-)cells were used as 

negative controls, replacing the volume with Locke’s solution. Assays were performed at 

37°C, detecting luminescence for 1-2 min per well or until response fully diminished to 

negative control levels in order to obtain a complete curve. Once luminescence response 

curves were obtained, curves with abnormal shapes indicating obvious faults in detection 

caused by anomalies such as air bubbles were excluded. Curves were then integrated and 

the area under the curve was used to build dosage curves for luminescence response versus 

concentration of agonist. To evaluate the influence of the temperature on assay results for 

a single well plate to avoid introducing unnecessary variation across well plates, cells were 

prepared as above, but after detecting the response for a portion of the wells at 37°C, the 

remaining wells were incubated at either 30°C or room temperature (21°C) for 1-2 hrs. The 

assay was then resumed after switching media with assay solution incubated at the 

corresponding lower temperature into the remaining wells for detection. 
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KTM is a 16 amino acid peptide with the sequence WCCSYPGCYWSSSKWC. 

Here, we present the nuclear magnetic resonance (NMR) structure and bioactivity of a 

rationally designed analog of α-conotoxin (α-CTx) MII that demonstrates potent inhibition 

of rat α3β2 nicotinic acetylcholine receptors (rα3β2-nAChRs).180 Two bioassays were used 

to test the efficacy of KTM. First, a qualitative PC12 cell-based assay confirmed that KTM 

acts as a nAChR antagonist. Second, bioactivity evaluation by two-electrode voltage clamp 

electrophysiology was used to measure the inhibition of rα3β2-nAChRs by KTM (IC50 = 

0.19±0.02 nM), and α-CTx MII (IC50 = 0.35±0.8 nM). The three-dimensional structure of 

KTM was determined by NMR spectroscopy, and the final set of 20 structures derived 

from 32 distance restraints, four dihedral angle constraints, and two disulfide bond 

constraints overlapped with a mean global backbone root-mean-square deviation (RMSD) 
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of 1.7 ± 0.5 Å. The structure of KTM did not adopt the disulfide fold of α-CTx MII for 

which it was designed, but instead adopted a flexible ribbon backbone and disulfide 

connectivity of C2-C16 and C3-C8 common to λ-CTxs, with an estimated 12.5% α-helical 

content. In contrast, α-CTx MII, which has a native fold of C2-C8 and C3-C16, has an 

estimated 38.1% α-helical secondary structure. KTM is the first reported instance of a 

Framework I (CC-C-C) α-CTx with ribbon connectivity to display sub-nanomolar 

inhibitory potency of rα3β2-nAChR subtypes. 

Keywords: α-conotoxin; nicotinic acetylcholine receptor; NMR; two-electrode 

voltage clamp electrophysiology; PC12 cell; DockoMatic 

 

Introduction 

Conotoxins are 10-50 amino acid peptide toxins present in the venom of predatory 

marine snails of the genus Conus. With sequence hypervariability and disulfide bond 

constrained scaffolds, conotoxins have a complex classification system of 28 

superfamilies, segregated in part by activity on ion channels present in excitable tissues 

such as nerve and muscle.181 α-Conotoxins (α-CTxs) target ligand-gated nicotinic 

acetylcholine receptor (nAChR) ion channels and inhibit ion flow by causing a dynamic 

structural change upon binding that results in the closing of the channel. nAChRs are 

pentameric transmembrane channel proteins that form different combinations of homo and 

heteropentameric subtypes, leading to a range of functions and ligand specificity across the 

host nAChRs are found in many tissues including muscle and the central and peripheral 

nervous systems, and perform numerous physiological functions, such as the modulation 
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of neurotransmitter release in the central nervous system by post and presynaptic 

excitation.182 In the modulation of neurotransmitter release, acetylcholine activation of 

presynaptic nAChRs causes sodium influx and subsequent cellular depolarization, 

resulting in activation of voltage-gated calcium channels and an influx of calcium ions that 

initiates a signaling cascade ending in release of dopamine-containing vesicles. Because of 

their involvement in neurotransmitter release, nAChRs play a central role in the pathology 

of Parkinson’s disease (PD) and other neurological disorders. For example, PD patients 

experience degradation a of neurons expressing α6α4β2β3-nAChRs and consequently 

display symptoms reflecting loss of function dependent on dopamine release. Targeting 

specific nAChR isoforms is a promising strategy in the development of improved drug 

therapies for PD and other neurological diseases that have nAChRs implicated in their 

causation and/or symptoms, including Alzheimer’s, Tourette’s, and schizophrenia.32, 34, 142-

144 However, there still exists a gap in understanding of the mechanism of nAChR-ligand 

binding. 

α-CTxs possess rigid scaffolds and are among the most potent inhibitors of 

nAChRs, making them insightful molecular probes for the elucidation of nAChR binding 

paradigms. α-CTx structure-activity relationships have been developed for α-CTxs and 

their analogs, leading to the discovery of disease-relevant nAChR subtypes and the 

identification of new ligand-nAChR binding sites.1, 94, 122 Model systems used to study 

nAChR-ligand binding include pheochromocytoma (PC12) cell assay,141 

electrophysiology,154 mouse brain studies,156-158 and computational molecular dynamics 

simulations.57, 88, 94, 100, 101, 119, 120, 126, 133, 150-153 Expression systems for studying nAChRs in 

vitro often prove costly and complex,148, 149, 162, 163 highlighting the potential value of 
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computational studies. Emerging computational strategies can produce promising results 

for nAChR ligands, but potential small molecule drugs require evaluation by functional 

experimentation. Here, we present the validation results of a computational study that used 

the genetic algorithm managed peptide mutant screening (GAMPMS) program in 

DockoMatic v. 2.1 to predict the sequence for an α-CTx MII analog for optimal binding to 

the rat (r)α3β2 nAChR isoform; the outcome of the computational study was the designed 

peptide KTM.126, 150, 151 

DockoMatic is an open source program with an intuitive user interface to run 

software applications for ligand and receptor structure file creation, perform high 

throughput virtual screening, and output docking results ranked in order from best to worst 

binding affinity.133, 152, 153, 183-185 DockoMatic uses the highly innovative GAMPMS 

algorithm specifically designed for peptide library creation, and can correlate peptide 

structure to drug identity by way of the small-molecule peptide-influenced drug 

repurposing (SPIDR) utility that permits screening of molecular databases using a template 

structure derived from a peptide scaffold.126, 150, 151 Previously, the GAMPMS algorithm 

was used to evaluate the binding affinity of over 41 billion combinations of α-CTx MII 

mutants for a homology model of the rα3β2 nAChR isoform.126 α-CTx MII was selected 

as a template for this study because it has been well characterized as a very potent and 

selective inhibitor of the rα3β2 nAChR isoform. α-CTx MII is a 16 amino acid peptide 

with the primary sequence GCCSNPVCHLEHSNLC and disulfide bonds between C2-C8 

and C3-C16. The globular structure of α-CTx MII is characterized by an α-helix initiated 

at P6 and ending at H12, providing the peptide with approximately 40% α-helical content. 

The GAMPMS program was used to change the primary sequence of α-CTx MII to create 
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a peptide library of nearly 41 billion unique α-CTxs.126 All amino acids were varied in the 

primary sequence with the exception of the four cysteine residues required to form disulfide 

bonds and the conserved proline at position 6 required for initiation of the α-helix. 

Molecular docking in DockoMatic ranked the peptides by highest binding affinity for the 

rα3β2 nAChR isoform. The top fifty mutant peptides with highest affinity for the receptor 

were compared for amino acid identity at each site in the peptide primary sequence to 

generate a consensus peptide. Figure 3.1A-B shows the sequence and disulfide connectivity 

of KTM (A), and the sequence comparison of KTM to α-CTx MII (B). The consensus 

peptide, given the arbitrary name KTM (Figure 3.1A; dashed), represents a rationally 

designed peptide ligand that was computationally predicted to have enhanced binding 

affinity for the rα3β2 nAChR isoform.   
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Figure 3.1. A) Sequence of KTM with disulfide bond connectivity consistent with 
the expected native folding (dashed line), and predominant cysteine pattern resulting 
from oxidative folding following solid phase peptide synthesis (solid line). B) Sequence 
comparison of KTM to α-CTx MII. Of the 10 residues in α-CTx MII that were allowed 
to vary in the GAMPMS algorithm (orange), all but one amino acid (S13, boxed) 
changed to give the sequence of KTM. 

The sequences of α-CTx MII and KTM both contain 16 amino acids (Figure 3.1B). 

α-CTx MII has a Framework I cysteine pattern of CC-C-C, consisting of two disulfide 

bonds between C2-C8 and C3-C16, making it a globular connectivity pattern, and a 4/7 

loop sequence common to many α-CTxs.12 The design of KTM was inspired by the 

pharmacological features present in α-CTx MII and was anticipated to adopt the same 

globular disulfide connectivity. KTM activity on nAChRs was assessed qualitatively by an 

in vitro cell-based PC12 luminescence assay, and quantitatively for inhibition of rα3β2 

nAChR isoforms using two electrode voltage clamp electrophysiology. KTM demonstrates 

remarkable sub-nanomolar inhibition of selective nAChR subtypes, commensurate with 
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that of α-CTx MII. In the present study, we show that synthetic KTM produced by 

undirected folding preferentially formed ribbon C2-C16 and C3-C8 disulfide linkages. In 

their review, Akondi, et al. suggest that correct folding of synthetic peptides is critical to 

the maintenance of biological activity,12 but in the case of KTM, the globular disulfide 

pattern is not the same as that found in α-CTx MII, but rather resembles that of ribbon 

isomer AuIB.186, 187 The net effect of the disulfide connectivity is that α-CTx MII adopts a 

globular scaffold, while KTM is consistent with a ribbon connectivity. Solution nuclear 

magnetic resonance (NMR) spectroscopy was used to determine the three dimensional 

structure of the synthesized KTM for comparison to α-CTx MII and the computationally 

predicted structure. Molecular dynamics simulations in Gromacs were used to assess 

peptide dynamics. 

Results 

Bioactivity 

KTM was qualitatively evaluated for nAChR bioactivity using a PC12 cell assay 

and antagonist activity by KTM in the presence of acetylcholine (ACh) was confirmed 

(Figure 3.2), prompting quantitative evaluation of bioactivity by electrophysiology. In the 

preliminary screening qualitative assay, ACh is used to stimulate PC12 cells, opening 

nAChR channels and resulting in dopamine release.164, 165 Following release, dopamine is 

oxidized by monoamine oxidase generating hydrogen peroxide that catalyzes a 

chemiluminescence reaction involving luminol and horseradish peroxidase, producing a 

detectable response. Incubation with α-CTxs prior to stimulation with ACh inhibits 

nAChRs, resulting in a diminished signal, as is observed for treatment with α-CTx MII (see 
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Figure 2). A decreased signal resulting from treatment with KTM indicates that nAChRs 

are inhibited by this compound. 

 
Figure 3.2. Qualitative PC12 assay luminescence responses upon stimulation of 
nAChRs with acetylcholine (ACh), with and without 10 µM toxin. Assays performed 
with the addition of α-CTx MII and KTM resulted in a diminished luminescence 
recording compared to an ACh control. 

Two-electrode voltage clamp experiments were used to determine the IC50 for KTM 

on rα3β2 nAChRs expressed in Xenopus laevis oocytes. Figure 3.3 A-B shows the 

concentration-dependent dose curves for inhibition of rα3β2 nAChR by MII and KTM (A), 

and the Hill coefficients for concentration response that were used to calculate IC50 values 

for each peptide (B). KTM exhibited potent inhibition with an IC50 of 0.19±0.02 nM 

commensurate with α-CTx MII with an IC50 of 0.35±0.08 nM (Figure 3). α-CTx MII and 

KTM have Hill coefficients of 0.5 and 0.7, respectively. 
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Figure 3.3. Responses to local application of ACh for 30 ms are shown for control 
and after 3 nM toxin application; calibration horizontal 3 sec, vertical 2.5 µA (A). 
Concentration-dependent response curves for blocking rα3β2 nAChR by α-CTx MII 
(red) and KTM (blue) (B). Hill coefficients for the concentration response curves of 
α-CTx MII and KTM are 0.5 and 0.7, respectively. IC50 values of KTM and α-CTx 
MII are 0.19±0.02 nM and 0.35±0.08 nM, respectively. Data are means ± SEM from 
8 to 12 oocytes. 

Structure Determination 

Analysis of the circular dichroism (CD) spectrum for KTM (Figure 3.4, double 

lined grey) gave a predicted α-helical content of 12.5%, consistent with the ribbon-type 

isomer fold (C1-C4; C2-C3), and not the expected globular-type fold (C1-C3; C2-C4) 

characteristic of α-CTx MII, for which the α-helical content is 38.1% (Figure 3.4, solid 

black line). The large negative peak commonly observed for α-CTxs corresponds to the α-

helical portion of the peptide, and is predominantly absent in the CD spectrum of KTM. 

The interpretation of CD spectra for flexible small peptides is representative of an ensemble 

of conformations, so it is difficult to draw definitive secondary structure conclusions based 

solely on CD data. The CD data in Figure 3.4 did identify variation in the secondary 
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structure between KTM and α-CTx MII that brought into question the disulfide 

connectivity in KTM, necessitating framework determination for KTM by partial reduction 

mass spectrometry. 

 
Figure 3.4. CD spectrum of α-CTx MII (solid black line) and KTM (double lined 
grey). Measurements for each peptide were taken in water at 50 µM each, and a 
pathlength of 1 mm. The α-helical content of α-CTx MII and KTM were estimated to 
be 38.1% and 12.5%, respectively, as calculated from the observed signal at 222 nm. 

Partial reduction by TCEP of 100 pmol of synthetic KTM peptide gave expected 

product profiles in LC-MS chromatograms with mass increases corresponding to partial 

reduction (+2 m/z) and alkylation (NEM, +125 m/z; IAA, +59 m/z) (see Materials and 

Methods). Sequence analysis showed the disulfide bridging pattern was not consistent with 

the expected α-CTx C2-C8/C3-C16 globular linkage as found in α-CTx MII, but rather a 

C2-C16/C3-C8 ribbon linkage (Figure B.1), as observed in α-CTx AuIB.186, 187  

NMR structure determination for KTM was performed to compare the 

computationally predicted C2-C8/C3-C16 globular structure to the synthesized C2-

C16/C3-C8 ribbon structure. Assignment of 1H resonances for KTM was achieved using 

standard methods.188 A combination of COSY, TOCSY, and NOESY spectra in both 30% 
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ACN/70% water and 30% ACN/70% D2O were used to reduce ambiguities in assignment. 

Fifteen amino acid spin systems were assigned in the fingerprint region (7.6 - 8.8 ppm), 

and the final amino acid, P6, was identified in the α-proton region (5.2-3.8 ppm). Table 3.1 

shows the chemical shift assignments for each of the sixteen amino acids in KTM, and 

Figure 3.5 shows the calculated random coil chemical shift difference. Table 3.2 shows the 

32 nuclear Overhauser effect (NOE) distance restraints, four dihedral angles, and two 

disulfide bond constraints that were input into CYANA for structure calculation. NMR 

structure determination using CYANA189 confirms the peptide backbone exists as a ribbon, 

lacking a defined α-helix. Despite a reasonably rigid scaffold constrained by two disulfide 

bonds, the backbone structure of KTM reflects the influence of side chain mobility 

particularly evident for the aromatic Tyr and Trp residues. Figure 3.6 A-B shows a 

comparison of the NMR-derived structures (A) and an overlay of the median NMR-derived 

structure (cyan) to the computationally predicted structure (magenta) for KTM (B). The 

root-mean-squared deviation (RMSD) for backbone atoms to a mean structure was 

calculated to be 1.7 ± 0.4 Å (Figure 3.6A). The RMSD between the NMR solution structure 

of KTM and the computationally predicted KTM structure was 3.5 Å, which is expected 

considering the computationally predicted structure maintained the globular disulfide 

connectivity consistent with α-CTx MII (Figure 3.6B). 
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Table 3.1. Proton chemical shift assignments for amino acids in KTM.  
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Figure 3.5. Chemical shift difference between α-protons of amino acids in KTM 
and predicted random coil chemical shifts for the same amino acids. 
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Table 3.2. NMR restraints used in CYANA and the resulting structure statistics 
for KTM. 

 
  

 

 



86 

 

  
Figure 3.6. NMR solution structure of KTM, where (A) is a ribbon representation 
of an ensemble of the 20 lowest energy structures, with an average RMSD to the mean 
structure of 1.7 ± 0.4 Å, and (B) represents an overlay of the mean calculated structure 
from NMR (cyan) and the computationally predicted structure (magenta) that have 
an average RMSD of 3.5 Å. 

Structure Determination 

Figure 3.7 shows the root-mean-square fluctuations (RMSFs) for each residue 

after a 50 ns molecular dynamics simulation in Gromacs. According to these results, the 

side chains of KTM are expected to have a high degree of fluctuation. Residues W1, S4–

G7, and K14, particularly, show the highest degrees of fluctuation. 
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Figure 3.7. Root mean square fluctuations for each of the 16 residues of KTM over 
a 50 ns MD simulation. Residues W1, S4–G7, and K14 were observed to exhibit the 
greatest root-mean-square fluctuations (RMSFs). 

 

Discussion 

Qualitative evaluation of KTM bioactivity with the PC12 assay confirmed that 

KTM reduced the amount of dopamine released from the cells, presumably by blocking 

nAChRs (Figure 3.2).141 To assess whether KTM acted on rα3β2-nAChRs, as it was 

designed to do, quantitative evaluation of its bioactivity was performed by two electrode 

voltage clamp electrophysiology using Xenopus oocytes expressing rα3β2-nAChRs. KTM 

caused blockage of rα3β2-nAChRs with an IC50 of 0.19±0.02 nM as compared to 

0.35±0.08 nM for α-CTx MII (Figure 3.3). The similar efficacy of KTM compared to that 

of α-CTx MII supports the premise that the synthetic peptide is an effective antagonist of 

rα3β2-nAChR. 

KTM exhibited potent inhibition of rα3β2-nAChRs commensurate with α-CTx 

MII, necessitating validation of synthetic peptide structure for comparison to the 

computationally predicted structure. The primary sequence of KTM differs from α-CTx 

MII with regard to nine of the sixteen amino acids. First, the NMR structure of KTM was 
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determined using the method established by Wüthrich.188 Sequence, distance, dihedral 

angle, and disulfide bond restraints were entered into CYANA for structure calculation. It 

was anticipated that the disulfide bonds in synthesized KTM, which were formed by 

undirected folding, and those of α-CTx MII, would be consistent. Despite extensive 

analysis of NMR data and restraint assignment, CYANA failed to provide an ensemble of 

KTM backbone structures that converged better than a RMSD of 2.5 Å. An evaluation of 

the CD spectrum and partial reduction mass spectrometry data provided definitive evidence 

that the disulfide pattern for KTM synthesized by undirected folding was not the same as 

the globular fold of α-CTx MII (C1-C3, C2-C4), but rather was consistent with the ribbon 

fold observed for an isomer of α-CTx AuIB186, 187 (C1-C4, C2-C3) (see Figure B.1). An 

ordered secondary structure commensurate with the common α-CTx 4/7 loop peptide α-

helix of MII was not expected due to the α-helical content for KTM interpreted as 12.5% 

based on the CD spectrum, which is much lower than the α-helical content for α-CTx MII 

of 38.1% (Figure 3.4). Upon changing the disulfide bond connectivity restraints in 

CYANA, a final set of 20 KTM structures with an RMSD among backbone atoms of 1.7 ± 

0.5 Å was obtained with no distance restraint or conformation violations detected (Figure 

3.6). The RMSD between the NMR solution structure of KTM and the computationally 

predicted structure of KTM was 3.5 Å. The rough similarity in backbone shape between 

the computationally predicted and NMR solution structure generated for KTM, despite 

differing disulfide linkages, is suspected to be the reason for the observed nAChR 

bioactivity. Preliminary analysis of NMR data for chemical shift deviation from random 

coil was used as an indication of expected KTM peptide rigidity (Figure 3.5). Random coil 

peptides generally show amide proton chemical shifts between 8.09 and 8.45 ppm,190 while 
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those in KTM were between 7.64 and 8.74, indicating regions of structure rigidity. 

Similarly, random coil peptides generally show α-proton chemical shifts between 4.4 and 

4.8 ppm, while those in KTM were between 4.07 and 5.33 ppm. Thus, the chemical shift 

variation observed for amide and α-protons in KTM (Figure 3.5) were consistent with data 

expected for a peptide of reasonably rigid scaffold.  

The relatively low number of distance and angle constraints for KTM was due to 

challenges associated with a 1942 Da peptide and the high redundancy of amino acids (4C, 

4S, 3W, 2Y), resulting in many proton chemical shifts in similar or identical electronic 

environments. The interpretation of NMR spectra for KTM was severely complicated due 

to peak overlap, ring-flipping of aromatic side chains, and spectral shift between H2O and 

D2O spectra. Figure 3.7 shows an overlay of the fingerprint region for COSY and TOCSY 

spectra used to assign the spin systems in KTM from which the chemical shift assignments 

as summarized in Table 3.1 were generated. The proton chemical shifts for aromatic amino 

acids are largely missing from Table 3.1 due to assignment ambiguity originating from the 

three tryptophan and two tyrosine residues with overlapping chemical shifts further 

exacerbated by ring flipping. Additional structure challenges arose from the molecular 

weight of KTM correlating to the NOE detection minimum limiting the number of 

medium- and long-range NOEs that could be assigned as restraints. Conotoxin structure 

determination by NMR is inherently difficult due to weak NOE signals, limited distance 

for protons to provide an assignable NOE, and side chain mobility that provides 

conformations where protons enter in and out of detectable proximity to one another.191 

Additionally, the high number of heavy aromatic side chains in KTM is suspected to 

contribute to inherent flexibility. 
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Figure 3.8. Fingerprint region of COSY (red) and TOCSY (grey) spectra overlaid 
for residues 1-5 and 7-16, acquired at 600 MHz for KTM at 298 K in 30% ACN/70% 
H2O. Residue assignments are indicated by their one-letter amino acid code. 

Perhaps the most striking finding of this study was that KTM, which was predicted 

to act on rα3β2-nAChRs, did indeed do so, and with very high potency, despite having a 

ribbon-type α-CTx disulfide connectivity. There is precedent for ribbon isomers of 

Framework I α-CTxs with high dynamic flexibility and binding affinity for rα3β2-nAChRs. 

Dutton, et al. (2002) characterized a non-native ribbon disulfide bond isomer of 

recombinant α-CTx AuIB that, while more flexible than the native globular isomer, 

exhibited 10 times more potent activity with nAChRs in rat parasympathetic neurons than 

the native globular isomer.187 They presumed that the flexibility of the non-native ribbon 

isomer allowed the peptide to adopt a complementary conformation with the receptor 
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binding site. KTM is the first example of a Framework I α-CTx with ribbon fold to 

demonstrate sub-nanomolar inhibition of rα3β2-nAChRs. To briefly explore why KTM 

exhibits functionality consistent with α-CTx MII, a comparison of the electrostatic maps 

of α-CTx MII and KTM was performed using the ABPS Electrostatics plugin in PyMOL192 

after performing a 50 ns molecular dynamics simulation in Gromacs. The simulation shows 

that the side chains for W1, S4–G7, and K14 have a high degree of fluctuation (Figure 3.7), 

and that loop 2 is especially dynamic (Figure 3.9), indicating that a single model may not 

well represent the peptide. To illustrate the dynamic flexibility of KTM and its potential 

for induced fit into the binding site of rα3β2 nAChR, the electrostatic surfaces of KTM at 

0 ns (Figure 3.10A) and at 50 ns (Figure 3.10C) are shown in comparison to α-CTx MII 

(Figure 3.10B). KTM can adopt both a structure with a surface volume much larger than 

α-CTx MII with multiple points of protrusion from aromatic side chains and a hollow core 

(Figure 3.10A), as well as a more compact structure that more closely resembles that of α-

CTx MII as loop 2 appears to flex inward (Figure 3.10C). The molecular depictions in 

Figure 3.10 permit visualization leading to a possible explanation for how KTM may have 

an induced fit in the binding site of rα3β2-nAChRs to exhibit the potent bioactivity 

observed (Figure 3.3).  

 

Figure 3.9. Ribbon structures of KTM at 0 ns (left), 25 ns (middle), and 50 ns 
(right) in the molecular dynamics simulation. Loop 2 appears to swing across the 
peptide over the course of the simulation. 
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Figure 3.10. Electrostatic maps of KTM at 0 ns of the molecular dynamics 
simulation (A), α-CTx MII (B), and KTM at 50 ns of the molecular dynamics 
simulation (C). Images on the left and right are rotated by 180 degrees. 

Materials and Methods 

Synthesis 

KTM was synthesized by and purchased from CS Bio (Menlo Park, CA) in folded 

form as a white powder. Following solid phase peptide synthesis, disulfide linkages were 

allowed to form into the most thermodynamically stable conformation under reducing 

conditions. The major isomer was collected by HPLC at ca. 98.36% purity. The peptide 

was collected at 10.71 min using a 20-50% gradient of Buffer B (0.1% TFA in ACN) over 

a 20 min run time, where Buffer A was 0.1% TFA in H2O. The column was a Phenomenex 

Luna C18 with specifications of 5 µM, 100 Å, 4.6 x 250 mm. The flow rate was 1 mL/min 

and the injection volume was 20 µL. Peptide identity was confirmed by mass spectrometry 
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where the expected molecular weight was 1942.21 Da and the found molecular weight was 

1941.52 Da.  

Disulfide Bond Analysis 

Analysis was performed using an UltiMate 3000 HPLC (Thermo Scientific, 

Waltham, MA, USA) equipped with a Corona Veo RS charged aerosol detector (CAD), an 

UltiMate 3000 Diode Array Detector (DAD), and MSQ Plus mass spectrometer (MS). 

HPLC separation of peptide species was achieved using an Acclaim 120 C18 column (2.1 

× 150 mm, 3 µm) (Thermo Fisher), and mobile phases consisting of 0.1% formic acid (v/v) 

in water (Buffer A) and 0.1 % formic acid (v/v) in acetonitrile (Buffer B) with a flow rate 

of 0.3 mL/min. A linear gradient method beginning at 85% Buffer A and 15% Buffer B, 

up to 60% Buffer B over a 25 min run time achieved desired separation from a 10 µL 

sample injection volume. Data were analyzed with the Chromeleon 7.2 Chromatography 

Data System (Thermo Fisher). The partial reduction strategy of Gray193 was used to 

sequentially reduce and alkylate disulfide bonds. Synthetic KTM peptide (0.1 nmol) from 

CS Bio was dissolved in 1 M equivalent of tris 2-carboxyethyl phosphine (TCEP) in 25 

mM ammonium formate, at pH 4.5, and incubated at 37°C for 10 min. Following 

incubation, the reaction mixture was separated by HPLC, and the peptide reduction was 

monitored by mass spectrometry through observation of a mass increase of +2 m/z, 

corresponding to the peptide with one disulfide bond reduced. Two molar equivalents of 

N-ethylmaleimide (NEM) were added and the reaction mixture and alkylation was 

monitored by LC-MS for observation of a mass increase of +125 m/z. The increase in m/z 

of +125 in the doubly charged ion equates to a mass shift of +250 Da in KTM 

corresponding to the coupling of one thiol to NEM. Peptide fractions, as identified by UV 
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absorbance at 280 nm, were collected manually into 1.5 mL polypropylene centrifuge tubes 

and lyophilized to dryness. The resultant di- and tetra-alkylated peptides appeared as dull 

white powders. Monocyclic intermediates were reconstituted in 1:1 (v/v) acetonitrile/25 

mM ammonium formate, reduced with dithiothreitol (DTT) at a final concentration of 10 

mM for 1 hr at 37°C, and alkylated with iodoacetamide (IAA) at a final concentration of 

55 mM for 1 hr in the dark at room temperature. The reaction mixture was injected onto 

the LC-MS to monitor reduction and alkylation by observation of a mass increase of +59 

m/z, corresponding to the addition of acetamide. Doubly alkylated peptides were submitted 

for sequence analysis to determine the locations of S-carboxamidomethyl-L-cysteine 

residues, and confirm the disulfide connectivity (see Appendix B). MS/MS fragmentation 

for sequence analysis was achieved using a Velos Pro Dual-Pressure Linear Ion Trap mass 

spectrometer (Thermo Scientific) coupled to a Nanoscale LC system at a flow rate of 300 

nL/min. A fused silica emitter directly attached to the analytical column through a zero 

dead volume union was used spray peptides at a voltage of 2.2 kV. MS/MS data was 

collected in data-dependent acquisition mode, using collision-induced dissociation (CID) 

with a normalized collision energy of 35% to fragment the precursor ions. Collect MS/MS 

data for the 10 most abundant precursor ions was selected from the proceeding full MS 

scan over the m/z range of 300 – 2000. Proteome Discoverer 2.2 (Thermo Scientific) was 

used to analyze the data. 

Circular Dichroism Spectropolarimetry 

Circular dichroism (CD) spectra were recorded on a Jasco J-810 spectropolarimeter 

(Jasco, Inc., Easton, MD, USA) with a cell path length of 0.1 cm at room temperature in a 

nitrogen atmosphere in water. Scans were acquired from 190 to 250 nm. The bandwidth of 
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1 nm, a speed of 50 nm/min, and a resolution of 0.5 nm were used. A total of 5 scans per 

sample were averaged, baselines were subtracted, and the sample was run in triplicate. A 

final concentration of 50 µM of each sample was used. Analysis and data processing were 

carried out with the Jasco system software and Microsoft Excel. Mean residue ellipticity 

(θMRE, in deg × cm2× dmol−1) for each spectrum was calculated from the formula θMRE 

= θ/(10Cr × l), where θ is the measured ellipticity in millidegrees, Cr is the molar 

concentration, and l is the path length in centimeters. The α-helical content was estimated 

from the formula θMRE = −30300fH − 2340, where fH is the fraction of α-helical content 

(fH × 100, expressed as a percentage) calculated from the θMRE at 222 nm, which is a 

widely used proxy for helical secondary structure that is useful to assess disruption of the 

secondary structure, as was performed here.95, 194, 195 

2D Nuclear Magnetic Resonance Spectroscopy 

NMR samples were prepared at a concentration of approximately 3 mM in either 

30% deuterated acetonitrile (d-ACN)/70% water or 30% d-ACN/70% deuterium oxide 

(D2O). d-ACN was used due to the limited solubility of KTM in water. D2O samples were 

prepared by dissolving lyophilized sample in 30% d-ACN/70% D2O solvent and 

immediately acquiring spectra. Two-dimensional 1H NMR experiments and spectral 

interpretation were performed by established methods.188-190, 196-202 

All NMR data were acquired on a 600 MHz Bruker Avance III NMR spectrometer 

at 298 K. COSY, TOCSY, and NOESY spectra were acquired using water suppression for 

aqueous samples. A series of NOESY spectra were acquired with mixing times of 150, 

200, 250, 300, and 350 ms. TOCSY spectra were acquired with an 80 ms mixing time (30% 

ACN/60% H2O /10% D2O). Parameter set details are provided in Appendix 2 (Table B.1). 
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Spectra were processed in Topspin and analyzed in CCPNMR v2 and v3203 to correct 

resonance shifts, manually pick peaks, and identify spin systems. 

Restraint Set Generation: Three-bond 1HN-1Hα coupling constant values were 

determined by visual inspection of a high-resolution 1D 1H spectrum in Topspin. Backbone 

dihedral phi angle restraints were set to -120 ± 40 for 3JHH 1HN-1Hα coupling constant values 

greater than 7.5 Hz and to -65 ± 25 for 3JHH 1HN-1Hα coupling constant values less than 5 

Hz.202 Inter- and intraproton distance ranges were calibrated within CYANA. Distance 

restraints were derived from NOESY spectra recorded at 298 K and mixing time of 350 

ms.  

Structure Calculation: Input files were formatted for the CYANA program (v 2.1). 

The autoassign script in CYANA was used for assignment of 69 hydrogen atom chemical 

shift values. A chemical shift tolerance of 0.075 was used for both axes. Disulfide bonds 

were used as distance restraints. CYANA produced an ensemble of 20 top structures based 

on 32 restraints. The final set of 20 structures gave a root-mean-square deviation among 

backbone atoms of 1.7 ± 0.4 Å. The structure most representative of the mean structure 

was determined with WHATIF.204 Procheck205 and Verify3D206 online servers were used 

to assess structure quality. Molprobity scores are reported in Table B.2.207 

PC12 Assay 

Cell culture and bioactivity assessment were performed according to Marquart, et 

al.141 The PC12 assay was performed using a Biotek Synergy H1 microplate reader 

(Winooski, VT). All chemicals were purchased at the highest purity available (>95%) from 

Fisher Scientific. ATCC® CRL1721™ PC12 cells were provided by the Biomolecular 

Research Center at Boise State University. 
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Cell culture: PC12 cells were cultured into laminin-coated flasks and triturated to 

detach. Cells were grown in a T-75 flask until dense enough to plate onto a laminin-coated 

flat-bottom well plate and treated with starvation media (30 ng/mL NGF 2.5S, 1 µM 

nicotine) for 3-4 days before performing the assay.  

Assay: Cells were washed with Locke’s solution before introducing the assay 

solution, which included 10 µM toxin, 0.8 ng/mL POD, 25 ng/mL MAO, and 50 µM 

luminol. The luminol was added to quench any dissolved oxygen in the cell environment 

and the assay solution. Cells were allowed to equilibrate for 5-10 min before the addition 

of 2 mM luminol and 50 µM ACh, for a total well volume of 100 µL. Upon equilibration, 

the luminescence signal was detected. (-)MAO and (-)cells were used as negative controls. 

Assays were performed at 37°C, detecting luminescence for 1-2 min per well. 

Luminescence response curves were then integrated as a measure of dopamine secretion 

inhibition resultant from peptide treatment for analysis. 

Electrophysiology 

rα3β2-nAChR expression in Xenopus laevis oocytes: cDNA preparation, oocyte 

harvest, expression of nAChR subunits, and culture were performed as described 

previously.63 The rat isoforms of neuronal nAChR subunits α3 and β2 in vectors pSP64 

and pSP65, respectively, were generously provided by Dr. Steven Heinemann (Salk 

Institute, San Diego, CA). All salts and antibiotics were obtained from Sigma or Fisher 

Scientific. Oocytes were extracted from adult Xenopus according to protocols approved by 

the Institutional Animal Use and Care Committee at ISU and according to AAALAC 

guidelines. Oocytes were isolated with 2 mg/L collagenase and cultured at 17.5 °C in sterile 

ND-96 saline containing 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1mM MgCl2, and 5 
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mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), with 5 mM Na 

pyruvate, 2% horse serum, 100 mg/L gentamicin, 100 mg/L amikacin, 50 mg/L 

ciprofloxacin, 20 mg/L tetracycline, and 100 U/L streptomycin/penicillin, at pH 7.4. 

Messenger RNA was transcribed as detailed previously; α3 and β2 mRNA was coinjected 

at 41 nL into oocytes 3 to 5 days prior to recordings. 

Two-electrode voltage clamp: To record the response to ACh, oocytes were 

impaled with glass electrodes containing 3 M KCl for two-electrode voltage clamp 

electrophysiology. Oocytes were placed in a 300 µL recording chamber and perfused at 

1.0 mL/min with ND-96 saline containing atropine sulfate (1 mM), at room temperature. 

Voltage clamp was performed with an OC-725C amplifier (Warner Instruments, Hamden, 

CT) with data acquisition achieved through an ITC-18 interface and PatchMaster 2.35 

software (HEKA Instruments, Bellmore, NY). Oocytes were held at -70 mV between trials, 

and at -80 mV during trials of ACh application. During perfusion, a 20 to 50 ms pulse of 

ACh chloride (0.01 M, Sigma, St. Louis, MO) in the bath solution was locally applied from 

a glass capillary tube positioned above the oocyte, with pressure ejection using a 

PicoSpritzer II valve controller (General Valve Corporation, Fairfield, NJ). Once a reliable 

response was obtained, the chamber was perfused with α-CTx MII or KTM for 15 min, 

and the ACh pulse was applied. Inward sodium current amplitudes for each toxin trial were 

normalized against the control response to ACh as percent block. Each data point of the 

dose response curve represents the average value of 8 to 12 measurements. Dose-dependent 

response curves were fit to Equation 1: 

% response = 100/[1 + ([toxin]/IC50)n], (1) 
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where n is the Hill coefficient and IC50 is the inhibitory concentration at half-maximal 

block, by non-linear regression analysis using Igor Pro 6.37 (Wavemetrics, Lake Oswego, 

OR, USA). 

Molecular Dynamics Simulations 

Molecular dynamics simulations were performed with the AMBER03 force-field 

parameter set140 using the Gromacs 2019 software package.136 The median conformation 

for KTM from the top 20 NMR solution structures was selected as the input structure for 

MD simulation in Gromacs. Since the NMR spectra were acquired for a sample in 30% 

acetonitrile/70% water, the solvated box was obtained by filling a dodecahedral box with 

the appropriate number of acetonitrile molecules to achieve the desired mixed solvent 

proportions. A topology for acetonitrile was created for this purpose. The shortest 

distance of peptide atoms from the box boundary was 1.2 Å. Simulations were carried out 

at 300 K in a periodic box with a minimum-image convention. The integration step was 1 

fs, and total duration of each run was 50 ns. Water, acetonitrile, and ions were 

temperature coupled. Energy minimizations and N, V, T and N, P, T equilibrations were 

performed before running the simulation. A 500 ps equilibration was conducted under the 

NVT ensemble using a velocity-rescale thermostat at 300 K with a coupling time 

constant of 0.1 ps. A subsequent 500 ps NPT equilibration was performed using the 

isotropic Berendsen barostat with a time constant of 0.1 ps. Simulations and models were 

visualized in Pymol.192 
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Conclusions 

This investigation sought to validate the accuracy and usefulness to rationally 

design a selective antagonist of a specific nAChR isoform based on the well characterized 

marine drug α-CTx MII. Synthetic KTM peptide was confirmed to be a potent sub-

nanomolar inhibitor of rα3β2 nAChRs. It was expected that KTM would fold into the same 

C1-C3 and C2-C4 disulfide pattern, consistent with α-CTx MII. Instead, the folding of 

KTM resulted in a C1-C4 and C2-C3 ribbon Framework I α-CTx, consistent with the 

recombinant isomer of α-CTx AuIB.186, 187 It has been stated in the literature that correct 

folding of synthetic peptides is critical to the maintenance of biological activity, but in the 

instance of KTM, the globular disulfide pattern is not the same as that found in α-CTx MII, 

but rather resembles the ribbon-connectivity studied for α-CTx AuIB.186, 187 KTM is the 

first example of sub-nanomolar nAChR antagonism by a Framework I α-CTx of ribbon-

connectivity. A compelling next step for this work would be the directed folding of KTM 

to assess whether the potency of the globular-connectivity Framework I peptide may be 

further enhanced for nAChR inhibition. Validation of computationally predicted peptide 

binding and biological activity may lead to a better understanding of molecular probes for 

the treatment of neurological diseases like Parkinson's Disease. Drugs that selectively 

target human α6α4β2β3 nAChR isoforms could be used as new therapies with fewer side 

effects than existing treatments. The current study offers a workflow to begin the search 

for drug therapies inspired by marine natural products. 
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CHAPTER FOUR: CONCLUSION AND FUTURE DIRECTIONS 

The work in this thesis demonstrates the value of conotoxins as molecular probes 

to gain the understanding of nAChR isoform selectivity needed to develop treatments for 

neurological disorders. To better understand the effect α-CTx binding to nAChRs has on 

cell signaling, we presented a case study of a rationally designed peptide using 

computational tools to predict binding affinity along with structure activity relationship 

results. It may be concluded that the computational method used in this case study has 

merit and requires experimental validation. To increase efficiency of investigations into 

nAChR binding and function, an optimized PC12 cell assay was developed to quickly and 

economically pre-screen ligands for qualitative nAChR bioactivity prior to resource-

intensive quantitative experiments. The current study provides a workflow to begin the 

search for small molecule drug therapies inspired by conotoxins, and future studies will 

involve using computational programs and online molecular databases to identify 

pharmacophore features of model peptides required for binding in order to discover small 

molecule scaffolds for lead compounds. These small molecules can then be characterized 

for desired activity in the PC12 assay. A future goal is to identify a variety of chemical 

treatment protocols for enhanced expression of select nAChR subunits in addition to the 

rα3β2 isoform focused on in this case study, and to create cell lines heterologously 

expressing disease-relevant nAChR subtypes. Drugs that selectively target human 

α6α4β2β3 nAChR isoforms could be used as new therapies for Parkinson’s disease with 

fewer side effects than existing treatments like Levodopa. A workflow for efficient 



102 

 

validation of computationally predicted peptide binding and biological activity with 

nAChRs may spur understanding of molecular probes and result in identification of lead 

compounds in treatment of neurological diseases like Parkinson's.  
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Effective NGF treatment was confirmed by cell morphology, in which NGF treated 

cells contain neurite extensions indicative of neuron-like differentiation (Figure A.1). 

 
Figure A.1 Light microscopy images of PC12 cell morphology. Non-NGF-treated 
cells (A) remain round, while NGF-treated cells (B) show long, reaching dendrites at 
3 days. No visual difference was observed in cell morphology for treatments including 
nicotine and/or ethanol in addition to NGF. 

The trypsinization step used by Shinohara et al. was removed, not only to simplify 

growth procedures, but also because it has been shown that trypsinization is damaging to 

cell surface proteins [1]. In order to prolong the life of the PC12 cells and maximize assay 

response, cells were instead triturated from the bottom of the flask to detach them for 

subculturing. It was observed that without trypsinization, cells responded well to ACh over 

a longer period of time, 2-3 weeks from cryopreservation recovery. The results presented 

in this study are from cells that had been cultured for at least 2 weeks. Extensive 

optimization was necessary to adapt the Shinohara et al. method to the 96 well plate α-CTx 

MII-dependent rα3β2 nAChR isoform specific response system, which constituted the 

objective for the current study. Adaption of Shinohara's method was designed such that 

reliable results could be obtained for studies involving rα3β2 nAChR isoform specific 
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antagonists, as represented by α-CTx MII, as well as adapt the protocol for accessibility, 

and time and cost efficiency. Initial attempts to recreate the results of Shinohara et al. 

proved challenging due to lack of access to an autoinjector for instantaneous detection of 

ACh response. To overcome this deficiency, it was necessary to decrease [POD] and 

[MAO] in order to slow down the reaction and increase [luminol] so that the luminescence 

response could be delayed beyond the time required for pipette addition of ACh to 

beginning of detection by the microplate reader. Slowing the reaction resulted in a broader 

luminescence detection peak from 30-60 sec, rather than the rapid, sharp peak over 2-3 sec 

observed by Shinohara. Thus, it was not practical to measure the maximum luminescence 

intensity for each peak when interpreting data, as was reported by Shinohara. Instead, the 

area under the curve was measured for a more accurate, reliable interpretation of 

luminescence response. 

It is important to note that one limitation to the PC12 assay is that results must be 

compared within the same well plate, since the rapid growth of PC12 cells changes their 

condition too dynamically from subculture to subculture to permit comparison of 

luminescence intensity directly across well plates. The goal for the treatment study in 

Figure 2.8 was to compare four different PC12 growth conditions for luminescent response 

upon treatment with and without α-CTx MII and optimize the concentration of ACh for 

maximum sensitivity. Thus, to be able to compare all four treatment conditions (NGF, 

nicotine, ethanol, and combined nicotine and ethanol) together over a range of ACh doses 

for both +/- α-CTx MII with multiple negative controls, an n=2 was allowed for a full 96-

well plate. The occurrence of faulty wells (for example, caused by anomalies such as air 

bubbles or uneven conditions at the edges of the well plate) reduced some data points to 
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n=1. Considering a cellular-level response is being detected, further reducing the growth 

surface area by using a 192- or 384-well plate was expected to introduce problems with 

sensitivity given the current level of progress toward optimization of nAChR expression. 

For an experiment in which the goal of the assay was to qualitatively screen a range of 

compounds, a simpler scheme with one dose of 50 µM ACh would be sufficient, allowing 

for more statistically complete data. For example, a more statistically complete result is 

demonstrated in the temperature study shown in Figure 2.5, for which an n=4 was used. 

It was found that a better zero response for 0 µM ACh was obtained when a small 

amount of luminol was added to the assay solution before detection, because luminol 

addition is expected to quench residual oxygen dissolved in the assay solution or cell 

environment capable of breaking down the luminol and cause a luminescence response 

irrelevant to dopamine release, enabling a more level base response across all wells. It was 

found that the cells consume this small amount of luminol (50 µM) very quickly over the 

5-10 min equilibration time even without activation by ACh, necessitating addition of a 

larger dose of luminol along with the ACh before detection. In an attempt to maximize the 

sensitivity of the assay, the luminol concentration was arbitrarily spiked to 5 mM, for which 

a consistent assay response was not achieved. It was then considered that the 1 M NaOH 

necessarily used to dissolve the luminol stipulated a maximum luminol concentration 

allowable before exceeding Locke's buffer capacity. Thus, while maximum luminescence 

response was desired, the maximum allowable [luminol] was limited by the buffer 

capacity. 
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Figure A.2 Visual state of PC12 cells pre-assay (A) and post-assay after performing 
assay with both Locke's buffer (B) and HBSS (C). Cells post-assay using HBSS 
appeared severely lysed and damaged. 

Subsequent to the release of Shinohara et al.'s initial study in 2008, Locke's buffer 

was replaced with Modified Hank's Balanced Salt Solution (HBSS) in their 2011 study 

[2,3]. In step with their decision, when simple HBSS was attempted in this study, 

interpretable results were drastically eliminated. Both buffers have a comparable 

osmolality of 270-305 mOsm/kg, and the greatest difference between Locke's buffer and 

simple HBSS is the absence of Mg2+ in Locke's buffer. After multiple unsuccessful 

attempts to recreate assay results with HBSS, it was discovered that the state of the cells 
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post-assay under a microscope appeared surprisingly damaged and most cells were lysed. 

Figure A.2 shows the state of the cells pre- and post-assay when using both Locke's buffer 

and HBSS. It is presumed that the Modified HBSS used in Shinohara et al.'s 2008 study 

was Mg-free HBSS [2]. This conclusion is consistent with literature precedent describing 

the depolarization of neuronal cells by Mg2+ [4]. 
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APPENDIX B 

Supplementary Materials to Chapter Three
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NMR Assignments 

Table S1 provides parameter set details for all NMR experiments performed. 

Assignment of spin systems to the amino acid primary sequence was accomplished as follows: 

Spin systems were identified by confirming the presence of H-βH NOESY peaks and βH-βH 

NOESY peaks. All spin systems were confirmed on both sides of the diagonal. 

The fingerprint region (Figure 8A) revealed an obvious lysine spin system pattern unique 

to any other residue in the peptide, clearly identifying K14. This assignment was used as a handle 

for other assignments. The W15 and C16 spin systems were then easily identified by two large 

NOESY peaks with the K14 NH resonance in the NH region. The W15 spin system was 

distinguished between the C16 system by a clear NOESY peak between the NH resonance and an 

N2H resonance in the downfield N2H region. S13 was identified based on a clear NOESY between 

the S13 NH resonance and the K14 NH resonance in the NH region. S12 was then identified by a 

clear NOESY between the S13 and S12 NH resonances in the NH region. 

The alpha proton of P6 at 4.07 ppm was easily identified in the upfield a-B region by its 

spin system pattern unique to any other residue in the peptide. This assignment was also used as a 

handle for other assignments. G7 was also clearly identified by its unique spin system. The C8 

spin system was confirmed by an NH-NH NOESY peak to G7, then Y9, W10, and S11 were 

identified in the same manner. The remaining unassigned serine spin system was then assigned as 

S4 by elimination. These assignments were fortified by corresponding aH-NH/βH-NH NOESY 

peaks between adjacent residues. C2 and C3 were predicted to have similar environments. As 

expected, the remaining two appropriate spin systems were identified at nearly overlapping 

chemical shifts, showing clear NH-NH and NH-aH NOESY peaks. The only remaining unassigned 

spin system for the peptide was then identified as W1 by elimination. C2 was distinguished from 
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C3 by an NH-NH NOESY peak to W1. Additional inter-residue NOESY peaks were then 

identified based on these assignments. 

 
Table B.1 Parameter set details for NMR experiments. 

 

Partial Reduction MS-MS 

B and Y fragments were analyzed as the most accurate fragments for MS-MS 

fragmentation. Relevant fragments identified that distinguished a C2-C16/C3-C8 disulfide 

connectivity over a C2-C8/C3-C16 connectivity are shown in Figure S1. 
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Figure B.1 Annotated MS-MS spectrum of relevant distinguishing B and Y 
fragments. Fragments are numbered along the KTM sequence, showing position of 
corresponding alkylations with N-ethylmaleimide (NEM) and iodoacetamide (IAA). 

Molprobity Scores 

Molprobity scores for all 20 models in the NMR ensemble are reported in Table S2. Clash 

scores and Ramachandran outliers were zero for all models, with no bad bonds or angles and no 

Cβ deviations >0.25Å. 
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Table B.2 Molprobity scores for the 20 NMR ensemble structures. The lowest 
percentile was 76th for model 10. 
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