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ABSTRACT

The development rate of alfalfa seed crop depends on both environmental conditions

and management decisions. Crop management decisions, such as determining when

to release pollinators to optimize pollination, can be informed by the identification of

plant development stages from remote sensing data. I first identify what electromag-

netic wavelengths are sensitive to alfalfa plant development stages using hyperspectral

data. A Random Forest regression is used to determine the best Vegetation Index

(VI) to monitor how much of the plant is covered in flower. The results indicate that

Blue, Green, and Near-Infrared are the important electromagnetic wavelengths for

the VI. Imagery collected throughout this study are converted into a VI time-series

for analysis. The analysis involves using a state-space model to estimate the percent-

age of flower cover from observations. We found that a simple state-space model can

be used to estimate, as well as predict, the flower cover percentage.
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1

CHAPTER 1:

INTRODUCTION

1.1 Alfalfa Background

Alfalfa (scientific name Medicago sativa L.), commonly known as Lucerne, is an im-

portant forage crop in many countries around the world and is used heavily in feeding

programs of various livestock, especially as beef and dairy fodder. Alfalfa was the

fourth most valuable field crop in the United States in 2017 and is the most widely

cultivated perennial forage crop in the world (NASS, 2017). The United States har-

vested 16.9 million acres of alfalfa for hay in 2016 (NASS, 2017) and has historically

had more area of alfalfa production (in million ha) than any other country in the

world (Yuegao & Cash, 2010). In 2015 the United States produced approximately

50.5 million pounds of alfalfa seed (NASS, 2017) and was also the largest exporter

of alfalfa seeds for sowing, representing 25.5% of the global export market (USDA,

2015). The demand for high-quality alfalfa seed is expected to increase as developing

countries are projected to have an annual growth in meat production of 2.4% and an-

nual growth in milk production of 2.5% by 2030. The growth in livestock production

will create a demand for more high-quality forage crops, which must be backed by

high-quality forage seeds.

The planting of alfalfa for forage requires between 15-25 pounds of seed per acre,
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with approximately 200,000 seeds per pound (CFAC, 2004). This high demand for

quality alfalfa seeds puts an emphasis on getting optimal seed yields from alfalfa seed

crops. In order to get the largest seed yields, pollinators should be introduced to

the field one week prior to peak bloom conditions (Husman, 2015). Making informed

management decisions, such as when to release pollinators, increases the crop and

seed productivity and thus improves farm profitability (Mulla, 2013). Making these

management decisions requires analysis of data related to the real-time plant growth

(i.e. the phenology).

Alfalfa is a perennial herbaceous legume that grows from a semi-woody base or

crown. The crown sends up many leafy multibranched stems 2 to 4 feet high; with

each stem terminating in a raceme or cluster of 10 to 100 purple florets. The 1/2 inch

long florets begin opening at the base of the 1 to 4 inch long raceme and take about a

week to progress to the tip of the raceme. The florets can open any time of day and

remain open for about a week before wilting. However, once pollinated the flower

wilts within a few hours (Mcgregor, 1976). Each flower has 5 petals, with the lower

two petals modified into a ‘keel’ that encloses the reproductive organs. Pollinators

must force their way between the keel petals to access nectar and pollen. When a

flower visitor ‘trips’ the flower it gets struck in the head by the pistil and stamens,

which deposits pollen. A flower must be tripped for fertilization to take place and a

seed pod to form.

The highest seed yields come from sparse stands that flower during the warmest

part of the season, but there are many factors at play such as proper agronomic

care, sufficient pollination, freedom from harmful insects and diseases, and proper

seed-harvesting methods (Mcgregor, 1976). The preferred pollinator for alfalfa is



3

the alfalfa leaf cutter bee. The bee’s effectiveness can be increased by timing their

development with the beginning of bloom. However, it can be difficult to anticipate

bloom one week prior to peak bloom, which is when the bees’ emergence must be

initiated (Husman, 2015). Balancing the quantity and timing of bee release is critical

for successful pollination as well as the bees’ own health and reproduction (NSERC-

CANPOLIN Canadian Pollination Initiative, 2006).

The knowledge of the current stages of bloom for alfalfa seed crop fields, with a

high spatial and temporal resolution, can be a powerful tool for practical manage-

ment purposes. This project explores the use of remote sensing technologies to gain

knowledge of the current stage of bloom development, as well as forecasting bloom

percentages at alfalfa seed crop fields in southwestern Idaho.

1.2 Remote Sensing

Remote sensing, which refers to non-contact measurements of radiation reflected from

an object, includes platforms for making measurements such as satellite, aerial, and

handheld or tractor mounted sensors. These platforms can be used to collect data

for a variety of applications, including precision agriculture (Mulla, 2013). Well-

validated remotely sensed data sets are more cost and time effective compared to

sampling the same area using field-based approaches (Weng, 2002). Moreover, when

several well calibrated satellite images are used in time-series, the phenological stages

of crops, including the floral cycle, can be effectively mapped (Ge et al., 2006). The

floral cycle refers to the duration of the blossoming period and flowering intensity,

which includes the fractional coverage of flowering buds within a single tree, plant,

or vegetation community (McIntosh, 2002). Landmann et al. (2015) used time series

hyperspectral remote sensing to determine the ability to monitor the floral cycle
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of flowering plant groups in African savannas. Previous research has shown that

spectral signatures from the visible to shortwave infrared can be used to monitor

plant phenology development (Sakamoto et al., 2005; Fan et al., 2015), but until now

little work has gone into identifying specific spectral signatures of alfalfa seed crop

phenology. In this thesis, electromagnetic wavelengths and vegetation indices sensitive

to alfalfa bloom progression are identified by applying random forest regression to

hyperspectral and Red-Green-Blue (RGB) color imagery collected during the 2016

alfalfa growing season in Idaho.

A vegetation index (VI) is a mathematical combination or transformation of spec-

tral wavelengths that accentuates the spectral properties of plants (Xue & Su, 2017).

A VI can be used to distinguish between vegetation and soil, differentiate between

species of plants, provide estimates of plant biomass or leaf area index (Viña et al.,

2011), estimate phenology (Atkinson et al., 2012), and even track flowering plant

species (Landmann et al., 2015). The spectral changes related to phenology devel-

opment can be emphasized using sequential images, transformed into a vegetation

index, and ordered into a time-series (Sakamoto et al., 2005).

Publicly-available satellite data can be used to observe alfalfa seed crop fields

throughout a growing season. For example, the Sentinel-2 satellite constellation has

four spectral bands centered at: Blue (490nm), Green (50 nm), Red (665 nm), and

NIR (842 nm) that are imaged at 10m resolution. The spectral information from

satellites can be used to characterize spatial variability within a field (Lee et al.,

2010). While the Sentinel-2 (A&B) satellites provide spectral data coverage once ev-

ery five days globally, this good temporal-resolution can be limited by cloud or smoke

cover. Complimentary data can be collected using ”near-surface” remote sensing im-
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agery to improve alfalfa phenology monitoring with high temporal data collection.

Many studies have demonstrated the usefulness of proximal remote sensing to pro-

vide quantitative information about crop conditions (Mulla, 2013; Nagai et al., 2016;

Marino & Alvino, 2014). For example, Richardson et al. (2009) show how near-surface

imaging sensors can be used to document changes in the phenology of forest canopies.

When Hufkens et al. (2012) compared near-surface and satellite remote sensing-based

observations of vegetation phenology, they found “significant agreement between phe-

nological time series and metrics derived from these two data sources. However, issues

of scale and representation strongly influence the relationship between near-surface

and satellite remote sensing measures of phenology.” Their results show that the two

sensing platforms can complement each other, but that the correlation is strongly

dependent on the camera field of view (FOV). Care was taken to ensure that the

near-surface cameras have as wide a FOV as possible and a similar spectral response

as the Sentinel-2 satellites to make integration between the two platforms as easy as

possible.

In this study, the relationship between remote sensing measurements and the onset

of alfalfa flowers is determined using state-of-the-art signal processing techniques, an

ensemble learning method for regression, and Bayesian statistical inference. The

results from determining this relationship can be used in a state-space modelling

approach where the time-series spectral development of alfalfa can be used to give

a near-real time analysis of the current phenological state, as well as predict when

bloom will occur (De Bernardis et al., 2016b).
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1.3 Statistical Methods

In statistical modeling, regression analysis is a statistical process to estimate the rela-

tionships among variables. Random forest regression (RFR) is an ensemble learning

method for classification or regression that operates by constructing a multitude of

decision trees, using a randomly selected subset of training samples and variables,

and outputting the class that is the mean prediction of the individual trees. Belgiu

& Drgu (2016) determine that a RFR classifier can successfully handle high data

dimensionality and multicollinearity, being both fast and insensitive to overfitting.

RFR is thus well suited to be used with hyperspectral imagery. A RFR performed

with data collected during the 2016 growing season identifies significant wavelengths,

or wavelength combinations, for tracking alfalfa bloom development.

The significant wavelengths, along with ground validation data, are used in a

Bayesian regression model to fit mathematical approximations for the ’standard’ be-

havior of the field, known as a process model, and the relationship between observed

measurements and the process (observation model). The mathematical approxima-

tions benefit from fitting a Bayesian multilevel model which can account for variations

among groups (field locations) within the data (McElreath, 2015). Using a Bayesian

framework also allows us to take advantage of prior data for several parameters in the

model. A logistic function (Tong & Vendettuoli, 2017) is used as the process model

to represent the standard bloom trajectory at an alfalfa seed crop field. A Michaelis-

Menten function (Michaelis et al., 1913) is used to relate the observation data to the

ground validations because it is characterized by a steep rise that gradually flattens

into a plateau. The process and observation models are then passed into a particle

filter framework that is able to infer the state of bloom at alfalfa seed crop fields using
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observation data.

A Particle Filter Approach for Real-Time Estimation of Crop Phenological States

Using Time Series of NDVI Images by De Bernardis et al. (2016b) illustrates the

potential for using a particle filter (PF) approach with rice parcels, although the

methodology is transferable for a near-real time estimation and prediction of alfalfa

bloom. While the PF is often used in robotics and computer vision problems to esti-

mate state variables (e.g. Durrant-Whyte & Bailey, 2006), its application in remote

sensing is still fairly novel. The particle filter is a dynamic approach that combines

information from a process model and observation data (provided in this research by

the remote sensing data). We can then take the estimated state based on time from

the process model and combine it with the observation data to get a near-real time

estimate of percentage flower.

1.4 Thesis Organization

This thesis contains four chapters related to the monitoring of alfalfa seed crops as

they progress through a flowering cycle. The first study demonstrates the potential

of tracking the development of bloom at alfalfa seed crop fields using remote sensing

technologies (Chapter 2). A RFR using data collected over the 2016 growing season

identifies electromagnetic wavelengths, or combination of wavelengths sensitive to al-

falfa bloom. In Chapter 3, the three most significant electromagnetic wavelengths

are used to select a camera to include in a near-surface sensor. This chapter covers

the development of a near-surface sensor deployed in a field during the 2018 growing

season to monitor the spectral signature of alfalfa as it progresses through a flower-

ing cycle. Chapter 4 details how the 2017 and 2018 field imagery are processed in

order to get a calibrated time-series and illustrates the effects of calibration. The
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image calibration process includes a vignette correction, which was defined by the

manufacturer for the 2017 data and determined in a laboratory experiment for the

2018 imagery, and a radiometric calibration where digital numbers are converted into

units of radiance. The calibrated field imagery is then transformed into a VI time-

series. The vegetation indices from the field imagery serve as observation data in the

bloom prediction model presented in Chapter 5. This chapter covers the use of a

state-space model to predict the on-set of bloom at alfalfa seed crop fields. The state

space model uses a prediction model to estimate the percentage of flower cover and

an observation model to update the predictions. The prediction model is defined as

the mathematical approximation of the expected behavior for a field where the onset

of flower is a function of time. For the observation model, a vegetation index is used

as an indication of the crops percentage flower cover. The observation model relates

the percentage flower cover with the observed VI value. As a proof of concept, the

bloom prediction model is used to forecast alfalfa seed crop field bloom percentage 5

and 10 days in advance. In the final chapter, the results of this research are discussed

and reflections are made about shortcomings of this research, as well as about future

research in this direction.
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CHAPTER 2:

DETERMINATION OF ELECTROMAGNETIC

WAVELENGTHS SENSITIVE TO ALFALFA

BLOOM

2.1 Summary

The development of flowers at alfalfa seed crop fields has an influence on the spec-

tral signature that can be detected by satellites. In order to make remote sensing

technology accessible to growers, the three most significant electromagnetic wave-

lengths for monitoring bloom are determined because that is what is widely available

in consumer grade electronics. The determination of electromagnetic wavelengths

that indicate bloom is determined by a random forest regression using data collected

over the 2016 growing season. The 2016 dataset includes spectral data measurements

and Red-Green-Blue (RGB) imagery. A high resolution spectroradiometer is used to

collect spectral data measurements at 15 locations within 4 different growing envi-

ronments in southwestern Idaho and are compared to the percentage cover results

from SamplePoint photo analysis software using the RGB images. The percentage

cover and the hyperspectral signature progression is used in a random forest regres-

sion to determine the significant electromagnetic wavelengths sensitive to percentage
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flower cover. The three most significant wavelengths, including wavelength combina-

tions, determined by the random forest regression are Blue, Green, and Near-infrared

(NIR) and are used in a phenocam at ground level during the 2018 growing season,

the results of which are presented in Chapter 3.

2.2 Introduction

In this chapter we use a random forest (RF) regression to analyze spectral data

measurements collected at the two fields and two greenhouses during the 2016 growing

season. RGB imagery is used in SamplePoint image analysis software to classify the

data into seven categories, and the random forest regression (RFR) determines the

spectral wavelengths or vegetation indices (VI) that are sensitive to alfalfa flowers.

We begin with a description of the field sites and then describe the methods used to

determine the significant wavelengths for tracking bloom development. Finally, we

present the results.

2.2.1 Vegetation Indices

A vegetation index is a mathematical combination or transformation of spectral wave-

lengths that accentuates the spectral properties of plants. A VI can be used to dis-

tinguish between vegetation and soil, differentiate between species of plants, provide

estimates of plant biomass or leaf area index (Viña et al., 2011), estimate phenol-

ogy (Atkinson et al., 2012), and even track flowering plant species (Landmann et al.,

2015). We test different VIs in the random forest regression, as well as individual

electromagnetic wavelengths.
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2.3 Field sites

2.3.1 Location

We conducted the 2016 study at two fields and two greenhouse locations in the

Nampa and Parma agricultural region (Figure 2.1) in southwestern Idaho, with the

two greenhouses being located very close to each other. The 2016 data set was col-

lected throughout the growing season from June 6th to August 22nd and included

around 40 days worth of RGB and spectral data measurements taken. Greenhouse

#1 (GHL) was imaged at six locations while Greenhouse #2 (GHS) and the two fields

were imaged at three locations.

Figure 2.1: The field and greenhouse locations for the 2016 data collection.
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GHL

The larger of the two greenhouses, GHL, consisted of a steel cage placed over a

research plot at the S&W Seed Co. Research Facility with netting placed over the

entire cage to control bee access to plants. It contained 12 trays of plants with 3 groups

on each tray. Each group was considered a sampling point giving us 36 sample plots

total. Figure 2.2 illustrates the data collection pattern that was used for the GHL

plots. The numbers from the figure are used at the end of the file names for each data

type and are used as the ID number, e.g. an ASD hyperspectral measurement taken

on June 15 at location 1 would have the file name 0615G00001.asd. RGB images

were collected daily for all 36 groups in the greenhouse, but ASD spectra are only

collected for the center plant for the middle 2 rows for all 3 columns of trays as shown

in blue numbers on Figure 2.2. This strategy minimizes any potential edge effects.

The spectral data measurements are collected a low and high distance spectra for each

group, giving 12 spectral signatures for the 6 groups. This procedure was followed

from June 8th until August 23rd, unless pesticide application interfered, providing a

total of 52 days of imagery.

GHS

The smaller of the two greenhouses, GHS, consists of an uncovered research plot at

the S&W Seed Co. Reasearch Facility. It consists of 2 trays, one tray with 1 group

and the other with 2 groups, giving a total of 3 groups with approximately 40 plants

each. Figure 2.3 illustrates the data collection pattern that was used for the GHS

plots. These numbers are used in the file naming scheme and as group ID number in

the same format as GHL data. One RGB image was collected daily for each group
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Figure 2.2: The data collection pattern that was used for the GHL plots.
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and 10 ASD samples are collected at the same location for each group. The plants in

this plot are started later than those in GHL and this procedure was followed from

July 30th until Oct 10th, unless pesticide application interfered, providing a total of

49 days of imagery.

Figure 2.3: The data collection pattern that was used for the GHS plots.

Fields

Two fields, Field 1 and Field 2, located in Nampa and Parma, ID are selected for

imaging during the 2016 growing season. Three locations are sampled per field in the

same configuration as shown in Figure 2.4. Point 1 is 30 paces into the field to avoid

any edge effects and so each point is as representative of the field as possible. Each

point is marked with a small flag and care is taken to avoid disturbing the area. At
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each point an RGB image is collected from 1m height with a consistent orientation so

the camera is parallel with the rows. Ten scans are taken at each point with the high

resolution spectroradiometer (See Section 2.4.1). This procedure is followed every day

on both fields from June 7th until July 8th, unless pesticide application interfered.

Once the fields are close to fully seeded, sampling is reduced to every 4 days from

July 8th to August 10th.

Figure 2.4: Structure of the sampling locations within a field.

2.4 Methods

2.4.1 Data Collection

Hyperspectral Data

Spectral data measurements are taken with a tripod-mounted ASD FieldSpec Hand-

Held 2 (HH2) spectroradiometer (Figure 2.5), which has a spectral range over the

Visible and Near-infrared (VNIR) spectrum. The ASD FieldSpec HH2 has a wave-

length range from 325 to 1075 nm with a wavelength accuracy of ±1 nm and a

spectral resolution of <3 nm at 700 nm. It has a 25◦ Field of View (FOV), which
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when taking measurements at 140 cm height translates to an area of 60 cm diameter

being collected. Each signature is the spectrum average of 10 samples. This is the

recommended default setting according to the HH2 User Manual, which states “the

signal-to-noise ratio improves with the square root of the number of scans used in the

averaging”.

Prior to data collection the ASD HandHeld 2 was calibrated using a dark current

calibration and a white reference panel, where white means the panel diffusely reflects

nearly 100% of the incident light throughout the spectral range (Panalytical, 2017).

The white panel is made of Spectralon, and while it is treated as having reflectance

values of 1 at all wavelengths, the actual reflectance is slightly less than 1. ASD

ViewSpec Pro software is used to process the raw reflectance values into absolute

reflectance values, where the small discrepancies in spectral reflection values of the

Spectralon material are accounted for.

The 1 nm wavelength hyperspectral wavelengths are then combined into a repre-

sentation of Red-Green-Blue-NIR bands that span a similar range as the Micasense

Rededge camera used during the 2017 growing season (See Chapter 4). It should be

noted that no additional noise was added to account for differences in sensor cali-

bration so this is not a straight comparison of how the multispectral camera would

respond. The bands are combined into vegetation indices (VI) (Appendex A) and

passed all of these parameters as response variables in the regression.

Contact Probe

In addition to the 2016 field hyperspectral data, an active source ASD contact probe

attachment is used with an ASD Fieldspec Spectroradiometer to collect pure spectral
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Figure 2.5: Example of the ASD FieldSpec HandHeld2 used for hyper-
spectral data collection.

signatures for leaves, buds, flowers, and seed pods. The samples are collected on 2

August 2016 from the GHL plots and 14 spectral signatures of each class are saved.

The signatures from each class are averaged and then used to represent how the

spectral library looks from a broadband camera.

A visual inspection of the contact probe data (Figure 2.6) demonstrates that

the spectral signature of buds is very similar to leaves and the spectral signature

by itself would be very difficult to use to differentiate buds from vegetation. It is

because of this similarity in the spectral signature between buds and vegetation that

we focus on tracking flowers, which has a noticeably different spectral signature than

the vegetation.
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Figure 2.6: This chart shows the contact probe hyperspectral signatures
for buds, leaves, and flowers averaged to represent broadband wavelengths
of Blue, Green, Red, RedEdge, and NIR. The Blue band has a center
wavelength of 475 nm with a full width half max (FWHM) of 20 nm,
Green has a center wavelength of 560 nm with a FWHM of 20 nm, Red
has a center wavelength of 668 nm with a FWHM of 10 nm, Rededge has a
center wavelength of 717 nm and FWHM of 10 nm, and NIR has a center
wavelength of 840 nm with a FWHM of 40 nm.

2.4.2 SamplePoint Procedure

SamplePoint photo analysis (Booth et al., 2006) software was used to classify 100

pixels from the RGB imagery into percentage cover for 6 categories: soil, vegetation,

bud, flower, seed, unknown, and other (Figure 2.7). The first step when using Sam-

plePoint is to setup a database. This is where all the JPG images to be classified will

be stored. Next, a custom button file is created with the classes shown in Table 2.1.

Once this is completed we begin the image classification. We first select a grid size

where we use the default setting of 10x10 or 100 points. Once the points have been

classified they are saved to a .XLS file. Once the image set has been classified, the

data are summarized by creating a statistics file. The statistics file contains a sum-

mary of how many pixels of each class in each image are classified and are referred to

as percentage cover.
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Figure 2.7: Example of one of the images classified in SamplePoint image
analysis software.

Name - key Definition
Soil - s This is both the dark (wet) and light (dry) soil
Veg - v Anything alfalfa that is not a raceme.
Buds - b This refers to a green raceme, not purple, and the entire raceme
Flower - f This refers to a purple raceme
Seed Pod - w A fresh, green seedpod.
Unknown - x Something unidentifiable because of the image quality
Other - z Misc item in the image

Table 2.1: Buttons used in the SamplePoint percentage cover classification.
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2.4.3 Random Forest Regression

In statistical modeling, regression analysis is a set of statistical processes for esti-

mating the relationships among variables. The goal in using regression analysis is

to determine which three wavelengths, or combination of wavelengths, best tracks

bloom development. The RGB imagery and hyperspectral data from Field 1, Field

2, GHS, and GHL are used in a random forest regression to determine the significant

wavelengths for tracking alfalfa bloom.

Random forest is an ensemble method for classification or regression that operates

by constructing a multitude of decision trees, using a randomly selected subset of

training samples and variables, and outputting the class that is the mean prediction

of the individual trees. Belgiu & Drgu (2016) determine that a RF classifier can

successfully handle high data dimensionality and multicolinearity, being both fast

and insensitive to overfitting. RF is thus well suited to be used with hyperspectral

data. Because only about 2/3 of the data is used in each decision tree, the remaining

1/3 are used in an internal cross-validiation technique (Breiman, 2001) that returns

variable importance in terms of increasing Mean Squared Error (MSE) and Increasing

Node Purity. The MSE is used to determine which variables are the most important.

A ”pseudo R-squared” value is returned for each regression and is used to indicate

how well the regression performed. The formula for the pseudo R2 value is R2 = 1 =

mse/V ar(y), where mse is the mean square errors, and Var(y) is the variance of the

response vector (Breiman, 2001).
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(a) Original (b) Smoothed

Figure 2.8: SamplePoint flower percentage cover for three groups in two
fields where groups in Field 1 are shown in green and groups in Field 2
are shown in blue. A) Is the original SamplePoint data. B) Same data
smoothed with an exponential weighted-average moving-window filter.

2.5 Results

2.5.1 SamplePoint

The SamplePoint analysis was done by an undergraduate in the Boise Center Aerospace

Laboratory in the Summer 2017. The SamplePoint summary values for percentage

cover vary quite a bit from day to day but show a definite overall trend where there

are no flowers until after a certain date when the flower cover estimate increases until

it levels off and eventually decreases. The percentage cover data is read into a pandas

dataframe in Python and smoothed using an exponential weighted-average moving-

window filter with a span of 5 (Figure 2.8). The smoothed percentage cover are used

as the prediction variables in the regression model.
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2.5.2 Regression

The RF regression was run in the free software R (R Core Team, 2013). The regression

was run for four of the six classes: soil, veg, bud, and flower individually. The

regression was set to run with 1000 trees, although Figure 2.9 shows that the error

converged on a result with less than 200 trees. A second iteration of the RF regression

was run with only the 40 most important wavelengths, bands, and VIs from the

previous regression, where importance is defined as the mean decrease in accuracy.

Figure 2.9: R2 values for the RF regression on percentage flower cover for
Field 2.

The accuracy of the regression at Field 1 and 2 for soil, vegetation, bud, and

flower are shown in Figure 2.10. The R2 values for each class are used as a goodness

of fit indicator, where higher R2 values mean the regression is better able to fit the

data. These results show that soil and flower are the two most distinct classes to

monitor, with soil having R2 values of 0.48 and 0.84 and flower having R2 values of

0.67 and 0.80 at Field 1 and 2, respectively. The second iteration where only the 40

most important wavelengths, bands, and VIs from the previous regression are used

improved the R2 values by 2-6% depending on the class and field. The R2 values
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for flower at GHS and GHL is 0.58 for both. The second iteration improved the R2

values by 2% resulting in an R-squared value of 0.60.

Figure 2.10: The pseudo-R2 results from the random forest regression at
both Field 1 and Field 2.

The 30 most important variables estimated by out-of-bag cross-validation (Breiman,

2001) from the RF regression on flowers for both Field 1, Field 2, GHS, and GHL

are organized by increasing Mean Square Error in descending order as shown in Fig-

ure 2.11. The vegetation indicies that are common to the top 10 between both fields

are displayed in Table 2.2.

VI Equation Bands
GNDVI (NIR - Green) / (NIR + Green) Green, NIR
FVI (Blue/Green) * (NIR/Green) Blue, Green, NIR
CVI (NIR/Green) * (Red/Green) Green, NIR
GRVI NIR / Green Green, NIR
GIPVI NIR / (NIR + Green) Green, NIR

Table 2.2: A list of the best performing VIs that are common between
both fields.

2.6 Discussion

When attempting to predict the onset of bloom at an alfalfa seed crop field, it would

be ideal to track the development of buds as these are the precursor for the emer-
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gence of flowers. However, the comparison of spectral signatures between buds and

vegetation with a spectroradiometer shows the spectral difference is not sufficient to

accurately differentiate between the two. This is further confirmed by the low R2 val-

ues for buds (Figure 2.10). While buds and vegetation could likely be differentiated

using spatial information in an object-based image classification method, this was

not pursued because it would not be possible from satellite based observations due

to the buds/vegetation being much smaller than the satellite spatial resolution. In

the following chapters, the development of flowers and our ability to monitor alfalfa

bloom using different electromagnetic wavelengths and wavelength combinations is

explored.

The analysis of the relationship between percentage flower cover and hyperspectral

data showed that it is possible to track the development of flowers using a spectral

signature with an R-squared value as high as 0.82. The results of the regression show

that many narrow band vegetation indicies provide better percentage flower estimates

than most of the individual wavelengths and bands. The top performing wavelengths

are almost exclusively under 400 nm in the ultraviolet spectral range. While this is

an interesting finding, those wavelengths would not be useful from satellite acquired

imagery due to the significant atmospheric scattering at wavelengths below 400 nm

and thus fraught with noise. The best performing VI are compared to determine

which three bands are most commonly present (Table 2.2). The most significant VI

for the highest R2 valued location is the Green Normalized Difference Vegetation

Index (GNDVI). This VI uses only two bands, Green and NIR. The best performing

VI at the other field is the Alfalfa Flower Vegetation Index (FVI), which utilizes

Blue, Green, and NIR. The field VIs are emphasized because they have the higher
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R-squared values. GNDVI and FVI both give the best results tracking at one field,

but each VI is also significant at the other field and FVI was also the second most

significant VI at both greenhouses (Figure 2.11).

2.7 Conclusions

This study demonstrates the potential of tracking the development of bloom at alfalfa

seed crop fields using only the spectral signatures and indicates that future work

is warranted. The data tested identifies Blue, Green, and NIR as the three most

significant bands for tracking the development of alfalfa seed crop flowers and provides

a basis in the sensor development for the 2018 growing season.
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(a) Field 2 (b) Field 1

(c) GHS (d) GHL

Figure 2.11: The 30 most important variables from the second iteration
of the random forest regression for A) Field 1 B) Field 2 C) GHS and D)
GHL.
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CHAPTER 3:

ACQUISITION OF NIR-GREEN-BLUE

DIGITAL IMAGERY FROM FIELD STATIONS

FOR CROP MONITORING

3.1 Summary

Near-surface remote sensing using radiometric instruments has great potential to

improve phenological monitoring because automated observations can be made at

high temporal frequency (Richardson et al., 2009). This chapter focuses on the de-

velopment of a near-surface sensor system to monitor the phenology of alfalfa as it

progresses through a flowering cycle. The sensor collects temperature, humidity, solar

irradiation, and digital images. Four sensors each with a camera that collects three

bands (blue, green, and near-infrared) are deployed at two alfalfa seed crop fields

located in southwestern Idaho during the 2018 growing season. The sensor provides

daily RAW format imagery from three meters height.

3.2 Introduction

This project explores remote sensing instrumentation built for and used at alfalfa seed

crop fields. The data collected will be used in a prediction model (Chapter 5) to pro-

vide insight about the alfalfa bloom cycle. The emergence of flowers at alfalfa fields is
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dependent on environmental factors including temperature, photoperiod, and possibly

soil moisture. Temperature is a first-order controlling variable in many crop growth

models (Hodges, 1991) and is a primary determinant of alfalfa growth and develop-

ment (Pearson & Hunt, 1972; Sharratt et al., 1989). Ben-Younes (1992) determined

that the development of alfalfa cultivars is hastened by warmer temperatures and

shows there is a strong relationship between growing degree days (GDD) and alfalfa

growth stage. Noland et al. (2018) performed a similar study using remote sensing

methods to determine when to harvest alfalfa forage crops and including GDD as

a variable increased prediction accuracy by up to 17%. The temperature-mediated

phenological development suggests that including temperature as a covariate in the

predication model should improve the estimation results and so temperature mea-

surements are collected at each field sensor to be integrated with the spectral mea-

surements. Alfalfa is a long-day plant meaning the time to flowering decreases as

the photoperiod is lengthened (Major et al., 1990). The local solar irradiance is

measured using a pyranometer to include the photoperiod response as a variable in

the prediction model. Several researchers and agronomists suggest that mild wa-

ter stress may increase plant development rate (Ottman & Putnam, 2017), however

other researchers disagree (Halim et al., 1989) and more quantitative data is needed

(Hodges, 1991). Soil moisture data is collected by the field management company

along side one field station and a soil moisture sensor may be incorporated into the

field sensor in following years. The estimation of alfalfa bloom onset should include a

spectral time-series, temperature, photoperiod, and possibly soil moisture. Targeted

wavelengths along with the other environmental variables are collected using an au-

tomated low-cost sensor; enabling the potential for a real-time management response
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to field conditions. This chapter includes details about the sensor development, the

data collection process, and the data collected.

3.3 Field-Sensor Development

The automation of near-surface image collection used to monitor plant phenology

development over time has numerous and significant advantages to manual collection

practices. First, automating the data collection process means fewer workers on the

ground and less hours spent commuting. The data can be more continuous and

offers greater consistency in both the frame of reference and timing. Moreover, this

collection approach can be incorporated into a larger work flow for near-real time

assessment of vegetation status. The sensor we develop includes a MAPIR camera

with blue, green, and NIR bands, a temperature-humidity sensor, a pyranometer, and

a USB cellular modem to send daily data to a server.

A reliable power source is used to power the electronics at the remote field loca-

tions. A 20 W solar panel with an output of 17.1 V at 1.17 A is used. The solar

panel is oriented south and connected to a compact voltage regulator. The Pololu

synchronous switching step-down regulator measures 1.8×1.8 cm and delivers a typ-

ical continuous output current of up to 2.5 A at 5 V. This regulator features reverse

voltage protection and has a maximum input voltage of 36 V, putting the solar panel

input voltage above the 90% conversion efficiency for the regulator. The 5 V output

of the regulator charges a portable USB battery bank and is connected by soldering

the wires of a male micro USB connector directly to the output terminals on the

regulator board (Figure 3.1). This provides power to the Raspberry Pi 3B (RPi),

which runs the multi-sensor system (Figure 3.2).

The RPi board has a 40-pin header (Figure 3.3) that allows for sensors to be added.
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Figure 3.1: The solar panel wires are soldered directly to the voltage reg-
ulator, which is then soldered to wires connected to a micro USB adapter.
The micro USB adapter connects to a female micro USB adapter which
goes to a male D/C adapter that plugs into the portable USB power bank.
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Figure 3.2: This diagram shows the circuit layout to charge the portable
USB battery bank and power the Raspberry Pi 3B.
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Component Cost
20 W Solar Panel $62
Pololu Voltage Regulator $8
USB Battery Bank $69
Witty Pi 2 $24
Raspberry Pi 3B $35
AM2302 T/H Sensor $15
Apogee SP-420 Pyranometer $312
MAPIR camera $410
Huawei E303 3G Wireless Modem $27
USB Y-connector $5
Electronics housing $35
32 GB Micro SD Card $12
64 GB Micro SD Card $20

Table 3.1: Breakdown of the cost of components to build this system.

The RPi controls the data acquisition and all of the peripheral sensor attachments

such as a Temperature/Humidity (T/H) sensor, a MAPIR camera, and a USB cell

modem. The controlling Python script is called via a bash script every time the RPi

boots. A Witty Pi 2 board is attached to the RPi to keep the battery bank alive (see

Section 3.3.1) and control the RPi boot sequence. The Witty Pi 2 board connects

to the RPi via the 40-pin header and provides a dummy-load to keep most battery

banks On. The Witty Pi 2 also provides a real-time clock.

3.3.1 Sensors

An AM2302 (wired DHT22) temperature-humidity sensor is connected to the RPi

via the 40-pin header with the Yellow wire – Signal (Pin 13, GPIO 27), Black wire –

Ground (Pin 6), and Red Wire – Power (Pin 2). This sensor can take measurements

every 2 seconds and is good for humidity readings between 0-100% with a 2-5%

accuracy and for temperatures ranging from -40◦ to 80◦C with ±0.5◦C accuracy.

This sensor is compact with a body size of 2.7×5.9×1.35 cm and fits under a small
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Figure 3.3: This image shows a RPi board and the 40-pin header, from
Raspberry Pi Pin Map (2017).
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cover attached to the main sensor enclosure.

In order to detect phenology changes by the spectral response of the field cam-

era images a radiometric calibration is needed. Calibration is defined as the process

of quantitatively defining the system responses to known, controlled signal inputs

(Morain & Zanoni, 2004). In this case, the system response is the incoming electro-

magnetic radiation for the field camera and the controlled signal inputs is the solar

irradiance provided by the pyranometer. An Apogee SP-420 Pyranometer is setup

above the field camera enclosure and weighed 90 g with a body size of 2.4×3.3 cm

height. It has a 180◦ field of view (FOV) with a resolution of 0.1 W/m2 and measures

a spectral range of 360-1120 nm with less than 2% long-term drift and less than 1%

non-linearity up to 1750 W/m2. This pyranometer is connected to the RPi via a USB

port.

The most important component in this multi-sensor field unit is the camera. Based

on the previous field study, the camera needs to be robust enough to leave out in a

field throughout the growing season, have consistent settings, take time-lapse imagery,

and to collect spectral data in the blue, green, and NIR bands. Because the unit is

setup a few meters above the field surface, the camera should have a low distortion,

wide-angle lens to maximize the area accurately imaged. The MAPIR Survey3W

camera meets all of these requirements. The Survey3W is a modified GitUp G3

action camera that can endure the weather conditions at an agricultural field during

the growing season when in a proper enclosure. It is easy to fit this camera into an

enclosure as it measures 5.9×4.15×3.6 cm and weighs 50 g.

The camera settings are configured by MAPIR before being sent to the customer

for optimal midday imaging and remain consistent unless changed. The Survey3W
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also offers Pulse Width Modulation (PWM) triggering via the micro HDMI port for

easy control of when to collect images. The Survey3W has a lens that provides well-

defined spectral responses and can be used at close range. The 87◦ horizontal FOV

(19 mm) Extreme Low Distortion (Non-Fisheye) Glass lens, which when mounted at

3 m height, provides an image covering an area of approximately 0.9×1.2 m with a

resolution at ground surface of ≈0.14 cm/pixel. This camera captures three narrow

spectral bands in the blue, green, and NIR regions (Figure 3.4).

Figure 3.4: The MAPIR Survey3W blue (475 nm), green (550 nm), and
NIR (850 nm) spectral responses, from MAPIR Survey3 Camera (2017).

The RPi is connected to the Survey3W camera using one USB port and two

header pins (Figure 3.5). The USB cable goes from the RPi to the camera’s mini

USB port to supply power when the RPi boots. The camera has a setting to turn

on when power is supplied and this is enabled. The MAPIR PWM trigger cable is
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three 20-gauge wires with the red wire (power) connected to Pin 19, the black wire

(ground) connected to Pin 4, and the white wire (PWM signal) connected to Pin 2

on a male micro USB adapter. These wires are connected to the RPi 40-pin header

in the following manner: the red wire is not used, the black wire is connected to Pin

34, and the white wire is connected to Pin 32, GPIO 12. The male micro USB is

plugged into the Survey3 camera and the Python library RPi.GPIO (Croston, 2012)

is used to control the PWM output.

The PWM output tells the camera to take an image and to enter Media Transfer

Mode, which allows the camera to be mounted as a drive on the RPi. Once the

camera is mounted as a new drive, the images are transferred and backed up to the

RPi micro SD card. Once the images are backed up on the RPi, the camera drive

is unmounted and media transfer mode is disabled. This is important because the

Survey3W draws 0.2 A of the total 2 A available and is setup to automatically turn off

after 3 minutes of no activity, but only after the media transfer mode is disabled will

the camera turn off. After image backup, data is transferred via a cellular modem.

The Huawei E303 3G Wireless Modem draws up to 1 A when sending data.

Because the USB ports are rated for 0.5 A, a USB Y-connector is used to supply

enough power to modem. All of these components are housed in two different en-

closures depending on which battery bank is used. The first two sensor units used

the 22,000 mAh RAVPower battery bank, which has dimensions 16.5×2×6.6 cm and

weighs 405 g. These units are housed in 16 cm diameter PVC tubing enclosure (Fig-

ure 3.6). Dividers are 3D printed and set inside the PVC tubes to keep the components

such as the battery, RPi, and camera separated. The camera lens is set up to point out

the bottom of the enclosure through a snugly fit hole, the lens is then sealed from the
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Figure 3.5: The RPi is powered by a USB battery bank and is connected
to the Survey3 camera via a USB to mini USB cable and two header pins
of a micro HDMI.
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outside with silicone sealant to help prevent water infiltration. A second enclosure is

used for the Voltaic V44 12,000 mAh battery, which is 10.4×10.7×1.9 cm and weighs

312 g because it is shorter in length but longer in width than the other battery pack

and would not fit into the PVC enclosures. This enclosure is a 0.30×0.30×0.15 m

weatherproof junction box (Figures 3.7 and 3.8). Once again the camera lens is setup

to point out the bottom of the enclosure through a snugly fit hole; the lens is then

sealed from the outside with silicone sealant to help prevent water infiltration. Four

small holes are drilled on the top to fit two U-bolts through. These are then secured

using a nut inside the box to tighten the enclosure to the outdoor structure and sealed

from the outside with silicone sealant.

Figure 3.6: The multi-sensor unit in the field. This is the unit that uses the
PVC tube enclosure. Triangular support arm and steel support cables are
visible. This support system is used to emplace all field units, regardless
of enclosure type.
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Figure 3.7: Interior of the junction box enclosure. The USB pyranometer
has extra cable that is coiled inside this enclosure.

Mounting Hardware

The structure that holds the enclosures consists of a 10 cm diameter by 3 m tall

galvanized steel fence post connected at a right angle to a 2.5 cm diameter by 1.5 m

long steel tube. The 3 m tall post serves as the base for this structure and went over a

1.83 m tall T-post that is hammered with a fence post driver into the ground. To keep

the post level, three 0.76 m T-posts are hammered into the ground at approximately

1.5 m from the post and 120◦ from each other. A steel cable is run from the smaller T-

posts to a Zinc-Plated Turnbuckle Eye/Eye, which is then connected to a Galvanized

Steel Tension Band wrapped around the fence post. The turnbuckle is used as a

tensioner to keep the steel cables tight. The smaller steel tube acted as a boom to get

the camera far enough away so the main fence post would not be in the image. This
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Figure 3.8: Exterior of the junction box enclosure. A silicone sealant
surrounds the camera lens to keep water out. The temperature/humidity
sensor is zip-tied to the bottom of the enclosure to shield it from rain and
direct sunlight, while remaining out of the image.
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is connected to the main post using a Galvanized Pipe Grip Tie and secured to the

grip tie using U-bolts. Another tension band is put on the main post a few feet below

the boom, connected to a 1.22 m steel post, which is connected to the boom using a

steel fence bracket to create a triangle support frame for the sensor unit (Figure 3.6).

Battery tests

The first rechargeable battery bank tested is a RAVPower 22,000 mAh power bank.

This bank can output 2.4 A per USB port and unlike some USB battery banks, it is

able to both output current and be charged at the same time. As with most portable

USB battery banks, it has an Auto-off feature that will turn the power supply off

when not enough current is being drawn. To counter this behavior, a Witty Pi 2 is

used to provide a dummy-load. When the system is connected as shown in Figure 3.2

and tested outdoors under normal sun conditions, only two of the four battery banks

are able to successfully remain on. The two working battery banks are used, however

the two that would not stay on are replaced by a different battery bank. The Voltaic

V44 12,000 mAh battery pack features an ”Always-on” mode and is designed to be

connected to a solar panel for time-lapse projects and outputs 2 A at 5 V. The voltaic

battery bank has a couple of down sides for this application, such as being slightly

under powered. This battery bank powers the RPi, which has a recommended 2.5 A

at 5 V power supply, but because the RPi is often well below full CPU usage the

Voltaic power output is sufficient. Another downside is that the recommended input

is 2 A at 5 V, while the voltage regulator output is 2.5 A. Moreover, the Voltaic

system requires a D/C plug to charge, so the provided charging cables are modified –

the micro USB end of the charging cable is replaced with a 5.5×2.1 mm D/C power
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in adapter. The different battery banks both perform well when test charging under

full sun conditions.

3.3.2 Power Management

Precautions are taken to minimize battery usage and ensure proper power cycling,

such as connecting a Witty Pi 2 power management board to the RPi. The RPi’s

recommended power supply is 2.5 A at 5 V, but the Voltaic battery is only able to

provide 2 A, which is thus considered our maximum possible power draw. When

idle, the RPi draws 260 mA and at full CPU usage draws 730 mA (Geerling, 2017).

The RPi also powers all of the peripheral sensor components, which each have their

own power draw. The AM2302 T/H sensor uses a max current of 2.5 mA while

taking readings. The MAPIR Survey3W camera consumes 0.2 A while turned on.

The Apogee SP-420 pyranometer has a 2.1 mA current draw when recording (Apogee

Instruments, Inc, 2018). The USB modem is the most power consuming peripheral

at upwards of 1 A when sending data. The equation below shows that the maximum

power draw remains below the maximum that the battery bank can provide. We

note that the RPi is never close to the maximum CPU usage when performing tasks

associated with the field unit, and the camera always shuts off before sending data

over the USB cellular modem.

MaxPower = 730mA+ 2.5mA+ 0.2A+ 2.5mA+ 1A

= 1.935A

Considering the above configurations, at maximum power consumption the 12,000 mAh
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battery bank will last six hours. The system needs to be powered on for long enough

to take an image, transfer it to the RPi, log the T/H and solar irradiance data, and

once a day send the data back to our server. The Witty Pi 2 power management

board ensures the system is fully shut off after a certain amount of time and that it

turns back on as defined by the programmed schedule. Overall, the system is On for

a maximum of 90 minutes a day. This means the battery pack should last 4 days

without being recharged. There is a continuous power draw even when the system is

turned Off. When completely Off the RPi draws 20-30 mA Geerling (2017); however,

with the Witty Pi 2 board installed the power draw without a dummy-load is 1 mA

and with a dummy-load is 15 mA. With the Always-on Voltaic battery pack there is

no need for the dummy-load and the 1 mA vampire consumption is negligible.

3.4 2018 Field Season Data Collection

3.4.1 Location

The sensors are setup during the 2018 growing season at two alfalfa seed crop fields

(Figure 4.1) located in Southwestern Idaho in the Nampa and Parma agricultural

region after their final cutback, which is when the entire field is cut back and then

allowed to grow for the rest of the season. The first field, referred to as Field 1, is

cutback on 1 May 2018 and the second field, referred to as Field 2, is cutback on 8 May

2018. The first sensors (1A and 2A) begin collecting data on 14 May 2018, with the

second sensors (1B and 2B) starting on 7 June 2018. The sensor naming convention is

a combination of the field number and the first deployment (A) or second deployment

(B) and their locations within each field is shown as a camera icon in Figure 3.9.
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(a) Field 1

(b) Field 2

Figure 3.9: Overview of the fields with the locations of sensors A and B
during the 2018 data collection.

3.4.2 Data Collection

For this study, the RPi is turned On and Off at seven pre-determined times through-

out the day and performed different tasks depending on the time of day. The Sur-
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vey3W is sent a PWM signal to take an image five times a day, everyday at exactly

10:00, 11:00, 12:00, 13:00, and 14:00 hours. To ensure that the sensor is working when

deployed in a distant location, a USB cell modem connection is used to send data

to a research server hosted by Boise State University. Everyday at 12:00 the Huawei

E303 3G Wireless Modem is used with a GSM cellular data plan to send the RAW

and JPG images taken at 12:00, along with the log file, the Temperature/Humidity

data file, and the solar illumination data file, back to our research server. The log

file provided information about whether the other images are successfully transferred

and stored on the RPi or if any errors during the data collection the process. Having

the system connected to the internet via a cellular data plan, even without a static

IP, allows the Python control code to be updated if/when errors are detected. The

RPi is also booted up at 15:00 hours, but instead of collecting an image, it uses the

cellular data connection to check if there is a newer version of the Python control

code on the research server. It then ensures that the 12:00 imagery, the log file, the

T/H data file, and pyranometer data file are all backed up on the research server.

Two sensor units (A and B) are deployed at each alfalfa seed crop fields (Fields 1

and 2) in southwestern Idaho during the 2018 growing season. Sensor units A used

the PVC tube enclosure and sensor units B used the junction box enclosure. The

station locations are determined mainly to keep the sensors out of the way of field

machinery and away from the field edges. Spectral ground-truth data is collected

throughout the growing season using a field spectroradiometer (ASD FieldSpec 4).

This high-resolution spectroradiometer collects data from 350 to 2500 nm with a

spectral resolution of 3 nm at 700 nm and 8 nm at 1400 to 2100 nm. This sensor

is radiometrically calibrated and the data are used for sensor validation of the field
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cameras. Data is collected with the ASD FieldSpec 4 ten times throughout the 2018

growing season. Figure 3.10 displays the data collection time-line, as well as the

pollinator release date at each field.

The final cutback, which is when the entire field is cut to a certain height and

then allowed to grow for the rest of the season, for Field 2 is on 11 May 2018. The

first sensor unit at this field began collecting data on 15 May 2018 with the second

sensor setup on 7 June 2018. The pollinators are released at this field on 17 June

2018, and a large storm hit the field on 18 June 2018. This storm is the first real test

of the sensor enclosures and causes the first sensors deployed at each field to go down,

as is shown in red on Figure 3.10. The first version of the sensor enclosures, which

uses the 16 cm diameter PVC tubing, are not water tight and let water in during the

storm. The sensor at Field 1A is re deployed a week later on 26 June 2018, but the

second sensor from Field 2A needs a replacement Witty Pi 2 board and is redeployed

in a junction box enclosure 1 July 2018. From then on, the sensors collected data

uninterrupted until the day before seed harvest on 23 August 2018.

3.5 Results

3.5.1 Field Imagery

The Field 1B sensor collected three-band imagery continuously throughout this study

and the images collected at 12:00 are used as an example for the data collected. After

the vignette correction (see Section 4.3.2) the three-band images are converted into

a single band Vegetation Index that comes from the 2016 field data analysis (see

Section 2.6). For this example we will focus on the Flower Vegetation Index (FVI)

given by equation 3.1). When the vignette correction is applied to the TIFF images
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Figure 3.10: Time-line for the data collected during the 2018 growing
season. With the pollinator release date for Field 2 shown as a vertical
orange line.

a more accurate vegetation indices can be extracted. We computed the FVI at every

pixel in the image and then computed the mean value for the image. The results from

the growing season are presented in Figure 3.11.

FV I = (
Blue

Green
) ∗ (

NIR

Green
) (3.1)

3.5.2 Temperature and Humidity

The low-cost AM2302 temperature and humidity sensor data are compared to data

collected at a nearby Davis Vantage Pro2 Plus weather station. A visual comparison

of these two sensors outputs is presented in Figure 3.12. Both the temperature and

humidity data track the continuously recorded Pro2 Plus data. This indicates that

the low-cost AM2302 can accurately record environmental data critical to alfalfa seed
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Figure 3.11: Preliminary results from Field 1B imagery. Vignette cor-
rected TIFF images are converted into a Flower Vegetation Index (FVI),
from which the mean value for each image is plotted through time over
the growing season. The pollinator release date for Field 1 is indicated by
the vertical orange line.
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crop growth and development.

3.5.3 Solar Irradiation

Solar irradiation information is collected every second for one minute before and

after the field camera takes a picture. This data is then averaged into a single data

point to represent the incoming solar irradiation at the time the image is collected. A

nearby Davis Vantage Pro2 Plus weather station collected continuous solar irradiation

data. The Davis precision pyranometer and Apogee SP-420 pyranometer comparison

is shown in Figure 3.13. We observe that the trends in the daily variations align;

however, there appears to be a constant shift between the two data sets. The different

readings between the two sensors is likely due to differences in the wavelengths they

measure – Apogee [360–1120] and Davis [400–1100] nm.

3.6 Discussion

The sensors that were enclosed in a junction box collected data during the entire

growing season while the sensors enclosed in the PVC tubing malfunctioned during

important growing days due to water damage caused by a storm. The data collection

results presented in Figure 3.11 show the FVI starting at a value of 0.72 with a

maximum value of 0.87. The goal for this sensor is to observe the FVI starting at a

low value and increase as more flowers begin to bloom, and this high starting value

is likely because the sensor was not deployed early enough in the season. We also

observe a dip in the FVI values when pollinators are released on 15 June 2018, which

could be an indicator that the alfalfa flowers have been pollinated. The FVI pattern

suggests that phenology development is captured in the spectral signatures and is a

good start for further analysis and flower development monitoring.
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Figure 3.12: Comparison of temperature (top) and humidity (bottom)
data recorded with the low-cost AM2302 compared to high-quality Davis
Vantage Pro2 Plus continuous recording weather station.
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Figure 3.13: Comparison of solar radiation data recorded with the Apogee
SP-420 pyranometer compared to high-quality Davis Vantage Pro2 Plus
continuous recording weather station.
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Recommended changes to the field sensor include a soil moisture sensor and a

small RGB camera. An important thing to consider is that while the NIR-modified

camera collects the spectral wavelengths of interest, it does not readily facilitate

manual point classification of soil, vegetation, buds, flowers, and seeds in the imagery.

Point classification is vital to performing any type of regression or quantifying how

well the imagery captures phenological development. In order to quantify the quality

of data collected during the 2018 growing season, the false color images need to be

classified into percentage cover, which will be done manually or by using a supervised

or unsupervised classification algorithm (see Chap 4). An RGB image that coincides

with the B-G-NIR image would make the classification process straightforward and

provide more accurate classification.

The Survey3W camera saves JPG images with 8 bits per channel, but can also

save RAW format images with 12 bits per channel. A RAW image file contains the

greatest amount of information, but most importantly the RAW imagery stores the

original sensor response allowing for greater control of the image quality. Analyz-

ing the original response can lead to better results (Verhoeven, 2010) when using

spectral changes over time to infer something about the area being monitored. The

downsides include a larger file size, which takes longer to save and transfer images,

larger disk space requirements, and preprocessing including converting the images

to TIFF format and applying the vignette correction. The ability to customize the

spectra collected by switching camera models, a wide non-distortion lens, and cam-

era control with a PWM signal make this camera a good choice for budget minded

near-surface studies. But for accurate analysis the vignette correction needs to be

determined by the user. This may or may not be something the user wishes to do,
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and other, more expensive cameras may offer on-board vignette corrected data or

higher bit resolution.

In a simplified process, the amount of incoming solar irradiation is directly related

to how much is reflected off of the surface and captured by the sensor. A pyranometer

is used to measure the incoming solar irradiation to perform a radiometric calibration

for the field camera images. Much of the noise in Figure 3.11 can be attributed to

changes in the incoming solar radiation when the images are collected. However, a

pyranometer is not an appropriate tool to use for this as it collected a single value for

the entire spectrum from 350 nm to 1100 nm. Ideally, this would be replaced with a

down-welling light sensor that is sensitive to each of the same bands that the camera

is collecting.

Finally, a larger than required solar panel is used because it allowed the panel to

have less than optimal output and still provide an adequate power supply. It is also

readily available from previous field work. The field sensor system has very low power

requirements and a smaller solar panel can be used to charge the battery banks. The

Voltaic V44 battery bank has a lower capacity than the other battery bank, and is

rated for a slower charge rate with a lower output; however, the Always-On feature

more than made up for these disadvantages.

The first two field sensors deployed (1A and 2A) were taken out by a storm right

as the pollinators were released on the fields. This timing was less than ideal but

they still managed to capture the majority of the bloom up period. The second set

of sensors deployed (2A and 2B) did not begin collected data until just about a week

before pollinator release. This dataset did not caputure the full bloom up period but

was able to continue collecting after the pollinators were released.
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This type of field sensor system can be used to monitor a variety of vegetation types

by simply switching the camera to collect whatever three spectral bands are required.

One limitation of this system is that it only collects three spectral bands, however

with some ingenuity or a different camera this could be overcome. A major advantage

of this low-cost system is that the base design allows for additional components to be

added as needed.

3.7 Conclusions

The four field stations were setup in time to capture the majority of the bloom up

period during the 2018 growing season. The four stations saved a total of 48.3 GB

including a total of 1079 images taken and properly saved. These images are processed

(see Chapter 4) before use in a bloom prediction model (see Chapter 5).
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CHAPTER 4:

IMAGE PROCESSING AND CLASSIFICATION

4.1 Summary

The images collected during the 2017 and 2018 growing seasons both require a vignette

correction and radiometric calibration before use in a statistical analysis. The 2017

growing season used a Micasense Rededge multispectral camera. This camera requires

a band alignment due to use below the recommended height, along with a vignette

correction and radiometric calibration.

During the 2018 growing season a MAPIR Survey3W NGB camera collects RAW+JPG

imagery. This is a single lens camera which fixed the band alignment issue from the

previous year, but the imagery still requires a vignette correction and a radiometric

calibration before use in a image classification or as a Vegetation Index (VI). The cal-

ibrated false-color images recorded by this sensor are not conducive to SamplePoint

classification and so a Support Vector Machine (SVM) supervised image classification

estimates the percentage cover of flower throughout the growing season. By perform-

ing these image processing techniques, we ensure that we have the best data possible

for statistical analysis.
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4.2 2017 Data

4.2.1 Introduction

The 2017 imagery is collected during the growing season at two alfalfa seed crop fields

from June 7th to August 10th (40 days) and 47 days of imagery at the greenhouse

from July 7th to August 23rd. The fields and greenhouse are located in Southwestern

Idaho in the Nampa and Parma agricultural region (Figure 4.1). The two fields are

imaged at 3 locations and the greenhouse has 6 cohorts with 6 plots each. A digital

RGB camera is used to collect data for SamplePoint image classification. A Micasense

Rededge multispectral camera is used to collect the spectral progression of alfalfa seed

crop progression through a floral cycle.

Figure 4.1: The fields and greenhouse locations for the 2017 data collec-
tion.

The Micasense Rededge camera (Figure 4.2) is 12.1 cm long x 6.6 cm wide x
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4.6 cm deep and weighs 150 grams (Base, 2015). It is a multispectral camera that

simultaneously captures five discrete bands. Each of the five lenses collects a different

narrow-band electromagnetic spectra including: Blue, Green, Red, Rededge (RE),

and Near-infrared (NIR) (Figure 4.3). The narrow bandwidths at specific wavelengths

collect precise and quantitative spectral information about the crop in the image.

The focal length of each lens is 5.5 mm, and the Field of View (FOV) is 47.2◦ with a

resolution of 1280 x 960 pixels. The linear dimension of a single pixels projection on

the ground is the Ground Sample Distance (GSD), a measure of the spatial resolution

of an image (Comer et al., 1998). The Micasense camera is setup at approximately

2 m height, giving a GSD of 0.14 cm/pixel. We now present the processing that we

did to prepare the Micasense imagery for classification analysys.

4.2.2 Methods

In order for the imagery to be comparable to other sensors the images are converted

into reflectance using a radiometric calibration. Calibration includes (1) converting

the 16-bit digital numbers into values of radiance with units of W/m2/sr/nm, (2)

applying a radial vignette model to correct for the fall-off in light sensitivity in pixels

further from the center of the image with the manufacturer provided values, and (3)

performing a reflectance calibration using the reflectance panel. The reflectance panel

is tested by the manufacturer to determine the reflectance across the spectrum of light

captured by the Micasense camera and should compensate for the lighting conditions

at the time of image capture by taking a picture of the panel before data collection

and then applying the reflectance conversion in post-processing.
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Figure 4.2: Micasense Rededge Imager Nomenclature shows that the RE
band is in the middle and is used for the registration of the other bands
(Base, 2015).

Image Calibration

The Micasense Rededge Image Processing workflow (Figure 4.4) is implemented us-

ing the Python programming language following the manufacturers guidelines. “The

RedEdge radiometric calibration converts the raw pixel values of an image into ab-

solute spectral radiance values. It compensates for sensor black-level, the sensitivity

of the sensor, sensor gain and exposure settings, and lens vignette effects. All the

parameters used in the model are read from the XMP metadata inside the TIFF file”

(Base, 2019). First the images are normalized to have a value between 0 and 1 by

dividing the raw pixel value by 2N where N is the bit value, so for a 16-bit TIFF

image each pixel is divided by 65536.
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Figure 4.3: Spectral response curves for the Micasense Rededge camera
(Tagle, 2017) with the color of the lines corresponding to the camera band
in the table below.

Next the vignette correction model (Figure 4.5) is applied to the normalized image

arrays (Base, 2019). The six polynomial coefficients kn and the vignette center of the

image cx and cy are read in from the metadata and applied in the following formulas:

r =
√

(x− cx)2) + (y − cx)2,

k = 1 + k0 ∗ r + k1 ∗ r2 + k2 ∗ r3 + k3 ∗ r4 + k4 ∗ r5 + k5 ∗ r6,

Icorrected(x, y) = I(x,y)
k
,

where
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r is the distance of the pixel from the vignette center in units of pixels,

(x,y) are the coordinates of the pixel being corrected,

k is the correction factor by which the raw pixel value should be divided to correct

for sensor falloff,

I(x,y) is the original intensity, and

Icorrected(x, y) is the corrected intensity.

The pixel values are then converted into radiance. First the black level value

is defined as 4600 and then normalized by dividing by 65536. The gain, the three

calibration coefficients (an), and exposure time are extracted from the metadata and

used in the following formula:

L = V (x, y) ∗ (a1
g

) ∗ ( (p−pbl)
te+(a2∗y)+(a3∗te∗y)),

V (x, y) = 1/k

where

p is the normalized raw pixel value,

pBL is the normalized black level value,

a1, a2, a3 are the radiometric calibration coefficients,

V(x, y) is the vignette polynomial function for pixel location,

te is the image exposure time,

g is the sensor gain setting,

x, y are the pixel column and row number, respectively, and

L is the spectral radiance in W/m2/sr/nm.
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Finally, the calibrated reflectance panel is used to convert the images into re-

flectance. An automatic panel detection method would not reliably detect the panel

in the image and so the values are manually extracted using a custom Python script.

The script first performs the radiometric calibration and image registration. It then

combines the RGB bands into a color image to display. The user is then able to click

in the center of the reflection panel where a box that is 80 x 80 pixels is drawn with

the mouse click as the center of the blue outline as shown in Figure 4.6. If the box

is well within the panel, close the figure window and the mean values for each band

from the boxed area are saved (Figure 4.7) and later applied to the rest of the image

set using the following transfer function:

Fi = pi
avg(Li)

,

where

Fi is the reflectance calibration factor for band i,

pi s the average reflectance of the calibrated reflectance panel for the i-th band, and

avg(Li) is the average value of the radiance for the pixels inside the panel for band i.

“This factor can be used for the i-th band to convert all radiance values to re-

flectance by simply multiplying the radiance values of any image by the factor Fi.

This same process can be applied to each of the 5 bands independently to convert

the images for each band to units of reflectance” (Base, 2017).

Image Registration

Because the multi-lens Micasense was used at 2 m height, image registration to fix

the slight offset between each band in an image is required. Image registration is
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the operation of aligning two or more images of the same scene. A Discrete Fourier

Transform based technique brings the separate images from each band into alignment.

In this method a phase correlation determines the translational movement on the

order of 1 pixel registration accuracy (Srinivasa Reddy & Chatterji, 1996; Averbuch

& Keller, 2002).

After the images are converted into radiance they are processed in a Python library

called Imgreg DFT (IRD) (Gohlke & Tyc, 2018), which uses a phase correlation to

shift one image to match the other. The initial band mismatch is shown in Figure 4.8

as an RGB composite. The Red Edge band is the template to match because it is in

the center of the other 4 bands. The IRD.translate function determines how much to

shift each image. This function is modified from the default by increasing the Hanning

window filter, which further tapers the shifted cross-power spectrum. Because the

images are all going to have a very small shift due to the fixed lens locations, this is

later hard-coded to 1/6th of the shifted cross-power spectrum smallest axis in both

directions as shown in Figure 4.9.

4.2.3 Results

The Shifted Cross-Power Spectrum shown in Figure 4.10 has a definitive peak where

the images match. The location of the maximum value determines how much to shift

the Blue image. The RGB composite after image registration is shown in Figure 4.11.

The translation function is applied to all the images in the dataset. The distri-

bution of X and Y axis shift values for the blue band compared to the RE band is

shown in Figure 4.12. Here we can see that each axis has a normal distribution of

determined shift values. The X-axis has an average shift value of 6 pixels and the Y-

axis has an average shift value of 24 pixels. This difference in the shift amount is also
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shown in Figure 4.10, where the peak is always fairly close to the X-axis and slightly

further away on the Y-axis from the center of the image. Figure 4.13 demonstrates

how the image processing techniques impacts the VI progression over the course of

the growing season at the two 2017 fields.

4.2.4 Discussion

Converting the Raw TIFF images into calibrated radiance images gives the VI time-

series a more definitive trend and corrects for variations due to environmental condi-

tions (e.g. cloudy vs. clear day). The use of a calibrated VI time-series changes the

shape of the curve into what is likely a more reproducible signal.

The results of the image registration provided a consistent method to translate

each band into better alignment with the RE image as shown by the normal distri-

bution of the histograms for the X and Y image offsets. Because the lens are fixed in

their relationship with each other, I would expect the translations to remain constant,

meaning for large datasets it may be possible to find the mean translation value after

a certain number of images. These translation values can then manually be applied

to translate each image without having to run a fast fourier transform for each band

for each image. This would greatly speed up the image processing workflow. Using

the multi-lens camera at such a low height also caused lens distortion to be prevalent

and is likely the cause for much of the uncertainty in the image registration process.

Future studies could consider using photogrammetry software to model the amount

of lens distortion present, and once the lens distortion is quantified, each band could

be further corrected before the initial alignment. Instead the image registration is

further improved upon by breaking the images up into smaller blocks and translat-

ing those blocks, keeping track of the translations and carefully recombining. The
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block registration and recombination method is successful in improving the registra-

tion results; however, it is not applied to the final VI time-series due to processing

time constraints. A visual inspection of Figure 4.13 shows that the image registration

process did not significantly alter the VI time-series progression.

The average reflection panel values varied from day to day. Whether these vari-

ations are caused entirely by solar illumination is questionable. The images of the

reflection panel are fairly consistent over the course of the growing season; however,

there are occasionally miscellaneous objects in the image, such as blue jeans or an

orange tape measure which could have influenced the reflection of the panel. Over

the course of the growing season the panel also became quite dusty and a consistent

procedure for cleaning the panel is not documented.

The reflection panel values are applied to the aligned radiance images to convert

them into values of reflectance. This should be the most reliable source of data for

the field collection campaign because it is calibrated to the current solar illumination

conditions. While some of the noise from the aligned radiance trend seems to have

been suppressed, it is apparent that using the reflection panel did not significantly

alter the VI trend. The cause of the large amount of variability in the day-to-day

reflection panel measurements remains unknown.

4.3 2018 Data

4.3.1 Introduction

The 2018 data set is collected at the same fields as in 2017 located in Southwestern

Idaho in the Nampa and Parma agricultural region (Figure 4.14). Greenhouse data

is not collected during this growing season. Each field is equipped with two MAPIR
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Survey3W BGN cameras in a custom field sensor enclosure, and RAW + JPG images

are recorded throughout the growing season as shown in Table 4.1.

Dates Images
Field1A
5/14 - 8/23 48
Field1B
6/7 - 8/23 61
Field2A
5/15 - 8/23 45
Field2B
6/7 - 8/22 77

Table 4.1: Date ranges the field cameras collected data.

Although the JPEG file format is a commonly used file format, the automatic ap-

plication of amplitude corrections such as white balance and gamma corrections, and

compression changes the spectral intensity values in an unknown manner and should

not be used for scientific applications. The RAW format images have a sensor falloff

caused by the lens that is corrected by using an anti-vignetting method. The vignette

correction is applied to all images over the growing season. A pseudo-radiometric cal-

ibration is then applied with calibration coefficient values extracted from the official

MAPIR Camera Control code. MAPIR did not comment when requested on the ori-

gin of the calibration coefficients and claimed the values for gain and offset did not

have any units, meaning any radiometric calibration done with these values will not

have units of W/m2/sr/nm.

The MAPIR Survey3W camera (Figure 4.15) is 5.9 cm long x 4.15 cm wide x 3.6

cm deep and weighs 50 grams without a battery (Camera, 2016). It is a modified

GitUP G3 action camera that has a spectral filter in front of the Sony Exmor R

IMX117 sensor to collect Blue, Green, and NIR bands (Figure 4.16). It has an extreme
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low distortion lens with a Field of View (FOV) of 87◦ and a resolution of 4000 x 3000

pixels. The ground-based cameras are positioned at approximately 3 m height giving

a GSD of 0.14 cm/pixel. The narrow bandwidths at specific wavelengths collected

precise spectral information about the crop being imaged. However, in order for this

spectral information to be useful it needs to be calibrated, which includes applying a

anti-vignetting correction (Yu, 2004) to correct for the fall-off in light sensitivity in

pixels further from the center of the image, as well as converting the 12-bit digital

numbers into values of pseudo-radiance.

The MAPIR Survey3W camera is the only camera used during this growing sea-

son; therefore, the false-color images need to provide the information to determine

the flower progression at the field as well as the VI time-series. The images after

processing remain very dark, making it difficult for an observer to tell what is in the

image. Image processing techniques are used to brighten the image and emphasize

the bloom for classification. Even with a brightened image the flowers are not always

getting classified properly in the SamplePoint photo analysis (Booth et al., 2006),

leading us to perform a supervised classification on the images. A supervised classi-

fier is chosen because we are given control over the classes of interest and the trained

classifier can be applied to any image with the same number of bands. “These classi-

fiers are able to learn the characteristics of target classes from training samples and to

identify these learned characteristics in the unclassified data” (Belgiu & Drgu, 2016).

Training classes are created using ENVI software program (Exelis Visual Information

Solutions, Boulder, Colorado) and the classification is run in the companies coding

environment, ENVI IDL, in order to automate the process of image classification as

much as possible.
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4.3.2 Methods

At the end of the growing season the cameras are collected from the fields and the

RAW + JPG images are saved directly to a desktop computer from the cameras SD

card. A curated data set is created by removing any image files that did not meet the

naming convention. The remaining RAW and JPG files are read into Python where

the metadata from the JPG image is extracted, although this step is optional as only

the information used in the file naming convention is saved. The MAPIR Camera

Control code provided the steps to unpack the RAW file where it is read into a numpy

array where the bit data are unpacked, reshaped, split into two arrays by reading in

alternating bytes, fliping every other bit, repacking as a 16-bit number, and finally

read back in from buffer as an 16-bit unsigned integer array. Once the 4000 x 3000

array is read back in, the byte data is debayered (Bayer & Rochester, 1976) using the

OpenCV library and a RG2RGB debayering algorithm. This data is then saved as a

TIFF image file. The vignette correction is then applied to this TIFF image.

Vignette Correction

Each camera has unique lens properties and the center of the lens will vary. There-

fore, each camera needs an independent correction function. In order to correct for

the sensor fall off, we imaged an evenly lit white surface where each pixel is expected

to have the same value. This is used to estimate the correction factors that we could

apply on a pixel-by-pixel basis. The second method from the (Yu, 2004) paper is used

to find a 2-D hypercosine function to fit to the correction factors. A uniform illumina-

tion source is setup in a dark room to avoid ambient light interference. The uniform

illumination comes by diffusing the light source to create soft lighting conditions. The
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light source is placed behind an umbrella diffuser which is 5 cm away from a white

nylon ripstop material. Each camera is then placed on a tripod so that the lens is

parallel with the diffusion material and level with the light source (Figure 4.17). Care

is taken to collect images that are evenly illuminated so the difference in pixel values

from the center to the edges of the image are only due to the optical vignetting of the

lens. The cameras are controlled via wi-fi and each took approximately 120 images

of this light source through the diffusion materials.

The correction factor is calculated by averaging all the images, separating this

average image into the respective spectral bands, and taking each pixel value and

dividing it by the maximum value of that band (Yu, 2004). The distribution of the

correction factors is then approximated by a single correction function in the form of a

2-D hypercosine function (Yu, 2004), and the images are multiplied by this correction

function.

Radiometric Calibration

A radiometric calibration is required to quantitatively use remotely sensed data. An

optical sensor calibration is achieved using known gain and offset coefficients to con-

vert digital numbers into at-sensor radiance (Pompilio et al., 2018). The MAPIR

Survey3W gain and offset values are found in the MAPIR Camera Control code

(Table 4.2), although they do not have the typical units of W/m2/sr/nm. The im-

ages are normalized to have values between zero and one using the global minimum

and maximum from the entire growing season, this is known as a relative radiomet-

ric normalization and is a commonly used method when processing remotely sensed

time-series images (Chen, 2018). Next each image is multiplied by 65,535 to take on
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the range of a 16-bit unsigned integer image. Once the radiometric calibration where

the gain and offset is applied to each band, the images can be used in a supervised

classification algorithm and used to study variations in the VI over time.

Slope Intercept
Red
6.96 -0.086
Green
1.89 -0.049
Blue
2.74 -0.038

Table 4.2: Radiometric coefficients used to calibrate the MAPIR Sur-
vey3W camera.

Image Brightening for classification

It is apparent when viewing the images in SamplePoint that the images are too dark

for manual classification. When the images are viewed in ENVI 5.5 the images look

bright with buds easily visible. The ENVI software automatically applies a brightness

adjustment, contrast stretch, and image sharpening. Each image is opened in ENVI

IDL and then saved as an 8-bit JPG image as it would appear on the users screen.

These brightened images are then used to create Regions of Interest (ROI) for a

supervised classification.

Image Classification

The image taken on 6/15/2018 at 1300 hours is opened in ENVI 5.5 for each field

because this is the day before pollinators are released at Field 1. These images are used

to create an ROI set with care taken to ensure the number of pixels and regions are
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similar between classes and that each class has over 500 pixels. Five classes are used

in the classification: shadow, soil, vegetation, maybe flower, and flower. The flower

class consisted of the very obvious flowers, for example where a stem is extending over

the soil and the flower shape and color are very obvious, while the maybe flower class

is comprised of less obvious flowers that are mixed in with the vegetation. This ROI

set is then used to train a SVM supervised classifier in ENVI IDL 8.7. The classifier

is trained separately on two arrays of the calibrated TIFF image plus a VI band, one

including a band for GNDVI and the other including a band for FVI. Each trained

classifier is saved to a .epo file so it could be reused and applied to other images. The

trained SVM classifier is then applied to all the images from that field station and

this is done for each field station. A comparison of the classified images for Field1B,

hour 1300 , FVI and GNDVI can be seen in Figure 4.19. The percentage cover for

each class from the classified image is calculated and then saved to a csv file, where

it is later read into Python for plotting. The percentage flower is fairly noisy so a

Savgol Filter is applied with a window size 1/3 of the length of the dataset and a

polynomial order of degree 3.

4.3.3 Results

There were 1079 images collected and properly saved at the four field stations during

the 2018 field season. All these images are pre-processed and classified in the same

manner. Each processing step has an effect on the spectral band ratios for each pixel

in the image, which in turn influenced the resulting VI. The VI progression for the

JPG, TIFF, vignette corrected, and radiometrically calibrated images from the field

stations are shown in Figure 4.20.

The radiometrically calibrated and vignette corrected TIFFs are used in a SVM



71

supervised image classification. Before classification each image has a fourth VI band

added to the image. Both GNDVI or FVI are used with a classification run for each

VI separately. The classification images are broken down into percentage cover for

the five classes that are classified. However, based on the ROI Separability measure-

ment (Richards & Jia, 2006) the maybe flower and flower class has low separability

(Table 4.3), indicating that they are at least similar in their spectral ratios and poten-

tially all flowers. Because of this, the maybe flower and flower classes are combined

into a total flower class with the minimum total flower value subtracted. The result-

ing percentage cover for flower is shown in Figure 4.21. The maybe flower and flower

class also has the lowest user and producer accuracy results (Table 4.4) because the

two classes are often confused with each other.

Classes Field1A Field1B Field2A Field2B
Maybe Flower and Flower 0.16 1.09 0.83 0.16
Vegetation and MaybeFlower 1.32 1.56 1.76 1.69
Flower and Vegetation 1.39 1.81 1.64 1.91
Flower and Soil 1.63 1.99 1.97 1.91
MaybeFlower and Soil 1.75 1.99 1.99 1.91
Vegetation and Soil 1.95 1.99 1.99 1.99
Shadow and Soil 1.97 1.91 1.99 1.99
Shadow and MaybeFlower 1.99 1.99 1.99 1.99
Shadow and Flower 1.99 2.00 1.98 2.00
Shadow and Vegetation 1.99 1.99 1.92 1.99

Table 4.3: ROI separability for each class at every field. Any value above
1.9 is considered reliable separability between classes with a maximum
value of 2 (Jeffreys, 1946).

4.3.4 Discussion

The 2018 MapIR Survey3W images are used to get both the VI time-series progression

as well as the percentage cover. The vignette correction and radiometric calibration
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Field1A Shadow Flower Veg maybe Flower Soil
FVI
Producer accuracy: 1.00 0.88 0.95 0.77 1.00
User accuracy: 0.99 0.77 0.92 0.70 1.00000
GNDVI
Producer accuracy: 1.00 0.87 0.98 0.83 1.00
User accuracy: 0.99 0.74 0.94 0.79 1.00
Field1B Shadow Flower Veg maybe Flower Soil
FVI
Producer accuracy: 1.00 0.89 0.97 0.83 1.00
User accuracy: 1.00 0.87 0.95 0.89 0.99
GNDVI
Producer accuracy: 1.00 0.88 0.95 0.77 1.00
User accuracy: 1.00 0.83 0.95 0.83 0.99
Field2A Shadow Flower Veg maybe Flower Soil
FVI
Producer accuracy: 1.00 0.79 0.98 0.83 0.98
User accuracy: 1.00 0.81 0.89 0.89 0.99
GNDVI
Producer accuracy: 0.99 0.73 1.00 0.90 0.95
User accuracy: 1.00 0.88 0.90 0.74 1.00
Field2B Shadow Flower Veg maybe Flower Soil
FVI
Producer accuracy: 1.00 0.36 0.99 0.75 1.00
User accuracy: 1.00 0.57 0.99 0.56 1.00
GNDVI
Producer accuracy: 1.00 0.50 0.99 0.84 1.00
User accuracy: 1.00 0.77 0.99 0.56 1.00

Table 4.4: User and Producer accuracy for each class at every field. A
perfect classification accuracy score is 1.
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to get the images ready to use in a VI time-series and classification were successful.

The a 2-D hyperbolic cosine function is fit to the correction factors for the vignette

correction. This has improved results compared to directly applying the correction

factors because the imaged screen has dust speckles that made certain pixels darker

than expected. The function is an appropriate estimation of the sensor fall off and

worked even with the noise from the data collection process.

The VI time-series is created for every field (Figure 4.20) for each image file type

and for two Vegetation Indicies, FVI and GNDVI. When looking at a single field and

VI, the curves from one image type to the next all have different values; however, they

tend to have the same shape, with the JPG images being the noisiest. The curves

between TIFF, vignette corrected images, and radiance images all maintain the same

shape. The radiance images could be further calibrated by using a grey calibration

card located within each image. While this wouldn’t be a reflectance calibration this

card could be used to normalize the images from day to day and would account for

variations in pixel values due to differences in solar illumination. The grey cards

used in this study quickly became unusable due to physical weathering of the card.

Using a shielded grey card for normalization would likely decrease the noise in the VI

time-series. When comparing the different VI time-series progression for a single field

the curves all have a similar shape as the equivalent image type. The VI progression

for the same image type between different fields shows not only very similar trends

in the curve, but also values that are very close in magnitude. This is a promising

result indicating the sensors are collecting a similar signature, and that the differences

should be mostly caused by differences in location. The time-series progression for

each VI are very similar in shape; however, the values differ because the GNDVI is
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normalized whereas the FVI is not.

Using a SVM supervised classification method has good results in terms of the

user and producer accuracy. A visual inspection of the classification images also

shows reasonable results with the metal post often being misclassified as either soil or

flower. The similarity in spectral signatures between maybe flower and flower gave

the lowest lowest ROI separability score and user/producer classification accuracy

at every field station. This is expected and demonstrates that the ROIs used as

maybe flower are often actual flowers. To get the total flower percentage cover, the

maybe flower and flower class are combined, and the minimum % flower value for

each station is subtracted. The subtraction of the minimum value of total flower

from the % flower cover variable essentially removes the metal post from the % flower

cover. While the SVM classification seemed to perform well, it estimated an earlier

bloom up period than in previous years as estimated by SamplePoint classification

(Chapter 5). The difference in percentage flower cover estimates made the 2018 data

set incompatible with the time-series from the other years. In order to make the 2018

data set comparable an RGB camera needs to be included in the sensor to allow for

accurate ground truthing.

4.4 Conclusions

The image processing techniques used for each of the cameras is successful in providing

greater accuracy for the VI time-series analysis. There is a definitive trend in both the

2017 and 2018 VI time-series. The SVM classification performed well on the MAPIR

Survey3W camera imagery to obtain a percentage flower cover value.
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Figure 4.4: Micasense Rededge image processing steps. All steps except
those in red are implemented in Python.
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Figure 4.5: Vignette correction model where the left image shows how far
from the center (cx, cy) each pixel is, and the right image shows the value
the original pixel is divided by.
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Figure 4.6: This is an example of the Python script output used to col-
lect the reflectance panel values. The Micasense Rededge bands are first
calibrated and then aligned. The combined RGB image is displayed for
a user to manually draw a rectangle (blue box) within the boundaries of
the reflection panel. The average value for each band is then saved and
applied to the images of the dataset.
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(a) Field 1 Reflection Panel Values

(b) Field 2 Reflection Panel Values

Figure 4.7: Reflection panel values extracted using a custom Python script
from over the course of the growing season for fields 1 and 2.
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Figure 4.8: Original RGB composite image from the Micasense Rededge
multispectral camera. Misaligned pixels are evidenced as blue, green, and
red striping
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(a) Modified Hanning Window (b) Hard-coded smaller shift

Figure 4.9: Shifted cross-power spectrum for two of the Micasense Red-
edge camera bands RE and Blue. (a) Is the original modified Hanning
Window. (b) Same data but with a hard-coded 1/6th maximum transla-
tion. While colors mean nothing without a scale, please excuse the lack of
a color bar for now and it will be included later.
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Figure 4.10: Zoomed in view of the shifted cross-power spectrum for two
of the Micasense Rededge camera bands, RE and Blue. The center of the
images is at pixel (640,480). While colors mean nothing without a scale,
please excuse the lack of a color bar for now and it will be included later.
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Figure 4.11: RGB composite image from the Micasense Rededge after
image registration. Note the striping is now gone in most of the image
and flowers are visible. Misalignment still exists in some areas (e.g. upper
left corner).
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(a) Band 1 X-Axis offsets (b) Band 1 Y-Axis offsets

(c) Band 2 X-Axis offsets (d) Band 2 Y-Axis offsets

(e) Band 3 X-Axis offsets (f) Band 3 Y-Axis offsets

Figure 4.12: Histograms for the image translation results.
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(a) Field 1 FVI

(b) Field 1 GNDVI

Figure 4.13: Field 1 field VI progression after each of the processing
steps is applied. The panels should be read top to bottom and left to

right to see the progression of the image processing steps.
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(c) Field 2 FVI

(d) Field 2 GNDVI

Figure 4.13: Field 2 field VI progression after each of the processing
steps is applied. The panels should be read top to bottom and left to

right to see the progression of the image processing steps.
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Figure 4.14: The fields locations for the 2018 data collection.
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Figure 4.15: MAPIR Survey3W used in this experiment.
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Figure 4.16: Spectral response for the MAPIR Survey3W.
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Figure 4.17: Setup for the vignette correction data collection.
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Figure 4.18: Example of the vignette correction to the NIR channel at
12:00 on 11 June 2018: original NIR image (left); vignette NIR correction
function (middle); corrected NIR image (right).
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(a) Field1B 6/15/2018 1300 FVI Classification

(b) Field1B 6/15/2018 1300 GNDVI Classification

Figure 4.19: Examples of the resulting classified images from the SVM
trained classifier.
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(a) 2018 Field1A FVI

(b) 2018 Field1A GNDVI

Figure 4.20: Comparison between the two VI used in the image
classification for Field1A. The panels should be read top to bottom and

left to right to see the progression of the image processing steps.
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(c) 2018 Field1B FVI

(d) 2018 Field1B GNDVI

Figure 4.20: Comparison between the two VI used in the image
classification for Field1B. The panels should be read top to bottom and

left to right to see the progression of the image processing steps.



93

(e) 2018 Field2A FVI

(f) 2018 Field2A GNDVI

Figure 4.20: Comparison between the two VI used in the image
classification for Field2A. The panels should be read top to bottom and

left to right to see the progression of the image processing steps.



94

(g) 2018 Field2B FVI

(h) 2018 Field2B GNDVI

Figure 4.20: Comparison between the two VI used in the image
classification for Field2B. The panels should be read top to bottom and

left to right to see the progression of the image processing steps.
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(a) FVI Percentage Cover

(b) GNDVI Percentage Cover

Figure 4.21: All stations from the two fields are classified using a trained
SVM classifier. The percentage cover is extracted from each classifcation
image and smoothed using a Savgol Filter with a window size 1/3 of the

length of the dataset and a polynomial order of degree 3.
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CHAPTER 5:

PARTICLE FILTER MODELING TO PREDICT

ALFALFA SEED CROP FLOWER

PERCENTAGE USING VI TIME SERIES

5.1 Summary

In this chapter, a particle filter modeling approach is used to estimate and predict

values for percentage flower cover (PFC) based on observation data. This approach

uses GNDVI observation values to update a process model estimates for PFC and to

predict future PFC values. A subset of the data discussed in the previous chapters is

used to create process and observation models for the expected growth of alfalfa seed

crops. These models, along with the observation data from each field is input into a

particle filter (PF). The results of the PF, using data from the final cutback through

peak bloom conditions show the potential to achieve a highly accurate estimation

with R2 as high as 0.95. The particle filter is also used to predict the PFC out to 20

days using only the first 10 observations, with R2 values as high as 0.92. Testing the

PF on an accelerated dataset that the process model would not be able to accurately

predict resulted in an R2 value as high as 0.96. This procedure is robust enough to

be used with noisy observations and can be expanded to include other observation
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measurements (e.g. temperature, soil moisture, growing degree days, etc.). The

results from this analysis demonstrate a proof of concept for the estimation and

prediction of PFC at alfalfa seed crop fields using remote sensing observations and

state-space modeling.

5.2 Introduction

Knowing the percentage flower cover of an alfalfa seed crop field can be used to predict

when optimal bloom conditions will occur and thus when to release the pollinators.

Therefore, the ability to predict phenology in this way would be a very powerful preci-

sion agriculture tool. A state-space approach is used to model the bloom progression

at alfalfa seed crop fields. In order to analyze and make inferences about this system,

at least two models are required: a model describing the evolution of the state with

time (the process model) and a model relating the (noisy) observation measurements

to the state (the observation model) (Arulampalam et al., 2002). The process and

observation models we create in this chapter come from the 2016 (Chapter 2), 2017

(Chapter 4), and 2018 (Chapter 4) data.

In order to predict PFC, a realistic model of the bloom development must be

established. The validation data (i.e. ground truth data) for bloom development is

derived from the high-resolution digital images taken at two alfalfa seed crop fields

during the 2016, 2017, and 2018 growing seasons. An estimate of PFC comes from

SamplePoint image analysis done on these high-resolution images (Chapter 2, 4). We

approximate the trend in PCF over time using a logistic equation (Equation 5.1),

which is then transformed into a state-space representation and discretized to a for-

mula referred to as the process model. This non-linear equation is suitable for many

biologic systems and is chosen as the process model for several reasons:
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• the model has a ’S’ or sigmoidal shape that fits the expected bloom behavior,

such as starting at zero percent flower cover until a certain date where bloom

begins, until the plant is in full bloom where the percentage flower cover levels

off,

• the model parameters have a straightforward interpretation, including a lower

asymptote representing the starting percentage cover, an upper asymptote rep-

resenting the typical maximum percentage cover, an inflection point represent-

ing how many days after cutback the field begins to flower, and a scaling factor

related to the steepness of the curve at the inflection point (Drummond, 2017;

Tong & Vendettuoli, 2017),

• the model is a simple representation of how the field is expected to behave,

and the percentage flower estimate can be updated from field measurements

(observations), and

• the PFC estimate is an indirect counting method that includes (process) error,

such as flowers hidden from the camera beneath a leaf, that can be accounted

for using a Bayesian model fit.

Incorporating field observations obtained from remote sensing technologies pro-

vides extra information to gain more accurate estimates of the PFC than the process

model can provide. Observation data from the 2016 and 2017 growing seasons are

transformed into a vegetation index (VI), as detailed in Chapter 2, and compared to

the PFC estimates, which is referred to as the observation model. A Michaelis-Menten

function (Eqn 5.4) is used to fit the observation data because it is characterized by a

steep rise that gradually flattens into a plateau. There are only two parameters to be
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fit in this function, V m and K, where Vm is the maximum rate of VI change per PFC

and K is the PFC value where the rate of change is equal to V m/2. The observation

and process models are then input into a state-space model.

The state-space representation, also known as the “time-domain approach”, is a

mathematical model of a physical system as a set of input, output, and state vari-

ables. While state-space modeling has not been widely applied to remote-sensing

data, crop monitoring is an appropriate application because agricultural crops are

typically systems that evolve over time. While this is not entirely true for alfalfa’s

indeterminate growth pattern, the crop does generally go through various phenolog-

ical stages and the use of growing degree days (GDD) has successfully been used

to estimate alfalfa phenology development (Ben-Younes, 1992; Munk, 1999), where

GDD is a measure of the amount of heat needed for the plants to grow and develop

(Munk, 1999). While many statistical methods have used remote sensing data to esti-

mate different phenological states (Sakamoto et al., 2005; Fan et al., 2015; Wu et al.,

2014), such as greenup, maturity, and senescence, these methods typically require the

complete time-series to obtain estimates for the dates and stages (White & Nemani,

2006). A Kalman filter can be used for a real-time solution to estimate the state

(Vicente-Guijalba et al., 2015), but is limited to linear systems. De Bernardis et al.

(2014) demonstrate that a particle filter is a more reliable method to infer phenologi-

cal stages compared to a Kalman filter. In this study a PF, also known as a sequential

Monte Carlo approach, is used to combine the process and observation models to pro-

vide a single state estimate. The PF is a nonlinear recursive Bayesian filter where

the posterior probability density function (pdf) is represented by a set of particles.

The particles represent tentative states in the process model and concentrate around
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the most probable state (De Bernardis et al., 2016a). If the number of particles is

sufficiently large then the particle distribution approximates the true posterior pdf

(Arulampalam et al., 2002). When observation data is available, the pdf given by

the model is combined with the pdf of the observation to estimate the most likely

state (De Bernardis et al., 2014). In this chapter, the potential for a near-real time

estimate of percentage bloom, in which observation data is combined with a process

model is tested using a particle filter.

5.3 Methods

5.3.1 Process Model

The process model is a sigmoid function

x(t) = A+
B

1 + e−r∗(t−t0)
, (5.1)

where t is time measured in days after cutback, x(t) is the bloom percentage at time

t, A is the lower asymptote, A + B is the upper asymptote, t0 is the position of the

inflection point, and r is the scaling factor for the logistic curve. We fit this model to

the PFC data to estimate the coefficients and create the process model; however, we

need to be careful we use high-quality data when creating this model so that we are

able to make accurate predictions with the PF. The state-space formulation (Eq 5.2)

is obtained by taking the derivatives of Equation 5.1.

x =
r

B
∗ (x(t)− A) ∗ (B − x(t) + A), (5.2)
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The state-space formulation is then discretized to get a computational solution given

by Equation 5.3.

xk+1 = xk + r ∗∆t ∗ (xk − A) ∗ (B − xk + A)

B
, (5.3)

where k has integer values, tk = k ∗ ∆t, xk is the bloom percentage at time tk, and

xk+1 is the next bloom percentage value.

Data Selection

When comparing the 2016, 2017, and 2018 data for PFC over time as shown in

Figure 5.1, it is apparent that the SVM classification of the 2018 data is significantly

different than the SamplePoint estimates from 2016 and 2017. The 2018 data set is not

used in this initial analysis because based on seed production agronomists expertise,

the 2018 environmental conditions should have caused a later bloom up period than

in 2017, while the SVM classification of the 2018 data has an earlier bloom up. The

2016 PFC estimates, shown in green in Figure 5.1, also have an earlier bloom up

period than the 2017 data. This is likely because the greenhouse experiments, which

constitute 9 of the 12 plots monitored during the 2016 growing season, are planted

much later in the season. The late cutback dates make for warmer growing conditions

and likely faster growth. While the change in growth rate should also be captured

by the observation measurements, the sensor used in 2016 had significantly different

responses, as discussed in Section 5.3.2, than in 2017.

The logistic model is used to fit 2017 PFC data from Field 1 and Field 2 because

these are the data we have the most confidence in given what we know from agronomy

and how alfalfa plants normally grow. The PFC data are smoothed using a Savgol
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Figure 5.1: Percentage flower cover with time from the 2016 (green lines),
2017 (red lines), and 2018 (blue lines) growing seasons. The 2016 and
2017 PFC estimates come from SamplePoint image analysis, while the
2018 PFC estimates are from the SVM classification (Chapter 4).

filter with polynomial order of 3 and a window 1/3rd the length of the data collected

at each site. The data is processed to include an integer value for days after cutback

that is calculated for each field using the date minus the date of cutback, plus 1. In

order to properly fit a sigmoidal function, the fall off in PFC (e.g. decreasing PFC

days in Figure 5.1) is not included by truncating the data on July 5th, which is four

weeks after the pollinators are released and is before the PFC fall off for most field

sites monitored (Figure 5.2).
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Model Fitting

Equation 5.1 is fit using a multi-level Bayesian model from the R package BRMS

(Brkner, 2018). Before fitting the model using BRMS, a nonlinear least-squares es-

timate of the parameters A, B, t0, and r were obtained using the R package NPLR.

These estimates provide the starting range for the priors to be used in the BRMS

function where the r parameter is also defined to have a minimum value of zero. Three

mixed effect models are run in BRMS to find the best fit for the four parameters.

The first model uses a no-pooling approach, where all of the fields and locations are

grouped together. The second model includes a group-level effect that differentiates

between the two fields, using a parameter called par1 ; in this case each field is given

a unique identifier. The inits parameter for the second model is set to zero instead

of generating random initial values to minimize any divergent transitions after the

warmup period as suggested in the BRMS documentation. The third model includes

a group-level effect that differentiates between each field site using a parameter called

par2, where each site is given a unique identifier. The models are run with eight

chains and 2000 iterations with a warm-up period set to 1000. The convergence

of the Bayesian model fit is supported by the Gelman-Rubin diagnostic term (Gel-

man & Rubin, 1992) and a visual inspection of chain mixing. After model fitting,

the predictive accuracy is compared using a Bayesian leave-one-out cross-validation

method, where the out-of-sample predictive fit is given by the expected log point-wise

predictive density (elpd) (Vehtari et al., 2017). The larger the elpd, the better the

out-of-sample predictive performance of the model. The best-fit model parameters

are extracted and used as the prediction function in the particle filter algorithm.
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Figure 5.2: Percentage flower cover with time at two alfalfa seed crop fields
during the 2017 growing season.

5.3.2 Observation Model

The VI over PFC data are used to fit the Michaelis-Menten function (Michaelis et al.,

1913):

V I = Vm ∗ flower/(K + flower), (5.4)

where V I is the vegetation index value, Vm is the maximum rate of increase, K is the

PFC at which the growth rate is half the maximum (Vm/2), and flower is the PFC

estimate. As with the process model, we need to first determine which data to use to

estimate the parameters in this observation model so that the particle filter provides

accurate predictions.
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Data Selection

GNDVI over time is shown in Figure 5.3 for the reader to get a feel for how the

observation measurements progressed throughout the 2016, 2017, and 2018 growing

seasons. The measurements from each year are taken with a different sensor and are

processed at various levels of calibration. The 2016 data, shown in green, is taken

from the ASD handheld 2 spectroradiometer from approximately 1.5 m height and

are processed to absolute reflectance (Chapter 2). The 2017 data, shown in red, are

collected with a Micasense Rededge multi-spectral camera from approximately 2 m

height and are processed to units of radiance (Chapter 4). The 2018 data, shown in

blue, are collected with a MapIR Survey3 camera from approximately 2 meters height

and are processed to have units of pseudo-radiance (Chapter 4). The purple lines are

from the Sentinel-2 satellite imagery, calibrated to top of atmosphere reflectance,

taken during the 2017 and 2018 growing season and are shown for visual comparison.

The difference between years is significant and likely a result of the sensors, their

optical field of view, and the imaging height as opposed to actual field conditions.

These different data collection methods complicate the observation model, so instead

one type of data is selected.

Figure 5.4 shows the VI observation data as a function of PFC, with data from the

2016 (green lines), 2017 (red lines), and 2018 (blue lines) growing seasons shown. The

2017 data are used in the observation model. The 2018 observations are not used due

to the uncertainty in the ground validation estimates as explained in the previous

section. The 2016 data are also not used because they do not show a definitive

relationship between the VI value and the PFC estimate. The 2017 model shows a

rapid increase in GNDVI values as bloom begins and then levels off around 4% flower
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Figure 5.3: GNDVI values over days after cutback from all the locations
sampled during this study. Each data set is collected using a different sen-
sor, which likely explains the variations between years. As in the process
model example, the 2016 data are shown as green lines, 2017 data as red
lines, and the 2018 data as green lines.

cover. This is better shown in Figure 5.5, where the 2017 data is split up by field and

both GNDVI and FVI values are compared. Based on these images the observation

model is fit to the GNDVI values, because the values from different locations have

less variation.

Vegetation Index Check

We check to make sure the most suitable vegetation index is being used for the

observation model. The random forest regression (RFR), as described in Chapter 2,

is performed on the 2017 data using the multi-spectral images instead of the 2016
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Figure 5.4: GNDVI values over PFC estimates from all the locations sam-
pled during this study. Each data set is collected using a different sensor,
which likely explains the variations between years. As in the process model
example, the 2016 data are shown as green lines, 2017 data as red lines,
and the 2018 data as green lines.

hyperspectral data. The multi-spectral bands are first transformed into the same VI

used in the initial regression as listed in Appendix A. The individual bands and VI are

used as the response variables in the regression. The analysis returned a “pseudo R-

squared” value, indicating how well the regression performed, of 0.82. This means the

RFR performed on the multi-spectral data did nearly as well as the best performing

RFR on the 2016 hyperspectral data. The mean-squared error (MSE) is used to

determine which variables are the most important. The 30 most important variables

estimated by out-of-bag cross-validation (Breiman, 2001) from the RFR on PFC for

both Field 1 and Field 2 using all three locations at each field is shown in Figure 5.6.
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(a) GNDVI over percent flower

(b) FVI over percent flower

Figure 5.5: Vegetation Index values over percentage flower from two fields
during the 2017 growing season.
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These results indicate that FVI and GNDVI are both in the top 5 predictors for PFC

and are appropriate to use as the observation model.

Model Fitting

The 2017 GNDVI over PFC from Field 1 and Field 2 are used to fit the Michaelis-

Menten function in Equation 5.4. This non-linear function is fit using a multilevel

Bayesian model using the R package BRMS (Brkner, 2018). Before fitting the model

using BRMS, a nonlinear least-squares estimate of the parameters were obtained using

the R package NLS, these estimates provide the starting range for the priors for Vm

and K to be used in the BRMS function. Three mixed effect models are run in BRMS

to find the best-fit parameters. The first model uses a no-pooling approach where

all of the fields and locations are grouped together. The second model includes a

group-level effect that differentiates between the two fields, using a parameter called

par1, where each field is given a unique identifier. The third model includes a group-

level effect that differentiates between each field site using a parameter called par2,

where each site is given a unique identifier. The inits parameter for the third model

is set to zero instead of generating random initial values to minimize any divergent

transitions after the warmup period as suggested in the BRMS documentation. The

models are run with eight chains and 2000 iterations with a warm-up period set to

1000. The convergence of the Bayesian model fit is supported by the Gelman-Rubin

diagnostic term (R-hat) and a visual inspection of chain mixing. After model fitting,

the predictive accuracy is compared using a Bayesian leave-one-out cross-validation

method where the out-of-sample predictive fit is given by the (elpd) (Vehtari et al.,

2017). The best-fit model parameters are then extracted and used as the observation
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Figure 5.6: The 30 most important variables from the random forest re-
gression on all 2017 data.
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model in the particle filter algorithm.

5.3.3 Particle Filter

The PF is implemented in the free software R (R Core Team, 2013) as described in

Crassidis & Junkins (2012) book Optimal estimation of dynamic systems. The PF is

initiated with four components known as initial state estimates: the error covariance

of the initial state estimate, the measurement noise, and the process noise. We set

the initial state estimate to zero, the error of this initial state to 0.2, the residual

standard deviation, σ, from the observation model as the measurement noise, and

the residual standard deviation, σ, from the process model as the process noise.

The PF is implemented to run with 1000 particles and passed the process model,

observation model, and a vector with the observations, GNDVI values in this case.

The observation vector is padded with NaN values to make the length of the vector

represent days after cutback. The PF is then able to reconstruct the PFC curve using

the observation values and the expected values from the process model. The model

fits are evaluated using an R2 value that compares the true PFC to the estimated

PFC and RMSE that measures the differences in percent flower between the true

PFC and estimated PFC. Next, the predictive capabilities of the PF are tested. This

is done by running the PF model over only the first 10 observations and then calling

the PF forecast method to make predictions for the remainder of the data collection

period. The forecast uses the last observation to estimate the next state, and the

state estimate from that measurement is also included in the forecasted percentage

flower cover values. Finally, the model is tested on a simulation of a faster than

expected crop growth where the fields percentage flower cover is accelerated by 20%.

In this case, the process model will not follow the changes and the bloom percentage
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estimates need to be compensated by the observations.

5.4 Results

Model Fitting

All of six of the Bayesian models successfully converged with R-hat values of 1 and the

chains show visual evidence of mixing. The leave-one-out cross-validation technique

used for model comparisons returns both an elpd and the standard error of differ-

ence as shown in Table 5.1 for the process models and Table 5.2 for the observation

models. These models are arranged in descending order according to the expected

out-of-sample predictive accuracy, where the best model (highest elpd) is shown with

a value of 0.0 and the other values are relative to that model. The third process

model performs the best with an estimated difference in elpd of -169.0 and -189.7

with a standard error of 13.4 and 14.2, respectively. The third observation model also

performs the best with an estimated difference in elpd of -13.8 and -24.5 with a stan-

dard error (se) of 6.1 and 8.3, respectively. In both model validations, the difference

in elpd is greater than twice the estimated standard error, indicating that the third

process and observation models are expected to have significantly better predictive

performance than the other two models (Vehtari et al., 2017). The best performing

process model and observation model fit and their 95% confidence interval are shown

in Figure 5.7 to provide a visual display of how well the regression performed. A

summary of the variable fits for the process and observation models are presented in

Table 5.3 and Table 5.4, respectively. The confidence intervals are used to determine

how much variability there can be for each parameter.
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Model comparisons elpd diff se diff
ProcessModel3 0.0 0.0
ProcessModelI2 -169.0 13.4
ProcessModel -189.7 14.2

Table 5.1: Leave-one-out cross-validation model comparison of the three
process models.

Model comparisons elpd diff se diff
ObservationModel3 0.0 0.0
ObservationModelI2 -13.8 6.1
ObservationModel -24.5 8.3

Table 5.2: Leave-one-out cross-validation model comparison of the three
observation models.

Estimate Est.Error L-95% CI U-95% CI Eff.Sample Rhat
A Intercept 0.11 0.06 0.00 0.24 741 1.00
B Intercept 6.25 0.75 4.76 7.73 357 1.00
t0 Intercept 45.95 1.94 42.32 50.0 281 1.00
σ Intercept 0.22 0.02 0.22 0.29 634 1.00

Table 5.3: Summary of the variable estimates for the process model.

Estimate Est.Error L-95% CI U-95% CI Eff.Sample Rhat
K Intercept 0.24 0.09 0.04 0.43 110 1.02
Vm Intercept 0.78 0.02 0.75 0.82 262 1.00

Table 5.4: Summary of the variable estimates for the observation model.
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State Estimate Forecasted Estimates
Field-Site R2 RMSE R2 RMSE

F1-S1 0.903 0.67 0.626 1.227
F1-S2 0.923 0.59 0.807 1.0
F1-S3 0.951 1.3 0.898 1.5
F1-S1 0.937 1.1 0.92 1.6
F2-S2 0.761 0.86 0.788 0.66
F2-S3 0.922 1.4 0.809 1.72

Table 5.5: Summary of the R-squared and RMSE values for the estimated
states and the predicted states.

Particle Filter

The particle filter reconstruction of the time-series using the process model and the

full set of GNDVI observations from each individual field location sampled from the

2017 data had R2 values ranging from 0.761 to 0.951, with a root mean square error

(RMSE) ranging from 0.59 to 1.4 PFC. The results from the model fitting for each

field location are given in Table 5.5 and shown in Figure 5.8 where the true PFC is

shown in gray and the PF estimated PFC is shown in blue.

The results from using the PF to predict PFC are shown in Figure 5.8, where

the model reconstruction using only a subset of the data is shown in green, and

the forecasted percentage flower cover values are shown in orange. The forecasted

(predicted) R2 values range from 0.626 to 0.92, with RMSE values ranging from 0.66

to 1.72 percent flower over the forecasted range.

The results from using the PF model to predict the accelerated dataset are shown

in Figure 5.9. The predicted R2 values range from 0.131 to 0.961, with RMSE values

ranging from 0.72 to 2.6 percent (Table 5.6).
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Accelerated State Estimate
Field-Site R2 RMSE

F1-S1 0.918 0.98
F1-S2 0.921 1.0
F1-S3 0.961 0.75
F1-S1 0.89 1.0
F2-S2 0.574 0.72
F2-S3 0.131 2.6

Table 5.6: Summary of the R-squared and RMSE values for the predicted
states of an accelerated dataset.

5.5 Discussion

One of the advantages of using a Bayesian statistical method to estimate model fit

is that we can do multi-level data fitting and get group-level estimates. The process

model results show that accounting for site specific variability significantly improves

our model fit as shown by a much larger elpd diff than se diff. The method used

to find the best-fit process model can easily be expanded to work for more complex

multi-level and multi-variate models. The current model estimates could further

be improved by combining both the process and observation models into the same

model, which would properly propagate estimates of the parameters between the

models. The incorporation of control variables in the process model, such as growing

degree days, has the potential to further improve the prediction step because it is

an influential variable for alfalfa growth and development (Ben-Younes, 1992). The

process model may also benefit from fitting a different function, such as one that

is also able to track the fall-off in percentage flower cover. The variations in bloom

onset timing from field to field can be caused by different alfalfa varieties, management

practices, and environmental conditions. The variation due to crop variety can be
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accounted for by collecting more ground validation data and fitting the cultivars as

another parameter in the multi-level process model. The field-level variations, such

as management practices and environmental conditions, can also be accounted for by

adding new measurements into the observation model.

The observation model has a very quick initial rise in VI value as bloom up begins,

but the VI value reaches a maximum around 4% flower cover. A VI that has a unique

value throughout the bloom percentage range would be more ideal for an observation

model. A surprising result of the RFR done on the 2017 data is that the Red Edge

(RE) band is the most significant predictor. This band was not included in the 2016

regression (Chapter 2) because the Sentinel-2 satellite does not collect that band at a

10 m spatial resolution. Accordingly, none of the vegetation indices tested include the

RE band. A band combination that is more sensitive to flowers could be determined

using a RFR by including VIs with the RE band.

The Sentinel-2 data was not used in the model fitting because there were only 2

days of data collection during the 2017 growing season that coincided with satellite

imagery and due to a lack of ground validation during the 2018 growing season. The

satellite imagery provides us with a VI value over the entire field, however ground

validation points for percentage flower cover are needed to relate the VI value to PFC.

The PF did a good job of estimating the PFC using the process model and GNDVI

observations. However, the results of the PF prediction for most fields was not yet

sufficiently accurate to base field management decisions as the predictions lowest

RMSE is 0.66% PFC which is a large estimation error compared to the fields maximum

PFC values which ranged from 4.5 to 7.5%. As discussed above, using a process model

that allows for the fall off in PFC could improve the predictions. The PF had similar
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accuracy to the original dataset when estimating PFC on an accelerated dataset.

The results indicate that the VI observations are related to the bloom percentage

on the plants and that a varying crop growth rate can be accounted for using only

observations. Considering the RFR showed the spectral signatures only explain up to

82% of the variability in PFC, the results were good for a simple model and show that

further analysis is justified. The careful incorporation of other measurements, such

as temperature and plant water stress, which are also known to influence the onset

of bloom (Mueller, 2008), would likely improve the estimation and prediction results.

Finally, future work to incorporate satellite-borne VI observations into the prediction

model could greatly increase the usefulness of this method because once a reliable

observation model is established, the publicly available satellite measurements can

observe alfalfa seed crop fields throughout a growing season on a regional scale.

5.6 Conclusions

The variability in data collection methods between years complicated the observation

model building procedure. Confidence in the process and observation models is ob-

tained by focusing on a single year (2017) of data because it limited the influence of

different data collection techniques and sensors. Despite the simplicity of the process

and observation models, much of the variability in the PFC from site to site was

accounted for using observations to update the system in a PF approach. The PF

method is demonstrated to be capable of providing accurate estimates of PFC when

applied to the individual 2017 field data with R2 values as high as 0.95. The results

also highlight the near-real time prediction potential of this method where 10 days

worth of observations are used to forecast the percentage flower cover of the next 20

days with R2 values as high as 0.92.
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(a) Process Model fit

(b) Observation Model fit

Figure 5.7: The best performing model fit is shown as a blue line with the
95% confidence interval range shown in grey.
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Figure 5.8: Field 1: sites 1, 2, 3 (left column, top to bottom). Field 2:
sites 1, 2, 3 (right column, top to bottom). The process and observation
models are passed into a particle filter algorithm along with the observa-
tions from individual field sites. The prediction line (blue) is estimated
by combining the process model with the most current observation, in
this case a GNDVI value. The observations are subset to only include the
first 10 observation values (green line). The observation subset is used
to forecast state estimates for the remainder of the data collection period
(orange line). The accuracy of the forecasted predicted percentage flower
cover values (orange) is given by the R2 and RMSE value.
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Figure 5.9: Field 1: sites 1, 2, 3 (left column, top to bottom). Field 2: sites
1, 2, 3 (right column, top to bottom). The process and observation models
are passed into a particle filter algorithm along with the observations from
individual field sites. The prediction line (blue) is estimated by combining
the process model with the most current observation, in this case a GNDVI
value. The accuracy of the predicted percentage flower cover values (blue)
is given by the R2 and RMSE value.
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CHAPTER 6:

DISCUSSION, CONCLUSIONS, AND FUTURE

WORK

6.1 Discussion and Conclusions

This thesis contains five chapters related to the monitoring of alfalfa seed crop bloom.

Data supporting this research was collected at four different locations throughout

southwestern Idaho in 2016, 2017, and 2018. In Chapter 1 the reader was introduced

to the biology of alfalfa, the potential of fields to produce larger quantities of seed

by ideal timing of pollinator release, and the increasing demand for quality seed. A

background on related remote sensing technologies is provided and how these mea-

surements can be used to improve seed yield and quality through statistical inference

is explained.

Chapter 2 covers the determination of electromagnetic bands sensitive to alfalfa

bloom. This initial study forms the basis for the other chapters and sets the ground-

work for if and how well spectral signatures can be used to monitor alfalfa seed crops

phenological progression. To make this determination, hyperspectral and RGB im-

agery were collected at four locations during the 2016 growing season. A percentage

flower cover (PFC) estimate was determined by manual classification of the RGB

images using Sample Point image analysis software. The hyperspectral data were
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combined into broadband wavelengths, similar to the 10 m spatial resolution bands

on the Sentinel-2 satellites, and these wide bands were further transformed into Veg-

etation Indicies (VI). The PFC and spectral data were used as the prediction and

response variables in a random forest regression (RFR) to determine the most signif-

icant bands. This regression showed that tracking buds using the spectral signature

alone was not possible as the R2 value reached a maximum of 38%. This low value

is likely explained by the similarities in spectral signatures between the buds and

vegetation. Our focus then turned toward monitoring the alfalfa flowers, which had

an R2 value of up to 82% for a single VI. Examination of the most significant vari-

ables, as determined by increasing mean squared error, shows that typically a VI

performed better than individual wavelengths, but also that many wavelengths below

400 nm were significant. The wavelengths below 400 nm were not included in further

research due to the inability for satellites to make accurate measurements at these

wavelengths due to atmospheric scattering. The 30 most significant VIs for tracking

flower progression were further examined in order to determine which three individ-

ual bands did the best job to track flower development. The three bands determined

from this RFR were Blue, Green, and NIR. These bands are used in a custom field

sensor during the 2018 growing season.

Chapter 3 discusses the development of field station sensors for the acquisition of

NIR-green-blue digital imagery for alfalfa seed crop monitoring. From a development

perspective, two different sensor enclosure designs were tested with a reliable, storm-

proof way to collect future data at agricultural fields or any remote outdoor location

being determined. Each field station included a Raspberry Pi (RPi) and control

board, a temperature and humidity sensor, a wireless cellular modem and data plan, a
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battery bank and solar panel, a MapIR Survey3W camera, a gray calibration card, and

one station at each field had a pyranometer. The RPi sensor functioned throughout

the growing season and has the potential to expand with more periphery sensors. We

found the temperature and humidity sensors to be reliable and accurate, as compared

to a high-quality commercial weather monitoring system. Having a wireless data

connection on the system was a valuable addition for troubleshooting and further

backing up the data. The voltaic battery bank performed well and provided plenty

of power and storage with the use of a solar panel for this application. The MapIR

Survey3W camera has excellent specifications and the compact size made it easy to

house. The RAW image data from the camera required extra processing in order

to get the best signal, and while a relative radiometric calibration was used, these

values are not comparable to other sensors. The gray card that was going to be

used for image calibration quickly deteriorated once at the field and a method for

shielding the card when it is not being imaged would greatly enhance its usefulness.

The pyranometers were successful in collecting data; however, the single value output

from a broad spectrum measurement was not useful for individual band calibration.

Instead, incoming solar radiation measurements should be taken at each specific band

the camera is collecting. This would allow for an accurate reflectance calibration.

Overall, a more all-inclusive camera such as the Tetracam Auk 3 would make data

collection, processing, and interpretation easier.

Chapter 4 details the image processing and classification done on the 2017 and

2018 imagery. The 2017 imagery was collected with a multi-spectral Micasense Red-

edge camera. Although this camera suffered from misaligned band images due to

being used below the recommended height, band registration using a discrete fourier
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transform technique was able to bring the images mostly into alignment. The re-

maining misalignment was due to lens distortion and the image registration could be

further improved in the future by applying a lens distortion correction before align-

ment. The Micasense camera has a reliable sensor whose digital numbers were able

to be converted into units of radiance. The reflection panel values were manually

extracted but were not used in the final analysis due to large daily variations. The

2018 data were collected using a custom field sensor described in Chapter 3. The

camera used was a MapIR Survey3W which recorded RAW imagery. These images

were converted into 12-bit TIFFs, which suffered from a position-dependent light

intensity falloff remnant called vignetting. An anti-vignetting correction factor was

applied to each pixel based on laboratory experiments of the lens vignette. After

this each image was normalized and converted into a pseudo-radiance value so the

individual bands had more meaningful relationships. These pseudo-radiance images

were used to create a VI time-series. The images were also used in a supervised

image classification algorithm to get PFC. The 2018 field sensors lack of an RGB

camera made Sample Point image classification on the false color images difficult;

thus a Support Vector Machine (SVM) classification was done in an attempt to get

PFC over the growing season. While the classification seemed to work, having high

user and producer accuracies, as well as a definitive trend for the onset of flower, the

comparison with Sample Point data from the other years showed an earlier onset of

flower which was not realistic. The 2017 Micasense multispectral imagery, along with

the PFC from Sample Point image analysis done on the RGB images at the same

locations proved to be the most reliable data for the prediction analysis.

Chapter 5 introduces the use of a particle filter modeling approach to estimate
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and predict alfalfa seed crop flower percentage cover values using VI time series. In

order to use this state-space modeling approach, two mathematical approximations,

one for the expected behavior of the field, known as a process model, and the other

for the observational relationship to this behavior, known as an observation model,

is required. A subset of the data discussed in the previous chapters is used to create

these process and observation models for the expected growth of alfalfa seed crops.

A logistic function is transformed into its state-space representation and discretized

before being used as the process model and a Michaelis-Menten function is used for

the observation model. The data is first fit to their respective functions using a non-

linear least squares estimate. These estimates of the parameters are used as priors

in a nonlinear multilevel Bayesian model, which has the advantage of being able to

separate out group-level effects. The process and observation models, along with

the observation data from a single field is input into a particle filter. The results of

the PF, using data from the final cutback through peak bloom conditions show the

potential to achieve an accurate estimation with R2 as high as 0.97. The particle filter

is also used to predict the PFC out to 20 days using only the first 10 observations,

with R2 values as high as 0.91. This analysis demonstrates a proof of concept for

the estimation and prediction of PFC at alfalfa seed crop fields using remote sensing

observations and state-space modeling.

6.2 Future work

For future work it is worth running the random forest regression again including the

Rededge band and associated VI on the 2016 and 2017 data.

Regarding the custom field sensors, if they are to be used again in future field

studies they would benefit from the following upgrades:
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• include a RGB camera,

• include a soil-moisture sensor,

• some protection for the gray calibration card, and

• use the Tetracam Auk 3 camera with down-welling light sensor.

More work that can be done includes changing the function used in the process

model to account for the fall-off in PFC, testing the use of growing degree days

instead of days after cutback, and further validating the models in future campaigns.

The lack of reliable ground validation during the 2018 growing season made the data

collected unusable. More data should be collected to validate the findings from the

2017 data set. Images and measurements taken with high-temporal sampling rates

from in-situ stations located within a field can be used for ground truthing and data

points for the the process and observation models. The ability of a UAV to capture

the variability within an entire field can be compared to satellite imagery in order to

determine the viability of using freely available satellite measurements in the bloom

prediction model. Using a multivariate regression to including both the process and

observation models in the same model fit would ensure the uncertainty in parameter

estimation is correctly propagated. The observation model could be expanded upon

by including Sentinel-2 satellite imagery and the particle filter could then be tested

using the combined observation model as well as only the Sentinel-2 observations.

The results from this study provide support for future efforts using state-space

models and remote sensing platforms for making observations. While the simple

bloom prediction model performed well; the greatest immediate value may come from

modeling inter-field variability. Providing an alfalfa seed crop field manager with a
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map of where bloom is likely to occur first would allow for more strategic placement

of pollinator housing. This would likely decrease the quantity of pollinators needed

to adequately pollinate a field and improve pollinator health.
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Vegetation Indices
NDVI (N −R)/(N +R)
EVI 2.5(N −R)/(N + 6R− 7.5B + 1)
LAI 3.618(EV I)− 0.118
CVI (N/G)(R/G)

MSR ((N −R)− 1)/((
√
N/
√
R) + 1)

OSAVI (N −R)/(N +R + 0.16)

TDVI
√

0.5 + ((N −R)/(N +R))
GNDVI (N −G)/(N +G)
GLI (2G−R−B)/(2G+R +B)
NG G/(N +R +G)
NR R/(N +R +G)
RVI N/R
GRVI N/G
DVI N −R
GDVI N −G
SAVI (1.5(N −R))/(N +R + 0.5)
GSAVI (1.5(N −G))/(N +G+ 0.5)
GOSAVI (N −G)/(N +G+ 0.16)

MSAVI2 0.5(2(N + 1)−
√

(2N + 2)2 − 8(N −R))
TVI 0.5(120(N −G)− 200(R−G))
MTVI 1.2(1.2(N −R)− 2.5(N −G))

RDVI (N −R)/(
√
N +

√
R)

MCARI2 1.5(2.5(N −R)− 1.3(N −G))/
√

(2N + 1)2 − (6N − 5
√
R)− 0.5

ENDVI ((N +G)− 2B)/((N +G) + 2B)
GIPVI N/(N +G)
Flower Specific
FVI (B/G)(N/G)
FVI2 (B/G)(R/G)
FVI3 (B −G)/(B +G)
FVI4 (N −B)/(N +B)
FVI5 N/B
FVI6 B/G
FVI7 N −B
FVI8 B −G
FVI9 B/(N +R +B)
FVI10 B/(N +B)
FVI11 B/(N +G+B)
RGR R/G
SIPI (N −B)/(N −R)

Table A.1: Vegetation indices used in the Random Forest Regression.
Band abbreviations are N=NIR, R=Red, G=Green, B=Blue.
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