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ABSTRACT 

The decoupling of control and data planes in software-defined networking (SDN) 

facilitates orchestrating the network traffic. However, SDN suffers from critical security 

issues, such as DoS saturation attacks on the data plane. These attacks can exhaust the SDN 

component resources, including the computational resources of the control plane, create a 

high packet loss rate and a long delay in delivering the OpenFlow messages due to the 

bandwidth consumption of the OpenFlow connection channel, and exhausting the buffer 

memory of the data plane. 

Currently, most of the existing machine learning detection methods rely on a 

predefined time-window to start analyzing the network traffic to detect the saturation 

attacks caused by TCP-SYN flooding. However, saturation attacks range in duration, and 

a long-lasting attack can affect the entire SDN network. Therefore, if the time window is 

too large, the detection method response time will be long, and the attack may have an 

opportunity to saturate the network. If the time window is too small, the amount of the 

traffic may be insufficient to provide reliable detection results and the detection method 

will start frequently, which may cause a huge performance overhead for the SDN 

environment. Thus, identifying the proper time window for running the detection method 

and analyzing the traffic is a key concern.  

For saturation attacks, the adoption of machine learning detection systems in the 

“real world” has been very limited. This is partly because of their deficiencies in detecting 

unknown saturation attacks. An unknown attack is an attack which is not represented in 
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the dataset used to train the attack detection model. Therefore, evaluating the detection 

performance of the state-of-the-art supervised machine learning and semi-supervised 

algorithms on unknown saturation attacks is another key concern. 

Furthermore, many of the proposed anomaly defense systems are deficient in 

mitigating the unknown saturation attacks and involve techniques which may not be 

compatible with OpenFlow protocol, such as modifying the data plane by adding extra 

devices, migrating the network traffic to a scrubbing center, and/or require extensive 

computational resources. Thus, an effective solution that is capable of detecting and 

mitigating known and unknown saturation attacks is an urgent need. 

In this dissertation, we propose a defense framework to mitigate known and 

unknown saturation attacks for SDN. It resides on the application layer and can protect the 

computational resources of the control plane and data plane. The proposed defense system 

combines (1) a saturation attack detection module that is capable of detecting both known 

and unknown saturation attacks by leveraging the proper time window of OpenFlow traffic 

analysis combined with machine learning to identify the attacks, (2) a victim switch 

detection module that can detect and identify the victim of OpenFlow switches when they 

are targeted by known and unknown saturation attacks, and (3) a countermeasure module 

that can mitigate a family of saturation attacks and return the data plane settings to the pre-

attack ones. 

Implementation and experimental results demonstrate that, in comparison with the 

state-of-the-art defense systems, the proposed system provides effective protection for the 

SDN network — control plane, data plane, and OpenFlow connection channel — without 

extensive control plane computational resources and data plane flow table utilization. 
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CHAPTER ONE: INTRODUCTION 

1.1 SDN and OpenFlow 

In traditional networks, the network administrator needs to configure the network 

devices to change the route of the traffic packets because control is distributed among all 

the network devices. The SDN offers a new way of managing and controlling networks by 

separating the control plane and the data plane. Figure 1 shows the basic architecture of the 

SDN environment, which is composed of a data plane and a control plane communicating 

through the southbound API. Above the control plane, the application layer resides, which 

comprises the business applications that communicate with the control plane via the 

northbound API.  

The data plane includes the network hardware components: switches (e.g. 

OpenFlow switches) and routers which are responsible for forwarding operations.  The 

OpenFlow switch consists of multiple flow-tables as a buffer to hold the flow-rule that 

controls the traffic.    

The southbound API represents the interface between the network switches and the 

SDN controller. Basically, it allows the SDN controller to control the behavior of hardware 

devices in the SDN-network. The OpenFlow protocol is the standard and the most widely 

used southbound API. 

The control plane includes the SDN controller, which is the brain of the network 

that orchestrates the entire network. The controller is a centralized controlling unit that 

translates the SDN applications’ network requirements down to the data plane. It also 
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provides the network information, such as network topology and statistical reports, to the 

business application that resides in the application layer. The communication between the 

business applications and the SDN controller travels via the northbound APIs. 

The northbound APIs provide an abstraction of the network functions and enable 

the network applications and orchestration systems to dictate the behavior of the SDN 

network by providing a programmable interface to request the network services and 

dynamically configure the network. 

OpenFlow is the first proposed communication protocol between the data plane and 

the control plane and has been defined as the standard southbound API used in the SDN 

architecture by the Open Network Foundation (ONC) [2]. According to the OpenFlow 

protocol, the OpenFlow switch consists of flow tables, group tables and an OpenFlow 

channel that provides the connection channel to exchange the OpenFlow messages between 

the SDN controller and OpenFlow switches. 

The OpenFlow protocol has three types of messages. First, Control-to-switch 

messages are sent by the controller to update, add, or delete group/flow entries or request 

the status of switches. Second, Asynchronous messages are initiated by the OpenFlow 

switch and sent to the controller. These include Packet-In messages to inform the controller 

about a new packet arrival that does not match the flow entry rules or about changes in the 

switch state. Third, Symmetric messages are initiated in both directions from controller-to-

switch or from switch-to-controller. These messages, such as a Hello-Message, are used to 

test the connection between the controller and switch and make sure that the connection is 

still alive.  
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The SDN hardware components are less expensive than the traditional network 

components since they do not need to be changed over time to upgrade the network. 

Because they are programmable – controlled by the SDN controller via the southbound 

API – they have a relatively long shelf-life. Conversely, the traditional network is made up 

of multiple connected switches that control the entire network, each of which needs to be 

managed and configured independently. As a result, any change, such as installing a new 

network application and/or changing the forwarding traffic rules of the network, needs 

human intervention and may take days or weeks to complete. This is because few APIs are 

exposed by a traditional network. Thus, the cost of upgrading and managing the hardware 

of a traditional network is higher than for an SDN, both in terms of dollars and time [1]. 

 
Figure 1 SDN Architecture 

1.2 Saturation Attacks 

When a new packet does not match any of the local flow-rules of the OpenFlow 

switch, a table-miss occurs. At this point, a Packet-In message will be generated, which 
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contains the header of the table-miss packet if the switch buffer is not full. However, if the 

switch buffer is full, the whole table-miss packet will be encapsulated in the Packet-In 

message and sent to the controller. After receiving the Packet-In message, the controller 

will decide how to process the table-miss packet by sending Packet-Out and Packet-Mod 

messages to install flow-rule(s) in the switch flow table. This reactive packet processing 

approach of the OpenFlow network exposes a security vulnerability.  

As depicted in Figure 2, a table-miss can be exploited by an attacker to consume 

the computation resources (e.g., CPU, memory) of the controller and switches and saturate 

the OpenFlow connection channel that is responsible for delivering the forwarding 

messages between the controller and the OpenFlow switches. Basically, an attacker can 

employ the TCP-SYN, UDP, ICMP, IP-Spoofing, TCP-SARFU flooding attacks, or their 

combinations (i.e., hybrid saturation attacks) to launch data-to-control plane attacks. This 

is accomplished by controlling many of the SDN network hosts (zombie machines) and 

sending a large number of forged packets to make it impossible to match any of the targeted 

OpenFlow switches’ flow-rules. Thus, a large number of Packet-In messages are forwarded 

to the controller. Such a data-to-control plane attack exhausts the computation resources of 

the controller, as shown in Figure 3. 

When a data-to-control plane flooding attack occurs, the controller will send a large 

number of Packet-Out and Packet-Mod messages, which will lead to a control-to-data plane 

flooding attack. Therefore, the targeted switch flow tables will be filled with fake flow-

rules, which prevents the benign flow-rules from being installed. At this point, the victim 

switch buffer will be consumed, and it will not be able to process the legitimate new 

packets. Also, the OpenFlow channel bandwidth will be exhausted, which disables the 
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delivery of OpenFlow messages between the controller and the OpenFlow switches, as 

shown in Figure 4. 

 
Figure 2 Adversary Model 

 
Figure 3 Control Plane CPU Utilization under UDP Saturation Attack 
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Figure 4 OpenFlow Connection Channel Utilization under UDP Saturation 

Attack 

1.3 Problem Statement 

The OpenFlow protocol provides a reactive packet processing approach which 

makes the SDN network more adaptable and agile to requirement changes of the network 

applications. An OpenFlow switch processes the packets by matching them with the 

installed flow-rules on the flow tables. When no flow-rules match the incoming packet 

(i.e., table-miss), the OpenFlow switch encapsulates this packet inside a Packet-In message 

and sends it to the controller to determine the proper action. After that, the controller 

computes the proper action and installs new flow-rules on the OpenFlow switch.  

This reactive packet processing exposes a security vulnerability that can be 

exploited by an attacker to launch the data-to-control plane and control-to-data plane 

saturation attacks against the SDN infrastructure. An attacker can launch a data-to-control 

plane saturation attack by generating a huge number of table-miss packets, by sending a 

vast number of spoofed packets to reduce the possibility of matching any of the existing 

flow-entries on the victim switch. Thus, a large number of Packet-In messages forwarded 
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to the controller will consume the computation resources of the control plane (data-to-

control plane). Subsequently, a huge number of fake flow entries will be forwarded by the 

controller and exhaust the flow-table memory buffer of the victim OpenFlow switch 

(control-to-data plane). In the end, the entire SDN network will be paralyzed.  

In protecting the SDN infrastructure from saturation attacks, we encounter the 

following issues: 

 How to effectively detect the known and unknown saturation attacks which may 

compromise the SDN infrastructure? 

 How to effectively identify the OpenFlow switches which are targeted by known 

and unknown saturation attacks? 

 How to effectively countermeasure the malicious OpenFlow traffic without 

sacrificing the SDN network normal traffic, and how to effectively eliminate the 

saturation attack consequences on the data plane without losing the pre-attack 

settings? 

These three problems are hard issues to overcome. For the first issue, a simple 

solution is to develop a detection method that starts periodically based on an arbitrarily 

pre-defined time window. However, if the time window is too long, the saturation attacks 

will take over the entire network, and if the time window is too short, the amount of traffic 

may be insufficient to have reliable results. In the latter case, the detection method will 

start more frequently, which may cause a performance overhead for the SDN environment. 

Thus, we should discover the proper time window, as well as the proper machine-learning 

classifier to detect the known and unknown saturation attacks with the highest detection 

performance.  
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For the second issue, we can simply inspect the behavior of all the OpenFlow 

switches of the SDN environment, one by one. However, this process causes a large 

performance overhead on the SDN environment and requires a long processing time. Thus, 

the saturation attack may take over the entire network. Therefore, we should provide an 

efficient method that can accurately identify the victim OpenFlow switches by known and 

unknown saturation attacks.   

For the third issue, we should mitigate a family of saturation and hybrid saturation 

attacks without sacrificing the normal OpenFlow traffic, modifying the SDN/OpenFlow 

architecture, and/or adding extra devices. A simple solution to countermeasure these 

attacks is to install blocking flow rules that drop the table-miss packets. At this point, the 

legitimate table-miss packets from benign OpenFlow switches will be dropped. Thus, the 

benign OpenFlow switches will not be able to process all new incoming traffic flows 

generated from benign hosts. However, an appropriate solution should be able to handle 

the table-miss packets – specifically, the malicious table-miss packets – effectively and 

keep forwarding the normal traffic. Thus, it should distinguish the malicious OpenFlow 

traffic from the benign traffic, along with the zombie hosts and the targeted hosts, without 

the need for an extra device or modifying the SDN architecture (which is another 

challenging issue). Also, we should identify the fake flow-rules that have been installed on 

the victim switch flow-tables during the attack and remove them to enable the installation 

of legitimate flow-rules on the victim switches. 

This dissertation introduces an SDN defense framework that can protect the control 

plane, data plane, and the OpenFlow connection channel against known and unknown 

saturation attacks without the need for any additional hardware or modifying the design of 
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the SDN architecture. This makes the proposed defense system easily deployable in the 

current SDN environments.  It can detect known and unknown saturation attacks by 

adopting the saturation attack detection module. Also, it can identify the targeted 

OpenFlow switches by using the victim switch detection module. Besides, it is capable of 

identifying the zombie hosts and the targeted destinations by using the Packet-In deep 

inspection filter. Furthermore, the proposed defense system can mitigate the saturation 

attacks by blocking the incoming malicious traffic from the zombie hosts and can remove 

the consequences of these attacks by eliminating the installed malicious flow-rules on the 

victim OpenFlow switches. 

1.4 The Proposed Approach 

The proposed approach protects the SDN network against saturation attacks. It can 

detect known and unknown saturation attacks, identifying the targeted OpenFlow switches 

by these attacks, and mitigating these attacks by blocking the malicious incoming traffic 

and eliminating their consequences.    

Figure 5 shows the system architecture of the proposed approach. It consists of four 

modules: network topology manager, OpenFlow traffic collector and feature extractor, 

saturation attack detection, victim switch detection, and countermeasure.  

Initially, the network topology manager module extracts the SDN environment 

topology by using the northbound REST APIs of the controller and classifies the extracted 

network topology based on the connected OpenFlow switches. Next, the OpenFlow traffic 

collector and feature extractor module will be triggered. This module is a session-based 

process that collects the OpenFlow traffic by incorporating the Pyshark library. For each 

session, the feature extractor extracts the saturation attack detection module features. The 
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duration of each session is equal to the pre-defined time window of OpenFlow traffic 

analysis.  

Before developing our online saturation attack detection module, we conducted 

extensive offline experiments using both physical and simulated SDN environments. These 

experiments allowed us to evaluate the detection performance of the supervised and semi-

supervised algorithms by generating datasets from different time windows of OpenFlow 

traffic analysis. Based on the reported experimental results, we have been able to obtain 

the proper time window of OpenFlow analysis along with the highest-performing machine 

learning algorithms (on the known and unknown saturation attacks). In our approach, the 

OpenFlow traffic time window should equal 1 minute based on our findings, (see Chapter 

3).  

Upon extracting the detection module features, the saturation attack detection 

module will be triggered. This module is an anomaly detection module that is responsible 

for detecting the saturation attacks against the SDN network by incorporating the 

Variational Autoencoder algorithm.  

When the detection module detects an abnormal behavior in the SDN environment, 

the victim switch detection module will be activated, and the OpenFlow traffic collector 

feature extractor module will extract its detection features. This module is an anomaly 

detection method that is responsible for identifying the targeted OpenFlow switches by 

known and unknown saturation attacks. It adopts the Variational Autoencoder algorithm 

(see Chapter 4). 

When the victim switch module identifies the targeted OpenFlow switches, the 

countermeasure module will be activated for attack mitigation in the following three steps: 
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1. The Packet-In deep inspection component extracts the Packet-In messages of the 

identified OpenFlow switches by the victim switch detection module from the 

collected OpenFlow traffic and classifies them based on the OpenFlow switch. 

Next, it inspects the header of the table-miss packet inside the Packet-In messages 

to extract the zombie hosts and reduce the false-positive rate of the victim switch 

detection module. 

2. The blocking flow-rule manager receives the list of zombie hosts with 

corresponding OpenFlow switches and installs high priority blocking rules. 

3. The flow-table manager obtains the victim switch flow rules, extracts, and deletes 

the fake ones by using the attack topology.   

 
Figure 5  System Architecture 
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1.5 The Contribution  

Recent state-of-the-art SDN defense systems focused on mitigating the TCP-SYN 

flooding attack against an SDN network. However, many of the proposed anomaly defense 

systems are deficient in detecting and mitigating a broader set of saturation attacks, as well 

as unknown saturation attacks. Also, the recent systems require modifications to the 

SDN/OpenFlow architecture, adding extra hardware, and/or extensive computational 

resources. This dissertation proposes an anomaly defense framework for SDN that can 

protect the control plane, data plane, and OpenFlow connection channel against known and 

unknown saturation attacks, without the need for any additional hardware or modification 

of the SDN architecture design.  

The proposed defense system can detect SDN network saturation attacks by using 

the saturation attack detection module. Besides, it identifies the victim OpenFlow switches 

being targeted by known and unknown saturation attacks by utilizing the victim switch 

detection module. It also identifies the zombie hosts and the targeted destinations by using 

the Packet-In deep inspection filter. Finally, it can mitigate the saturation attacks by 

blocking the incoming malicious traffic and removing the consequences of these attacks 

(i.e., the installed fake flow-rules) on the victim OpenFlow switches. 

The contribution of this dissertation is as follows: 

 To the best of our knowledge, this work is among the first to investigate the 

impact of different time-windows of OpenFlow traffic on the performance 

of supervised classifiers for the detection of saturation attacks in SDNs. 

 We present an in-depth study for different victim switch detection methods 

with the integration of supervised and semi-supervised machine learning 
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algorithms and provide an anomaly victim switch detection module that is 

capable of detecting and identifying the OpenFlow switches targeted by 

known and unknown saturation attacks. 

 We provide a cost-effective countermeasure module that can defend the 

SDN network against a family of saturation attacks and remove their 

consequences. 

 We design and implement the proposed defense system and evaluate it in 

comparison with the most recent effective defending systems, using 

extensive experiments that simulated the real-life SDN network. The 

reported results show that the proposed framework is an effective defense 

system for an SDN network, capable of detecting and mitigating the 

saturation attacks in real-time with very minimal resource consumption. 

1.6 Dissertation Organization 

The rest of this dissertation is structured as follows. Chapter two reviews related 

work. Chapter three introduces the SDN saturation attack detection module responsible for 

determining whether the SDN environment is being targeted by a saturation attack or not. 

Chapter four illustrates the victim switch detection module responsible for identifying the 

OpenFlow switches targeted by saturation attacks. Chapter five describes the 

countermeasure module that mitigates the saturation attack(s) and illustrates the 

implementation and evaluation of the proposed defense system. Finally, chapter six 

concludes the dissertation with a description of future work. 
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CHAPTER TWO: RELATED WORKS 

2.1 Detecting Denial of Service (DoS) Attacks in Computer Networks 

Denial of Service (DoS) attacks impose a security threat to all types of computer 

networks since DoS attacks can be easily launched and hard to detect. For example, in a 

traditional network, an attacker can launch a saturation attack by sending a large number 

of packets toward the network switches, with or without spoofing the source IP addresses. 

At this point, the network switches will be overwhelmed by processing the attack packets.   

In SDN, the network architecture is divided into multiple layers (i.e., application layer, 

control layer, and data plane) and all of these layers can be targeted by DoS attacks. For 

instance, an attacker can target the data plane layer by launching different kinds of 

saturation attacks, such as the UDP flooding attack, by sending a large number of spoofed 

packets in order to urge the targeted OpenFlow switch to generate the Packet-In messages. 

This, in turn, overwhelms the controller and saturates the OpenFlow connection channel.    

 In recent decades, different research works have been proposed to detect and 

prevent DoS attacks against traditional networks [3,4]. This section introduces these works 

to investigate the applicability of the proposed methods for detecting saturation attacks 

against an SDN environment.  

To start, different research works have studied the adoption of supervised machine-

learning classifiers to detect DoS attacks in traditional networks. Singh et al. [5] proposed 

an application layer DoS attacks detection method by adopting a genetic machine learning 

classifier (MLP-GA). They extracted features from the network traffic, such as the entropy 
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value of the number of GET requests per connection, the entropy value of the IP addresses 

of GET requests’, and the entropy value of the GET requests’ counts. If the entropy values 

of the extracted features are high, this indicates that the network is under an application 

layer DoS attack. Fouladi et al. [6] proposed a detection method for DoS attacks by using 

Naïve Bayes classifiers. This approach used a Discrete Fourier transform (DFT) and 

discrete wavelet transform (DWT) as features. Mafra et al. [7] proposed the Octopus-IIDS 

intrusion detection system by incorporating the Kohonen Network and a Support Vector 

Machine (SVM). It consists of: (1) a classifier layer that uses the SVM to classify the data 

into four categories (i.e., DoS, U2R, probe, and R2L), and (2) an anomaly detection layer 

that incorporates the Kohonen Network to detect the anomalies based on the data 

classification of the previous layer. The system can be used on small scale networks.  

Wagner et al. [8] proposed a DoS detection method using the one-class SVM 

classifier in order to detect new attacks. The detection method used the One-Class SVM 

algorithm. For such a classifier, the training dataset includes one class of traffic types (e.g., 

normal traffic or attack traffic). Based on the reported results, the accuracy of the proposed 

detection method is equal to 92% for all types of attacks. Muda et al. [9] introduced a two-

stage DoS detection method. In the first stage, the K-means clustering machine learning 

algorithms were used to classify the collected traffic into three groups: (1) Prob, R2L, and 

U2R attack data, (2) DoS attack data, and (3) normal data. In the second stage, the Naïve 

Bayes classifier is used to classify the collected traffic into one of the aforementioned 

groups. Based on the reported results, the two-stage detection method is an effective one 

in detecting DoS and other attacks. However, due to the adoption of supervised classifiers, 

these detection methods [5-9] cannot be used to detect the unknown saturation attacks 
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against SDNs. Besides, the features of these methods cannot accurately reflect the impact 

of saturation attacks in SDN.   

Other detection methods adopt unsupervised machine learning algorithms to detect 

DoS attacks. For instance, Hsieh and Chan [10] used an Artificial Neural Network (ANN) 

to detect DoS attacks. They extracted several features from the network traffic packet 

headers: source IP address, destination IP address, the time of the packet, and length of the 

packet. In addition, they used Apache Spark to process the extracted features from the 

network traffic and convert them into a vector suitable for the ANN model. Bhuyan et al. 

[11] proposed an anomaly detection method by integrating an unsupervised machine 

learning algorithm for large datasets. It uses the tree-based subspace clustering to obtain a 

high detection rate. The reported results showed that the detection method achieved 98% 

accuracy.  

Yuan et al. [12] introduced DeepDefense, a DoS attack detection method that 

integrates a Recurrent Neural Network (RNN).  They used the UNB ISCX Intrusion 

Detection 2012 dataset to train and evaluate the RNN model. This detection method 

obtained high detection results with 97% accuracy and 97% recall.  

Yadav and Subramanian [13] proposed an application-layer DoS attack detection 

method using the Stacked Autoencoder deep learning algorithm. They used 10 features to 

train the model and they created a testing dataset in order to evaluate the proposed 

approach. Qin et al. [14] presented a DoS attack detection method based on entropy 

clustering. This approach can be divided into two phases. First, a clustering phase extracts 

the entropy values of the source and destination IP addresses, port numbers, packet size, 

and duration. They use a clustering algorithm to build many clusters based on the extracted 
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entropy values. Second, the method consists of a detection phase in which they detect the 

DoS attacks by using the distance between the clusters.  

Saad et al. [15] proposed the v6IIDS framework to detect ICMPv6 saturation 

attacks by adopting the Artificial Neural Network Back-Propagation algorithm. The 

proposed defense system consists of: (1) a data collection and preprocessing module that 

collects the network traffic and extracts features for the detection module, and (2) an 

anomaly detection method that is responsible for detecting the ICMPv6 attack by using the 

ANN back-propagation trained model. Yin et al. [16] proposed a detection method using a 

Recurrent Neural Network (RNN) to detect DoS attacks. In this approach, they relied on 

the NSL-KDD dataset with the NSL-KDD dataset 41 features.  

Farnaaz and Jabbar [17] proposed a DoS detection method using the Isolation 

Forest algorithm. They also used the NSL-KDD dataset to train their isolation forest model. 

Based on the reported results, the trained model obtained 99.2% accuracy. Malik et al. [18] 

proposed a DoS attack detection approach utilizing Particle Swarm Optimization (PSO) 

and Random Forest (RF) algorithms. The proposed method can be divided into two phases: 

(1) a feature selection phase, which adapts PSO techniques to select the most appropriate 

features from the KDD99 Cup dataset, and (2) a detection phase, which the RF classifier 

uses to detect the DoS attacks. However, most of the anomaly detection methods 

[10,11,12,14,15,17,18] relied on an outdated dataset that did not represent the nature of the 

SDN traffic. Also, the extracted features such as “time-zone and port number” cannot 

express the behavior of saturation attacks against SDNs, specifically, in a reactive packet 

processing SDN environment. Thus, the adoption of such detection methods would leave 

the SDN environment vulnerable to the majority of saturation attacks.  
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Different detection methods have employed statistical algorithms to detect DoS 

attacks in the traditional network. For example, David and Thomas [19] used a fast entropy 

value to detect DoS attacks. They calculated the fast entropy of flow-count and compared 

it against a predefined threshold to detect the DoS attack. A low fast entropy value means 

there is a DoS attack and a high entropy value means no attack, since the attack flow is 

dominant over other normal flows.  

 Hoque et al. [20] presented a detection approach using the Multivariate Correlation 

Analysis (MCA) algorithm. The working process of the proposed approach is (1) to collect 

the network traffic and divide it into multiple time windows, (2) to calculate the packet rate 

and the entropy values and variational index of the source IPs, and (3) to use MCA to find 

the correlation between the extracted features. Subsequently, they compare the extracted 

deviations against a predefined threshold to detect the DoS attacks. The predefined 

threshold incorporates multiple assumptions – for example, the assumption that a high 

entropy value of source IPs with a high entropy value of packet rates, means that the 

possibility of a DoS attack is high. However, in the reactive SDN environment, the features 

of the proposed detection methods [19, 20] would need to be tuned to calculate the entropy 

value of the table-miss packet rather than the traffic packets. Otherwise, the proposed 

methods could produce a large number of false alarms.      

2.2 Detecting Saturation Attacks in SDN 

As a new network paradigm that provides agility and programmability, SDN 

attracts industry and academia researches worldwide. Different research studies have 

shown various security threats in SDN [21, 22]. For example, DoS network flooding 

attacks disturb the SDN-based network and render it out-of-service. Different research 
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works have been proposed to detect, mitigate, and prevent the SYN-Flooding attack by 

using various machine learning and deep learning approaches [23].  

Asharf and Latif [24] discussed the possibility of adopting machine learning 

approaches in SDN to detect the DoS attacks. However, this work did not go so far as to 

investigate potential approaches that can be used to detect OpenFlow switches targeted by 

known and unknown saturation attacks. Niyaz et al. [25] proposed an SDN network 

application that adapted the Stack Autoencoder (SAE) deep learning technique for 

detecting multi-vector DDoS. The proposed defense system consists of three components: 

Traffic Collector and Flow Installer, Feature Extractor, and Traffic Classifier. This work 

relies on processing every incoming packet for attack detection and flow computation, 

which requires extensive computational resources, instead of flow sampling. Furthermore, 

the dataset that was used for training and testing the proposed defense system was collected 

from a traditional wireless network, which is not an SDN-based network.   

Aizuddin et al. [26], proposed a DDoS detection prototype by using a Dirichlet 

Process Mixture model to detect the attack traffic. With this system, the misclassification 

rate of the attack traffic is around 50%.   

Braga et al. [27] adopted the self-organized map (SOM) to develop a lightweight 

detection system for DDoS flooding attacks against SDNs. The proposed defense system 

consists of three modules:  a flow collector module that collects all the flow entries of the 

connected OpenFlow switches, a feature extractor module that extracts the detection 

module features from the collected flow-entries, and a SOM classifier module that detects 

the attack traffic. However, this work requires extensive processing time to extract the 

detection module features, since it needs to process all the flow entries of connected 
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OpenFlow switches. This delay may give the attacker enough time to flood the whole 

environment. Also, when an OpenFlow switch is targeted by a saturation attack, it becomes 

overwhelmed from processing the malicious table-miss packets. Thus, the flow collector 

module will not obtain the flow-rules of the targeted OpenFlow switch in real-time. In 

addition, the flow-rules’ messages are large-size messages, which may help in saturating 

the connection OpenFlow channel between the controller and the OpenFlow switches. 

Tang et al. [28] used the Deep Neural Network (DNN) to develop an anomaly DoS 

detection system. The accuracy of the proposed detection model is relatively low – just 

88.04%. Also, the NSL-KDD dataset used in training and testing the detection model was 

generated from a traditional network.  

Abubakar and Pranggono [29] developed a flow-based anomaly detection system 

by using a neural network. Again, the NSL-KDD dataset was used to train and evaluate the 

models, which is the main shortcoming of this approach.  

Mousavi and Hilaire [30] proposed an early DoS attack detection method by 

calculating the entropy values of the IP addresses of the first 250 packets forwarded to the 

controller. This approach assumes that each new packet forwarded to the controller is a 

malicious packet if the destination address matches any of the already-existing network 

hosts. Also, if the destination IPv4 address appears in many packets, the entropy value will 

be lower than the predefined thresholds, and the system will think that an attack is 

occurring. This approach can generate many false alarms of early attack detection, 

specifically, if the SDN network is in a reactive flow-management configuration. In this 

type of configuration, the flow-entries are configured dynamically to provide a flexible 

way to control the network traffic. Thus, in a large-size SDN network, many legitimate 
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new packets forwarded to the controller and many legitimate flow-entries will be installed 

to control network traffic. However, the proposed approach cannot be utilized as an early 

DDoS attack detection method since the normal behavior of the SDN network will always 

be considered malicious behavior.  

Azizz and Okamura [31] proposed the FlowIDS framework to detect Simple Mail 

Transfer Protocol (SMTP) flooding attacks by using decision tree (DT) and deep learning 

(DL) algorithms to detect the malicious SMTP flow traffic. The deep learning algorithm 

and the decision tree classifier were trained to identify the benign SMTP traffic. 

Subsequently, both the DL and DT were used to detect the attack SMTP traffic. However, 

this work cannot be used to protect the SDN environment against saturation attacks. Also, 

using two machine learning algorithms at the same time to identify the attack SMTP traffic 

may require a long prediction time. Besides, the authors did not provide more details when 

the two algorithms obtained different prediction results.  

Santos et al. [32] introduced the ATLANTIC framework to detect DDoS attacks 

against the SDN environment. The proposed defense system consists of two phases: (1) a 

lightweight processing phase that can be executed periodically to detect the deviations of 

the SDN network traffic flows by using entropy analysis in order to identify the suspicious 

traffic flows, and (2) a heavyweight processing phase that uses a K-means unsupervised 

algorithm to cluster the similar traffic flows and then adopts an SVM classifier to classify 

the malicious flows from the normal ones. The ATLANTIC framework has three main 

components: (1) a statistical layer that is responsible for collecting the traffic flows 

statistics, (2) a classification layer that is responsible for detecting and classifying the 

malicious traffic flows and, (3) a network layer that is responsible for tracking the SDN 
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data plane and collecting the traffic flow information from the controller. The detection 

performance of the proposed defense system is relatively low; it obtained 88.7% accuracy 

and 82.3% precision. Also, this work caused performance overhead on the SDN 

environment due to the processing time and it required a long prediction time due to using 

the SVM and K-means classifiers together. Besides, the proposed defense system cannot 

detect unknown saturation attacks and countermeasure them.  

Ye et al. [33] proposed a detection system for UDP, SYN, and ICMP flooding 

attacks by using an SVM classifier.  The proposed defense system includes: (1) a flow state 

collection module that collects the status of the OpenFlow switches flow-tables by using 

controller-to-switch messages, (2) Characteristic Values Extraction module that is 

responsible for extracting the classifier features (it extracts 6 features from the collected 

flow tables’ status messages), and (3) classifier judgment module, which utilizes an SVM 

classifier to detect the attacks. This work represents a simple method to detect some 

flooding attacks in SDNs. However, using the controller-to-switch messages to collect the 

flow-table status information can cause performance overhead, specifically, when the 

environment is under attack. This is because the size of the flow-tables status messages is 

large, which may help to saturate the OpenFlow connection channel. 

Lee et al. [34] introduced the Athena framework, which exposed different APIs and 

allowed researchers and developers to easily integrate their anomaly detection applications 

with SDN environments. The main goal of this research is to highlight the problem of 

integrating different detection systems into SDN deployment. Athena offers high-level 

APIs called Athena NB interfaces, which enable the developers to develop anomaly 
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detection methods, and Athena SB interfaces, which isolate the complexity of dealing with 

the SDN data plane. 

Chen et al. [35] proposed a detection method for DNS and TNP reflection 

amplification attacks. The detection method consists of a detection agent module. The 

detection agent module contains (1) a traffic collector that uses the Netmate tool to collect 

the traffic and calculate the features vector, and (2) an SVM-based machine learning 

classifier that detects the DNS and NTP reflection attacks using the extracted features 

vector. This research is dedicated to detecting two attacks by using an SVM classifier. 

However, this detection method cannot detect major saturation attacks, such as the UDP 

flooding attack, or unknown saturation attacks.  

Alshamrani et al. [36] introduced two new attacks, the Misbehavior and NewFlow 

attacks, and proposed a detection method that is capable of detecting these new attacks and 

other DDoS attacks. The Misbehavior attack is a kind of attack that disguises the first 

packet of the forwarding flows like a normal packet, while the remaining packets of the 

flow are malicious ones. The NewFlow attack is the same attack as a data-to-control plane 

attack. The proposed system adopted a Sequential Minimal Optimization (SMO) classifier 

to detect these attacks and used the NSL-Dataset to train the SMO classifier. However, the 

proposed new attacks (i.e., Misbehavior and NewFlow attacks) are not new ones since all 

the saturation attacks behave in the same way. Also, the NSL-Dataset is not an SDN 

dataset, which may raise a question about the feasibility of using the proposed detection 

method in real-life SDN environments. 

Wang et al. [37] proposed a scalable method to detect the TCP-SYN attack in an 

SDN environment. The detection method collects the numbers of SYN and FIN packets 
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during a period of time and provides these numbers to the Change Point Detection 

statistical algorithm to find out the homogeneity between the numbers of SYN and FIN 

packets. If there is any heterogeneity found between these numbers at some point of time, 

a TCP-SYN attack is detected. This method cannot be used to detect known and unknown 

saturation attacks in an SDN environment.      

2.3 Detecting Victim OpenFlow Switches in SDN 

Identifying the targeted OpenFlow switches did not garner much attention in 

academic research. Recently, a few studies have been proposed to tackle this issue. Po-

Wen et al. [38] proposed a simple detection method that samples flow-rules from randomly 

selected OpenFlow switches. Next, they generate artificial packets to see if the OpenFlow 

switch executes the corresponding flow-rules correctly. This approach may produce a high 

rate of false-positives since the flow-rules of the OpenFlow switches are changing over 

time.  

Zhou et al. [39] proposed SDN-RDCD, a real-time approach to detect the targeted 

SDN devices when the controller and OpenFlow switches are not trustworthy. SDN-RDCD 

uses a backup controller as an audit controller that is responsible for recording the network 

update events information such as deleting, adding, or updating flow rules from the original 

controller and its connected OpenFlow switches. Subsequently, the audit controller 

allocates a unique audit ID for each update request event and records it in an audit record. 

This audit ID is used to keep track of each event, as well as the execution results on the 

original controller and corresponding OpenFlow switches. Also, the audit ID is used by the 

audit controller to re-execute the update event and record the execution results. Then, SDN-

RDCD analyzes the recorded audit log to extract any inconsistency of the handling of 
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information by the controller and OpenFlow switches. However, this work may require a 

long time to process the audit records in order to find the unmatched event handling 

information. Thus, the saturation attacks may compromise the entire-network before 

detecting the victim OpenFlow switches. Also, this approach cannot detect most of the 

OpenFlow switches that were targeted by saturation attacks, since the behavior of these 

victim switches is very similar to the normal ones. In addition, this approach cannot be 

easily adopted in real-life since it requires adding an extra controller as an auditor-

controller.  

Different from the aforementioned works, the victim switch detection method 

proposed in this dissertation, is an effective method that is capable of detecting the 

OpenFlow switches that are targeted by known and unknown saturation attacks. Also, it 

can be easily deployed in real-life SDN environments since it does not require any 

modification of these environments’ architecture.     

2.4 A Countermeasure to Saturation Attacks in SDN 

Different studies have been proposed to defend the SDN against saturation attacks. 

For example, Hu et al. [40] introduced the FDAM system for detecting UPD, ICMP, and 

SYN flooding attacks. It consists of two modules: (1) an attack detection module that is 

responsible for detecting DoS attacks by using an SVM classifier and a sFlow approach to 

collect the network traffic and extract features, and (2) a DoS attacks mitigation module 

that mitigates flooding attacks by using traffic migration and white-list approaches. 

Unfortunately, the SVM classifier requires a long training and prediction time. Also, based 

on our reported results in this research, the SVM classifier is not capable of detecting the 

unknown saturation attacks. 
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 Seungwon et al. [41] proposed the AVANT-GUARD framework to mitigate the 

TCP-SYN flooding that is sent to the SDN controller. It accomplishes this task by 

extending the OpenFlow-Switches functions. The detection module monitors the ongoing 

TCP-SYN connections to the controller and detects the SYN flooding based on a 

predefined threshold, which cannot accurately differentiate between the normal and 

abnormal SYN packets.  

Wang et al. [42] proposed FloodGuard as a prevention approach against DoS 

attacks. FloodGaurd acts as middleware between the controller and its applications and has 

three components: a detection module, a flow rule analyzer module, and a packet migration 

module. The FloodGaurd detection module monitors the OFPT_PACKET_IN messages 

and triggers the other modules when the OFPT_PACKET_IN messages exceed the pre-

defined thresholds. 

Shang et al. [43] proposed FloodDefender as an SDN application to protect the 

control plane and data plane against DoS attacks. It has four modules: attack detection to 

detect the DoS attacks, table-miss engineering to migrate the table-miss packets to the 

neighbors' switches, packet filtering to identify the attack traffic, and flow rule 

management to remove the useless flow-rules. The main limitations of this work are as 

follows: (1) All the table-miss packets are delivered to the controller to process them, 

whether they are normal ones or not. (2) There is a relatively high flow-table utilization 

due to the installation of protecting and monitoring flow-rules. (3) The attack detection 

module uses the Packet-In messages rate to detect the attack, which is not an effective 

approach since a high volume of new normal traffic can produce similar Packet-In 

messages. (4) FloodDefender cannot be applied in a small-scale SDN network. Lastly, (5) 
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if two or more of the switches are regarded as victims, this approach will not be able to 

handle the saturation attacks and may flood the whole SDN network.  

Menghao et al. [44] introduced two novel attacks – a table-miss striking attack and 

a counter manipulation attack – and provided the SWGuard system as a solution to detect 

and prevent these attacks.  

Yan and Huang [45] proposed a DDoS detection and mitigation system (DDMF) 

that detects and mitigates the impact of DDoS attacks in real-time by adopting SDN 

features and Apache Spark. DDMF consists of three components. (1) a capture server is 

responsible for collecting the network traffic and saving it in a log file by using Apache 

Spark. (2) a detection module incorporates a neural network (NN) to detect the attacks 

based on the integrity of the log file. The detection module is installed on a detection server. 

(3) an SDN router application is responsible for mitigating the attacks by sending the traffic 

to the cleaning centers. This approach cannot be easily deployed into SDN environments 

since it requires a detection server and cleaning centers to analyze and mitigate the attack 

traffic.    

Jing et al. [46] proposed the FL-Guard detection and defense system against DDoS 

attacks in the SDN environment. FL-Guard is implemented as an SDN application that 

resides in the application layer of the Floodlight controller. FL-Guard uses sFlow-RT to 

collect network traffic. FL-Guard includes two modules: (1) an attack detection module 

that incorporates an SVM classifier to detect the DDoS attacks, and (2) an attack-blocking 

module that blocks the attack from the source port.  The shortcomings of this work are as 

follows: (1) sFlow-RT uses a periodical sampling of the OpenFlow traffic and cannot 

collect information on all OpenFlow packets. This may cause a large impact on the 
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accuracy of the detection method. Also, sFlow-RT cannot collect a low-rate of OpenFlow 

traffic. (2) The SVM classifier cannot detect unknown saturation attacks since they are not 

included in the training phase. Thus, if the SDN environment is targeted by an unknown 

saturation attack, the detection module will not be able to detect it and the blocking module 

will not be able to mitigate this attack.  

Cui et al. [47] proposed the SDN-Anti-DDoS system, which is capable of detecting 

DDoS attacks quickly. The proposed system consists of four modules. (1) The attack 

detection trigger module monitors and counts the velocity of Packet-In messages to detect 

the abnormal burst of Packet-In messages. It uses the exact-Storm machine learning 

algorithm and triggers the other modules if the SDN environment is under attack. (2) The 

attack detection module adopts a Neural Network (NN) algorithm to distinguish the 

malicious flow-entries from normal ones. This module uses controller-to-switch messages 

to identify the flow-entries and extract features for the NN model. (3) The attack traceback 

module uses the same NN model to obtain the attack information. Finally, (4) the attack 

mitigation module mitigates the attacks by installing blocking entries. This work may cause 

a high amount of false alarms, specifically, in a reactive processing SDN environment 

when a burst of normal traffic is forwarded by legitimate applications.  

Also, using control-to-switch messages to obtain the switches’ flow-entries when 

the SDN environment is under an attack makes it harder to detect the attacks in real-time, 

because the targeted OpenFlow switches will be overwhelmed by malicious Packet-In 

messages and the controller will be busy processing the forwarded Packet-In messages. 

Thus, the detection module will not obtain the features required to detect the attack in a 
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timely manner, which may give the needed time to the attacker to destroy the entire 

network.  

Besides, the flow-entries messages are large in size, which may help to saturate the 

OpenFlow connection channel. 

Durner et al. [48] proposed a detection and mitigation method for overflow attacks 

against the SDN data plane. The detection method adopted a statistical method to detect 

the attacks by using the flow-tables’ header fields. It keeps a table of the suspected table-

headers using hashing. Based on that table, the mitigation method blocks the attacks. This 

work causes a large number of false-positives, since the flow-rules of the OpenFlow 

switches are changed frequently. Also, the detection and mitigation method cannot be used 

against known and unknown saturation attacks. 

Reza et al. [49] introduced SLICOTS as an SDN defense system against TCP-SYN 

flooding attacks. The proposed system monitors all TCP handshaking processes between 

the SDN hosts to install temporary forwarding rules on the OpenFlow switches during the 

handshaking process. If the half-open TCP connections between a host and a server exceed 

the predefined threshold, a TCP-SYN flooding attack is detected. Subsequently, it installs 

blocking rules to stop the malicious SYN packets.  

This system is capable of protecting the control plane from the TCP-SYN attack 

and ignores the protection of the data plane. Also, this approach installs temporary 

forwarding rules on all connected OpenFlow switches, without determining which ones are 

targeted, in order to count the SYN connections.  

This procedure may exhaust the data plane memory. In addition, the proposed 

detection and prevention method cannot be used to protect the SDN environment against 
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known and unknown saturation attacks. Therefore, the SDN environment is vulnerable to 

the majority of saturation attacks. 

Ficherta et al. [50] proposed the OPERETTA, an OpenFlow defense system against 

TCP-SYN flooding attacks. OPERETTA has been implemented as a controller application 

that can detect fake TCP-SYN connections and reject them. Similar to SLICOTS [49], 

OPERETTA counts the number of TCP-SYN connections and matches them against a 

predefined threshold. If the counter value exceeds the predefined threshold, a TCP-SYN 

flooding attack is detected. This system is deficient in protecting the SDN environment 

against known and unknown saturation attacks. 

Different from the aforementioned works, the proposed defense system in this 

dissertation can detect the known and unknown saturation attacks, as well as the OpenFlow 

switches that are targeted by these attacks. We have studied different victim detection 

methods by incorporating supervised and semi-supervised algorithms to identify the most 

effective method and algorithm. In addition, instead of using controller-to-switch messages 

or the sFlow-RT tool, we adopted the Pyshark library to collect the OpenFlow traffic in 

real-time in order to eliminate any performance overhead on the controller, OpenFlow 

switches, and OpenFlow connection channel.  Also, the proposed defense system provides 

a countermeasure method that can effectively mitigate a family of these attacks without the 

need for adding extra hardware, modifying the SDN design, or causing performance 

overhead on the SDN environment. Besides, it can remove the fake flow-rules that have 

been installed on the victim OpenFlow switches during the attack, enabling the legitimate 

flow-rules to be installed. 
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CHAPTER THREE: DETECTION OF SATURATION ATTACKS 

The problem studied in this chapter is how to detect saturation attacks in SDN 

environments by using state-of-the-art machine learning algorithms. The saturation attacks 

range in duration, and a long-lasting one of these attacks can affect the entire SDN 

environment. Therefore, to protect the computational resources of the SDN network, the 

proper solution is to detect these attacks at the early stages before they take-over the entire 

network. In the designing of the saturation attack detection module, there were two issues.  

First, we should be able to obtain the proper time-window of OpenFlow traffic 

analysis as well as of the machine learning classifier to detect the saturation attacks with a 

high detection performance. So far, most of the existing machine learning detection 

methods rely on an arbitrary predefined, fixed time-window to start analyzing the network 

traffic to detect saturation attacks. However, if the time window is too large, the detection 

method response time will be long, and the attack may saturate the entire network. If the 

time window is too small, the amount of traffic may be inadequate to obtain accurate 

detection results. Also, the detection method will cause performance overhead over the 

SDN controller since it will be executed frequently. Thus, identifying the proper time-

window for running the detection method and analyzing the traffic is a crucial point.  

Secondly, machine learning approaches have deficiencies in detecting unknown 

saturation attacks. An unknown attack is an attack which is not represented in the dataset 

used to train the attack detection model [51]. Because there are no instances of the attack 

included in the training set, supervised machine-learning methods are unable to classify it. 
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Thus, evaluating the supervised and semi-supervised classifiers detection performance of 

unknown saturation attacks is another concern. 

For the first issue, we have evaluated the detection performance of state-of-the-art 

machine learning algorithms, specifically, the widely-used Support Vector Machine 

(SVM) [52], K-Nearest Neighbor (K-NN) [53] classifier, and Naïve-Bayes (NB) [54] 

classifier. We used a variety of time-windows of OpenFlow traffic analysis to determine 

the proper time-window for the detection of saturation attacks as well as the most effective 

machine learning classifier. In addition, we studied the impact of different time-windows 

of OpenFlow traffic analysis on the machine learning classifiers’ detection performance by 

conducting a false-negative analysis.  

For the second issue, we evaluated the supervised machine classifiers such as SVM, 

K-NN, and NB classifiers and semi-supervised algorithms such as One-class SVM, 

Isolation Forest, Basic Autoencoder, and Variational Autoencoder performances for 

detecting unknown saturation attacks.  In the experiments, we excluded the observations 

related to one type of saturation network attack from the training dataset, to act as an 

“unknown” attack for the models. The test dataset included the observations from the 

unknown attack and a random set of normal traffic observations.  

Before implementing the proposed defense system, extensive experiments have 

been conducted using both physical and simulated SDN environments through offline 

settings. Therefore, the saturation attack detection method can be incorporated into the 

proposed defense system to detect the saturation attacks in online settings. 

In the upcoming sections, we first introduce the features that were extracted from 

the OpenFlow traffic and explain the approach for preprocessing the OpenFlow traffic to 
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generate multiple data sets for different time windows. We continue by discussing the 

supervised and semi-supervised algorithms used in this research for detecting the known 

and unknown saturation attacks and describing the experimental setups and OpenFlow 

traffic collection. Then the validation metrics used in this research to evaluate the 

performance of the machine learning classifiers are described, finally, the experimental 

results are presented. 

3.1 Feature Extraction and Data Preprocessing      

OpenFlow traffic is a sequence of packets that are transferred between the 

controller and the OpenFlow switch. Each packet has different attributes such as the packet 

time, the source and the destination IP addresses, the OpenFlow message type, and the 

length of the packet.  Formally, the OpenFlow traffic, 𝑂𝐹, is a sequence of OpenFlow 

packets  < 𝑝1, 𝑝2 …, 𝑝n>  captured during a normal or attack session, where each packet, 

pi, has  <𝑡𝑖𝑚𝑒, 𝑠𝑟𝑐𝐼𝑃, 𝑑𝑠𝑡𝐼𝑃, 𝑂𝐹 𝑚𝑠𝑔, 𝑙𝑒𝑛𝑔𝑡ℎ>.  

OpenFlow traffic consists of 29 types of OpenFlow messages that can be 

categorized into three main types: (1) controller-to-switch messages that are sent from the 

controller to the switch to acquire information and modify the switch state (e.g., Packet-

out, Packet-mod, and Role-request), (2) asynchronous messages that are sent by the switch 

to the controller to inform about new incoming packets, errors, and switch state changes 

(e.g., Packet-in, Flow-removed, Port-status, and error),  and (3)  symmetric messages that 

are sent between both sides such as Hello and Echo messages.  

From the captured OpenFlow traffic, four features are extracted: 1) number of 

OFPT_PACKET_IN messages sent from the switch to the controller, (2) number of 

OFPT_PACKET_OUT messages sent from the controller to the switch, (3) number of  
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OFPT_PACKET_MOD messages sent from the controller to the switch, (4) number of 

TCP_ACK messages sent from the switch to the controller, or vice versa.  These features 

are selected based on the analysis and observation of the OpenFlow traffic behavior in 

physical and in simulated SDN environments which are in attack mode and normal mode. 

The features are sensitive to saturation attacks as well as to hybrid saturation attacks, which 

are a combination of different saturation attacks that target the SDN environment.  

The saturation and the hybrid saturation attacks have a different impact on these 

features. Figure 6 shows the impact of the UDP saturation attack on the Packet-in and 

Packet-out features. When the UDP saturation attack occurs, the zombie hosts try to flood 

the SDN network by generating a massive amount of IP packets including UDP datagrams. 

Meanwhile, the OFPT_PACKET_IN messages generated by the UDP attack come from 

the switch that is connected to the zombie’s host. Thus, the number of OFPT_PACKET_IN 

messages in the OpenFlow traffic increases significantly, and the number of 

OFPT_PACKET_OUT messages decreases significantly. Table 1 summarizes the changes 

to each feature caused by UDP, SYN, ICMP, IP Spoofing, and SARFU TCP saturation 

attacks.

 

Figure 6 Effect of UDP Flooding Attack on Packet-In & Packet-Out Messages 
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Table 1 Impacts of Saturation Attacks on the Key OpenFlow Messages 

Saturation 

Attack 

The Impact 

#Packet_In #Packet_Out #Packet_Mod #TCP_ACK 

UDP Significant 

increase followed 

by a decrease 

Significant 

decrease 

Significant 

decrease 

Significant 

increase 

SYN Significant 

increase 

Increase and 

then a 

significant 

decrease 

Increase and 

then a 

significant 

decrease 

Significant 

increase 

ICMP Insignificant 

increase 

Increase for 

short period 

of time 

followed by a 

significant 

decrease 

Increase for a 

short period of 

time followed 

by a 

significant 

decrease 

Noticeable 

increase 

followed by 

significant 

decrease 

IP Spoofing Increase followed 

by significant 

decrease 

Increase 

followed by 

significant 

decrease 

Increase 

followed by 

significant 

decrease 

Increase and 

significant 

decrease to be 

a zero packet 

SARFU TCP Increase and then 

noticeable 

decrease and then 

decrease to zero 

packets. 

Increase and 

then 

significant 

decrease to 

zero packets. 

Increase and 

then 

noticeable 

decrease and 

then a 

significant 

decrease to 

zero packets. 

Increase and 

then 

noticeable 

decrease. 

 

To discover the appropriate time-window for detecting saturation attacks, we tested 

different time windows of OpenFlow traffic analysis and evaluated their impact on the 

detection performance of the SVM, K-NN, and NB classifiers. From each time window, a 

different dataset was generated from the collected OpenFlow traffic in both physical and 

simulated SDN environments. The dataset’s time-windows ranged from one minute to the 

attack duration.  A detailed description of our approach for extracting these datasets from 
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the OpenFlow traffic is given in Algorithm 1. The features collected in each dataset were 

the OpenFlow traffic session 𝑂𝐹, the dataset time-window T, the dataset time-shifting S, 

and the OpenFlow traffic type L, which is <

𝐿  ⃪ 0 𝑖𝑓 𝑂𝐹 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑟 𝐿  ⃪ 1 𝑖𝑓 𝑂𝐹 𝑖𝑠 𝑎𝑡𝑡𝑎𝑐𝑘 > . The output was a dataset 𝑋𝐽 = 

(x1, 𝑥2, 𝑥3. . . , 𝑥n ) which was a sequence of labeled samples, with each sample  𝑥j in the 

form of <number of Packet_in messages, number of Packet_out messages, number of 

Packet_mod messages, number of TCP_ACK message >.  

Lines (9-18) deal with extracting the features from the OpenFlow traffic packet 

sequence OF for the specified time-window T. For each packet, we extracted the OpenFlow 

message type. If the message type matched any of the messages, the corresponding counter 

increased by one (lines 10-17). When the difference between the packet time and the 

starting time is larger than T, a new sample 𝑥𝑗  was created with the corresponding label 

and increased the dataset index 𝐽 by one (lines 5-8). After each new sample 𝑥𝑗, the value 

of the  𝑓𝑖𝑟𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝑛𝑑𝑒𝑥 updated by adding the shifting parameter S for the next shift 

starting index (line 20). The reason behind including the shifting parameter was to increase 

the overlapping in the generated datasets.  
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Algorithm 1: OpenFlow Dataset Generation 

Input OpenFlow traffic OF, Time-Window T, Time-Shifting S, Traffic-Type L {0,1} 

Output Dataset XJ 

Declare packetIn, packetOut, packetMod, tcpAck, Msg(type) 

Steps  

1 J=0 (the index of the output sample XJ) 

2 Repeat: 

3 firstPacketIndex=1 (pi is the first packet of the current shift) 

startTime = ptime(firstPacketIndex)
 (is the first packet time of the current shift) 

4     for ( i =  firstPacketIndex;  i < n;  i + +) do  

5 if ptime − startTime > T   
 

6     createNewSample_Xj(packetIn,packetOut,tcpAck,J++) 

    addNewSampleXjxj with corresponding traffic type L    
   and increase J by one. 

7    break; 

8 Endif 

9     switch (Msg(type)) { 

10      Case1: Msg(type) = “OFPT_PACKET_IN” 

11             packetIn += 1; 

12          Case2: Msg(type) = “OFPT_PACKET_OUT” 

13                     packetOut + = 1; 

14       Case3: Msg(type) = “OFPT_PACKET_MOD” 

15                    packetMod += 1; 

16        Case4: Msg(type) = “TCP_ACK” 

17               tcpAck + = 1; 

18  } 

19     end for 

20 firstPacketIndex=updatePacketIndexNextShfit(firstPacketIndex,S) 

21 Until firstPacketIndex > n 
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3.2 Supervised and Semi-Supervised Classifiers 

We studied the adoption of supervised and semi-supervised machine learning 

algorithms to determine the most accurate and effective approach for detecting known and 

unknown saturation attacks against SDN networks. Several supervised and semi-

supervised classifiers have been trained using the datasets 𝑋𝐽 that were obtained in the 

previous sections and evaluated their detection performance. In this work, K-NN, SVM, 

and NB classifiers were adopted as supervised machine learning classifiers. These 

classifiers have been widely used to detect DoS attacks in SDNs, since they are robust even 

with a noisy training dataset. However, these classifiers require a training dataset that 

includes a large number of specimens of all saturation attack types, which is hard to obtain 

in real-life. Therefore, these classifiers are deficient in detecting the OpenFlow switches 

which are targeted by unknown saturation attacks. The unknown saturation attack is an 

attack that has been mislabeled by the training model due to the absence of similar samples 

in the training dataset. 

Therefore, the semi-supervised machine learning algorithms such as One-Class 

SVM [55], Isolation Forest [56], Basic Autoencoder [57], and Variational Autoencoder 

[58] were selected. These algorithms can be trained without the need to label the training 

dataset observations. Also, they can be trained using an out anomalies dataset (i.e., normal 

traffic dataset) and obtain a high anomaly detection result, such as the Variational 

Autoencoder algorithm.   

 Autoencoder is an artificial neural network composed of two functions: the 

encoder and the decoder. The encoder function E is a neural network transforming the 

original features x in a new space 𝑦 = 𝐸(𝑥). Usually, y, is in a lower dimension of the 
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original space. The decoder function D transforms the features Y from the new space to the 

original space 𝑥~ = 𝐷(𝑦). This neural network is trained by minimizing the reconstruction 

error, i.e. 𝑙𝑜𝑠𝑠 = ||𝑥 − 𝑥~||
2
. Once trained, the reconstruction error on a new example can 

be used as a score to detect whether an example is a training example or not. The smaller 

the reconstruction score, the higher the likelihood that the new example is similar to the 

one used in the training. For similar inputs vectors x,x’, a basic autoencoder can generate 

very different encoding representations y,y’. Thus, similar instances cannot be placed in 

the same encoded space, since it may lead to poor detection performance.  

To overcome this issue, Variational Autoencoders are defined. A Variational 

Autoencoder is represented by a distribution of vectors, rather than a vector as the basic 

autoencoder, as shown in Figure 7.  The encoder network generates the mean vector 𝜇 =

Ε𝜇(𝑋) and the covariance matrix Ʃ = 𝐸Ʃ(𝑋) that are used in a multivariate Normal 

distribution 𝒩(𝜇, Ʃ) generating the encoding 𝛾 ∼ 𝒩(𝜇, Ʃ). In addition to the standard 

reconstruction error, the Variational Autoencoder imposes that the distribution of the 

encoded vector is approximately similar to a normal distribution with mean zero and 

standard deviation (i.e. they use the encoding Kullback-Leibler divergence regularization 

term).  
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Figure 7  Variational Autoencoder Architecture 

The Variational Autoencoder, because of regularization forces has similar input to 

be encoded in similar regions. This property is crucial because it allows enlarging the space 

of the encoded vector which becomes more suitable for attack detection. Figure 7 shows 

the architecture of the Variational Autoencoder and the procedure based on the 

reconstruction error for classifying attacks versus normal instances.   

The reconstruction error by itself does not provide a complete way to classify if an 

example is an attack or not. Therefore, in this approach, we used the idea of the percentile 

threshold as described in Figure 7. By using all the reconstruction errors for each normal 

instance of the training set, it's computed the percentile 𝛼99 at 99%. The value 𝛼99 is used 

as a threshold for the reconstruction error to determine if an instance is an attack (i.e. 

||𝑥 − 𝑥~||
2 

>  𝛼99  or not i.e. ||𝑥 − 𝑥~||
2 

≤  𝛼99. Computing the percentile 99% as a 

threshold means assuming that 1% of the normal instances can be very similar to the attack 

instances. Note that the semi-supervised algorithms are trained only with normal instances 

(i.e., out anomaly dataset). Therefore, they don't require any specification in the training 
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phase of attack instances, which makes them more suitable to detect the unknown 

saturation attacks. 

3.3 Experiment Setup and Data Collection 

3.3.1 Physical and Simulated SDN Environment 

We collected the OpenFlow communication channel traffic using both physical and 

simulated SDN environments. The main advantage of using a physical SDN environment 

is the capacity to replicate the workload of a real-world SDN network and the internet 

traffic generated by real-world applications. Figure 8 shows the physical environment 

architecture, which consists of a Pica8 P-3290 OpenFlow switch, a Floodlight Master 1.2v 

as an SDN controller, and five hosts named from h-1 to h-5. Table 2 shows the 

specifications and the configurations for each host.  

 
Figure 8 SDN Physical Environment Architecture  
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Table 2 Physical Environment Configuration and Specifications 

Host Name CPU Info Memory Info Operating System 

Controller Machine Intel Core (i7) 

2.5GHz 

16GB Ubuntu 16.04.5 

LTS 

h-1 Intel Core (i5) 

2.5GHz 

8GB Ubuntu 16.04.5 

LTS 

h-2 Intel Core (i5) 

2.5GHz 

8GB Ubuntu 16.04.5 

LTS 

h-3 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5 

LTS 

h-4 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5 

LTS 

h-5 Intel Core (i5) 

2.4GHz 

8GB Ubuntu 16.04.5 

LTS 

 

The physical environment is limited by the network scale and topology. A 

simulated SDN environment was created using the Mininet v2.1.0 tool [59]. The simulated 

environment enables the creation of different network topologies (i.e., tree topology, star 

topology, mesh topology, and linear topology) with a different network scale (i.e., number 

of hosts, number of switches). Table 3 shows the main configurations of the simulation 

SDN network which were obtained from the Mininet examples. Currently, Mininet runs on 

a single machine and simulates all the OpenFlow switches, hosts, and links in a single 

operating system. All of these (e.g., number of switches) share the same hardware 

resources, which discourage building a large-scale network and limit the capacity of the 

Mininet for hosting real-world applications that can mimic real network behaviors.  

The proposed approach utilized the generated OpenFlow traffic of a single-

controller SDN environment. However, the proposed approach could be extended to a 

multiple-controller SDN environment by collecting the OpenFlow traffic of each controller 

and generating the corresponding datasets in the same fashion.   
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Table 3 SDN Simulation Environment Configurations and Specifications 

Parameter Description Default Value 

Nc Number of Controllers 1 

Ns Number of Switches 10-200 

Nh Number of Hosts 50-300 

Nt Network Topology Star, Mesh, Ring, Tree 

 

3.3.2 OpenFlow Traffic Generation 

3.3.2.1 Benign Traffic 

The benign OpenFlow traffic was collected from both physical and from simulated 

environments by using different traffic generation tools that mimic real-world network 

behaviors. For the physical environment, four tools were used to generate the OpenFlow 

traffic. Firstly, the D-ITG (Distributed Internet Traffic Generator) [60] was employed. D-

ITG has ITGSend and ITGRecv components. ITGSend can generate parallel traffic flows 

and send it to different ITGRecv instances. ITGRecv is responsible for receiving traffic 

flows from ITGSend. D-ITG provides the ability to generate multiple unidirectional traffic 

flows for different protocols, such as IPv4, IPv6, TCP, UDP, ICMP, SCTP (Stream Control 

Transmission Protocol), DCCP (Datagram Congestion Control Protocol), DNS, Telnet, 

and VoIP.  

Secondly, we used the Nping tool [61], which is open-source software that can 

generate traffic for different protocols, such as the ARP protocol. By using Nping, we were 

able to customize the packet size and the transmission intervals of the generated traffic.  

Thirdly, in order to generate a concurrent stateful and stateless traffic that simulated 

the internet traffic, the Cisco’s TRex realistic traffic generator [62] has been used. TRex 
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gives us the ability to generate almost any kind of L4-7 traffic, based on the smart reply of 

real traffic templates. It can amplify the traffic of the server and the client-side up to 

200Gb/sec.  

Finally, we used OSTINATO [63] to configure and generate many traffic streams 

for different protocols such VLAN, IPv4, IPv6, stateless TCP, ARP, ICMPv4, ICMPv6, 

IGMP (Internet Group Management Protocol), MLD (Multicast Listener Discover), RTSP 

(Real-Time Streaming Protocol) and NNTP (Network News Transfer Protocol). For the 

simulated environment, we were able to use the Nping and OSTINATO tools only, due to 

the simulated environment limitation mentioned above.  

In both environments, the Wireshark tool [64] was used to capture the OpenFlow 

traffic between the SDN controller and the OpenFlow switches. As shown in Table 4, the 

total size of the captured benign OpenFlow traffic from the physical environment was 250 

GB, the total duration was about 137 hours, and the total simulated benign traffic was about 

143GB, for a total duration of 100 hours. 

3.3.2.2 Malicious Traffic 

In the physical and simulated environments, Hping3 [65] and LOIC (Low Orbit Ion 

Cannon) [66] were employed to launch the saturation network attacks. The Wireshark tool 

was used to capture the OpenFlow malicious traffic between the SDN controller and the 

OpenFlow switch. Hping3 is an open-source tool for network stress testing, as well as DoS 

attacks. LOIC is a well-known tool used to launch DoS attacks against different agencies 

[67]. By using these tools, we were able to launch 31 saturation attacks that covered all 

combinations of SYN flooding, UDP flooding, ICMP, IP Spoofing, and SARFU-TCP 

flooding. In both environments, each of the attacks flooded the control and data planes. As 
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shown in Table 4, the total size of the physical environment anomaly traffic was 50Gb and 

the duration for each attack was about 30 minutes. For the simulated environment, the total 

size of the anomaly traffic was about 100 GB and the attack duration was about 20 minutes. 

Table 4 Physical and Simulated OpenFlow Traffic Description 

Environment 

Type 

Traffic 

Type 

Number 

of 

Sessions 

Duration 

of an 

individual 

session 

Total 

Duration 

Total Size 

of 

Captured 

Traffic 

Files 

 

Physical 

Environment 

Benign 

Traffic 

104 1—4 hrs. 137 hrs. 250 Gb 

Attack 

Traffic 

 

31 30 

minutes 

15.5 hrs. 50 Gb 

 

Simulation 

Environment 

Benign 

Traffic 

100 1hr 100 hrs. 

 

143 Gb 

Attack 

Traffic 

31 20 

minutes 

10.3 hrs. 100 Gb 
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3.4 Evaluation Metrics 

Before describing the evaluation metrics, which were used to evaluate the 

classifiers’ detection performance for different time-windows, we should describe some 

terminology used in the evaluations. A True-Positive (TP) is an observation from the 

testing sample which has been correctly classified as an attack. A False-Positive (FP) is an 

observation that has been incorrectly classified as an attack, i.e., a normal observation 

which has been mislabeled as an attack. A False Negative (FN) is an observation that has 

been incorrectly classified as a normal (non-attack) observation. Finally, a True Negative 

(TN) is an observation that has been correctly classified as a normal observation. 

 In our models, we calculated the accuracy of the predictions from the K-NN, SVM, 

and NB models. The accuracy is defined as the total number of correct predictions divided 

by the total number of predictions made by the model. However, accuracy alone is typically 

insufficient for judging the effectiveness of a classification model [68]. Thus, instead of 

using the accuracy, three measures, the precision, the recall, and the F-1 score metrics have 

been used to evaluate the impact of different time-window traffic analysis on our model's 

detection performance. Precision is defined as the proportion of true-positive observations 

divided by the total number of true positive and false-positive observations.  

Having a high precision means a low false-positive ratio, which is an important 

indicator of the reliability of the model’s predictions. For example, a model that has 95% 

precision when classifying traffic samples is correct 95% of the time. The recall is defined 

as the ratio of the true positives to the total of true positives and false negatives. However, 

high recall indicates a low false-negative ratio, which is a confidence indicator of the 

model’s ability to predict the actual positives. For instance, a model with a 90% recall can 
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correctly identify 90% of the actual positives. Finally, the F1 score is a balance between 

recall and precision. Hence, for the saturation detection system, it is highly important to 

obtain a high precision with a high recall, and a high F1 score [68].         

3.5 Experiment Results and Discussion  

This research aimed to answer the following questions: 

 RQ1: What is a proper time-window of OpenFlow traffic analysis for detecting 

saturation attacks?  

 RQ2: How do different time-windows affect the detection performance of a 

classifier?  

 RQ3: Are classifiers effective in the detection of unknown saturation attacks?   

3.5.1 Proper Time-Window for Detection of Known Attacks 

This section describes the experiments that were conducted to discover the proper 

time-window for OpenFlow traffic analysis to detect the saturation network attacks. Also, 

the impact of different time-windows of OpenFlow traffic analysis on the detection 

performance of the known saturation network attacks for SVM, K-NN classifiers. We refer 

here to the known saturation attack as an attack that has been included in the training phase, 

in other words, the training dataset has many samples that describe the attack behavior and 

our classifier models have been trained to detect this attack. 

In the physical environment, 30 datasets were generated from the collected 

OpenFlow traffic and each dataset represents a different time-window, ranging from 1 

minute to 30 minutes. In our experiments, each dataset is used to train and test the K-NN, 

the SVM, the NB models and we used the precision, recall, and F1 score metrics to evaluate 

the performance of our models and analyze the impact of different time-windows on the 
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model's prediction results. We now discuss how we determined the earliest proper time-

window for each classifier, from these experimental results. 

Figure 9 shows the precision, recall, and F1 score metrics for the K-NN models 

when the time-window ranges from 1 minute to 30 minutes. The highest detection rate for 

the K-NN classifier is obtained when the time-window is equal to 1 minute: the precision 

is 96%, with recall 95%, and the F1 score is 95%. The lowest detection rate is when the 

time-window is equal to 30-minutes in which case, the corresponding precision is 47%, 

with a recall of 98%, and the F1 score is 64%. As a result, in the physical environment, the 

optimal time-window for the K-NN classifier is one minute of traffic analysis. To support 

this conclusion, Figure 9 shows that the precision and F-1 score decrease as the time-

window of traffic analysis increases.  

 
Figure 9 K-NN Precision, Recall, and F1 Score with Different Time Windows 

Using Physical Environment 

Figure 10 shows the values of the evaluation metrics for the SVM models. The 

highest detection result is when the time-window equals 1 minute; in this case, the precision 
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is 91%, with a recall of 91%, and the F1 score is 91%. In contrast, the lowest precision 

achieved by these models is 46%, with a recall of 99%, and an F1 score of 62%. This is 

when the time-window is 30 minutes. Figure 10 shows the impact of time-window length 

on the SVM classifier performance. Notably, the precision and F1 score decrease and the 

recall increase as the time-window increases. Thus, the optimal time-window for the SVM 

classifier in the physical environment is also 1 minute.   

 
Figure 10  SVM Precision, Recall, and F1 Score on with Time Windows Using 

Physical Environment 

Similar to the approach for the K-NN and SVM classifiers, we performed 30 

experiments to evaluate the NB classifier detection performance for the same time-

windows. Figure 11 shows the results of our evaluation.  The highest precision is 99%, 

with a recall of 80%, and an F1 score of 89%, when the time-window equals three minutes. 

The lowest precision is 52%, with a recall of 53%, and an F1 score of 52% when the time 

window equals 30 minutes. In the physical environment, the 3-minute time-window seems 

optimal for the NB classifier in order to obtain a high detection rate. 
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Figure 11 NB Precision, Recall, and F1 Score with Different Time Windows 

Using Physical Environment 

In the simulation environment, 20 datasets were generated and used in training and 

testing the proposed classifiers. Similar to the physical environment experiments, each 

dataset represented a different time-window of traffic analysis. In this case, the dataset 

time-windows ranged from 1 minute to 20 minutes. Again, we used the precision, recall, 

and F1 score to evaluate the performance of our classifiers in each experiment. 

Figure 12 shows that when the time-window equals 1 minute, the K-NN classifier 

achieves a high precision of 97%, with a recall of 99%, and an F-1 score of 98%. When 

the time-window equals 18 minutes, the K-NN classifier achieves the highest precision 

overall (100%) but suffers from low recall (19%) and a low F1 score (35%). As a result, 

we conclude that the 1-minute time-window is optimal for the K-NN classifier, in order to 

obtain the highest detection results in the simulation environment. Figure 12 shows the 

impact of the time window on the detection performance of the K-NN classifier. Increasing 

the time-window led to increased precision but decreased the recall and the F1 score ratios.  
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Figure 12 K-NN Evaluation Metrics Result with Different Time Windows Using 

Simulation Environment 

As shown in Figure 13, the SVM classifier achieved the highest detection results 

with a time-window of 2 minutes. The corresponding precision is 81%, with a recall of 

89%, and the F1 score is 85%. Moreover, Figure 13 shows noticeable changes in the SVM 

classifiers’ detection performance when the time-window increases. For example, when 

the time-window equals 20 minutes, the detection results declined significantly to a 

precision of 7%, recall of 35%, and an F1 score of 11%.  

Figure 14 shows the metric values for the NB classifier model results. The NB 

model obtained the highest detection results when the time-window was 1 minute, with 

corresponding precision of 85%, recall of 96%, F1 score of 91%. The lowest precision was 

11%, with a 37% recall rate, and an F1 score of 17%. In our simulation environments, we 

found that the 1-minute time-window is optimal for the NB classifier to detect the attack 

traffic. The experimental results show the critical role that the time-window of OpenFlow 

traffic analysis plays on the detection performance of our machine learning classifiers. In 
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the upcoming section, we describe our investigation and share our findings on the impact 

of the time window on the detection performance of our classifiers.    

 
Figure 13 SVM Evaluation Metrics Result with Different Time Windows Using 

Simulation Environment 

 
Figure 14 NB Evaluation Metrics Result with Different Time Windows Using 

Simulation Environment 
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3.5.2 Impact of Time-Window Variations 

To better quantify the impact of different time-windows of OpenFlow traffic 

analysis on the detection performance of the K-NN, SVM, and NB classifiers, we 

conducted a false-negative analysis. The purpose of a false-negative analysis is to find all 

the samples that are falsely identified by our classifiers and the time slot of each sample. 

In this application, the ‘false negative’ samples represent the attack samples that were 

falsely identified as benign samples by the trained models.  

We conducted the false-negative analysis, after performing the physical and 

simulated environment experiments, by allocating the attack samples for each experiment 

dataset with corresponding trained K-NN, SVM, and NB models, wherein, each 

experiment dataset represents a different time-window of OpenFlow traffic analysis. 

Therefore, the attacking samples were fed to the trained models and extracted the samples 

that were falsely identified by the models as a normal sample along with the time slot of 

that sample. Based on the false-negative analysis results, we discovered that most of the 

false negatives occurred at the end of the attack time.  

As shown in Figures 9-14, the recall ratios, precision ratios, and F1 scores in the 

experiments on both environments decreased significantly when the time-window was 

equal to 15 minutes or longer. The reason behind the increasing number of false negatives 

when the time-window increased is due to the behavior of the SDN environment when it 

is under a saturation attack. Technically, in the early stages of a saturation attack (i.e. when 

the attack is initiated), both the switch and the controller have enough capacity to process 

the incoming attack packets. Also, the OpenFlow connection channel has sufficient 

bandwidth to transfer the OpenFlow messages at this time. This leads to a significant 
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increase in the numbers of Packet-In, Packet-Out, Packet-Mod, and TCP-ACK messages 

in the OpenFlow traffic. In this situation, the K-NN, the SVM, and the NB classifiers were 

able to accurately identify the attack samples from the benign samples, as evidenced by the 

high precision ratios, recall ratios, and F1 scores of the classifiers. 

Subsequently, as the attack takes over the SDN network, the OpenFlow switch and 

the controller become overwhelmed. At this point, they do not have sufficient capacity to 

process the huge amount of malicious traffic, and the OpenFlow channel is also congested. 

Thus, the occurrences of Packet-In, Packet-Out, Packet-Mod, and TCP-ACK messages in 

the malicious OpenFlow traffic are similar to the occurrences of these messages in the 

benign OpenFlow traffic. Therefore, the K-NN, SVM, and NB classifiers are more likely 

to falsely identify the attack samples that are similar to benign samples as normal samples, 

which leads to an increase in the number of false negatives. This, in turn, reduces the recall 

ratios. They may also falsely identify the benign samples as attack samples, which in turn 

increases the false positives and decreases the precision ratio. As a result, the overall 

detection performance of the machine learning classifier suffers. 

3.5.3 Detection of Unknown Attacks 

An unknown attack is an attack that has been mislabeled by the training model due 

to the absence of similar samples in the training dataset. In our experiments, we excluded 

the targeted attack and its combination of samples from the training dataset, in order to 

present it as an unknown attack to the trained model. In this case, the training dataset 

included benign traffic samples, as well as the remaining attacks and their respective 

samples.  
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The testing dataset consisted of the unknown attack samples, as well as randomly 

selected benign traffic samples. For example, given that X is the training dataset that 

consists of attack samples and normal traffic samples, Y is the testing dataset that includes 

attack samples and normal traffic samples, G is the unknown attack samples only, and C is 

the attack combination samples, the X training datasets and Y testing datasets are in the 

form of: 

 X(trainingSet) = X - 𝐺 -  𝐶 (3.1) 

 Y(testingSet)= G + 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑆𝑎𝑚𝑝𝑙𝑒𝑠 (3.2) 

In addition, we studied the impact of different time-windows of traffic analysis on 

the detection results by selecting the proper time-window of OpenFlow traffic analysis for 

each classifier in each environment, based on the previous experimental results. Figure 15 

summarizes the detection performance results of our classifiers in both physical and 

simulated SDN environments.  

 
Figure 15 Unknown Saturation Attacks Detection Results 
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Based on the reported results, the classifiers are capable of detecting the unknown 

saturation attacks in both environments. In particular, the K-NN classifier shows promising 

detection results in both SDN environments. Also, the reported results show that the 

detection performance of the classifiers was influenced by the SDN environment setup. For 

instance, the SVM classifier obtained a 78% precision ratio, a 17% recall ratio, and a 28% 

F-1 score for detecting the IP-Spoofing attacks in the physical environment, whereas, it 

obtained 100% precision, 70% recall, and an 82% F-1 score in the simulated environment 

for the same attack.  

Based on these results, we believe that there is a relationship between the SDN 

environment setup and the detection performance of our classifiers. For instance, the SVM 

classifier obtained a 78% precision ratio, a 17% recall ratio, and a 28% F-1 score for 

detecting the IP-Spoofing attacks in the physical environment, whereas, it obtained 10% 

precision, 70% recall, and an 82% F-1 score in the simulated environment for the same 

attack. We hypothesize that all the different attacks in the training set allow the classifier 

to generalize the one missing. To confirm this hypothesis, we consider the K-NN (our best 

choice) in the case where only one kind of attack is used in the training set.  

The results in Table 5 show that the K-NN in the worst-case scenario obtained a 

low detection performance result in detecting the unknown saturation attacks. This means 

that supervised classification cannot be trusted for unknown SDN attacks in general. For 

this reason, we consider semi-supervised classifiers such as Isolation Forest, One Class-

SVM, Basic Autoencoder, and Variational Autoencoders. In this case, the training set 

comprises only the normal instances, whereas, the testing set consists of all the normal and 
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attack instances. Table 6 demonstrates the average results of the 10-fold cross-validation 

of the semi-supervised classifiers. 

 The semi-supervised algorithms have higher detection performance results of 

unknown saturation attacks than the supervised ones. Specifically, the Variational 

Autoencoder is effective in detecting unknown saturation attacks and obtains comparable 

results to the supervised classifiers in detecting the known saturation attacks. Thus, in this 

approach, the online saturation attack detection module utilized the Variational 

Autoencoder algorithm as a machine learning classifier to detect the known and unknown 

saturation attacks in SDN.  

Table 5 K-NN Unknown Detection Result of One Attack Training  

 

Attack 

Physical Environment Simulated Environment 

Precision Recall F1-Score Precision Recall F1-Score 

UDP 0.99 0.23 0.38 0.95 0.80 0.86 

SYN 0.96 0.21 0.41 0.96 0.77 0.85 

SARFU 0.99 0.24 0.38 0.96 0.77 0.85 

ICMP 1.00 0.30 0.30 0.95 0.82 0.87 

IP-Spoofing 0.97 0.13 0.22 0.96 0.74 0.83 

 

Table 6 Semi-Supervised Detection Results  

 

Algorithm 

Physical Environment Simulated Environment 

Precision Recall F1-

Score 

Precision Recall F1-Score 

Isolation Forest 0.56 0.92 0.69 0.38 1.00 0.56 

One-Class SVM 0.22 0.97 0.35 0.116 1.00 0.20 

Basic Autoencoder 0.99 0.24 0.38 0.96 0.80 0.86 

Variational 

Autoencoder 

0.86 0.93 0.90 0.85 0.97 0.91 

 

Nonetheless, we have demonstrated that the classifiers are capable of detecting 

unknown saturation attacks with reasonable accuracy. We believe this is due to several 
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characteristics of the problem. For (1), the saturation network attacks have a high degree 

of self-similarity. [69] studied the self-similarity characteristics of benign and malicious 

OpenFlow traffic. Their results show that the normal OpenFlow traffic has a low degree of 

self-similarity and has different statistical characteristics, whereas, the saturation attacks 

on OpenFlow traffic have a higher degree of self-similarity. (2) Our features can accurately 

reflect abnormal behavior within OpenFlow traffic because they represent the main 

messages of the OpenFlow v1.5 protocol. In other words, the models are sensitive to any 

abnormal activity that occurs in the OpenFlow traffic between the control and data planes, 

because this activity is encoded in the features we have chosen for our datasets. Essentially, 

all the saturation attacks exhibit a similar technique of flooding the SDN environment by 

generating a vast number of table-miss packets; therefore, they have a similar impact on 

the OpenFlow messages.  

3.6 Summary  

In this chapter, we have studied the K-NN, SVM, and NB classifiers for the 

detection of saturation attacks in physical and simulated SDN environments. The 

experiment results have demonstrated that the time window of OpenFlow traffic has a 

noticeable impact on the detection performance and that the classifiers were capable of 

detecting known types of saturation attacks in SDN.  

Also, we have investigated the capability of semi-supervised and supervised 

classifiers for detecting unknown saturation attacks. Based on the reported results, the 

supervised classifiers such as K-NN, SVM, and NB are deficient in detecting unknown 

saturation attacks, whereas the semi-supervised classifiers such as One-Class SVM, 

Isolation Forest, Basic Autoencoder, and Variational Autoencoder can detect both known 
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and unknown saturation attacks. Specifically, the Variational Autoencoder obtained high 

performance in detecting saturation attacks against SDNs.  
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CHAPTER FOUR: VICTIM SWITCH DETECTION 

The victim switch detection module is triggered as soon as the saturation attack 

detection module (see Chapter 3) determines that the SDN network is under a saturation 

attack. It is responsible for identifying the OpenFlow switches targeted by known and 

unknown saturation attacks. Determining which OpenFlow switch in an SDN network is 

targeted by a saturation attack is an issue. In a traditional network, the task of identifying 

the victim switch is simpler. For example, in the case of a traditional network, determining 

whether a switch is compromised or not only requires examining its forwarding behaviors. 

If the forwarding behaviors diverge from the switch’s predefined forwarding rules, then 

the switch is compromised. However, in an SDN, different controller applications and 

modules are involved in the programming of the OpenFlow switches. Thus, the flow-rules 

of an OpenFlow switch dynamically change over time. Consequently, the forwarding 

behaviors of an OpenFlow switch do not exhibit a single set of behavioral norms, which 

makes the task of identifying the victim switch difficult. 

Furthermore, a table-miss occurs because of a new incoming benign packet or a 

malicious packet. Neither one matches any of the OpenFlow switch flow-entries. In both 

cases, the OpenFlow switch behavior is identical: it generates a Packet-In message and 

forwards it to the controller. Next, the controller decides on the proper action to deal with 

the table-miss packet, either installing a new flow-entry into the switch flow-table using a 

Packet-Mod message and allocating the table-miss packet route using a Packet-Out 
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message. These steps occur without the controller knowing if the table-miss packet is a 

malicious one or not.  

In short, the behavior of the OpenFlow switch and the controller when a table-miss 

occurs is the same, whether the table-miss is due to a malicious packet or due to a new 

benign packet. This makes the determination of the victim OpenFlow switch a complex 

issue.  

To complicate the matter, malicious OpenFlow traffic generated by a saturation 

attack, and benign OpenFlow traffic generated using a normal traffic generation tool or any 

SDN application, contain the same OpenFlow messages.   

Figures 16 and 17 show samples of benign and malicious OpenFlow traffic that 

consist of the OpenFlow messages that have been transferred between the controller and 

the OpenFlow switches. The benign OpenFlow traffic was generated using the D-ITG and 

Cisco Trex normal traffic generation tools and the malicious OpenFlow traffic was 

generated using the HPING3 flooding tool. From these two samples, we can see the 

similarity in the OpenFlow messages between the malicious and the benign. These samples 

also highlight the lack of unique features that could be used to distinguish malicious 

OpenFlow traffic from legitimate traffic. 

 
Figure 16 OpenFlow Benign Traffic 
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Figure 17 OpenFlow Malicious Traffic 

In this chapter, we study the adoption of supervised and semi-supervised machine 

learning algorithms with three methods of victim switch detection to determine the most 

accurate and effective approach for identifying the victim OpenFlow switches, as explained 

below.  

4.1 Victim Switch Detection Using OpenFlow Messages Header 

This is a lightweight method that can be used to detect the victim OpenFlow 

switches by inspecting OpenFlow message headers. This method works as follows. Firstly, 

classify the OpenFlow messages based on the OpenFlow switch DPID. Secondly, by 

inspecting the OpenFlow message headers, extract each message type. Finally, based on 

message type, extract the following features: (1) number of Packet-In messages generated 

by a switch, (2) number of Packet-Out messages received by a switch, (3) number of 

Packet-Mod messages received by a switch, and (4) number of TCP-ACK messages 

received and generated by an OpenFlow switch. 

Essentially, the attackers may compromise an OpenFlow switch by sending a vast 

number of table-miss packets. Thus, a large number of Packet-In messages will be 
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generated by the targeted switch and forwarded to the controller. Therefore, the 

occurrences of Packet-In messages in the malicious OpenFlow traffic of the targeted 

OpenFlow switch are much more frequent, because many incoming packets do not match 

the existing flow-entries of the targeted OpenFlow switch.  

In addition, in the benign traffic, the number of Packet-Out and Packet-Mod 

messages is very similar to the number of Packet-In messages and the number of TCP-

ACK messages. In contrast, in the malicious traffic, the number of Packet-In messages and 

TCP-ACK messages is significantly higher than the number of Packet-Out and Packet-

Mod messages, as depicted in Figure 18. Thus, these features can be used to identify the 

victim OpenFlow switches because they reflect the impact of the saturation attack on the 

OpenFlow traffic of the targeted OpenFlow switches.  

 
Figure 18 A Sample of the Number of Packet-In, Packet-Out, Packet-Mod, and 

TCP-ACK Messages in Benign and Malicious Traffic 
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4.1.1 Data Collection and Experiment Setup   

The simulated OpenFlow traffic has been used to extract the training and testing 

datasets since they were collected from different network topologies and scales. Also, the 

malicious OpenFlow traffic was collected by targeting multiple OpenFlow switches by 

saturation and hybrid saturation attacks. Thus, the simulated SDN OpenFlow traffic reflects 

the real-world malicious OpenFlow traffic.     

  As mentioned in the previous section, the features of the extracted datasets are: 

(1) number of Packet-In messages for each OpenFlow switch, (2) number of Packet-Out 

messages for each OpenFlow switch, (3) number of Packet-Mod messages for each 

OpenFlow switch, and (4) number of TCP-ACK messages for each OpenFlow switch. The 

time window of the extracted datasets is equal to 1 minute of OpenFlow traffic analysis, 

based on the findings in Chapter 3.   

We evaluated the effectiveness of this method for identifying the OpenFlow 

switches targeted by known saturation attacks by incorporating the K-NN, SVM, and NB 

classifiers. Also, we evaluated the degree of consistency of this method with the saturation 

attack detection method by performing 31 tests that include all the saturation and hybrid 

saturation attacks.   

Each test consists of two parts. First, we take a random sample of the saturation 

attack detection method testing dataset. This sample could be a normal sample that reflects 

that the SDN environment is in its normal mode or an attack sample that represents that the 

SDN environment is under a saturation attack.  Second, we take a random sample of the 

victim switch detection method testing dataset, which is used to evaluate the detection 

performance of the classifiers in distinguishing the OpenFlow switches targeted by 
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saturation attacks from the normal ones. This sample consists of a list of normal and 

malicious OpenFlow switch specimens. 

4.1.2 Experiment Results  

Table 7 shows our offline supervised classifiers’ experimental results. The K-NN 

classifier obtained the highest detection performance for detecting the victim OpenFlow 

switches, with 91% precision, 89% recall, and a 90% F1 score, which is a relatively low 

detection performance result.  Also, the results of our victim switch models were 

inconsistent with the detection module models in seven tests out of 31 tests. The reason is 

related to the extracted features of this method, which provide too shallow of a distinction 

to the trained models to distinguish the targeted OpenFlow switches from the normal ones. 

Table 7 Detection Results of Known Saturation Attacks-Using OpenFlow 

Message Header 

Algorithm Precision Recall F1-Score 

K-NN 91% 89% 90% 

SVM 82% 77% 79% 

NB 86% 80% 83% 

 

Essentially, on a large scale SDN network, many network applications generate a 

burst of new traffic that does not match the existing flow-rules of OpenFlow switches 

which cause a table-miss for a period of time. Thus, the occurrences of the Packet-In, 

Packet-Out, Packet-Mod, and TCP-ACK messages of normal traffic will be similar to the 

malicious OpenFlow traffic of the corresponding OpenFlow switch.  

Also, the behavior of an OpenFlow switch when a table-miss occurred due to a 

normal or a malicious packet is identical because of the generating Packet-In message 

injecting the table-miss inside the Packet-In data field. Therefore, the headers of normal 

and malicious OpenFlow messages processed by the OpenFlow switches and the controller 
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are identical. Thus, using the headers of the OpenFlow messages is not a preferable method 

to accurately identify the targeted OpenFlow switches. Therefore, the adoption of other 

methods was investigated as explained below. 

4.2 Victim Switch Detection Using OpenFlow Messages Payload 

Based on the investigation of the malicious and normal OpenFlow traffic, we have 

observed that when an OpenFlow switch is under a saturation attack, the distribution of the 

source IPv4 addresses of the table-miss packets that were encapsulated inside the payload 

of the Packet-In message (i.e., data field) change frequently. Therefore, a statistical method 

should be utilized to measure the distribution changes of the source IPv4 addresses of the 

OpenFlow switch table-miss packets.  

We obtained the Packet-In messages for each OpenFlow switch and then inspected 

each Packet-In message payload in order to extract the table-miss packet source IPv4 

addresses. Subsequently, we used the Shannon Entropy [70] to calculate the entropy value 

of the source IPv4 addresses of the table-miss packets for each OpenFlow switch.  The 

Shannon Entropy is a measure of the uncertainty of random variables in information theory.  

A high entropy value indicates a more decentralized probability distribution, while 

a low entropy value indicates a more concentrated distribution.  According to the definition 

of the Shannon Entropy, the entropy value of the source IPv4 addresses of the switch table-

miss packets can be defined as: 

 

𝐸(𝑠𝑟𝑐𝐼𝑃) = − ∑(𝑛𝑖/𝑀) log2(𝑛𝑖/𝑀)

𝑘

𝑖=1

 

 

(4.1) 

Here, 𝑠𝑟𝑐𝐼𝑃 = {𝑛1, 𝑛2, … , 𝑛𝑘} represents all the source IPv4 addresses of the switch 

table-miss packets encapsulated inside the switch Packet-In messages within the specified 
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time window.  𝑛𝑖 represents the occurrence number of the 𝑖𝑡ℎ source IPv4 address, 𝐼𝑃𝑖, 

and 𝑘 is the number of different sources IPv4 addresses. 𝑀 =  ∑ 𝑛𝑖
𝑘
𝑖=1  is the total 

occurrence number of all source IPv4 addresses of table-miss packets of a victim 

OpenFlow switch.  

 
Figure 19 A Sample of Source IPv4 Addresses of Normal and Malicious Table-

Miss Packets for One Minute 

Figure 19 shows a sample of the total received source IPv4 addresses of normal and 

malicious table-miss packets. Also, it shows the number of source IPv4 addresses 

corresponding to the normal and malicious table-miss packets. Within one minute of 

OpenFlow traffic analysis, out of 962 source IPv4 addresses corresponding to the malicious 

incoming packets, 574 different spoofed source IPv4 addresses were extracted and used to 

generate table-miss packets. In contrast, out of 684 IPv4 source addresses corresponding 

to the legitimate incoming packets, 24 different source IPv4 addresses were extracted. 

Thus, the entropy value of the malicious table-miss packets was higher than the entropy 

value of the legitimate table-miss packets. Therefore, we have used the entropy value of 

the source IPv4 addresses of the OpenFlow switch table-miss packets as a feature for the 

machine learning classifiers to identify the targeted OpenFlow switch. The entropy value 
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is useful for detecting the victim OpenFlow switches because it accurately reflects the 

characteristics of the saturation attacks against the SDN-data plane.  

We have also identified another feature that can be used to accurately identify the 

victim OpenFlow switches. Table-Miss Packet Rate (TPR) is a new feature that has been 

identified in this research. It can be used to calculate the Table-Miss Packet Rate Value 

(TPR-Value) which is the proportion of table-miss packets (i.e., Packet-In messages) out 

of the total corresponding received packets of an OpenFlow switch within a specified time 

window. It is defined as follows: 

 
𝑇𝑃𝑅 − 𝑉𝑎𝑙𝑢𝑒 =  

∑ 𝑆(𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝑛)

∑ 𝑆(𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠)
 

(4.2) 

Here, ∑ 𝑆(𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝑛) is the total number of generated Packet-In messages, which  

is equal to the number of table-miss packets, and  ∑ 𝑆(𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠) is the total 

number of received/incoming packets of the OpenFlow switch within the specified time 

window. 

The TPR-value is a significant feature that can be used to accurately identify the 

victim switch since it measures the ratio of the received packets that cause the table-miss 

of an OpenFlow switch within the specified time window. As shown in Figure 20, within 

one minute of OpenFlow traffic analysis, the switch received 140,531 legitimate packets 

and generated 15,637 Packet-In messages, with a TPR-value equal to 0.11 

(15,637/140,531). Therefore, the TPR-value indicates that, within one minute, 11% of the 

received packets caused a table-miss because they did not match any of the OpenFlow 

switch flow-entries, and 89% of the received packets matched the flow-entries. In contrast, 

the same OpenFlow switch targeted by saturation attacks received 96,463 packets and 

generated 38,164 Packet-In messages, with a TPR-value equal to 0.39 (38,164/96,463).  
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This means that 39% of the received packets are table-miss packets and 61% of the 

malicious packets match the flow-entries. Therefore, when the OpenFlow switch is targeted 

by a saturation attack, the TPR-value increases significantly, since a large portion of the 

incoming packets are table-miss packets. Thus, the TPR-value can be used as a feature, 

since it reflects the impact of the saturation attacks on the OpenFlow switches and provides 

insight into the nature of the processed packets. 

 
Figure 20 A Sample of Normal and Malicious Received Packets with 

Corresponding Malicious Table-Miss Packets for One Minute 

4.2.1 Data Collection and Experiment Setup 

Extracting the training datasets is a prerequisite for training the machine-learning 

classifiers. Thus, we have extracted datasets with time windows equal to one minute of 

OpenFlow traffic analysis from the captured benign and malicious OpenFlow traffic of the 

simulated SDN environments, as detailed in Chapter 3. The dataset features of this method 

are the entropy values of the source IPv4 addresses of the switch table-miss packets and 

the TPR-values. Similar to the first method, we evaluated the effectiveness of this method 
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in detecting the targeted OpenFlow switches by known saturation attacks by adopting the 

K-NN, SVM, and NB classifiers. Also, we evaluated the degree of consistency between 

the victim switch detection models and the detection method model. 

4.2.2 Experimental Results 

As shown in Table 8, the detection performance of the supervised classifiers is 

highly improved by using this method. Also, our victim switch detection classifier was 

fully consistent with the detection method in all 31 tests. The victim switch detection using 

OpenFlow messages payload achieved a higher detection result in detecting the targeted 

OpenFlow switch than the previous method (see Section 4.1).  

Table 8 Detection Results Using Entropy and TPR-Value 

Algorithm Precision Recall F1-Score 

K-NN 96% 94% 95% 

SVM 81% 85% 83% 

NB 86% 90% 88% 

 

The reason behind the improvement of the detection performance of the classifiers 

is related to the extracted features of this method. The entropy value of the table-miss IPv4 

addresses and the TPR-value provide a clear distinction to the trained models to identify 

the targeted OpenFlow switches. Fundamentally, when an attacker tries to flood an 

OpenFlow switch, he or she sends a large number of packets with spoofed IPv4 address to 

urge the targeted OpenFlow switch to generate a large number of Packet-In messages.  

Therefore, the entropy value can provide a clear distinction between the nature of 

the malicious Packet-In messages and the normal ones. Even in a large scale SDN 

environment, where a large amount of normal traffic is generated, the entropy value can be 

used to indicate the targeted OpenFlow switches. Because in normal traffic, the incoming 
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flow packets have the same IPv4 address. Thus, when the OpenFlow switch processes the 

first packet of the incoming new traffic, a flow-rule will be installed and match the 

remaining packets. As a result, the entropy value of the IPv4 address of the table-miss 

packet of the normal traffic will be a small value. However, in malicious traffic, the 

incoming traffic entropy value of IPv4 addresses will be high, because all the incoming 

new packets IPv4 addresses are spoofed.  

Also, the TPR-value is an effective feature which can be used to identify the 

targeted OpenFlow switches, because it reflects the nature of the processed traffic. For 

example, when an OpenFlow switch processes the network traffic and most of the packets 

of this traffic cause a table-miss, the TPR-value will be high, which indicates that the 

incoming traffic is suspicious. However, in normal traffic, the TPR-value will be low even 

in a large scale SDN network, because the number of table-miss packets with 

corresponding incoming traffic will be low, since most of the incoming traffic are benign 

packets and match the flow-rules of the connected OpenFlow switches.   

The victim switch detection using the OpenFlow messages payload method by 

using entropy and the table-miss packets rate value (TPR-value) requires extra computation 

for extracting the IPv4 addresses from the Packet-In messages data field and calculating 

the relevant values for each OpenFlow switch in the SDN environment. Thus, it might 

cause a slight performance overhead over the SDN environment.  

4.3 Victim Switch Detection Through Integration of OpenFlow Message Headers 

and Payload 

This method integrates the features of the previous two methods as explained in 

sections 4.1 and 4.2. Therefore, the victim switch detection method will use the OpenFlow 
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message headers to extract the number of Packet-In, Packet-Out, Packet-Mod, and TCP-

ACK message features. It will use the Packet-In message data fields to extract the entropy 

value of the source IPv4 addresses of the switch table-miss packets, and also the TPR-value 

of each OpenFlow switch in the SDN environment. Thus, the number of Packet-In, Packet-

Out, Packet-Mod, TCP-ACK messages, the entropy value of the source IPv4 addresses of 

the switch table-miss packets, and the TPR-value are used as machine learning classifier 

features to detect and identify the victim OpenFlow switches.  

4.3.1 Data Collection and Experiment Setup 

Similar to the previous two methods, the training and testing datasets have been 

extracted from the collected OpenFlow traffic. The time window of the extracted dataset 

is equal to one minute of OpenFlow traffic analysis.  Also, we have conducted 31 tests to 

evaluate the degree of consistency between the victim switch detection models and the 

saturation attack detection method models. 

4.3.2 Experiment Results 

As shown in Table 9, the detection performance of the supervised classifiers 

obtained higher detection results than the previous two methods. Also, the K-NN classifier 

was fully consistent with the detection method in all 31 tests. We believe that combining 

the features of the previous two methods improves the detection performance of the 

classifiers in identifying the targeted OpenFlow switches, because the combined features 

reflect the impact of saturation attacks on the targeted OpenFlow switches and the 

OpenFlow traffic, which enable the trained classifiers models to accurately identify the 

targeted OpenFlow switches. As a result, this method was used in the online victim switch 
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detection module to identify the targeted OpenFlow switches by known saturation attacks 

accurately.  

Table 9 Detection Results Using the Integration Method 

Algorithm Precision Recall F1-Score 

K-NN 95% 96% 95% 

SVM 83% 90% 86% 

NB 91% 88% 89% 

 

4.4 Detecting OpenFlow Switches Targeted by Unknown Saturation Attacks 

Machine learning detection systems are deficient in their ability to detect new 

attacks, which the classifier has not yet ‘seen’ (in the training phase) [51]. This is because 

the fundamental approach of a machine learning detection system is to train the classifier 

on examples of all available attack classes – typically, a large number of specimens for 

each attack class. It is difficult to find a dataset that includes an example of each attack 

class. Thus, when an unknown attack targets the network, the machine learning model fails 

to detect the attack, because there was no prior opportunity to train the model on this type 

of attack.  

In our experiments, we extracted dataset features and then excluded the targeted 

attack and its combination of samples from the training dataset, in order to present it as an 

unknown attack to the trained model. In this case, the training dataset included benign 

traffic samples, as well as the remaining attacks and their respective samples. The testing 

dataset consisted of the unknown attack samples, as well as randomly selected benign 

traffic samples. For example, given that X is the training dataset that consists of attack 

samples and normal traffic samples, Y is the testing dataset that includes attack samples 
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and normal traffic samples, G is the unknown attack samples only, and C is the attack 

combination samples, the X training datasets and the Y testing datasets are in the form of: 

 X(trainingSet) = X - 𝐺 -  𝐶   (4.3) 

 Y(testingSet)= G + 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑆𝑎𝑚𝑝𝑙𝑒𝑠 (4.4) 

Based on the reported results in Table 10, the supervised classifiers are capable of 

detecting the victim OpenFlow switches when it is targeted by unknown saturation attacks. 

Specifically, the K-NN classifier shows capable detection results. We hypothesize that all 

the different attacks in the training set allow the classifier to generalize the missing one.  

Table 10 Detecting OpenFlow Switches Targeted by Unknown Attacks Using 

Supervised Classifiers 

 

 

Attack 

K-NN SVM NB 

P*  

% 

R* 

% 

F1* 

% 

P* 

% 

R* 

% 

F1* 

% 

P* 

% 

R* 

% 

F1* 

% 

UDP 100 94 97 99 90 94 99 92 95 

SYN 100 92 96 100 48 65 99 98 98 

TCP-

SARFU 

97 95 96 100 61 76 99 94 96 

IP-

Spoofing 

97 94 95 98 65 78 91 93 92 

ICMP 100 54 70 99 47 64 100 53 69 

P* = Precision, R* = Recall, and F1* = F1 score 

To confirm this hypothesis, we considered the K-NN (our best choice) where only 

one kind of attack is used in the training set. The results in Table 11 show that the K-NN 

in the worst-case scenario obtained a low detection performance result in identifying the 

victim OpenFlow switches when they are targeted by unknown saturation attacks. This 

means that supervised classification cannot be trusted for unknown SDN attacks in general. 
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For these reasons, we consider semi-supervised classifiers such as Isolation Forest, One 

class-SVM, Autoencoder, and Variational Autoencoders. In this case, the training set 

comprises only the normal instances, whereas, the testing set consists of all the normal and 

attack instances. 

Table 11 K-NN Detection Results of Identifying Targeted OpenFlow Switches 

by Unknown Attacks 

 

Attack 

K-NN 

Precision  Recall F1-Score 

UDP 0.96 0.40 0.56 

SYN 0.93 0.17 0.29 

TCP-SARFU 0.91 0.30 0.45 

IP-Spoofing 0.94 0.23 0.18 

ICMP 0.93 0.43 0.29 

 

Table 12 reports the average results of the 10-fold cross-validation. The semi-

supervised algorithms have higher detection performance results for identifying the victim 

OpenFlow switches than the supervised ones. Specifically, the Variational Autoencoder is 

effective in identifying the victim OpenFlow switches when they are targeted by unknown 

saturation attacks and obtains comparable results to the supervised classifiers in detecting 

the known saturation attacks. Therefore, our detection victim switch module adopted the 

Variational Autoencoder algorithm to identify the OpenFlow switches when they are 

targeted by known and unknown saturation attacks. However, other machine learning 

algorithms can be utilized in this module.  

In this approach, the online victim switch detection module is a two-stage process 

(i.e., training stage and detection stages). In the training stage, before the system starts for 

the first time, the Variational Autoencoder is trained using a training dataset made in 
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advance. At the detection stage, when our system is running, the OpenFlow traffic collector 

and feature extractor module send the extracted features (see section 4.3) periodically as 

instances for each OpenFlow switch in the SDN network.  

Upon receiving these instances from the victim switch detection module, the 

constructed Variational Autoencoder model processes each of them to identify the 

OpenFlow switches under a saturation attack. The classification result of “1” indicates that 

the OpenFlow switch is under a saturation attack.  

Table12 Semi-Supervised Algorithms Detection Results of Identifying 

Targeted OpenFlow Switches by Unknown Attacks 

 

Algorithm 

Precision (%) Recall (%) F1-Score (%) 

Variational Autoencoder 93 98 96 

Basic Autoencoder 84 81 82 

One-Class SVM 73 75 74 

Isolation Forest 82 67 73 

 

4.5 Summary 

In this chapter, we investigated three methods for identifying the targeted 

OpenFlow switches by known and unknown saturation attacks in an SDN network, 

incorporating both supervised and semi-supervised machine learning algorithms.  

Based on the reported results, detecting the targeted OpenFlow switches by using 

the OpenFlow message headers (see section 4.1) did not provide very high precision, recall, 

and F1-score results in identifying the targeted OpenFlow switches due to the kind of 

features extracted from the OpenFlow message headers. Thus, using the OpenFlow 

message headers to determine the targeted OpenFlow switches is not a suitable approach, 
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since the headers of these messages have a large overlap between the normal and malicious 

ones.  

The experiment results showed that using the OpenFlow message payloads (see 

section 4.2) provides a higher detection performance in terms of precision, recall, and F1-

score since the extracted features accurately reflect the behavior of the OpenFlow switches 

when they are under a saturation attack. This enables the trained models to identify these 

switches accurately. Finally, the integration of OpenFlow message headers and payload 

(see section 4.3) obtained the highest detection results. This was because the features 

extracted from the OpenFlow message headers and payloads allowed the trained model to 

precisely identify the OpenFlow switches targeted by known and unknown saturation 

attacks. 
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CHAPTER FIVE: COUNTERMEASURE SATURATION ATTACKS 

The countermeasure module triggers when the victim switch detection module 

identifies the OpenFlow switches that are targeted by saturation attacks, otherwise, it 

remains idle. It is an efficient and cost-effective countermeasure method that does not 

require any modification of the SDN design or any extra device. It can mitigate a family of 

saturation and hybrid saturation attacks by utilizing three components. (1) The Packet-In 

deep inspection filter is responsible for identifying the zombie hosts, targeted hosts, and 

reducing the false-positive rate of the victim switch detection module. (2) The blocking-

rule manager component is responsible for blocking the malicious incoming traffic from 

the zombie hosts. Lastly, (3) the flow-rule manager component can accurately identify the 

installed malicious flow-entries and remove them from the flow-tables of the victim 

OpenFlow switches. 

In the upcoming sections, we first introduce the Packet-In deep inspection filter. 

We continue by discussing the mitigation of known and unknown saturation attacks by 

describing the blocking-rule manager and flow-rule manager. We describe the 

implementation of the proposed defense system and the setup of our experiments. Finally, 

we present the proposed defense system experimental results. 

5.1 Packet-In Deep Inspection Filter 

The Packet-In deep inspection filter can identify the zombie hosts, the targeted 

destination, and reduce the false-positive rate of the victim switch detection module by 

inspecting the Packet-In messages of each OpenFlow switch identified as a victim by the 
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victim switch detection module. Algorithm 2 shows the working process of the Packet-In 

deep inspection filter, as follows: 

 Extract all the Packet-In messages of each OpenFlow switch that has been 

identified as a victim by the victim switch detection module (lines 1-2). 

 Inspect the data field for each Packet-In message. The data field contains 

the header of the table-miss packet or the whole table-miss packet, as 

depicted in Figure 21. Through the inspection, the source and the destination 

IPv4 addresses, MAC addresses, and switch port numbers of the table-miss 

packets are extracted (lines 3-7). 

 Identify the zombie hosts and the target destinations by comparing the table-

miss packets source and destination IPv4 addresses with the saved network 

topology that has been obtained by the network topology manager module. 

Essentially, the attacker keeps spoofing the content of the transmitted 

packets to reduce the possibility of matching any flow-rules. This is done in 

order to urge the victim switch to generate Packet-In messages – 

specifically, the source IPv4 address of the table-miss packets (lines 8-14). 

The malicious packets with the same IPv4 address will drastically 

downgrade the performance of the saturation attacks since the controller 

will install the flow-rule on the OpenFlow switch flow table that matches 

the incoming traffic. Therefore, the zombie hosts can be identified by 

comparing the MAC address, port number, and source IPv4 address of the 

table-miss packet with the saved network topology. If the source IPv4 

address has zero matches with the network topology and the MAC address, 
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and/or the port number matches the saved network topology, then the table-

miss packet is considered a malicious packet and the host with the 

corresponding source MAC address is recognized as a zombie host. Also, 

the destination of the table-miss packet is regarded as a targeted destination 

and the OpenFlow switch of the Packet-In messages will be regarded as a 

victim switch. 

 
Figure 21 A Sample of a Table-Miss Packet Data Field 
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Algorithm 2: Packet-In Deep Inspection Filter 

Input victim OpenFlow Switches OFSwitches, OpenFlow traffic 𝑂𝐹, Network 
Topology NT 

Output ZombiesHostMACs, ZombiesHostIPs, TargetDestinationIP 

Declare vSwitch, vSwitch_PacketIn, sourceIP, sourceMAC, destinationIP 

Steps  

1 For (i = 0, i <= OFSwitches, i++ ) do 

2           vSwitch = OFSwitches[i] 

3        vSwitch_PacketIn = extractPacketInMessages(vSwitch, OF) 

4     For each packet-In  in  vSwitch_PacketIn do: 

5         sourceIP = extractSourceIPaddressFromDataField(packet-In  ) 

6         sourceMAC = extractSourceMACaddressFromDataField (packet-In  ) 

7         destinationIP = extractdestinationIPaddressFromDataField (packet-In  ) 

8         If (sourceIP not in NT ) { 

9                ZombieHostsIPs   [vSwitch , sourceIP] 

10                ZombieHostsMACs  [vSwitch , sourceMAC] 

11             TargertDestinationIP  destinationIP 

12              End if 

13        End for 

14 End for 

 

5.2 Blocking Rule Manager 

The blocking-rule manager is triggered by the Packet-In deep inspection filter. It is 

responsible for mitigating saturation attacks by blocking the malicious incoming traffic 

from the zombie hosts. After the Packet-In message filter identifies the zombie hosts, the 

blocking-rule manager obtains the OpenFlow switches of the zombie hosts by comparing 

their MAC addresses and port numbers with the saved network topology. Next, it installs 
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a high priority blocking-flow rule on these zombie hosts’ OpenFlow switches using 

controller-to-switch messages.  

As shown in Figure 22, the blocking- rule consists of a switch DPID field which is 

equal to the zombie host’s OpenFlow switch DPID. The priority field is used to assign the 

priority of the installed flow-rule since the processing of the flow-rules is based on priority. 

Thus, the assigned value should be the highest, which is equal to 32,767. The MAC address 

field is equal to the zombie host’s MAC address; the ingress port field is equal to the 

zombie host’s OpenFlow switch port; and finally, the action field is equal to the “Drop” 

action to block the malicious incoming traffic from the zombie hosts. After installing the 

blocking-rule, the incoming malicious traffic from the ingress port will be matched against 

the blocking-rule. Once the blocking-rule manager installs the blocking entry, the 

malicious incoming traffic will be blocked. Subsequently, the flow-rule manager will be 

triggered. 

Switch DPID Priority MAC Address Port Number Action 

00.00.00.03 32767 Bc: 30:5b:9b:ae:9b 1 Drop 

Figure 22 A Sample Blocking Flow Rule 

5.3 Flow Rule Manager 

One of the main destructive consequences of a saturation attack is preventing 

legitimate flow-entries from being installed. This happens because the attack consumes the 

data plane memory by installing a huge amount of malicious flow-entries into the victim 

switches’ flow-tables. Therefore, identifying the malicious flow-entries and removing 

them from the victim switch’s flow-tables is an important step in resisting saturation 

attacks. 
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As far as we know, few studies have been proposed to tackle this issue. The basic 

method proposed in [71] is to delete all the flow entries from the victim OpenFlow switch, 

which sacrifices the legitimate flow-entries. Another approach proposed in [72] is to keep 

track of any modification to the OpenFlow switch’s flow-tables by recording any addition 

or deletion of the switch’s flow-entries. This approach can cause performance overhead for 

the SDN environment. The proper solution should identify malicious flow-entries 

accurately without removing the legitimate ones. 

Identifying malicious flow-entries is an issue [73]. When a table-miss occurs, the 

controller installs flow-entries into the switch’s flow-tables to match the new incoming 

traffic. The process of creating flow-entries does not exhibit a single behavior. The 

controller may use the port numbers, switch DPID, and/or MAC addresses of the source 

and destination, IPv4 addresses of the source and destination, or their combinations to 

match the incoming traffic. Therefore, there are different forms of malicious flow-entries. 

The flow-rule manager component can accurately identify the malicious flow-rules 

and remove them from the victim OpenFlow switches flow tables. Figure 23 shows the 

working process of the flow-rule manager, divided into two phases: 

 In the first phase, the flow-rule manager creates the saturation attack 

topology by obtaining all the source and destination IPv4 addresses, MAC 

address, victim OpenFlow switch DPIDs, and port numbers of the victim 

OpenFlow switch’s table-miss packets. 

 In the second phase, the flow-rule manager obtains the victim OpenFlow 

switch’s flow-rules by using a controller-to-switch message. Subsequently, 

it compares the values of the flow-rules fields with the attack topology. If 
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any value of the flow-entry fields matches any of the saturation attack 

topology values, the flow-entry will be considered malicious. In this case, 

the flow-rule manager uses the controller-to-switch message to delete the 

identified malicious flow-entries from the flow-tables of the victim 

OpenFlow switch. As a result, a large amount of memory is freed on the 

OpenFlow switch flow-tables, which allows the new legitimate flow-entries 

to be installed and returns the OpenFlow switch settings to their pre-attack 

state.   

 

Figure 23 The Flow-Rule Manager State Machine 

5.4 System Implementation 

We implemented the proposed defense system, including the network topology 

manager, traffic collector and feature extractor, saturation attack detection, victim switch 

Create 

Attack 

Topology 

Send  a GET-

REST request 

to Pusher Entry 

Allocate 

victim switch 

flow rules 

Obtain the 

zombie hosts and 

victim OpenFlow 

switches 

Identify 

fake-rules 

Send Flow-rules 

Remove 

Fake rules 

Remove the flow 

rules by sending 

“Delete” REST-

Request to Pusher 

malicious rules 

detected  

Send victim 

switch DPID 

Match the flow 

rules field with 

the attack 



85 

 

 

detection, Packet-In deep inspection filter, blocking-rule manager, and flow-rule manager. 

All of them are implemented as an application on Floodlight master V1.2 [74] in Python. 

Meanwhile, we installed and used the Mininet tool to create simulated SDN environments 

with different network topologies and scales on a computer equipped with an i5 CPU and 

8 GB of RAM. 

 To compare the proposed defense system with previous work, we launched the 

saturation attacks in two scenarios: (1) an SDN network without any protection, and (2) 

SDN networks with the protection of the proposed defense system.  

5.4.1 The Network Topology Manager Module 

The network topology manager module is responsible for obtaining the SDN 

network topology by incorporating two elements. First, the network topology extractor 

component uses the northbound APIs exposed by the controller to obtain the network 

topology. It uses the REST API to communicate with the Topology Manager / Routing 

service that maintains the current network topology information. This information consists 

of the IPv4, IPv6, and MAC addresses, and port numbers for the connected switches, hosts, 

and controllers.  

Second, the network topology analyzer is responsible for analyzing and parsing the 

obtained network topology information. First, the topology analyzer extracts the connected 

OpenFlow switches’ DPIDs addresses, MAC addresses. Second, for each OpenFlow 

switch, it extracts the connected hosts’ IPv4 address, MAC addresses, and port numbers. 

At this point, the traffic collector and feature extractor module are initiated. 
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5.4.2 The Traffic Collector and Feature Extractor Module 

The objectives of the traffic collector and the feature extractor module are to collect 

the OpenFlow traffic between the controller and the OpenFlow switches, in order to extract 

the saturation attack detection module and victim switch detection module features. This 

module consists of the traffic collector and the feature extractor. 

5.4.2.1 OpenFlow Traffic Collector Component 

In SDN environments, there are two common methods to collect the OpenFlow 

traffic between the control plane and the data plane. The first method is to use the 

controller-to-switch flow statistics messages. The controller can periodically send these 

messages and the OpenFlow switch responds with one or more reply messages containing 

the flow statistics. However, when the SDN environment is under a saturation attack, the 

OpenFlow channel bandwidth is congested by a large number of table-miss packets that 

fill the flow-tables of the switches, which makes it hard for the OpenFlow switches to reply 

in a timely manner. Also, the flow statistics messages are large messages, which may 

congest the OpenFlow channel even further [75].  

Since the controller may have been exhausted from processing the malicious table-

miss packets that are coming from the OpenFlow switches, it may not receive, process, 

and respond to the flow statistics messages in a timely manner. For these reasons, using 

the flow-statistics is not a reliable option for a saturation attack detection system.  

The second common method that has been used by different research studies is 

sFlow-RT [76], which is software that can be installed in the SDN environment to collect 

and monitor the OpenFlow traffic. However, sFlow-RT uses a periodic sampling of the 

OpenFlow traffic and cannot collect information on all OpenFlow packets, which may have 
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a large impact on the accuracy of the detection method [77]. In addition, sFlow-RT cannot 

collect a low-rate of OpenFlow traffic [78] [79].  

To overcome the shortcomings of the two previous methods for collecting the 

OpenFlow traffic, we adopted the Pyshark library [80] in the proposed defense approach. 

Pyshark is a wrapper package of the tshark library [81] that provides a live capture of 

OpenFlow traffic and easy parsing of the collected traffic packets. More importantly, 

Pyshark can provide full insight into each OpenFlow packet that is transferred between the 

control plane and the data plane, without consuming the OpenFlow channel bandwidth. 

Therefore, the traffic collector uses Pyshark as the OpenFlow traffic collection method.  

The OpenFlow traffic collection process is a session-based process and the 

collected OpenFlow traffic of each session is fed to the feature extractor. The duration of 

each session is equal to the pre-defined time window of OpenFlow traffic analysis. In this 

approach, the OpenFlow traffic time window is set to equal one minute, based on the 

identification of the proper time window for OpenFlow traffic analysis, as described in 

Chapter Three. 

5.4.2.2 Feature Extractor Component 

From the collected OpenFlow traffic, the feature extractor component parses the 

OpenFlow traffic, extracts features, and feeds them as an instance to the saturation attack 

detection module to determine if there is abnormal behavior in the SDN network. In this 

approach, four features are extracted from the OpenFlow traffic: (1) the number of Packet-

In messages sent from the switches to the controller, (2) the number of Packet-Out 

messages sent from the controller to the switches, (3) the number of Packet-Mod messages 
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sent from the controller to the switches, and (4) the number of TCP-ACK messages sent 

from the switches to the controller.  

When the saturation attack detection module discovers abnormal behavior, the 

feature extractor processes the collected OpenFlow traffic to extract the features for the 

victim switch detection module. The features used by the victim switch detection module 

are: (1) the number of Packet-In messages, (2) the number of  Packet-Out message, (3) the 

number of Packet-Mod messages, (4) the number of TCP-ACK messages, (5) the entropy 

values of the source IPv4 table-miss packets, and (6) the TPR-value for each OpenFlow 

switch in the SDN network. 

5.4.3 Saturation Attack Detection Module 

The saturation attack detection module is utilized to detect saturation attack on SDN 

network. It employs the Variational Autoencoder classifier as its main machine learning 

algorithm. Essentially, the Variational Autoencoder is a kind of semi-supervised learning 

algorithm that requires a smaller training dataset, compared to supervised machine learning 

classifiers, and is effective at detecting the known and unknown saturation attacks.  

In this work, the saturation attack detection module is a two-stage process (i.e., 

training stage and detecting stage). In the training stage, before running the defense system, 

the Variational Autoencoder is trained using the training dataset, which was made in 

advance. As discussed in Chapter 3, the extracted number of Packet-In, Packet-Out, 

Packet-Mod, and TCP-ACK messages are utilized as the features extracted from the 

collected OpenFlow traffic. As shown in Table 13, the training dataset consists of 104,512 

attack and normal samples.  
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Subsequently, in the detection stage, after running this defense system, the 

OpenFlow traffic collector and feature extractor module extract the features from the real-

time captured OpenFlow traffic and provides them as an instance to the Variational 

Autoencoder, to determine if there is abnormal behavior in the SND environment  

Table 13 Saturation Attack Detection Module Training Dataset 

Sample Type Number of samples 

Attack Sample 8,963 

Normal Sample 95,549 

Total 104,512 

 

5.4.4 Victim Switch Detection Module 

The victim switch detection module utilizes the Variational Autoencoder algorithm 

due to its effectiveness at detecting the OpenFlow switches targeted by known and 

unknown saturation attacks, as reported in Chapter 4. Similar to the saturation attack 

detection module, the victim switch detection module is a two-stage process, the training 

stage and the detection stage. In the training stage, the Variational Autoencoder is trained 

using the pre-made training dataset. As described in Chapter 4, the number of Packet-In, 

Packet-Out, Packet-Mod, TCP-ACK messages, the entropy value of the IPv4 addresses of 

the table-miss packets, and the TPR value are features of the training dataset. As depicted 

in Table 14, the training dataset includes 160,000 samples of normal and attack traffic.  

Next, in the detection stage, when the system is running and after the saturation 

attack detection module discovers abnormal behavior, the OpenFlow traffic collector and 

feature extractor module extract the victim switch detection module features from the real-

time captured OpenFlow traffic. These are provided as instances to the constructed 



90 

 

 

Variational Autoencoder model, one for each OpenFlow switch in the SDN network, in 

order to identify the OpenFlow switches targeted by known and unknown saturation 

attacks.  

Table 14 Victim Switch Detection Module Training Dataset 

Sample Type Number of samples 

Attack Sample 65,000 

Normal Samples 95,000 

Total 160,000 

 

5.4.5 Countermeasure Module 

The countermeasure module can mitigate the saturation attacks by blocking the 

incoming attack traffic and remove the installed fake flow rules in the OpenFlow victim 

switches flow tables during the attacks. It consists of the blocking-rule manager and the 

flow-rule manager that utilize the REST-API services provided by the controller 

northbound APIs.  

The blocking-rule manager creates a request message as a JSON object that consists 

of the blocking rule(s) and sends it over HTTP to the Flow-Entry Pusher service on the 

controller side. Subsequently, the Flow-Entry Pusher installs the blocking rule(s) into the 

OpenFlow switches’ flow-tables to block the incoming malicious traffic from the zombie 

host(s). Later, a confirmation message is sent by the Flow-Entry Pusher to the blocking-

rule manager to confirm the installation of the blocking rules. 

The Flow-rule manager creates an attack topology that includes all the spoofed IPv4 

addresses, MAC addresses of the zombie hosts and targets hosts, the DPIDs of the zombie 

hosts’ OpenFlow switches, and the DPIDs of the victim OpenFlow switches. Next, it 

creates a JSON request message for obtaining the flow-rules of the victim OpenFlow 
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switches. Upon receiving the request messages, the Flow-Entry Pusher obtains the flow-

rules of all OpenFlow switches listed in the request message and sends them as a response 

message over HTTP to the flow-rules manager. Once the response message is received by 

the flow-rule manager, it matches the received flow-rules against the attack topology in 

order to identify the malicious ones. Next, another request message (or messages) will be 

created which contains all the fake rules that should be removed from the flow-tables of 

the victim OpenFlow switches by the flow-rule manager. Upon receiving these messages 

from the Flow-Pusher Entry, the listed flow-rules in these messages will be deleted. 

Subsequently, the Flow-Pusher Entry will send a confirmation message to the flow-rule 

manager to confirm that the fake flow rules have been eliminated.  

5.5 Setup of Experiments 

First, the saturation attack detection module and the victim switch detection 

module need to be trained in advance. Before running the system, both of them were trained 

using pre-made training datasets, as explained in the previous section.  

Second, the precision, recall, and F-1 score were used to evaluate the performance 

of the detection module and the victim switch detection module.  

Third, by using our testing parameters as demonstrated in Table 15, we created a 

simulated SDN environment for each experiment. The environments have different 

network topology, network scale, number of targeted OpenFlow switches, number of 

zombie hosts, and types of saturation attacks. We conducted 31 experiments using the 

Hping3 tool that covers all the SYN flooding, UDP flooding, ICMP, IP Spoofing, and 

SARFU-TCP flooding attacks and their combinations.  
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Table 15 The Experiments’ Testing Parameters 

Testing Parameter Description Value 

Tn Network topology Star, mesh, linear, tree 

Ts Network scale Small, Medium, Large 

At Attacks type SYN, UDP, ICMP, TCP-SAFRU, 

IP-Spoofing and their combination 

(31 attacks) 

SWn Number of victim 

switches 

1 switch – ½ of the total number of 

switches 

Hn Number of zombie hosts 1 switch – ½ of the total number of 

hosts 

 

Fourth, we evaluated the performance of the countermeasure module in mitigating 

the saturation attacks by measuring the CPU utilization of the controller via the NetData 

tool [82] and the bandwidth of the OpenFlow connection channel by using the IPref tool 

[83] before trigging the attack, during the attack, and after the attack was mitigated. 

Fifth, we evaluated the effectiveness of our countermeasure module for identifying 

and removing the malicious flow-rules from the targeted OpenFlow victim switches by 

measuring the flow-table utilization of the victim switches under OpenFlow, with and 

without the protection of the proposed defense system. 

Sixth, we compared the CPU utilization of the controller and the flow-tables 

utilization of the victim switch to the CPU utilization and flow-tables utilization of FDAM, 

FloodDefender, and FloodGuard. Unfortunately, due to copyright issues, we are not able 

to get the source code of FloodDefender, FDAM, and FloodGuard. Therefore, we used 

their published performance results to compare to the proposed defense system’s 

performance.
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5.6 Experimental Results 

5.6.1 Detecting Saturation Attacks   

The saturation attack detection module was capable of detecting the known and 

unknown saturation attacks in each experiment with 85% precision, 97% recall, and a 91% 

F1-score within a 0.2-second prediction time. Based on these results, the proposed defense 

system provides a higher detection performance than FDAM, FloodDefender, and 

FloodGuard. The FDAM system adopts the SVM classifier to detect the SYN, UDP, and 

ICMP flooding attacks. In contrast, the proposed defense system is capable of detecting 

TCP-SYN, ICMP, UDP, and IP-Spoofing attacks as well as the hybrid saturation attacks.  

Also, the proposed defense system is capable of detecting unknown saturation 

attacks, whereas the FDAM is deficient in detecting these attacks. FloodGuard is designed 

to detect and countermeasure the SYN flooding attack only, while FloodDefender is 

developed to detect and mitigate UDP, SYN, and ICMP flooding attacks. However, these 

systems are not capable of detecting hybrid saturation attacks and unknown attacks.        

5.6.2 Victim Switch Identification 

In each experiment, the victim switch detection module was able to identify the 

OpenFlow switches targeted by known and unknown saturation attacks. The average 

precision was 93%, the average recall was 98%, and the average F-1 score was 96%. The 

predication time of the Variational Autoencoder was equal to 0.9 seconds. Based on these 

results, the victim switch detection module showed high performance at detecting and 

identifying the targeted OpenFlow switches.  
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5.6.3 Computational Resources Utilization  

Figure 24 shows the protection of the computational resources of the SDN 

environment. Before the attack occurred (from the 0th second to the 58th second), the 

average CPU utilization was about 45-50%, since the simulated SDN environment and the 

controller were running on the same machine. When the attack occurred (from second 59 

to 119), the CPU utilization reached around 95%. Meanwhile, the OpenFlow traffic 

collector and feature extractor collected the OpenFlow traffic and extracted the victim 

switch detection module features. Then at second 120, the CPU utilization went down 

quickly (to around 45%) because our system identified the targeted OpenFlow switches 

and mitigated the saturation attack. The total execution time of the victim switch detection 

and countermeasure modules was about 2.36 seconds.  

Also, we have measured the bandwidth of the OpenFlow connection channel 

before, during, and after the mitigation of the attack, as depicted in Figure 25. The average 

bandwidth of the OpenFlow connection channel before the attack was about 3.2 GBPS. 

When the attack occurred, its bandwidth dramatically decreased to 0.43 GBPS. After our 

system mitigated the saturation attack, the OpenFlow connection channel bandwidth 

started increasing slowly, due to the huge amount of Packet-Out and Packet-Mod messages 

forwarded from the controller to the victim OpenFlow switch.  

The results show that the proposed defense system saves the SDN environment’s 

computational resources effectively without any noticeable performance overhead. It 

operates without the need to add extra devices, as in FloodGuard, or flood the neighbors’ 

OpenFlow switches, as in FloodDefender. 
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Figure 24 CPU Utilization Under a UDP Saturation Attack 

 
Figure 25 OpenFlow Connection Channel Under a UDP Saturation Attack 
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5.6.4 Flow Table Utilization 

The flow-table utilization of the victim OpenFlow switches is depicted in Table 16. 

We find that the proposed defense system did not overload the network when there is no 

saturation attack. When the attack occurred, the flow-table utilization of the victim 

OpenFlow switch without any protection reached 100% because of the installation of the 

malicious flow-rules. With the protection of the proposed defense system, the flow-table 

utilization remained steady, since all the malicious flow-rules were removed from the 

victim OpenFlow Switches.  

Also, we observe that the total flow-table utilization rate caused by the proposed 

defense system is no greater than 1% because of the installation of the blocking flow rules. 

With FloodDefender, the flow-table utilization can reach up to 15% of the flow-table 

buffer, due to the installation of monitoring and processing flow-rules. With FloodGuard, 

the flow-table utilization can reach up to 30%, since it uses rate control to protect the 

controller and OpenFlow switches. Therefore, the proposed defense system provides a 

more efficient way of handling malicious table-miss packets with lower flow-table 

utilization.     

Table 16 Flow-Table Utilization Under a UDP Saturation Attack 

 OpenFlow Our System FloodDefender FloodGuard 

No Attack 4% ~ 5% 4% ~ 5% 4% ~ 5% 4% ~ 5% 

Under Attack 100% 5% ~ 6% 19% ~ 20% 34% ~ 35% 

 

5.7 Summary 

This chapter introduced the countermeasure module which is responsible for 

mitigating saturation attacks and eliminating their consequences, by utilizing the Packet-
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In deep inspection filter, the Blocking-rule manager, and the Flow-rule manager. Also, it 

demonstrated the implementation of the proposed defense system and the experimental 

results. 

Based on the reported results, the proposed defense system can protect the 

computation resources of the control plane and the bandwidth of the OpenFlow connection 

channel. Additionally, it can improve the flow-table utilization of the data plane without 

the need for extra devices and with very minimal resource consumption. 
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CHAPTER SIX: CONCLUSION 

6.1 Summary  

This dissertation introduced a deployable and effective defense framework against 

SDN saturation attacks. The proposed defense system can protect the control plane, data 

plane, and OpenFlow connection channel against the known and unknown saturation 

attacks.  

The proposed defense system consists of: (1) a saturation attack detection module 

to detect the known and unknown saturation attacks in the early stages, (2) a victim switch 

detection module that can identify the OpenFlow switches targeted by known and unknown 

saturation attacks, and (3) a countermeasure module that is capable of mitigating these 

attacks and removing their consequences from the victim OpenFlow switches. 

During the design of the proposed defense system, we studied the impact of 

different time-windows of OpenFlow traffic analysis on the detection performance of 

supervised machine learning classifiers in detecting the known saturation attacks. Also, we 

investigated the detection performance of supervised and semi-supervised classifiers in 

detecting the unknown saturation attacks in order to identify the most appropriate 

saturation attack detection method. Based on reported results in chapter 3, a slight variation 

of the time-window of OpenFlow traffic analysis has an obvious impact on the detection 

performance of the supervised classifiers. Also, the experimental results showed that 

supervised classifiers are not effective in detecting unknown saturation attacks. In contrast, 
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the semi-supervised classifiers have the capability to detect the unknown saturation attacks 

effectively, specifically, the Variational Autoencoder algorithm (see chapter 3). 

Moreover, we studied three victim switch detection methods to detect the 

OpenFlow switches targeted by known and unknown saturation attacks with the integration 

of supervised and semi-supervised classifiers to discover the most effective one. The 

experimental results showed that (see Chapter 4), the best performance was achieved by 

the Variational Autoencoder machine learning algorithm used in combination with the 

“Victim Switch Detection Through the Integration of OpenFlow Messages Headers and 

Payload” method (see sections 4.3 and 4.4). This combination accurately identified the 

OpenFlow switches targeted by known and unknown saturation attacks with 93% 

precision, 98% recall, and a 96% F1-score.     

Furthermore, we studied different mitigation approaches to provide the most 

efficient and scalable countermeasure method against these attacks without adding new 

devices or changing the design of the SDN architecture. Based on the reported results in 

Chapter 5, our countermeasure method can protect the SDN environment against known 

and unknown saturation attacks. 

We implemented and evaluated the performance of the proposed defense system 

by conducting extensive experiments that cover the TCP-SYN, UDP, IP-Spoofing, ICMP, 

and TCP-SARFU attacks and their combinations. In each experiment, a structured process 

was identified to create different SDN networks that mimic real-world SDN environments. 

The reported results demonstrated that the proposed defense system is effective and 

efficient at detecting saturation attacks, identifying the targeted OpenFlow switches, and 

mitigating these attacks without causing overhead for the SDN environment.      
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6.2 Future Work 

Our current work focuses on detection and countermeasure saturation network 

attacks against a single-controller SDN paradigm.  For future work, we intend to focus on 

investigating different security aspects of SDN. Specifically, investigating the multi-

controller SDN architecture security issues.  

In recent days, multi-controller SDN architecture has been proposed to solve many 

security issues related to the single-controller SDN architecture, such as a single point of 

failure. The multi-controller SDN architecture can be divided into flat architecture and 

hierarchal architecture. In flat architecture, the SDN environment is divided into multiple 

domains in different locations, where, each domain is controlled by a controller and the 

controllers communicate with each other via east-bound interfaces. In hierarchal 

architecture, the controller layer is divided into two layers, the master layer, which consists 

of a master controller that is responsible for monitoring the entire network and the slave 

layer that includes many controllers that control many local domains.  

The multi-controller SDN paradigm presents a major set of challenges. By adapting 

multi-controller SDN architecture, we cannot assure high reliability and availability of the 

SDN environment, since the attackers can target the connection links between the 

controllers, or the controllers could be overwhelmed by processing the malicious packets. 

Thus, the targeted controller(s) and the connected OpenFlow switches will be isolated from 

the entire network. Therefore, designing a multi-controller SDN defense system that can 

monitor the distributed controllers into multiple domains, detect the incoming attacks, and 

countermeasure them without affecting the availability of the entire SDN network is a 

crucial issue.  
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Another open issue is the scalability of multi-controller SDN architecture. In the 

multi-controller environment, the scalability relies on the number of controllers, the 

number of OpenFlow switches per controller, and the domain of the controller (i.e., 

controller location). Thus, if the number of OpenFlow switches per controller is irrationally 

assigned or the controllers deployed randomly into different domains, the performance of 

the entire network will be drastically affected. Thus, designing an approach/algorithm that 

can assign the right number of OpenFlow switches for each controller with the 

corresponding deployment domain for different network scale and topologies is another 

important issue. 

Finally, the consistency of multi-controller SDN architecture is another challenging 

issue. In this architecture, the whole network is divided into multiple domains and each 

domain is controlled and managed by a controller. Therefore, the consistent and coherent 

information about the network is crucial to the multi-controller SDNs ability to make the 

right decision, such as installing flow-rules. Otherwise, out-synchronization between 

controllers or outdated network information could lead to unexpected behavior. Thus, 

developing an approach that provides high consistency and synchronization in multi-

controller SDN architecture is another key issue.  

The proposed defense system is capable of protecting single controller SDN 

environments against known and unknown saturation attacks.  Our future work will focus 

on designing a defense system that is capable of detecting and mitigating saturation attacks 

in multi-controller SDNs.  
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