
DETECTION AND COUNTERMEASURE OF SATURATION ATTACKS IN

SOFTWARE-DEFINED NETWORKS

by

Samer Yousef Khamaiseh

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computing

Boise State University

December 2019

© 2019

Samer Yousef Khamaiseh

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the dissertation submitted by

Samer Yousef Khamaiseh

Dissertation Title: Detection and Countermeasure of Saturation Attacks in Software-

Defined Networks

Date of Final Oral Examination: 25 October 2019

The following individuals read and discussed the dissertation submitted by student Samer

Yousef Khamaiseh, and they evaluated the student’s presentation and response to questions

during the final oral examination. They found that the student passed the final oral

examination.

Dianxiang Xu, Ph.D. Chair, Supervisory Committee

Edoardo Serra, Ph.D. Co-Chair, Supervisory Committee

Jyh-haw Yeh, Ph.D. Member, Supervisory Committee

Min Long, Ph.D. Member, Supervisory Committee

The final reading approval of the dissertation was granted by Dianxiang Xu, Ph.D., Chair

of the Supervisory Committee. The dissertation was approved by the Graduate College.

iv

DEDICATION

Dedicated to My Parents and My Wife

v

ACKNOWLEDGMENTS

I did not find a single word that can depict my deepest and heartiest gratefulness,

respectfulness, and thankfulness to my life teacher and research advisor Prof. Dianxiang

Xu. During my Ph.D. journey, Prof. Xu acted as a life teacher by discussing my

professional development and providing the space to improve my critical life-career skills

which help me to have a clear path for me to follow. Prof. Xu patiently listened to my

challenges and pushed me to address them.

As a Ph.D. advisor, Prof. Xu provided significant advice, assistance, confidence,

and the space that helped me to accomplish my Ph.D. successfully. This research work

could not be accomplished without the extraordinary guidance of Prof. Xu. Prof. Xu gave

the needed inspiration to be a successful researcher and teacher in the future. There is

nothing I can give to repay Prof. Xu suitably. Thus, I will cherish your lessons and

hopefully, I will be an inspirational professor to others like you to me.

I’d like to express my deepest thankfulness and gratefulness to my Co-advisor Dr.

Edaordo Serra for his deep collaboration and strong support. Dr. Serra dedicated a large

amount of effort and time to improve my research work by providing extraordinary advice

and guidance. Besides, Dr. Serra helped me in improving my research and teaching skills

by providing the needed inspiration and guidelines.

I also, insistently and truly, wish to thank my parents, “Yousef and Amenah”, and

my sincere wife “Diana Cesar” for their unlimited support, encouragement, and assistance

throughout my Ph.D. journey. They have told me that I can accomplish anything that I have

vi

set out to achieve. My parents have also taught me to be patient and committed to what I

endeavor to accomplish. My parents and my wife are the main reason for any personal

success that I have had and that I will have in the future. Many thanks to my sisters and

brothers for their help and unlimited willingness to maintain their support and interest in

my studies abroad.

A big thanks to Dr. Zhiyuan Li for his collaboration in this work. Special thanks go

to my friends Dr. Izzat Al-Smadi and Zaid Al-Omari, for standing with me through this

process, for providing unlimited help, support, and encouragement, and that they have

always trusted in my capabilities in combination with pushing me to achieve my goals.

A big thanks goes to my committee members for their allocated time and

suggestions, and many thanks go to the Department of Computer Science for its support, it

has been my honor to be a Ph.D. student in this department at Boise State University.

vii

ABSTRACT

The decoupling of control and data planes in software-defined networking (SDN)

facilitates orchestrating the network traffic. However, SDN suffers from critical security

issues, such as DoS saturation attacks on the data plane. These attacks can exhaust the SDN

component resources, including the computational resources of the control plane, create a

high packet loss rate and a long delay in delivering the OpenFlow messages due to the

bandwidth consumption of the OpenFlow connection channel, and exhausting the buffer

memory of the data plane.

Currently, most of the existing machine learning detection methods rely on a

predefined time-window to start analyzing the network traffic to detect the saturation

attacks caused by TCP-SYN flooding. However, saturation attacks range in duration, and

a long-lasting attack can affect the entire SDN network. Therefore, if the time window is

too large, the detection method response time will be long, and the attack may have an

opportunity to saturate the network. If the time window is too small, the amount of the

traffic may be insufficient to provide reliable detection results and the detection method

will start frequently, which may cause a huge performance overhead for the SDN

environment. Thus, identifying the proper time window for running the detection method

and analyzing the traffic is a key concern.

For saturation attacks, the adoption of machine learning detection systems in the

“real world” has been very limited. This is partly because of their deficiencies in detecting

unknown saturation attacks. An unknown attack is an attack which is not represented in

viii

the dataset used to train the attack detection model. Therefore, evaluating the detection

performance of the state-of-the-art supervised machine learning and semi-supervised

algorithms on unknown saturation attacks is another key concern.

Furthermore, many of the proposed anomaly defense systems are deficient in

mitigating the unknown saturation attacks and involve techniques which may not be

compatible with OpenFlow protocol, such as modifying the data plane by adding extra

devices, migrating the network traffic to a scrubbing center, and/or require extensive

computational resources. Thus, an effective solution that is capable of detecting and

mitigating known and unknown saturation attacks is an urgent need.

In this dissertation, we propose a defense framework to mitigate known and

unknown saturation attacks for SDN. It resides on the application layer and can protect the

computational resources of the control plane and data plane. The proposed defense system

combines (1) a saturation attack detection module that is capable of detecting both known

and unknown saturation attacks by leveraging the proper time window of OpenFlow traffic

analysis combined with machine learning to identify the attacks, (2) a victim switch

detection module that can detect and identify the victim of OpenFlow switches when they

are targeted by known and unknown saturation attacks, and (3) a countermeasure module

that can mitigate a family of saturation attacks and return the data plane settings to the pre-

attack ones.

Implementation and experimental results demonstrate that, in comparison with the

state-of-the-art defense systems, the proposed system provides effective protection for the

SDN network — control plane, data plane, and OpenFlow connection channel — without

extensive control plane computational resources and data plane flow table utilization.

ix

TABLE OF CONTENTS

DEDICATION ... iv

ACKNOWLEDGMENTS ...v

ABSTRACT .. vii

LIST OF TABLES .. xii

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS ..xv

CHAPTER ONE: INTRODUCTION ..1

1.1 SDN and OpenFlow ...1

1.2 Saturation Attacks ..3

1.3 Problem Statement ...6

1.4 The Proposed Approach ...9

1.5 The Contribution ..12

1.6 Dissertation Organization ..13

CHAPTER TWO: RELATED WORKS ...14

2.1 Detecting Denial of Service (DoS) Attacks in Computer Networks14

2.2 Detecting Saturation Attacks in SDN ..18

2.3 Detecting Victim OpenFlow Switches in SDN ...24

2.4 A Countermeasure to Saturation Attacks in SDN......................................25

CHAPTER THREE: DETECTION OF SATURATION ATTACKS31

x

3.1 Feature Extraction and Data Preprocessing ...33

3.2 Supervised and Semi-Supervised Classifiers ...38

3.3 Experiment Setup and Data Collection ..41

3.3.1 Physical and Simulated SDN Environment41

3.3.2 OpenFlow Traffic Generation ..43

3.4 Evaluation Metrics ...46

3.5 Experiment Results and Discussion ...47

3.5.1 Proper Time-Window for Detection of Known Attacks47

3.5.2 Impact of Time-Window Variations ..53

3.5.3 Detection of Unknown Attacks ..54

3.6 Summary ..58

CHAPTER FOUR: VICTIM SWITCH DETECTION..60

4.1 Victim Switch Detection Using OpenFlow Messages Header62

4.1.1 Data Collection and Experiment Setup ..64

4.1.2 Experiment Results ..65

4.2 Victim Switch Detection Using OpenFlow Messages Payload66

4.2.1 Data Collection and Experiment Setup ..69

4.2.2 Experimental Results..70

4.3 Victim Switch Detection Through Integration of OpenFlow Message

Headers and Payload ..71

4.3.1 Data Collection and Experiment Setup ..72

4.3.2 Experiment Results ..72

4.4 Detecting OpenFlow Switches Targeted by Unknown Saturation

Attacks ...73

xi

4.5 Summary ..76

CHAPTER FIVE: COUNTERMEASURE SATURATION ATTACKS78

5.1 Packet-In Deep Inspection Filter ...78

5.2 Blocking Rule Manager ...81

5.3 Flow Rule Manager..82

5.4 System Implementation ...84

5.4.1 The Network Topology Manager Module85

5.4.2 The Traffic Collector and Feature Extractor Module.....................86

5.4.3 Saturation Attack Detection Module ..88

5.4.4 Victim Switch Detection Module ...89

5.4.5 Countermeasure Module ..90

5.5 Setup of Experiments ...91

5.6 Experimental Results ...93

5.6.1 Detecting Saturation Attacks ..93

5.6.2 Victim Switch Identification ..93

5.6.3 Computational Resources Utilization ..94

5.6.4 Flow Table Utilization ...96

5.7 Summary ..96

CHAPTER SIX: CONCLUSION ..98

6.1 Summary ..98

6.2 Future Work ...100

REFERENCES ..102

xii

LIST OF TABLES

Table 1 Impacts of Saturation Attacks on the Key OpenFlow Messages 35

Table 2 Physical Environment Configuration and Specifications 42

Table 3 SDN Simulation Environment Configurations and Specifications 43

Table 4 Physical and Simulated OpenFlow Traffic Description 45

Table 5 K-NN Unknown Detection Result of One Attack Training 57

Table 6 Semi-Supervised Detection Results .. 57

Table 7 Detection Results of Known Saturation Attacks-Using OpenFlow Message

Header ... 65

Table 8 Detection Results Using Entropy and TPR-Value 70

Table 9 Detection Results Using the Integration Method 73

Table 10 Detecting OpenFlow Switches Targeted by Unknown Attacks Using

Supervised Classifiers ... 74

Table 11 K-NN Detection Results of Identifying Targeted OpenFlow Switches by

Unknown Attacks.. 75

Table12 Semi-Supervised Algorithms Detection Results of Identifying Targeted

OpenFlow Switches by Unknown Attacks ... 76

Table 13 Saturation Attack Detection Module Training Dataset 89

Table 14 Victim Switch Detection Module Training Dataset 90

Table 15 The Experiments’ Testing Parameters .. 92

Table 16 Flow-Table Utilization Under a UDP Saturation Attack 96

xiii

LIST OF FIGURES

Figure 1 SDN Architecture.. 3

Figure 2 Adversary Model .. 5

Figure 3 Control Plane CPU Utilization under UDP Saturation Attack 5

Figure 4 OpenFlow Connection Channel Utilization under UDP Saturation Attack 6

Figure 5 System Architecture .. 11

Figure 6 Effect of UDP Flooding Attack on Packet-In & Packet-Out Messages ... 34

Figure 7 Variational Autoencoder Architecture ... 40

Figure 8 SDN Physical Environment Architecture ... 41

Figure 9 K-NN Precision, Recall, and F1 Score with Different Time Windows

Using Physical Environment... 48

Figure 10 SVM Precision, Recall, and F1 Score on with Time Windows Using

Physical Environment ... 49

Figure 11 NB Precision, Recall, and F1 Score with Different Time Windows Using

Physical Environment ... 50

Figure 12 K-NN Evaluation Metrics Result with Different Time Windows Using

Simulation Environment ... 51

Figure 13 SVM Evaluation Metrics Result with Different Time Windows Using

Simulation Environment ... 52

Figure 14 NB Evaluation Metrics Result with Different Time Windows Using

Simulation Environment ... 52

Figure 15 Unknown Saturation Attacks Detection Results 55

Figure 16 OpenFlow Benign Traffic ... 61

Figure 17 OpenFlow Malicious Traffic... 62

xiv

Figure 18 A Sample of the Number of Packet-In, Packet-Out, Packet-Mod, and TCP-

ACK Messages in Benign and Malicious Traffic 63

Figure 19 A Sample of Source IPv4 Addresses of Normal and Malicious Table-Miss

Packets for One Minute .. 67

Figure 20 A Sample of Normal and Malicious Received Packets with Corresponding

Malicious Table-Miss Packets for One Minute .. 69

Figure 21 A Sample of a Table-Miss Packet Data Field ... 80

Figure 22 A Sample Blocking Flow Rule ... 82

Figure 23 The Flow-Rule Manager State Machine ... 84

Figure 24 CPU Utilization Under a UDP Saturation Attack 95

Figure 25 OpenFlow Connection Channel Under a UDP Saturation Attack 95

xv

LIST OF ABBREVIATIONS

SDN Software-Defined Networking

OF OpenFlow Protocol

DoS Denial of Service Attacks

DDoS Distributed Denial of Service Attacks

IDS Intrusion Detection System

SVM Support Vector Machine

KNN K-Nearest neighbors

NB Naïve Bayes

ANN Artificial Neural Network

SOM Self-Organizing Map

DNN Deep Neural Network

DT Decision Tree

ML Machine Learning

DL Deep Learning

1

CHAPTER ONE: INTRODUCTION

1.1 SDN and OpenFlow

In traditional networks, the network administrator needs to configure the network

devices to change the route of the traffic packets because control is distributed among all

the network devices. The SDN offers a new way of managing and controlling networks by

separating the control plane and the data plane. Figure 1 shows the basic architecture of the

SDN environment, which is composed of a data plane and a control plane communicating

through the southbound API. Above the control plane, the application layer resides, which

comprises the business applications that communicate with the control plane via the

northbound API.

The data plane includes the network hardware components: switches (e.g.

OpenFlow switches) and routers which are responsible for forwarding operations. The

OpenFlow switch consists of multiple flow-tables as a buffer to hold the flow-rule that

controls the traffic.

The southbound API represents the interface between the network switches and the

SDN controller. Basically, it allows the SDN controller to control the behavior of hardware

devices in the SDN-network. The OpenFlow protocol is the standard and the most widely

used southbound API.

The control plane includes the SDN controller, which is the brain of the network

that orchestrates the entire network. The controller is a centralized controlling unit that

translates the SDN applications’ network requirements down to the data plane. It also

2

provides the network information, such as network topology and statistical reports, to the

business application that resides in the application layer. The communication between the

business applications and the SDN controller travels via the northbound APIs.

The northbound APIs provide an abstraction of the network functions and enable

the network applications and orchestration systems to dictate the behavior of the SDN

network by providing a programmable interface to request the network services and

dynamically configure the network.

OpenFlow is the first proposed communication protocol between the data plane and

the control plane and has been defined as the standard southbound API used in the SDN

architecture by the Open Network Foundation (ONC) [2]. According to the OpenFlow

protocol, the OpenFlow switch consists of flow tables, group tables and an OpenFlow

channel that provides the connection channel to exchange the OpenFlow messages between

the SDN controller and OpenFlow switches.

The OpenFlow protocol has three types of messages. First, Control-to-switch

messages are sent by the controller to update, add, or delete group/flow entries or request

the status of switches. Second, Asynchronous messages are initiated by the OpenFlow

switch and sent to the controller. These include Packet-In messages to inform the controller

about a new packet arrival that does not match the flow entry rules or about changes in the

switch state. Third, Symmetric messages are initiated in both directions from controller-to-

switch or from switch-to-controller. These messages, such as a Hello-Message, are used to

test the connection between the controller and switch and make sure that the connection is

still alive.

3

The SDN hardware components are less expensive than the traditional network

components since they do not need to be changed over time to upgrade the network.

Because they are programmable – controlled by the SDN controller via the southbound

API – they have a relatively long shelf-life. Conversely, the traditional network is made up

of multiple connected switches that control the entire network, each of which needs to be

managed and configured independently. As a result, any change, such as installing a new

network application and/or changing the forwarding traffic rules of the network, needs

human intervention and may take days or weeks to complete. This is because few APIs are

exposed by a traditional network. Thus, the cost of upgrading and managing the hardware

of a traditional network is higher than for an SDN, both in terms of dollars and time [1].

Figure 1 SDN Architecture

1.2 Saturation Attacks

When a new packet does not match any of the local flow-rules of the OpenFlow

switch, a table-miss occurs. At this point, a Packet-In message will be generated, which

4

contains the header of the table-miss packet if the switch buffer is not full. However, if the

switch buffer is full, the whole table-miss packet will be encapsulated in the Packet-In

message and sent to the controller. After receiving the Packet-In message, the controller

will decide how to process the table-miss packet by sending Packet-Out and Packet-Mod

messages to install flow-rule(s) in the switch flow table. This reactive packet processing

approach of the OpenFlow network exposes a security vulnerability.

As depicted in Figure 2, a table-miss can be exploited by an attacker to consume

the computation resources (e.g., CPU, memory) of the controller and switches and saturate

the OpenFlow connection channel that is responsible for delivering the forwarding

messages between the controller and the OpenFlow switches. Basically, an attacker can

employ the TCP-SYN, UDP, ICMP, IP-Spoofing, TCP-SARFU flooding attacks, or their

combinations (i.e., hybrid saturation attacks) to launch data-to-control plane attacks. This

is accomplished by controlling many of the SDN network hosts (zombie machines) and

sending a large number of forged packets to make it impossible to match any of the targeted

OpenFlow switches’ flow-rules. Thus, a large number of Packet-In messages are forwarded

to the controller. Such a data-to-control plane attack exhausts the computation resources of

the controller, as shown in Figure 3.

When a data-to-control plane flooding attack occurs, the controller will send a large

number of Packet-Out and Packet-Mod messages, which will lead to a control-to-data plane

flooding attack. Therefore, the targeted switch flow tables will be filled with fake flow-

rules, which prevents the benign flow-rules from being installed. At this point, the victim

switch buffer will be consumed, and it will not be able to process the legitimate new

packets. Also, the OpenFlow channel bandwidth will be exhausted, which disables the

5

delivery of OpenFlow messages between the controller and the OpenFlow switches, as

shown in Figure 4.

Figure 2 Adversary Model

Figure 3 Control Plane CPU Utilization under UDP Saturation Attack

6

Figure 4 OpenFlow Connection Channel Utilization under UDP Saturation

Attack

1.3 Problem Statement

The OpenFlow protocol provides a reactive packet processing approach which

makes the SDN network more adaptable and agile to requirement changes of the network

applications. An OpenFlow switch processes the packets by matching them with the

installed flow-rules on the flow tables. When no flow-rules match the incoming packet

(i.e., table-miss), the OpenFlow switch encapsulates this packet inside a Packet-In message

and sends it to the controller to determine the proper action. After that, the controller

computes the proper action and installs new flow-rules on the OpenFlow switch.

This reactive packet processing exposes a security vulnerability that can be

exploited by an attacker to launch the data-to-control plane and control-to-data plane

saturation attacks against the SDN infrastructure. An attacker can launch a data-to-control

plane saturation attack by generating a huge number of table-miss packets, by sending a

vast number of spoofed packets to reduce the possibility of matching any of the existing

flow-entries on the victim switch. Thus, a large number of Packet-In messages forwarded

7

to the controller will consume the computation resources of the control plane (data-to-

control plane). Subsequently, a huge number of fake flow entries will be forwarded by the

controller and exhaust the flow-table memory buffer of the victim OpenFlow switch

(control-to-data plane). In the end, the entire SDN network will be paralyzed.

In protecting the SDN infrastructure from saturation attacks, we encounter the

following issues:

 How to effectively detect the known and unknown saturation attacks which may

compromise the SDN infrastructure?

 How to effectively identify the OpenFlow switches which are targeted by known

and unknown saturation attacks?

 How to effectively countermeasure the malicious OpenFlow traffic without

sacrificing the SDN network normal traffic, and how to effectively eliminate the

saturation attack consequences on the data plane without losing the pre-attack

settings?

These three problems are hard issues to overcome. For the first issue, a simple

solution is to develop a detection method that starts periodically based on an arbitrarily

pre-defined time window. However, if the time window is too long, the saturation attacks

will take over the entire network, and if the time window is too short, the amount of traffic

may be insufficient to have reliable results. In the latter case, the detection method will

start more frequently, which may cause a performance overhead for the SDN environment.

Thus, we should discover the proper time window, as well as the proper machine-learning

classifier to detect the known and unknown saturation attacks with the highest detection

performance.

8

For the second issue, we can simply inspect the behavior of all the OpenFlow

switches of the SDN environment, one by one. However, this process causes a large

performance overhead on the SDN environment and requires a long processing time. Thus,

the saturation attack may take over the entire network. Therefore, we should provide an

efficient method that can accurately identify the victim OpenFlow switches by known and

unknown saturation attacks.

For the third issue, we should mitigate a family of saturation and hybrid saturation

attacks without sacrificing the normal OpenFlow traffic, modifying the SDN/OpenFlow

architecture, and/or adding extra devices. A simple solution to countermeasure these

attacks is to install blocking flow rules that drop the table-miss packets. At this point, the

legitimate table-miss packets from benign OpenFlow switches will be dropped. Thus, the

benign OpenFlow switches will not be able to process all new incoming traffic flows

generated from benign hosts. However, an appropriate solution should be able to handle

the table-miss packets – specifically, the malicious table-miss packets – effectively and

keep forwarding the normal traffic. Thus, it should distinguish the malicious OpenFlow

traffic from the benign traffic, along with the zombie hosts and the targeted hosts, without

the need for an extra device or modifying the SDN architecture (which is another

challenging issue). Also, we should identify the fake flow-rules that have been installed on

the victim switch flow-tables during the attack and remove them to enable the installation

of legitimate flow-rules on the victim switches.

This dissertation introduces an SDN defense framework that can protect the control

plane, data plane, and the OpenFlow connection channel against known and unknown

saturation attacks without the need for any additional hardware or modifying the design of

9

the SDN architecture. This makes the proposed defense system easily deployable in the

current SDN environments. It can detect known and unknown saturation attacks by

adopting the saturation attack detection module. Also, it can identify the targeted

OpenFlow switches by using the victim switch detection module. Besides, it is capable of

identifying the zombie hosts and the targeted destinations by using the Packet-In deep

inspection filter. Furthermore, the proposed defense system can mitigate the saturation

attacks by blocking the incoming malicious traffic from the zombie hosts and can remove

the consequences of these attacks by eliminating the installed malicious flow-rules on the

victim OpenFlow switches.

1.4 The Proposed Approach

The proposed approach protects the SDN network against saturation attacks. It can

detect known and unknown saturation attacks, identifying the targeted OpenFlow switches

by these attacks, and mitigating these attacks by blocking the malicious incoming traffic

and eliminating their consequences.

Figure 5 shows the system architecture of the proposed approach. It consists of four

modules: network topology manager, OpenFlow traffic collector and feature extractor,

saturation attack detection, victim switch detection, and countermeasure.

Initially, the network topology manager module extracts the SDN environment

topology by using the northbound REST APIs of the controller and classifies the extracted

network topology based on the connected OpenFlow switches. Next, the OpenFlow traffic

collector and feature extractor module will be triggered. This module is a session-based

process that collects the OpenFlow traffic by incorporating the Pyshark library. For each

session, the feature extractor extracts the saturation attack detection module features. The

10

duration of each session is equal to the pre-defined time window of OpenFlow traffic

analysis.

Before developing our online saturation attack detection module, we conducted

extensive offline experiments using both physical and simulated SDN environments. These

experiments allowed us to evaluate the detection performance of the supervised and semi-

supervised algorithms by generating datasets from different time windows of OpenFlow

traffic analysis. Based on the reported experimental results, we have been able to obtain

the proper time window of OpenFlow analysis along with the highest-performing machine

learning algorithms (on the known and unknown saturation attacks). In our approach, the

OpenFlow traffic time window should equal 1 minute based on our findings, (see Chapter

3).

Upon extracting the detection module features, the saturation attack detection

module will be triggered. This module is an anomaly detection module that is responsible

for detecting the saturation attacks against the SDN network by incorporating the

Variational Autoencoder algorithm.

When the detection module detects an abnormal behavior in the SDN environment,

the victim switch detection module will be activated, and the OpenFlow traffic collector

feature extractor module will extract its detection features. This module is an anomaly

detection method that is responsible for identifying the targeted OpenFlow switches by

known and unknown saturation attacks. It adopts the Variational Autoencoder algorithm

(see Chapter 4).

When the victim switch module identifies the targeted OpenFlow switches, the

countermeasure module will be activated for attack mitigation in the following three steps:

11

1. The Packet-In deep inspection component extracts the Packet-In messages of the

identified OpenFlow switches by the victim switch detection module from the

collected OpenFlow traffic and classifies them based on the OpenFlow switch.

Next, it inspects the header of the table-miss packet inside the Packet-In messages

to extract the zombie hosts and reduce the false-positive rate of the victim switch

detection module.

2. The blocking flow-rule manager receives the list of zombie hosts with

corresponding OpenFlow switches and installs high priority blocking rules.

3. The flow-table manager obtains the victim switch flow rules, extracts, and deletes

the fake ones by using the attack topology.

Figure 5 System Architecture

12

1.5 The Contribution

Recent state-of-the-art SDN defense systems focused on mitigating the TCP-SYN

flooding attack against an SDN network. However, many of the proposed anomaly defense

systems are deficient in detecting and mitigating a broader set of saturation attacks, as well

as unknown saturation attacks. Also, the recent systems require modifications to the

SDN/OpenFlow architecture, adding extra hardware, and/or extensive computational

resources. This dissertation proposes an anomaly defense framework for SDN that can

protect the control plane, data plane, and OpenFlow connection channel against known and

unknown saturation attacks, without the need for any additional hardware or modification

of the SDN architecture design.

The proposed defense system can detect SDN network saturation attacks by using

the saturation attack detection module. Besides, it identifies the victim OpenFlow switches

being targeted by known and unknown saturation attacks by utilizing the victim switch

detection module. It also identifies the zombie hosts and the targeted destinations by using

the Packet-In deep inspection filter. Finally, it can mitigate the saturation attacks by

blocking the incoming malicious traffic and removing the consequences of these attacks

(i.e., the installed fake flow-rules) on the victim OpenFlow switches.

The contribution of this dissertation is as follows:

 To the best of our knowledge, this work is among the first to investigate the

impact of different time-windows of OpenFlow traffic on the performance

of supervised classifiers for the detection of saturation attacks in SDNs.

 We present an in-depth study for different victim switch detection methods

with the integration of supervised and semi-supervised machine learning

13

algorithms and provide an anomaly victim switch detection module that is

capable of detecting and identifying the OpenFlow switches targeted by

known and unknown saturation attacks.

 We provide a cost-effective countermeasure module that can defend the

SDN network against a family of saturation attacks and remove their

consequences.

 We design and implement the proposed defense system and evaluate it in

comparison with the most recent effective defending systems, using

extensive experiments that simulated the real-life SDN network. The

reported results show that the proposed framework is an effective defense

system for an SDN network, capable of detecting and mitigating the

saturation attacks in real-time with very minimal resource consumption.

1.6 Dissertation Organization

The rest of this dissertation is structured as follows. Chapter two reviews related

work. Chapter three introduces the SDN saturation attack detection module responsible for

determining whether the SDN environment is being targeted by a saturation attack or not.

Chapter four illustrates the victim switch detection module responsible for identifying the

OpenFlow switches targeted by saturation attacks. Chapter five describes the

countermeasure module that mitigates the saturation attack(s) and illustrates the

implementation and evaluation of the proposed defense system. Finally, chapter six

concludes the dissertation with a description of future work.

14

CHAPTER TWO: RELATED WORKS

2.1 Detecting Denial of Service (DoS) Attacks in Computer Networks

Denial of Service (DoS) attacks impose a security threat to all types of computer

networks since DoS attacks can be easily launched and hard to detect. For example, in a

traditional network, an attacker can launch a saturation attack by sending a large number

of packets toward the network switches, with or without spoofing the source IP addresses.

At this point, the network switches will be overwhelmed by processing the attack packets.

In SDN, the network architecture is divided into multiple layers (i.e., application layer,

control layer, and data plane) and all of these layers can be targeted by DoS attacks. For

instance, an attacker can target the data plane layer by launching different kinds of

saturation attacks, such as the UDP flooding attack, by sending a large number of spoofed

packets in order to urge the targeted OpenFlow switch to generate the Packet-In messages.

This, in turn, overwhelms the controller and saturates the OpenFlow connection channel.

 In recent decades, different research works have been proposed to detect and

prevent DoS attacks against traditional networks [3,4]. This section introduces these works

to investigate the applicability of the proposed methods for detecting saturation attacks

against an SDN environment.

To start, different research works have studied the adoption of supervised machine-

learning classifiers to detect DoS attacks in traditional networks. Singh et al. [5] proposed

an application layer DoS attacks detection method by adopting a genetic machine learning

classifier (MLP-GA). They extracted features from the network traffic, such as the entropy

15

value of the number of GET requests per connection, the entropy value of the IP addresses

of GET requests’, and the entropy value of the GET requests’ counts. If the entropy values

of the extracted features are high, this indicates that the network is under an application

layer DoS attack. Fouladi et al. [6] proposed a detection method for DoS attacks by using

Naïve Bayes classifiers. This approach used a Discrete Fourier transform (DFT) and

discrete wavelet transform (DWT) as features. Mafra et al. [7] proposed the Octopus-IIDS

intrusion detection system by incorporating the Kohonen Network and a Support Vector

Machine (SVM). It consists of: (1) a classifier layer that uses the SVM to classify the data

into four categories (i.e., DoS, U2R, probe, and R2L), and (2) an anomaly detection layer

that incorporates the Kohonen Network to detect the anomalies based on the data

classification of the previous layer. The system can be used on small scale networks.

Wagner et al. [8] proposed a DoS detection method using the one-class SVM

classifier in order to detect new attacks. The detection method used the One-Class SVM

algorithm. For such a classifier, the training dataset includes one class of traffic types (e.g.,

normal traffic or attack traffic). Based on the reported results, the accuracy of the proposed

detection method is equal to 92% for all types of attacks. Muda et al. [9] introduced a two-

stage DoS detection method. In the first stage, the K-means clustering machine learning

algorithms were used to classify the collected traffic into three groups: (1) Prob, R2L, and

U2R attack data, (2) DoS attack data, and (3) normal data. In the second stage, the Naïve

Bayes classifier is used to classify the collected traffic into one of the aforementioned

groups. Based on the reported results, the two-stage detection method is an effective one

in detecting DoS and other attacks. However, due to the adoption of supervised classifiers,

these detection methods [5-9] cannot be used to detect the unknown saturation attacks

16

against SDNs. Besides, the features of these methods cannot accurately reflect the impact

of saturation attacks in SDN.

Other detection methods adopt unsupervised machine learning algorithms to detect

DoS attacks. For instance, Hsieh and Chan [10] used an Artificial Neural Network (ANN)

to detect DoS attacks. They extracted several features from the network traffic packet

headers: source IP address, destination IP address, the time of the packet, and length of the

packet. In addition, they used Apache Spark to process the extracted features from the

network traffic and convert them into a vector suitable for the ANN model. Bhuyan et al.

[11] proposed an anomaly detection method by integrating an unsupervised machine

learning algorithm for large datasets. It uses the tree-based subspace clustering to obtain a

high detection rate. The reported results showed that the detection method achieved 98%

accuracy.

Yuan et al. [12] introduced DeepDefense, a DoS attack detection method that

integrates a Recurrent Neural Network (RNN). They used the UNB ISCX Intrusion

Detection 2012 dataset to train and evaluate the RNN model. This detection method

obtained high detection results with 97% accuracy and 97% recall.

Yadav and Subramanian [13] proposed an application-layer DoS attack detection

method using the Stacked Autoencoder deep learning algorithm. They used 10 features to

train the model and they created a testing dataset in order to evaluate the proposed

approach. Qin et al. [14] presented a DoS attack detection method based on entropy

clustering. This approach can be divided into two phases. First, a clustering phase extracts

the entropy values of the source and destination IP addresses, port numbers, packet size,

and duration. They use a clustering algorithm to build many clusters based on the extracted

17

entropy values. Second, the method consists of a detection phase in which they detect the

DoS attacks by using the distance between the clusters.

Saad et al. [15] proposed the v6IIDS framework to detect ICMPv6 saturation

attacks by adopting the Artificial Neural Network Back-Propagation algorithm. The

proposed defense system consists of: (1) a data collection and preprocessing module that

collects the network traffic and extracts features for the detection module, and (2) an

anomaly detection method that is responsible for detecting the ICMPv6 attack by using the

ANN back-propagation trained model. Yin et al. [16] proposed a detection method using a

Recurrent Neural Network (RNN) to detect DoS attacks. In this approach, they relied on

the NSL-KDD dataset with the NSL-KDD dataset 41 features.

Farnaaz and Jabbar [17] proposed a DoS detection method using the Isolation

Forest algorithm. They also used the NSL-KDD dataset to train their isolation forest model.

Based on the reported results, the trained model obtained 99.2% accuracy. Malik et al. [18]

proposed a DoS attack detection approach utilizing Particle Swarm Optimization (PSO)

and Random Forest (RF) algorithms. The proposed method can be divided into two phases:

(1) a feature selection phase, which adapts PSO techniques to select the most appropriate

features from the KDD99 Cup dataset, and (2) a detection phase, which the RF classifier

uses to detect the DoS attacks. However, most of the anomaly detection methods

[10,11,12,14,15,17,18] relied on an outdated dataset that did not represent the nature of the

SDN traffic. Also, the extracted features such as “time-zone and port number” cannot

express the behavior of saturation attacks against SDNs, specifically, in a reactive packet

processing SDN environment. Thus, the adoption of such detection methods would leave

the SDN environment vulnerable to the majority of saturation attacks.

18

Different detection methods have employed statistical algorithms to detect DoS

attacks in the traditional network. For example, David and Thomas [19] used a fast entropy

value to detect DoS attacks. They calculated the fast entropy of flow-count and compared

it against a predefined threshold to detect the DoS attack. A low fast entropy value means

there is a DoS attack and a high entropy value means no attack, since the attack flow is

dominant over other normal flows.

 Hoque et al. [20] presented a detection approach using the Multivariate Correlation

Analysis (MCA) algorithm. The working process of the proposed approach is (1) to collect

the network traffic and divide it into multiple time windows, (2) to calculate the packet rate

and the entropy values and variational index of the source IPs, and (3) to use MCA to find

the correlation between the extracted features. Subsequently, they compare the extracted

deviations against a predefined threshold to detect the DoS attacks. The predefined

threshold incorporates multiple assumptions – for example, the assumption that a high

entropy value of source IPs with a high entropy value of packet rates, means that the

possibility of a DoS attack is high. However, in the reactive SDN environment, the features

of the proposed detection methods [19, 20] would need to be tuned to calculate the entropy

value of the table-miss packet rather than the traffic packets. Otherwise, the proposed

methods could produce a large number of false alarms.

2.2 Detecting Saturation Attacks in SDN

As a new network paradigm that provides agility and programmability, SDN

attracts industry and academia researches worldwide. Different research studies have

shown various security threats in SDN [21, 22]. For example, DoS network flooding

attacks disturb the SDN-based network and render it out-of-service. Different research

19

works have been proposed to detect, mitigate, and prevent the SYN-Flooding attack by

using various machine learning and deep learning approaches [23].

Asharf and Latif [24] discussed the possibility of adopting machine learning

approaches in SDN to detect the DoS attacks. However, this work did not go so far as to

investigate potential approaches that can be used to detect OpenFlow switches targeted by

known and unknown saturation attacks. Niyaz et al. [25] proposed an SDN network

application that adapted the Stack Autoencoder (SAE) deep learning technique for

detecting multi-vector DDoS. The proposed defense system consists of three components:

Traffic Collector and Flow Installer, Feature Extractor, and Traffic Classifier. This work

relies on processing every incoming packet for attack detection and flow computation,

which requires extensive computational resources, instead of flow sampling. Furthermore,

the dataset that was used for training and testing the proposed defense system was collected

from a traditional wireless network, which is not an SDN-based network.

Aizuddin et al. [26], proposed a DDoS detection prototype by using a Dirichlet

Process Mixture model to detect the attack traffic. With this system, the misclassification

rate of the attack traffic is around 50%.

Braga et al. [27] adopted the self-organized map (SOM) to develop a lightweight

detection system for DDoS flooding attacks against SDNs. The proposed defense system

consists of three modules: a flow collector module that collects all the flow entries of the

connected OpenFlow switches, a feature extractor module that extracts the detection

module features from the collected flow-entries, and a SOM classifier module that detects

the attack traffic. However, this work requires extensive processing time to extract the

detection module features, since it needs to process all the flow entries of connected

20

OpenFlow switches. This delay may give the attacker enough time to flood the whole

environment. Also, when an OpenFlow switch is targeted by a saturation attack, it becomes

overwhelmed from processing the malicious table-miss packets. Thus, the flow collector

module will not obtain the flow-rules of the targeted OpenFlow switch in real-time. In

addition, the flow-rules’ messages are large-size messages, which may help in saturating

the connection OpenFlow channel between the controller and the OpenFlow switches.

Tang et al. [28] used the Deep Neural Network (DNN) to develop an anomaly DoS

detection system. The accuracy of the proposed detection model is relatively low – just

88.04%. Also, the NSL-KDD dataset used in training and testing the detection model was

generated from a traditional network.

Abubakar and Pranggono [29] developed a flow-based anomaly detection system

by using a neural network. Again, the NSL-KDD dataset was used to train and evaluate the

models, which is the main shortcoming of this approach.

Mousavi and Hilaire [30] proposed an early DoS attack detection method by

calculating the entropy values of the IP addresses of the first 250 packets forwarded to the

controller. This approach assumes that each new packet forwarded to the controller is a

malicious packet if the destination address matches any of the already-existing network

hosts. Also, if the destination IPv4 address appears in many packets, the entropy value will

be lower than the predefined thresholds, and the system will think that an attack is

occurring. This approach can generate many false alarms of early attack detection,

specifically, if the SDN network is in a reactive flow-management configuration. In this

type of configuration, the flow-entries are configured dynamically to provide a flexible

way to control the network traffic. Thus, in a large-size SDN network, many legitimate

21

new packets forwarded to the controller and many legitimate flow-entries will be installed

to control network traffic. However, the proposed approach cannot be utilized as an early

DDoS attack detection method since the normal behavior of the SDN network will always

be considered malicious behavior.

Azizz and Okamura [31] proposed the FlowIDS framework to detect Simple Mail

Transfer Protocol (SMTP) flooding attacks by using decision tree (DT) and deep learning

(DL) algorithms to detect the malicious SMTP flow traffic. The deep learning algorithm

and the decision tree classifier were trained to identify the benign SMTP traffic.

Subsequently, both the DL and DT were used to detect the attack SMTP traffic. However,

this work cannot be used to protect the SDN environment against saturation attacks. Also,

using two machine learning algorithms at the same time to identify the attack SMTP traffic

may require a long prediction time. Besides, the authors did not provide more details when

the two algorithms obtained different prediction results.

Santos et al. [32] introduced the ATLANTIC framework to detect DDoS attacks

against the SDN environment. The proposed defense system consists of two phases: (1) a

lightweight processing phase that can be executed periodically to detect the deviations of

the SDN network traffic flows by using entropy analysis in order to identify the suspicious

traffic flows, and (2) a heavyweight processing phase that uses a K-means unsupervised

algorithm to cluster the similar traffic flows and then adopts an SVM classifier to classify

the malicious flows from the normal ones. The ATLANTIC framework has three main

components: (1) a statistical layer that is responsible for collecting the traffic flows

statistics, (2) a classification layer that is responsible for detecting and classifying the

malicious traffic flows and, (3) a network layer that is responsible for tracking the SDN

22

data plane and collecting the traffic flow information from the controller. The detection

performance of the proposed defense system is relatively low; it obtained 88.7% accuracy

and 82.3% precision. Also, this work caused performance overhead on the SDN

environment due to the processing time and it required a long prediction time due to using

the SVM and K-means classifiers together. Besides, the proposed defense system cannot

detect unknown saturation attacks and countermeasure them.

Ye et al. [33] proposed a detection system for UDP, SYN, and ICMP flooding

attacks by using an SVM classifier. The proposed defense system includes: (1) a flow state

collection module that collects the status of the OpenFlow switches flow-tables by using

controller-to-switch messages, (2) Characteristic Values Extraction module that is

responsible for extracting the classifier features (it extracts 6 features from the collected

flow tables’ status messages), and (3) classifier judgment module, which utilizes an SVM

classifier to detect the attacks. This work represents a simple method to detect some

flooding attacks in SDNs. However, using the controller-to-switch messages to collect the

flow-table status information can cause performance overhead, specifically, when the

environment is under attack. This is because the size of the flow-tables status messages is

large, which may help to saturate the OpenFlow connection channel.

Lee et al. [34] introduced the Athena framework, which exposed different APIs and

allowed researchers and developers to easily integrate their anomaly detection applications

with SDN environments. The main goal of this research is to highlight the problem of

integrating different detection systems into SDN deployment. Athena offers high-level

APIs called Athena NB interfaces, which enable the developers to develop anomaly

23

detection methods, and Athena SB interfaces, which isolate the complexity of dealing with

the SDN data plane.

Chen et al. [35] proposed a detection method for DNS and TNP reflection

amplification attacks. The detection method consists of a detection agent module. The

detection agent module contains (1) a traffic collector that uses the Netmate tool to collect

the traffic and calculate the features vector, and (2) an SVM-based machine learning

classifier that detects the DNS and NTP reflection attacks using the extracted features

vector. This research is dedicated to detecting two attacks by using an SVM classifier.

However, this detection method cannot detect major saturation attacks, such as the UDP

flooding attack, or unknown saturation attacks.

Alshamrani et al. [36] introduced two new attacks, the Misbehavior and NewFlow

attacks, and proposed a detection method that is capable of detecting these new attacks and

other DDoS attacks. The Misbehavior attack is a kind of attack that disguises the first

packet of the forwarding flows like a normal packet, while the remaining packets of the

flow are malicious ones. The NewFlow attack is the same attack as a data-to-control plane

attack. The proposed system adopted a Sequential Minimal Optimization (SMO) classifier

to detect these attacks and used the NSL-Dataset to train the SMO classifier. However, the

proposed new attacks (i.e., Misbehavior and NewFlow attacks) are not new ones since all

the saturation attacks behave in the same way. Also, the NSL-Dataset is not an SDN

dataset, which may raise a question about the feasibility of using the proposed detection

method in real-life SDN environments.

Wang et al. [37] proposed a scalable method to detect the TCP-SYN attack in an

SDN environment. The detection method collects the numbers of SYN and FIN packets

24

during a period of time and provides these numbers to the Change Point Detection

statistical algorithm to find out the homogeneity between the numbers of SYN and FIN

packets. If there is any heterogeneity found between these numbers at some point of time,

a TCP-SYN attack is detected. This method cannot be used to detect known and unknown

saturation attacks in an SDN environment.

2.3 Detecting Victim OpenFlow Switches in SDN

Identifying the targeted OpenFlow switches did not garner much attention in

academic research. Recently, a few studies have been proposed to tackle this issue. Po-

Wen et al. [38] proposed a simple detection method that samples flow-rules from randomly

selected OpenFlow switches. Next, they generate artificial packets to see if the OpenFlow

switch executes the corresponding flow-rules correctly. This approach may produce a high

rate of false-positives since the flow-rules of the OpenFlow switches are changing over

time.

Zhou et al. [39] proposed SDN-RDCD, a real-time approach to detect the targeted

SDN devices when the controller and OpenFlow switches are not trustworthy. SDN-RDCD

uses a backup controller as an audit controller that is responsible for recording the network

update events information such as deleting, adding, or updating flow rules from the original

controller and its connected OpenFlow switches. Subsequently, the audit controller

allocates a unique audit ID for each update request event and records it in an audit record.

This audit ID is used to keep track of each event, as well as the execution results on the

original controller and corresponding OpenFlow switches. Also, the audit ID is used by the

audit controller to re-execute the update event and record the execution results. Then, SDN-

RDCD analyzes the recorded audit log to extract any inconsistency of the handling of

25

information by the controller and OpenFlow switches. However, this work may require a

long time to process the audit records in order to find the unmatched event handling

information. Thus, the saturation attacks may compromise the entire-network before

detecting the victim OpenFlow switches. Also, this approach cannot detect most of the

OpenFlow switches that were targeted by saturation attacks, since the behavior of these

victim switches is very similar to the normal ones. In addition, this approach cannot be

easily adopted in real-life since it requires adding an extra controller as an auditor-

controller.

Different from the aforementioned works, the victim switch detection method

proposed in this dissertation, is an effective method that is capable of detecting the

OpenFlow switches that are targeted by known and unknown saturation attacks. Also, it

can be easily deployed in real-life SDN environments since it does not require any

modification of these environments’ architecture.

2.4 A Countermeasure to Saturation Attacks in SDN

Different studies have been proposed to defend the SDN against saturation attacks.

For example, Hu et al. [40] introduced the FDAM system for detecting UPD, ICMP, and

SYN flooding attacks. It consists of two modules: (1) an attack detection module that is

responsible for detecting DoS attacks by using an SVM classifier and a sFlow approach to

collect the network traffic and extract features, and (2) a DoS attacks mitigation module

that mitigates flooding attacks by using traffic migration and white-list approaches.

Unfortunately, the SVM classifier requires a long training and prediction time. Also, based

on our reported results in this research, the SVM classifier is not capable of detecting the

unknown saturation attacks.

26

 Seungwon et al. [41] proposed the AVANT-GUARD framework to mitigate the

TCP-SYN flooding that is sent to the SDN controller. It accomplishes this task by

extending the OpenFlow-Switches functions. The detection module monitors the ongoing

TCP-SYN connections to the controller and detects the SYN flooding based on a

predefined threshold, which cannot accurately differentiate between the normal and

abnormal SYN packets.

Wang et al. [42] proposed FloodGuard as a prevention approach against DoS

attacks. FloodGaurd acts as middleware between the controller and its applications and has

three components: a detection module, a flow rule analyzer module, and a packet migration

module. The FloodGaurd detection module monitors the OFPT_PACKET_IN messages

and triggers the other modules when the OFPT_PACKET_IN messages exceed the pre-

defined thresholds.

Shang et al. [43] proposed FloodDefender as an SDN application to protect the

control plane and data plane against DoS attacks. It has four modules: attack detection to

detect the DoS attacks, table-miss engineering to migrate the table-miss packets to the

neighbors' switches, packet filtering to identify the attack traffic, and flow rule

management to remove the useless flow-rules. The main limitations of this work are as

follows: (1) All the table-miss packets are delivered to the controller to process them,

whether they are normal ones or not. (2) There is a relatively high flow-table utilization

due to the installation of protecting and monitoring flow-rules. (3) The attack detection

module uses the Packet-In messages rate to detect the attack, which is not an effective

approach since a high volume of new normal traffic can produce similar Packet-In

messages. (4) FloodDefender cannot be applied in a small-scale SDN network. Lastly, (5)

27

if two or more of the switches are regarded as victims, this approach will not be able to

handle the saturation attacks and may flood the whole SDN network.

Menghao et al. [44] introduced two novel attacks – a table-miss striking attack and

a counter manipulation attack – and provided the SWGuard system as a solution to detect

and prevent these attacks.

Yan and Huang [45] proposed a DDoS detection and mitigation system (DDMF)

that detects and mitigates the impact of DDoS attacks in real-time by adopting SDN

features and Apache Spark. DDMF consists of three components. (1) a capture server is

responsible for collecting the network traffic and saving it in a log file by using Apache

Spark. (2) a detection module incorporates a neural network (NN) to detect the attacks

based on the integrity of the log file. The detection module is installed on a detection server.

(3) an SDN router application is responsible for mitigating the attacks by sending the traffic

to the cleaning centers. This approach cannot be easily deployed into SDN environments

since it requires a detection server and cleaning centers to analyze and mitigate the attack

traffic.

Jing et al. [46] proposed the FL-Guard detection and defense system against DDoS

attacks in the SDN environment. FL-Guard is implemented as an SDN application that

resides in the application layer of the Floodlight controller. FL-Guard uses sFlow-RT to

collect network traffic. FL-Guard includes two modules: (1) an attack detection module

that incorporates an SVM classifier to detect the DDoS attacks, and (2) an attack-blocking

module that blocks the attack from the source port. The shortcomings of this work are as

follows: (1) sFlow-RT uses a periodical sampling of the OpenFlow traffic and cannot

collect information on all OpenFlow packets. This may cause a large impact on the

28

accuracy of the detection method. Also, sFlow-RT cannot collect a low-rate of OpenFlow

traffic. (2) The SVM classifier cannot detect unknown saturation attacks since they are not

included in the training phase. Thus, if the SDN environment is targeted by an unknown

saturation attack, the detection module will not be able to detect it and the blocking module

will not be able to mitigate this attack.

Cui et al. [47] proposed the SDN-Anti-DDoS system, which is capable of detecting

DDoS attacks quickly. The proposed system consists of four modules. (1) The attack

detection trigger module monitors and counts the velocity of Packet-In messages to detect

the abnormal burst of Packet-In messages. It uses the exact-Storm machine learning

algorithm and triggers the other modules if the SDN environment is under attack. (2) The

attack detection module adopts a Neural Network (NN) algorithm to distinguish the

malicious flow-entries from normal ones. This module uses controller-to-switch messages

to identify the flow-entries and extract features for the NN model. (3) The attack traceback

module uses the same NN model to obtain the attack information. Finally, (4) the attack

mitigation module mitigates the attacks by installing blocking entries. This work may cause

a high amount of false alarms, specifically, in a reactive processing SDN environment

when a burst of normal traffic is forwarded by legitimate applications.

Also, using control-to-switch messages to obtain the switches’ flow-entries when

the SDN environment is under an attack makes it harder to detect the attacks in real-time,

because the targeted OpenFlow switches will be overwhelmed by malicious Packet-In

messages and the controller will be busy processing the forwarded Packet-In messages.

Thus, the detection module will not obtain the features required to detect the attack in a

29

timely manner, which may give the needed time to the attacker to destroy the entire

network.

Besides, the flow-entries messages are large in size, which may help to saturate the

OpenFlow connection channel.

Durner et al. [48] proposed a detection and mitigation method for overflow attacks

against the SDN data plane. The detection method adopted a statistical method to detect

the attacks by using the flow-tables’ header fields. It keeps a table of the suspected table-

headers using hashing. Based on that table, the mitigation method blocks the attacks. This

work causes a large number of false-positives, since the flow-rules of the OpenFlow

switches are changed frequently. Also, the detection and mitigation method cannot be used

against known and unknown saturation attacks.

Reza et al. [49] introduced SLICOTS as an SDN defense system against TCP-SYN

flooding attacks. The proposed system monitors all TCP handshaking processes between

the SDN hosts to install temporary forwarding rules on the OpenFlow switches during the

handshaking process. If the half-open TCP connections between a host and a server exceed

the predefined threshold, a TCP-SYN flooding attack is detected. Subsequently, it installs

blocking rules to stop the malicious SYN packets.

This system is capable of protecting the control plane from the TCP-SYN attack

and ignores the protection of the data plane. Also, this approach installs temporary

forwarding rules on all connected OpenFlow switches, without determining which ones are

targeted, in order to count the SYN connections.

This procedure may exhaust the data plane memory. In addition, the proposed

detection and prevention method cannot be used to protect the SDN environment against

30

known and unknown saturation attacks. Therefore, the SDN environment is vulnerable to

the majority of saturation attacks.

Ficherta et al. [50] proposed the OPERETTA, an OpenFlow defense system against

TCP-SYN flooding attacks. OPERETTA has been implemented as a controller application

that can detect fake TCP-SYN connections and reject them. Similar to SLICOTS [49],

OPERETTA counts the number of TCP-SYN connections and matches them against a

predefined threshold. If the counter value exceeds the predefined threshold, a TCP-SYN

flooding attack is detected. This system is deficient in protecting the SDN environment

against known and unknown saturation attacks.

Different from the aforementioned works, the proposed defense system in this

dissertation can detect the known and unknown saturation attacks, as well as the OpenFlow

switches that are targeted by these attacks. We have studied different victim detection

methods by incorporating supervised and semi-supervised algorithms to identify the most

effective method and algorithm. In addition, instead of using controller-to-switch messages

or the sFlow-RT tool, we adopted the Pyshark library to collect the OpenFlow traffic in

real-time in order to eliminate any performance overhead on the controller, OpenFlow

switches, and OpenFlow connection channel. Also, the proposed defense system provides

a countermeasure method that can effectively mitigate a family of these attacks without the

need for adding extra hardware, modifying the SDN design, or causing performance

overhead on the SDN environment. Besides, it can remove the fake flow-rules that have

been installed on the victim OpenFlow switches during the attack, enabling the legitimate

flow-rules to be installed.

31

CHAPTER THREE: DETECTION OF SATURATION ATTACKS

The problem studied in this chapter is how to detect saturation attacks in SDN

environments by using state-of-the-art machine learning algorithms. The saturation attacks

range in duration, and a long-lasting one of these attacks can affect the entire SDN

environment. Therefore, to protect the computational resources of the SDN network, the

proper solution is to detect these attacks at the early stages before they take-over the entire

network. In the designing of the saturation attack detection module, there were two issues.

First, we should be able to obtain the proper time-window of OpenFlow traffic

analysis as well as of the machine learning classifier to detect the saturation attacks with a

high detection performance. So far, most of the existing machine learning detection

methods rely on an arbitrary predefined, fixed time-window to start analyzing the network

traffic to detect saturation attacks. However, if the time window is too large, the detection

method response time will be long, and the attack may saturate the entire network. If the

time window is too small, the amount of traffic may be inadequate to obtain accurate

detection results. Also, the detection method will cause performance overhead over the

SDN controller since it will be executed frequently. Thus, identifying the proper time-

window for running the detection method and analyzing the traffic is a crucial point.

Secondly, machine learning approaches have deficiencies in detecting unknown

saturation attacks. An unknown attack is an attack which is not represented in the dataset

used to train the attack detection model [51]. Because there are no instances of the attack

included in the training set, supervised machine-learning methods are unable to classify it.

32

Thus, evaluating the supervised and semi-supervised classifiers detection performance of

unknown saturation attacks is another concern.

For the first issue, we have evaluated the detection performance of state-of-the-art

machine learning algorithms, specifically, the widely-used Support Vector Machine

(SVM) [52], K-Nearest Neighbor (K-NN) [53] classifier, and Naïve-Bayes (NB) [54]

classifier. We used a variety of time-windows of OpenFlow traffic analysis to determine

the proper time-window for the detection of saturation attacks as well as the most effective

machine learning classifier. In addition, we studied the impact of different time-windows

of OpenFlow traffic analysis on the machine learning classifiers’ detection performance by

conducting a false-negative analysis.

For the second issue, we evaluated the supervised machine classifiers such as SVM,

K-NN, and NB classifiers and semi-supervised algorithms such as One-class SVM,

Isolation Forest, Basic Autoencoder, and Variational Autoencoder performances for

detecting unknown saturation attacks. In the experiments, we excluded the observations

related to one type of saturation network attack from the training dataset, to act as an

“unknown” attack for the models. The test dataset included the observations from the

unknown attack and a random set of normal traffic observations.

Before implementing the proposed defense system, extensive experiments have

been conducted using both physical and simulated SDN environments through offline

settings. Therefore, the saturation attack detection method can be incorporated into the

proposed defense system to detect the saturation attacks in online settings.

In the upcoming sections, we first introduce the features that were extracted from

the OpenFlow traffic and explain the approach for preprocessing the OpenFlow traffic to

33

generate multiple data sets for different time windows. We continue by discussing the

supervised and semi-supervised algorithms used in this research for detecting the known

and unknown saturation attacks and describing the experimental setups and OpenFlow

traffic collection. Then the validation metrics used in this research to evaluate the

performance of the machine learning classifiers are described, finally, the experimental

results are presented.

3.1 Feature Extraction and Data Preprocessing

OpenFlow traffic is a sequence of packets that are transferred between the

controller and the OpenFlow switch. Each packet has different attributes such as the packet

time, the source and the destination IP addresses, the OpenFlow message type, and the

length of the packet. Formally, the OpenFlow traffic, 𝑂𝐹, is a sequence of OpenFlow

packets < 𝑝1, 𝑝2 …, 𝑝n> captured during a normal or attack session, where each packet,

pi, has <𝑡𝑖𝑚𝑒, 𝑠𝑟𝑐𝐼𝑃, 𝑑𝑠𝑡𝐼𝑃, 𝑂𝐹 𝑚𝑠𝑔, 𝑙𝑒𝑛𝑔𝑡ℎ>.

OpenFlow traffic consists of 29 types of OpenFlow messages that can be

categorized into three main types: (1) controller-to-switch messages that are sent from the

controller to the switch to acquire information and modify the switch state (e.g., Packet-

out, Packet-mod, and Role-request), (2) asynchronous messages that are sent by the switch

to the controller to inform about new incoming packets, errors, and switch state changes

(e.g., Packet-in, Flow-removed, Port-status, and error), and (3) symmetric messages that

are sent between both sides such as Hello and Echo messages.

From the captured OpenFlow traffic, four features are extracted: 1) number of

OFPT_PACKET_IN messages sent from the switch to the controller, (2) number of

OFPT_PACKET_OUT messages sent from the controller to the switch, (3) number of

34

OFPT_PACKET_MOD messages sent from the controller to the switch, (4) number of

TCP_ACK messages sent from the switch to the controller, or vice versa. These features

are selected based on the analysis and observation of the OpenFlow traffic behavior in

physical and in simulated SDN environments which are in attack mode and normal mode.

The features are sensitive to saturation attacks as well as to hybrid saturation attacks, which

are a combination of different saturation attacks that target the SDN environment.

The saturation and the hybrid saturation attacks have a different impact on these

features. Figure 6 shows the impact of the UDP saturation attack on the Packet-in and

Packet-out features. When the UDP saturation attack occurs, the zombie hosts try to flood

the SDN network by generating a massive amount of IP packets including UDP datagrams.

Meanwhile, the OFPT_PACKET_IN messages generated by the UDP attack come from

the switch that is connected to the zombie’s host. Thus, the number of OFPT_PACKET_IN

messages in the OpenFlow traffic increases significantly, and the number of

OFPT_PACKET_OUT messages decreases significantly. Table 1 summarizes the changes

to each feature caused by UDP, SYN, ICMP, IP Spoofing, and SARFU TCP saturation

attacks.

Figure 6 Effect of UDP Flooding Attack on Packet-In & Packet-Out Messages

0

50

100

150

200

250

300

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

N
u

m
b

er
 o

f
P

ac
ke

ts
 in

 T
h

o
u

sa
n

d
s

Time in Seconds
Packet_In Packet_Out

35

Table 1 Impacts of Saturation Attacks on the Key OpenFlow Messages

Saturation

Attack

The Impact

#Packet_In #Packet_Out #Packet_Mod #TCP_ACK

UDP Significant

increase followed

by a decrease

Significant

decrease

Significant

decrease

Significant

increase

SYN Significant

increase

Increase and

then a

significant

decrease

Increase and

then a

significant

decrease

Significant

increase

ICMP Insignificant

increase

Increase for

short period

of time

followed by a

significant

decrease

Increase for a

short period of

time followed

by a

significant

decrease

Noticeable

increase

followed by

significant

decrease

IP Spoofing Increase followed

by significant

decrease

Increase

followed by

significant

decrease

Increase

followed by

significant

decrease

Increase and

significant

decrease to be

a zero packet

SARFU TCP Increase and then

noticeable

decrease and then

decrease to zero

packets.

Increase and

then

significant

decrease to

zero packets.

Increase and

then

noticeable

decrease and

then a

significant

decrease to

zero packets.

Increase and

then

noticeable

decrease.

To discover the appropriate time-window for detecting saturation attacks, we tested

different time windows of OpenFlow traffic analysis and evaluated their impact on the

detection performance of the SVM, K-NN, and NB classifiers. From each time window, a

different dataset was generated from the collected OpenFlow traffic in both physical and

simulated SDN environments. The dataset’s time-windows ranged from one minute to the

attack duration. A detailed description of our approach for extracting these datasets from

36

the OpenFlow traffic is given in Algorithm 1. The features collected in each dataset were

the OpenFlow traffic session 𝑂𝐹, the dataset time-window T, the dataset time-shifting S,

and the OpenFlow traffic type L, which is <

𝐿 ⃪ 0 𝑖𝑓 𝑂𝐹 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑟 𝐿 ⃪ 1 𝑖𝑓 𝑂𝐹 𝑖𝑠 𝑎𝑡𝑡𝑎𝑐𝑘 > . The output was a dataset 𝑋𝐽 =

(x1, 𝑥2, 𝑥3. . . , 𝑥n) which was a sequence of labeled samples, with each sample 𝑥j in the

form of <number of Packet_in messages, number of Packet_out messages, number of

Packet_mod messages, number of TCP_ACK message >.

Lines (9-18) deal with extracting the features from the OpenFlow traffic packet

sequence OF for the specified time-window T. For each packet, we extracted the OpenFlow

message type. If the message type matched any of the messages, the corresponding counter

increased by one (lines 10-17). When the difference between the packet time and the

starting time is larger than T, a new sample 𝑥𝑗 was created with the corresponding label

and increased the dataset index 𝐽 by one (lines 5-8). After each new sample 𝑥𝑗, the value

of the 𝑓𝑖𝑟𝑠𝑡𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝑛𝑑𝑒𝑥 updated by adding the shifting parameter S for the next shift

starting index (line 20). The reason behind including the shifting parameter was to increase

the overlapping in the generated datasets.

37

Algorithm 1: OpenFlow Dataset Generation

Input OpenFlow traffic OF, Time-Window T, Time-Shifting S, Traffic-Type L {0,1}

Output Dataset XJ

Declare packetIn, packetOut, packetMod, tcpAck, Msg(type)

Steps

1 J=0 (the index of the output sample XJ)

2 Repeat:

3 firstPacketIndex=1 (pi is the first packet of the current shift)

startTime = ptime(firstPacketIndex)
 (is the first packet time of the current shift)

4 for (i = firstPacketIndex; i < n; i + +) do

5 if ptime − startTime > T

6 createNewSample_Xj(packetIn,packetOut,tcpAck,J++)

 addNewSampleXjxj with corresponding traffic type L
 and increase J by one.

7 break;

8 Endif

9 switch (Msg(type)) {

10 Case1: Msg(type) = “OFPT_PACKET_IN”

11 packetIn += 1;

12 Case2: Msg(type) = “OFPT_PACKET_OUT”

13 packetOut + = 1;

14 Case3: Msg(type) = “OFPT_PACKET_MOD”

15 packetMod += 1;

16 Case4: Msg(type) = “TCP_ACK”

17 tcpAck + = 1;

18 }

19 end for

20 firstPacketIndex=updatePacketIndexNextShfit(firstPacketIndex,S)

21 Until firstPacketIndex > n

38

3.2 Supervised and Semi-Supervised Classifiers

We studied the adoption of supervised and semi-supervised machine learning

algorithms to determine the most accurate and effective approach for detecting known and

unknown saturation attacks against SDN networks. Several supervised and semi-

supervised classifiers have been trained using the datasets 𝑋𝐽 that were obtained in the

previous sections and evaluated their detection performance. In this work, K-NN, SVM,

and NB classifiers were adopted as supervised machine learning classifiers. These

classifiers have been widely used to detect DoS attacks in SDNs, since they are robust even

with a noisy training dataset. However, these classifiers require a training dataset that

includes a large number of specimens of all saturation attack types, which is hard to obtain

in real-life. Therefore, these classifiers are deficient in detecting the OpenFlow switches

which are targeted by unknown saturation attacks. The unknown saturation attack is an

attack that has been mislabeled by the training model due to the absence of similar samples

in the training dataset.

Therefore, the semi-supervised machine learning algorithms such as One-Class

SVM [55], Isolation Forest [56], Basic Autoencoder [57], and Variational Autoencoder

[58] were selected. These algorithms can be trained without the need to label the training

dataset observations. Also, they can be trained using an out anomalies dataset (i.e., normal

traffic dataset) and obtain a high anomaly detection result, such as the Variational

Autoencoder algorithm.

 Autoencoder is an artificial neural network composed of two functions: the

encoder and the decoder. The encoder function E is a neural network transforming the

original features x in a new space 𝑦 = 𝐸(𝑥). Usually, y, is in a lower dimension of the

39

original space. The decoder function D transforms the features Y from the new space to the

original space 𝑥~ = 𝐷(𝑦). This neural network is trained by minimizing the reconstruction

error, i.e. 𝑙𝑜𝑠𝑠 = ||𝑥 − 𝑥~||
2
. Once trained, the reconstruction error on a new example can

be used as a score to detect whether an example is a training example or not. The smaller

the reconstruction score, the higher the likelihood that the new example is similar to the

one used in the training. For similar inputs vectors x,x’, a basic autoencoder can generate

very different encoding representations y,y’. Thus, similar instances cannot be placed in

the same encoded space, since it may lead to poor detection performance.

To overcome this issue, Variational Autoencoders are defined. A Variational

Autoencoder is represented by a distribution of vectors, rather than a vector as the basic

autoencoder, as shown in Figure 7. The encoder network generates the mean vector 𝜇 =

Ε𝜇(𝑋) and the covariance matrix Ʃ = 𝐸Ʃ(𝑋) that are used in a multivariate Normal

distribution 𝒩(𝜇, Ʃ) generating the encoding 𝛾 ∼ 𝒩(𝜇, Ʃ). In addition to the standard

reconstruction error, the Variational Autoencoder imposes that the distribution of the

encoded vector is approximately similar to a normal distribution with mean zero and

standard deviation (i.e. they use the encoding Kullback-Leibler divergence regularization

term).

40

Figure 7 Variational Autoencoder Architecture

The Variational Autoencoder, because of regularization forces has similar input to

be encoded in similar regions. This property is crucial because it allows enlarging the space

of the encoded vector which becomes more suitable for attack detection. Figure 7 shows

the architecture of the Variational Autoencoder and the procedure based on the

reconstruction error for classifying attacks versus normal instances.

The reconstruction error by itself does not provide a complete way to classify if an

example is an attack or not. Therefore, in this approach, we used the idea of the percentile

threshold as described in Figure 7. By using all the reconstruction errors for each normal

instance of the training set, it's computed the percentile 𝛼99 at 99%. The value 𝛼99 is used

as a threshold for the reconstruction error to determine if an instance is an attack (i.e.

||𝑥 − 𝑥~||
2

> 𝛼99 or not i.e. ||𝑥 − 𝑥~||
2

≤ 𝛼99. Computing the percentile 99% as a

threshold means assuming that 1% of the normal instances can be very similar to the attack

instances. Note that the semi-supervised algorithms are trained only with normal instances

(i.e., out anomaly dataset). Therefore, they don't require any specification in the training

41

phase of attack instances, which makes them more suitable to detect the unknown

saturation attacks.

3.3 Experiment Setup and Data Collection

3.3.1 Physical and Simulated SDN Environment

We collected the OpenFlow communication channel traffic using both physical and

simulated SDN environments. The main advantage of using a physical SDN environment

is the capacity to replicate the workload of a real-world SDN network and the internet

traffic generated by real-world applications. Figure 8 shows the physical environment

architecture, which consists of a Pica8 P-3290 OpenFlow switch, a Floodlight Master 1.2v

as an SDN controller, and five hosts named from h-1 to h-5. Table 2 shows the

specifications and the configurations for each host.

Figure 8 SDN Physical Environment Architecture

42

Table 2 Physical Environment Configuration and Specifications

Host Name CPU Info Memory Info Operating System

Controller Machine Intel Core (i7)

2.5GHz

16GB Ubuntu 16.04.5

LTS

h-1 Intel Core (i5)

2.5GHz

8GB Ubuntu 16.04.5

LTS

h-2 Intel Core (i5)

2.5GHz

8GB Ubuntu 16.04.5

LTS

h-3 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5

LTS

h-4 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5

LTS

h-5 Intel Core (i5)

2.4GHz

8GB Ubuntu 16.04.5

LTS

The physical environment is limited by the network scale and topology. A

simulated SDN environment was created using the Mininet v2.1.0 tool [59]. The simulated

environment enables the creation of different network topologies (i.e., tree topology, star

topology, mesh topology, and linear topology) with a different network scale (i.e., number

of hosts, number of switches). Table 3 shows the main configurations of the simulation

SDN network which were obtained from the Mininet examples. Currently, Mininet runs on

a single machine and simulates all the OpenFlow switches, hosts, and links in a single

operating system. All of these (e.g., number of switches) share the same hardware

resources, which discourage building a large-scale network and limit the capacity of the

Mininet for hosting real-world applications that can mimic real network behaviors.

The proposed approach utilized the generated OpenFlow traffic of a single-

controller SDN environment. However, the proposed approach could be extended to a

multiple-controller SDN environment by collecting the OpenFlow traffic of each controller

and generating the corresponding datasets in the same fashion.

43

Table 3 SDN Simulation Environment Configurations and Specifications

Parameter Description Default Value

Nc Number of Controllers 1

Ns Number of Switches 10-200

Nh Number of Hosts 50-300

Nt Network Topology Star, Mesh, Ring, Tree

3.3.2 OpenFlow Traffic Generation

3.3.2.1 Benign Traffic

The benign OpenFlow traffic was collected from both physical and from simulated

environments by using different traffic generation tools that mimic real-world network

behaviors. For the physical environment, four tools were used to generate the OpenFlow

traffic. Firstly, the D-ITG (Distributed Internet Traffic Generator) [60] was employed. D-

ITG has ITGSend and ITGRecv components. ITGSend can generate parallel traffic flows

and send it to different ITGRecv instances. ITGRecv is responsible for receiving traffic

flows from ITGSend. D-ITG provides the ability to generate multiple unidirectional traffic

flows for different protocols, such as IPv4, IPv6, TCP, UDP, ICMP, SCTP (Stream Control

Transmission Protocol), DCCP (Datagram Congestion Control Protocol), DNS, Telnet,

and VoIP.

Secondly, we used the Nping tool [61], which is open-source software that can

generate traffic for different protocols, such as the ARP protocol. By using Nping, we were

able to customize the packet size and the transmission intervals of the generated traffic.

Thirdly, in order to generate a concurrent stateful and stateless traffic that simulated

the internet traffic, the Cisco’s TRex realistic traffic generator [62] has been used. TRex

44

gives us the ability to generate almost any kind of L4-7 traffic, based on the smart reply of

real traffic templates. It can amplify the traffic of the server and the client-side up to

200Gb/sec.

Finally, we used OSTINATO [63] to configure and generate many traffic streams

for different protocols such VLAN, IPv4, IPv6, stateless TCP, ARP, ICMPv4, ICMPv6,

IGMP (Internet Group Management Protocol), MLD (Multicast Listener Discover), RTSP

(Real-Time Streaming Protocol) and NNTP (Network News Transfer Protocol). For the

simulated environment, we were able to use the Nping and OSTINATO tools only, due to

the simulated environment limitation mentioned above.

In both environments, the Wireshark tool [64] was used to capture the OpenFlow

traffic between the SDN controller and the OpenFlow switches. As shown in Table 4, the

total size of the captured benign OpenFlow traffic from the physical environment was 250

GB, the total duration was about 137 hours, and the total simulated benign traffic was about

143GB, for a total duration of 100 hours.

3.3.2.2 Malicious Traffic

In the physical and simulated environments, Hping3 [65] and LOIC (Low Orbit Ion

Cannon) [66] were employed to launch the saturation network attacks. The Wireshark tool

was used to capture the OpenFlow malicious traffic between the SDN controller and the

OpenFlow switch. Hping3 is an open-source tool for network stress testing, as well as DoS

attacks. LOIC is a well-known tool used to launch DoS attacks against different agencies

[67]. By using these tools, we were able to launch 31 saturation attacks that covered all

combinations of SYN flooding, UDP flooding, ICMP, IP Spoofing, and SARFU-TCP

flooding. In both environments, each of the attacks flooded the control and data planes. As

45

shown in Table 4, the total size of the physical environment anomaly traffic was 50Gb and

the duration for each attack was about 30 minutes. For the simulated environment, the total

size of the anomaly traffic was about 100 GB and the attack duration was about 20 minutes.

Table 4 Physical and Simulated OpenFlow Traffic Description

Environment

Type

Traffic

Type

Number

of

Sessions

Duration

of an

individual

session

Total

Duration

Total Size

of

Captured

Traffic

Files

Physical

Environment

Benign

Traffic

104 1—4 hrs. 137 hrs. 250 Gb

Attack

Traffic

31 30

minutes

15.5 hrs. 50 Gb

Simulation

Environment

Benign

Traffic

100 1hr 100 hrs.

143 Gb

Attack

Traffic

31 20

minutes

10.3 hrs. 100 Gb

46

3.4 Evaluation Metrics

Before describing the evaluation metrics, which were used to evaluate the

classifiers’ detection performance for different time-windows, we should describe some

terminology used in the evaluations. A True-Positive (TP) is an observation from the

testing sample which has been correctly classified as an attack. A False-Positive (FP) is an

observation that has been incorrectly classified as an attack, i.e., a normal observation

which has been mislabeled as an attack. A False Negative (FN) is an observation that has

been incorrectly classified as a normal (non-attack) observation. Finally, a True Negative

(TN) is an observation that has been correctly classified as a normal observation.

 In our models, we calculated the accuracy of the predictions from the K-NN, SVM,

and NB models. The accuracy is defined as the total number of correct predictions divided

by the total number of predictions made by the model. However, accuracy alone is typically

insufficient for judging the effectiveness of a classification model [68]. Thus, instead of

using the accuracy, three measures, the precision, the recall, and the F-1 score metrics have

been used to evaluate the impact of different time-window traffic analysis on our model's

detection performance. Precision is defined as the proportion of true-positive observations

divided by the total number of true positive and false-positive observations.

Having a high precision means a low false-positive ratio, which is an important

indicator of the reliability of the model’s predictions. For example, a model that has 95%

precision when classifying traffic samples is correct 95% of the time. The recall is defined

as the ratio of the true positives to the total of true positives and false negatives. However,

high recall indicates a low false-negative ratio, which is a confidence indicator of the

model’s ability to predict the actual positives. For instance, a model with a 90% recall can

47

correctly identify 90% of the actual positives. Finally, the F1 score is a balance between

recall and precision. Hence, for the saturation detection system, it is highly important to

obtain a high precision with a high recall, and a high F1 score [68].

3.5 Experiment Results and Discussion

This research aimed to answer the following questions:

 RQ1: What is a proper time-window of OpenFlow traffic analysis for detecting

saturation attacks?

 RQ2: How do different time-windows affect the detection performance of a

classifier?

 RQ3: Are classifiers effective in the detection of unknown saturation attacks?

3.5.1 Proper Time-Window for Detection of Known Attacks

This section describes the experiments that were conducted to discover the proper

time-window for OpenFlow traffic analysis to detect the saturation network attacks. Also,

the impact of different time-windows of OpenFlow traffic analysis on the detection

performance of the known saturation network attacks for SVM, K-NN classifiers. We refer

here to the known saturation attack as an attack that has been included in the training phase,

in other words, the training dataset has many samples that describe the attack behavior and

our classifier models have been trained to detect this attack.

In the physical environment, 30 datasets were generated from the collected

OpenFlow traffic and each dataset represents a different time-window, ranging from 1

minute to 30 minutes. In our experiments, each dataset is used to train and test the K-NN,

the SVM, the NB models and we used the precision, recall, and F1 score metrics to evaluate

the performance of our models and analyze the impact of different time-windows on the

48

model's prediction results. We now discuss how we determined the earliest proper time-

window for each classifier, from these experimental results.

Figure 9 shows the precision, recall, and F1 score metrics for the K-NN models

when the time-window ranges from 1 minute to 30 minutes. The highest detection rate for

the K-NN classifier is obtained when the time-window is equal to 1 minute: the precision

is 96%, with recall 95%, and the F1 score is 95%. The lowest detection rate is when the

time-window is equal to 30-minutes in which case, the corresponding precision is 47%,

with a recall of 98%, and the F1 score is 64%. As a result, in the physical environment, the

optimal time-window for the K-NN classifier is one minute of traffic analysis. To support

this conclusion, Figure 9 shows that the precision and F-1 score decrease as the time-

window of traffic analysis increases.

Figure 9 K-NN Precision, Recall, and F1 Score with Different Time Windows

Using Physical Environment

Figure 10 shows the values of the evaluation metrics for the SVM models. The

highest detection result is when the time-window equals 1 minute; in this case, the precision

49

is 91%, with a recall of 91%, and the F1 score is 91%. In contrast, the lowest precision

achieved by these models is 46%, with a recall of 99%, and an F1 score of 62%. This is

when the time-window is 30 minutes. Figure 10 shows the impact of time-window length

on the SVM classifier performance. Notably, the precision and F1 score decrease and the

recall increase as the time-window increases. Thus, the optimal time-window for the SVM

classifier in the physical environment is also 1 minute.

Figure 10 SVM Precision, Recall, and F1 Score on with Time Windows Using

Physical Environment

Similar to the approach for the K-NN and SVM classifiers, we performed 30

experiments to evaluate the NB classifier detection performance for the same time-

windows. Figure 11 shows the results of our evaluation. The highest precision is 99%,

with a recall of 80%, and an F1 score of 89%, when the time-window equals three minutes.

The lowest precision is 52%, with a recall of 53%, and an F1 score of 52% when the time

window equals 30 minutes. In the physical environment, the 3-minute time-window seems

optimal for the NB classifier in order to obtain a high detection rate.

50

Figure 11 NB Precision, Recall, and F1 Score with Different Time Windows

Using Physical Environment

In the simulation environment, 20 datasets were generated and used in training and

testing the proposed classifiers. Similar to the physical environment experiments, each

dataset represented a different time-window of traffic analysis. In this case, the dataset

time-windows ranged from 1 minute to 20 minutes. Again, we used the precision, recall,

and F1 score to evaluate the performance of our classifiers in each experiment.

Figure 12 shows that when the time-window equals 1 minute, the K-NN classifier

achieves a high precision of 97%, with a recall of 99%, and an F-1 score of 98%. When

the time-window equals 18 minutes, the K-NN classifier achieves the highest precision

overall (100%) but suffers from low recall (19%) and a low F1 score (35%). As a result,

we conclude that the 1-minute time-window is optimal for the K-NN classifier, in order to

obtain the highest detection results in the simulation environment. Figure 12 shows the

impact of the time window on the detection performance of the K-NN classifier. Increasing

the time-window led to increased precision but decreased the recall and the F1 score ratios.

51

Figure 12 K-NN Evaluation Metrics Result with Different Time Windows Using

Simulation Environment

As shown in Figure 13, the SVM classifier achieved the highest detection results

with a time-window of 2 minutes. The corresponding precision is 81%, with a recall of

89%, and the F1 score is 85%. Moreover, Figure 13 shows noticeable changes in the SVM

classifiers’ detection performance when the time-window increases. For example, when

the time-window equals 20 minutes, the detection results declined significantly to a

precision of 7%, recall of 35%, and an F1 score of 11%.

Figure 14 shows the metric values for the NB classifier model results. The NB

model obtained the highest detection results when the time-window was 1 minute, with

corresponding precision of 85%, recall of 96%, F1 score of 91%. The lowest precision was

11%, with a 37% recall rate, and an F1 score of 17%. In our simulation environments, we

found that the 1-minute time-window is optimal for the NB classifier to detect the attack

traffic. The experimental results show the critical role that the time-window of OpenFlow

traffic analysis plays on the detection performance of our machine learning classifiers. In

52

the upcoming section, we describe our investigation and share our findings on the impact

of the time window on the detection performance of our classifiers.

Figure 13 SVM Evaluation Metrics Result with Different Time Windows Using

Simulation Environment

Figure 14 NB Evaluation Metrics Result with Different Time Windows Using

Simulation Environment

53

3.5.2 Impact of Time-Window Variations

To better quantify the impact of different time-windows of OpenFlow traffic

analysis on the detection performance of the K-NN, SVM, and NB classifiers, we

conducted a false-negative analysis. The purpose of a false-negative analysis is to find all

the samples that are falsely identified by our classifiers and the time slot of each sample.

In this application, the ‘false negative’ samples represent the attack samples that were

falsely identified as benign samples by the trained models.

We conducted the false-negative analysis, after performing the physical and

simulated environment experiments, by allocating the attack samples for each experiment

dataset with corresponding trained K-NN, SVM, and NB models, wherein, each

experiment dataset represents a different time-window of OpenFlow traffic analysis.

Therefore, the attacking samples were fed to the trained models and extracted the samples

that were falsely identified by the models as a normal sample along with the time slot of

that sample. Based on the false-negative analysis results, we discovered that most of the

false negatives occurred at the end of the attack time.

As shown in Figures 9-14, the recall ratios, precision ratios, and F1 scores in the

experiments on both environments decreased significantly when the time-window was

equal to 15 minutes or longer. The reason behind the increasing number of false negatives

when the time-window increased is due to the behavior of the SDN environment when it

is under a saturation attack. Technically, in the early stages of a saturation attack (i.e. when

the attack is initiated), both the switch and the controller have enough capacity to process

the incoming attack packets. Also, the OpenFlow connection channel has sufficient

bandwidth to transfer the OpenFlow messages at this time. This leads to a significant

54

increase in the numbers of Packet-In, Packet-Out, Packet-Mod, and TCP-ACK messages

in the OpenFlow traffic. In this situation, the K-NN, the SVM, and the NB classifiers were

able to accurately identify the attack samples from the benign samples, as evidenced by the

high precision ratios, recall ratios, and F1 scores of the classifiers.

Subsequently, as the attack takes over the SDN network, the OpenFlow switch and

the controller become overwhelmed. At this point, they do not have sufficient capacity to

process the huge amount of malicious traffic, and the OpenFlow channel is also congested.

Thus, the occurrences of Packet-In, Packet-Out, Packet-Mod, and TCP-ACK messages in

the malicious OpenFlow traffic are similar to the occurrences of these messages in the

benign OpenFlow traffic. Therefore, the K-NN, SVM, and NB classifiers are more likely

to falsely identify the attack samples that are similar to benign samples as normal samples,

which leads to an increase in the number of false negatives. This, in turn, reduces the recall

ratios. They may also falsely identify the benign samples as attack samples, which in turn

increases the false positives and decreases the precision ratio. As a result, the overall

detection performance of the machine learning classifier suffers.

3.5.3 Detection of Unknown Attacks

An unknown attack is an attack that has been mislabeled by the training model due

to the absence of similar samples in the training dataset. In our experiments, we excluded

the targeted attack and its combination of samples from the training dataset, in order to

present it as an unknown attack to the trained model. In this case, the training dataset

included benign traffic samples, as well as the remaining attacks and their respective

samples.

55

The testing dataset consisted of the unknown attack samples, as well as randomly

selected benign traffic samples. For example, given that X is the training dataset that

consists of attack samples and normal traffic samples, Y is the testing dataset that includes

attack samples and normal traffic samples, G is the unknown attack samples only, and C is

the attack combination samples, the X training datasets and Y testing datasets are in the

form of:

 X(trainingSet) = X - 𝐺 - 𝐶 (3.1)

 Y(testingSet)= G + 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑆𝑎𝑚𝑝𝑙𝑒𝑠 (3.2)

In addition, we studied the impact of different time-windows of traffic analysis on

the detection results by selecting the proper time-window of OpenFlow traffic analysis for

each classifier in each environment, based on the previous experimental results. Figure 15

summarizes the detection performance results of our classifiers in both physical and

simulated SDN environments.

Figure 15 Unknown Saturation Attacks Detection Results

0

10

20

30

40

50

60

70

80

90

100

1
-M

in
u

te

1
-M

in
u

te

3
-M

in
u

te
s

1
-M

in
u

te

1
-M

in
u

te

3
 M

in
u

te
s

1
-M

in
u

te

1
-M

in
u

te

3
 M

in
u

te
s

1
-M

in
u

te

1
-M

in
u

te

3
-M

in
u

te
s

1
-M

in
u

te

1
-M

in
u

te

3
 M

in
u

te
s

1
-M

in
u

te

2
-M

in
u

te
s

1
 M

in
u

te
s

1
-M

in
u

te

2
-M

in
u

te
s

1
-M

in
u

te

1
-M

in
u

te

2
-M

in
u

te
s

1
 M

in
u

te

1
-M

in
u

te

2
-M

in
u

te
s

1
 M

in
u

te

1
-M

in
u

te

2
-M

in
u

te
s

1
-M

in
u

te

KNNSVM NB KNNSVM NB KNNSVM NB KNNSVM NB KNNSVM NB KNNSVM NB KNNSVM NB KNNSVM NB KNNSVM NB KNNSVM NB

UDP SYN IP-Spoofing SARFU ICMP UDP SYN IP-Spoofing SARFU ICMP

SDN Physical SDN Simulation

P
ER

C
EN

TA
G

E
(%

)

Precision % Recall F1 Score %

56

Based on the reported results, the classifiers are capable of detecting the unknown

saturation attacks in both environments. In particular, the K-NN classifier shows promising

detection results in both SDN environments. Also, the reported results show that the

detection performance of the classifiers was influenced by the SDN environment setup. For

instance, the SVM classifier obtained a 78% precision ratio, a 17% recall ratio, and a 28%

F-1 score for detecting the IP-Spoofing attacks in the physical environment, whereas, it

obtained 100% precision, 70% recall, and an 82% F-1 score in the simulated environment

for the same attack.

Based on these results, we believe that there is a relationship between the SDN

environment setup and the detection performance of our classifiers. For instance, the SVM

classifier obtained a 78% precision ratio, a 17% recall ratio, and a 28% F-1 score for

detecting the IP-Spoofing attacks in the physical environment, whereas, it obtained 10%

precision, 70% recall, and an 82% F-1 score in the simulated environment for the same

attack. We hypothesize that all the different attacks in the training set allow the classifier

to generalize the one missing. To confirm this hypothesis, we consider the K-NN (our best

choice) in the case where only one kind of attack is used in the training set.

The results in Table 5 show that the K-NN in the worst-case scenario obtained a

low detection performance result in detecting the unknown saturation attacks. This means

that supervised classification cannot be trusted for unknown SDN attacks in general. For

this reason, we consider semi-supervised classifiers such as Isolation Forest, One Class-

SVM, Basic Autoencoder, and Variational Autoencoders. In this case, the training set

comprises only the normal instances, whereas, the testing set consists of all the normal and

57

attack instances. Table 6 demonstrates the average results of the 10-fold cross-validation

of the semi-supervised classifiers.

 The semi-supervised algorithms have higher detection performance results of

unknown saturation attacks than the supervised ones. Specifically, the Variational

Autoencoder is effective in detecting unknown saturation attacks and obtains comparable

results to the supervised classifiers in detecting the known saturation attacks. Thus, in this

approach, the online saturation attack detection module utilized the Variational

Autoencoder algorithm as a machine learning classifier to detect the known and unknown

saturation attacks in SDN.

Table 5 K-NN Unknown Detection Result of One Attack Training

Attack

Physical Environment Simulated Environment

Precision Recall F1-Score Precision Recall F1-Score

UDP 0.99 0.23 0.38 0.95 0.80 0.86

SYN 0.96 0.21 0.41 0.96 0.77 0.85

SARFU 0.99 0.24 0.38 0.96 0.77 0.85

ICMP 1.00 0.30 0.30 0.95 0.82 0.87

IP-Spoofing 0.97 0.13 0.22 0.96 0.74 0.83

Table 6 Semi-Supervised Detection Results

Algorithm

Physical Environment Simulated Environment

Precision Recall F1-

Score

Precision Recall F1-Score

Isolation Forest 0.56 0.92 0.69 0.38 1.00 0.56

One-Class SVM 0.22 0.97 0.35 0.116 1.00 0.20

Basic Autoencoder 0.99 0.24 0.38 0.96 0.80 0.86

Variational

Autoencoder

0.86 0.93 0.90 0.85 0.97 0.91

Nonetheless, we have demonstrated that the classifiers are capable of detecting

unknown saturation attacks with reasonable accuracy. We believe this is due to several

58

characteristics of the problem. For (1), the saturation network attacks have a high degree

of self-similarity. [69] studied the self-similarity characteristics of benign and malicious

OpenFlow traffic. Their results show that the normal OpenFlow traffic has a low degree of

self-similarity and has different statistical characteristics, whereas, the saturation attacks

on OpenFlow traffic have a higher degree of self-similarity. (2) Our features can accurately

reflect abnormal behavior within OpenFlow traffic because they represent the main

messages of the OpenFlow v1.5 protocol. In other words, the models are sensitive to any

abnormal activity that occurs in the OpenFlow traffic between the control and data planes,

because this activity is encoded in the features we have chosen for our datasets. Essentially,

all the saturation attacks exhibit a similar technique of flooding the SDN environment by

generating a vast number of table-miss packets; therefore, they have a similar impact on

the OpenFlow messages.

3.6 Summary

In this chapter, we have studied the K-NN, SVM, and NB classifiers for the

detection of saturation attacks in physical and simulated SDN environments. The

experiment results have demonstrated that the time window of OpenFlow traffic has a

noticeable impact on the detection performance and that the classifiers were capable of

detecting known types of saturation attacks in SDN.

Also, we have investigated the capability of semi-supervised and supervised

classifiers for detecting unknown saturation attacks. Based on the reported results, the

supervised classifiers such as K-NN, SVM, and NB are deficient in detecting unknown

saturation attacks, whereas the semi-supervised classifiers such as One-Class SVM,

Isolation Forest, Basic Autoencoder, and Variational Autoencoder can detect both known

59

and unknown saturation attacks. Specifically, the Variational Autoencoder obtained high

performance in detecting saturation attacks against SDNs.

60

CHAPTER FOUR: VICTIM SWITCH DETECTION

The victim switch detection module is triggered as soon as the saturation attack

detection module (see Chapter 3) determines that the SDN network is under a saturation

attack. It is responsible for identifying the OpenFlow switches targeted by known and

unknown saturation attacks. Determining which OpenFlow switch in an SDN network is

targeted by a saturation attack is an issue. In a traditional network, the task of identifying

the victim switch is simpler. For example, in the case of a traditional network, determining

whether a switch is compromised or not only requires examining its forwarding behaviors.

If the forwarding behaviors diverge from the switch’s predefined forwarding rules, then

the switch is compromised. However, in an SDN, different controller applications and

modules are involved in the programming of the OpenFlow switches. Thus, the flow-rules

of an OpenFlow switch dynamically change over time. Consequently, the forwarding

behaviors of an OpenFlow switch do not exhibit a single set of behavioral norms, which

makes the task of identifying the victim switch difficult.

Furthermore, a table-miss occurs because of a new incoming benign packet or a

malicious packet. Neither one matches any of the OpenFlow switch flow-entries. In both

cases, the OpenFlow switch behavior is identical: it generates a Packet-In message and

forwards it to the controller. Next, the controller decides on the proper action to deal with

the table-miss packet, either installing a new flow-entry into the switch flow-table using a

Packet-Mod message and allocating the table-miss packet route using a Packet-Out

61

message. These steps occur without the controller knowing if the table-miss packet is a

malicious one or not.

In short, the behavior of the OpenFlow switch and the controller when a table-miss

occurs is the same, whether the table-miss is due to a malicious packet or due to a new

benign packet. This makes the determination of the victim OpenFlow switch a complex

issue.

To complicate the matter, malicious OpenFlow traffic generated by a saturation

attack, and benign OpenFlow traffic generated using a normal traffic generation tool or any

SDN application, contain the same OpenFlow messages.

Figures 16 and 17 show samples of benign and malicious OpenFlow traffic that

consist of the OpenFlow messages that have been transferred between the controller and

the OpenFlow switches. The benign OpenFlow traffic was generated using the D-ITG and

Cisco Trex normal traffic generation tools and the malicious OpenFlow traffic was

generated using the HPING3 flooding tool. From these two samples, we can see the

similarity in the OpenFlow messages between the malicious and the benign. These samples

also highlight the lack of unique features that could be used to distinguish malicious

OpenFlow traffic from legitimate traffic.

Figure 16 OpenFlow Benign Traffic

62

Figure 17 OpenFlow Malicious Traffic

In this chapter, we study the adoption of supervised and semi-supervised machine

learning algorithms with three methods of victim switch detection to determine the most

accurate and effective approach for identifying the victim OpenFlow switches, as explained

below.

4.1 Victim Switch Detection Using OpenFlow Messages Header

This is a lightweight method that can be used to detect the victim OpenFlow

switches by inspecting OpenFlow message headers. This method works as follows. Firstly,

classify the OpenFlow messages based on the OpenFlow switch DPID. Secondly, by

inspecting the OpenFlow message headers, extract each message type. Finally, based on

message type, extract the following features: (1) number of Packet-In messages generated

by a switch, (2) number of Packet-Out messages received by a switch, (3) number of

Packet-Mod messages received by a switch, and (4) number of TCP-ACK messages

received and generated by an OpenFlow switch.

Essentially, the attackers may compromise an OpenFlow switch by sending a vast

number of table-miss packets. Thus, a large number of Packet-In messages will be

63

generated by the targeted switch and forwarded to the controller. Therefore, the

occurrences of Packet-In messages in the malicious OpenFlow traffic of the targeted

OpenFlow switch are much more frequent, because many incoming packets do not match

the existing flow-entries of the targeted OpenFlow switch.

In addition, in the benign traffic, the number of Packet-Out and Packet-Mod

messages is very similar to the number of Packet-In messages and the number of TCP-

ACK messages. In contrast, in the malicious traffic, the number of Packet-In messages and

TCP-ACK messages is significantly higher than the number of Packet-Out and Packet-

Mod messages, as depicted in Figure 18. Thus, these features can be used to identify the

victim OpenFlow switches because they reflect the impact of the saturation attack on the

OpenFlow traffic of the targeted OpenFlow switches.

Figure 18 A Sample of the Number of Packet-In, Packet-Out, Packet-Mod, and

TCP-ACK Messages in Benign and Malicious Traffic

64

4.1.1 Data Collection and Experiment Setup

The simulated OpenFlow traffic has been used to extract the training and testing

datasets since they were collected from different network topologies and scales. Also, the

malicious OpenFlow traffic was collected by targeting multiple OpenFlow switches by

saturation and hybrid saturation attacks. Thus, the simulated SDN OpenFlow traffic reflects

the real-world malicious OpenFlow traffic.

 As mentioned in the previous section, the features of the extracted datasets are:

(1) number of Packet-In messages for each OpenFlow switch, (2) number of Packet-Out

messages for each OpenFlow switch, (3) number of Packet-Mod messages for each

OpenFlow switch, and (4) number of TCP-ACK messages for each OpenFlow switch. The

time window of the extracted datasets is equal to 1 minute of OpenFlow traffic analysis,

based on the findings in Chapter 3.

We evaluated the effectiveness of this method for identifying the OpenFlow

switches targeted by known saturation attacks by incorporating the K-NN, SVM, and NB

classifiers. Also, we evaluated the degree of consistency of this method with the saturation

attack detection method by performing 31 tests that include all the saturation and hybrid

saturation attacks.

Each test consists of two parts. First, we take a random sample of the saturation

attack detection method testing dataset. This sample could be a normal sample that reflects

that the SDN environment is in its normal mode or an attack sample that represents that the

SDN environment is under a saturation attack. Second, we take a random sample of the

victim switch detection method testing dataset, which is used to evaluate the detection

performance of the classifiers in distinguishing the OpenFlow switches targeted by

65

saturation attacks from the normal ones. This sample consists of a list of normal and

malicious OpenFlow switch specimens.

4.1.2 Experiment Results

Table 7 shows our offline supervised classifiers’ experimental results. The K-NN

classifier obtained the highest detection performance for detecting the victim OpenFlow

switches, with 91% precision, 89% recall, and a 90% F1 score, which is a relatively low

detection performance result. Also, the results of our victim switch models were

inconsistent with the detection module models in seven tests out of 31 tests. The reason is

related to the extracted features of this method, which provide too shallow of a distinction

to the trained models to distinguish the targeted OpenFlow switches from the normal ones.

Table 7 Detection Results of Known Saturation Attacks-Using OpenFlow

Message Header

Algorithm Precision Recall F1-Score

K-NN 91% 89% 90%

SVM 82% 77% 79%

NB 86% 80% 83%

Essentially, on a large scale SDN network, many network applications generate a

burst of new traffic that does not match the existing flow-rules of OpenFlow switches

which cause a table-miss for a period of time. Thus, the occurrences of the Packet-In,

Packet-Out, Packet-Mod, and TCP-ACK messages of normal traffic will be similar to the

malicious OpenFlow traffic of the corresponding OpenFlow switch.

Also, the behavior of an OpenFlow switch when a table-miss occurred due to a

normal or a malicious packet is identical because of the generating Packet-In message

injecting the table-miss inside the Packet-In data field. Therefore, the headers of normal

and malicious OpenFlow messages processed by the OpenFlow switches and the controller

66

are identical. Thus, using the headers of the OpenFlow messages is not a preferable method

to accurately identify the targeted OpenFlow switches. Therefore, the adoption of other

methods was investigated as explained below.

4.2 Victim Switch Detection Using OpenFlow Messages Payload

Based on the investigation of the malicious and normal OpenFlow traffic, we have

observed that when an OpenFlow switch is under a saturation attack, the distribution of the

source IPv4 addresses of the table-miss packets that were encapsulated inside the payload

of the Packet-In message (i.e., data field) change frequently. Therefore, a statistical method

should be utilized to measure the distribution changes of the source IPv4 addresses of the

OpenFlow switch table-miss packets.

We obtained the Packet-In messages for each OpenFlow switch and then inspected

each Packet-In message payload in order to extract the table-miss packet source IPv4

addresses. Subsequently, we used the Shannon Entropy [70] to calculate the entropy value

of the source IPv4 addresses of the table-miss packets for each OpenFlow switch. The

Shannon Entropy is a measure of the uncertainty of random variables in information theory.

A high entropy value indicates a more decentralized probability distribution, while

a low entropy value indicates a more concentrated distribution. According to the definition

of the Shannon Entropy, the entropy value of the source IPv4 addresses of the switch table-

miss packets can be defined as:

𝐸(𝑠𝑟𝑐𝐼𝑃) = − ∑(𝑛𝑖/𝑀) log2(𝑛𝑖/𝑀)

𝑘

𝑖=1

(4.1)

Here, 𝑠𝑟𝑐𝐼𝑃 = {𝑛1, 𝑛2, … , 𝑛𝑘} represents all the source IPv4 addresses of the switch

table-miss packets encapsulated inside the switch Packet-In messages within the specified

67

time window. 𝑛𝑖 represents the occurrence number of the 𝑖𝑡ℎ source IPv4 address, 𝐼𝑃𝑖,

and 𝑘 is the number of different sources IPv4 addresses. 𝑀 = ∑ 𝑛𝑖
𝑘
𝑖=1 is the total

occurrence number of all source IPv4 addresses of table-miss packets of a victim

OpenFlow switch.

Figure 19 A Sample of Source IPv4 Addresses of Normal and Malicious Table-

Miss Packets for One Minute

Figure 19 shows a sample of the total received source IPv4 addresses of normal and

malicious table-miss packets. Also, it shows the number of source IPv4 addresses

corresponding to the normal and malicious table-miss packets. Within one minute of

OpenFlow traffic analysis, out of 962 source IPv4 addresses corresponding to the malicious

incoming packets, 574 different spoofed source IPv4 addresses were extracted and used to

generate table-miss packets. In contrast, out of 684 IPv4 source addresses corresponding

to the legitimate incoming packets, 24 different source IPv4 addresses were extracted.

Thus, the entropy value of the malicious table-miss packets was higher than the entropy

value of the legitimate table-miss packets. Therefore, we have used the entropy value of

the source IPv4 addresses of the OpenFlow switch table-miss packets as a feature for the

machine learning classifiers to identify the targeted OpenFlow switch. The entropy value

684

24

962

574

0

200

400

600

800

1000

1200

N
U

M
B

ER
 O

F
SR

C
 IP

V
4

 A
D

D
R

ES
SE

S

Total Number of Normal Received IPv4 Src Normal Table-Miss Src IPv4

Total Number of Malicious Received IPv4 Src Malicious Table-Miss Src IPv4

68

is useful for detecting the victim OpenFlow switches because it accurately reflects the

characteristics of the saturation attacks against the SDN-data plane.

We have also identified another feature that can be used to accurately identify the

victim OpenFlow switches. Table-Miss Packet Rate (TPR) is a new feature that has been

identified in this research. It can be used to calculate the Table-Miss Packet Rate Value

(TPR-Value) which is the proportion of table-miss packets (i.e., Packet-In messages) out

of the total corresponding received packets of an OpenFlow switch within a specified time

window. It is defined as follows:

𝑇𝑃𝑅 − 𝑉𝑎𝑙𝑢𝑒 =

∑ 𝑆(𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝑛)

∑ 𝑆(𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠)

(4.2)

Here, ∑ 𝑆(𝑃𝑎𝑐𝑘𝑒𝑡𝐼𝑛) is the total number of generated Packet-In messages, which

is equal to the number of table-miss packets, and ∑ 𝑆(𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑃𝑎𝑐𝑘𝑒𝑡𝑠) is the total

number of received/incoming packets of the OpenFlow switch within the specified time

window.

The TPR-value is a significant feature that can be used to accurately identify the

victim switch since it measures the ratio of the received packets that cause the table-miss

of an OpenFlow switch within the specified time window. As shown in Figure 20, within

one minute of OpenFlow traffic analysis, the switch received 140,531 legitimate packets

and generated 15,637 Packet-In messages, with a TPR-value equal to 0.11

(15,637/140,531). Therefore, the TPR-value indicates that, within one minute, 11% of the

received packets caused a table-miss because they did not match any of the OpenFlow

switch flow-entries, and 89% of the received packets matched the flow-entries. In contrast,

the same OpenFlow switch targeted by saturation attacks received 96,463 packets and

generated 38,164 Packet-In messages, with a TPR-value equal to 0.39 (38,164/96,463).

69

This means that 39% of the received packets are table-miss packets and 61% of the

malicious packets match the flow-entries. Therefore, when the OpenFlow switch is targeted

by a saturation attack, the TPR-value increases significantly, since a large portion of the

incoming packets are table-miss packets. Thus, the TPR-value can be used as a feature,

since it reflects the impact of the saturation attacks on the OpenFlow switches and provides

insight into the nature of the processed packets.

Figure 20 A Sample of Normal and Malicious Received Packets with

Corresponding Malicious Table-Miss Packets for One Minute

4.2.1 Data Collection and Experiment Setup

Extracting the training datasets is a prerequisite for training the machine-learning

classifiers. Thus, we have extracted datasets with time windows equal to one minute of

OpenFlow traffic analysis from the captured benign and malicious OpenFlow traffic of the

simulated SDN environments, as detailed in Chapter 3. The dataset features of this method

are the entropy values of the source IPv4 addresses of the switch table-miss packets and

the TPR-values. Similar to the first method, we evaluated the effectiveness of this method

70

in detecting the targeted OpenFlow switches by known saturation attacks by adopting the

K-NN, SVM, and NB classifiers. Also, we evaluated the degree of consistency between

the victim switch detection models and the detection method model.

4.2.2 Experimental Results

As shown in Table 8, the detection performance of the supervised classifiers is

highly improved by using this method. Also, our victim switch detection classifier was

fully consistent with the detection method in all 31 tests. The victim switch detection using

OpenFlow messages payload achieved a higher detection result in detecting the targeted

OpenFlow switch than the previous method (see Section 4.1).

Table 8 Detection Results Using Entropy and TPR-Value

Algorithm Precision Recall F1-Score

K-NN 96% 94% 95%

SVM 81% 85% 83%

NB 86% 90% 88%

The reason behind the improvement of the detection performance of the classifiers

is related to the extracted features of this method. The entropy value of the table-miss IPv4

addresses and the TPR-value provide a clear distinction to the trained models to identify

the targeted OpenFlow switches. Fundamentally, when an attacker tries to flood an

OpenFlow switch, he or she sends a large number of packets with spoofed IPv4 address to

urge the targeted OpenFlow switch to generate a large number of Packet-In messages.

Therefore, the entropy value can provide a clear distinction between the nature of

the malicious Packet-In messages and the normal ones. Even in a large scale SDN

environment, where a large amount of normal traffic is generated, the entropy value can be

used to indicate the targeted OpenFlow switches. Because in normal traffic, the incoming

71

flow packets have the same IPv4 address. Thus, when the OpenFlow switch processes the

first packet of the incoming new traffic, a flow-rule will be installed and match the

remaining packets. As a result, the entropy value of the IPv4 address of the table-miss

packet of the normal traffic will be a small value. However, in malicious traffic, the

incoming traffic entropy value of IPv4 addresses will be high, because all the incoming

new packets IPv4 addresses are spoofed.

Also, the TPR-value is an effective feature which can be used to identify the

targeted OpenFlow switches, because it reflects the nature of the processed traffic. For

example, when an OpenFlow switch processes the network traffic and most of the packets

of this traffic cause a table-miss, the TPR-value will be high, which indicates that the

incoming traffic is suspicious. However, in normal traffic, the TPR-value will be low even

in a large scale SDN network, because the number of table-miss packets with

corresponding incoming traffic will be low, since most of the incoming traffic are benign

packets and match the flow-rules of the connected OpenFlow switches.

The victim switch detection using the OpenFlow messages payload method by

using entropy and the table-miss packets rate value (TPR-value) requires extra computation

for extracting the IPv4 addresses from the Packet-In messages data field and calculating

the relevant values for each OpenFlow switch in the SDN environment. Thus, it might

cause a slight performance overhead over the SDN environment.

4.3 Victim Switch Detection Through Integration of OpenFlow Message Headers

and Payload

This method integrates the features of the previous two methods as explained in

sections 4.1 and 4.2. Therefore, the victim switch detection method will use the OpenFlow

72

message headers to extract the number of Packet-In, Packet-Out, Packet-Mod, and TCP-

ACK message features. It will use the Packet-In message data fields to extract the entropy

value of the source IPv4 addresses of the switch table-miss packets, and also the TPR-value

of each OpenFlow switch in the SDN environment. Thus, the number of Packet-In, Packet-

Out, Packet-Mod, TCP-ACK messages, the entropy value of the source IPv4 addresses of

the switch table-miss packets, and the TPR-value are used as machine learning classifier

features to detect and identify the victim OpenFlow switches.

4.3.1 Data Collection and Experiment Setup

Similar to the previous two methods, the training and testing datasets have been

extracted from the collected OpenFlow traffic. The time window of the extracted dataset

is equal to one minute of OpenFlow traffic analysis. Also, we have conducted 31 tests to

evaluate the degree of consistency between the victim switch detection models and the

saturation attack detection method models.

4.3.2 Experiment Results

As shown in Table 9, the detection performance of the supervised classifiers

obtained higher detection results than the previous two methods. Also, the K-NN classifier

was fully consistent with the detection method in all 31 tests. We believe that combining

the features of the previous two methods improves the detection performance of the

classifiers in identifying the targeted OpenFlow switches, because the combined features

reflect the impact of saturation attacks on the targeted OpenFlow switches and the

OpenFlow traffic, which enable the trained classifiers models to accurately identify the

targeted OpenFlow switches. As a result, this method was used in the online victim switch

73

detection module to identify the targeted OpenFlow switches by known saturation attacks

accurately.

Table 9 Detection Results Using the Integration Method

Algorithm Precision Recall F1-Score

K-NN 95% 96% 95%

SVM 83% 90% 86%

NB 91% 88% 89%

4.4 Detecting OpenFlow Switches Targeted by Unknown Saturation Attacks

Machine learning detection systems are deficient in their ability to detect new

attacks, which the classifier has not yet ‘seen’ (in the training phase) [51]. This is because

the fundamental approach of a machine learning detection system is to train the classifier

on examples of all available attack classes – typically, a large number of specimens for

each attack class. It is difficult to find a dataset that includes an example of each attack

class. Thus, when an unknown attack targets the network, the machine learning model fails

to detect the attack, because there was no prior opportunity to train the model on this type

of attack.

In our experiments, we extracted dataset features and then excluded the targeted

attack and its combination of samples from the training dataset, in order to present it as an

unknown attack to the trained model. In this case, the training dataset included benign

traffic samples, as well as the remaining attacks and their respective samples. The testing

dataset consisted of the unknown attack samples, as well as randomly selected benign

traffic samples. For example, given that X is the training dataset that consists of attack

samples and normal traffic samples, Y is the testing dataset that includes attack samples

74

and normal traffic samples, G is the unknown attack samples only, and C is the attack

combination samples, the X training datasets and the Y testing datasets are in the form of:

 X(trainingSet) = X - 𝐺 - 𝐶 (4.3)

 Y(testingSet)= G + 𝑁𝑜𝑟𝑚𝑎𝑙𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝑆𝑎𝑚𝑝𝑙𝑒𝑠 (4.4)

Based on the reported results in Table 10, the supervised classifiers are capable of

detecting the victim OpenFlow switches when it is targeted by unknown saturation attacks.

Specifically, the K-NN classifier shows capable detection results. We hypothesize that all

the different attacks in the training set allow the classifier to generalize the missing one.

Table 10 Detecting OpenFlow Switches Targeted by Unknown Attacks Using

Supervised Classifiers

Attack

K-NN SVM NB

P*

%

R*

%

F1*

%

P*

%

R*

%

F1*

%

P*

%

R*

%

F1*

%

UDP 100 94 97 99 90 94 99 92 95

SYN 100 92 96 100 48 65 99 98 98

TCP-

SARFU

97 95 96 100 61 76 99 94 96

IP-

Spoofing

97 94 95 98 65 78 91 93 92

ICMP 100 54 70 99 47 64 100 53 69

P* = Precision, R* = Recall, and F1* = F1 score

To confirm this hypothesis, we considered the K-NN (our best choice) where only

one kind of attack is used in the training set. The results in Table 11 show that the K-NN

in the worst-case scenario obtained a low detection performance result in identifying the

victim OpenFlow switches when they are targeted by unknown saturation attacks. This

means that supervised classification cannot be trusted for unknown SDN attacks in general.

75

For these reasons, we consider semi-supervised classifiers such as Isolation Forest, One

class-SVM, Autoencoder, and Variational Autoencoders. In this case, the training set

comprises only the normal instances, whereas, the testing set consists of all the normal and

attack instances.

Table 11 K-NN Detection Results of Identifying Targeted OpenFlow Switches

by Unknown Attacks

Attack

K-NN

Precision Recall F1-Score

UDP 0.96 0.40 0.56

SYN 0.93 0.17 0.29

TCP-SARFU 0.91 0.30 0.45

IP-Spoofing 0.94 0.23 0.18

ICMP 0.93 0.43 0.29

Table 12 reports the average results of the 10-fold cross-validation. The semi-

supervised algorithms have higher detection performance results for identifying the victim

OpenFlow switches than the supervised ones. Specifically, the Variational Autoencoder is

effective in identifying the victim OpenFlow switches when they are targeted by unknown

saturation attacks and obtains comparable results to the supervised classifiers in detecting

the known saturation attacks. Therefore, our detection victim switch module adopted the

Variational Autoencoder algorithm to identify the OpenFlow switches when they are

targeted by known and unknown saturation attacks. However, other machine learning

algorithms can be utilized in this module.

In this approach, the online victim switch detection module is a two-stage process

(i.e., training stage and detection stages). In the training stage, before the system starts for

the first time, the Variational Autoencoder is trained using a training dataset made in

76

advance. At the detection stage, when our system is running, the OpenFlow traffic collector

and feature extractor module send the extracted features (see section 4.3) periodically as

instances for each OpenFlow switch in the SDN network.

Upon receiving these instances from the victim switch detection module, the

constructed Variational Autoencoder model processes each of them to identify the

OpenFlow switches under a saturation attack. The classification result of “1” indicates that

the OpenFlow switch is under a saturation attack.

Table12 Semi-Supervised Algorithms Detection Results of Identifying

Targeted OpenFlow Switches by Unknown Attacks

Algorithm

Precision (%) Recall (%) F1-Score (%)

Variational Autoencoder 93 98 96

Basic Autoencoder 84 81 82

One-Class SVM 73 75 74

Isolation Forest 82 67 73

4.5 Summary

In this chapter, we investigated three methods for identifying the targeted

OpenFlow switches by known and unknown saturation attacks in an SDN network,

incorporating both supervised and semi-supervised machine learning algorithms.

Based on the reported results, detecting the targeted OpenFlow switches by using

the OpenFlow message headers (see section 4.1) did not provide very high precision, recall,

and F1-score results in identifying the targeted OpenFlow switches due to the kind of

features extracted from the OpenFlow message headers. Thus, using the OpenFlow

message headers to determine the targeted OpenFlow switches is not a suitable approach,

77

since the headers of these messages have a large overlap between the normal and malicious

ones.

The experiment results showed that using the OpenFlow message payloads (see

section 4.2) provides a higher detection performance in terms of precision, recall, and F1-

score since the extracted features accurately reflect the behavior of the OpenFlow switches

when they are under a saturation attack. This enables the trained models to identify these

switches accurately. Finally, the integration of OpenFlow message headers and payload

(see section 4.3) obtained the highest detection results. This was because the features

extracted from the OpenFlow message headers and payloads allowed the trained model to

precisely identify the OpenFlow switches targeted by known and unknown saturation

attacks.

78

CHAPTER FIVE: COUNTERMEASURE SATURATION ATTACKS

The countermeasure module triggers when the victim switch detection module

identifies the OpenFlow switches that are targeted by saturation attacks, otherwise, it

remains idle. It is an efficient and cost-effective countermeasure method that does not

require any modification of the SDN design or any extra device. It can mitigate a family of

saturation and hybrid saturation attacks by utilizing three components. (1) The Packet-In

deep inspection filter is responsible for identifying the zombie hosts, targeted hosts, and

reducing the false-positive rate of the victim switch detection module. (2) The blocking-

rule manager component is responsible for blocking the malicious incoming traffic from

the zombie hosts. Lastly, (3) the flow-rule manager component can accurately identify the

installed malicious flow-entries and remove them from the flow-tables of the victim

OpenFlow switches.

In the upcoming sections, we first introduce the Packet-In deep inspection filter.

We continue by discussing the mitigation of known and unknown saturation attacks by

describing the blocking-rule manager and flow-rule manager. We describe the

implementation of the proposed defense system and the setup of our experiments. Finally,

we present the proposed defense system experimental results.

5.1 Packet-In Deep Inspection Filter

The Packet-In deep inspection filter can identify the zombie hosts, the targeted

destination, and reduce the false-positive rate of the victim switch detection module by

inspecting the Packet-In messages of each OpenFlow switch identified as a victim by the

79

victim switch detection module. Algorithm 2 shows the working process of the Packet-In

deep inspection filter, as follows:

 Extract all the Packet-In messages of each OpenFlow switch that has been

identified as a victim by the victim switch detection module (lines 1-2).

 Inspect the data field for each Packet-In message. The data field contains

the header of the table-miss packet or the whole table-miss packet, as

depicted in Figure 21. Through the inspection, the source and the destination

IPv4 addresses, MAC addresses, and switch port numbers of the table-miss

packets are extracted (lines 3-7).

 Identify the zombie hosts and the target destinations by comparing the table-

miss packets source and destination IPv4 addresses with the saved network

topology that has been obtained by the network topology manager module.

Essentially, the attacker keeps spoofing the content of the transmitted

packets to reduce the possibility of matching any flow-rules. This is done in

order to urge the victim switch to generate Packet-In messages –

specifically, the source IPv4 address of the table-miss packets (lines 8-14).

The malicious packets with the same IPv4 address will drastically

downgrade the performance of the saturation attacks since the controller

will install the flow-rule on the OpenFlow switch flow table that matches

the incoming traffic. Therefore, the zombie hosts can be identified by

comparing the MAC address, port number, and source IPv4 address of the

table-miss packet with the saved network topology. If the source IPv4

address has zero matches with the network topology and the MAC address,

80

and/or the port number matches the saved network topology, then the table-

miss packet is considered a malicious packet and the host with the

corresponding source MAC address is recognized as a zombie host. Also,

the destination of the table-miss packet is regarded as a targeted destination

and the OpenFlow switch of the Packet-In messages will be regarded as a

victim switch.

Figure 21 A Sample of a Table-Miss Packet Data Field

81

Algorithm 2: Packet-In Deep Inspection Filter

Input victim OpenFlow Switches OFSwitches, OpenFlow traffic 𝑂𝐹, Network
Topology NT

Output ZombiesHostMACs, ZombiesHostIPs, TargetDestinationIP

Declare vSwitch, vSwitch_PacketIn, sourceIP, sourceMAC, destinationIP

Steps

1 For (i = 0, i <= OFSwitches, i++) do

2 vSwitch = OFSwitches[i]

3 vSwitch_PacketIn = extractPacketInMessages(vSwitch, OF)

4 For each packet-In in vSwitch_PacketIn do:

5 sourceIP = extractSourceIPaddressFromDataField(packet-In)

6 sourceMAC = extractSourceMACaddressFromDataField (packet-In)

7 destinationIP = extractdestinationIPaddressFromDataField (packet-In)

8 If (sourceIP not in NT) {

9 ZombieHostsIPs [vSwitch , sourceIP]

10 ZombieHostsMACs [vSwitch , sourceMAC]

11 TargertDestinationIP destinationIP

12 End if

13 End for

14 End for

5.2 Blocking Rule Manager

The blocking-rule manager is triggered by the Packet-In deep inspection filter. It is

responsible for mitigating saturation attacks by blocking the malicious incoming traffic

from the zombie hosts. After the Packet-In message filter identifies the zombie hosts, the

blocking-rule manager obtains the OpenFlow switches of the zombie hosts by comparing

their MAC addresses and port numbers with the saved network topology. Next, it installs

82

a high priority blocking-flow rule on these zombie hosts’ OpenFlow switches using

controller-to-switch messages.

As shown in Figure 22, the blocking- rule consists of a switch DPID field which is

equal to the zombie host’s OpenFlow switch DPID. The priority field is used to assign the

priority of the installed flow-rule since the processing of the flow-rules is based on priority.

Thus, the assigned value should be the highest, which is equal to 32,767. The MAC address

field is equal to the zombie host’s MAC address; the ingress port field is equal to the

zombie host’s OpenFlow switch port; and finally, the action field is equal to the “Drop”

action to block the malicious incoming traffic from the zombie hosts. After installing the

blocking-rule, the incoming malicious traffic from the ingress port will be matched against

the blocking-rule. Once the blocking-rule manager installs the blocking entry, the

malicious incoming traffic will be blocked. Subsequently, the flow-rule manager will be

triggered.

Switch DPID Priority MAC Address Port Number Action

00.00.00.03 32767 Bc: 30:5b:9b:ae:9b 1 Drop

Figure 22 A Sample Blocking Flow Rule

5.3 Flow Rule Manager

One of the main destructive consequences of a saturation attack is preventing

legitimate flow-entries from being installed. This happens because the attack consumes the

data plane memory by installing a huge amount of malicious flow-entries into the victim

switches’ flow-tables. Therefore, identifying the malicious flow-entries and removing

them from the victim switch’s flow-tables is an important step in resisting saturation

attacks.

83

As far as we know, few studies have been proposed to tackle this issue. The basic

method proposed in [71] is to delete all the flow entries from the victim OpenFlow switch,

which sacrifices the legitimate flow-entries. Another approach proposed in [72] is to keep

track of any modification to the OpenFlow switch’s flow-tables by recording any addition

or deletion of the switch’s flow-entries. This approach can cause performance overhead for

the SDN environment. The proper solution should identify malicious flow-entries

accurately without removing the legitimate ones.

Identifying malicious flow-entries is an issue [73]. When a table-miss occurs, the

controller installs flow-entries into the switch’s flow-tables to match the new incoming

traffic. The process of creating flow-entries does not exhibit a single behavior. The

controller may use the port numbers, switch DPID, and/or MAC addresses of the source

and destination, IPv4 addresses of the source and destination, or their combinations to

match the incoming traffic. Therefore, there are different forms of malicious flow-entries.

The flow-rule manager component can accurately identify the malicious flow-rules

and remove them from the victim OpenFlow switches flow tables. Figure 23 shows the

working process of the flow-rule manager, divided into two phases:

 In the first phase, the flow-rule manager creates the saturation attack

topology by obtaining all the source and destination IPv4 addresses, MAC

address, victim OpenFlow switch DPIDs, and port numbers of the victim

OpenFlow switch’s table-miss packets.

 In the second phase, the flow-rule manager obtains the victim OpenFlow

switch’s flow-rules by using a controller-to-switch message. Subsequently,

it compares the values of the flow-rules fields with the attack topology. If

84

any value of the flow-entry fields matches any of the saturation attack

topology values, the flow-entry will be considered malicious. In this case,

the flow-rule manager uses the controller-to-switch message to delete the

identified malicious flow-entries from the flow-tables of the victim

OpenFlow switch. As a result, a large amount of memory is freed on the

OpenFlow switch flow-tables, which allows the new legitimate flow-entries

to be installed and returns the OpenFlow switch settings to their pre-attack

state.

Figure 23 The Flow-Rule Manager State Machine

5.4 System Implementation

We implemented the proposed defense system, including the network topology

manager, traffic collector and feature extractor, saturation attack detection, victim switch

Create

Attack

Topology

Send a GET-

REST request

to Pusher Entry

Allocate

victim switch

flow rules

Obtain the

zombie hosts and

victim OpenFlow

switches

Identify

fake-rules

Send Flow-rules

Remove

Fake rules

Remove the flow

rules by sending

“Delete” REST-

Request to Pusher

malicious rules

detected

Send victim

switch DPID

Match the flow

rules field with

the attack

85

detection, Packet-In deep inspection filter, blocking-rule manager, and flow-rule manager.

All of them are implemented as an application on Floodlight master V1.2 [74] in Python.

Meanwhile, we installed and used the Mininet tool to create simulated SDN environments

with different network topologies and scales on a computer equipped with an i5 CPU and

8 GB of RAM.

 To compare the proposed defense system with previous work, we launched the

saturation attacks in two scenarios: (1) an SDN network without any protection, and (2)

SDN networks with the protection of the proposed defense system.

5.4.1 The Network Topology Manager Module

The network topology manager module is responsible for obtaining the SDN

network topology by incorporating two elements. First, the network topology extractor

component uses the northbound APIs exposed by the controller to obtain the network

topology. It uses the REST API to communicate with the Topology Manager / Routing

service that maintains the current network topology information. This information consists

of the IPv4, IPv6, and MAC addresses, and port numbers for the connected switches, hosts,

and controllers.

Second, the network topology analyzer is responsible for analyzing and parsing the

obtained network topology information. First, the topology analyzer extracts the connected

OpenFlow switches’ DPIDs addresses, MAC addresses. Second, for each OpenFlow

switch, it extracts the connected hosts’ IPv4 address, MAC addresses, and port numbers.

At this point, the traffic collector and feature extractor module are initiated.

86

5.4.2 The Traffic Collector and Feature Extractor Module

The objectives of the traffic collector and the feature extractor module are to collect

the OpenFlow traffic between the controller and the OpenFlow switches, in order to extract

the saturation attack detection module and victim switch detection module features. This

module consists of the traffic collector and the feature extractor.

5.4.2.1 OpenFlow Traffic Collector Component

In SDN environments, there are two common methods to collect the OpenFlow

traffic between the control plane and the data plane. The first method is to use the

controller-to-switch flow statistics messages. The controller can periodically send these

messages and the OpenFlow switch responds with one or more reply messages containing

the flow statistics. However, when the SDN environment is under a saturation attack, the

OpenFlow channel bandwidth is congested by a large number of table-miss packets that

fill the flow-tables of the switches, which makes it hard for the OpenFlow switches to reply

in a timely manner. Also, the flow statistics messages are large messages, which may

congest the OpenFlow channel even further [75].

Since the controller may have been exhausted from processing the malicious table-

miss packets that are coming from the OpenFlow switches, it may not receive, process,

and respond to the flow statistics messages in a timely manner. For these reasons, using

the flow-statistics is not a reliable option for a saturation attack detection system.

The second common method that has been used by different research studies is

sFlow-RT [76], which is software that can be installed in the SDN environment to collect

and monitor the OpenFlow traffic. However, sFlow-RT uses a periodic sampling of the

OpenFlow traffic and cannot collect information on all OpenFlow packets, which may have

87

a large impact on the accuracy of the detection method [77]. In addition, sFlow-RT cannot

collect a low-rate of OpenFlow traffic [78] [79].

To overcome the shortcomings of the two previous methods for collecting the

OpenFlow traffic, we adopted the Pyshark library [80] in the proposed defense approach.

Pyshark is a wrapper package of the tshark library [81] that provides a live capture of

OpenFlow traffic and easy parsing of the collected traffic packets. More importantly,

Pyshark can provide full insight into each OpenFlow packet that is transferred between the

control plane and the data plane, without consuming the OpenFlow channel bandwidth.

Therefore, the traffic collector uses Pyshark as the OpenFlow traffic collection method.

The OpenFlow traffic collection process is a session-based process and the

collected OpenFlow traffic of each session is fed to the feature extractor. The duration of

each session is equal to the pre-defined time window of OpenFlow traffic analysis. In this

approach, the OpenFlow traffic time window is set to equal one minute, based on the

identification of the proper time window for OpenFlow traffic analysis, as described in

Chapter Three.

5.4.2.2 Feature Extractor Component

From the collected OpenFlow traffic, the feature extractor component parses the

OpenFlow traffic, extracts features, and feeds them as an instance to the saturation attack

detection module to determine if there is abnormal behavior in the SDN network. In this

approach, four features are extracted from the OpenFlow traffic: (1) the number of Packet-

In messages sent from the switches to the controller, (2) the number of Packet-Out

messages sent from the controller to the switches, (3) the number of Packet-Mod messages

88

sent from the controller to the switches, and (4) the number of TCP-ACK messages sent

from the switches to the controller.

When the saturation attack detection module discovers abnormal behavior, the

feature extractor processes the collected OpenFlow traffic to extract the features for the

victim switch detection module. The features used by the victim switch detection module

are: (1) the number of Packet-In messages, (2) the number of Packet-Out message, (3) the

number of Packet-Mod messages, (4) the number of TCP-ACK messages, (5) the entropy

values of the source IPv4 table-miss packets, and (6) the TPR-value for each OpenFlow

switch in the SDN network.

5.4.3 Saturation Attack Detection Module

The saturation attack detection module is utilized to detect saturation attack on SDN

network. It employs the Variational Autoencoder classifier as its main machine learning

algorithm. Essentially, the Variational Autoencoder is a kind of semi-supervised learning

algorithm that requires a smaller training dataset, compared to supervised machine learning

classifiers, and is effective at detecting the known and unknown saturation attacks.

In this work, the saturation attack detection module is a two-stage process (i.e.,

training stage and detecting stage). In the training stage, before running the defense system,

the Variational Autoencoder is trained using the training dataset, which was made in

advance. As discussed in Chapter 3, the extracted number of Packet-In, Packet-Out,

Packet-Mod, and TCP-ACK messages are utilized as the features extracted from the

collected OpenFlow traffic. As shown in Table 13, the training dataset consists of 104,512

attack and normal samples.

89

Subsequently, in the detection stage, after running this defense system, the

OpenFlow traffic collector and feature extractor module extract the features from the real-

time captured OpenFlow traffic and provides them as an instance to the Variational

Autoencoder, to determine if there is abnormal behavior in the SND environment

Table 13 Saturation Attack Detection Module Training Dataset

Sample Type Number of samples

Attack Sample 8,963

Normal Sample 95,549

Total 104,512

5.4.4 Victim Switch Detection Module

The victim switch detection module utilizes the Variational Autoencoder algorithm

due to its effectiveness at detecting the OpenFlow switches targeted by known and

unknown saturation attacks, as reported in Chapter 4. Similar to the saturation attack

detection module, the victim switch detection module is a two-stage process, the training

stage and the detection stage. In the training stage, the Variational Autoencoder is trained

using the pre-made training dataset. As described in Chapter 4, the number of Packet-In,

Packet-Out, Packet-Mod, TCP-ACK messages, the entropy value of the IPv4 addresses of

the table-miss packets, and the TPR value are features of the training dataset. As depicted

in Table 14, the training dataset includes 160,000 samples of normal and attack traffic.

Next, in the detection stage, when the system is running and after the saturation

attack detection module discovers abnormal behavior, the OpenFlow traffic collector and

feature extractor module extract the victim switch detection module features from the real-

time captured OpenFlow traffic. These are provided as instances to the constructed

90

Variational Autoencoder model, one for each OpenFlow switch in the SDN network, in

order to identify the OpenFlow switches targeted by known and unknown saturation

attacks.

Table 14 Victim Switch Detection Module Training Dataset

Sample Type Number of samples

Attack Sample 65,000

Normal Samples 95,000

Total 160,000

5.4.5 Countermeasure Module

The countermeasure module can mitigate the saturation attacks by blocking the

incoming attack traffic and remove the installed fake flow rules in the OpenFlow victim

switches flow tables during the attacks. It consists of the blocking-rule manager and the

flow-rule manager that utilize the REST-API services provided by the controller

northbound APIs.

The blocking-rule manager creates a request message as a JSON object that consists

of the blocking rule(s) and sends it over HTTP to the Flow-Entry Pusher service on the

controller side. Subsequently, the Flow-Entry Pusher installs the blocking rule(s) into the

OpenFlow switches’ flow-tables to block the incoming malicious traffic from the zombie

host(s). Later, a confirmation message is sent by the Flow-Entry Pusher to the blocking-

rule manager to confirm the installation of the blocking rules.

The Flow-rule manager creates an attack topology that includes all the spoofed IPv4

addresses, MAC addresses of the zombie hosts and targets hosts, the DPIDs of the zombie

hosts’ OpenFlow switches, and the DPIDs of the victim OpenFlow switches. Next, it

creates a JSON request message for obtaining the flow-rules of the victim OpenFlow

91

switches. Upon receiving the request messages, the Flow-Entry Pusher obtains the flow-

rules of all OpenFlow switches listed in the request message and sends them as a response

message over HTTP to the flow-rules manager. Once the response message is received by

the flow-rule manager, it matches the received flow-rules against the attack topology in

order to identify the malicious ones. Next, another request message (or messages) will be

created which contains all the fake rules that should be removed from the flow-tables of

the victim OpenFlow switches by the flow-rule manager. Upon receiving these messages

from the Flow-Pusher Entry, the listed flow-rules in these messages will be deleted.

Subsequently, the Flow-Pusher Entry will send a confirmation message to the flow-rule

manager to confirm that the fake flow rules have been eliminated.

5.5 Setup of Experiments

First, the saturation attack detection module and the victim switch detection

module need to be trained in advance. Before running the system, both of them were trained

using pre-made training datasets, as explained in the previous section.

Second, the precision, recall, and F-1 score were used to evaluate the performance

of the detection module and the victim switch detection module.

Third, by using our testing parameters as demonstrated in Table 15, we created a

simulated SDN environment for each experiment. The environments have different

network topology, network scale, number of targeted OpenFlow switches, number of

zombie hosts, and types of saturation attacks. We conducted 31 experiments using the

Hping3 tool that covers all the SYN flooding, UDP flooding, ICMP, IP Spoofing, and

SARFU-TCP flooding attacks and their combinations.

92

Table 15 The Experiments’ Testing Parameters

Testing Parameter Description Value

Tn Network topology Star, mesh, linear, tree

Ts Network scale Small, Medium, Large

At Attacks type SYN, UDP, ICMP, TCP-SAFRU,

IP-Spoofing and their combination

(31 attacks)

SWn Number of victim

switches

1 switch – ½ of the total number of

switches

Hn Number of zombie hosts 1 switch – ½ of the total number of

hosts

Fourth, we evaluated the performance of the countermeasure module in mitigating

the saturation attacks by measuring the CPU utilization of the controller via the NetData

tool [82] and the bandwidth of the OpenFlow connection channel by using the IPref tool

[83] before trigging the attack, during the attack, and after the attack was mitigated.

Fifth, we evaluated the effectiveness of our countermeasure module for identifying

and removing the malicious flow-rules from the targeted OpenFlow victim switches by

measuring the flow-table utilization of the victim switches under OpenFlow, with and

without the protection of the proposed defense system.

Sixth, we compared the CPU utilization of the controller and the flow-tables

utilization of the victim switch to the CPU utilization and flow-tables utilization of FDAM,

FloodDefender, and FloodGuard. Unfortunately, due to copyright issues, we are not able

to get the source code of FloodDefender, FDAM, and FloodGuard. Therefore, we used

their published performance results to compare to the proposed defense system’s

performance.

93

5.6 Experimental Results

5.6.1 Detecting Saturation Attacks

The saturation attack detection module was capable of detecting the known and

unknown saturation attacks in each experiment with 85% precision, 97% recall, and a 91%

F1-score within a 0.2-second prediction time. Based on these results, the proposed defense

system provides a higher detection performance than FDAM, FloodDefender, and

FloodGuard. The FDAM system adopts the SVM classifier to detect the SYN, UDP, and

ICMP flooding attacks. In contrast, the proposed defense system is capable of detecting

TCP-SYN, ICMP, UDP, and IP-Spoofing attacks as well as the hybrid saturation attacks.

Also, the proposed defense system is capable of detecting unknown saturation

attacks, whereas the FDAM is deficient in detecting these attacks. FloodGuard is designed

to detect and countermeasure the SYN flooding attack only, while FloodDefender is

developed to detect and mitigate UDP, SYN, and ICMP flooding attacks. However, these

systems are not capable of detecting hybrid saturation attacks and unknown attacks.

5.6.2 Victim Switch Identification

In each experiment, the victim switch detection module was able to identify the

OpenFlow switches targeted by known and unknown saturation attacks. The average

precision was 93%, the average recall was 98%, and the average F-1 score was 96%. The

predication time of the Variational Autoencoder was equal to 0.9 seconds. Based on these

results, the victim switch detection module showed high performance at detecting and

identifying the targeted OpenFlow switches.

94

5.6.3 Computational Resources Utilization

Figure 24 shows the protection of the computational resources of the SDN

environment. Before the attack occurred (from the 0th second to the 58th second), the

average CPU utilization was about 45-50%, since the simulated SDN environment and the

controller were running on the same machine. When the attack occurred (from second 59

to 119), the CPU utilization reached around 95%. Meanwhile, the OpenFlow traffic

collector and feature extractor collected the OpenFlow traffic and extracted the victim

switch detection module features. Then at second 120, the CPU utilization went down

quickly (to around 45%) because our system identified the targeted OpenFlow switches

and mitigated the saturation attack. The total execution time of the victim switch detection

and countermeasure modules was about 2.36 seconds.

Also, we have measured the bandwidth of the OpenFlow connection channel

before, during, and after the mitigation of the attack, as depicted in Figure 25. The average

bandwidth of the OpenFlow connection channel before the attack was about 3.2 GBPS.

When the attack occurred, its bandwidth dramatically decreased to 0.43 GBPS. After our

system mitigated the saturation attack, the OpenFlow connection channel bandwidth

started increasing slowly, due to the huge amount of Packet-Out and Packet-Mod messages

forwarded from the controller to the victim OpenFlow switch.

The results show that the proposed defense system saves the SDN environment’s

computational resources effectively without any noticeable performance overhead. It

operates without the need to add extra devices, as in FloodGuard, or flood the neighbors’

OpenFlow switches, as in FloodDefender.

95

Figure 24 CPU Utilization Under a UDP Saturation Attack

Figure 25 OpenFlow Connection Channel Under a UDP Saturation Attack

96

5.6.4 Flow Table Utilization

The flow-table utilization of the victim OpenFlow switches is depicted in Table 16.

We find that the proposed defense system did not overload the network when there is no

saturation attack. When the attack occurred, the flow-table utilization of the victim

OpenFlow switch without any protection reached 100% because of the installation of the

malicious flow-rules. With the protection of the proposed defense system, the flow-table

utilization remained steady, since all the malicious flow-rules were removed from the

victim OpenFlow Switches.

Also, we observe that the total flow-table utilization rate caused by the proposed

defense system is no greater than 1% because of the installation of the blocking flow rules.

With FloodDefender, the flow-table utilization can reach up to 15% of the flow-table

buffer, due to the installation of monitoring and processing flow-rules. With FloodGuard,

the flow-table utilization can reach up to 30%, since it uses rate control to protect the

controller and OpenFlow switches. Therefore, the proposed defense system provides a

more efficient way of handling malicious table-miss packets with lower flow-table

utilization.

Table 16 Flow-Table Utilization Under a UDP Saturation Attack

 OpenFlow Our System FloodDefender FloodGuard

No Attack 4% ~ 5% 4% ~ 5% 4% ~ 5% 4% ~ 5%

Under Attack 100% 5% ~ 6% 19% ~ 20% 34% ~ 35%

5.7 Summary

This chapter introduced the countermeasure module which is responsible for

mitigating saturation attacks and eliminating their consequences, by utilizing the Packet-

97

In deep inspection filter, the Blocking-rule manager, and the Flow-rule manager. Also, it

demonstrated the implementation of the proposed defense system and the experimental

results.

Based on the reported results, the proposed defense system can protect the

computation resources of the control plane and the bandwidth of the OpenFlow connection

channel. Additionally, it can improve the flow-table utilization of the data plane without

the need for extra devices and with very minimal resource consumption.

98

CHAPTER SIX: CONCLUSION

6.1 Summary

This dissertation introduced a deployable and effective defense framework against

SDN saturation attacks. The proposed defense system can protect the control plane, data

plane, and OpenFlow connection channel against the known and unknown saturation

attacks.

The proposed defense system consists of: (1) a saturation attack detection module

to detect the known and unknown saturation attacks in the early stages, (2) a victim switch

detection module that can identify the OpenFlow switches targeted by known and unknown

saturation attacks, and (3) a countermeasure module that is capable of mitigating these

attacks and removing their consequences from the victim OpenFlow switches.

During the design of the proposed defense system, we studied the impact of

different time-windows of OpenFlow traffic analysis on the detection performance of

supervised machine learning classifiers in detecting the known saturation attacks. Also, we

investigated the detection performance of supervised and semi-supervised classifiers in

detecting the unknown saturation attacks in order to identify the most appropriate

saturation attack detection method. Based on reported results in chapter 3, a slight variation

of the time-window of OpenFlow traffic analysis has an obvious impact on the detection

performance of the supervised classifiers. Also, the experimental results showed that

supervised classifiers are not effective in detecting unknown saturation attacks. In contrast,

99

the semi-supervised classifiers have the capability to detect the unknown saturation attacks

effectively, specifically, the Variational Autoencoder algorithm (see chapter 3).

Moreover, we studied three victim switch detection methods to detect the

OpenFlow switches targeted by known and unknown saturation attacks with the integration

of supervised and semi-supervised classifiers to discover the most effective one. The

experimental results showed that (see Chapter 4), the best performance was achieved by

the Variational Autoencoder machine learning algorithm used in combination with the

“Victim Switch Detection Through the Integration of OpenFlow Messages Headers and

Payload” method (see sections 4.3 and 4.4). This combination accurately identified the

OpenFlow switches targeted by known and unknown saturation attacks with 93%

precision, 98% recall, and a 96% F1-score.

Furthermore, we studied different mitigation approaches to provide the most

efficient and scalable countermeasure method against these attacks without adding new

devices or changing the design of the SDN architecture. Based on the reported results in

Chapter 5, our countermeasure method can protect the SDN environment against known

and unknown saturation attacks.

We implemented and evaluated the performance of the proposed defense system

by conducting extensive experiments that cover the TCP-SYN, UDP, IP-Spoofing, ICMP,

and TCP-SARFU attacks and their combinations. In each experiment, a structured process

was identified to create different SDN networks that mimic real-world SDN environments.

The reported results demonstrated that the proposed defense system is effective and

efficient at detecting saturation attacks, identifying the targeted OpenFlow switches, and

mitigating these attacks without causing overhead for the SDN environment.

100

6.2 Future Work

Our current work focuses on detection and countermeasure saturation network

attacks against a single-controller SDN paradigm. For future work, we intend to focus on

investigating different security aspects of SDN. Specifically, investigating the multi-

controller SDN architecture security issues.

In recent days, multi-controller SDN architecture has been proposed to solve many

security issues related to the single-controller SDN architecture, such as a single point of

failure. The multi-controller SDN architecture can be divided into flat architecture and

hierarchal architecture. In flat architecture, the SDN environment is divided into multiple

domains in different locations, where, each domain is controlled by a controller and the

controllers communicate with each other via east-bound interfaces. In hierarchal

architecture, the controller layer is divided into two layers, the master layer, which consists

of a master controller that is responsible for monitoring the entire network and the slave

layer that includes many controllers that control many local domains.

The multi-controller SDN paradigm presents a major set of challenges. By adapting

multi-controller SDN architecture, we cannot assure high reliability and availability of the

SDN environment, since the attackers can target the connection links between the

controllers, or the controllers could be overwhelmed by processing the malicious packets.

Thus, the targeted controller(s) and the connected OpenFlow switches will be isolated from

the entire network. Therefore, designing a multi-controller SDN defense system that can

monitor the distributed controllers into multiple domains, detect the incoming attacks, and

countermeasure them without affecting the availability of the entire SDN network is a

crucial issue.

101

Another open issue is the scalability of multi-controller SDN architecture. In the

multi-controller environment, the scalability relies on the number of controllers, the

number of OpenFlow switches per controller, and the domain of the controller (i.e.,

controller location). Thus, if the number of OpenFlow switches per controller is irrationally

assigned or the controllers deployed randomly into different domains, the performance of

the entire network will be drastically affected. Thus, designing an approach/algorithm that

can assign the right number of OpenFlow switches for each controller with the

corresponding deployment domain for different network scale and topologies is another

important issue.

Finally, the consistency of multi-controller SDN architecture is another challenging

issue. In this architecture, the whole network is divided into multiple domains and each

domain is controlled and managed by a controller. Therefore, the consistent and coherent

information about the network is crucial to the multi-controller SDNs ability to make the

right decision, such as installing flow-rules. Otherwise, out-synchronization between

controllers or outdated network information could lead to unexpected behavior. Thus,

developing an approach that provides high consistency and synchronization in multi-

controller SDN architecture is another key issue.

The proposed defense system is capable of protecting single controller SDN

environments against known and unknown saturation attacks. Our future work will focus

on designing a defense system that is capable of detecting and mitigating saturation attacks

in multi-controller SDNs.

102

REFERENCES

[1] https://www.ibm.com/services/business-continuity/sdn-versus-traditional-networking

[2] https://www.opennetworking.org/

[3] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed denial-of-service

attack, prevention, and mitigation techniques,” International Journal of Distributed

Sensor Networks, vol. 13, no. 12, p. 155014771774146, 2017.

[4] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly detection:

methods, systems and tools,” IEEE Communications Surveys & Tutorials, vol. 16,

no. 1, pp. 303–336, 2014.

[5] K. Johnson Singh, K. Thongam, and T. De, “Entropy-based application layer ddos

attack detection using artificial neural networks,” Entropy, vol. 18, no. 10, p. 350,

2016.

[6] R. F. Fouladi, C. E. Kayatas, and E. Anarim, “Frequency based ddos attack detection

approach using naive bayes classification,” in 2016 39th International Conference

on Telecommunications and Signal Processing (TSP). IEEE, 2016, pp. 104–107.

[7] P. M. Mafra, V. Moll, J. da Silva Fraga, and A. O. Santin, “Octopus-iids: An anomaly

based intelligent intrusion detection system,” in The IEEE symposium on

Computers and Communications. IEEE, 2010, pp. 405–410.

https://www.opennetworking.org/

103

[8] C. Wagner, J. François, T. Engel, “Machine learning approach for ip-flow record

anomaly detection,” in International Conference on Research in Networking.

Springer, 2011, pp. 28–39.

[9] Z. Muda, W. Yassin, M. Sulaiman, N. I. Udzir, “A k-means and naive bayes learning

approach for better intrusion detection,” Information technology journal, vol. 10,

no. 3, pp. 648–655, 2011.

[10] C. J. Hsieh and T. Y. Chan, "Detection ddos attacks based on neural-network using

apache spark," in 2016 International Conference on Applied System Innovation

(ICASI), IEEE,2016, pp. 1-4.

[11] M. H. Bhuyan, D. Bhattacharyya, and J. K. Kalita, "An effective unsupervised

network anomaly detection method," in Proceedings of the International

Conference on Advances in Computing, Communications and Informatics, ACM,

2012, pp. 533-539.

[12] X. Yuan, C. Li and X. Li, "Deepdefense: identifying ddos attack via deep learning,"

in 2017 IEEE International Conference on Smart Computing (SMARTCOMP),

IEEE, 2017, pp.1-8.

[13] S. Yadav and S. Subramanian, "Detection of application layer ddos attack by feature

learning using stacked autoencoder," in 2016 International Conference on

Computational Techniques in Information and Communication Technologies

(ICCTICT), IEEE, 2016, pp. 361-366.

[14] X. Qin, T. Xu and C. Wang, "Ddos attack detection using flow entropy and clustering

technique," in 2015 11th International Conference on Computational Intelligence

and Security (CIS), IEEE, 2015, pp. 412-415.

104

[15] R. M. Saad, M. Anbar, S. Manickam, and E. Alomari, "An intelligent icmpv6 ddos

flooding-attack detection framework (v6iids) using back-propagation neural

network," IETE Technical Review, vol.33, no. 3, pp. 244-255, 2016.

[16] C. Yin, Y. Zhu, J. Fei and X. He, "A deep learning approach for intrusion detection

using recurrent neural networks," Ieee Access, vol. 5, pp. 21954-21961, 2017.

[17] N. Farnaaz and M. Jabbar, "Random forest modeling for network intrusion detection

system," Procedia Computer Science, vol. 89, pp. 213-217, 2016.

[18] A. J. Malik, W. Shahzad, and F. A. Khan, "Network intrusion detection using hybrid

binary pso and random forests algorithm," Security and Communication Networks,

vol. 8, no. 16, pp. 2646-2660, 2015.

[19] J. David and C. Thomas, "Ddos attack detection using fast entropy approach on flow-

based network traffic," Procedia Computer Science, vol. 50, pp. 30-36, 2015.

[20] N. Hoque, D. Bhattacharyya, and J. Kalita, "Denial of service attack detection using

multivariate correlation analysis," in Proceedings of the Second International

Conference on Information and Communication Technology for Competitive

Strategies, ACM, 2016, p. 100.

[21] M. Karakus and A. Durresi,"A survey: Control plane scalability issues and approaches

in software-defined networking (sdn)," Computer Networks, vol. 112, pp. 279-293,

2017.

[22] D. Kreutz, F. Ramos, and P. Verissimo, "Towards secure and dependable software-

defined networks," in Proceedings of the second ACM SIGCOMM workshop on

Hot topics in software defined networking. ACM, 2013, pp. 55-60.

105

[23] R. Swami, M. Dave, and V. Ranga, "Software-defined networking-based ddos defense

mechanisms," ACM Computing Surveys (CSUR), vol. 52, no. 2, p. 28, 2019.

[24] J. Asharf and S. Latif, "Handling intrusion and ddos attacks in software defined

networks using machine learning techniques," in 2014 National Software

Engineering Conference. IEEE, 2014, pp. 55-60.

[25] Q. Niyaz, W. Sun, and A. Javaid, "A deep learning based ddos detection system in

software-defined networking (sdn)," arXiv preprint arXiv:1611.07400, 2016.

[26] A. A. Aizuddin, M. Atan, M. Norulazmi, M. M. Noor, S. Akimi, and Z. Abidin, "Dns

amplification attack detection and mitigation via sflow with security-centric sdn,"

in Proceedings of the 11th International Conference on Ubiquitous Information

Management and Communication. ACM, 2017, p. 3.

[27] R. Braga, E. Mota, and A. Passito, "Lightweight ddos flooding attack detection using

nox/openflow," in LCN, vol. 10, 2010, pp. 408-415.

[28] T. A. Tang, L. Mhamdi, D. McLernon, S. A. Zaidi, and M. Ghogho, "Deep learning

approach for network intrusion detection in software defined networking," in 2016

International Conference on Wireless Networks and Mobile Communications

(WINCOM), IEEE, 2016, pp. 258-263.

[29] A. Abubakar and B. Pranggono, "Machine learning based intrusion detection system

for software defined networks," in 2017 Seventh International Conference on

Emerging Security Technologies (EST). IEEE, 2017, pp. 138-143.

[30] S. M. Mousavi and M. St-Hilaire, "Early detection of ddos attacks against sdn

controllers," in 2015 International Conference on Computing, Networking and

Communications (ICNC). IEEE,2015, pp. 77-81.

106

[31] M. Z. A. Azizz and K. Okamura, "Leveraging sdn for detection and mitigation smtp

flood attack through deep learning analysis techniques," International Journal of

Computer Science and Network Security, vol. 17, no. 10, pp. 166-172, 2017.

[32] D. Santos, J. Wickboldt, L. Granville, and A. Schaeffer-Filho, "Atlantic: A framework

for anomaly traffic detection, classification, and mitigation in sdn," in NOMS 2016-

2016 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2016,

pp. 27-35.

[33] J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, "A ddos attack detection method based

on svm in software defined network," Security and Communication Networks, vol.

2018, 2018.

[34] S. Lee, J. Kim, S. Shin, P. Porras and V. Yegneswaran, "Athena: A framework for

scalable anomaly detection in software-defined networks," in 2017 47th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

IEEE, 2017, pp. 249-260.

[35] C. C. Chen, Y. R. Chen, W. C. Lu, S. Tsai, and M. Yang, "Detecting amplification

attacks with software defined networking," in 2017 IEEE Conference on

Dependable and Secure Computing. IEEE, 2017, pp. 195-201.

[36] A. Alshamrani, A. Chowdhary, S. Pisharody, D. Lu, and D. Huang, "A defense system

for defeating ddos attacks in sdn based networks," in Proceedings of the 15th ACM

International Symposium on Mobility Management and Wireless Access. ACM,

2017, pp. 83-92.

[37] S. Wang, Q. Sun, H. Zou, and F. Yang, "Detecting syn flooding attacks based on

traffic prediction," Security and Communication Networks, vol. 5, no. 10, pp. 1131-

1140, 2012.

107

[38] C. Po-Wen, C. Kuo . Guo, and C. Lei, "How to detect a compromised sdn switch," in

Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).

IEEE, 2015, pp. 1-6.

[39] H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng, "Sdn-rdcd: a real-

time and reliable method for detecting compromised sdn devices," IEEE/ACM

Transactions on Networking (TON), vol. 26, no. 5, pp. 2048-2061, 2018.

[40] D. Hu, P. Hong and Y. Chen, "Fadm: Ddos flooding attack detection and mitigation

system in software-defined networking," in GLOBECOM 2017 - 2017 IEEE Global

Communications Conference. IEEE, 2017, pp. 1-7.

[41] S. Seungwon, V. Yegneswaran, P. Porras, and G. Gu. "Avant-guard: Scalable and

vigilant switch flow management in software-defined networks." in Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications security, pp.

413-424. ACM, 2013.

[42] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention extension in

software-defined networks,” in Proceedings of the 45th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN). IEEE,

2015, pp. 239–250.

[43] G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “Flooddefender: Protecting data and

control plane resources under sdn-aimed dos attacks,” in Proceedings of the IEEE

International Conference on Computer Communications(INFOCOM). IEEE, 2017,

pp. 1-9.

[44] M. Menghao, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, "Control plane reflection attacks

in sdns: new attacks and countermeasures," in International Symposium on

Research in Attacks, Intrusions, and Defenses. Springer, 2018, pp. 161-183.

108

[45] Q. Yan, and W. Huang, "A ddos detection and mitigation system framework based on

spark and sdn," in International Conference on Smart Computing and

Communication. Springer, 2016, pp. 350-358.

[46] L. Jing, Y. Lai, and S. Zhang, "Fl-guard: A detection and defense system for ddos

attack in sdn," in Proceedings of the 2017 international conference on

cryptography, security and privacy. ACM, 2017, pp. 107-111.

[47] Y.Cui, L. Yan, S. Li, H. Xing, W. Pan, J. Zhu, and X. Zheng, "Sd-anti-ddos: Fast and

efficient ddos defense in software-defined networks," Journal of Network and

Computer Applications, vol. 68, pp. 65-79, 2016.

[48] R. Durner, C. Lorenz, M. Wiedemann, and W. Kellerer, "Detecting and mitigating

denial of service attacks against the data plane in software defined networks," in

2017 IEEE Conference on Network Softwarization (NetSoft). IEEE,2017, pp. 1-6.

[49] M. Reza, R. Javidan, and M. Conti, "Slicots: An sdn-based lightweight

countermeasure for tcp syn flooding attacks," IEEE Transactions on Network and

Service Management, vol. 14, no. 2, pp. 487-497, 2017.

[50] F. Ficherta, L. Galluccio, S. C. Grancagnolo, G. Morabito, and S. Palazzo, "Operetta:

An openflow-based remedy to mitigate tcp syn flood attacks against web servers,"

Computer Networks, vol. 92, pp. 89-100, 2015.

[51] R. Sommer and V. Paxson, "Outside the closed world: On using machine learning for

network intrusion detection," in 2010 IEEE Symposium on Security and Privacy.

IEEE, 2010, pp. 305-316.

[52] R. Kokila, S. T. Selvi, and K. Govindarajan, "Ddos detection and analysis in sdn-

based environment using support vector machine classifier," in 2014 Sixth

109

International Conference on Advanced Computing (ICoAC). IEEE, 2014, pp. 205-

210.

[53] https://scikit-learn.org/stable/modules/neighbors.html

[54] https://scikit-learn.org/stable/modules/naive_bayes.html

[55] https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

[56] https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html

[57] https://blog.keras.io/building-autoencoders-in-keras.html

[58] https://scikit-neuralnetwork.readthedocs.io/en/latest/module_ae.html

[59] http://mininet.org/

[60] http://www.grid.unina.it/software/ITG/

[61] https://nmap.org/nping/

[62] https://trex-tgn.cisco.com/

[63] https://ostinato.org/

[64] https://www.wireshark.org/

[65] https://tools.kali.org/information-gathering/hping3

[66] https://resources.infosecinstitute.com/loic-dos-attacking-tool/

https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://scikit-neuralnetwork.readthedocs.io/en/latest/module_ae.html
http://mininet.org/
http://www.grid.unina.it/software/ITG/
https://nmap.org/nping/
https://trex-tgn.cisco.com/
https://ostinato.org/
https://www.wireshark.org/
https://tools.kali.org/information-gathering/hping3
https://resources.infosecinstitute.com/loic-dos-attacking-tool/

110

[67] https://resources.infosecinstitute.com/loic-dos-attacking-tool/

[68] B. L. Sturm. "Classification accuracy is not enough," Journal of Intelligent

Information Systems, vol. 41, no. 3, pp. 371-406, 2013.

[69] Z. Li, W. Xing, and D. Xu, “Detecting saturation attacks in software defined

networks,” in Proceedings of the IEEE International Conference on Intelligence

and Security Informatics(ISI). IEEE, 2018, pp. 1–6.

[70] http://bearcave.com/misl/misl_tech/wavelets/compression/shannon.html

[71] F. Jérôme, and O. Festor. "Anomaly traceback using software defined networking," in

2014 IEEE International Workshop on Information Forensics and Security (WIFS).

IEEE, 2014, pp. 203-208.

[72] A. A. Amaral, L. de Souza Mendes, B. B. Zarpelão, and M. L. P. Junior, “Deep ip

flow inspection to detect beyond network anomalies,”Computer Communications,

vol. 98, pp. 80–96, 2017.

[73] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y.Zhang, and G. Gu, “Towards fine-

grained network security forensics and diagnosis in the sdn era”, in Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security.

ACM, 2018, pp. 3-16.

[74] https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview.

[75] J. Collings and J. Liu, "An openflow-based prototype of sdn-oriented stateful

hardware firewalls," in 2014 IEEE 22nd International Conference on Network

Protocols, pp. 978-1.

[76] https://sflow-rt.com/

https://resources.infosecinstitute.com/loic-dos-attacking-tool/
http://bearcave.com/misl/misl_tech/wavelets/compression/shannon.html
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://sflow-rt.com/

111

[77] C. Yoon, S. Lee, H. Kang, T. Park, S. Shin, V. Yegneswaran, P. Porras, and G. Gu.

"Flow wars: systemizing the attack surface and defenses in software-defined

networks," IEEE/ACM Transactions on Networking (TON), vol. 25, no. 6, pp.

3514-3530, 2017.

[78] D. Kotani and Y. Okabe, “A packet-in message filtering mechanism for protection of

control plane in openflow networks,” in Proceedings of the 10th ACM/IEEE

symposium on Architectures for networking and communications systems. ACM,

2014, pp. 29–40.

[79] L. F. Carvalho, G. Fernandes, J. J. Rodrigues, L. S. Mendes, and M. Proença, "A novel

anomaly detection system to assist network management in sdn environment," in

2017 IEEE International Conference on Communications (ICC). IEEE, 2017, pp.

1-6.

[80] https://kiminewt.github.io/pyshark/

[81] https://linux.die.net/man/1/tshark

[82] https://github.com/netdata/netdata

[83] https://iperf.fr/

https://kiminewt.github.io/pyshark/
https://linux.die.net/man/1/tshark
https://github.com/netdata/netdata
https://iperf.fr/

