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ABSTRACT

Privacy-preserving distributed data mining is the study of mining on distributed data—owned

by multiple data owners—in a non-secure environment, where the mining protocol does

not reveal any sensitive information to the data owners, the individual privacy is preserved,

and the output mining model is practically useful. In this thesis, we propose a secure

two-party protocol for building a privacy-preserving decision tree classifier over distributed

data using differential privacy. We utilize secure multiparty computation to ensure that

the protocol is privacy-preserving. Our algorithm also utilizes parallel and sequential

compositions, and applies distributed exponential mechanism to ensure that the output

is differentially-private. We implemented our protocol in a distributed environment on

real-life data, and the experimental results show that the protocol produces decision tree

classifiers with high utility while being reasonably efficient and scalable.
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CHAPTER 1

INTRODUCTION

Due to the increase in data collection and storage technology, more information about

individuals, such as personal, financial and health, are being collected and analyzed. When

distributed data about individuals is brought together, businesses, organizations and gov-

ernment agencies can mine it to extract knowledge and learn patterns and behaviors about

individuals, to provide better services and make better decisions. The term data mining

refers to a wide range of techniques, including classification, clustering, pattern mining

and regression models. When data about the same set of individuals is distributed between

distrusting data owners, preserving the privacy of their data–no sensitive information about

individuals is revealed–becomes a major concern if they collectively decide to mine their

data. The main challenge in this protocol is privacy-preservation, during the execution of

the protocol as well as after the generation of output. The goal here is to build a secure

two party protocol that remains secure from beginning to end of the whole execution

and how to securely build a privacy-preserving decision tree classifier that does not leak

information about the individuals in the original data. A straightforward construction of a

decision tree on the distributed and private data between two parties, without applying any

anonymization technique, would typically lead to information leakage based on the output

classifier only.

Distributed privacy-preserving data mining (DPPDM) is an advanced research area in
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data mining where two or more parties jointly execute a protocol to perform data mining

tasks on their private data such that none of the participating parties learn anything new

from the protocol besides the final output. DPPDM is a difficult task to achieve, due to the

requirement that protocol should be secure and privacy-preserving, and that the individual’s

identity and sensitive information remain protected against adversaries after the data mining

task is computed. To achieve anonymity, DPPDM protocols usually utilize different privacy

models such as k-anonymity, `-diversity, LKC-privacy, and differential privacy. On the

other hand, adversaries typically use linkage attacks on the output to trace back personal

and sensitive information about individuals. But differential privacy stands out from the

other privacy-preserving techniques mentioned above. Differential-privacy guarantees that

any individual data used in a data mining task will not be revealed during or after the

execution of protocol. In other words, whether an individual’s data participates in the

dataset or not the outcome of the data mining task will not be affected by its absence or

presence.

1.1 Motivation

Digital data about individuals has ballooned, with more sensitive and personal details about

the same individuals distributed at several places. Integrating the individuals data and then

applying data mining tools to build a data mining model will have better accuracy than

single party data based mining models. In a data mining classification technique, the more

records we have, the higher the chance of achieving better accuracy and this is why it is

called a supervised learning technique. The distributed data could be vertically partitioned

where each record is of the same individual with different attributes in the datasets or

horizontally partitioned for data with the same set of attributes but with a different set
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of records.

Example 1.1.1. A hospital and a pathological clinic have the records for the same patients,

with a different set of attributes, except a common patient ID. If we build a data mining

model for predicting whether the patients are vulnerable to a life threatening disease or

not and simply apply data mining tools on their separate data, the result might not be very

convincing. On the other hand, if we build a model by integrating their data or jointly use

both datasets in building the mining model, the output model will predict with significantly

better accuracy.

Example 1.1.2. Assume that two credit card companies have a different set of records of

their consumers with the same attributes. They jointly want to build a decision making data

model to make decisions for new applicants for credit cards. Since the classifier accuracy

depends upon a training data, the larger the data size the better the prediction will be. So,

the integration of horizontal datasets will provide a large training data when compared to

the isolated data of a single party.

At the same time, distributed data of the individual will provide a data miner great

flexibility in achieving high accuracy through their data model rather than a single party’s

data. Integrating the private data owned by different data owners and achieving data mining

tasks will solve many problems but will raise data privacy concerns for the data owners.

1.2 Challenges & Concerns

In this thesis, we propose a DPPDM protocol to construct a decision tree-based classifier

over two-party private data. The protocol is secure (privacy-preserving) in the semi-honest

adversarial model, where both parties are assumed to correctly execute the protocol but

may try to infer information about each other’s data during the execution of the protocol.
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The main challenge in this protocol is privacy-preservation. That is, how to securely

build a privacy-preserving decision tree classifier that does not leak information about

the individuals in the original data. A straightforward construction of a decision tree on

the distributed and private data between two parties, without applying any anonymization

technique, would typically lead to information leakage based on the output classifier only,

as illustrated in Example 1.2.1

Example 1.2.1. Let P1 and P2 be two data owners owning datasets D1=(UID, Age,

Job, Class) and D2=(UID, MaritalStatus, Class), where UID and Class are shared

attributes between the two datasets, as shown in the Table 1.1. The data in each row

corresponds to the same individual, but it is split between the two datasets.

Let T be the decision tree classifier which P1 and P2 jointly constructed based on

D1 and D2, as shown in Figure 1.1. Even if the protocol for constructing T is privacy-

preserving, the two parties can learn sensitive information about each others data merely

based onT. More specifically, P2 can learn that all Assistants are female and all Professors

are male in the P1 dataset. Since Class attribute is also known to P1, it can also learn that

none of the males in D2 is an Assistant, and none of the females in D2 is a Professor.

On the other hand, the application of an anonymization technique, such as k-anonymity

or `-diversity, to construct an anonymous decision tree on the distributed and private data

might also have the risk of information leakage from the output classifier, as illustrated in

Example 1.2.2.

Example 1.2.2. Assume that P1 and P2 want to utilize k-anonymity to construct the

decision tree classifier T. Let Table 1.2 represent the 2-anonymous data used by P1 and

P2 to jointly construct the decision tree classifier T illustrated in Figure 1.1. Although T is

2-anonymous, the two parties can still learn sensitive information about each others data.
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Table 1.1: Raw datasets D1 and D2 owned by parties P1 and P2 respectively.

Shared D1 D2

UID Class Age Job Marital Status
1 Male 54 Professor Divorced
2 Female 26 Student Single
3 Female 39 Assistant Married
4 Male 67 Professor Married
5 Female 32 Assistant Married
6 Male 40 Engineer Divorced
7 Male 50 Student Divorced
8 Female 29 Student Married
9 Female 43 Engineer Married
10 Male 46 Student Single

Job

Male Age Female Marital Status

Female FemaleMale Male
Figure 1.1: Decision tree based on datasets D1 and D2 from Table 1.1

For example, P2 can learn that the age of all males in its dataset D1 is above 45, and the

age of all females in D1 is less or equal to 45.
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Table 1.2: Anonymized datasets D̂1 and D̂2 based on raw data from Table 1.1.

Shared D̂1 D̂2

UID Class Age Job Marital Status
1 Male >45 Professional Any
2 Female <=45 Non-Professional Any
3 Female <=45 Non-Professional Any
4 Male >45 Professional Any
5 Female <=45 Non-Professional Any
6 Male <=45 Professional Any
7 Male >45 Non-Professional Any
8 Female <=45 Non-Professional Any
9 Female <=45 Professional Any
10 Male >45 Non-Professional Any

Job

Age Age

Female FemaleMale Male
Figure 1.2: Anonymous decision tree based on 2-anonymous data from Table 1.2

Several works in the literature proposed to protect data privacy while performing dis-

tributed data mining tasks. Lindell and Pinkas [35][36] proposed to build a decision

tree from distributed data between two parties, and Emekci et al. [22] gave protocol to

build decision trees over distributed data among multiple data owners based on secure

multi-party computation protocol [27]. Agrawal and Srikant [1] gave protocol to add



7

noise before performing a data mining task, and Blum et al. [6] proposed a protocol

called SuLQ primitive which can be used for various data mining tasks. McSherry [39]

also uses differential privacy to achieve privacy-preserving output, similarly, Friedman and

Schuster [23] proposed a protocol to build decision trees using an exponential mechanism.

Most recently, Vaidya et al [52] has proposed a protocol to build decision tree classifiers

over distributed data among multiple data owners.

Other works in the literature used different privacy-preserving techniques. Nonetheless,

most of these protocols are vulnerable to either attribute or record linkage attacks due

to the fact that there is no privacy guarantee on the output. Several researchers pro-

posed different protocols to prevent such attacks. Mohammed et al. [42] and Jiang and

Clifton [30] introduced protocol to generalize data attributes using k-anonymity [48]. Later,

Machanavajjhala et al. [37] showed that protocols based on k-anonymity are vulnerable

to background attacks and presents a protocol based on `-diversity to achieve privacy.

However, several researchers found that these protocols are vulnerable to different kinds

of privacy violating attacks, and lack in providing sufficient data privacy.

To achieve privacy-preserving distributed data mining, there is a need for robust pro-

tocols that provides strong immunity against linkage and statistical attacks. In this thesis,

we utilize differential privacy [18], a privacy model that ensures rigorous privacy on the

output irrespective of an adversary’s background knowledge. Differential privacy provides

a strong guarantee that the outcome of the query will not be affected significantly based

on whether or not the record of a participating individual is included in the data. In other

words, the output datasets, with or without the participant’s data, will be almost identical,

and hence guarantee that the individual’s privacy is not at risk. We named our approach

Secure-Differentially-private decision tree (S-DPDT) because the protocol is secure from

beginning to end with no private information leakage during or after the execution of
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protocol. The output decision tree we get is also differentially-private.

The synopsis of this thesis can be viewed as follows:

• We propose S-DPDT, a top-down secure two-party protocol for building a differentially-

private decision tree from two datasets without revealing any sensitive information

to the other party.

• For both numerical and categorical attributes, we propose an exponential mechanism-

based protocol to efficiently split the data in a differentially-private manner.

• We utilize exponential ElGamal encryption schemes to share the participants’ data

and ensure the protocol is privacy-preserving.

• We implemented our approach and performed exhaustive experiments on real-life

data with a sufficient number of categorical and numerical attributes. The results

show that our approach achieves high utility, is scalable and efficient with respect to

number of records and attributes in the data.

1.3 Thesis Statement

The objective of this thesis is to answer the following question: Given two data owners,

how can they perform a data mining task on their distributed data such that data

privacy is maintained and the output model is privacy-preserving?

More specifically, given two datasets D1 and D2 owned by P1 and P2 respectively, and

a privacy budget ε, the goal of this thesis is to design a protocol for constructing a privacy-

preserving decision tree-based classifier T for the purpose of data mining and analysis such

that:

1. The protocol is secure (privacy-preserving) in the semi-honest adversarial model.



9

2. The output classifier T is ε-differentially-private while maintaining high utility.

3. The proposed approach is scalable and efficient.

1.4 Organization of the Thesis

The thesis is organized as follows:

• Chapter 2 introduces the preliminaries required for the protocols such as classifica-

tion in data mining using a decision tree, several algorithms for building a decision

tree, differential privacy, exponential mechanism, and several other cryptographic

primitives with homomorphic encryption such as distributed exponential ElGamal,

mix and match and plain-text equality text.

• Chapter 3 is an in-depth literature review of the previous privacy-preserving al-

gorithms, categories into privacy-preserving data mining with interactive and non-

interactive approach for centralized datasets, privacy-preserving data mining for dis-

tributed datasets and privacy-preserving data publishing for centralized and distributed

datasets.

• Chapter 4 provides details of the proposed protocol for secure and distributed privacy-

preserving data mining tasks. We proposed a secure two-party differentially-private

protocol for building a decision tree, which not only preserves data privacy and

security during the computation but the output it generates is differentially-private.

• Chapter 5 provides the algorithm analysis of our proposed approach and discusses

the privacy and complexity analysis of our approach.
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• Chapter 6 illustrates the experiments and performance evaluation of our proposed

solution.

• Chapter 7 concludes our work and discusses the future work.
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CHAPTER 2

BACKGROUND

This chapter provides details of preliminary components required for achieving the objec-

tive of building a decision tree, applying cryptographic schemes, and achieving differential

privacy on the output decision tree.

2.1 Classification via Decision Tree

Classification is one of the important tasks in data mining. Given a set of records, called

a training data set, where each record in a row has multiple attributes (categorical or

numerical) and one class attribute which is categorical that categories the record. The

goal of classification is to build a classifier model that will assign a correct class label to

new data being inserted in the record set without a known class label. There are several

types of classification algorithms that are widely used, such as, statistical models, genetic

models, neural networks and decision trees.

A decision tree [46] is one of the most popular and inexpensive classification algorithms

used in many real world applications for decision making, such as banking (credit card

decision making, loan sanction), stock buying, and planning and disease diagnosis, etc.

There are several decision tree algorithms that have been developed over the years

such as Iterative Dichotomiser 3 (ID3) [46], Improved ID3 (C4.5) [47], Classification

and Regression Tree (CART) [9] algorithm, Chi-squared Automatic Interaction Detector
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(CHAID) [32], and MARS [24] developed for handling numerical data. A decision tree

is based on a greedy algorithm approach in which the dataset is recursively split into

sub-datasets based on attribute value as the node moves from the top down until the leaf

nodes are left with a class value. There are several methods to determine the best attribute

to split the dataset, including Gini Index, Information Gain, Max Operator and Gain Ratio,

etc.

• Gini Index [9]. It is an impurity measure algorithm mainly used by CART algorithm.

It computes the probability of choosing an incorrect class value for an item when the

class value is randomly picked from a majority of class value for a given attribute.

Gini index is biased towards an attribute with large domain size.

Gini(D) = 1−
∑
cls

p2
cls

The gini index computes the binary split of attribute A, such as D1 and D2. The gini

index of D is given as:

GiniA(D) =
D1

D
Gini(D1) +

D2

D
Gini(D2)

The reduction in impurity is calculated as:

∆Gini(A) = Gini(D)−GiniA(D)

The attribute that maximizes the reduction in impurity is chosen as the split attribute.
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• Information gain [46]. It is the method to split the dataset based on the maximum

information given by an attribute. Information gain is expressed as the entropy of

current item minus the total entropy of child nodes created by splitting current item

for each value of an attribute. Information Gain(IG) of each attribute A is computed

as:

E(T ) =
∑
−|T (c)|
|T |

lg
|T (c)|
|T |

E(T |A) =
∑
a∈A

−|T (a)|
|T |

E(T (a))

IG(A) = E(T )− E(T |A)

• Max Operator [9]. This function corresponds to the node misclassification rate by

picking the class with the highest frequency:

qMax(T , A) =
∑
j∈A

(max(T Aj,c))

The sensitivity of this function is S(qMax) = 1

• Gain Ratio [47] the gain ratio is determined by dividing the information gain by

information value. It reduces the bias of information gain towards the large multi-

valued attributes. Used in improved ID3 (C4.5). Information value is defined as:

IV (A) = −
∑
j∈A

T Aj,c
T
.log
T Aj,c
T
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GainRatio(A) =
Gain(A)

IV (A)

Whenever, IV(A)≈0, when T Aj,c ≈ T , the gain ratio becomes very large or undefined.

The attribute with the highest gain ratio is taken as the split attribute.

2.2 Differential Privacy

Differential privacy is a strong privacy model introduced by Dwork et al. [19] for the

purpose of preserving data confidentiality without making assumptions about the attacker’s

background knowledge. “You will not be affected, adversely or otherwise, by allowing

your data to be used in any analysis of the data, no matter what other analyses, datasets, or

information sources are available” [20]. Differential privacy ensures a strong guarantee to

the participating individual in the dataset that their presence or absence will not affect the

final output of the query significantly. That is, the output dataset with his data or without

his data will be almost identical.

2.2.1 ε-Differential Privacy

Definition 2.2.1. ε-Differential Privacy [19]. Given any two neighboring datasets D1 and

D2 that differ on at most one record, a sanitizing mechanism M preserves ε-differential

privacy if for any output D̂ ∈ Range(M):

Pr[M(D1) = D̂] ≤ eε × Pr[M(D2) = D̂] (2.1)

where the probabilities are taken over the randomness of M. �
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To achieve differential privacy a random noise is added to the actual output, the noise

value is determined with standard deviation with sensitivity of the function. Noise value

changes accordingly when the input value is changed.

2.2.2 Sensitivity

Random noise is added to the dataset to achieve differential privacy by getting perturbed

output. The quantity of noise added depends upon the sensitivity of the function.

Definition 2.2.2. Global Sensitivity [19]. Given a query function f : D → Rd, the global

sensitivity of f is:

S(f) = max
D1,D2

||f(D1)− f(D2)||1 (2.2)

where D1 and D2 are any two neighboring datasets that differ on at most one record. �

2.2.3 Lapalce Distribution

The Laplace mechanism, proposed by Dwork et al. [19], adds random noise to the actual

data, following the Laplace statistical distribution to determine the amount of noise to be

added. In simple language this is how much noise to be added to the data so that the

perturbed data does not lose it’s utility. It is directly proportional to its standard deviation

or noisiness. To achieve differential privacy when using a query function f , the principal

approach is to perturb the true output of f by adding a random noise that is adjusted based

on S(f). The authors propose to generate the noise according to Laplace distribution,

Lap(λ), where the probability distribution function is

Pr(x|λ) = 1
2λ
e

|x|
λ ,

the mean is 0, and the standard deviation is λ which is determined based on the global

sensitivity S(f) and the privacy level ε.
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Theorem 2.2.1. [19]. For any function f : D → Rd that maps datasets to reals, the

privacy mechanism M :

M(D) = f(D) + Lap(S(f)/ε) (2.3)

satisfies ε-differential privacy. �

2.2.4 Exponential Mechanism

Proposed by McSherry and Talwar [38], exponential mechanism is one of the popular

methods to achieve differential privacy without adding noise to output. There are several

types of datasets that are not sensitive to noise addition meaning perturbation doesn’t make

sufficient change in the data. Thus, to achieve differential privacy in this type of dataset,

exponential mechanism plays an important role. It allows the user to choose an output

from a range of outputs which are close to optimum or best value with respect to a utility

function while preserving differential privacy.

It takes input as follows: a data set D, output range T , privacy parameter ε, and a utility

function u : (D × T ) → R that assigns a real value to each output t ∈ T , where a higher

score means better utility.

The mechanism further applies probability distribution function over the range of output

T and then result out an output t.

Let ∆u = max∀t,D,D′ |u(D, t)− u(D′, t)| be the sensitivity of the utility function.

The probability associated with each output is proportional to,

t ∝ exp(
εu(D, t)

2∆u
); (2.4)

i.e. output with higher score is exponentially more likely to be chosen.
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Theorem 2.2.2. exponential mechanism [38] for any function u : (D × T )→ R, a utility

algorithm A that chooses an output t with a probability proportional to exp( εu(D,t)
2∆u

) satisfy

the ε-differential privacy. �

2.2.5 Distributed Exponential Mechanism

Proposed by Mohammad et al. [40], distributed exponential mechanism is used to achieve

differential privacy when the data of the same individuals is distributed between two parties

in a vertically partitioned fashion. Hence they introduced distributed exponential mecha-

nism to determine the winner attribute based on the utility score generated by each party

for each attribute they own in a secure fashion so that no information leakage happens

except the winner attribute. The mechanism takes input (vi, ui) pairs where vi represents

candidates and ui represents the scores. The score is calculated using utility function, in

this case information gain is to calculate the score. Both parties calculate the score locally

for each of their attributes. Then they jointly execute distributed exponential mechanism to

determine the winner attribute and winner party.

2.3 Cryptographic Primitives

2.3.1 Encryption Scheme

Our protocol requires an additive homomorphic encryption scheme that allows ciphertexts

to be re-randomized without revealing any private information to participating parties.

Ours is a secure two-party protocol. Consequently, it must acknowledge the distributed

key generation (DKG) and the distributed decryption, enabling participants to use key

shares to perform a decryption operation. The best fit for our work is a variation of

ElGamal [21] called Exponential ElGamal [12], it is fast when implemented over elliptic
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curves, distributed key generation is straightforward, and decryption is feasible for our

plain-text space. For brevity, we denote the encryption of a message m as JmK. To this

extent, the encrypted dataset in this thesis is denoted as mentioned in previous lines like

dataset D referred JDK after encryption.

2.3.2 ElGamal Encryption

The ElGamal encryption scheme was proposed by Tahir El Gamal [21] which belongs to

the family of public key cryptosystems based on discrete logarithmic problems. The key is

separated in two parts, the public key and the private key. Knowledge of the private key is

important for decryption, otherwise it will be almost impossible to decrypt the message in

appropriate time line. An attacker who tries to break the encryption always looks to access

the private key, else, he needs to compute the logarithm problem to decrypt.

2.3.3 Distributed key generation

Distributed key generation [26] is the principle building block of any symmetric and asym-

metric threshold cyrptosystem [15][16]. In this encryption procedure two or more parties

together compute and generate shared public and private key pair sets. The honest partici-

pating parties follow the threshold to determine the generation of a key pair.

2.3.4 Distributed Exponential ElGamal Decryption

In Distributed Exponential ElGamal, [8] n parties generate a private key x. Given ElGamal

cipher-text (α, β), where the secret key x ∈ Zp is shared between n parties according to

(k, n)-threshold such that k ≤ n, each participant Pi from any group of k participants

P1, . . . ,Pk publishes βxi , where xi is a private key share of Pi. The plain-text can then be
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derived by computing: α/
∏n

i=1 β
xi . For the purpose of this proposal, we assume that x is

shared according to (2, n)-threshold.

2.3.5 Mix and Match

Proposed by Jakobsson and Juels, Mix and Match [28] is a secure multi-party computation

protocol for obliviously evaluating an input against a lookup table, where all values are

encrypted with exponential ElGamal as mentioned in our previous section 2.3.1. Mix and

Match alone could realize our entire protocol given that lookup tables are sufficient for

implementing general computing. However, such an approach would be expensive, i.e., the

complexity would be exponential in the number of input variables. In our protocol, we use

a two column noisy mix and match table with single-input lookup tables sparingly. Like

our overall protocol, Mix and Match itself is publicly verifiable, secure against malicious

adversaries, and secure with a dishonest majority.

2.3.6 Plaintext Equality Test (PET)

Computation in Mix and Match is a matching of cipher-text. PET provides a method to

participating parties to determine, in a distributed fashion, whether the two cipher-text is

or is not the same plain-text. PET uses algebraic division operations on the given two

cipher-text to match them. If the two cipher-text is of the same plain-text the output of the

division will be an encryption of 1, hence a match is found. Otherwise, the two cipher-text

is of different plain-text. Let (x, y) and (x′, y′) be the ElGamal cipher-texts for plain-text

l1 and l2 respectively. With PET protocol two parties jointly check whether l1 = l2 i.e

whether (x/x′, y/y′) = J1K .
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2.3.7 Mix Network

A mix network, introduced by Chaum [29], is a multi-party protocol which allows a se-

quence of encrypted messages to be taken as input and generates a new shuffled and

re-randomized output list, such that none of the participants know the permutation mapping

of the corresponding inputs to outputs (except participants own contribution). A verifiable

mix network produces a publicly verifiable result, that can be verified and proven that the

output list is true (i.e., the messages were only randomized, not modified nor fabricated).

The security of the Mix network lies in the feasibility of adversaries to find which output

belongs to which input.
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CHAPTER 3

LITERATURE REVIEW

In this chapter, we illustrate the related work and present an abstract view of related

papers into Table 1.1 for comparative evaluation based on different main features with

our proposed work.

A lot of work has been done in data privacy over the years for effective data mining

from private and sensitive data. Researchers have come up with several good techniques

to achieve privacy of data, privacy of individual identity, and sensitive data. Privacy could

be achieved by many existing protocols like differential privacy [18], k-anonymity [48],

LKC-privacy [43], and `-Diversity [37], (a few of the widely used and efficient). However,

not all the protocols provide guaranteed privacy of the dataset, but the differential privacy

stands out from them and provides better privacy of the dataset. Such that the data of an

individual entity was not present at all in the dataset.

Data Privacy is a broader concept and can be distributed into groups based on the

protocols, privacy, security, dataset, and output.

3.1 Privacy-Preserving Data Mining (PPDM)

In privacy-preserving data mining, a single party applies a privacy model on the input

data in order to perform a data mining task, i.e. building a decision tree, and output a

privacy-preserving result. In PPDM, the data miner performs queries or mining operations
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on the data and establishes, through his protocol, that the result of the query or mining

operation will not violate the privacy of entities in the data. Over the years several ap-

proaches in the literature have been proposed for achieving privacy-preserving data min-

ing, where [1][23][5][49] propose non-interactive approaches and [6][39][45][57][49][34]

propose interactive approaches. Figure 3.1 and Figure 3.4 show privacy-preserving data

mining in a non-interactive and interactive structure.

3.1.1 Non-Interactive PPDM

Agrawal and Srikant were the first to introduce the concept of privacy-preserving data

mining in [1], where they present an approach to construct a privacy-preserving deci-

sion tree. They were first to introduce to perturb the data using Gaussian and uniform

distribution, and then construct the decision tree on the perturbed data. Friedman and

Schuster [23] proposed a decision tree classifier based on ID3 with differential privacy

called DiffPID3, with limited budget allocation to the data miner, and used Exponential

mechanism to achieve differential privacy. They used different quality functions which

affects the sensitivity of the split- information gain, Gini index and Max operator, for

finding the best split for the attribute for a decision tree induction. According to them,

Information gain is the most sensitive to noise and max operator function is least sensitive

to noise. Balu et al. [5] introduces a recommender system that uses differential privacy in

a non-interactive manner to sanitize the user profile before publishing. To achieve privacy

they use two differentially-private non-interactive mechanisms for profile representation,

Bloom-and-Flip (BLIP) [2] and Johnson-Lindenstrauss Transform (JLT) [33].

Su et al. [49] presents a non-interactive approach called Extended Uniform Grid K-

means algorithm to generate differentially-private K-means clustering.
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Figure 3.1: Non-Interactive Privacy-Preserving Data Mining

3.1.2 Interactive PPDM

Blum et al. [6] propose a protocol called (Sub-Linear Queries) SuLQ primitive, which

results in a noisy output to the called queries to the database. Their approach is an inter-

active one which means each time a query is fired to a database, the query function adds a

little noise to the output. They used this SuLQ primitive to various data mining protocols

like k-means clustering called DPLloyd, principal component analysis, the perception

algorithm, and the ID3 classifier, etc. and found the output to be a differentially-private.

McSherry [39] presents a programming kind of a data analysis language called Privacy

Integrated queries (PINQ) platform for privacy-preserving data analysis. It is a SQL kind

of interactive language built overC]′s LINQ. PINQ uses PINQueryable〈T 〉which supports

aggregations and transformations. PINQ uses a PINQAgent which takes a method, Alert (ε)

as an input for generating a differentially-private aggregation with respect to its immediate

data source. Mohan et al. [45] present a system called GUPT which uses a sample and

an aggregate framework for achieving differential privacy. Zhang et al. [57] introduce a

general purpose differentially-private model based on a genetic algorithm called PrivGene.

PrivGene uses an exponential mechanism to achieve differential privacy. Su et al. [49] also
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proposes an improved DPLlyod an interactive approach based on DPLlyod in same paper.

Kotsogiannis et al. [34] introduce a meta-algorithm that selects a differentially-private

algorithm based on a dataset and then returns a differentially-private result. The proposed

method works in three steps, it extracts a set of features values from the input dataset, then

selects an algorithm to be applied on the extracted set of features and at the end, it executes

the algorithm to get the differentially-private output.
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Figure 3.2: Interactive Privacy-Preserving Data Mining

3.2 Distributed Privacy-Preserving Data Mining (DPPDM)

In DPPDM, multiple parties want to run a protocol to jointly perform a data mining task on

their private data such that no party will learn anything new from the protocol besides the

final output. Figure 3.3 shows the distributed privacy-preserving data mining concepts.

DPPDM can be achieved by two different approaches. In the first approach, multiple

parties want to build or generate a privacy-preserving data model. Aa a result, they securely

integrate their private datasets by generalizing or by anonymizing the sensitive information

and then applying the privacy-preserving techniques over the integrated data to achieve
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their goal. Then these data models can be used by the miners to extract different data

mining tasks. On the other hand, the second approach is more complex, where each

participating party’s involved in building the privacy-preserving data model. They use

secure multi-party computation protocols to jointly perform the data mining task by ap-

plying a privacy-preserving mechanism to achieve their privacy data model. Lindell and

Pinkas [35][36] propose a secure protocol to build a decision tree using the ID3 algorithm

over data that is distributed between two parties. The protocol is built in such a way

that during the execution of protocol parties can not learn anything about the inputs of

the other party or vice versa. I.e. there is no information leakage during the protocol,

anything they learn is after the output is generated. Du and Zhan [17] propose a classifier to

build a decision tree over two-party distributed data. They have used a trusted third-party

server using scalar product protocol to privately and efficiently execute the protocol. In

this protocol, both the participant parties do not trust the third party server completely.

Therefore, they use the server to do only the necessary computations to get the result i.e

to build a decision tree on their distributed data. Jiang and Clifton [30] propose a secure

distributed framework, called DkA(Distributed k-anonymity) that generates a k-anonymous

dataset from a two-party dataset. They achieve data security and privacy using secure

multi-party security. Kantarcioglu and Kardes [31] propose a two-party protocol in the

malicious model for equality and dot product. They have proposed two algorithms that

are secure against malicious parties. First, they have modified the semi-honest model

based on zero-knowledge proof, the second protocol is novel design specially for malicious

adversaries. Similarly, Vaidya et al. [51] propose a privacy-preserving decision tree over

vertically partitioned data over multiple parties based on the ID3 algorithm called PPID3.

Their approach differs from all other protocols discussed above. As in all other protocols,

the class attribute is shared by all parties, while in their approach only one party has
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the class attribute. This protocol is not completely secure thus they proposed a secure

algorithm using secure multi-party dot product with homomorphic encryption. Since only

one party has the class attribute they use a cardinality set of intersection protocols to execute

the protocol completely. Boutet et al. [7] propose a mechanism for a privacy-preserving

collaborative that leverages recommender systems in a distributed environment. Based on

the user interest the recommender system privately recommends items similar to his/her

interest with optimum accuracy. They propose a twofold mechanism. First, they apply a

technique to obscure the user profiles then they apply strong privacy protected random

communication techniques. Emekci et al. [22] propose a protocol to build a privacy-

preserving decision tree where data is distributed among several parties. In this protocol,

during the initial phase of this protocol, the author assumes that all parties are semi-honest.

Later on, during the intermediate phase, one or many parties could be malicious and could

affect the final output of the protocol, and their computation is strong enough to verify the

correctness. The primary goal of our approach in this thesis is to perform a distributed data

mining task to achieve a differentially-private output with the security of protocol (e.g., a

classifier) as well as the privacy of data (e.g., Private data). In contrast, the papers discussed

above achieves either the security of protocol or the privacy of data using different types

of privacy-preserving data mining techniques. Though many of the protocols discussed

above achieve both the security of protocol and the data privacy, the output they produce is

not privacy-preserving. Differential privacy has an upper edge in DPPDM, which produces

a privacy-preserving output. Our protocol works in a semi-honest model and provides

altogether the security of protocol, data privacy and privacy-preserving output as well.
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Figure 3.3: Distributed Privacy-Preserving Data Mining

3.3 Privacy-Preserving Data Publishing (PPDP)

In privacy-preserving data publishing, a single party applies a privacy model on the input

of raw data in order to release an anonymized and privacy-preserving data. Since it is

published after ensuring that the privacy is protected and preserved, it gives researchers
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greater flexibility to do better data analysis. Several approaches have been used to achieve

PPDP using different techniques and methods. Machanavajjhala et al. [37] propose a

protocol called `-Diversity to safeguard from attacks on privacy while using k-anonymity

for privacy-preserving in data integration and release. The principle of `-Diversity is that

the sensitive values in each QI-group are sufficiently diverse. Xiao and Tao [55] propose

a new technique called anatomy, using a generalization method based on personalized

anonymity. They use `-Diversity for strong privacy-preservation.

In this approach, the owners of data want to apply some privacy mechanism to anonymize

or randomize the data before publishing for analysis and mining so that the privacy of

data is preserved. Differential privacy is one of the strongest methods to achieve privacy.

The following protocols use differential privacy [41][44][52][56][14] for achieving pri-

vacy. Mohammed et al. [41][44] proposed an algorithm, called DiffGen, that achieves

ε-differential privacy by generalizing the raw data and then adding noise. The algorithm

is based on a non-interactive approach, which means once the data is anonymized and

satisfies ε-differential privacy, it is published for classification analysis. k-anonymity is

another popular method to achieve privacy. The following papers used the same technique

to achieve privacy in their protocol and to publish heterogeneous health data ε-differential

private using DiffGen. This technique could be used in interactive as well as non-interactive

frameworks. Vaidya et al. [52] propose a method to differentially-private Naive Bayes

classification model to release a differentially-private data to be deployed as a PaaS service

in the cloud. Clifton and Tassa [11] propose a PPDP model using syntactic anonymity.

Based on the criticism of syntactical models the author has justified that syntactical mod-

els are still relevant in privacy-preserving data publishing using anonymization. Jun et

al. [56] propose PrivBayes, a differentially-private method to release high dimensional

data based on a Bayesian Network model. PrivBayes uses Exponential mechanism to
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achieve differential privacy. Day and Li [14] present a protocol called DPSense to publish

differentially-private statistical information from high dimensional data using sensitivity

control. Based on the sensitivity of the dataset the algorithm applies noise addition and

uses an exponential mechanism to achieve privacy.
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Figure 3.4: Privacy-Preserving Data Publishing

3.4 Distributed Privacy-Preserving Data Publishing (DPPDP)

In distributed privacy-preserving data publishing, multiple parties jointly execute a protocol

on their private data in order to output an integrated and privacy-preserving data.

Vaidya and Clifton [50] propose a protocol to publish k-means clustering over vertically

distributed data with different attributes distributed among multiple data owners. Mo-

hammed et al. [42] propose two protocols to securely integrate private data from multiple

users in semi-honest and malicious user models. For semi-honest parties, they achieved

privacy using k-anonymity by the process of specialization and created a taxonomy tree

and then calculated the score to find the goodness of specialization. In malicious parties

the algorithm is almost the same as in the semi-honest model except the addition of a
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participation strategy to check the malicious user deviation and add a score to a fixed value

after each iteration of contribution from participant parties. Fung et al. [25] propose a pro-

tocol for private data mashup for SOA. Their approach is on the data mash-up based on the

service request of the user, and then collecting and integrating required data from multiple

data providers in privacy-preserving manner using a generalization approach. For privacy

they used LKC-privacy [43] for multi-party data mashup. Vatsalan et at. [53] propose

an algorithm to integrate databases from various parties with data privacy. They propose a

technique called privacy-preserving record linkage(PPRL). They built a taxonomy of PPRL

techniques and check the performance based on experimental data.
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Figure 3.5: Distributed Privacy-Preserving Data Publishing

Mohammed et al. [40] propose an algorithm to release differentially-private data for

vertically partitioned data called DistDiffGen, based on generalization of preprocessed data

then adding noise using an exponential mechanism to make ε-differentially-private. The

total protocol is distributed in one main protocol and two sub-protocols. The algorithm first

generalizes the raw data, then by using the sub-protocol distributed exponential mechanism

calculates the score of the candidates, and choose the best candidate to specialize and cut

by applying exponential mechanism. To count the actual number of data in the leaf node
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they used a secure scalar product protocol [30] [54] that securely calculates the shares

of data from parties. Chen et al. [10] propose a non-interactive network data publication

using differential privacy to achieve privacy in correlated datasets. Their approach is to

first generate a private labeling of vertex to given network datasets and build an adjacency

matrix to form clusters, then to re-build a noisy adjacency matrix by using an exponential

mechanism. Dagher et al. [13] present a protocol on the multiparty data mashup called

Fusion to come up with privacy-preserving data mashup where data is distributed among

multiple parties. Their technique is to first compute the score in a distributed fashion using

information gain called distributed specialization score, then apply it to another protocol

to build a taxonomy tree in a hierarchical manner for data mashup using LKC-privacy [43]

protocol.

Table 3.1 summarizes the features of the representative approaches, including our pro-

posed protocol.
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Table 3.1: Comparative evaluation of main features in related approaches including our
proposed approach

Approach Environment Domain Security Model Output Privacy

One Two Multi
Data Mining

Data
Pub-
lishing

Semi-
honest

Malicious Differential
Privacy

Others

Classification Clustering Frequent
Pattern

Other

Zhang et al. [57]    
Su et al. [49]    
Balu et al. [5]    
Blum et al. [6]    
McSherry [39]    
Mohanet al. [45]    
Kotsogiannis et al. [34]    
Jiang and Clifton [30]     
Vaidya et al. [52]    
Boutet et al. [7]      
Xiao and Tao [55]    
Machanavajjhala et al. [37]    
Mohammed et al. [41][44]    
Mohammed et al. [40]     
Vaidya and Clifton [50]     
Clifton and Tassa [11]    
Jun et al. [56]    
Day and Li [14]    
Fung et al. [25]     
Vatsalan et at. [53]     
Chen et al. [10]     
Dagher et al. [13]      
Alhadidi et al. [3]     
Emekci et al. [22]     
Kantarcioglu and Kardes [31]     
Agrawal and Srikant [1]    
Friedman ans Schuster [23]    
Lindell and Pinkas [35][36]     
Du and Zhan [17]     
Vaidya et al. [51]      
Mohammed et al. [42]      
Our proposed protocol 4.1     
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CHAPTER 4

S-DPDT PROTOCOL

Let parties P1 and P2 be the data owners of dataset D1 and D2 respectively. We assume

that both parties P1 and P2 have the same set of records in their data table D1 and D2

respectively. The attribute UID and Class are common in both the data table D1 and D2.

The UID attribute could be either categorical or numerical but the class attribute should

be categorical, and the rest of the attributes in both the datasets are different and private.

The purpose of our work is to propose a protocol for building a classifier for generating a

decision tree over the distributed datasets in a differentially-private manner. The objective is

to maintain the privacy of the private data as well as the security of the protocol, so that there

is no leakage of information to each of the participating parties during the execution of the

protocol. Also, to generate an output which is differentially-private in such a manner that

we can protect it from any kind of linkage attack. A decision tree is important in performing

decision making tasks and in finding the class of a new data item without knowing all the

attributes of the entity.

In this chapter, we first give a general view of our proposed privacy-preserving protocols

approach to build a decision tree in a differentially-private manner. We then present the

details of each key step in our protocols. The objective of our proposed solution is to

build a classifier from the distributed data of the participating two parties using differential

privacy for maintaining strong privacy while maintaining the utility of the output. Our
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whole solution includes four protocols:

Protocol 4.1—Two Party Differentially-Private Decision Tree: This is the main

protocol that calls and executes other protocols distributed exponential mechanism, 2, 3,

and 4 to build a differentially-private decision tree from the distributed dataset D1 and

D2. To achieve differential privacy it uses an exponential mechanism to choose a random

winner attribute.

Protocol 4.2—Categorical Split Protocol: This protocol is called by the main protocol

when the winner attribute is categorical and is using the exponential mechanism to choose

the best random split of the winner node.

Protocol 4.3—Numerical Split Protocol: This Protocol is executed by the main pro-

tocol when the winner attribute is numerical and is using the exponential mechanism to

choose the best random split point of the winner node.

Protocol 4.4—Score Protocol: This protocol is used to calculate the scores of all

sub-datasets of all possible split. This protocol is called and executed by categorical split

protocol and numerical split protocol.

4.1 Two Party Differentially-Private Decision Tree

Our main protocol determines the whole solution for building a secure two-party differentially-

private decision tree using three other protocols and a distributed exponential mechanism

(DEM) protocol. This main protocol, which takes as input the datasets D1 and D2 of

parties P1 and P2, respectively, where both datasets contain different sets of attributes

for the same set of records (individuals), except for a common UID and a class attribute.

The attributes could be numerical or categorical but the class attribute must be categorical.

For example: Party P1 owns a dataset D1(ID,Age, Job, ..., Class), while party P2 owns a
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Two Party Differentially-Private Decision Tree Protocol

Input: Datasets D1 = {A1, . . . , Aj} and D2 = {Aj+1, . . . , An} owned by parties P1 and P2

respectively, Class attribute cls owned by both parties, privacy budget B.
Output: Differentially-private decision tree T.

Initial Step: Each Party Pi : i ∈ {1, 2}:

1. Generate an encrypted version of its dataset JDiK.

2. For each attribute A ∈ Di based on Ω(cls), generate an encrypted two-column Count table CcA
using Laplace Mechanism.

3. Send JDiK and all Count tables JCcAKto the other party.

Main Protocol:

1. Each Party Pi computes information gain IGA for each attribute A ∈ Di.

2. Both parties P1 and P2 jointly execute the Distributed Exponential Mechanism protocol to
determine the winner attribute Aw.

3. If Aw ∈ D1 (i.e. owned by P1):

(a) If Aw is categorical:

i. P1 executes Protocol 4.2 to determine in a differentially-private manner the winner
split Xw for attribute Aw.

ii. Based on Xw = (X ′w, X
′′
w), P1 splits D1 into two partitions D′1 = D1[Aw ∈ X ′w]

and D′′1 = D1[Aw ∈ X ′′w], and similarly splits JD2K into JD′2K and JD′′2 K.

(b) Otherwise, if Aw is numerical:

i. P1 executes Protocol 4.3 to determine in a differentially-private manner the split
value v for attribute Aw.

ii. Based on v, P1 splits D1 into two partitions D′1 = { D1[Aw ≤ v] } and D′′1 =
{D1[Aw > v] }. Similarly, P1 splits JD2K into JD′2K and JD′′2 K.

(c) P1 adds to T the attribute Aw as a parent node with two child nodes: left child lc and right
child rc such that D′1 and JD′2K belong to lc, and D′′1 and JD′′2 K belong to rc.

(d) P1 instructs P2 on how to split JD1K and D2.

4. Otherwise, if Aw ∈ D2 (i.e. owned by P2), then P1 waits for the instructions from P2 to split
D1 and JD2K.

5. Both parties repeat Steps 1–4 on each child node’s data until all attribute are used to split or each
leaf node has the same class value.

6. Return T.

Protocol 4.1: Differentially-Private Decision Tree
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datasetD2(ID, Sex, Salary,MaritalStatus, ..., Class). A privacy budgetB is set for the

whole execution of protocol that is evenly distributed during the making of each level of the

decision tree. As an output of the solution our objective is to produce a differentially-private

decision tree T.

However, before executing this main protocol both the participating parties have to

fulfill some pre-requisites. We call this Initial Steps. Since both parties’ main aim is to

protect the privacy of their data, they use a strong encryption scheme to share their en-

crypted private data with each other. In Step 1, both parties P1 and P2 encrypt their dataset

using distributed ElGamal encryption to ensure that both parties do not infer anything about

the data. Since, the class count of each attribute’s unique value is required in calculating

the information gain (the utility function used for the calculation of score). Therefore, for

each attribute’s unique value in their dataset and their respective class value, both parties

generate an encrypted two-column count table JCc
AK: 〈JAttributeV alueK, JClassCountK〉

added with random Laplace noise. Finally, they share their respective encrypted dataset

and encrypted count tables of all the attributes in their dataset with each other through a

secure channel. Now, they are ready for the execution for the main protocol.

After performing the initial steps successfully, both parties proceed and simultaneously

execute S-DPDT at their respective machines. The general idea of the whole protocol is

that the owner of the winner attribute will always proceed with the protocol and the other

party will wait for the instruction at each iteration of the protocol. Therefore, to determine

the winner attribute, the first step is to calculate the information gain of each attribute of

their respective dataset at their own end. Now, to determine the winner attribute randomly

both parties jointly execute the distributed exponential mechanism protocol 2.2.5 which

takes as an input 〈Attribute, Score〉 pairs for each attribute owned by each of the parties

and part of the privacy budget B. Here score refers to the information gain of attributes.
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After getting the winner attribute, the winning party will proceed with the protocol and

execute the next steps.

In Step 3, the protocol is further executed by party P1 (since the winner attribute Aw

belongs to P1), execution will remain the same if the winner attribute belongs to P2. Since,

the further step of execution is to be applied on the winner attribute, P1 can directly deter-

mine the attribute property (categorical or numerical), since he is the owner of the dataset.

If P1 finds that the winner attribute is categorical, he will execute Protocol 4.2 (explained

in 4.2) to determine the Xw (split) of the winner attribute in a differentially-private manner.

At this point, after getting the split party P1 will first split its own dataset D1 into two child

partitions D′1 and D′′1 based on the X ′W ,X ′′W (split combination). Since the set of records in

the dataset in D1 and D2 is of the same individual, P1 will also split the encrypted dataset

JD2K into two child partitions JD′2K and JD′′2K based on its own’s data split.

Otherwise, if the P1 finds that the winner attribute Aw is numerical, he will apply a

different protocol, called a Numerical split protocol 4.3 (explained in 4.3) to determine the

split value v of the winner attribute in a differentially-private manner. Based on the split

value v the party P1 determines to split its own dataset into two child partitions. For any

value of the winner attribute which is less than or equal to the split value v is assigned to

the partitionD′1 and any value which is greater than the split value v is assigned to the other

partitionD′′1 . After getting the two partitions of its own dataset, party P1 will similarly split

party P2 encrypted dataset JD2K into JD′2K and JD′′2K.

After getting the parent node (winner attribute) and its splits (winner split), partyP1 will

start building the differentially-private decision tree T. The first node, the winner attribute

Aw, is assigned as a root node and it’s split into child nodes: left child and right child with

dataset 〈D′1, JD′2K〉 and 〈D′′1 , JD′′2K〉 to left child node and right child node respectively.

Straight away after creating the first level of the decision tree, the winning party will instruct
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the other party to split the dataset JD1K and D2 similarly as the left child and right child

datasets.

On the other hand, if after executing DEM at Step 2 above, the winner attribute Aw

belongs to party P2, the whole solution will be executed as explained above, except that

the party P2 will proceed with each step and P1 will have to wait for the instruction from

P2 to split the dataset D1 and JD2K. Since this is a recursive process, we will not get

the final decision tree until we use all attributes from both datasets D1 and D2 or we get

homogeneous class values at each leaf node. Hence, in Step 5, both parties will again

start the main protocol from Step 1. They will compute information gain for the remaining

attributes and again apply DEM to determine the winner attribute. Whoever owns the

winner attribute will proceed with the protocol and perform Step 3, and the other party

will wait for the instruction. After all attributes are used, split, and added to T after each

iteration of the protocol to build each level of the decision tree, it grows from top to bottom.

We get a differentially-private decision tree T after the whole execution and iterations have

run smoothly. Forthwith, we can use T classifier as a data model to determine the Class

attribute of any new row of data inserted in the dataset without knowing all the attributes.

4.2 Categorical Split Protocol

This protocol is executed to determine the best split for a categorical attribute. The split is

determined by finding all the possible binary combinations of unique values of the winner

attribute, then choosing the best split in a differentially-private manner. This protocol

takes as input, the winner party Pi, the winner attribute Aw, and the datasets D1 and

JD2K. The execution of this protocol is required when the winner party Pi owns the

winner attributes Aw and finds that the Aw is categorical, this protocol is executed at
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Categorical Split Protocol

Input: Winner Party Pi, winner attribute Aw, Data table Di, Data table JDjK
Output: Winner split Xw = (X ′w, X

′′
w)

1. Winner Party Pi constructs the set X of all possible split combination pairs based on Ω(Aw):
X = {Xk = (X ′k, X

′′
k ) : 1 ≤ k ≤ |X|}.

2. For each Xk ∈ X:

(a) Pi splits Di into two partitions D′i = Di[A
w ∈ X ′k] and D′′i = Di[A

w ∈ X ′′k ], and
similarly splits JDjK into JD′jK and JD′′j K.

(b) Both parties jointly execute Protocol 4.4 to compute the noisy score of Xk, denoted by
Score(Xk).

3. The winner split Xw is the one that has the highest score among all possible splits:

Xw = (X ′w, X
′′
w) ∈ X : Score(Xw) = max

1≤k≤|X|
Score(Xk)

4. Return Xw.

Protocol 4.2: Categorical Split Protocol

Step 3, in the main protocol 4.1. Determining the split of the categorical attribute is more

complex than the numerical attribute and takes most of the execution run-time of the whole

solution. Therefore, to determine the split, party Pi first determines the domain of the

winner attribute, then based on its domain size it generates pairs of combination sets, such

that each pair will only have a unique item. Thus, if an attribute domain size is n, the

number of unique combination pairs will be 2n−1 − 1. For example, if the domain size of

an attribute is 4, then the number of the combination will be 24−1 − 1 = 7, explained with

an example below. Consequently, if the number of unique values grows in the domain set

of an attribute the combination pairs will grow exponentially. This makes determining the

categorical split very complex for attributes having a large domain size.

Example 4.2.1. Let us suppose the winner attribute is Job and it belongs to Party P1. P1
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will go ahead with the protocol and execute the rest of the steps to determine the winner

split for the winner attribute.

Since the attribute Job is a categorical attribute, to determine the best split, we first need to

find all possible binary combination pairs. The attribute Job has 4 distinct values (Professor,

Student, Assistant, and Engineer) and the possible number of combination pairs for the

binary split are as follows:

Combination Pair 1 : [〈Student〉, 〈Professor, Assistant, Engineer〉]

Combination Pair 2 : [〈Assistant〉, 〈Professor, Student, Engineer〉]

Combination Pair 3 : [〈Professor〉, 〈Student, Assistant, Engineer〉]

Combination Pair 4 : [〈Engineer〉, 〈Professor, Student, Assistant〉]

Combination Pair 5 : [〈Professor, Student〉, 〈Assistant, Engineer〉]

Combination Pair 6 : [〈Professor, Assistant〉, 〈Student, Engineer〉]

Combination Pair 7 : [〈Professor, Engineer〉, 〈Student, Assistant〉] �

At Step 1, after getting the split combination pairs for the attribute Aw, as explained in

the example above, and based on each split combination pair, P1 splits its own dataset

D1 into two partitions and similarly splits the other party’s encrypted dataset into two

partitions, respectively. At this point, choosing the best split combination from all the split

combinations, a noisy score is calculated using the score protocol 4.4 for each combination

pair termed as Score(Xk), where k is each split combination. In this Step, both parties

have to collaborate to execute the score protocol and to calculate the score. At the end of

the protocol, after the score of each combination pair is calculated, the combination pair

having the highest noisy score is chosen as the winner split Xw for the winner attributes

Aw and the main protocol proceeds to further steps.
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Numerical Split Protocol

Input: Winner Party Pi, winner attribute Aw, Data table Di, Data table JDjK
Output: Split value v

1. Winner Party Pi constructs the set X of all possible split combination pairs based on the distinct
values in Ω(Aw):
X = {Xk = (X ′k, X

′′
k ) : k ∈ Ω(Aw)}, whereX ′k = {Ω(Aw)[≤ k] } andX ′′k = {Ω(Aw)[> k] }.

2. For each Xk ∈ X:

(a) Pi splits Di into two partitions D′i = Di[A
w ∈ X ′k] and D′′i = Di[A

w ∈ X ′′k ], and
similarly splits JDjK into JD′jK and JD′′j K.

(b) Both parties jointly execute Protocol 4.4 to compute NoisyScore(Xk).

(c) Pi determines the final noise score of Xk: Score(Xk) = Score(Xk).|Ik|, where |Ik|
denotes the size of the interval of element k ∈ Ω(Aw).

3. Select the Xw that has the highest score:

Xw = (X ′w, X
′′
w) ∈ X : Score(Xw) = max

1≤k≤|X|
Score(Xk)

4. The split value v is uniformly chosen from the range [x, y), where x = Max(X ′w) and y =
Min(X ′′w).

5. Return v.

Protocol 4.3: Numerical Split Protocol

4.3 Numerical Split Protocol

Otherwise, if the winner attribute obtained by party P1 is numerical, this protocol is called

and executed by the main protocol to determine the split value v for the winner attribute

to split the dataset into two partitions. Since the operation on numeric value is easier and

more straight forward than it is for categorical data, all we need is a value within that

column chosen as the split point and any value which is less than or equal to that split

point is added to partition 1 and any value which is greater than this split point is added to

partition 2. In the first Step, party Pi is doing the same thing based on each distinct value
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Ki in the winner attribute Aw. Therefore, each distinct value is chosen as the split value,

and a combination pair 〈X ′k, X ′′k 〉 is determined by taking any value which is <= K in the

partitioned subset and added to X ′k, and any value which > K is partitioned and added to

X ′′k . Based on each split combination pair for each distinct value, Pi splits its own dataset

Di into two partitionsD′i andD′′i and also splits the other party data into JD′jK and JD′′j K. To

calculate the noisy score for each split, based on the distinct value of both parties, they have

to collaborate together and jointly execute the score protocol 4.4. After getting the noisy

score, the winner party Pi multiplies each distinct value score by the number of elements

having the same frequency count in the winner attribute Aw column and determines it as

the final score of each combination pair. The distinct element whose frequency is highest in

the dataset will probably have the highest score. In Step 3, the protocol Pi will choose the

split Xw having the highest score among all the scores as the winner score and the winner

split value v is uniformly chosen from the range of maximum and minimum scores of the

bucket set. After getting the split value v, Pi proceeds to the next step of the main protocol.

4.4 Score Protocol

This is the most important protocol, the whole solution of S-DPDT depends on its smooth

and accurate execution. Both categorical and numerical attributes use this protocol interac-

tively to get their splits value based on the score calculated for each of the split combination

pairs. As an input, this protocol takes the winner party Pi and the winner attribute Aw.

Irrespective of attribute property (Categorical or numeric) this protocol computes the score

efficiently. In Step 1, the winner party Pi takes the combination pair sub-dataset D′i and

D′′i and calculates information gain of each combination pair sub-dataset of its own winner

attribute. The score of each attribute in each of the sub-datasetsD′i andD′′i is added together
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Score Protocol

Input: Winner Party Pi, winner attribute Aw

Input: Datasets: D′i, D
′′
i , JD′jK, JD′′j K, JDjK

Output: NoisyScore(Xk)

1. Pi computes Information Gain (IG) for all attributes in D′i and D′′i to determine the total score
of its attributes:

Scorei :=
∑
A∈D′

i

IG(A) +
∑
A∈D′′

i

IG(A)

2. For each attribute A ∈ JDjK:

(a) Both parties jointly define random permutation π such that no single participant knows the
permutation.

(b) For each class value c ∈ Ω(cls):

i. Pj sends a two-column count table TA,c = {in, out} encrypted using Exponential
Elgamal, where each row contains an encrypted value from Ω(A) in the in column,
and an encrypted Laplace noise for that value in the out column.

ii. For each encrypted value JvK ∈ A in JD′jK such that cls = c:
A. Both parties jointly perform plaintext equality test PET on column in to deter-

mine a match. When a match is found, Pi increments by 1 the corresponding
noise Jv.noiseK in the out column by homomorphically multiplying the noise
with Elgamal ciphertext of 1:

Jv.noise+ 1K := Jv.noiseK× J1K

B. Both parties jointly apply the Verifiable Mix Network protocol [29] on TA,c that
uses the random permutation π to generate shuffled and randomized table TπA,c.

iii. Repeat Step 2(b)ii for each encrypted value JvK ∈ A in JD′′j K such that cls = c.

(c) Party Pj uses its private key share to partially decrypt the noise count column in each table
TπA,c generated in Step 2b, and send the results to Pi.

(d) Pi uses its private key share to fully decrypt the ciphertexts received from Pj in Step 2c.

(e) Pi computes information gain of A in dataset JD′jK, i.e., IG(A ∈ JD′jK), and information
gain of A in dataset JD′′j K, i.e., IG(A ∈ JD′′j K).

3. Pi computes Information Gain (IG) for all attributes in JD′jK and JD′′j K to determine the total
score of the attributes owned by Pj :

Scorej :=
∑

A∈JD′
jK

IG(A) +
∑

A∈JD′′
j K

IG(A)

4. Return the noisy score NoisyScore(Xk) of split combination Xk : NoisyScore(Xk) =
Scorei + Scorej .

Protocol 4.4: Score Protocol
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and computed as the total score of its owned attributes as Scorei.

The real challenge is to compute information gain for the attributes owned by the other

party Pj . Both parties join together to execute Step 2, First, they jointly establish a random

permutation for each of the attributes owned by the party Pj in such a way that it remains

unknown for both parties. For each class value c of class attribute clswe used adult dataset,

where class attribute cls has two values 〈<= 50K,> 50K〉. The other party Pj sends an

encrypted class count table having two columns, column in for class value and column out

total number of class count for particular attribute elements. For calculating information

gain all we need is the class count of each attribute’s unique element. Party Pj also adds

random noise to the true count in the out column before encryption, to maintain the privacy

of the count. Further, both parties jointly perform plaintext equality test (PET) 2.3.6 over

in column of class count table to find a match. For each class count of each attribute, a

unique value of the sub-datasetD′j they perform PET and whenever a match is found the out

column value is incremented by 1 using a multiplicative homomorphic encryption scheme.

Party Pi encrypts number 1 using ElGamal encryption and multiplies its ciphertext with

the ciphertext in the respective out column. To protect from predictable ciphertext types

of attack and information leakage both parties jointly re-randomized and shuffle the class

count using the random permutation computed in the beginning of Step 2, by applying

a verifiable mix network protocol 2.3.7. Once all the attributes of sub-dataset JD′iK are

executed and the class count is updated with all the increments, the steps are repeated for

the sub-dataset JD′′j K) to compute the updated class count with all attributes and increments.

At this point, we need the noisy class count of each attribute element to compute the

information gain. In order to do so, we need to decrypt the class count table which can

only be performed when both parties decrypt them using their share. In Step 2(c), the

other party Pj applies its private key share to partially decrypt the noisy count from the
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class count for each attribute. Party Pj then shares each partially decrypted count of each

attribute to party Pi using the secure channel communication.

At this point, on each partially decrypted count column for each attributes in JD′iK and

JD′′j K), party Pi received from Pj , applies his share of the private key to fully decrypt

it. After the decryption of each count column, its time to compute the information gain

for party Pj attributes. Therefore, the information gain of each attribute belongs to the

sub-datasets (JD′iK and JD′′j K) is added together respectively and computed as Scorej . In

the last Step, the protocol returns the noisy score to the categorical split or the numerical

split based on whoever calls it by adding the score for party Pi’s Scorei with the Scorej of

Pj’s to be called as NoisyScore(Xk) for each attribute’s split combination.
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CHAPTER 5

PROTOCOL ANALYSIS

In this chapter, we perform the privacy and complexity analysis of our proposed approach.

5.1 Privacy Analysis

The privacy analysis of our proposed protocol finds that the classifier we built is ε-differential

private and based on the composition properties of differential privacy. The composition

property states that any sequence of computations that provides differential privacy in

segregation will also result in differential privacy even when computed in any sequence.

This is called the sequential composition. This is not only true with individual computation,

but also in successive computation when current computation depends upon the results of

preceding computations.

Lemma 1. Sequential composition [39]. Let algorithm Mi each provides Bi-differential

privacy. The sequence of Mi(D) on the dataset D provides (
∑

i Bi)-differential privacy. �

In the case of sequential composition the privacy cost of each computation of sequence

is added together to compute overall privacy cost. Nevertheless, if the sequence of com-

putation is applied on the disjointed subsets of the dataset, the privacy cost depends on the

worst guarantees of each computation, not the sum of the privacy cost. This is called the

parallel composition
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Lemma 2. Parallel composition [39]. Let algorithm Mi each provides Bi-differential

privacy. Let D′i, be the disjoint subsets of dataset D. The sequence Mi(D ∩ D′i ) is

Bi-differential privacy. �

Sequential composition is essential to compute the privacy cost of any approach, how-

ever, parallel composition is required to get the best of the cost from the sequence of

computation privacy cost.

Proposition 5.1.1. Given a privacy budgetB, our approach outputsB-differentially-private

decision tree.

Proof: In our solution the main protocol produces the output of a differentially-private

decision tree using three other protocols. It works in two phases: determining the winner

attribute and then determining the winner split for that winning attribute. In our protocol

we have a fan-out f = 2. According to lemma 2, we can use the same privacy budget

in determining each level of the decision tree. Consequently, if we can prove that the

summation of the budget at each level is less than or equal to the initial privacy budget B,

we can establish that our approach satisfies B-differential privacy.

In the decision tree generation, the privacy budget distributed at each level isBl = B/n,

where n is the total number of attributes in the datasetsD1 andD2, n will also be the height

of the decision tree T. The half of Bl at each level is needed to find the winner attribute

Aw by applying distributed exponential mechanism (DEM) is
√
Bl. And remaining budget

Bl −
√
Bl is needed to determine the winner split Xw for the winner attribute Aw .

Thus, the use of an exponential mechanism guarantees that the selection of the winner

attribute and the winner split at each level of the tree requires Bl, a part of the privacy

budget and satisfies B-differential privacy. Therefore, the total privacy budget consumed

is:
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n∑
l=1

√
Bl︸︷︷︸

winnerAttribute

+ (Bl −
√
Bl)︸ ︷︷ ︸

WinnerSplit

= n×Bl ≤ B

Hence, our protocol satisfies B-differential privacy. �

Proposition 5.1.2. Privacy-preserving. The overall approach is privacy-preserving, such

that the private data is protected throughout the entire execution of protocol.

Proof: (Sketch) To prove that out protocol is privacy-preserving, we will show that the

private data is always protected.

Input Data: Both parties P1 and P2, encrypts their data, proves knowledge of it, sends

it to each other and then inputs to the protocol. Both parties Pi prove that they know the

implicit plaintext of the encrypted dataset without leaking any information to the other

party about the plaintexts.

Encrypted Data: On the other hand, the encrypted data is protected due to a strong

encryption scheme (DDH for ElGamal). The adversaries can in no way decrypt the dataset

or any part of it, as it can only be decrypted using the shared key (n,n) between the two

parties.

Decrypted Data: The dataset of both parties remains encrypted throughout the protocol,

except when they apply a plaintext equality test (PET) on the count column. Both parties

jointly apply distributed exponential ElGamal to find a match, which returns 1 for match,

it otherwise a garbled output when PET is not successful. A verifiable mix network is used

to shuffle and re-randomize the output list after every match is found. This security makes

it infeasible for adversaries to find which output belongs to which input. �
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5.2 Integrity Analysis

Proposition 5.2.1. Integrity. The overall protocol is robust against the malicious adver-

sarial under a semi-honest model.

Proof (Sketch) All the steps of the protocol are publicly verifiable, which prevents

the malicious participant party from veering away from the protocol with intent without

getting caught. The party, who is honest with the protocol, can withdraw in the middle

of the execution as soon as it detects any ill behavior of the other party. Withdrawal of

one party will obstruct the completion of the protocol (like the distributed decryption,

DEM operations need until the last step of the protocol both parties participation). We de-

rive integrity against a malicious participant from our cryptographic primitives mentioned

in Chapter 2. Table 5.1 shows publicly verifiable techniques used at different security-

sensitive steps of our proposed protocols. We certify that all data inputs to the protocols

are accurately devised. In the initial phase, both the participating parties generate a public

key, the distributed key generation (DKG) scheme that guarantees that the output will be

uniformly distributed at random [26]. The ciphertext generation must be within 〈Gq x Gq〉

for encryption of each dataset in such a way that data owner can check the independency

of the ciphertexts. Each of the participating parties inputs a random exponent from the Zq

whenever they execute operations like mixing(shuffling and re-randomization), plain-text

equality testing.

�

5.3 Complexity Analysis

Proposition 5.3.1. (Complexity). The overall complexity of our proposed approach is

O(n(d+ n logC + nK logC)).
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Table 5.1: The Primitive verifiable primitives used at different security-sensitive steps of
our proposed protocols

P.V.Primitive Intial
Step

Main
Protocol

Categorical
Split Protocol

Numerical
Split Protocol

Score
Protocol

Public
Encryption 1 2.b.i

Distributed
Decryption 2.c

Mix Network
2.a.i,
2.b.ii.B

Mix and Match 2.b.ii.A
Homomorphic
Operation 2.b.ii.A

Cleartext
Operation

1, 3.a,
3.b, 6 1, 2.a, 3 1, 2.a, 3, 4 1, 4

Proof. We determine the run-time complexity of our proposed approach based on the

Initial step (encryption of dataset, encrypted count table) and main protocol.

Initial Step (Encryption phase): In this phase, both participating parties encrypt their

dataset and encrypt a count table. To encrypt dataset D with d records and t columns

requires O(t× d). The encryption of a class count table for d records also requires O(t×

d). Since n > t, where n is the total number of attributes, then the initial phase runtime

complexity is O(n× d).

Decision tree generation phase: In the decision tree generation phase, the runtime com-

plexity is the cost of generating each winner node using a distributed exponential mecha-

nism, and determining the winner split of each winner node.

Distributed Exponential Mechanism: Both parties jointly execute DEM to determine

the winner attribute. Since this is performed n times i.e. height of the tree, which is the total

number of attributes in D1 and D2, then according to [40], the complexity of encryption

and communication is O(n2 logC) and O(n2K logC), respectively.
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Determining Split of winner attribute: The total number of splits is 2l. The total number

of the attributes in dataset D is n, and the number of categorical and numerical is n/2 and

n/2 respectively. For categorical splits, the number of operations depends upon the total

number of combination pairs of all categorical attributes. The sum of unique values in each

attribute is 64. The class attribute has 2 unique values. So the number of operations for

categorical split is 64 X 2 = 128. Therefore, runtime complexity is 128 X (O(n/2)) =

O(n).

For the Numerical attribute, in the worst case scenario (where each value could be

unique in numerical the attribute column), the maximum number of unique values for a

numerical attribute is size of d. The class attribute has 2 unique values. So the number

of operation is 2 X (O(d × n/2)) = O(n × d). Therefore, total runtime complexity of

determining the Split of winner attribute is : O(n+ n× d = O(n× d)

Thus, the total time complexity of S-DPDT isO(n×d+n×d+n2 logC+n2K logC)

= O(n× d+ n2 logC + n2K logC) = O(n(d+ n logC + nK logC))

�
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CHAPTER 6

EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our Secure Two-Party Protocol for Decision

Tree classification via Differential Privacy. First, we discuss the implementation details.

Second we discuss the results of the experiment that include the utility of the protocols,

record scalability and efficiency.

6.1 Dataset

We use a real-life data set called Adult [4] data set in our experiment to illustrate the evo-

lution and performance of S-DPDT. The Adult data set consists of 45,222 census records,

containing eight categorical attributes, six numerical attributes, and a class attribute. Table

6.1 illustrates the attributes distribution between the two parties in distributed settings.

6.2 Implementation and Setup

S-DPDT is implemented using SCAPI1, an open source Java based library for implement-

ing secure multiparty computation protocols. We use socket-based communication chan-

nels of SCAPI that is based on Socket and ServerSocket of Java.net package. Socket-based

communication uses two channels to send and receive ciphertexts between the two parties.

We use Group-ElGamal of the ElGamal encryption scheme to encrypt the parties’ data.
1SCAPI: https://.readthedocs.org/
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The experiments were conducted on a machine equipped with Intel(R) Xeon(R) 3.5GHz

CPU with 8GB RAM, running on 64-bit Windows 10 Enterprise edition using Java Eclipse

IDE.

Table 6.1: Adult Dataset, and the distribution of attributes between two parties

Attribute Type Owner
Age Numerical P1
Workclass Categorical P1
Fnlwgt Numerical P2
Education Categorical P1
Education-Num Numerical P1
Marital-status Categorical P2
Occupation Categorical P2
Relationship Categorical P1
Race Categorical P2
Sex Categorical P2
Capital-Gain Numerical P2
Capital-Loss Numerical P1
Hours-per-week Numerical P1
Native-Country Categorical P2

6.3 Utility

To determine the utility of our classifier we did a classification analysis, where we com-

pared our classifier accuracy with a Non-DP classifier taken as a baseline. We compared

classification in terms of accuracy achieved with respect to a different number of attributes

with three different ε (epsilon) values.

We use 2/3 of the records of adult data to train the classifier and 1/3 of the records for

testing the classifier.

Figure 6.1 depicts the classification accuracy with respect to a different number of

attributes in the dataset with three different ε (epsilon) values for each type of dataset.
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Figure 6.1: Utility of Classification with respect to number of attributes and different
epsilon values

The classification accuracy is measured w.r.t to the number of attributes in the dataset,

which are set from 2 to 14 and increased linearly. We use three different ε values for each

number of attributes in the data set, which varies from 0.25 to 1.25. We also increased

this value linearly. In our approach, we observe that the accuracy increases linearly from

54% to 74% when the number of attributes increases in the data set. Alternately, when we

increase the ε values the accuracy decreases slightly in all cases. We set a baseline classifier

without differential privacy for comparison of classification utility with our protocol and

observe that the accuracy achieved by our protocol was marginally less than the accuracy

achieved by baseline without differential privacy. This is expected when we apply differ-

ential privacy as accuracy decreases marginally but this doesn’t affect the utility of our

protocol. However, we also observed that the accuracy of our protocol is consistent w.r.t

the baseline, the accuracy increases linearly when the number of attributes is increased.
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Figure 6.2: Scalability with respect to number of records

6.4 Scalability

We measured the scalability of S-DPDT with respect to the number of records. We ob-

served the runtime of our three main protocols DEM (distributed exponential mechanism),

Numerical-split and Categorical-Split with ε value set at 0.75. We chose 0.75, as it is the

median value of our epsilon range from 0.25 to 1.25 used in testing the experiment.

We observed that to run an adult dataset with 50k records with all 14 attributes it takes

up to 48 min to run S-DPDT. The runtime increases linearly as the record size increases

linearly from 50k to 200k. Figure 6.2 depicts the runtime in minutes for the number of

records from 50,000 to 200,000 in each dataset. We also observed that the most dominant

protocol of our experiment is Categorical-split protocol which took the majority of run time,

approximately 46% of total time taken by the three main protocols, because the categorical-
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split has to find all the possible combinations of domain of each attribute, calculate a score

for each combination, and then chose the best score by applying an exponential mechanism

on the set of scores.

We observed that there is a linear increase in total runtime w.r.t to a linear increase in

the number of records. However, we also observed that the protocol DEM (Distributed

Exponential Mechanism) runtime didn’t grow linearly w.r.t a linear increase in records,

rather it tends to remain constant. This is because the DEM is applied to the score generated

by the numerical-split or categorical-split so no matter what the number of records grows

to it doesn’t affect the runtime of the DEM protocol.

6.5 Efficiency

We tested the efficiency of our proposed approach with Differential Privacy overhead, with

respect to the number of attributes in the data set, comparing the runtime to a protocol

without differential privacy. The Adult dataset was chosen for testing the efficiency, the

ε value is set at 0.75. The Figure 6.3 illustrates the runtime for different datasets with a

different number of attributes. Here the X-axis represents the number of attributes in the

dataset, while the Y-axis shows the time taken in minutes to execute each of the datasets

with differential privacy and without differential privacy.

We observed that the runtime increases considerably with an increase in the number

of attributes in the data set. Our approach with differential privacy takes more execution

time with respect to an approach without differential privacy which is consistent with our

expectations. Our approach uses an exponential mechanism to achieve differential privacy

which is bound to take more time to randomly pick the best score for the split. We termed

it as differential privacy overhead, and to achieve foolproof privacy like differential privacy
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Figure 6.3: Comparative efficiency evaluation with respect to the number of attributes in
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the increase in the runtime of our approach is considered irrelevant.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary

In this thesis, we performed extensive research on distributed privacy-preserving data min-

ing to build a classifier for better decision making that maintains the participant party’s data

securely, achieves good utility, and is scalable and efficient with an increase in datasize.

We observed that by using secure multi-party protocol we can perform data mining tasks

on distributed data in a differentially-private manner and still achieve high utility. In

our experimental performance evaluation of our protocol, we found that 74% utility was

achieved with all attributes of the dataset, which is slightly behind the utility achieved by a

non-differential privacy mechanism.

In chapter 2, we presented and discussed the building blocks of our thesis that are

important to the implementations of our thesis work. We explain the data mining task

classification, different techniques to build a decision tree, and finding the best attribute to

split i.e Information Gain, Gini Index, Max operator, and Gain Ratio. We also discussed

differential privacy and different mechanisms to achieve differential privacy i.e Exponential

Mechanism, Laplace Noise addition, and the cryptographic scheme like ElGamal for the

encryption of each party dataset.

In chapter 3, we explained the related work that has been done over the years in the

field of data privacy-preserving. We did an extensive discussion on privacy-preserving data
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mining and privacy-preserving data publishing with respect to various data mining tasks

like classification, clustering, pattern mining, etc. with both single party or multi-party

environments. We did a comparative evaluation and presented in Table 3.1 the major PPDM

and PPDP techniques.

In chapter 4, we propose our solution for building a differentially-private decision tree,

explaining the execution of our main protocol and sub-protocols. The proposed solution

achieves high utility, is scalable with large datasets and efficient in classification tasks of

data mining techniques.

In chapter 5, we conducted the privacy and complexity analysis of our proposed ap-

proach. We establish that our approach preserves the privacy of distributed data, is scalable

and efficient with large datasets and a large number of attributes in the datasets respectively.

In chapter 6, we analyzed the performance of our approach. We carried out our exper-

iments to establish the utility, scalability, and efficiency of our solution. The experiment

results show that our approach achieves high utility, is scalable, and efficient with respect

to large datasets and a large number of attributes in the dataset.

In a nutshell, we can say that the main role of this thesis work is to propose an approach

to build a classifier- a decision tree over distributed data between two parties using differ-

ential privacy which maintains the data security, satisfies the differentially-private output,

preserves the privacy, achieves high utility, and is scalable and efficient.

7.2 Future Work

The research work explained and the evaluation of the experiments conducted in this thesis

lead to many unanswered questions. In the era of Big Data, working with very large datasets

will be quite challenging, as the encryption and distributed decryption takes a good amount
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of time and makes the system more complex. It would be intriguing to study how the

protocol behaves when the number of attributes in the dataset is quite large and the domain

of each attribute is also large. In the case of a binary split of an attribute, finding all possible

combinations of the domain of an attribute grows exponentially with the increase in domain

size. Furthermore, we also look forward to analyzing how the system will respond in a

multi-party set up in a distributed scenario.
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