

MINOS: UNSUPERVISED NETFLOW-BASED

DETECTION OF INFECTED AND ATTACKED HOSTS,

AND ATTACK TIME IN LARGE NETWORKS

by

Mousume Bhowmick

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Computer Science

Boise State University

August 2019

© 2019

Mousume Bhowmick

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Mousume Bhowmick

Thesis Title: MINOS: Unsupervised Netflow-based Detection of Infected and
Attacked Hosts, and Attack Time in Large Networks

Date of Final Oral Examination: 30 April 2019

The following individuals read and discussed the thesis submitted by student
Mousume Bhowmick, and they evaluated the presentation and response to questions
during the final oral examination. They found that the student passed the final oral
examination.

Dianxiang Xu, Ph.D. Chair, Supervisory Committee

Edoardo Serra, Ph.D. Co-Chair, Supervisory Committee

Francesca Spezzano, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Dianxiang Xu, Ph.D., Chair of
the Supervisory Committee. The thesis was approved by the Graduate College.

iv

DEDICATON

Dedicated to all women who died a lot.

v

ACKNOWLEDGEMENTS

I am wholeheartedly thankful to Boise State University for allowing me to

pursue graduate study. I would also like to express the highest gratitude to the Office

of Information Technology of Boise State University for providing a real dataset and

valuable information for this research.

It is my great fortune to get a chance as a research assistant in Dr. Dianxiang

Xu’s team: Software Engineering and Assurance Lab (SEAL). I highly respect the

learning opportunity and environment he provided me. I am grateful and have great

appreciation to him because of all supports and keeping faith with me. Taking software

engineering and software security courses under his supervision built a strong

foundation towards my career path. Moreover, his achievements, dedication, and

passion for the research domain in Computer Security will ever be a constant source of

motivation for my entire life.

I would also like to thank Dr. Edoardo Serra, who guided me since the beginning

of this thesis. I would not hesitate to confess that I had no knowledge about machine

learning or data science, which I learned in-depth from his courses. His outstanding

teaching style makes things more convenient and encourages me to research a problem

that related to the data science field. He has helped me to identify my weaknesses and

push my abilities beyond the boundaries through continuous leadership and

uncountable productive meetings in the last two years. Last but not least, I am

expressing humble gratitude to him because of allowing me to knock on his door at any

time.

vi

I am also grateful to Dr. Francesca Spezzano for being in my thesis committee

and providing valuable feedback for my work. Her insightful comments on my research

work helped me to develop better ideas.

Finally, I am grateful to my family for always supporting and helping me to

realize the importance of education. Special thanks to my beloved husband for being

amazing emotional support including the courage to be patient at the difficult times. I

would not have come up to this level without their neverending encouragement and

love.

vii

ABSTRACT

Monitoring large-scale networks for malicious activities is increasingly

challenging: the amount and heterogeneity of traffic hinder the manual definition of

IDS signatures and deep packet inspection. In this thesis, we propose MINOS, a novel

fully unsupervised approach that generates an anomaly score for each host allowing us

to classify with high accuracy each host as either infected (generating malicious

activities), attacked (under attack), or clean (without any infection). The generated

score of each hour is able to detect the time frame of being attacked for an infected or

attacked host without any prior knowledge. MINOS automatically creates a

personalized traffic behavioral model for each host and does not require any previous

knowledge of existing or unknown attacks. Experimental evaluation on a real large

academic network over one year of data shows that MINOS achieves very high

accuracy, even when analyzing only two weeks of data. We demonstrate MINOS is

also efficient and faster than a state-of-the-art approach for unsupervised anomaly

detection on traffic data.

viii

TABLE OF CONTENTS

DEDICATON ... iv

ACKNOWLEDGEMENTS ... v

ABSTRACT ... vii

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xiv

CHAPTER ONE: INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Contributions.. 4

1.3 Outlines .. 4

CHAPTER TWO: BACKGROUND AND RELATED WORK 6

2.1 Intrusion Detection System (IDS) .. 6

2.2 Types of IDS .. 7

2.2.1 Host-based IDS (HIDS) ... 8

2.2.2 Network-based IDS (NIDS) ... 8

2.2.3 Signature-based IDS (SIDS) .. 9

2.2.4 Anomaly-based IDS (AIDS) .. 10

2.2.5 Packet-based NIDS .. 11

2.2.6 Flow-based NIDS ... 12

2.3 Machine Learning Technique (MLT) .. 15

2.3.1 Supervised Anomaly Detection .. 15

ix

2.3.2 Unsupervised Anomaly Detection ... 16

2.4 Novelty Detection .. 16

2.4.1 K-means algorithm ... 19

2.4.2 Gaussian Mixture Model (GMM) .. 20

2.4.3 One Class Support Vector Machine (OC-SVM) 21

2.4.4 Autoencoder ... 21

2.4.5 LSTM Autoencoder .. 23

2.5 Performance Metrics .. 24

2.5.1 Area Under Receiver Operating Characteristic (AUROC) 24

2.5.2 Average Precision (AP) .. 25

2.6 Suricata Rule Category .. 25

2.7 Related Work ... 29

CHAPTER 3: DATASET AND PROBLEM STATEMENT 33

3.1 Category of Data Sources .. 33

3.2 Size of the Dataset ... 34

3.3 MINOS Overview and Dataset .. 35

3.4 Feature Selection .. 38

3.5 Machine Selection .. 41

3.6 Ground Truth Extraction .. 43

3.7 Research Challenges .. 46

3.8 Problem Statements ... 48

CHAPTER FOUR: METHODOLOGY .. 49

Methodology .. 49

4.1 Step 2: Hourly-based Feature Extraction ... 50

4.2 Step 3: Hourly-based Anomaly Detection Model 59

x

4.3 Step 4: Anomaly Scores Normalization and Aggregation 61

4.4 Step 4: Anomaly Scores Normalization and Aggregation 61

4.5 Step 5: Unsupervised Classification .. 62

4.6 Step 6: Anomalous or Not Anomalous Identification.......................... 62

CHAPTER FIVE: EXPERIMENTAL EVALUATION .. 63

5.1 Separating CH, HUA, and MH with Hourly-based Anomaly Scores .. 64

5.2 Attack Time Identification ... 66

5.3 Different Time Frames ... 69

5.4 Execution Time .. 70

5.5 Unsupervised Classification Performance ... 73

CHAPTER SIX: CONCLUSION .. 74

6.1 Summary .. 74

6.2 Future Work ... 75

BIBLIOGRAPHY .. 76

xi

LIST OF TABLES

Table 2.1 Description of rule set of Suricata ... 27

Table 3.1 Dataset details. It corresponds to one year of traffic collected at Boise
State University (Feb 4th, 2017—Feb 4th, 2018). 36

TABLE 3.2: Flows breakdown based on protocol... 37

Table 3.3 Flow-based Features extracted from each flow. 39

Table 3.4 Minimum and maximum values of data set features 40

Table 3.5 Ground Truth for a single machine .. 45

Table 5.1 AUROC and AP of anomaly scores on 12 months of traffic. Values ≥
0.80 are highlighted in bold. .. 66

Table 5.2 Execution time (in minutes) for 1,000 machines. 71

Table 5.3 Performance of 3-class detection module (12 months). 72

xii

LIST OF FIGURES

Figure 2.1 IDS Taxonomy ... 8

Figure 2.2 Generic AIDS functional architecture ... 12

Figure 2.3 Packet-based NIDS .. 13

Figure 2.4 Flow-based NIDS... 14

Figure 2.5 Framework of novelty detection .. 17

Figure 2.6 Novelty within feature space ... 18

Figure 2.7 Taxonomy of novelty detection methods ... 19

Figure 2.8 Simple architecture of an autoencoder ... 23

Figure 3.1 Number of machines vs. average number of alerts 41

Figure 3.2 Number of machines vs. large number of alerts 42

Figure 3.3 Number of Machines with average number of flows 43

Figure 3.4 Number of Machines with large number of flows 44

Figure 3.5 Number of Clean Machines with flows ... 44

Figure 4.1 The main steps of MINOS. .. 50

Figure 4.2 MINOS extraction of Hourly-based Features for one host. 52

Figure 5.1 Hosts sorted by increasing OC-SVM anomaly score value. 63

Figure 5.2 Hosts sorted by increasing Autoencoder anomaly score value. 64

Figure 5.3 Hosts sorted by increasing Kitsune anomaly score value. 64

Figure 5.4 The LSTM accuracy of attack time for the HUA 67

Figure 5.5 The LSTM accuracy of attack time for the MM 67

Figure 5.6 The OC-SVM accuracy of attack time for the HUA 68

xiii

Figure 5.7 The OC-SVM accuracy of attack time for the MH 68

Figure 5.8 AUROC and AP of GMM for different time frames. 69

Figure 5.9 AUROC and AP of OC-SVM for different time frames. 70

Figure 5.10 AUROC and AP of Autoencoder for different time frames. 70

Figure 5.11 AUROC and AP of LSTM for different time frames. 71

xiv

LIST OF ABBREVIATIONS

IDS Intrusion Detection Systems

HIDS Host (based) Intrusion Detection Systems

NIDS Network (based) Intrusion Detection Systems

SIDS Signature (based) Intrusion Detection Systems

AIDS Anomaly (based) Intrusion Detection Systems

MLT Machine Learning Technique

GMM Gaussian Mixture Model

BGMM Bayesian Gaussian Mixture Model

OC-SVM One Class Support Vector Machine

SVM Support Vector Machine

EM Expectation Maximization

LSTM Long Short Term Memory

AUROC Area Under Receiver Operating Characteristic

AP Average Precision

CH Clean Host

HUA Host Under Attack

MH Malicious Host

UDP User Datagram Protocol

ESP Encapsulating Security Payload

TCP Transmission Control Protocol

GRE Generic Routing Encapsulation

IPv6 Internet Protocol Version (6)

xv

SCTP Stream Control Transmission Protocol

ICMP Internet Control Message Protocol

IPFIX Internet Protocol Flow Information Export

DPI Deep Packet Inspection

1

CHAPTER ONE: INTRODUCTION

1.1 Motivation

The Internet is a widespread system in continuous evolution, where the

number of attacks, Internet traffic, and line speed continues to grow [32]. Nowadays,

it is common to use an access speed of 1 - 10 Gbps. Since bandwidth for wired

connections is available, high-bandwidth services are being offered to users. For

example, a university network reaches traffic averages in the order of hundreds of

Mbps, including high activity peaks in the order of Gbps [53, 58, 59]. On backbone

networks, the throughput will even be higher. Also, it is conventional for Internet

users to have been a victim of an attack because of attackers’ constant assaults into

networked systems. For example, a hacked machine can send out sensitive data to an

unauthorized host; in this case, the cost of these attacks would be billions of U.S.

dollars [15]. Therefore, it becomes significant to detect and prevent these intrusions as

early as possible. Therefore, Network Intrusion Detection Systems (NIDS) need to

handle the rising number of attacks, the growth of Internet traffic as well as the

increase in line speed.

2

The most popular systems such as Bro [46], SNORT1, and Suricata2

demonstrate high resource consumption, when confronted with the vast amount of data

found in today’s high-speed networks [14]. Additionally, those systems are doing an in-

depth analysis of the packets. If the packet’s data is encrypted, then it poses a new

challenge to payload-based systems. Moreover, researchers assess that the payload-

based NIDS processing capability lies between 100 Mbps and 200 Mbps [17, 34],

which is inconvenient to this era. In contrast, the flowbased NIDS looks at aggregated

information of related packets in the form of flow, so the amount of analyzing data is

reduced [1, 51, 53]. In this context, flow-based approaches might be a promising

candidate for Intrusion Detection research [59].

Traffic networks of large organizations are challenging to protect and monitor,

due to the increasing amount of communications and heterogeneity of user behaviors

and devices. Misuse-based systems (e.g., IDS [46]) require a priori knowledge on

attacks and standard definitions of signatures by security analysts. Therefore,

researchers focused on building statistical anomaly-based systems [9]. In this context,

proposed supervised models often train on traffic datasets that contain artifacts (e.g.,

DARPA datasets [37]). As a result, those models do not generalize well when

deployed in the real world. Moreover, obtaining reliable labels for traffic events is

challenging [56]. For these reasons, the focus of this thesis is an entirely unsupervised

setting (without any training labels).

1 An open-source network intrusion prevention and detection system, at <www.snort.org>
2 Suricata is a free and open-source, mature, fast and robust network threat detection engine, at
<https://suricata-ids.org/>

3

Existing research on unsupervised traffic anomaly detection is affected by some

critical limitations: existing works either make strong assumptions to identify specific

threats (e.g., similar communication patterns for botnet identification [21]), or require

unencrypted traffic (e.g., [5, 36]). Other methods that work even in the presence of

encrypted traffic either assume specific threats (e.g., data exfiltration [39]) or do not

scale to large networks (e.g., IoT traffic of surveillance cameras [41]).

In this thesis, we propose MINOS3, a fully unsupervised approach that produces

an anomaly score for each internal host of an organization. That anomaly score can

prioritize and classify (in an unsupervised manner) each host into one of three

categories: clean, under attack, and infected. Also, it can recognize the attack time of

an infected or under attack host. The inputs of MINOS are network communications

between the internal hosts of an organization and the Internet, where no ground truth

is required. To address the heterogeneity of network communications, MINOS

automatically creates a behavioral traffic profile for each host independently by

clustering network flows. We remark that MINOS is a fully unsupervised approach

followed by a parallel procedure over multiple hosts. We experimented MINOS over

1,000 hosts and one year of network traffic at Boise State University. We then

evaluated how the anomaly score of MINOS prioritizes and differentiates three classes

of hosts effectively. We also show that MINOS has better accuracy and execution time

3 In Dante Alighieri’s Divine Comedy, MINOS is depicted as a man with a serpent tail in charge of judging
evil souls to determine which circle of Hell they deserve to be in. The circle is determined by the number
of wraps of MINOS’s tail on the evil soul.

4

than Kitsune [41], a state of the art approach for unsupervised traffic anomaly

detection.

1.2 Contributions

In summary, this work makes the following main contributions:

• We propose a novel fully unsupervised large-scale traffic

analysis approach, called MINOS, that is able to classify internal hosts into

one of three classes: clean, malicious, and under attack and also identify

the time frame of being attacked. This is different from most prior research

that distinguished just between benign and malicious activities. We

evaluate MINOS on one year of real data collected for 1,000 hosts of Boise

State University (a large academic network).

• In addition to offline analysis of one year of traffic data, we

show that MINOS retains high performance in classifying hosts even when

applied on reduced time windows (e.g., two weeks).

• We show that MINOS outperforms Kitsune [41] (a state-of-the-

art approach for unsupervised traffic anomaly detection) both in accuracy

and in execution times.

Our results show that MINOS is a viable solution towards identifying risky hosts in

large networks in the absence of label supervision.

1.3 Outlines

In Chapter 2, we provide the relevant background of Intrusion Detection

Systems, machine learning in supervised and unsupervised contexts, neural networks,

5

commonly used standard novelty detection algorithms, and present the literature

review of previous research works related to this thesis.

In Chapter 3, we discuss the size and shape of the raw dataset, experimental

machine selection, network flows collection, and feature selection procedure. Also,

we present the problem statements of this thesis.

In Chapter 4, we describe the methodology and implementation of feature vector

extraction and novelty detection algorithms, i.e. identifying host status and time frame

of existing attacks.

In Chapter 5, we extend our discussion on the experimental setup, variants of

experimental instances and statistical relevance.

Finally, in Chapter 6, we discuss a summary of the proposed methodology, the

future research direction and conclude this thesis.

6

CHAPTER TWO: BACKGROUND AND RELATED WORK

This chapter introduces the relevant background on intrusion detection

systems, machine learning, neural networks, novelty detection procedure, some

related works in the literature and comparison of them with our hypotheses. For

more details about machine learning and neural networks, we recommend

readers to a book by Goodfellow et al. [20]. For novelty detection algorithms, a

survey paper by Pimentel et al. [48] is recommended.

2.1 Intrusion Detection System (IDS)

IDS is a process of monitoring and identifying computer and network

events to determine the evolution of any unusual incident, which is considered to

be an intrusion [1]. Generally, it detects undesired exploitation to the computer

system, both through the Internet and the Intranet.

For example, a thief is standing in front of an anonymous house, looking

around, investigating the surroundings, and then starts turning the knob of the

front door. Unfortunately, the door is locked, so he moves to a nearby window

and smoothly tries to open it. Unluckily, that is locked too. It demonstrates that

the house is safe. If the house is safe in this way, why do people install an alarm

in their home? Similarly, the common question for intrusion detection

researchers: why researchers bother detecting intrusions if they established

firewalls, patched operating systems, and checked passwords for soundness? The

most straightforward answer to this question is intrusions still happen.

7

However, firewalls contradict with IDS in the sense that they cannot usually

search for anomalies or specific content patterns to the same degree as IDSs do.

Moreover, unlike firewalls, IDSs are automated because they do not depend on a

human decision. As such, people occasionally skip updating a firewall’s rule set

correctly as they sometimes forget to lock their window. Therefore, developing

an IDS becomes worthy of discovering and reacting for any computer attacks

[31].

2.2 Types of IDS

Figure 2.1 illustrates the taxonomy of IDS, which is reproduced from

[59]. Generally, IDS can be divided into two basic categories based on their

position in the network or audit source location:

• Host-based IDS (HIDS)

• Network-based IDS (NIDS)

NIDS can be divided into two categories based on the source of data to be

analyzed in NIDS:

• Packet-based NIDS

• Flow-based NIDS

Also, depending on the detection model IDS can be classified into two categories:

• Signature-based IDS (SIDS)

• Anomaly-based IDS (AIDS)

8

Figure 2.1 IDS Taxonomy

2.2.1 Host-based IDS (HIDS)

A HIDS is capable of monitoring a single machine and audit data

(resource usage and system logs) traced by the hosting operating system [1]. It

gives deep visibility of critical systems and refers to protect the environment by

detecting and responding to malicious or anomalous activities. However, HIDS

does not provide a complete picture of the security posture. HIDS log data needs

to correlate with other critical security data and the latest real-world threat

intelligence. In this context, HIDS seems like an agent that can monitor whether

internal or external, anything or anyone, have blockaded the system’s security

policy.

2.2.2 Network-based IDS (NIDS)

NIDS is used to monitor a network and analyze traffic to protect a system

from network-based threats. Generally, a NIDS reads all inbound packets and

•

9

searches for any suspicious patterns. If it can identify any risks, the system can

take action by notifying administrators or blocking the source IP address from

accessing the network [1]. As our goal is to identify a machine’s status by

scrutinizing network flows solely, we do not consider HIDS for this research.

Comparison between HIDS and NIDS: In contrast to HIDS, NIDS has

some advantages. In NIDS, the deployment of a new host in the network does

not need extra effort to monitor the network activity. Also, NIDS is less

expensive because updating one component of NIDS is more comfortable than

many components of HIDS on hosts. A NIDS presents extensive research of a

corporate network via scans and probes. NIDS allows administrators to protect

non-computer devices, such as firewalls, print servers, VPN concentrators, and

routers. More importantly, NIDS gives us flexibility with multiple operating

systems, devices, and protection against bandwidth floods and Denial of Service

(DoS) attacks.

2.2.3 Signature-based IDS (SIDS)

SIDS, also referred to as “misused-based” or "rule-based", works similar to

antivirus software [1]. SIDS monitors packets in the Network and compares them

with pre-configured and pre-determined attack patterns known as signatures. If

there is a successful match with the current input, an alert is prompted. A well-

known tool of SIDS is Suricata (an open source IDS tool), which monitors

networks by matching each packet it observes against a set of rules. A rule

consists of the following:

• The action: Determines what happens when the signature matches

10

• The header: Defines the protocol, IP addresses, ports and direction of the

rule

• The rule: Some options, which explain the specifics of the rule

The following is the appearance of a static machine’s alert at Boise State

University, which has been produced by the set of rules of Suricata (See table 2.1):

"10/12/2017-22:35:01.319011 [**] [1:2009582:3] ET SCAN NMAP -sS

window 1024 [**] [Classification: Attempted Information Leak] [Priority: 2]

TCP 150.255.174.211:61512 -> 132.178.137.210:873"

When an alert happens, it is essential to figure out what it means. Is it

severe, or relevant, or merely a false positive? To find out more about the alert

produced by Suricata, it is always a good idea to look at the category of the

alerts, classification message, and priority of the alert. The alert mentioned

above is in the category of "ET SCAN" rule, the classification message is

"Attempted Information Leak", and priority is "2". Hence, "ET" indicates the rule

came from the Emerging Threats project and "SCAN" indicates the purpose of the

rule is to match on some form of scanning.

2.2.4 Anomaly-based IDS (AIDS)

An anomaly-based or behavior-based IDS can detect both network and

computer intrusions by monitoring system activity and classifying it as either

normal or abnormal. The classification is based on heuristics or rules, instead of

patterns or signatures, and it attempts to detect any misuse or abnormal system

operation. Figure 2.2 depicts some necessary modules for the general

architecture of AIDS, such as parameterization, training, and detection. The

parameterization involves accumulating raw data from a monitored environment,

11

the training stage tries to model the system using manual or automatic methods,

and the detection stage compares the system generated in the training stage with

the elected parameterized data portion. Threshold criteria will be chosen to

determine anomalous data [45]. Although different types of anomaly detection

techniques are available, machine learning-based anomaly detection has become

prominent. The overview of machine learning technique for AIDS is described

in section 2.3.

Comparison between SIDS and AIDS: The advantages of SIDS are: ease

of implementation, lightweight, low false-positive rates, and high true positive

rates. One disadvantage, however, is its inability to detect any unknown attacks

like AIDS.

2.2.5 Packet-based NIDS

In packet-based NIDS, all network packets that pass through a specific

observation point are captured without any loss of information. For this reason,

it is also known as Deep Packet Inspection (DPI). Various observation points

(i.e.,

12

Figure 2.2 Generic AIDS functional architecture

routers, switches, network monitors, and so on) are dedicated to capture

and analyze packets so that the resulting measurement data transfers to a remote

analysis system.

A packet has two fields: the header (contains information about the source,

destination, and others) and the payload (data). The packet-based NIDS scans

these fields and determines whether or not a packet holds an intrusion. From the

database, every single rule is checked against scanned incoming packets, as

shown in figure 2.3. However, SIDS mostly uses a packet-based process.

2.2.6 Flow-based NIDS

The flow-based technique is a reputable data source in applications like

network monitoring, traffic analysis, and security. Since flow data or network flow

characterizes this method, flow-based NIDS is also referred to as “Network

Behavior Analysis.”

13

Figure 2.3 Packet-based NIDS

The definition of a flow can be "a set of IP packets passing through an

observation point in the network during a specific time interval, i.e., all packets

belonging to a particular flow have a set of common properties" [11]. Based on

IP Flow Information Export (IPFIX) terminology [25], the common properties

can be included with packet header fields (flow keys), source and destination IP

addresses, source, and destination port numbers, protocol, and some meta

information:

(ipSrc, ipDst, portSrc, portDst, proto)

The preparation and exportation format of flows are defined by two

wellknown protocols: NetFlow and IPFIX. There are two components in a

NetFlow setup: an exporter and a collector. The flow exporter can be a probe, a

switch, or a router, which extracts the headers from each incoming packet

noticed on the monitored interface. An exporter is responsible for creating the

flow records from observed traffic and sending them over the network to the

14

collector. The collector stores these flow records for further analysis and

prepares them suitable for NIDS (figure 2.4). We have utilized one year of

NetFlow data at Boise State University to develop an intrusion detection model

that can prioritize and classify a set of machines.

Figure 2.4 Flow-based NIDS

Comparison between Packet-based and Flow-based NIDS: The

packetbased NIDS cannot detect any unknown attack as it compares only the

predefined and known malicious signatures. Therefore, it is a highly

resourceintensive task, expensive on a high-speed network, and infeasible in

case of an encrypted payload. On the other hand, flow-based NIDS can handle

considerably lower amount of data because it considers only the packet’s header

field instead of its payload. For this reason, on a high-speed network, flow-based

intrusion detection is more scalable than any of the other approaches. Moreover,

flow exporters are widely deployable, meaning there is no need for additional

capturing devices, and is less privacy-sensitive.

15

2.3 Machine Learning Technique (MLT)

MLT is a form of applied statistics, which emphasizes the use of

computers to learn complex mathematical functions. To be more specific: "A

computer program is said to learn from experience E concerning some class of

tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E" [42].

One of the practical applications of MLT is to comply with next-generation

IDS, because it can build the required model automatically by depending on a

given training dataset, which can be expressed using a set of attributes (features)

and associated labels. The features can be of different types: categorical or

continuous [45], and they are responsible for the applicability of anomaly

detection technique. On the other hand, the labels associated with data instances

are usually in the form of binary values, i.e., normal and abnormal. The

favorability of this technique is linked to the availability of the essential training

data. MLT classifies into supervised and unsupervised anomaly detection

algorithms based on the nature of the dataset where they are originated and

learned.

2.3.1 Supervised Anomaly Detection

Supervised methods or classification methods require a labeled training

dataset containing both normal and abnormal samples to construct a predictive

model.

Each training example consists of the independent variable(s) defining

the input domain of data and the dependent variable(s) representing the target.

Given a set of N training examples of the form {(x1, y1), ...(xN, yN)} such that xi is

16

the feature vector of the ith example and yi is its label. A supervised learning

algorithm can be formulated as authorizing a computer to learn a function f : X

→ y, where X represents the space of independent variables (input space), and y

is the space of dependent variables (output space).

Although supervised methods have a better detection rate than semi-supervised

and unsupervised approaches, some technical issues were obtained; they are not as

accurate as they are thought to be. For example, the deficit of a training dataset

hinders its ability to achieve correct labels and noises of the training set will cause

high false alarm rates. In the literature, the most common supervised algorithms are

Supervised Neural Networks, Support Vector Machines(SVM), k-Nearest Neighbors,

Bayesian Networks, and Decision Tree [45].

2.3.2 Unsupervised Anomaly Detection

Unlike supervised techniques, unsupervised anomaly detection

techniques do not need any training data. They depend on two underlying

assumptions, (1) most of the network connections are normal traffic, including a

very little abnormal traffic, and (2) malicious traffic is statistically variant

behavior from normal traffic. According to these assumptions, frequently

appearing data groups of similar instances are assumed to be normal traffic,

while infrequent examples are considered to be malicious. The most common

unsupervised algorithms are clustering, anomaly detection, and novelty detection

algorithms.

2.4 Novelty Detection

Novelty detection is a machine learning task for identifying new or

unknown data. Recognizing abnormal system behaviors with the normal state of

17

a system is the goal of novelty detection [40]. The system learns a model of the

normal environment that does not have any malicious activities, and instead of

finding any faults, the novelty filter detects the anomaly score deviations from

this model. Although unique events occur infrequently, it can have significant

consequences to overall system operation [10].

Figure 2.5 Framework of novelty detection

Figure 2.5 represents a general framework design of novelty detection, a

combination of knowledge disciplines and application domains. Hence,

knowledge discipline refers to several mathematical and algorithmic concepts,

where application domains follow system expertise.

Input data in the novelty detection framework passes through several phases:

preprocessing (remove an artifact from the data), feature extraction (input signals

using a comparatively smaller volume), and construction of feature vectors

followed by normalization (component-wise normalization). Afterward, the

novelty detection method accepts the obtained feature vectors as input and delivers

18

the information about the novelty as an output. Figure 2.6 illustrates the normal

and abnormal data in feature space.

Figure 2.6 Novelty within feature space

Novelty detection has extensive applications in fields involving large datasets

generated from critical systems. These include: cyber intrusion detection [18, 49,

64], terrorist activity, system breakdown, fraud detection [6, 16, 47, 61], data

leakage prevention [55], electronic IT security [23], healthcare informatics,

medical diagnostics, industrial monitoring and damage detection, image

processing, video surveillance, text mining, sensor networks [8, 48], and many

other specialized applications [19].

Also, novelty detection has been extensively applied to detect any new attack in

IDSs, which falls within the application of novelty detection algorithms. However,

identifying a machine attack status using the novelty detection algorithms in network

flow datasets is the primary goal of this research.

19

Figure 2.7 Taxonomy of novelty detection methods

Taxonomy of novelty detection is presented in Figure 2.7. We have applied

K-means clustering to create the input feature vector for novelty detection

methods. Similarly, clustering-based novelty detection techniques: Gaussian

Mixture Model (GMM), One-class Support Vector Machine (OC-SVM), and

reconstruction-based (neural networks, autoencoder) algorithms are used to

compute the anomaly score. Based on this anomaly score, we have identified the

attack status of each machine in the network.

2.4.1 K-means algorithm

Let X = xi, i = {1, ..., n} be the set of n-dimensional points to be clustered

into a set of K clusters, C = Ck,k = {1, ..., K}. A K-means algorithm decides a

partition in such a way that the squared error between the observed mean of a

cluster and the points in the cluster is minimized. Let µk be the mean of cluster

Ck. The squared error between µk and the points in cluster Ck is defined as:

J(Ck) = ∑xi∈Ck ||xi − µk||2

The goal of K-means is to minimize the sum of the squared error for K

clusters,

J

Minimizing this objective function is known as an NP-hard problem, even

for K = 2 [27]. Thus K-means, a greedy algorithm, only concentrates on a local

20

minimum. Generally, K-means starts with a primary partition with K clusters

and selects patterns of clusters to reduce the squared error. Since the squared

error is always inversely proportional to the number of clusters K (with J(C) = 0

when K = n), it can be minimized only for a fixed number of clusters.

The K-means algorithm depends upon three user-specified parameters: the

number of clusters K (a critical parameter), cluster initialization, and distance

metric. No perfect mathematical criterion exists to choose a value of K, though

some heuristics are available. K-means algorithms run independently with the

distinct values of K, and builds the most meaningful partition in the domain.

However, due to the convergence to local minima, different initializations can

lead to inconsistent clustering. One approach for making the k-means method

more efficient is to run the algorithm for a given K along with multiple different

initial partitions and choosing the partition that refers to the smallest squared

error. Another approach is to apply a filtering procedure that uses a spatial

hierarchical dataset index while computing means, which also saves on costs. A

third approach, explores the micro-clustering idea, which first groups the nearby

objects into “microclusters” and then performs k-means clustering on the

microclusters [22, 35].

2.4.2 Gaussian Mixture Model (GMM)

GMM is a non-bayesian, parametric probability density-based model,

that uses fewer kernels than the number of patterns in the training set [40] to

estimate the frequency. GMM uses optimization algorithms: conjugate gradients

or reestimation techniques such as the Expectation-Maximization (EM)

21

algorithm for fitting the training data. They are followed by maximizing the log-

likelihood of the training data to choose the parameters of the model.

2.4.3 One Class Support Vector Machine (OC-SVM)

The OC-SVM is an unsupervised learning method that is aware of only a

single class of data. It distinguishes between vectors which are referred to as

either in class (inside the trained distribution) or outliers (outside the

distribution) and it lies between the origin and the optimal separating

hyperplane. The output score of OC-SVM represents the distance from the data

point being tested to the optimal hyperplane. Whereas, positive scores denote

normal behavior (with higher values representing greater normality) and

negative values describe abnormal behavior (with lower scores representing

larger abnormality) [12].

Generally, for novelty detection, OC-SVM uses a kernel trick to construct a

hyperplane to separate the normal data from the original with maximum margin

in a feature space [52]. OC-SVM assumes that a few training data points fall into

some regions and drives the regions to be small in a feature space associated

with the kernel [13]. The kernel trick, complied by the OC-SVM, makes it

simpler to separate the normal data from the origin in a higher dimensional

feature space.

2.4.4 Autoencoder

An autoencoder is an artificial neural network, commonly used for

unsupervised novelty detection, based on the reconstruction error of the training

examples. An autoencoder is trained to copy its input to its output along with the

common purpose of nonlinear dimensionality reduction, which is the process of

22

lessening the number of random variables under consideration. An autoencoder

has two architectural parts: encoder and decoder. The encoder function creates

either single or multiple hidden layers, that contain a code to describe the input,

whereas, the decoder produces a reconstruction of the input from the hidden

layer. Having a hidden layer smaller than the input layer is beneficial as an

autoencoder is forced to create a compressed representation of the data in the

hidden layer. This representation facilitates the classification, visualization,

communication, and storage of data [24].

However, the intuition of an autoencoder is to obtain a higher

reconstruction error for the novel or unknown data. Autoencoders are also

trained with only the known examples in training data. While the optimized

embeddings are learned using the training data, the reconstruction errors are

computed for both the known and novel data in the test datasets. Here, the

reconstruction error is proportional to the chances of the data point to be

unknown. Figure 2.8 shows a three layer autoencoder: an input layer (Layer 1),

one hidden layer (Layer 2), and an output layer (Layer 3), where the hidden layer

captures the

23

Figure 2.8 Simple architecture of an autoencoder

embeddings of the input layer into lower-dimensional space. These embeddings

are used by the output layer to reconstruct the original data [50].

2.4.5 LSTM Autoencoder

Generally, humans do not start thinking from scratch in every second.

For example, readers understand each word based on their perception of the

previous words. They do not drop everything each time and start rethinking from

the beginning; their thoughts have persistence — the same procedure followed

by the recurrent neural network, which allows information to persist. The

Recurrent Neural Network (RNN) allows forward and backward connections

between neurons. Long short-term memory (LSTM) is an example of RNN

architecture that recognizes values over random intervals. Stored values are not

modified as learning proceeds.

Implementing an autoencoder for sequence data by using an Encoder-Decoder

LSTM architecture is called an LSTM Autoencoder. An encoder-decoder LSTM is

configured to read the given dataset of an input sequence, encode it, decode it, and

24

then recreate it. The model’s ability to recreate the input sequence represents the

performance of the model. While the model obtains a desired level of performance

by recreating the sequence, the model may drop the decoder part, leaving only the

encoder model. Afterward, this model can be used to encode input sequences to a

fixed-length vector. The resulting vectors are not limited as a compressed

representation of the sequence or as an input to another supervised learning model,

and preferably it can be used in a diversity of applications.

2.5 Performance Metrics

Similar to other machine learning algorithms, it is crucial to evaluate the

performance of our novelty detection algorithms. Therefore, we calculated

novelty scores for the flows dataset of each machine, and then used these scores

and the ground-truth to compute the Area Under Receiver Operating

Characteristic (AUROC) and Average Precision (AP) scores. We have described

the ground truth collection procedure to evaluate our experimental result in

Chapter 3.

2.5.1 Area Under Receiver Operating Characteristic (AUROC)

AUROC score computes the discriminating ability of classifiers or

novelty detection algorithms to correctly classify a dataset into different

categories such as known category or novel category. In our approach, we can

understand how well the AUROC score distinguishes between good machines

with the machines under attack or malicious machines. The AUROC is a plot

with a false positive rate (incorrectly identifying as being anomalies) of a

discriminating model as the x-axis and a true positive rate (correctly identifying

as being anomalies) in the y-axis.

25

2.5.2 Average Precision (AP)

AP is more commonly averaged over all queries and reported as a single

score, which characterizes as a prominent performance measure in the novelty

detection domain. AP score reports the ability of novelty detection algorithms to

distinguish different objects as novel. In real work scenarios, it is common to

have a tiny proportion of new samples compared to the ordinary case. Therefore,

our goal is to prove the novelty detection algorithms are suitable to discriminate

the relatively small population of new examples. Hence, the false-negative rate

is pretty dangerous for discriminating models like novelty detection.

2.6 Suricata Rule Category

We considered one-year of traffic flow and collected recorded alerts from

a Suricata log file as the ground truth for this research. Suricata is an open-

source, free, mature, fast, and robust network threat detection engine. It is

capable of real-time IDS, inline intrusion prevention (IPS), network security

monitoring (NSM), and offline pcap processing. The network traffic using

powerful and extensive rules and signature language and has powerful Lua

scripting support for the detection of complex threats. Most importantly,

Suricata’s fast-paced, community-driven development focuses on security,

usability, and efficiency.

We did not use ground truth for the input of our experiment, but we did use

it to evaluate our experimental results. Regarding static machines, we found

several alerts based on the ruleset of Suricata. Table 2.1 clearly describes the rule

set category at Boise State University, which has been producing various alerts.

26

Based on some rules, Suricata can produce false positives. In that case, humans

need to start with only a few rules and work their way up. Otherwise, it just gets

overwhelming. On the other hand, if humans failed to set an important attack

detection rule, there is a high chance to have a false negative. In this context,

Suricata depends on personal decision or rule set-up. In this research, we found a

total of 25 rule sets into the Suricata log file at Boise State University, which

were decided by the security analyst at Boise State University. However, for this

research, we do not need to know which alerts are being produced by Suricata.

Instead, we only need the classification of machines in the network.

27

Table 2.1 Description of rule set of Suricata

Rule Category Description

1 SCAN Early warning can detect and identify host and network
vulnerabilities in our environment. Scans can perform
external attack simulations and comprehensive
vulnerability checks along with registry evaluation.

2 POLICY Application Identification category, which includes
signatures for applications like DropBox, Google Apps,
among others and also covers off port protocols. This
alert is saying "I saw unencrypted HTTP traffic
traveling over a port generally reserved for
HTTPS encrypted traffic".

3 DOS A cyber-attack in which a legitimate user is unable to
access information systems, devices, or other network
resources because of the actions of a malicious cyber
threat actor.

4 COMPROMISED A collection of known compromised machines,
confirmed and regularly updated. This list waved from
a hundred to several hundred rules based on the data
sources. Most importantly, Snort does not handle IP
matches well load-wise. Therefore, if your sensor has
already pushed to the limits, this set would add a
significant load.

5 CINS Collective Intelligence Network Security (CINS) is a
network of "sentinel" machines running around the
internet, which allow a company to monitor those
attacks leveraged against them and score them
appropriately.

6 DROP An IP based attack for some rules to block Spamhaus
“drop” listed networks and daily updated collection of
the Spamhaus DROP (Do not Route or Peer) list.
Primarily it is known as professional spammers.

7 INFO General rules to track suspicious host network traf-
fic.

28

8 TOR An IP based rules for the identification of traffic from
and to TOR exit nodes.

9 P2P Rules for the identification of Peer-to-Peer traffic and
attack against, including torrents, edonkey, Bittorent,
etc.

10 DNS Rules for attacks and vulnerabilities for DNS besides
the category for abuse of the service such as tunneling.

11 SNMP Rules for attacks and vulnerabilities regarding the
Simple Network Management Protocol.

12 WEB-SERVER Rules for attacks and vulnerabilities against web
servers.

13 MALWARE Related to Malware and Spyware, where there is no
clear criminal intent present. The threshold for
formation in this set is typically some form of tracking,
which stops short of apparent criminal activity.

14 EXPLOIT Rules to detect direct exploits such as Windows ex-
ploit, veritas, etc.

15 GAMES Rules for the identification of gaming traffic and
attacks against games.

16 CHAT Identification of traffic-related to various chat clients,
irc and possible check-in activity.

17 USER-AGENT Rules for identification and detection of user agent.

18 VOIP Rules for attacks and vulnerabilities against the VOIP
environment.

29

19 TFTP Rules for attacks and vulnerabilities regarding the
TFTP service.

20 FTP Rules for attacks and vulnerabilities regarding the FTP
service.

21 SCADA Rules for the signatures of SCADA attacks, exploits
and vulnerabilities.

22 MOBILE-
MALWARE

Rules for the specification of mobile platforms such as
malware and spyware related.

23 CURRENT-
EVENTS

Rules for active and short-lived campaigns, which
covers exploit kits and malware that will be aged and
removed instantly due to the temporary nature of the
threat.

24 SHELLCODE Dedicated to Remote Shellcode detection. Remote
Shellcode is used while an intruder wants to target a
vulnerable process that is running on a different
machine on a local network or intranet. After successful
execution, the shellcode grants the attacker access to
the target machine across the system.

25 TROJAN Highly significant ruleset that can detect malicious
software, which has an apparent criminal purpose.
Rules discover malicious software that is in transit,
active, infecting, attacking, updating, and whatever else
Suricata can identify on the wire.

2.7 Related Work

There are two significant approaches to detect malicious activities in

network traffic: misuse-based and anomaly-based. Misuse-based systems rely on

manually defined signatures which embed expert knowledge of a priori known

attacks. Such systems are commonly deployed in large enterprises through NIDS

30

that perform online DPI on traffic to detect whether a packet (or a set of packets)

matches one of the detection signatures. Some examples of NIDS are Snort,

Suricata, and Bro [46]. However, such systems do not scale well with the

increasing number of activities and attacks in network traffic as the signatures

require manual definition, and most importantly they are limited by requiring a

priori knowledge of the attack scenarios [56].

Anomaly-based systems create behavioral models of traffic towards the

goal of detecting malicious activities within a network, even in the absence of

prior knowledge about attacks [9]. Hence, many research efforts have been

focused on anomaly-based methods, but many challenges complicate the

application of statistical methods to traffic more than other domains [56] (see

also Section 3.7 in Chapter 3). Some existing approaches [7, 18, 29, 54] require

labeled traffic datasets (which are hard to obtain and limit the efficacy of the

approach to a priori attacks) or have too high computational times (which

hinders applicability of both offline and online analysis of traffic). On the other

hand, we propose a fully unsupervised approach that does not require any label,

and our approach is highly efficient, requiring less than 2 minutes to process a

half month of network traffic activities for 1,000 machines. Authors of [63]

propose an OC-SVM based method trained on malicious traffic; however, their

approach is supervised as it requires traffic labeled as malicious and does not

generalize to unseen malicious traffic. On the other hand, we aim to create a

behavioral model for every machine and identify which machines are more

anomalous.

31

Deep Learning (DL) or ANN has been used extensively in the anomaly

detection process, because of its capability to learn complex concepts and the

concepts from the domain of network communication. There have been also

many efforts in applying DL [7] , ANNs [43, 44, 60, 66] and AutoEncoders [28,

65] for traffic anomaly detection. However, such models are supervised and

require periodic re-training, which is infeasible in modern high-speed networks

and at the rate to which new attacks are appearing [56]. In contrast, MINOS can

identify malicious, under attack and clean machines as well as the time frame of

being attacked for a machine in an unsupervised way by lightweight analysis of

network traffic flows.

The most recent and related work to our research is Kitsune [41], an

unsupervised approach for online traffic anomaly detection. Kitsune relies on an

ensemble of Autoencoders and takes as input packet-based features. Kitsune was

designed for online analysis and has been evaluated on about two hours of traffic

of IoT cameras, showing good results in detecting IoT botnet activities. We

argue that two hours of traffic are reasonable to create a behavioral model of an

IoT device, but it would not be enough to model client and server hosts of large

organizations, where patterns are highly variable and may follow weekly and

monthly patterns. Hence, by design, MINOS aims to create a behavioral model

over more extended periods and uses NetFlow information using packet-based

analysis that would be computationally infeasible to process for more extended

periods. Nevertheless, as described in more detail in Chapter 5, we also try to

adapt the AutoEncoder architecture used in Kitsune to our scenario, and we

experimentally demonstrate that MINOS performs better than Kitsune both in

32

terms of detection capability and execution time. Moreover, unlike Kitsune,

MINOS can distinguish hosts into three classes, offering more intelligence to

security operators, which also allows hosts that are not yet infected but under

attack to take proactive steps.

33

CHAPTER 3: DATASET AND PROBLEM STATEMENT

In this chapter, we provide a short overview of the dataset for MINOS: raw

dataset collection, preprocessing, experimental static machines selection, and

identification of useful features. We also describe research challenges and the

problem statement of this thesis.

3.1 Category of Data Sources

A few data sources have been utilized in NIDS, which do have the following

properties [53]:

• Scalability: The capability of dealing with gigabyte networks

• Lightweight: Small size of obtained network data

• Privacy: Owing to the severe consequence of network data

monitoring

Network data sources can be extensively characterized by the following

categories:

• The protocol-based data sources: Protocol-based datasets

comprises of Simple Network Management Protocol (SNMP) and

Internet Control Message Protocol (ICMP).

• The packet-based data sources: In the packet-based approach,

whole network packets have been used, and recognition is usually

performed by the use of software such as tcpdump.

• The flow-based data sources: The flow-based approach is

characterized by the use of network flows. According to literature,

34

the flow is a unidirectional data stream between two machines where

all transmitted packets of this stream share some common

characteristics (source and destination IP addresses, source and

destination port numbers, and protocol) [1, 59].

For the time being, a unique measurement system can provide some extra

features with the general features of flow: the number of packets and bytes, the

start and end time, the timestamp of first seen, and a TCP flag. NetFlow and IPFIX

are two conventional protocols that define the preparation and exportation form of

flows [25], which is known as flow record. We explained in figure 2.4 in chapter 2,

how NetFlow exports flow in our network and makes it suitable for NIDSs for

further analysis.

It is convenient for NetFlow to deploy network communications because

almost all Cisco devices support at least one version of NetFlow. A file transfer

that involved transferring gigabytes of data in high-speed networks characterizes as

a comparatively small network flow. This flow builds up only a portion of the

original file transfer such that the overhead caused by creating flow records is

justified (the cost on account of NetFlow is in average 0.2 % [59]).

However, sampling techniques or flow aggregations can improve the

performance of routers and monitoring stations [57].

3.2 Size of the Dataset

The dataset was obtained from the university network after monitoring their

IDS’s setup, which is used to track inbound/outbound traffic for specific segments.

There was a 10-Gbps optical internet connection with a peak of 4.2 Gbps. They

35

collected flows using Netflow version 5. This version extracts flow in the

following ways:

• Internet: Inside the interface of the border firewall, which is

responsible for providing the outbound or uploaded traffic.

• Internetout: Outside the interface of the border firewall, which is

responsible for providing the inbound or downloaded traffic.

In 5 minute intervals, nfdump has produced 2400 to 10,500 flows per second.

We selected 4th February 2017 to 4th February 2018 flow set for our research

purpose. The total size of this unzipped data set is 6.5 TB along with 57.87 Billions

of flows. We have parsed this massive dataset and chosen a partial amount of flows

for this research.

3.3 MINOS Overview and Dataset

For the dataset collection, instead of using traffic benchmarks which have

been shown to contain artifacts [37], we collected one year of real traffic for 1,000

LAN hosts at Boise State University4. To deal with the number of communications,

we decided to use network flows (NetFlows) [39], which collect highlevel

communications between any two hosts. NetFlow allows MINOS to be resilient to

encrypted and obfuscated communications as no payload information is used.

MINOS operates in the following way. It takes as input network flows from a

large organization, which can correspond to multiple hosts, and analyzes them in a

fully unsupervised way (i.e., without any expert knowledge nor ground truth given

4 Unfortunately, obtaining access to a real enterprise network traffic is almost impossible due to

privacy concerns.

36

as input). Instead of labeling individual events, MINOS aims to classify the state of

each host in the network as either:

• Clean Host (CH): A host not involved in any malicious activity.

• Host Under Attack (HUA): A host that is receiving attacks from

the outside.

• Malicious Host (MH): An infected host that is performing an attack

to the Internet from the internal network of the organization.

We point out that this novel separation into three classes is different from prior

literature, in which only two classes of hosts were considered: malicious and

benign [5, 39, 41]. To deal with the heterogeneity of activities among different

hosts, MINOS automatically creates a personalized behavioral traffic profile for

each host independently. Afterward, novelty detection is applied to obtain an

anomaly score; the scores of all hosts are used as input for an unsupervised

classification module that has associated one of the three classes to each host.

Table 3.1 Dataset details. It corresponds to one year of traffic collected at
Boise State University (Feb 4th, 2017—Feb 4th, 2018).

Category Num. Hosts Num. Flows Size(GB)

Clean Host (CH) 530 34,413,822 1.69

Host Under Attack
(HUA)

437 35,022,898 1.7

Malicious Host (MH) 33 4,146,507 0.21

Total 1,000 73,583,227 3.6

A detailed breakdown of the dataset considered in this thesis is reported in

Table 3.1. All 1,000 hosts are LAN hosts where the IP is assigned statistically. It is

essential that the mapping between user and host be static so that MINOS can

37

create a behavioral profile over time. As ground truth for evaluating our method,

we have deployed a Suricata IDS and used the following criteria: a host hi is clean

if hi does not generate any alert, it is under attack if hi is in the destination IP of

identified alerts (but hi is never the source), and it is malicious if there is at least

one alert in which hi is the source of at least one alert. The Suricata configuration

has been optimized for the environment by security analysts. Suricata alerts

correspond to malicious activities such as botnet communications, command, and

control interactions, exfiltration or exploit attempts malware drive-by downloads,

and interactions with blacklisted external hosts [46].

The uniform selection procedure of 1,000 hosts has been described in section

3.5. After machine selection, we aggregated all the flows associated with those

machines from the whole dataset of a one-year duration. Ultimately, the size of the

dataset of 1000 devices is 3.6 GB of 73,583,227 traffic flows. Seen on Table 3.1,

HUA consists of the maximum number of flows compared with others, which is

almost 48 percent (1.7 GB) of the entire traffic (3.6 GB).

TABLE 3.2: Flows breakdown based on protocol

Protocol Number of Flows

UDP 5,840,211

ESP 1

TCP 59,513,927

GRE 413,192

IPv6 7,091

SCTP 68

ICMP 7,808,741

38

Total 73,583,227

There are a total of seven IP protocols that exist in our dataset: User Datagram

Protocol (UDP), Encapsulating Security Payload (ESP), Transmission Control

Protocol (TCP), Generic Routing Encapsulation (GRE), Internet Protocol Version 6

(IPv6), Stream Control Transmission Protocol (SCTP), and Internet Control

Message Protocol (ICMP). Table 3.2 illustrates the maximum number of flows is

related to TCP protocol (80.88 % of the entire traffic).

Although we define ground-truth based on a signature-based system, MINOS

operates in a fully unsupervised fashion and uses minimal information of the net

flows. Moreover, it does not perform any deep packet inspection, works in the

presence of encrypted communications and obfuscated payloads. Also, MINOS can

operate in such a way in which signature-based systems would not work and does

not rely on any expert knowledge.

3.4 Feature Selection

In our dataset, a flow closely follows the Netflow version 5 and has the

following form:

(Date, Fseen, Dton, Prot, Isrc, Idst, Psrc, Pdst, Pckt, Bte, Flag)

39

Table 3.3 Flow-based Features extracted from each flow.

Feature Description

1 Weekend/Weekdays
(Date)

It is 1 if the flow started in the weekend and
0 otherwise.

2 First Seen (Fseen) Timestamp of the beginning of the flow.

3 Duration (Dton) Duration of flow in milliseconds.

4 Protocol (Prot) TCP/IP Protocol of the flow.

5 Source Port (Psrc) Source port of the flow.

6 Destination Port
(Pdst)

Destination port of the flow.

7 Packet (Pckt) Number of network packets transferred in
the flow.

8 Bytes (Bte) Number of bytes transferred in the flow.

9 Incoming/Outgoing
(Flag)

It is 1 if the traffic flow is originated from a
host internal to the network and is going to a
host external to the network (outgoing). It is
0 if the traffic is generated from an external
host and is going to an internal host
(incoming).

The unidirectional communication is identified by the source and destination

IP addresses (Isrc and Idst), the operated ports (Psrc and Pdst), and the protocol type

(Prot). The fields Pckt and Bte give the total number of transmitted packets and bytes

respectively. The TCP header flags are stored as a binary "OR" in all packets of the

flow (Flag). We selected eight out of these eleven features for our experiment.

Hence, IP addresses are removed because they have been anonymized, and instead

of a TCP flag, we used a flag that maintains incoming or outgoing flow direction.

40

Table 3.3 shows all the elected features of our experiment, including symbol and

description.

After finalizing features, it is necessary to complete the preparation of the

dataset by eradicating the categorical data. Hence, categorical data are variables

that contain label values rather than numeric values. For example, the protocol of

the input dataset is the string value. Some machine learning algorithms can support

categorical data directly. For example, a Decision Tree algorithm can learn directly

from categorical data where no data transforming is required. On the other hand,

many machine learning algorithms demand all numeric input and output variables,

instead of any label data.

Table 3.4 Minimum and maximum values of data set features

Feature Minimum Value Maximum Value

1 Date 0 1

2 Fseen 0 86,399,998.0
 (millisecond
s)

3 Dton 0 312.5 (seconds)

4 Prot 1 7

5 Psrc 0 65,535

6 Pdst 0 65,535

7 Pckt 0 977,002

8 Bte 0 937,800,000

9 Flag 0 1

Therefore, we converted the time stamp of the first seen (Fseen) attribute to

milliseconds, changed the date (Date) to binary one or zero, based on weekends and

41

weekdays, respectively. Protocol, Source Port, Destination Port are categorical

features which we converted to numerical through one-hot encoding with sparse

representation. Afterward, we considered the maximum and minimum value of all

features to get an idea about the deviation of those attributes (table 3.4). Since

seven types of the protocol (table 3.2) exist in our dataset, the minimum and

maximum value are one and seven respectively due to the label encoder. As a

preprocessing operation, each flow feature is normalized across all the flows, so

that the mean is 0 and the standard deviation is 1.

3.5 Machine Selection

Figure 3.1 Number of machines vs. average number of alerts

42

Figure 3.2 Number of machines vs. large number of alerts

At first, we collected all the static machine’s list from network flow, and there

were a total of 16,290, whereas 1,000 static machines have been targeted to do

research. To select 1,000 machines in those three categories, we followed a

procedure to create a balanced machine set. We selected 47% of 1000 = 470 as

malicious or under attack machines, and 53% of 1000 = 530 as clean machines.

Among 470 machines, 33 were malicious machines, and 437 were under attack

machines. Between malicious and under attack machines, we picked 10% of 470 =

47 machines that contains a large number of alerts (48,000 — 8,661,605), and the

rest of the 423 (470-47) machines have an average number of alerts (2600 —

3100). Figure 3.2 and 3.1 portrays this machine selection procedure. Hence, the

number of flows were also in our consideration when we selected machines. Figure

3.4 and 3.3 represents these histograms. In synopsis, we selected 47 machines,

where the number of flows lies between 200,000 and 375,000, and alerts 48,000 to

8,661,605, and the rest of the machines (423) flows in the range of 58,000 to

68,000 and the number of alerts are from 2600 to 3100. On the other hand, similar

43

to malicious machines, those machines (530) have been selected as CH, whose

number of flows lie between 58,000 and 68,000. Figure 3.5 represents this through

a histogram. The reason behind this selection procedure is to assure that our

experiment result is not biased with the number of flows.

3.6 Ground Truth Extraction

In the machine learning domain, the term "ground truth" indicates the

accuracy of the training set’s classification. In other words, we can say this term is

checking the results of a machine learning algorithm for precision against the real

world. This term is borrowed from meteorology, where "ground truth" refers to

Figure 3.3 Number of Machines with average number of flows

44

Figure 3.4 Number of Machines with large number of flows

information obtained on-site. Usually, the term implies a kind of reality check for

machine learning algorithms and is used in statistical models concerned with

proving or disproving research hypotheses.

Figure 3.5 Number of Clean Machines with flows

45

…

…

Table 3.5 Ground Truth for a single machine

Timestamp for one hour Number
alerts

of

02/04/2017/00:00:00.000000-
02/04/2017/00:59:59.000000

0

02/04/2017/01:00:00.000000-
02/04/2017/01:59:59.000000

0

02/04/2017/02:00:00.000000-
02/04/2017/02:59:59.000000

5

02/04/2017/03:00:00.000000-
02/04/2017/03:59:59.000000

0

02/04/2018/01:00:00.000000-
02/04/2018/01:59:59.000000

10

We described three types of machines: CH, HUA, and MH and selected the

type of machine based on the ground truth. MINOS is a fully unsupervised

approach, and it does not need any labeling or prior knowledge. However, we

collected ground truth from the log files of Suricata in order to evaluate our results.

The Suricata log files from 4thFebruary, 2017 to 4thFebruary, 2018 were in our

consideration as an input dataset belonging to this range. The following is the

example of a single alert from the Suricata log file:

"10/12/2017-22:35:01.319011 [**] [1:2009582:3] ET SCAN NMAP -sS window

1024 [**] [Classification: Attempted Information Leak] [Priority: 2] TCP

150.255.174.211:61512 -> 132.178.137.210:873"

Into this alert the string ”− > ” divides two IP addresses and port numbers.

The left side of that arrow (150.255.174.211:61512) indicates as source IP

46

(150.255.174.211) and source port number (61512). The right side of that arrow

(132.178.137.210:873) means destination IP (132.178.137.210) and destination

port number (873).

Let’s assume, "132.178.137.210" is a machine that is under attack, which exists

in the alert as a destination IP address. There is also the exist date (10/12/2017) and

the timestamp (22:35:01.319011) of that alert. We created a dictionary to collect the

ground truth against a single machine. The key value of this dictionary is a particular

hour against a specific date, and the value is the number of alerts that exist in that

specific hour. Table 3.5 illustrated a sample of an identical machine’s ground truth,

where the first, second, and fourth hour of 4thFebruary 2017 do not contain any alerts,

whereas, in the third and last hour it holds five and ten alerts, respectively.

The problem with Suricata is that it is unable to detect any unknown attacks

because it is a signature-based or rule-based anomaly detection approach.

Moreover, it is analyzing packets to produce alerts against an attack, which is

inconvenient for today’s high-speed networks. Also, it is infeasible for encrypted

packets. Therefore, we proposed a novelty detection approach using only traffic

flows instead of packets so that it is able to detect any attacks from encrypted

traffic.

3.7 Research Challenges

Misuse-based systems rely on manually defined pattern matching signatures

(e.g., NIDS [46]). It cannot cope with the continuously evolving and growing

variety of traffic activities and attacks in large networks [62]. Moreover, these

methods require a priori knowledge of the attacks. Hence, statistical anomalybased

47

methods have been investigated, but their adoption is hindered by several

challenges [56].

Dataset Collection. The first intrinsic challenge is to obtain a representative

dataset to evaluate a proposed method. Prior research efforts exist to build

benchmark datasets for traffic anomaly detection (e.g., DARPA [33], KDDCUP

[30]), but successive research [37] has demonstrated that such datasets contain

artifacts associated with the artificial injection of attacks, or that they are not

representative of the traffic of large real-world organizations.

Quantity of Communications. We focus on large organizations, which can

have thousands of hosts and billions of Internet communications per day. In such a

scenario, it is incredibly challenging to detect which specific actions are malicious.

Also it is challenging in terms of computational perspective. We will show how an

existing state-of-the-art approach for traffic anomaly detection becomes unusable

when applied in our domain.

Encrypted Communications. Some traffic anomaly detection methods

assume that the traffic is not encrypted [5, 36, 62]. It is important to develop a

methodology that can work in the presence of encrypted traffic and by using

minimal information about the communications so that it captures high-level

behaviors [39].

High Cost of Errors. Both false positives and false negatives have a much

higher cost than in other domains. False positives correspond to false alarms and

can quickly overwhelm security analysts if they have to investigate reported

incidents [56] manually. False negatives correspond to missed attacks—if even a

single host gets silently infected, then the whole organization is at risk. To

48

complicate the situation, the majority of network activities are benign. Hence, due

to base rate fallacy [3], it is even harder to detect real network threats. Therefore, it

is crucial to achieving very high performance in this domain.

Heterogeneity of Activities. Each host has very different individual behavior.

An enterprise can have a Web server, file server, database servers, WiFi and LAN

clients, where employees can have a wide range of possible usage profiles [2, 39].

This varies greatly depending on the applications deployed on each host.

3.8 Problem Statements

We have designed MINOS taking these challenges into account. The

objective of this research is two-fold. Firstly, we propose MINOS is a novel

approach for fully unsupervised large-scale traffic analysis, are can prioritize and

classify internal hosts into one of three classes: clean, malicious, and under attack.

The goal is to find out the anomaly score of each machine and prioritize a group of

machines in a completely unsupervised way by analyzing only net flows. If that

machine is harmful, then identifying that machine as a malicious or under an attack

machine. In this thesis, the unique features of the novelty detection technique

makes it feasible to identify the state of the machine with high accuracy and less

execution time. Secondly, we figure out when the attack has happened for a

machine if the machine is under an attack or malicious.

49

CHAPTER FOUR: METHODOLOGY

Methodology

The MINOS approach consists of the following steps (Figure 4.1):

1. Collection of the sequence TFi of traffic flows during a particular time

frame (2 weeks to 12 months) for a specific host hi 5

2. Extraction of hourly-based features dataset by using the traffic flows of

host hi. The hourly-based features dataset consists of rows with

features [f1, . . . , fm], the flows starting in each specific hour of the

defined time frame (in Figure 4.1 the time frame contains d hours) for

the host hi.

3. Learning an anomaly hourly-based model from the hourly-based

features dataset and retrieving the anomaly score score(hourj) for each

hour hourj.

4. Normalization of all hourly scores and aggregation to achieve a unique

and absolute score for each host hi.

5. Given all the absolute anomaly scores for all the hosts, group the

scores in three categories and classify (in an unsupervised way) each

host in one of the three classes: CH, HUA, and MH.

5 We observe that such time frame lengths are required to create a realistic behavioral model of a
client/server host that may perform different operations depending on the time of the day, day of
the week, and month of the year [39].

50

Figure 4.1 The main steps of MINOS.

6. Identifying each hour as anomalous or not based on the anomaly score.

We use the aggregated anomaly score for each host to prioritize the

dangerous machines and classify them in three categories (described in section 3.5

in Chapter 3): Clean Host (CH), Host Under Attack (HUA), and Malicious Host

(MH). It is essential to notice that the MINOS procedure is fully unsupervised

since it uses only traffic flow data as input. Moreover, the MINOS procedure is

parallelizable for each host, depicted in Figure 4.1), where MINOS can quickly

scale to analyze a large number of hosts. In the remainder of this chapter, we

describe in details steps 2, 3, 4, 5, and 6 of MINOS.

4.1 Step 2: Hourly-based Feature Extraction

In this step, for each host, MINOS first extracts features for each flow

(flow-based features), then processes them to obtain the hourly-based features.

These hourlybased features summarize the behavior of the host across all hours of

the specific time frame. The hourly-based features are the ones required to

compute the anomaly score (Figure 4.1).

The hourly-based feature extraction step (Figure 4.2) takes an input of all the

traffic flows within a specific time frame; then, it produces a set of features for

51

each hour. Each flow Flowj is characterized by a timestamp tj and a vector of flow

features Gi. The features extracted from each flow are described in Table 3.3.

After computing Gi, we execute the K-Means clustering algorithms to obtain

{C1, . . . , Ck} clusters. It is important to note that the First Seen feature (Table 3.3)

is used to create clusters containing flows that are temporally close to each other.

Protocol, Source Port, and Destination Port are categorical features which we

convert to numerical through one-hot encoding with sparse representation. As a

preprocessing operation, each flow feature is normalized across all the flows, so

that the mean is 0, and the standard deviation is 1.

We used a machine-learning algorithm, K − means to train a model for our

input dataset. The motivation for choosing K-Means is that the number of flows

for each host is large, and the K-Means clustering is the fastest clustering

algorithm in terms of Euclidean space and similarity. The critical part is selecting

the number of clusters because each machine contains a different quantity of

flows. Hence, the static value of this parameter can be a hindrance for our desired

outcome. For example, machine A has 58, 000 flows, and machine B has 5 million

flows; if the static value of the cluster number is 50, it might be precise for

machine A but not for machine B. Thus, we used the well-known rule of thumb

[26] on choosing the best k for a K − Means clustering: k , where g is the

number of points to the cluster. In our case, this g is equal to the cardinality of

input flows matrix for each machine. Thus, the value of the cluster number, Ck,

would be dynamic based on the length of the input flows matrix. Since the number

of clusters, Ck, has to be an integer value, a ceiling operation has been done

significantly over the rule of thumb.

52

Figure 4.2 MINOS extraction of Hourly-based Features for one host.

We now aim to define a set of features that summarize the behavior of a

particular host for each hour. Let us introduce some elements: the clusters

{C1, . . . , Ck} and a flow Flowj = (tj, Gj) (with j = 1, . . . , g).

• tj ∈ houri if the Flowj starts in the hour i;

• Flowj ∈ Ci if the Flowj belongs to cluster Ci;

• D(Gj, Ci) the euclidean distance between the vector of the flow

features Gj representing Flowj and the mean of the cluster Ci.

The hourly-based features consist of a set of features corresponding to the

different clusters, for each hour houri of host hi (Figure 4.2). First, given an hour

houri, MINOS extracts three features for each cluster Cl defined as follows:

1. The number of flows of host hi starting in houri and belonging to cluster

Cl, i.e. |{Flowj|j ∈ {1, . . . , g}, tj ∈ houri, Flowj ∈ Cl}|.

2. The summation of the Euclidean distances of all the flows of host hi

starting in houri and belonging to cluster Cl, i.e.

∑j∈{1,...,g},tj∈houri,Flowj∈Cl D(Gj, Cl).

3. The maximum Euclidean distance among all the flows of host hi

starting in houri and belonging to cluster Cl, i.e.

maxj∈{1,...,g},tj∈houri,Flowj∈Cl D(Gj, Cl).

Flo

1 t =

1 ,

1) Flo

2 =

t 2 ,

2) .

.

.
Flo

g =

t g ,

g)

K - means
Clusterin

C 1 ,...

C k

Hourl

- based

feature
Generators

ho

1 f =

1 1 ,….

m 1] ho

2 =

f 1 2 ,….

m 2] .

.

.
hou

d =

f 1 d ,…

f m d]

Hourl

- Based Feature Extraction Procedure

Hourl

- based features

(m =3*k

2

Flo

- based features

53

The last two features capture how anomalous are the traffic flows

belonging to cluster Cl in the hour houri according to two different aggregations

(i.e., θmax and θavg see section 4.4). Besides, we define two other features as

follows:

1. The summation for each flows Flowj starting in houri of the minimum

euclidean distances D(Gj, Cl) for each cluster Cl, i.e.

∑j∈{1,...,g},tj∈houri minl∈{1,...,k} D(Gj, Cl)

2. The maximum for each flows Flowj of host hi starting in houri of the

minimum Euclidean distances D(Gj, Cl) for each cluster Cl, i.e.

maxj∈{1,...,g},tj∈houri minl∈{1,...,k} D(Gj, Cl)

We introduce these two additional features as anomaly indicators that are

computed while considering all the clusters together. In summary, the total

number of hourly-based features (Figure 4.2) is 3 ∗ k + 2 for each hour houri of

host hi. There are 3 features per k cluster. Also, two additional features exist,

considering all the clusters together. As the last step, once the hourly feature

matrix is obtained, we perform standardization of each feature, so that the

elements have a mean of 0 and a standard deviation of 1.

Feature Extraction Algorithm. We describe our feature extraction

procedure in the Algorithm 1 that takes two inputs to produce the list for feature

vector (hourdN). Hence, N represents the selected machines (1,000 in number). The

input parameters are FlowjN and d. The FlowjN represents the input flows matrix of

all machines, and d represents the total hours in the given time frame. Since there

are a total 8, 784 hours in the selected year the value of d should be 8, 784.

54

Algorithm 1 Feature Vector Extraction

1: Input
2: FlowjN Flows matrices of all machines
3: d The calculative hours into given time period
4: Output
5: hourdN Feature vectors for all machines
6: procedure FVE(FlowjN, d)
7: hourdN ← ∅
8: for i ← 1 to N do

9: k The number of clusters
10: mlModel ← ModelFitting(k, Flowij)
11: hourdi ← ScoreTransform(Flowij, mlModel)
12: hourdN ← hourdN ∪ hourdi
13: end for
14: return hourdN . The list of feature matrix for all machines
15: end procedure
16: function MODELFITTING(k, Flowij)
17: mlModel ← KMeansFitting(k, Flowij)
18: return mlModel The fitted Kmeans model
19: end function
20: function SCORETRANSFORM(Flowij, mlModel)
21: for p ← 1 to d do
22: lm, sm ← ∅
23: lb ← mlModel.Predict(Flowip)
24: lb ← processed(lb)
25: tm ← mlModel.Transform(Flowip)
26: tm ← processed(tm)
27: sf1 ← [max(∃k∀Flowip ∈ tm)]
28: sf2 ← [∑(∃k∀Flowip ∈ tm)]
29: ls ← [max((∃Flowip∀k) ∈ tm)]
30: sf3 ← max(ls)
31: sf4 ← ∑(ls)
32: sm ← lb ∪ sf1 ∪ sf2 ∪ sf3 ∪ sf4
33: lm ← lm ∪ sm
34: end for
35: return lm The feature matrix of a single machine
36: end function

55

The feature extraction procedure has the following two steps. Firstly, train a

machine learning model for input dataset. Secondly, prepare a meaningful feature

matrix after transforming the score of that model so it can be a high learning point

for the anomaly detection algorithm in the future.

For the first step, the algorithm called "ModelFitting" function, which is

utilized to fit the K − means model using the k and Flowij parameters. The returns

from the mentioned function declare the object of a trained k − means model,

"mlModel". While the model becomes ready, the next target is to construct a

feature vector from the created model.

The ScoreTransform function starts with a for loop running from 1 to d,

where each iteration represents an hour, a row of the feature matrix for the ith

machine. Afterward, the trained model (mlModel) predicts the number of clusters.

The following matrix draws a sample structure of the predicted matrix

(lb) with a dimension of 1 × G, where each column represents the number of a

cluster for a unique flow.

lb = [Ck C1 C1 C3 C2 C3 C2 C3 … C5]

Our objective is to extract some meaningful features such that the novelty

detection algorithm can learn as much as possible to produce the desired score.

Thus, we modified the predicted matrix depending on the total number of flows

into each cluster. Therefore, the matrix can identify a normal (highest number of

flows belonging to a cluster) and an abnormal (lowest number of flows belonging

to a cluster) cluster. Generally, the distinguishing between normal and abnormal

flows cluster can be a potential learning foundation for the anomaly detection

56

tm = …

…

…

…

algorithm. The following vector lb with a dimension of 1 × k, represents our

processed matrix of lb.

lb = [2 2 3 0 1 0 0 0 … 1]

Since there is a total of k clusters, we can represent the feature vector of lb in

the following way:

lb

In the next step, our algorithm generates a transform matrix (tm) by

transforming the flows of the current hour using the trained mlModel. The

transform property used to return a cluster distance such that in the new space,

each dimension represents the distance to the cluster centers. Therefore, after the

transformation of each flow, we obtain a distance-vector with the cardinality

|Ck|. The following matrix (tm) illustrates the outlook of the transform matrix,

where D denotes the distance to the cluster center. For example, D(2, 3) describes

itself as the distance of the second flow from the center of the third cluster.

D(1, 1) D(1, 2) D(1, 3) ··· D(1, k)

D(2,1) D(2, 2) D(2, 3) ··· D(2, k)

D(g, 1) D(g, 2) D(g, 3) ··· D(g, k)

We processed the above transform matrix tm such that it keeps a record of

the minimum distance of each flow rather than the whole distance. Logically, if

cluster Ck contains flow 1, then the minimum distance from flow 1 to any cluster’s

57

…

…

…

…

…

centroid would be the distance from Ck to flow 1. In this case, we define zero for

other clusters except the Ck, which constructs the following matrix tm:

C1 C2 C3 … Ck
0 0 0 … D(1,2)

D(2,1) 0 0 … 0
D(3,1) 0 0 … 0

0 0 0 … 0

Afterward, we compute a maximum and summation of all distances per

cluster in the tm matrix to define the depth of the anomaly.

fpk+1 = max(0, D(2, 1), D(3, 1), . . . , 0) fp2k+1 = sum(0, D(2, 1), D(3, 1), . . . , 0)

fpk+2 = max(0, 0, 0, . . . , 0) fp2k+2 = sum(0, 0, 0, . . . , 0)

fpk+k = max(D(1, g), 0, 0, . . . , 0) fp2k+k = sum(D(1, g), 0, 0, . . . , 0)

These maximum and summation values are the primary materials for

producing sub-feature vector sf1 and sf2 with a dimension of 1 × k, mentioned in

line number 27 and 28 in the Algorithm 1.

 sf fpk+1 fpk

sf

Our next step is to create a list of minimum distances per flow for all clusters

from the matrix tm. The following equations are the mathematical representation of

this task, where minF1 expresses the minimum distance from the first flow to all

clusters in tm matrix.

58

…

minF1 = max(0, 0, . . . , D(1, k))

minF2 = max(D(2, 1), 0, . . . , 0)

minFg = max(0, 0, . . . , 0)

Line number 29 in Algorithm 1 is exploring itself as a sequence of those

minimum values which we computed above (minF1, . . . , minFg).

ls = [minF1, minF2, . . . , minFg]

We create two sub-features (sf1 and sf2) out of four. The next target is to build

the rest of the sub-features (sf3, sf4) to create a feature matrix for a specific

window. The complexity of sf3 and sf4 are not as similar as sf1 and sf2.They are just

the calculation of maximum and summation of the list (ls), which the algorithm

produced in line number 30 and 31. The following two equations are the formal

presentation of these sub-features:

sf3 = max(ls)

n
sf4 = ∑(ls[i])

i=1

We use the prediction label matrix (lb) and all sub-features (sf1, sf2, sf3, and

sf4) to form a sample (sm) of feature vector. The dimension of this sample is (sm) is

1 × m. Algorithm 1 produces d number of samples (sm). Line number 33 in

Algorithm 1 horizontally merges each of the samples to build the large matrix (lm).

At the end, the function ScoreTransform returns lm as the final feature vector.

Hence, the dimension of this final feature vector would be d × m. The following

matrix illustrates the final feature vector of a single machine:

59

…

…

…

…

…

…

…

…

 f11 … f1k f1k+1 … f1k+k f12k+1 … f12k+k f13k+1 f13k+2
 f21 … f2k f2k+1 … f2k+k f22k+1 … f22k+k f23k+1 f23k+2

 fd1 … fdk fdk+1 … fdk+k fd2k+1 … fd2k+k fd3k+1 fd3k+2

However, the above matrix stands only for a single machine. As we are

considering 1000 machines, the algorithm generates a list of 1000 feature vectors.

Line number 13 of the algorithm constructs this final matrix by aggregating all the

single machines feature vector.

In summary, we described in this section how we created a well-defined

feature vector. In the next part, we will articulate the application procedure of the

novelty detection algorithm over this feature vector.

4.2 Step 3: Hourly-based Anomaly Detection Model

We use anomaly detection techniques to identify non-conforming hours

inside the time frame of a host. An anomaly detection technique learns the normal

hourly behavior of the host and gives to each hour an anomaly detection score.

The higher the anomaly score for houri, the higher the likelihood that houri is

anomalous. MINOS creates an anomaly detection model, and the output of that

model is a vector of anomaly scores, one anomaly score for each hour of the time

frame. For the anomaly detection model, we considered the Gaussian Mixture

Model (GMM), One-Class Support Vector Machine (OC-SVM), Autoencoder,

and Long Short-Term Memory (LSTM) Autoencoder.

Gaussian Mixture Model is an advanced clustering technique that works

by learning a mixture of multivariate Gaussian distributions where each

60

distribution represents a specific cluster. Once trained, it assigns to each point a

probability that the mixture distribution generates the points. The anomaly score

for this technique is obtained, not by the learned Gaussian Mixture distribution,

but by computing this probability.

One-Class Support Vector Machine [38] is a classification algorithm

based on the binary support vector machine with the peculiarity to use only one

class in the training phase. The binary classification is obtained by analyzing the

sign of the decision function: if positive, the class is the same as the example used

in training, and if negative, the class is different. The anomaly score is obtained by

inverting the sign of the decision function.

Autoencoder is very similar to a feed-forward multilayer perceptron

neural network. The encoder part aims to learn an encoded representation

(embeddings) of training in different feature space data by efficiently reducing the

dimensionality of the original data space. The decoder phase tries to reconstruct

the original data by taking the embeddings (compressed feature vectors) as input.

For our feature vector, we encoded and decoded twice. The output of an

autoencoder has the same number of computational units as the input (original

feature dimension). An autoencoder reconstructs hourly-based features that have

similar statistical properties in the original feature space. Smaller reconstruction

errors represent the normal and higher reconstruction errors represents the

anomalous hourly-based features.

LSTM Autoencoder [4] is an autoencoder where the input and output are

the sequences of hourly-based features. We considered input sequences of

61

consecutive 24 hours and created a dataset of sequences obtained by shifting each

sequence by one hour.

< hourl = [f11, . . . , f1m], . . . , hour24 = [f241 , . . . , f

< hour2 = [f21, . . . , f2m], . . . , hour25 = [f251 , . . . , f

< hourd , . . . , fdm−24], . . . , hourd = [fd1, . . . , fdm] >

The LSTM Autoencoder reconstructs each sequence and assigns to each

sequence a reconstruction error. The dataset has d − 24 sequences, which produces

d − 24 anomaly scores.

4.3 Step 4: Anomaly Scores Normalization and Aggregation

The LSTM Autoencoder reconstructs each sequence and assigns to each

sequence a reconstruction error. The dataset has d − 24 sequences, which produces

d − 24 anomaly scores.

4.4 Step 4: Anomaly Scores Normalization and Aggregation

To obtain a single score for each host, we use the following two

aggregation procedures:

• Max Aggregation (θmax): Standardizing the score vector (with mean 0 and

standard deviation 1), and then computing the maximum of the normalized

anomaly scores among all the hours of host hi.

• Avg Aggregation (θavg): Scaling the score vector by dividing each

component by the maximum absolute value, and then computing the

average of all the scaled anomaly scores among all the hours of host hi.

The θmax and θavg represents the worst and average anomalous scenario,

respectively, for each host. We compute the scores of each host individually and

62

compare them with the normalization operations (the standardization and the

scaling operation).

The maximum absolute scaling and standardization (i.e., the two

normalization procedures) are not interchangeable in the θmax and θavg, because the

average of different standardized data would always correspond to the same value

and the maximum absolute value of different scaled data may always correspond

to value 1.

4.5 Step 5: Unsupervised Classification

The detection module group obtained anomaly scores for all hosts by using

K-Means (number of clusters k=3). It assigns all the hosts inside a cluster to a

class among CH, HUA, and MH. The centroid with the lowest value is assigned to

the class of clean hosts (CH), the one with the highest value is assigned to the

class of malicious hosts (MH), and the centroid with the middle value is assigned

to the class of hosts under attack (HUA).

4.6 Step 6: Anomalous or Not Anomalous Identification

After standardizing the score vector of all hosts, the detection module

identifies each hour of the host as either Anomalous or Not Anomalous. If the

score of a particular hour is higher (positive), that hour is classified as the

anomalous time frame. On the other hand, if the score of a particular hour is lower

(negative), that hour is identified as the not anomalous time frame.

63

CHAPTER FIVE: EXPERIMENTAL EVALUATION

In this chapter, we evaluate the capability of MINOS to prioritize hosts

among CH, HUA, and MH based on anomaly scores. Afterward, we measure the

accuracy and required execution times at different time frames followed by

unsupervised classifications of each host as either CH, HUA, and MH. Finally, we

identify precisely when any particular attack or list of the attacks has happened for

HUA and MH hosts.

We also compare our research outcomes concerning MINOS with Kitsune’s [41],

state of the art approach. As discussed in Section 2.7, Kitsune was originally designed

to analyze packets data of IoT traffic for a few hours. However, there are two main

reasons this method is not valid in large networks. First, it is infeasible to analyze the

packet level information for a given period (i.e., a couple of months / a year/ more).

Second, it is insufficient to create a behavioral model for complicated activities and

large patterns [2, 39] of client/server hosts. Hence, we reimplement the same

architecture and methodology of Kitsune (based on an ensemble of Autoencoders),

but we apply it on our hourlybased features (cf. Section 4.1).

Figure 5.1 Hosts sorted by increasing OC-SVM anomaly score value.

64

Figure 5.2 Hosts sorted by increasing Autoencoder anomaly score value.

5.1 Separating CH, HUA, and MH with Hourly-based Anomaly Scores

We first evaluate the capability of the anomaly scores to separate the hosts

within the three categories (CH, HUA, and MH). Figures 5.1, 5.2, 5.3 report three

bar charts (for OC-SVM, Autoencoder and Kitsune) with the θavg anomaly scores

on the time frame of one year. The hosts are ordered over the X-axis according to

the anomaly scores produced by MINOS. Each vertical bar represents a specific

host, and the color represents the ground truth of one of three classes among CH,

HUA, and MH. Figure 5.1 shows that the anomaly score mostly orders first the

clean hosts (CH), second the hosts under attack (HUA) and last the malicious

hosts (MH). In other words, malicious hosts have the

Figure 5.3 Hosts sorted by increasing Kitsune anomaly score value.

highest anomaly scores. This figure intuitively explains how MINOS can

effectively prioritize the riskiest and most dangerous hosts in the network. We can

observe that OC-SVM offers the best separation of the three classes.

65

To better quantify the discriminatory powers of the MINOS anomaly scores

we consider two binary classification problems: (i) CH vs. Other (i.e., CH vs.

HUA and MH), and then (ii) HUA vs. MH. In particular, in the case of CH vs.

Other, we test the hypothesis that higher anomaly scores correspond to a higher

likelihood that the host is under attack or malicious. In the case of HUA vs. MH,

we test the hypothesis that higher anomaly scores correspond to the higher

likelihood of a host being malicious. To test these hypotheses, we use the Area

Under the Receiver Operating Characteristic curve (AUROC) and the Average

Precision (AP).

Table 5.1 reports the results for the different anomaly scores obtained over

a period of 12 months with the different anomaly models and two different

aggregation procedures (θmax and θavg). Table 5.1 shows that the OC-SVM with the

θavg aggregation in the MINOS anomaly detection approach satisfies all the

hypotheses. After the OC-SVM, the Autoencoder works perfectly for the case CH

vs. Other, but not for HUA vs. MH. MINOS (OC-SVM) also outperforms

Kitsune, especially in terms of AP, and in the case of HUA vs. MH (Figures 5.1,

5.2 and 5.3).

66

Table 5.1 AUROC and AP of anomaly scores on 12 months of traffic. Values
≥ 0.80 are highlighted in bold.

 CH vs. Other HUA vs. MH

AUROC AP AUROC AP

Algorithm/Aggregation θmax θavg θmax θavg θmax θavg θmax θavg

MINOS (GM M) 0.95 0.05 0.97 0.31 0.04 0.39 0.07 0.18

MINOS (OC-SVM) 0.20 1.00 0.37 1.00 0.81 0.90 0.55 0.71

MINOS (Autoencoder) 1.00 0.92 0.99 0.93 0.30 0.72 0.12 0.29

MINOS (LSTM) 0.82 0.18 0.75 0.32 0.85 0.13 0.38 0.04

Kitsune [41] 0.99 0.12 0.99 0.31 0.29 0.69 0.13 0.30

5.2 Attack Time Identification

We described the ground truth collection per hour for each machine in

chapter 4. In this section, we explain our results of recognizing when an attack has

happened for HUA and MH by graphical representation. For attack time

identification we use both HUA and MH to compare hourly based experimental

anomaly detection score with the ground truth and then produce the accuracy

score of AUROC and AP.

Figures 5.4, 5.5, 5.6, and 5.7 represent the accuracy of AUROC and AP

against the experimental result of LSTM − Autoencoder and OC − SVM for HUA

and MH, respectively. The horizontal line indicates all machines, and the vertical

line implies the accuracy score. The red and blue line indicates the accuracy of AP

and AUROC, respectively.

Table 5.3 shows that, among all the experiments, the best accuracy for host

67

Figure 5.4 The LSTM accuracy of attack time for the HUA

Figure 5.5 The LSTM accuracy of attack time for the MM

identification was achieved by the OC − SVM. For the attack time

identification, we found that, among all of them, LSTM-Autoencoder and OC-

SVM performed the best. Figure 5.4 represents the accuracy for HUA, where the

accuracy of AP reached up to 100%, and the efficiency of AUROC fluctuated

68

Figure 5.6 The OC-SVM accuracy of attack time for the HUA

Figure 5.7 The OC-SVM accuracy of attack time for the MH

between 60% to 80%. In some cases, even AUROC fell sharply; because

some machines are carrying a few attacks in most of the sequences. Since our

LSTM

69

Figure 5.8 AUROC and AP of GMM for different time frames.

anomaly detection algorithm used 24 hour sequences to train the model,

we aggregated 24 hour ground truth each time for the LSTM − Autoencoder.

Therefore, for some machines, there exist a few attacks for most of the sequences,

which creates minimal accuracy for the AUROC. On the other hand, figure 5.5

depicts that there is not available AUROC accuracy for a few machines, because

those machines contained at least one attack for all of the sequences. Thus,

AUROC produced "nan" value instead of any accuracy.

5.3 Different Time Frames

We investigate the impact of time frame size on the accuracy of the

MINOS anomaly scores. Figures 5.8, 5.9, 5.10, and 5.11 report MINOS scores for

all the anomaly detection models (y-axis), corresponding to 0.5, 1, 3, 6, 9, and 12

months of time frame (x-axis). These plots show that OC-SVM with the θavg

aggregation is the best anomaly detection model, even when the analysis dataset

size is only one month, in which AUROC is higher than 0.8 for both separation

problems (i.e., CH vs. Other and HUA vs. MH).

70

Figure 5.9 AUROC and AP of OC-SVM for different time frames.

Figure 5.10 AUROC and AP of Autoencoder for different time frames.

5.4 Execution Time

Since the dataset is massive, Titan has been used to run the proposed

approaches. Titan is a supercomputer that uses Graphics Processing Units (GPUs)

including conventional Central Processing Units (CPUs). Titan’s performance is

measured in floating-point operations per second (FLOPS) instead of million

instructions per second (MIPS). Titan is the first such hybrid to perform over ten

petaFLOPS.

71

Figure 5.11 AUROC and AP of LSTM for different time frames.

Table 5.2 Execution time (in minutes) for 1,000 machines.

Algorithm 2

Weeks

1

Month

3 Months 6 Months 9 Months 12 Months

MINOS (GMM) 2.59 6.70 213.90 410.35 945.49 2568.88

MINOS (OC-

SVM)

1.58 3.71 107.02 245.76 402.62 597.63

MINOS

(Autoencoder)

66.88 77.82 226.86 627.48 943.98 1663.88

MINOS

(LSTM)

178.56 392.14 1208.99 2949.78 4386.78 6498.38

Kitsune [41] 69.12 80.86 234.78 652.14 970.87 1728.14

In our experiments, we used a server with two 2.10 GHz Xeon E4-2620

Processors, 128GB RAM, and 4 Titan X GPUs. The system ran Ubuntu 16.4 with

scikit-learn, Keras and ThunderSVM libraries. In particular, Keras and

ThunderSVM libraries can use Titan X GPU to speed up the computational time

72

(inference and test) for GMM, Autoencoder, LSTM, and One-Class Support

Vector Machine (OC-SVM).

Table 5.2 reports the total execution times (in minutes) to analyze 1,000 hosts

with MINOS and Kitsune, where MINOS (OC-SVM) is fastest, followed by

Autoencoder. Also, Kitsune has higher execution time with lower detection

performance.

Table 5.3 Performance of 3-class detection module (12 months).

 θmax θavg

Algorithm Metric Prec. Rec. F1 Prec. Rec. F1

MINOS (GMM)
Micro
Macro

0.01
0.09

0.01
0.04

0.01
0.01

0.44
0.33

0.44
0.35

0.44
0.24

 Weighted 0.14 0.01 0.01 0.32 0.44 0.28

MINOS (OC-SVM)
Micro
Macro

0.54
0.54

0.54
0.36

0.54
0.29

0.98
0.92

0.98
0.90

0.98
0.91

 Weighted 0.48 0.54 0.40 0.98 0.98 0.98

MINOS (Autoencoder)
Micro
Macro

0.88
0.66

0.88
0.65

0.88
0.64

0.81
0.65

0.81
0.58

0.81
0.60

 Weighted 0.92 0.88 0.90 0.82 0.81 0.79

MINOS (LSTM)
Micro
Macro

0.69
0.57

0.69
0.61

0.69
0.57

0.30
0.26

0.30
0.47

0.30
0.26

 Weighted 0.70 0.69 0.68 0.35 0.30 0.31

Kitsune [41]
Micro
Macro

0.09
0.32

0.09
0.16

0.09
0.11

0.16
0.14

0.16
0.18

0.16
0.14

 Weighted 0.41 0.09 0.13 0.18 0.16 0.17

73

5.5 Unsupervised Classification Performance

Table 5.3 reports the performance results (Precision, Recall, F1-Score)

when using the fully unsupervised classification module of MINOS described in

Section 4.5. Since there are three classes (CH, HUA, MH), we report Micro,

Macro, and Weighted statistics. These results confirm that MINOS with OC-SVM

and θavg aggregation achieves the best performance. We remark that no training

labels have been used by MINOS to achieve this performance. The lower Macro

performance in OC-SVM is related to some malicious hosts classified as under

attack and vice versa, while the separation between CH and the others (HUA and

MH) remains very nitid. Conversely, Kitsune [41] performs poorly because there

is not a clear separation between the anomaly scores it generates (cf. Figure

5.1,5.2, and 5.3).

74

CHAPTER SIX: CONCLUSION

6.1 Summary

We have proposed MINOS, a fully unsupervised method for traffic

anomaly detection, which does not require any ground truth or label data. It can

perform offline analysis for large networks efficiently. Moreover, it can prioritize

and classify internal hosts in three categories: clean hosts, hosts under attack, and

malicious hosts. Also, it can identify the time frame of an attack for malicious and

under attack machines. MINOS with OC-SVM and θavg aggregation method

performs better than state of the art, both in terms of accuracy and execution time.

We remark that MINOS can parallelize each host separately and analyze

large time frames of traffic in a short time. The low execution times suggest that

future work can effectively adapt MINOS for online analysis.

The proposed methodology is obtaining high accuracy by analyzing normal

traffic, where the status of a machine is entirely unknown. In this context, Chapter

6. Conclusion

the low false alarms (false positive rates) of this unsupervised novelty

detection score can be a practical solution to the problem, which is consistent with

safety and security. Also, our work proves that only two weeks of traffic flows are

sufficient to obtain the desired result in a year. As a result, it reduces the execution

time and acts as a less resource-intensive task.

75

6.2 Future Work

We used Gaussian Mixture Model, One-Class Support Vector Machine,

Autoencoder, and LSTM-Autoencoder methodologies for our Anomaly detection

models. We believe that there is a space for more improvement in terms of

differentiating malicious machines and machines under attack. Moreover, an

hourly-based feature extraction procedure needs two days for 1000 machines to

create a feature vector. We can improve the execution time of this procedure.

Furthermore, instead of only offline analysis, we can think about online analysis.

We need to enhance the accuracy of the attack time identification for a machine.

Additionally, we are identifying the host and time of the attack in an unsupervised

manner in this research, which could open up the possibility of also defining a

type of priority of the attack in an unsupervised way.

76

BIBLIOGRAPHY

[1] Hashem Alaidaros, Massudi Mahmuddin, Ali Al-Mazari, et al. “An

overview of flow-based and packet-based intrusion detection

performance in high speed networks”. In: (2011).

[2] Giovanni Apruzzese et al. “Detection and threat prioritization of

pivoting attacks in large networks”. In: IEEE Transactions on

Emerging Topics in Computing (2017).

[3] Stefan Axelsson. “The base-rate fallacy and the difficulty of intrusion

detection”. In: ACM Transactions on Information and System Security

(TISSEC) (2000).

[4] Inci M Baytas et al. “Patient subtyping via time-aware LSTM

networks”. In: Proceedings of the 23rd ACM SIGKDD international

conference on knowledge discovery and data mining. ACM. 2017, pp.

65–74.

[5] Elisa Bertino and Gabriel Ghinita. “Towards mechanisms for

detection and prevention of data exfiltration by insiders: keynote talk

paper”. In: ACM ICCS. 2011.

[6] Richard J Bolton, David J Hand, et al. “Unsupervised profiling

methods for fraud detection”. In: Credit Scoring and Credit Control

VII (2001), pp. 235–255.

[7] Anna L Buczak and Erhan Guven. “A survey of data mining and

machine learning methods for cyber security intrusion detection”. In:

77

IEEE Communications Surveys & Tutorials 18.2 (2016), pp. 1153–

1176.

[8] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly

Detection: A Survey”. In: ACM Comput. Surv. 41.3 (July 2009),

15:1–15:58. ISSN: 0360-0300. DOI: 10.1145/1541880.1541882.

URL: http://doi.acm.org/10.1145/1541880.1541882.

[9] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly

detection: A survey”. In: ACM computing surveys (CSUR) 41.3

(2009), p. 15.

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Outlier

detection: A survey”. In: ACM Computing Surveys (2007).

[11] Benoit Claise, Brian Trammell, and Paul Aitken. Specification of the

IP flow information export (IPFIX) protocol for the exchange of flow

information. Tech. rep. 2013.

[12] Gilles Cohen, Melanie Hilario, and Christian Pellegrini. “One-class

support vector machines with a conformal kernel. a case study in

handling class imbalance”. In: Joint IAPR International Workshops

on Statistical Techniques in Pattern Recognition (SPR) and Structural

and Syntactic Pattern Recognition (SSPR). Springer. 2004, pp. 850–

858.

[13] Xuemei Ding et al. “An experimental evaluation of novelty detection

methods”. In: Neurocomputing 135 (2014), pp. 313–327.

[14] Holger Dreger et al. “Operational experiences with high-volume

network intrusion detection”. In: Proceedings of the 11th ACM

78

conference on Computer and communications security. ACM. 2004,

pp. 2–11.

[15] Computer Economics. “Malware report: The economic impact of

viruses, spyware, adware, botnets, and other malicious code”. In:

Computer Economics (2007).

[16] Zakia Ferdousi and Akira Maeda. “Anomaly Detection Using

Unsupervised Profiling Method in Time Series Data.” In: ADBIS

Research Communications. 2006.

[17] Ming Gao, Kenong Zhang, and Jiahua Lu. “Efficient packet matching

for gigabit network intrusion detection using TCAMs”. In: Advanced

Information Networking and Applications, 2006. AINA 2006. 20th

International Conference on. Vol. 1. IEEE. 2006, 6–pp.

[18] Pedro Garcia-Teodoro et al. “Anomaly-based network intrusion

detection: Techniques, systems and challenges”. In: computers &

security 28.1-2 (2009), pp. 18–28.

[19] Markus Goldstein and Seiichi Uchida. “A comparative evaluation of

unsupervised anomaly detection algorithms for multivariate data”. In:

PloS one 11.4 (2016), e0152173.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep

learning. MIT press, 2016.

[21] Guofei Gu et al. “Botminer: Clustering analysis of network traffic for

protocol-and structure-independent botnet detection”. In: (2008).

[22] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts

and techniques. Elsevier, 2011.

79

[23] Rasha G Mohammed Helali. “Data mining based network intrusion

detection system: A survey”. In: Novel Algorithms and Techniques in

Telecommunications and Networking. Springer, 2010, pp. 501–505.

[24] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the

dimensionality of data with neural networks”. In: science 313.5786

(2006), pp. 504– 507.

[25] Rick Hofstede et al. “Flow monitoring explained: From packet

capture to data analysis with netflow and ipfix”. In: IEEE

Communications Surveys & Tutorials 16.4 (2014), pp. 2037–2064.

[26] Natthakan Iam-On and Tossapon Boongoen. “Comparative study of

matrix refinement approaches for ensemble clustering”. In: Machine

Learning 98.1 (Jan. 2015), pp. 269–300. ISSN: 1573-0565. DOI:

10.1007/s10994-013-5342-y.

[27] Anil K Jain. “Data clustering: 50 years beyond K-means”. In: Pattern

recognition letters 31.8 (2010), pp. 651–666.

[28] Ahmad Javaid et al. “A deep learning approach for network intrusion

detection system”. In: Proceedings of the 9th EAI International

Conference on Bio-inspired Information and Communications

Technologies (formerly BIONETICS). ICST (Institute for Computer

Sciences, Social-Informatics and ... 2016, pp. 21–26.

[29] Harjinder Kaur, Gurpreet Singh, and Jaspreet Minhas. “A review of

machine learning based anomaly detection techniques”. In: arXiv

preprint arXiv:1307.7286 (2013).

80

[30] KDD. Dataset. kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

1999.

[31] Richard A Kemmerer and Giovanni Vigna. “Intrusion detection: a

brief history and overview”. In: Computer 35.4 (2002), supl27–

supl30.

[32] Marshall A Kuypers, Thomas Maillart, and Elisabeth Pate-Cornell.

“An empirical analysis of cyber security incidents at a large

organization”. In: Department of Management Science and

Engineering, Stanford University, School of Information, UC

Berkeley, http://fsi.stanford.edu/sites/default/files/kuypersweis_v7.pdf,

accessed July 30 (2016).

[33] MIT Lincoln Lab. Darpa Datasets. https://www.ll.mit.edu/r-d/

datasets. 1998–2000.

[34] Haiguang Lai et al. “A parallel intrusion detection system for high-

speed networks”. In: International Conference on Applied

Cryptography and Network Security. Springer. 2004, pp. 439–451.

[35] Han Li. “Research and implementation of an anomaly detection

model based on clustering analysis”. In: Intelligence Information

Processing and Trusted Computing (IPTC), 2010 International

Symposium on. IEEE. 2010, pp. 458–462.

[36] Yali Liu et al. “SIDD: A framework for detecting sensitive data

exfiltration by an insider attack”. In: Hawaii International Conference

on System Sciences. IEEE. 2009.

81

[37] Matthew V Mahoney and Philip K Chan. “An analysis of the 1999

DARPA/Lincoln Laboratory evaluation data for network anomaly

detection”. In: International Workshop on Recent Advances in

Intrusion Detection. Springer. 2003, pp. 220–237.

[38] Larry M Manevitz and Malik Yousef. “One-class SVMs for

document classification”. In: Journal of machine Learning research

2.Dec (2001), pp. 139– 154.

[39] Mirco Marchetti et al. “Analysis of high volumes of network traffic

for advanced persistent threat detection”. In: Computer Networks

(2016).

[40] Markos Markou and Sameer Singh. “Novelty detection: a review—

part 1: statistical approaches”. In: Signal processing 83.12 (2003), pp.

2481–2497.

[41] Yisroel Mirsky et al. “Kitsune: An Ensemble of Autoencoders for

Online Network Intrusion Detection”. In: arXiv preprint

arXiv:1802.09089 (2018).

[42] T.M. Mitchell. Machine Learning. McGraw-Hill international

editions - computer science series. McGraw-Hill Education, 1997.

ISBN: 9780070428072. URL:

https://books.google.com/books?id=xOGAngEACAAJ.

[43] Srinivas Mukkamala, Andrew H Sung, and Ajith Abraham. “Intrusion

detection using an ensemble of intelligent paradigms”. In: Journal of

network and computer applications 28.2 (2005), pp. 167–182.

82

[44] Reyadh Shaker Naoum, Namh Abdula Abid, and Zainab Namh Al-

Sultani. “An enhanced resilient backpropagation artificial neural

network for intrusion detection system”. In: International Journal of

Computer Science and Network Security (IJCSNS) 12.3 (2012), p. 11.

[45] Salima Omar et al. “Machine Learning Techniques for Anomaly

Detection: An Overview”. In: International Journal of Computer

Applications 79 (Oct. 2013). DOI: 10.5120/13715-1478.

[46] Vern Paxson. “Bro: a system for detecting network intruders in real-

time”. In: Computer networks 31.23-24 (1999), pp. 2435–2463.

[47] Clifton Phua et al. “A comprehensive survey of data mining-based

fraud detection research”. In: arXiv preprint arXiv:1009.6119 (2010).

[48] Marco AF Pimentel et al. “A review of novelty detection”. In: Signal

Processing 99 (2014), pp. 215–249.

[49] Leonid Portnoy. “Intrusion detection with unlabeled data using

clustering”. PhD thesis. Columbia University, 2000.

[50] Mayu Sakurada and Takehisa Yairi. “Anomaly detection using

autoencoders with nonlinear dimensionality reduction”. In:

Proceedings of the MLSDA 2014 2nd Workshop on Machine

Learning for Sensory Data Analysis. ACM. 2014, p. 4.

[51] Gregor Schaffrath and Burkhard Stiller. “Conceptual integration of

flowbased and packet-based network intrusion detection”. In: IFIP

International Conference on Autonomous Infrastructure,

Management and Security. Springer. 2008, pp. 190–194.

83

[52] Bernhard Schölkopf et al. “Support vector method for novelty

detection”. In: Advances in neural information processing systems.

2000, pp. 582–588.

[53] Mansour Sheikhan and Zahra Jadidi. “Flow-based anomaly detection

in high-speed links using modified GSA-optimized neural network”.

In: Neural Computing and Applications 24.3-4 (2014), pp. 599–611.

[54] Taeshik Shon and Jongsub Moon. “A hybrid machine learning

approach to network anomaly detection”. In: Information Sciences

177.18 (2007), pp. 3799–3821.

[55] Johan Sigholm and Massimiliano Raciti. “Best-effort Data Leakage

Prevention in inter-organizational tactical MANETs”. In: IEEE

Military Communications Conference (MILCOM 2012), 29 Oktober

2012-1 November 2012, Orlando, Florida, USA. IEEE

Communications Society. 2012, pp. 1143–1149.

[56] Robin Sommer and Vern Paxson. “Outside the closed world: On

using machine learning for network intrusion detection”. In: IEEE

Symp. S&P. IEEE. 2010.

[57] Sui Song and Zhixiong Chen. “Adaptive network flow clustering”. In:

Networking, Sensing and Control, 2007 IEEE International Conference on. IEEE.

2007, pp. 596–601.

[58] Anna Sperotto and Aiko Pras. “Flow-based intrusion detection”. In:

12th IFIP/IEEE International Symposium on Integrated Network

Management (IM 2011) and Workshops. IEEE. 2011, pp. 958–963.

84

[59] Anna Sperotto et al. “An Overview of IP Flow-based Intrusion

Detection.” In: IEEE Communications Surveys and Tutorials 12.3

(2010), pp. 343– 356.

[60] Nidhi Srivastav and Rama Krishna Challa. “Novel intrusion detection

system integrating layered framework with neural network”. In: 2013

3rd IEEE International Advance Computing Conference (IACC).

IEEE. 2013, pp. 682–689.

[61] Sutapat Thiprungsri and Miklos A Vasarhelyi. “Cluster analysis for

anomaly detection in accounting data: An audit approach”. In: (2011).

[62] Fredrik Valeur et al. “Comprehensive approach to intrusion detection

alert correlation”. In: IEEE TDSC (2004).

[63] Philipp Winter, Eckehard Hermann, and Markus Zeilinger. “Inductive

intrusion detection in flow-based network data using one-class

support vector machines”. In: 2011 4th IFIP international conference

on new technologies, mobility and security. IEEE. 2011, pp. 1–5.

[64] Dit-Yan Yeung and Yuxin Ding. “Host-based intrusion detection

using dynamic and static behavioral models”. In: Pattern recognition

36.1 (2003), pp. 229–243.

[65] Mahmood Yousefi-Azar et al. “Autoencoder-based feature learning

for cyber security applications”. In: 2017 International Joint

Conference on Neural Networks (IJCNN). IEEE. 2017, pp. 3854–

3861.

85

[66] Chunlin Zhang, Ju Jiang, and Mohamed Kamel. “Intrusion detection

using hierarchical neural networks”. In: Pattern Recognition Letters

26.6 (2005), pp. 779–791.

	DEDICATON
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	1.1 Motivation
	1.2 Contributions
	1.3 Outlines

	CHAPTER TWO: BACKGROUND AND RELATED WORK
	2.1 Intrusion Detection System (IDS)
	2.2 Types of IDS
	2.2.1 Host-based IDS (HIDS)
	2.2.2 Network-based IDS (NIDS)
	2.2.3 Signature-based IDS (SIDS)
	2.2.4 Anomaly-based IDS (AIDS)
	2.2.5 Packet-based NIDS
	2.2.6 Flow-based NIDS

	2.3 Machine Learning Technique (MLT)
	2.3.1 Supervised Anomaly Detection
	2.3.2 Unsupervised Anomaly Detection

	2.4 Novelty Detection
	2.4.1 K-means algorithm
	2.4.2 Gaussian Mixture Model (GMM)
	2.4.3 One Class Support Vector Machine (OC-SVM)
	2.4.4 Autoencoder
	2.4.5 LSTM Autoencoder

	2.5 Performance Metrics
	2.5.1 Area Under Receiver Operating Characteristic (AUROC)
	2.5.2 Average Precision (AP)

	2.6 Suricata Rule Category
	2.7 Related Work

	CHAPTER 3: DATASET AND PROBLEM STATEMENT
	3.1 Category of Data Sources
	3.2 Size of the Dataset
	3.3 MINOS Overview and Dataset
	3.4 Feature Selection
	3.5 Machine Selection
	3.6 Ground Truth Extraction
	3.7 Research Challenges
	3.8 Problem Statements

	CHAPTER FOUR: METHODOLOGY
	Methodology
	4.1 Step 2: Hourly-based Feature Extraction
	4.2 Step 3: Hourly-based Anomaly Detection Model
	4.3 Step 4: Anomaly Scores Normalization and Aggregation
	4.4 Step 4: Anomaly Scores Normalization and Aggregation
	4.5 Step 5: Unsupervised Classification
	4.6 Step 6: Anomalous or Not Anomalous Identification

	CHAPTER FIVE: EXPERIMENTAL EVALUATION
	5.1 Separating CH, HUA, and MH with Hourly-based Anomaly Scores
	5.2 Attack Time Identification
	5.3 Different Time Frames
	5.4 Execution Time
	5.5 Unsupervised Classification Performance

	CHAPTER SIX: CONCLUSION
	6.1 Summary
	6.2 Future Work

	BIBLIOGRAPHY

