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ABSTRACT 

Monitoring large-scale networks for malicious activities is increasingly 

challenging: the amount and heterogeneity of traffic hinder the manual definition of 

IDS signatures and deep packet inspection. In this thesis, we propose MINOS, a novel 

fully unsupervised approach that generates an anomaly score for each host allowing us 

to classify with high accuracy each host as either infected (generating malicious 

activities), attacked (under attack), or clean (without any infection). The generated 

score of each hour is able to detect the time frame of being attacked for an infected or 

attacked host without any prior knowledge. MINOS automatically creates a 

personalized traffic behavioral model for each host and does not require any previous 

knowledge of existing or unknown attacks. Experimental evaluation on a real large 

academic network over one year of data shows that MINOS achieves very high 

accuracy, even when analyzing only two weeks of data. We demonstrate MINOS is 

also efficient and faster than a state-of-the-art approach for unsupervised anomaly 

detection on traffic data. 
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation 

The Internet is a widespread system in continuous evolution, where the 

number of attacks, Internet traffic, and line speed continues to grow [32]. Nowadays, 

it is common to use an access speed of 1 - 10 Gbps. Since bandwidth for wired 

connections is available, high-bandwidth services are being offered to users. For 

example, a university network reaches traffic averages in the order of hundreds of 

Mbps, including high activity peaks in the order of Gbps [53, 58, 59]. On backbone 

networks, the throughput will even be higher. Also, it is conventional for Internet 

users to have been a victim of an attack because of attackers’ constant assaults into 

networked systems. For example, a hacked machine can send out sensitive data to an 

unauthorized host; in this case, the cost of these attacks would be billions of U.S. 

dollars [15]. Therefore, it becomes significant to detect and prevent these intrusions as 

early as possible. Therefore, Network Intrusion Detection Systems (NIDS) need to 

handle the rising number of attacks, the growth of Internet traffic as well as the 

increase in line speed. 
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The most popular systems such as Bro [46], SNORT1, and Suricata2 

demonstrate high resource consumption, when confronted with the vast amount of data 

found in today’s high-speed networks [14]. Additionally, those systems are doing an in-

depth analysis of the packets. If the packet’s data is encrypted, then it poses a new 

challenge to payload-based systems. Moreover, researchers assess that the payload-

based NIDS processing capability lies between 100 Mbps and 200 Mbps [17, 34], 

which is inconvenient to this era. In contrast, the flowbased NIDS looks at aggregated 

information of related packets in the form of flow, so the amount of analyzing data is 

reduced [1, 51, 53]. In this context, flow-based approaches might be a promising 

candidate for Intrusion Detection research [59]. 

Traffic networks of large organizations are challenging to protect and monitor, 

due to the increasing amount of communications and heterogeneity of user behaviors 

and devices. Misuse-based systems (e.g., IDS [46]) require a priori knowledge on 

attacks and standard definitions of signatures by security analysts. Therefore, 

researchers focused on building statistical anomaly-based systems [9]. In this context, 

proposed supervised models often train on traffic datasets that contain artifacts (e.g., 

DARPA datasets [37]). As a result, those models do not generalize well when 

deployed in the real world. Moreover, obtaining reliable labels for traffic events is 

challenging [56]. For these reasons, the focus of this thesis is an entirely unsupervised 

setting (without any training labels). 

                                                 
1 An open-source network intrusion prevention and detection system, at <www.snort.org> 
2  Suricata is a free and open-source, mature, fast and robust network threat detection engine, at 
<https://suricata-ids.org/> 
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Existing research on unsupervised traffic anomaly detection is affected by some 

critical limitations: existing works either make strong assumptions to identify specific 

threats (e.g., similar communication patterns for botnet identification [21]), or require 

unencrypted traffic (e.g., [5, 36]). Other methods that work even in the presence of 

encrypted traffic either assume specific threats (e.g., data exfiltration [39]) or do not 

scale to large networks (e.g., IoT traffic of surveillance cameras [41]). 

In this thesis, we propose MINOS3, a fully unsupervised approach that produces 

an anomaly score for each internal host of an organization. That anomaly score can 

prioritize and classify (in an unsupervised manner) each host into one of three 

categories: clean, under attack, and infected. Also, it can recognize the attack time of 

an infected or under attack host. The inputs of MINOS are network communications 

between the internal hosts of an organization and the Internet, where no ground truth 

is required. To address the heterogeneity of network communications, MINOS 

automatically creates a behavioral traffic profile for each host independently by 

clustering network flows. We remark that MINOS is a fully unsupervised approach 

followed by a parallel procedure over multiple hosts. We experimented MINOS over 

1,000 hosts and one year of network traffic at Boise State University. We then 

evaluated how the anomaly score of MINOS prioritizes and differentiates three classes 

of hosts effectively. We also show that MINOS has better accuracy and execution time 

                                                 
3 In Dante Alighieri’s Divine Comedy, MINOS is depicted as a man with a serpent tail in charge of judging 
evil souls to determine which circle of Hell they deserve to be in. The circle is determined by the number 
of wraps of MINOS’s tail on the evil soul. 
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than Kitsune [41], a state of the art approach for unsupervised traffic anomaly 

detection. 

1.2 Contributions 

In summary, this work makes the following main contributions: 

• We propose a novel fully unsupervised large-scale traffic 

analysis approach, called MINOS, that is able to classify internal hosts into 

one of three classes: clean, malicious, and under attack and also identify 

the time frame of being attacked. This is different from most prior research 

that distinguished just between benign and malicious activities. We 

evaluate MINOS on one year of real data collected for 1,000 hosts of Boise 

State University (a large academic network). 

• In addition to offline analysis of one year of traffic data, we 

show that MINOS retains high performance in classifying hosts even when 

applied on reduced time windows (e.g., two weeks). 

• We show that MINOS outperforms Kitsune [41] (a state-of-the-

art approach for unsupervised traffic anomaly detection) both in accuracy 

and in execution times. 

Our results show that MINOS is a viable solution towards identifying risky hosts in 

large networks in the absence of label supervision. 

1.3 Outlines 

In Chapter 2, we provide the relevant background of Intrusion Detection 

Systems, machine learning in supervised and unsupervised contexts, neural networks, 
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commonly used standard novelty detection algorithms, and present the literature 

review of previous research works related to this thesis. 

In Chapter 3, we discuss the size and shape of the raw dataset, experimental 

machine selection, network flows collection, and feature selection procedure. Also, 

we present the problem statements of this thesis. 

In Chapter 4, we describe the methodology and implementation of feature vector 

extraction and novelty detection algorithms, i.e. identifying host status and time frame 

of existing attacks. 

In Chapter 5, we extend our discussion on the experimental setup, variants of 

experimental instances and statistical relevance. 

Finally, in Chapter 6, we discuss a summary of the proposed methodology, the 

future research direction and conclude this thesis. 
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CHAPTER TWO: BACKGROUND AND RELATED WORK 

This chapter introduces the relevant background on intrusion detection 

systems, machine learning, neural networks, novelty detection procedure, some 

related works in the literature and comparison of them with our hypotheses. For 

more details about machine learning and neural networks, we recommend 

readers to a book by Goodfellow et al. [20]. For novelty detection algorithms, a 

survey paper by Pimentel et al. [48] is recommended. 

2.1 Intrusion Detection System (IDS) 

IDS is a process of monitoring and identifying computer and network 

events to determine the evolution of any unusual incident, which is considered to 

be an intrusion [1]. Generally, it detects undesired exploitation to the computer 

system, both through the Internet and the Intranet. 

For example, a thief is standing in front of an anonymous house, looking 

around, investigating the surroundings, and then starts turning the knob of the 

front door. Unfortunately, the door is locked, so he moves to a nearby window 

and smoothly tries to open it. Unluckily, that is locked too. It demonstrates that 

the house is safe. If the house is safe in this way, why do people install an alarm 

in their home? Similarly, the common question for intrusion detection 

researchers: why researchers bother detecting intrusions if they established 

firewalls, patched operating systems, and checked passwords for soundness? The 

most straightforward answer to this question is intrusions still happen. 
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However, firewalls contradict with IDS in the sense that they cannot usually 

search for anomalies or specific content patterns to the same degree as IDSs do. 

Moreover, unlike firewalls, IDSs are automated because they do not depend on a 

human decision. As such, people occasionally skip updating a firewall’s rule set 

correctly as they sometimes forget to lock their window. Therefore, developing 

an IDS becomes worthy of discovering and reacting for any computer attacks 

[31]. 

2.2 Types of IDS 

Figure 2.1 illustrates the taxonomy of IDS, which is reproduced from 

[59]. Generally, IDS can be divided into two basic categories based on their 

position in the network or audit source location: 

• Host-based IDS (HIDS) 

• Network-based IDS (NIDS) 

NIDS can be divided into two categories based on the source of data to be 

analyzed in NIDS: 

• Packet-based NIDS 

• Flow-based NIDS 

Also, depending on the detection model IDS can be classified into two categories: 

• Signature-based IDS (SIDS) 

• Anomaly-based IDS (AIDS) 
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Figure 2.1 IDS Taxonomy 

2.2.1 Host-based IDS (HIDS) 

A HIDS is capable of monitoring a single machine and audit data 

(resource usage and system logs) traced by the hosting operating system [1]. It 

gives deep visibility of critical systems and refers to protect the environment by 

detecting and responding to malicious or anomalous activities. However, HIDS 

does not provide a complete picture of the security posture. HIDS log data needs 

to correlate with other critical security data and the latest real-world threat 

intelligence. In this context, HIDS seems like an agent that can monitor whether 

internal or external, anything or anyone, have blockaded the system’s security 

policy. 

2.2.2 Network-based IDS (NIDS) 

NIDS is used to monitor a network and analyze traffic to protect a system 

from network-based threats. Generally, a NIDS reads all inbound packets and 

• 
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searches for any suspicious patterns. If it can identify any risks, the system can 

take action by notifying administrators or blocking the source IP address from 

accessing the network [1]. As our goal is to identify a machine’s status by 

scrutinizing network flows solely, we do not consider HIDS for this research. 

Comparison between HIDS and NIDS: In contrast to HIDS, NIDS has 

some advantages. In NIDS, the deployment of a new host in the network does 

not need extra effort to monitor the network activity. Also, NIDS is less 

expensive because updating one component of NIDS is more comfortable than 

many components of HIDS on hosts. A NIDS presents extensive research of a 

corporate network via scans and probes. NIDS allows administrators to protect 

non-computer devices, such as firewalls, print servers, VPN concentrators, and 

routers. More importantly, NIDS gives us flexibility with multiple operating 

systems, devices, and protection against bandwidth floods and Denial of Service 

(DoS) attacks. 

2.2.3 Signature-based IDS (SIDS) 

SIDS, also referred to as “misused-based” or "rule-based", works similar to 

antivirus software [1]. SIDS monitors packets in the Network and compares them 

with pre-configured and pre-determined attack patterns known as signatures. If 

there is a successful match with the current input, an alert is prompted. A well-

known tool of SIDS is Suricata (an open source IDS tool), which monitors 

networks by matching each packet it observes against a set of rules. A rule 

consists of the following: 

• The action: Determines what happens when the signature matches 
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• The header: Defines the protocol, IP addresses, ports and direction of the 

rule 

• The rule: Some options, which explain the specifics of the rule 

The following is the appearance of a static machine’s alert at Boise State 

University, which has been produced by the set of rules of Suricata (See table 2.1): 

"10/12/2017-22:35:01.319011 [**] [1:2009582:3] ET SCAN NMAP -sS 

window 1024 [**] [Classification: Attempted Information Leak] [Priority: 2] 

TCP 150.255.174.211:61512 -> 132.178.137.210:873" 

When an alert happens, it is essential to figure out what it means. Is it 

severe, or relevant, or merely a false positive? To find out more about the alert 

produced by Suricata, it is always a good idea to look at the category of the 

alerts, classification message, and priority of the alert. The alert mentioned 

above is in the category of "ET SCAN" rule, the classification message is 

"Attempted Information Leak", and priority is "2". Hence, "ET" indicates the rule 

came from the Emerging Threats project and "SCAN" indicates the purpose of the 

rule is to match on some form of scanning. 

2.2.4 Anomaly-based IDS (AIDS) 

An anomaly-based or behavior-based IDS can detect both network and 

computer intrusions by monitoring system activity and classifying it as either 

normal or abnormal. The classification is based on heuristics or rules, instead of 

patterns or signatures, and it attempts to detect any misuse or abnormal system 

operation. Figure 2.2 depicts some necessary modules for the general 

architecture of AIDS, such as parameterization, training, and detection. The 

parameterization involves accumulating raw data from a monitored environment, 
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the training stage tries to model the system using manual or automatic methods, 

and the detection stage compares the system generated in the training stage with 

the elected parameterized data portion. Threshold criteria will be chosen to 

determine anomalous data [45]. Although different types of anomaly detection 

techniques are available, machine learning-based anomaly detection has become 

prominent. The overview of machine learning technique for AIDS is described 

in section 2.3. 

Comparison between SIDS and AIDS: The advantages of SIDS are: ease 

of implementation, lightweight, low false-positive rates, and high true positive 

rates. One disadvantage, however, is its inability to detect any unknown attacks 

like AIDS. 

2.2.5 Packet-based NIDS 

In packet-based NIDS, all network packets that pass through a specific 

observation point are captured without any loss of information. For this reason, 

it is also known as Deep Packet Inspection (DPI). Various observation points 

(i.e., 
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Figure 2.2 Generic AIDS functional architecture 

routers, switches, network monitors, and so on) are dedicated to capture 

and analyze packets so that the resulting measurement data transfers to a remote 

analysis system. 

A packet has two fields: the header (contains information about the source, 

destination, and others) and the payload (data). The packet-based NIDS scans 

these fields and determines whether or not a packet holds an intrusion. From the 

database, every single rule is checked against scanned incoming packets, as 

shown in figure 2.3. However, SIDS mostly uses a packet-based process. 

2.2.6 Flow-based NIDS 

The flow-based technique is a reputable data source in applications like 

network monitoring, traffic analysis, and security. Since flow data or network flow 

characterizes this method, flow-based NIDS is also referred to as “Network 

Behavior Analysis.” 
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Figure 2.3 Packet-based NIDS 

The definition of a flow can be "a set of IP packets passing through an 

observation point in the network during a specific time interval, i.e., all packets 

belonging to a particular flow have a set of common properties" [11]. Based on 

IP Flow Information Export (IPFIX) terminology [25], the common properties 

can be included with packet header fields (flow keys), source and destination IP 

addresses, source, and destination port numbers, protocol, and some meta 

information: 

(ipSrc, ipDst, portSrc, portDst, proto) 

The preparation and exportation format of flows are defined by two 

wellknown protocols: NetFlow and IPFIX. There are two components in a 

NetFlow setup: an exporter and a collector. The flow exporter can be a probe, a 

switch, or a router, which extracts the headers from each incoming packet 

noticed on the monitored interface. An exporter is responsible for creating the 

flow records from observed traffic and sending them over the network to the 
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collector. The collector stores these flow records for further analysis and 

prepares them suitable for NIDS (figure 2.4). We have utilized one year of 

NetFlow data at Boise State University to develop an intrusion detection model 

that can prioritize and classify a set of machines. 

 
Figure 2.4 Flow-based NIDS 

Comparison between Packet-based and Flow-based NIDS: The 

packetbased NIDS cannot detect any unknown attack as it compares only the 

predefined and known malicious signatures. Therefore, it is a highly 

resourceintensive task, expensive on a high-speed network, and infeasible in 

case of an encrypted payload. On the other hand, flow-based NIDS can handle 

considerably lower amount of data because it considers only the packet’s header 

field instead of its payload. For this reason, on a high-speed network, flow-based 

intrusion detection is more scalable than any of the other approaches. Moreover, 

flow exporters are widely deployable, meaning there is no need for additional 

capturing devices, and is less privacy-sensitive. 
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2.3 Machine Learning Technique (MLT) 

MLT is a form of applied statistics, which emphasizes the use of 

computers to learn complex mathematical functions. To be more specific: "A 

computer program is said to learn from experience E concerning some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured 

by P, improves with experience E" [42]. 

One of the practical applications of MLT is to comply with next-generation 

IDS, because it can build the required model automatically by depending on a 

given training dataset, which can be expressed using a set of attributes (features) 

and associated labels. The features can be of different types: categorical or 

continuous [45], and they are responsible for the applicability of anomaly 

detection technique. On the other hand, the labels associated with data instances 

are usually in the form of binary values, i.e., normal and abnormal. The 

favorability of this technique is linked to the availability of the essential training 

data. MLT classifies into supervised and unsupervised anomaly detection 

algorithms based on the nature of the dataset where they are originated and 

learned. 

2.3.1 Supervised Anomaly Detection 

Supervised methods or classification methods require a labeled training 

dataset containing both normal and abnormal samples to construct a predictive 

model. 

Each training example consists of the independent variable(s) defining 

the input domain of data and the dependent variable(s) representing the target. 

Given a set of N training examples of the form {(x1, y1), ...(xN, yN)} such that xi is 
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the feature vector of the ith example and yi is its label. A supervised learning 

algorithm can be formulated as authorizing a computer to learn a function f : X 

→ y, where X represents the space of independent variables (input space), and y 

is the space of dependent variables (output space). 

Although supervised methods have a better detection rate than semi-supervised 

and unsupervised approaches, some technical issues were obtained; they are not as 

accurate as they are thought to be. For example, the deficit of a training dataset 

hinders its ability to achieve correct labels and noises of the training set will cause 

high false alarm rates. In the literature, the most common supervised algorithms are 

Supervised Neural Networks, Support Vector Machines(SVM), k-Nearest Neighbors, 

Bayesian Networks, and Decision Tree [45]. 

2.3.2 Unsupervised Anomaly Detection 

Unlike supervised techniques, unsupervised anomaly detection 

techniques do not need any training data. They depend on two underlying 

assumptions, (1) most of the network connections are normal traffic, including a 

very little abnormal traffic, and (2) malicious traffic is statistically variant 

behavior from normal traffic. According to these assumptions, frequently 

appearing data groups of similar instances are assumed to be normal traffic, 

while infrequent examples are considered to be malicious. The most common 

unsupervised algorithms are clustering, anomaly detection, and novelty detection 

algorithms. 

2.4 Novelty Detection 

Novelty detection is a machine learning task for identifying new or 

unknown data. Recognizing abnormal system behaviors with the normal state of 
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a system is the goal of novelty detection [40]. The system learns a model of the 

normal environment that does not have any malicious activities, and instead of 

finding any faults, the novelty filter detects the anomaly score deviations from 

this model. Although unique events occur infrequently, it can have significant 

consequences to overall system operation [10]. 

 
Figure 2.5 Framework of novelty detection 

Figure 2.5 represents a general framework design of novelty detection, a 

combination of knowledge disciplines and application domains. Hence, 

knowledge discipline refers to several mathematical and algorithmic concepts, 

where application domains follow system expertise. 

Input data in the novelty detection framework passes through several phases: 

preprocessing (remove an artifact from the data), feature extraction (input signals 

using a comparatively smaller volume), and construction of feature vectors 

followed by normalization (component-wise normalization). Afterward, the 

novelty detection method accepts the obtained feature vectors as input and delivers 
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the information about the novelty as an output. Figure 2.6 illustrates the normal 

and abnormal data in feature space. 

 
Figure 2.6 Novelty within feature space 

Novelty detection has extensive applications in fields involving large datasets 

generated from critical systems. These include: cyber intrusion detection [18, 49, 

64], terrorist activity, system breakdown, fraud detection [6, 16, 47, 61], data 

leakage prevention [55], electronic IT security [23], healthcare informatics, 

medical diagnostics, industrial monitoring and damage detection, image 

processing, video surveillance, text mining, sensor networks [8, 48], and many 

other specialized applications [19]. 

Also, novelty detection has been extensively applied to detect any new attack in 

IDSs, which falls within the application of novelty detection algorithms. However, 

identifying a machine attack status using the novelty detection algorithms in network 

flow datasets is the primary goal of this research. 
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Figure 2.7 Taxonomy of novelty detection methods 

Taxonomy of novelty detection is presented in Figure 2.7. We have applied 

K-means clustering to create the input feature vector for novelty detection 

methods. Similarly, clustering-based novelty detection techniques: Gaussian 

Mixture Model (GMM), One-class Support Vector Machine (OC-SVM), and 

reconstruction-based (neural networks, autoencoder) algorithms are used to 

compute the anomaly score. Based on this anomaly score, we have identified the 

attack status of each machine in the network. 

2.4.1 K-means algorithm 

Let X = xi, i = {1, ..., n} be the set of n-dimensional points to be clustered 

into a set of K clusters, C = Ck,k = {1, ..., K}. A K-means algorithm decides a 

partition in such a way that the squared error between the observed mean of a 

cluster and the points in the cluster is minimized. Let µk be the mean of cluster 

Ck. The squared error between µk and the points in cluster Ck is defined as: 

J(Ck) = ∑xi∈Ck ||xi − µk||2 

The goal of K-means is to minimize the sum of the squared error for K 

clusters, 

J  

Minimizing this objective function is known as an NP-hard problem, even 

for K = 2 [27]. Thus K-means, a greedy algorithm, only concentrates on a local 
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minimum. Generally, K-means starts with a primary partition with K clusters 

and selects patterns of clusters to reduce the squared error. Since the squared 

error is always inversely proportional to the number of clusters K (with J(C) = 0 

when K = n), it can be minimized only for a fixed number of clusters. 

The K-means algorithm depends upon three user-specified parameters: the 

number of clusters K (a critical parameter), cluster initialization, and distance 

metric. No perfect mathematical criterion exists to choose a value of K, though 

some heuristics are available. K-means algorithms run independently with the 

distinct values of K, and builds the most meaningful partition in the domain. 

However, due to the convergence to local minima, different initializations can 

lead to inconsistent clustering. One approach for making the k-means method 

more efficient is to run the algorithm for a given K along with multiple different 

initial partitions and choosing the partition that refers to the smallest squared 

error. Another approach is to apply a filtering procedure that uses a spatial 

hierarchical dataset index while computing means, which also saves on costs. A 

third approach, explores the micro-clustering idea, which first groups the nearby 

objects into “microclusters” and then performs k-means clustering on the 

microclusters [22, 35]. 

2.4.2 Gaussian Mixture Model (GMM) 

GMM is a non-bayesian, parametric probability density-based model, 

that uses fewer kernels than the number of patterns in the training set [40] to 

estimate the frequency. GMM uses optimization algorithms: conjugate gradients 

or reestimation techniques such as the Expectation-Maximization (EM) 



21 
 

 
 

algorithm for fitting the training data. They are followed by maximizing the log-

likelihood of the training data to choose the parameters of the model. 

2.4.3 One Class Support Vector Machine (OC-SVM) 

The OC-SVM is an unsupervised learning method that is aware of only a 

single class of data. It distinguishes between vectors which are referred to as 

either in class (inside the trained distribution) or outliers (outside the 

distribution) and it lies between the origin and the optimal separating 

hyperplane. The output score of OC-SVM represents the distance from the data 

point being tested to the optimal hyperplane. Whereas, positive scores denote 

normal behavior (with higher values representing greater normality) and 

negative values describe abnormal behavior (with lower scores representing 

larger abnormality) [12]. 

Generally, for novelty detection, OC-SVM uses a kernel trick to construct a 

hyperplane to separate the normal data from the original with maximum margin 

in a feature space [52]. OC-SVM assumes that a few training data points fall into 

some regions and drives the regions to be small in a feature space associated 

with the kernel [13]. The kernel trick, complied by the OC-SVM, makes it 

simpler to separate the normal data from the origin in a higher dimensional 

feature space. 

2.4.4 Autoencoder 

An autoencoder is an artificial neural network, commonly used for 

unsupervised novelty detection, based on the reconstruction error of the training 

examples. An autoencoder is trained to copy its input to its output along with the 

common purpose of nonlinear dimensionality reduction, which is the process of 
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lessening the number of random variables under consideration. An autoencoder 

has two architectural parts: encoder and decoder. The encoder function creates 

either single or multiple hidden layers, that contain a code to describe the input, 

whereas, the decoder produces a reconstruction of the input from the hidden 

layer. Having a hidden layer smaller than the input layer is beneficial as an 

autoencoder is forced to create a compressed representation of the data in the 

hidden layer. This representation facilitates the classification, visualization, 

communication, and storage of data [24]. 

However, the intuition of an autoencoder is to obtain a higher 

reconstruction error for the novel or unknown data. Autoencoders are also 

trained with only the known examples in training data. While the optimized 

embeddings are learned using the training data, the reconstruction errors are 

computed for both the known and novel data in the test datasets. Here, the 

reconstruction error is proportional to the chances of the data point to be 

unknown. Figure 2.8 shows a three layer autoencoder: an input layer (Layer 1), 

one hidden layer (Layer 2), and an output layer (Layer 3), where the hidden layer 

captures the 
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Figure 2.8 Simple architecture of an autoencoder 

embeddings of the input layer into lower-dimensional space. These embeddings 

are used by the output layer to reconstruct the original data [50]. 

2.4.5 LSTM Autoencoder 

Generally, humans do not start thinking from scratch in every second. 

For example, readers understand each word based on their perception of the 

previous words. They do not drop everything each time and start rethinking from 

the beginning; their thoughts have persistence — the same procedure followed 

by the recurrent neural network, which allows information to persist. The 

Recurrent Neural Network (RNN) allows forward and backward connections 

between neurons. Long short-term memory (LSTM) is an example of RNN 

architecture that recognizes values over random intervals. Stored values are not 

modified as learning proceeds. 

Implementing an autoencoder for sequence data by using an Encoder-Decoder 

LSTM architecture is called an LSTM Autoencoder. An encoder-decoder LSTM is 

configured to read the given dataset of an input sequence, encode it, decode it, and 
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then recreate it. The model’s ability to recreate the input sequence represents the 

performance of the model. While the model obtains a desired level of performance 

by recreating the sequence, the model may drop the decoder part, leaving only the 

encoder model. Afterward, this model can be used to encode input sequences to a 

fixed-length vector. The resulting vectors are not limited as a compressed 

representation of the sequence or as an input to another supervised learning model, 

and preferably it can be used in a diversity of applications. 

2.5 Performance Metrics 

Similar to other machine learning algorithms, it is crucial to evaluate the 

performance of our novelty detection algorithms. Therefore, we calculated 

novelty scores for the flows dataset of each machine, and then used these scores 

and the ground-truth to compute the Area Under Receiver Operating 

Characteristic (AUROC) and Average Precision (AP) scores. We have described 

the ground truth collection procedure to evaluate our experimental result in 

Chapter 3. 

2.5.1 Area Under Receiver Operating Characteristic (AUROC) 

AUROC score computes the discriminating ability of classifiers or 

novelty detection algorithms to correctly classify a dataset into different 

categories such as known category or novel category. In our approach, we can 

understand how well the AUROC score distinguishes between good machines 

with the machines under attack or malicious machines. The AUROC is a plot 

with a false positive rate (incorrectly identifying as being anomalies) of a 

discriminating model as the x-axis and a true positive rate (correctly identifying 

as being anomalies) in the y-axis. 
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2.5.2 Average Precision (AP) 

AP is more commonly averaged over all queries and reported as a single 

score, which characterizes as a prominent performance measure in the novelty 

detection domain. AP score reports the ability of novelty detection algorithms to 

distinguish different objects as novel. In real work scenarios, it is common to 

have a tiny proportion of new samples compared to the ordinary case. Therefore, 

our goal is to prove the novelty detection algorithms are suitable to discriminate 

the relatively small population of new examples. Hence, the false-negative rate 

is pretty dangerous for discriminating models like novelty detection. 

 

2.6 Suricata Rule Category 

We considered one-year of traffic flow and collected recorded alerts from 

a Suricata log file as the ground truth for this research. Suricata is an open-

source, free, mature, fast, and robust network threat detection engine. It is 

capable of real-time IDS, inline intrusion prevention (IPS), network security 

monitoring (NSM), and offline pcap processing. The network traffic using 

powerful and extensive rules and signature language and has powerful Lua 

scripting support for the detection of complex threats. Most importantly, 

Suricata’s fast-paced, community-driven development focuses on security, 

usability, and efficiency. 

We did not use ground truth for the input of our experiment, but we did use 

it to evaluate our experimental results. Regarding static machines, we found 

several alerts based on the ruleset of Suricata. Table 2.1 clearly describes the rule 

set category at Boise State University, which has been producing various alerts. 
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Based on some rules, Suricata can produce false positives. In that case, humans 

need to start with only a few rules and work their way up. Otherwise, it just gets 

overwhelming. On the other hand, if humans failed to set an important attack 

detection rule, there is a high chance to have a false negative. In this context, 

Suricata depends on personal decision or rule set-up. In this research, we found a 

total of 25 rule sets into the Suricata log file at Boise State University, which 

were decided by the security analyst at Boise State University. However, for this 

research, we do not need to know which alerts are being produced by Suricata. 

Instead, we only need the classification of machines in the network. 
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Table 2.1 Description of rule set of Suricata 

# Rule Category Description 

1 SCAN Early warning can detect and identify host and network 
vulnerabilities in our environment. Scans can perform 
external attack simulations and comprehensive 
vulnerability checks along with registry evaluation. 

2 POLICY Application Identification category, which includes 
signatures for applications like DropBox, Google Apps, 
among others and also covers off port protocols. This 
alert is saying "I saw unencrypted HTTP traffic 
traveling over a port generally reserved for 
HTTPS encrypted traffic". 

3 DOS A cyber-attack in which a legitimate user is unable to 
access information systems, devices, or other network 
resources because of the actions of a malicious cyber 
threat actor. 

4 COMPROMISED A collection of known compromised machines, 
confirmed and regularly updated. This list waved from 
a hundred to several hundred rules based on the data 
sources. Most importantly, Snort does not handle IP 
matches well load-wise. Therefore, if your sensor has 
already pushed to the limits, this set would add a 
significant load. 

5 CINS Collective Intelligence Network Security (CINS) is a 
network of "sentinel" machines running around the 
internet, which allow a company to monitor those 
attacks leveraged against them and score them 
appropriately. 

6 DROP An IP based attack for some rules to block Spamhaus 
“drop” listed networks and daily updated collection of 
the Spamhaus DROP (Do not Route or Peer) list. 
Primarily it is known as professional spammers. 

7 INFO General rules to track suspicious host network traf- 
fic. 
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8 TOR An IP based rules for the identification of traffic from 
and to TOR exit nodes. 

9 P2P Rules for the identification of Peer-to-Peer traffic and 
attack against, including torrents, edonkey, Bittorent, 
etc. 

10 DNS Rules for attacks and vulnerabilities for DNS besides 
the category for abuse of the service such as tunneling. 

11 SNMP Rules for attacks and vulnerabilities regarding the 
Simple Network Management Protocol. 

12 WEB-SERVER Rules for attacks and vulnerabilities against web 
servers. 

13 MALWARE Related to Malware and Spyware, where there is no 
clear criminal intent present. The threshold for 
formation in this set is typically some form of tracking, 
which stops short of apparent criminal activity. 

14 EXPLOIT Rules to detect direct exploits such as Windows ex- 
ploit, veritas, etc. 

15 GAMES Rules for the identification of gaming traffic and 
attacks against games. 

16 CHAT Identification of traffic-related to various chat clients, 
irc and possible check-in activity. 

17 USER-AGENT Rules for identification and detection of user agent. 

18 VOIP Rules for attacks and vulnerabilities against the VOIP 
environment. 
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19 TFTP Rules for attacks and vulnerabilities regarding the 
TFTP service. 

20 FTP Rules for attacks and vulnerabilities regarding the FTP 
service. 

21 SCADA Rules for the signatures of SCADA attacks, exploits 
and vulnerabilities. 

22 MOBILE- 
MALWARE 

Rules for the specification of mobile platforms such as 
malware and spyware related. 

23 CURRENT- 
EVENTS 

Rules for active and short-lived campaigns, which 
covers exploit kits and malware that will be aged and 
removed instantly due to the temporary nature of the 
threat. 

24 SHELLCODE Dedicated to Remote Shellcode detection. Remote 
Shellcode is used while an intruder wants to target a 
vulnerable process that is running on a different 
machine on a local network or intranet. After successful 
execution, the shellcode grants the attacker access to 
the target machine across the system. 

25 TROJAN Highly significant ruleset that can detect malicious 
software, which has an apparent criminal purpose. 
Rules discover malicious software that is in transit, 
active, infecting, attacking, updating, and whatever else 
Suricata can identify on the wire. 

 

2.7 Related Work 

There are two significant approaches to detect malicious activities in 

network traffic: misuse-based and anomaly-based. Misuse-based systems rely on 

manually defined signatures which embed expert knowledge of a priori known 

attacks. Such systems are commonly deployed in large enterprises through NIDS 
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that perform online DPI on traffic to detect whether a packet (or a set of packets) 

matches one of the detection signatures. Some examples of NIDS are Snort, 

Suricata, and Bro [46]. However, such systems do not scale well with the 

increasing number of activities and attacks in network traffic as the signatures 

require manual definition, and most importantly they are limited by requiring a 

priori knowledge of the attack scenarios [56]. 

Anomaly-based systems create behavioral models of traffic towards the 

goal of detecting malicious activities within a network, even in the absence of 

prior knowledge about attacks [9]. Hence, many research efforts have been 

focused on anomaly-based methods, but many challenges complicate the 

application of statistical methods to traffic more than other domains [56] (see 

also Section 3.7 in Chapter 3). Some existing approaches [7, 18, 29, 54] require 

labeled traffic datasets (which are hard to obtain and limit the efficacy of the 

approach to a priori attacks) or have too high computational times (which 

hinders applicability of both offline and online analysis of traffic). On the other 

hand, we propose a fully unsupervised approach that does not require any label, 

and our approach is highly efficient, requiring less than 2 minutes to process a 

half month of network traffic activities for 1,000 machines. Authors of [63] 

propose an OC-SVM based method trained on malicious traffic; however, their 

approach is supervised as it requires traffic labeled as malicious and does not 

generalize to unseen malicious traffic. On the other hand, we aim to create a 

behavioral model for every machine and identify which machines are more 

anomalous. 
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Deep Learning (DL) or ANN has been used extensively in the anomaly 

detection process, because of its capability to learn complex concepts and the 

concepts from the domain of network communication. There have been also 

many efforts in applying DL [7] , ANNs [43, 44, 60, 66] and AutoEncoders [28, 

65] for traffic anomaly detection. However, such models are supervised and 

require periodic re-training, which is infeasible in modern high-speed networks 

and at the rate to which new attacks are appearing [56]. In contrast, MINOS can 

identify malicious, under attack and clean machines as well as the time frame of 

being attacked for a machine in an unsupervised way by lightweight analysis of 

network traffic flows. 

The most recent and related work to our research is Kitsune [41], an 

unsupervised approach for online traffic anomaly detection. Kitsune relies on an 

ensemble of Autoencoders and takes as input packet-based features. Kitsune was 

designed for online analysis and has been evaluated on about two hours of traffic 

of IoT cameras, showing good results in detecting IoT botnet activities. We 

argue that two hours of traffic are reasonable to create a behavioral model of an 

IoT device, but it would not be enough to model client and server hosts of large 

organizations, where patterns are highly variable and may follow weekly and 

monthly patterns. Hence, by design, MINOS aims to create a behavioral model 

over more extended periods and uses NetFlow information using packet-based 

analysis that would be computationally infeasible to process for more extended 

periods. Nevertheless, as described in more detail in Chapter 5, we also try to 

adapt the AutoEncoder architecture used in Kitsune to our scenario, and we 

experimentally demonstrate that MINOS performs better than Kitsune both in 
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terms of detection capability and execution time. Moreover, unlike Kitsune, 

MINOS can distinguish hosts into three classes, offering more intelligence to 

security operators, which also allows hosts that are not yet infected but under 

attack to take proactive steps. 
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CHAPTER 3: DATASET AND PROBLEM STATEMENT 

In this chapter, we provide a short overview of the dataset for MINOS: raw 

dataset collection, preprocessing, experimental static machines selection, and 

identification of useful features. We also describe research challenges and the 

problem statement of this thesis. 

3.1 Category of Data Sources 

A few data sources have been utilized in NIDS, which do have the following 

properties [53]: 

• Scalability: The capability of dealing with gigabyte networks 

• Lightweight: Small size of obtained network data 

• Privacy: Owing to the severe consequence of network data 

monitoring 

Network data sources can be extensively characterized by the following 

categories: 

• The protocol-based data sources: Protocol-based datasets 

comprises of Simple Network Management Protocol (SNMP) and 

Internet Control Message Protocol (ICMP). 

• The packet-based data sources: In the packet-based approach, 

whole network packets have been used, and recognition is usually 

performed by the use of software such as tcpdump. 

• The flow-based data sources: The flow-based approach is 

characterized by the use of network flows. According to literature, 
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the flow is a unidirectional data stream between two machines where 

all transmitted packets of this stream share some common 

characteristics (source and destination IP addresses, source and 

destination port numbers, and protocol) [1, 59]. 

For the time being, a unique measurement system can provide some extra 

features with the general features of flow: the number of packets and bytes, the 

start and end time, the timestamp of first seen, and a TCP flag. NetFlow and IPFIX 

are two conventional protocols that define the preparation and exportation form of 

flows [25], which is known as flow record. We explained in figure 2.4 in chapter 2, 

how NetFlow exports flow in our network and makes it suitable for NIDSs for 

further analysis. 

It is convenient for NetFlow to deploy network communications because 

almost all Cisco devices support at least one version of NetFlow. A file transfer 

that involved transferring gigabytes of data in high-speed networks characterizes as 

a comparatively small network flow. This flow builds up only a portion of the 

original file transfer such that the overhead caused by creating flow records is 

justified (the cost on account of NetFlow is in average 0.2 % [59]). 

However, sampling techniques or flow aggregations can improve the 

performance of routers and monitoring stations [57]. 

3.2 Size of the Dataset 

The dataset was obtained from the university network after monitoring their 

IDS’s setup, which is used to track inbound/outbound traffic for specific segments. 

There was a 10-Gbps optical internet connection with a peak of 4.2 Gbps. They 
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collected flows using Netflow version 5. This version extracts flow in the 

following ways: 

• Internet: Inside the interface of the border firewall, which is 

responsible for providing the outbound or uploaded traffic. 

• Internetout: Outside the interface of the border firewall, which is 

responsible for providing the inbound or downloaded traffic. 

In 5 minute intervals, nfdump has produced 2400 to 10,500 flows per second. 

We selected 4th February 2017 to 4th February 2018 flow set for our research 

purpose. The total size of this unzipped data set is 6.5 TB along with 57.87 Billions 

of flows. We have parsed this massive dataset and chosen a partial amount of flows 

for this research. 

3.3 MINOS Overview and Dataset 

For the dataset collection, instead of using traffic benchmarks which have 

been shown to contain artifacts [37], we collected one year of real traffic for 1,000 

LAN hosts at Boise State University4. To deal with the number of communications, 

we decided to use network flows (NetFlows) [39], which collect highlevel 

communications between any two hosts. NetFlow allows MINOS to be resilient to 

encrypted and obfuscated communications as no payload information is used. 

MINOS operates in the following way. It takes as input network flows from a 

large organization, which can correspond to multiple hosts, and analyzes them in a 

fully unsupervised way (i.e., without any expert knowledge nor ground truth given 

                                                 
4 Unfortunately, obtaining access to a real enterprise network traffic is almost impossible due to 

privacy concerns. 
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as input). Instead of labeling individual events, MINOS aims to classify the state of 

each host in the network as either: 

• Clean Host (CH): A host not involved in any malicious activity. 

• Host Under Attack (HUA): A host that is receiving attacks from 

the outside. 

• Malicious Host (MH): An infected host that is performing an attack 

to the Internet from the internal network of the organization. 

We point out that this novel separation into three classes is different from prior 

literature, in which only two classes of hosts were considered: malicious and 

benign [5, 39, 41]. To deal with the heterogeneity of activities among different 

hosts, MINOS automatically creates a personalized behavioral traffic profile for 

each host independently. Afterward, novelty detection is applied to obtain an 

anomaly score; the scores of all hosts are used as input for an unsupervised 

classification module that has associated one of the three classes to each host. 

Table 3.1 Dataset details. It corresponds to one year of traffic collected at 
Boise State University (Feb 4th, 2017—Feb 4th, 2018). 

Category Num. Hosts Num. Flows Size(GB) 

Clean Host (CH) 530 34,413,822 1.69 

Host Under Attack 
(HUA) 

437 35,022,898 1.7 

Malicious Host (MH) 33 4,146,507 0.21 

Total 1,000 73,583,227 3.6 

A detailed breakdown of the dataset considered in this thesis is reported in 

Table 3.1. All 1,000 hosts are LAN hosts where the IP is assigned statistically. It is 

essential that the mapping between user and host be static so that MINOS can 
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create a behavioral profile over time. As ground truth for evaluating our method, 

we have deployed a Suricata IDS and used the following criteria: a host hi is clean 

if hi does not generate any alert, it is under attack if hi is in the destination IP of 

identified alerts (but hi is never the source), and it is malicious if there is at least 

one alert in which hi is the source of at least one alert. The Suricata configuration 

has been optimized for the environment by security analysts. Suricata alerts 

correspond to malicious activities such as botnet communications, command, and 

control interactions, exfiltration or exploit attempts malware drive-by downloads, 

and interactions with blacklisted external hosts [46]. 

The uniform selection procedure of 1,000 hosts has been described in section 

3.5. After machine selection, we aggregated all the flows associated with those 

machines from the whole dataset of a one-year duration. Ultimately, the size of the 

dataset of 1000 devices is 3.6 GB of 73,583,227 traffic flows. Seen on Table 3.1, 

HUA consists of the maximum number of flows compared with others, which is 

almost 48 percent (1.7 GB) of the entire traffic (3.6 GB). 

TABLE 3.2: Flows breakdown based on protocol 

Protocol Number of Flows 

UDP 5,840,211 

ESP 1 

TCP 59,513,927 

GRE 413,192 

IPv6 7,091 

SCTP 68 

ICMP 7,808,741 
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Total 73,583,227 

There are a total of seven IP protocols that exist in our dataset: User Datagram 

Protocol (UDP), Encapsulating Security Payload (ESP), Transmission Control 

Protocol (TCP), Generic Routing Encapsulation (GRE), Internet Protocol Version 6 

(IPv6), Stream Control Transmission Protocol (SCTP), and Internet Control 

Message Protocol (ICMP). Table 3.2 illustrates the maximum number of flows is 

related to TCP protocol (80.88 % of the entire traffic). 

Although we define ground-truth based on a signature-based system, MINOS 

operates in a fully unsupervised fashion and uses minimal information of the net 

flows. Moreover, it does not perform any deep packet inspection, works in the 

presence of encrypted communications and obfuscated payloads. Also, MINOS can 

operate in such a way in which signature-based systems would not work and does 

not rely on any expert knowledge. 

3.4 Feature Selection 

In our dataset, a flow closely follows the Netflow version 5 and has the 

following form: 

(Date, Fseen, Dton, Prot, Isrc, Idst, Psrc, Pdst, Pckt, Bte, Flag) 
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Table 3.3 Flow-based Features extracted from each flow. 

# Feature Description 

1 Weekend/Weekdays 
(Date) 

It is 1 if the flow started in the weekend and 
0 otherwise. 

2 First Seen (Fseen) Timestamp of the beginning of the flow. 

3 Duration (Dton) Duration of flow in milliseconds. 

4 Protocol (Prot) TCP/IP Protocol of the flow. 

5 Source Port (Psrc) Source port of the flow. 

6 Destination Port 
(Pdst) 

Destination port of the flow. 

7 Packet (Pckt) Number of network packets transferred in 
the flow. 

8 Bytes (Bte) Number of bytes transferred in the flow. 

9 Incoming/Outgoing 
(Flag) 

It is 1 if the traffic flow is originated from a 
host internal to the network and is going to a 
host external to the network (outgoing). It is 
0 if the traffic is generated from an external 
host and is going to an internal host 
(incoming). 

The unidirectional communication is identified by the source and destination 

IP addresses (Isrc and Idst), the operated ports (Psrc and Pdst), and the protocol type 

(Prot). The fields Pckt and Bte give the total number of transmitted packets and bytes 

respectively. The TCP header flags are stored as a binary "OR" in all packets of the 

flow (Flag). We selected eight out of these eleven features for our experiment. 

Hence, IP addresses are removed because they have been anonymized, and instead 

of a TCP flag, we used a flag that maintains incoming or outgoing flow direction. 
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Table 3.3 shows all the elected features of our experiment, including symbol and 

description. 

After finalizing features, it is necessary to complete the preparation of the 

dataset by eradicating the categorical data. Hence, categorical data are variables 

that contain label values rather than numeric values. For example, the protocol of 

the input dataset is the string value. Some machine learning algorithms can support 

categorical data directly. For example, a Decision Tree algorithm can learn directly 

from categorical data where no data transforming is required. On the other hand, 

many machine learning algorithms demand all numeric input and output variables, 

instead of any label data. 

Table 3.4 Minimum and maximum values of data set features 

# Feature Minimum Value Maximum Value 

1 Date 0 1 

2 Fseen 0 86,399,998.0
 (millisecond
s) 

3 Dton 0 312.5 (seconds) 

4 Prot 1 7 

5 Psrc 0 65,535 

6 Pdst 0 65,535 

7 Pckt 0 977,002 

8 Bte 0 937,800,000 

9 Flag 0 1 

Therefore, we converted the time stamp of the first seen (Fseen) attribute to 

milliseconds, changed the date (Date) to binary one or zero, based on weekends and 
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weekdays, respectively. Protocol, Source Port, Destination Port are categorical 

features which we converted to numerical through one-hot encoding with sparse 

representation. Afterward, we considered the maximum and minimum value of all 

features to get an idea about the deviation of those attributes (table 3.4). Since 

seven types of the protocol (table 3.2) exist in our dataset, the minimum and 

maximum value are one and seven respectively due to the label encoder. As a 

preprocessing operation, each flow feature is normalized across all the flows, so 

that the mean is 0 and the standard deviation is 1. 

3.5 Machine Selection 

 
Figure 3.1 Number of machines vs. average number of alerts 
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Figure 3.2 Number of machines vs. large number of alerts 

At first, we collected all the static machine’s list from network flow, and there 

were a total of 16,290, whereas 1,000 static machines have been targeted to do 

research. To select 1,000 machines in those three categories, we followed a 

procedure to create a balanced machine set. We selected 47% of 1000 = 470 as 

malicious or under attack machines, and 53% of 1000 = 530 as clean machines. 

Among 470 machines, 33 were malicious machines, and 437 were under attack 

machines. Between malicious and under attack machines, we picked 10% of 470 = 

47 machines that contains a large number of alerts (48,000 — 8,661,605), and the 

rest of the 423 (470-47) machines have an average number of alerts (2600 — 

3100). Figure 3.2 and 3.1 portrays this machine selection procedure. Hence, the 

number of flows were also in our consideration when we selected machines. Figure 

3.4 and 3.3 represents these histograms. In synopsis, we selected 47 machines, 

where the number of flows lies between 200,000 and 375,000, and alerts 48,000 to 

8,661,605, and the rest of the machines (423) flows in the range of 58,000 to 

68,000 and the number of alerts are from 2600 to 3100. On the other hand, similar 
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to malicious machines, those machines (530) have been selected as CH, whose 

number of flows lie between 58,000 and 68,000. Figure 3.5 represents this through 

a histogram. The reason behind this selection procedure is to assure that our 

experiment result is not biased with the number of flows. 

3.6 Ground Truth Extraction 

In the machine learning domain, the term "ground truth" indicates the 

accuracy of the training set’s classification. In other words, we can say this term is 

checking the results of a machine learning algorithm for precision against the real 

world. This term is borrowed from meteorology, where "ground truth" refers to 

 
Figure 3.3 Number of Machines with average number of flows 
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Figure 3.4 Number of Machines with large number of flows 

information obtained on-site. Usually, the term implies a kind of reality check for 

machine learning algorithms and is used in statistical models concerned with 

proving or disproving research hypotheses. 

 
Figure 3.5 Number of Clean Machines with flows 
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Table 3.5 Ground Truth for a single machine 

Timestamp for one hour Number 
alerts 

of 

02/04/2017/00:00:00.000000- 
02/04/2017/00:59:59.000000 

0 

02/04/2017/01:00:00.000000- 
02/04/2017/01:59:59.000000 

0 

02/04/2017/02:00:00.000000- 
02/04/2017/02:59:59.000000 

5 

02/04/2017/03:00:00.000000- 
02/04/2017/03:59:59.000000 

0 

  

02/04/2018/01:00:00.000000- 
02/04/2018/01:59:59.000000 

10 

We described three types of machines: CH, HUA, and MH and selected the 

type of machine based on the ground truth. MINOS is a fully unsupervised 

approach, and it does not need any labeling or prior knowledge. However, we 

collected ground truth from the log files of Suricata in order to evaluate our results. 

The Suricata log files from 4thFebruary, 2017 to 4thFebruary, 2018 were in our 

consideration as an input dataset belonging to this range. The following is the 

example of a single alert from the Suricata log file: 

"10/12/2017-22:35:01.319011 [**] [1:2009582:3] ET SCAN NMAP -sS window 

1024 [**] [Classification: Attempted Information Leak] [Priority: 2] TCP 

150.255.174.211:61512 -> 132.178.137.210:873" 

Into this alert the string ”− > ” divides two IP addresses and port numbers. 

The left side of that arrow (150.255.174.211:61512) indicates as source IP 
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(150.255.174.211) and source port number (61512). The right side of that arrow 

(132.178.137.210:873) means destination IP (132.178.137.210) and destination 

port number (873). 

Let’s assume, "132.178.137.210" is a machine that is under attack, which exists 

in the alert as a destination IP address. There is also the exist date (10/12/2017) and 

the timestamp (22:35:01.319011) of that alert. We created a dictionary to collect the 

ground truth against a single machine. The key value of this dictionary is a particular 

hour against a specific date, and the value is the number of alerts that exist in that 

specific hour. Table 3.5 illustrated a sample of an identical machine’s ground truth, 

where the first, second, and fourth hour of 4thFebruary 2017 do not contain any alerts, 

whereas, in the third and last hour it holds five and ten alerts, respectively. 

The problem with Suricata is that it is unable to detect any unknown attacks 

because it is a signature-based or rule-based anomaly detection approach. 

Moreover, it is analyzing packets to produce alerts against an attack, which is 

inconvenient for today’s high-speed networks. Also, it is infeasible for encrypted 

packets. Therefore, we proposed a novelty detection approach using only traffic 

flows instead of packets so that it is able to detect any attacks from encrypted 

traffic. 

3.7 Research Challenges 

Misuse-based systems rely on manually defined pattern matching signatures 

(e.g., NIDS [46]). It cannot cope with the continuously evolving and growing 

variety of traffic activities and attacks in large networks [62]. Moreover, these 

methods require a priori knowledge of the attacks. Hence, statistical anomalybased 
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methods have been investigated, but their adoption is hindered by several 

challenges [56]. 

Dataset Collection. The first intrinsic challenge is to obtain a representative 

dataset to evaluate a proposed method. Prior research efforts exist to build 

benchmark datasets for traffic anomaly detection (e.g., DARPA [33], KDDCUP 

[30]), but successive research [37] has demonstrated that such datasets contain 

artifacts associated with the artificial injection of attacks, or that they are not 

representative of the traffic of large real-world organizations. 

Quantity of Communications. We focus on large organizations, which can 

have thousands of hosts and billions of Internet communications per day. In such a 

scenario, it is incredibly challenging to detect which specific actions are malicious. 

Also it is challenging in terms of computational perspective. We will show how an 

existing state-of-the-art approach for traffic anomaly detection becomes unusable 

when applied in our domain. 

Encrypted Communications. Some traffic anomaly detection methods 

assume that the traffic is not encrypted [5, 36, 62]. It is important to develop a 

methodology that can work in the presence of encrypted traffic and by using 

minimal information about the communications so that it captures high-level 

behaviors [39]. 

High Cost of Errors. Both false positives and false negatives have a much 

higher cost than in other domains. False positives correspond to false alarms and 

can quickly overwhelm security analysts if they have to investigate reported 

incidents [56] manually. False negatives correspond to missed attacks—if even a 

single host gets silently infected, then the whole organization is at risk. To 
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complicate the situation, the majority of network activities are benign. Hence, due 

to base rate fallacy [3], it is even harder to detect real network threats. Therefore, it 

is crucial to achieving very high performance in this domain. 

Heterogeneity of Activities. Each host has very different individual behavior. 

An enterprise can have a Web server, file server, database servers, WiFi and LAN 

clients, where employees can have a wide range of possible usage profiles [2, 39]. 

This varies greatly depending on the applications deployed on each host. 

3.8 Problem Statements 

We have designed MINOS taking these challenges into account. The 

objective of this research is two-fold. Firstly, we propose MINOS is a novel 

approach for fully unsupervised large-scale traffic analysis, are can prioritize and 

classify internal hosts into one of three classes: clean, malicious, and under attack. 

The goal is to find out the anomaly score of each machine and prioritize a group of 

machines in a completely unsupervised way by analyzing only net flows. If that 

machine is harmful, then identifying that machine as a malicious or under an attack 

machine. In this thesis, the unique features of the novelty detection technique 

makes it feasible to identify the state of the machine with high accuracy and less 

execution time. Secondly, we figure out when the attack has happened for a 

machine if the machine is under an attack or malicious. 
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CHAPTER FOUR: METHODOLOGY 

Methodology 

The MINOS approach consists of the following steps (Figure 4.1): 

1. Collection of the sequence TFi of traffic flows during a particular time 

frame (2 weeks to 12 months) for a specific host hi 5 

2. Extraction of hourly-based features dataset by using the traffic flows of 

host hi. The hourly-based features dataset consists of rows with 

features [f1, . . . , fm], the flows starting in each specific hour of the 

defined time frame (in Figure 4.1 the time frame contains d hours) for 

the host hi. 

3. Learning an anomaly hourly-based model from the hourly-based 

features dataset and retrieving the anomaly score score(hourj) for each 

hour hourj. 

4. Normalization of all hourly scores and aggregation to achieve a unique 

and absolute score for each host hi. 

5. Given all the absolute anomaly scores for all the hosts, group the 

scores in three categories and classify (in an unsupervised way) each 

host in one of the three classes: CH, HUA, and MH. 

                                                 
5 We observe that such time frame lengths are required to create a realistic behavioral model of a 
client/server host that may perform different operations depending on the time of the day, day of 
the week, and month of the year [39]. 
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Figure 4.1 The main steps of MINOS. 

6. Identifying each hour as anomalous or not based on the anomaly score. 

We use the aggregated anomaly score for each host to prioritize the 

dangerous machines and classify them in three categories (described in section 3.5 

in Chapter 3): Clean Host (CH), Host Under Attack (HUA), and Malicious Host 

(MH). It is essential to notice that the MINOS procedure is fully unsupervised 

since it uses only traffic flow data as input. Moreover, the MINOS procedure is 

parallelizable for each host, depicted in Figure 4.1), where MINOS can quickly 

scale to analyze a large number of hosts. In the remainder of this chapter, we 

describe in details steps 2, 3, 4, 5, and 6 of MINOS. 

4.1 Step 2: Hourly-based Feature Extraction 

In this step, for each host, MINOS first extracts features for each flow 

(flow-based features), then processes them to obtain the hourly-based features. 

These hourlybased features summarize the behavior of the host across all hours of 

the specific time frame. The hourly-based features are the ones required to 

compute the anomaly score (Figure 4.1). 

The hourly-based feature extraction step (Figure 4.2) takes an input of all the 

traffic flows within a specific time frame; then, it produces a set of features for 
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each hour. Each flow Flowj is characterized by a timestamp tj and a vector of flow 

features Gi. The features extracted from each flow are described in Table 3.3. 

After computing Gi, we execute the K-Means clustering algorithms to obtain 

{C1, . . . , Ck} clusters. It is important to note that the First Seen feature (Table 3.3) 

is used to create clusters containing flows that are temporally close to each other. 

Protocol, Source Port, and Destination Port are categorical features which we 

convert to numerical through one-hot encoding with sparse representation. As a 

preprocessing operation, each flow feature is normalized across all the flows, so 

that the mean is 0, and the standard deviation is 1. 

We used a machine-learning algorithm, K − means to train a model for our 

input dataset. The motivation for choosing K-Means is that the number of flows 

for each host is large, and the K-Means clustering is the fastest clustering 

algorithm in terms of Euclidean space and similarity. The critical part is selecting 

the number of clusters because each machine contains a different quantity of 

flows. Hence, the static value of this parameter can be a hindrance for our desired 

outcome. For example, machine A has 58, 000 flows, and machine B has 5 million 

flows; if the static value of the cluster number is 50, it might be precise for 

machine A but not for machine B. Thus, we used the well-known rule of thumb 

[26] on choosing the best k for a K − Means clustering: k , where g is the 

number of points to the cluster. In our case, this g is equal to the cardinality of 

input flows matrix for each machine. Thus, the value of the cluster number, Ck, 

would be dynamic based on the length of the input flows matrix. Since the number 

of clusters, Ck, has to be an integer value, a ceiling operation has been done 

significantly over the rule of thumb. 
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Figure 4.2 MINOS extraction of Hourly-based Features for one host. 

We now aim to define a set of features that summarize the behavior of a 

particular host for each hour. Let us introduce some elements: the clusters  

{C1, . . . , Ck} and a flow Flowj = (tj, Gj) (with j = 1, . . . , g). 

• tj ∈ houri if the Flowj starts in the hour i; 

• Flowj ∈ Ci if the Flowj belongs to cluster Ci; 

• D(Gj, Ci) the euclidean distance between the vector of the flow 

features Gj representing Flowj and the mean of the cluster Ci. 

The hourly-based features consist of a set of features corresponding to the 

different clusters, for each hour houri of host hi (Figure 4.2). First, given an hour 

houri, MINOS extracts three features for each cluster Cl defined as follows: 

1. The number of flows of host hi starting in houri and belonging to cluster 

Cl, i.e. |{Flowj|j ∈ {1, . . . , g}, tj ∈ houri, Flowj ∈ Cl}|. 

2. The summation of the Euclidean distances of all the flows of host hi 

starting in houri and belonging to cluster Cl, i.e. 

∑j∈{1,...,g},tj∈houri,Flowj∈Cl D(Gj, Cl). 

3. The maximum Euclidean distance among all the flows of host hi 

starting in houri and belonging to cluster Cl, i.e. 

maxj∈{1,...,g},tj∈houri,Flowj∈Cl D(Gj, Cl). 
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The last two features capture how anomalous are the traffic flows 

belonging to cluster Cl in the hour houri according to two different aggregations 

(i.e., θmax and θavg see section 4.4). Besides, we define two other features as 

follows: 

1. The summation for each flows Flowj starting in houri of the minimum 

euclidean distances D(Gj, Cl) for each cluster Cl, i.e. 

∑j∈{1,...,g},tj∈houri minl∈{1,...,k} D(Gj, Cl) 

2. The maximum for each flows Flowj of host hi starting in houri of the 

minimum Euclidean distances D(Gj, Cl) for each cluster Cl, i.e. 

maxj∈{1,...,g},tj∈houri minl∈{1,...,k} D(Gj, Cl) 

We introduce these two additional features as anomaly indicators that are 

computed while considering all the clusters together. In summary, the total 

number of hourly-based features (Figure 4.2) is 3 ∗ k + 2 for each hour houri of 

host hi. There are 3 features per k cluster. Also, two additional features exist, 

considering all the clusters together. As the last step, once the hourly feature 

matrix is obtained, we perform standardization of each feature, so that the 

elements have a mean of 0 and a standard deviation of 1. 

Feature Extraction Algorithm. We describe our feature extraction 

procedure in the Algorithm 1 that takes two inputs to produce the list for feature 

vector (hourdN). Hence, N represents the selected machines (1,000 in number). The 

input parameters are FlowjN and d. The FlowjN represents the input flows matrix of 

all machines, and d represents the total hours in the given time frame. Since there 

are a total 8, 784 hours in the selected year the value of d should be 8, 784. 
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Algorithm 1 Feature Vector Extraction 

 
1: Input 
2: FlowjN Flows matrices of all machines 
3: d The calculative hours into given time period 
4: Output 
5: hourdN Feature vectors for all machines 
6: procedure FVE(FlowjN, d) 
7: hourdN ← ∅ 
8: for i ← 1 to N do 

9: k   The number of clusters 
10: mlModel ← ModelFitting(k, Flowij) 
11: hourdi ← ScoreTransform(Flowij, mlModel) 
12: hourdN ← hourdN ∪ hourdi 
13: end for 
14: return hourdN .    The list of feature matrix for all machines  
15: end procedure 
16: function MODELFITTING(k, Flowij) 
17: mlModel ← KMeansFitting(k, Flowij) 
18: return mlModel  The fitted Kmeans model 
19: end function 
20: function SCORETRANSFORM(Flowij, mlModel) 
21: for p ← 1 to d do 
22: lm, sm ← ∅ 
23: lb ← mlModel.Predict(Flowip) 
24: lb ← processed(lb) 
25: tm ← mlModel.Transform(Flowip) 
26: tm ← processed(tm) 
27: sf1 ← [max(∃k∀Flowip ∈ tm)]  
28: sf2 ← [∑(∃k∀Flowip ∈ tm)] 
29: ls ← [max((∃Flowip∀k) ∈ tm)] 
30: sf3 ← max(ls) 
31: sf4 ← ∑(ls) 
32: sm ← lb ∪ sf1 ∪ sf2 ∪ sf3 ∪ sf4 
33: lm ← lm ∪ sm 
34: end for 
35: return lm  The feature matrix of a single machine 
36: end function 
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The feature extraction procedure has the following two steps. Firstly, train a 

machine learning model for input dataset. Secondly, prepare a meaningful feature 

matrix after transforming the score of that model so it can be a high learning point 

for the anomaly detection algorithm in the future. 

For the first step, the algorithm called "ModelFitting" function, which is 

utilized to fit the K − means model using the k and Flowij parameters. The returns 

from the mentioned function declare the object of a trained k − means model, 

"mlModel". While the model becomes ready, the next target is to construct a 

feature vector from the created model. 

The ScoreTransform function starts with a for loop running from 1 to d, 

where each iteration represents an hour, a row of the feature matrix for the ith 

machine. Afterward, the trained model (mlModel) predicts the number of clusters. 

The following matrix draws a sample structure of the predicted matrix 

(lb) with a dimension of 1 × G, where each column represents the number of a 

cluster for a unique flow. 

lb = [Ck C1 C1 C3 C2 C3 C2 C3 … C5] 

Our objective is to extract some meaningful features such that the novelty 

detection algorithm can learn as much as possible to produce the desired score. 

Thus, we modified the predicted matrix depending on the total number of flows 

into each cluster. Therefore, the matrix can identify a normal (highest number of 

flows belonging to a cluster) and an abnormal (lowest number of flows belonging 

to a cluster) cluster. Generally, the distinguishing between normal and abnormal 

flows cluster can be a potential learning foundation for the anomaly detection 
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algorithm. The following vector lb with a dimension of 1 × k, represents our 

processed matrix of lb. 

lb = [2 2 3 0 1 0 0 0 … 1] 

Since there is a total of k clusters, we can represent the feature vector of lb in 

the following way: 

lb  

In the next step, our algorithm generates a transform matrix (tm) by 

transforming the flows of the current hour using the trained mlModel. The 

transform property used to return a cluster distance such that in the new space, 

each dimension represents the distance to the cluster centers. Therefore, after the 

transformation of each flow, we obtain a distance-vector with the cardinality 

|Ck|. The following matrix (tm) illustrates the outlook of the transform matrix, 

where D denotes the distance to the cluster center. For example, D(2, 3) describes 

itself as the distance of the second flow from the center of the third cluster.  

D(1, 1) D(1, 2) D(1, 3) ··· D(1, k) 

D(2,1) D(2, 2)  D(2, 3) ··· D(2, k) 

  

D(g, 1) D(g, 2) D(g, 3) ··· D(g, k) 

We processed the above transform matrix tm such that it keeps a record of 

the minimum distance of each flow rather than the whole distance. Logically, if 

cluster Ck contains flow 1, then the minimum distance from flow 1 to any cluster’s 
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centroid would be the distance from Ck to flow 1. In this case, we define zero for 

other clusters except the Ck, which constructs the following matrix tm: 

C1 C2 C3 … Ck 
0 0 0 … D(1,2) 

D(2,1) 0 0 … 0 
D(3,1) 0 0 … 0 

     
0 0 0 … 0 

  
Afterward, we compute a maximum and summation of all distances per 

cluster in the tm matrix to define the depth of the anomaly. 

 

fpk+1 = max(0, D(2, 1), D(3, 1), . . . , 0) fp2k+1 = sum(0, D(2, 1), D(3, 1), . . . , 0)  

fpk+2 = max(0, 0, 0, . . . , 0)   fp2k+2 = sum(0, 0, 0, . . . , 0) 

 

fpk+k = max(D(1, g), 0, 0, . . . , 0)  fp2k+k = sum(D(1, g), 0, 0, . . . , 0) 

 

These maximum and summation values are the primary materials for 

producing sub-feature vector sf1 and sf2 with a dimension of 1 × k, mentioned in 

line number 27 and 28 in the Algorithm 1. 

 sf fpk+1 fpk  

sf  

Our next step is to create a list of minimum distances per flow for all clusters 

from the matrix tm. The following equations are the mathematical representation of 

this task, where minF1 expresses the minimum distance from the first flow to all 

clusters in tm matrix. 
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minF1 = max(0, 0, . . . , D(1, k)) 

minF2 = max(D(2, 1), 0, . . . , 0) 

 

minFg = max(0, 0, . . . , 0) 

Line number 29 in Algorithm 1 is exploring itself as a sequence of those 

minimum values which we computed above (minF1, . . . , minFg). 

ls = [minF1, minF2, . . . , minFg] 

We create two sub-features (sf1 and sf2) out of four. The next target is to build 

the rest of the sub-features (sf3, sf4) to create a feature matrix for a specific 

window. The complexity of sf3 and sf4 are not as similar as sf1 and sf2.They are just 

the calculation of maximum and summation of the list (ls), which the algorithm 

produced in line number 30 and 31. The following two equations are the formal 

presentation of these sub-features: 

sf3 = max(ls) 
 

n 
sf4 = ∑(ls[i]) 

i=1 

 

We use the prediction label matrix (lb) and all sub-features (sf1, sf2, sf3, and 

sf4) to form a sample (sm) of feature vector. The dimension of this sample is (sm) is 

1 × m. Algorithm 1 produces d number of samples (sm). Line number 33 in 

Algorithm 1 horizontally merges each of the samples to build the large matrix (lm). 

At the end, the function ScoreTransform returns lm as the final feature vector. 

Hence, the dimension of this final feature vector would be d × m. The following 

matrix illustrates the final feature vector of a single machine: 
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   f11 …  f1k   f1k+1 …  f1k+k   f12k+1 …  f12k+k   f13k+1   f13k+2 
    f21 …  f2k    f2k+1 …  f2k+k    f22k+1 …   f22k+k   f23k+1   f23k+2 

  
 fd1 … fdk    fdk+1 … fdk+k   fd2k+1  …    fd2k+k   fd3k+1   fd3k+2 

 
 

However, the above matrix stands only for a single machine. As we are 

considering 1000 machines, the algorithm generates a list of 1000 feature vectors. 

Line number 13 of the algorithm constructs this final matrix by aggregating all the 

single machines feature vector. 

In summary, we described in this section how we created a well-defined 

feature vector. In the next part, we will articulate the application procedure of the 

novelty detection algorithm over this feature vector. 

4.2 Step 3: Hourly-based Anomaly Detection Model 

We use anomaly detection techniques to identify non-conforming hours 

inside the time frame of a host. An anomaly detection technique learns the normal 

hourly behavior of the host and gives to each hour an anomaly detection score. 

The higher the anomaly score for houri, the higher the likelihood that houri is 

anomalous. MINOS creates an anomaly detection model, and the output of that 

model is a vector of anomaly scores, one anomaly score for each hour of the time 

frame. For the anomaly detection model, we considered the Gaussian Mixture 

Model (GMM), One-Class Support Vector Machine (OC-SVM), Autoencoder, 

and Long Short-Term Memory (LSTM) Autoencoder. 

Gaussian Mixture Model is an advanced clustering technique that works 

by learning a mixture of multivariate Gaussian distributions where each 
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distribution represents a specific cluster. Once trained, it assigns to each point a 

probability that the mixture distribution generates the points. The anomaly score 

for this technique is obtained, not by the learned Gaussian Mixture distribution, 

but by computing this probability. 

One-Class Support Vector Machine [38] is a classification algorithm 

based on the binary support vector machine with the peculiarity to use only one 

class in the training phase. The binary classification is obtained by analyzing the 

sign of the decision function: if positive, the class is the same as the example used 

in training, and if negative, the class is different. The anomaly score is obtained by 

inverting the sign of the decision function. 

Autoencoder is very similar to a feed-forward multilayer perceptron 

neural network. The encoder part aims to learn an encoded representation 

(embeddings) of training in different feature space data by efficiently reducing the 

dimensionality of the original data space. The decoder phase tries to reconstruct 

the original data by taking the embeddings (compressed feature vectors) as input. 

For our feature vector, we encoded and decoded twice. The output of an 

autoencoder has the same number of computational units as the input (original 

feature dimension). An autoencoder reconstructs hourly-based features that have 

similar statistical properties in the original feature space. Smaller reconstruction 

errors represent the normal and higher reconstruction errors represents the 

anomalous hourly-based features. 

LSTM Autoencoder [4] is an autoencoder where the input and output are 

the sequences of hourly-based features. We considered input sequences of 
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consecutive 24 hours and created a dataset of sequences obtained by shifting each 

sequence by one hour. 

 
< hourl = [f11, . . . , f1m], . . . , hour24 = [f241 , . . . , f  

 
< hour2 = [f21, . . . , f2m], . . . , hour25 = [f251 , . . . , f  

 
 

< hourd , . . . , fdm−24], . . . , hourd = [fd1, . . . , fdm] > 
 

The LSTM Autoencoder reconstructs each sequence and assigns to each 

sequence a reconstruction error. The dataset has d − 24 sequences, which produces 

d − 24 anomaly scores. 

4.3 Step 4: Anomaly Scores Normalization and Aggregation 

The LSTM Autoencoder reconstructs each sequence and assigns to each 

sequence a reconstruction error. The dataset has d − 24 sequences, which produces 

d − 24 anomaly scores. 

4.4 Step 4: Anomaly Scores Normalization and Aggregation 

To obtain a single score for each host, we use the following two 

aggregation procedures: 

• Max Aggregation (θmax): Standardizing the score vector (with mean 0 and 

standard deviation 1), and then computing the maximum of the normalized 

anomaly scores among all the hours of host hi. 

• Avg Aggregation (θavg): Scaling the score vector by dividing each 

component by the maximum absolute value, and then computing the 

average of all the scaled anomaly scores among all the hours of host hi. 

The θmax and θavg represents the worst and average anomalous scenario, 

respectively, for each host. We compute the scores of each host individually and 
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compare them with the normalization operations (the standardization and the 

scaling operation). 

The maximum absolute scaling and standardization (i.e., the two 

normalization procedures) are not interchangeable in the θmax and θavg, because the 

average of different standardized data would always correspond to the same value 

and the maximum absolute value of different scaled data may always correspond 

to value 1. 

4.5 Step 5: Unsupervised Classification 

The detection module group obtained anomaly scores for all hosts by using 

K-Means (number of clusters k=3). It assigns all the hosts inside a cluster to a 

class among CH, HUA, and MH. The centroid with the lowest value is assigned to 

the class of clean hosts (CH), the one with the highest value is assigned to the 

class of malicious hosts (MH), and the centroid with the middle value is assigned 

to the class of hosts under attack (HUA). 

4.6 Step 6: Anomalous or Not Anomalous Identification 

After standardizing the score vector of all hosts, the detection module 

identifies each hour of the host as either Anomalous or Not Anomalous. If the 

score of a particular hour is higher (positive), that hour is classified as the 

anomalous time frame. On the other hand, if the score of a particular hour is lower 

(negative), that hour is identified as the not anomalous time frame. 
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CHAPTER FIVE: EXPERIMENTAL EVALUATION 

In this chapter, we evaluate the capability of MINOS to prioritize hosts 

among CH, HUA, and MH based on anomaly scores. Afterward, we measure the 

accuracy and required execution times at different time frames followed by 

unsupervised classifications of each host as either CH, HUA, and MH. Finally, we 

identify precisely when any particular attack or list of the attacks has happened for 

HUA and MH hosts. 

We also compare our research outcomes concerning MINOS with Kitsune’s [41], 

state of the art approach. As discussed in Section 2.7, Kitsune was originally designed 

to analyze packets data of IoT traffic for a few hours. However, there are two main 

reasons this method is not valid in large networks. First, it is infeasible to analyze the 

packet level information for a given period (i.e., a couple of months / a year/ more). 

Second, it is insufficient to create a behavioral model for complicated activities and 

large patterns [2, 39] of client/server hosts. Hence, we reimplement the same 

architecture and methodology of Kitsune (based on an ensemble of Autoencoders), 

but we apply it on our hourlybased features (cf. Section 4.1). 

 
Figure 5.1 Hosts sorted by increasing OC-SVM anomaly score value. 
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Figure 5.2 Hosts sorted by increasing Autoencoder anomaly score value. 

5.1 Separating CH, HUA, and MH with Hourly-based Anomaly Scores 

We first evaluate the capability of the anomaly scores to separate the hosts 

within the three categories (CH, HUA, and MH). Figures 5.1, 5.2, 5.3 report three 

bar charts (for OC-SVM, Autoencoder and Kitsune) with the θavg anomaly scores 

on the time frame of one year. The hosts are ordered over the X-axis according to 

the anomaly scores produced by MINOS. Each vertical bar represents a specific 

host, and the color represents the ground truth of one of three classes among CH, 

HUA, and MH. Figure 5.1 shows that the anomaly score mostly orders first the 

clean hosts (CH), second the hosts under attack (HUA) and last the malicious 

hosts (MH). In other words, malicious hosts have the 

 
Figure 5.3 Hosts sorted by increasing Kitsune anomaly score value. 

highest anomaly scores. This figure intuitively explains how MINOS can 

effectively prioritize the riskiest and most dangerous hosts in the network. We can 

observe that OC-SVM offers the best separation of the three classes. 
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To better quantify the discriminatory powers of the MINOS anomaly scores 

we consider two binary classification problems: (i) CH vs. Other (i.e., CH vs. 

HUA and MH), and then (ii) HUA vs. MH. In particular, in the case of CH vs. 

Other, we test the hypothesis that higher anomaly scores correspond to a higher 

likelihood that the host is under attack or malicious. In the case of HUA vs. MH, 

we test the hypothesis that higher anomaly scores correspond to the higher 

likelihood of a host being malicious. To test these hypotheses, we use the Area 

Under the Receiver Operating Characteristic curve (AUROC) and the Average 

Precision (AP). 

Table 5.1 reports the results for the different anomaly scores obtained over 

a period of 12 months with the different anomaly models and two different 

aggregation procedures (θmax and θavg). Table 5.1 shows that the OC-SVM with the 

θavg aggregation in the MINOS anomaly detection approach satisfies all the 

hypotheses. After the OC-SVM, the Autoencoder works perfectly for the case CH 

vs. Other, but not for HUA vs. MH. MINOS (OC-SVM) also outperforms 

Kitsune, especially in terms of AP, and in the case of HUA vs. MH (Figures 5.1, 

5.2 and 5.3). 
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Table 5.1 AUROC and AP of anomaly scores on 12 months of traffic. Values 
≥ 0.80 are highlighted in bold. 

 CH vs. Other HUA vs. MH 

AUROC AP AUROC AP 

Algorithm/Aggregation θmax θavg θmax θavg θmax θavg θmax θavg 

MINOS (GM M) 0.95 0.05 0.97 0.31 0.04 0.39 0.07 0.18 

MINOS (OC-SVM) 0.20 1.00 0.37 1.00 0.81 0.90 0.55 0.71 

MINOS (Autoencoder) 1.00 0.92 0.99 0.93 0.30 0.72 0.12 0.29 

MINOS (LSTM) 0.82 0.18 0.75 0.32 0.85 0.13 0.38 0.04 

Kitsune [41] 0.99 0.12 0.99 0.31 0.29 0.69 0.13 0.30 

5.2 Attack Time Identification 

We described the ground truth collection per hour for each machine in 

chapter 4. In this section, we explain our results of recognizing when an attack has 

happened for HUA and MH by graphical representation. For attack time 

identification we use both HUA and MH to compare hourly based experimental 

anomaly detection score with the ground truth and then produce the accuracy 

score of AUROC and AP. 

Figures 5.4, 5.5, 5.6, and 5.7 represent the accuracy of AUROC and AP 

against the experimental result of LSTM − Autoencoder and OC − SVM for HUA 

and MH, respectively. The horizontal line indicates all machines, and the vertical 

line implies the accuracy score. The red and blue line indicates the accuracy of AP 

and AUROC, respectively. 

Table 5.3 shows that, among all the experiments, the best accuracy for host 
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Figure 5.4 The LSTM accuracy of attack time for the HUA 

 
Figure 5.5 The LSTM accuracy of attack time for the MM 

identification was achieved by the OC − SVM. For the attack time 

identification, we found that, among all of them, LSTM-Autoencoder and OC-

SVM performed the best. Figure 5.4 represents the accuracy for HUA, where the 

accuracy of AP reached up to 100%, and the efficiency of AUROC fluctuated 
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Figure 5.6 The OC-SVM accuracy of attack time for the HUA 

 
Figure 5.7 The OC-SVM accuracy of attack time for the MH 

between 60% to 80%. In some cases, even AUROC fell sharply; because 

some machines are carrying a few attacks in most of the sequences. Since our 

LSTM 
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Figure 5.8 AUROC and AP of GMM for different time frames. 

anomaly detection algorithm used 24 hour sequences to train the model, 

we aggregated 24 hour ground truth each time for the LSTM − Autoencoder. 

Therefore, for some machines, there exist a few attacks for most of the sequences, 

which creates minimal accuracy for the AUROC. On the other hand, figure 5.5 

depicts that there is not available AUROC accuracy for a few machines, because 

those machines contained at least one attack for all of the sequences. Thus, 

AUROC produced "nan" value instead of any accuracy. 

5.3 Different Time Frames 

We investigate the impact of time frame size on the accuracy of the 

MINOS anomaly scores. Figures 5.8, 5.9, 5.10, and 5.11 report MINOS scores for 

all the anomaly detection models (y-axis), corresponding to 0.5, 1, 3, 6, 9, and 12 

months of time frame (x-axis). These plots show that OC-SVM with the θavg 

aggregation is the best anomaly detection model, even when the analysis dataset 

size is only one month, in which AUROC is higher than 0.8 for both separation 

problems (i.e., CH vs. Other and HUA vs. MH). 
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Figure 5.9 AUROC and AP of OC-SVM for different time frames. 

 
Figure 5.10 AUROC and AP of Autoencoder for different time frames. 

5.4 Execution Time 

Since the dataset is massive, Titan has been used to run the proposed 

approaches. Titan is a supercomputer that uses Graphics Processing Units (GPUs) 

including conventional Central Processing Units (CPUs). Titan’s performance is 

measured in floating-point operations per second (FLOPS) instead of million 

instructions per second (MIPS). Titan is the first such hybrid to perform over ten 

petaFLOPS. 
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Figure 5.11 AUROC and AP of LSTM for different time frames. 

 

Table 5.2 Execution time (in minutes) for 1,000 machines. 

 

Algorithm 2 

Weeks 

1 

Month 

3 Months 6 Months 9 Months 12 Months 

MINOS (GMM) 2.59 6.70 213.90 410.35 945.49 2568.88 

MINOS (OC-

SVM) 

1.58 3.71 107.02 245.76 402.62 597.63 

MINOS 

(Autoencoder) 

66.88 77.82 226.86 627.48 943.98 1663.88 

MINOS 

(LSTM) 

178.56 392.14 1208.99 2949.78 4386.78 6498.38 

Kitsune [41] 69.12 80.86 234.78 652.14 970.87 1728.14 

In our experiments, we used a server with two 2.10 GHz Xeon E4-2620 

Processors, 128GB RAM, and 4 Titan X GPUs. The system ran Ubuntu 16.4 with 

scikit-learn, Keras and ThunderSVM libraries. In particular, Keras and 

ThunderSVM libraries can use Titan X GPU to speed up the computational time 
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(inference and test) for GMM, Autoencoder, LSTM, and One-Class Support 

Vector Machine (OC-SVM). 

Table 5.2 reports the total execution times (in minutes) to analyze 1,000 hosts 

with MINOS and Kitsune, where MINOS (OC-SVM) is fastest, followed by 

Autoencoder. Also, Kitsune has higher execution time with lower detection 

performance. 

Table 5.3 Performance of 3-class detection module (12 months). 

 

  θmax θavg  

Algorithm Metric Prec. Rec. F1 Prec. Rec. F1 

MINOS (GMM) 
Micro 
Macro 

0.01 
0.09 

0.01 
0.04 

0.01 
0.01 

0.44 
0.33 

0.44 
0.35 

0.44 
0.24 

 Weighted 0.14 0.01 0.01 0.32 0.44 0.28 

MINOS (OC-SVM) 
Micro 
Macro 

0.54 
0.54 

0.54 
0.36 

0.54 
0.29 

0.98 
0.92 

0.98 
0.90 

0.98 
0.91 

 Weighted 0.48 0.54 0.40 0.98 0.98 0.98 

MINOS (Autoencoder) 
Micro 
Macro 

0.88 
0.66 

0.88 
0.65 

0.88 
0.64 

0.81 
0.65 

0.81 
0.58 

0.81 
0.60 

 Weighted 0.92 0.88 0.90 0.82 0.81 0.79 

MINOS (LSTM) 
Micro 
Macro 

0.69 
0.57 

0.69 
0.61 

0.69 
0.57 

0.30 
0.26 

0.30 
0.47 

0.30 
0.26 

 Weighted 0.70 0.69 0.68 0.35 0.30 0.31 

Kitsune [41] 
Micro 
Macro 

0.09 
0.32 

0.09 
0.16 

0.09 
0.11 

0.16 
0.14 

0.16 
0.18 

0.16 
0.14 

 Weighted 0.41 0.09 0.13 0.18 0.16 0.17 
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5.5 Unsupervised Classification Performance 

Table 5.3 reports the performance results (Precision, Recall, F1-Score) 

when using the fully unsupervised classification module of MINOS described in 

Section 4.5. Since there are three classes (CH, HUA, MH), we report Micro, 

Macro, and Weighted statistics. These results confirm that MINOS with OC-SVM 

and θavg aggregation achieves the best performance. We remark that no training 

labels have been used by MINOS to achieve this performance. The lower Macro 

performance in OC-SVM is related to some malicious hosts classified as under 

attack and vice versa, while the separation between CH and the others (HUA and 

MH) remains very nitid. Conversely, Kitsune [41] performs poorly because there 

is not a clear separation between the anomaly scores it generates (cf. Figure 

5.1,5.2, and 5.3). 
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CHAPTER SIX: CONCLUSION 

6.1 Summary 

We have proposed MINOS, a fully unsupervised method for traffic 

anomaly detection, which does not require any ground truth or label data. It can 

perform offline analysis for large networks efficiently. Moreover, it can prioritize 

and classify internal hosts in three categories: clean hosts, hosts under attack, and 

malicious hosts. Also, it can identify the time frame of an attack for malicious and 

under attack machines. MINOS with OC-SVM and θavg aggregation method 

performs better than state of the art, both in terms of accuracy and execution time. 

We remark that MINOS can parallelize each host separately and analyze 

large time frames of traffic in a short time. The low execution times suggest that 

future work can effectively adapt MINOS for online analysis. 

The proposed methodology is obtaining high accuracy by analyzing normal 

traffic, where the status of a machine is entirely unknown. In this context, Chapter 

6. Conclusion 

the low false alarms (false positive rates) of this unsupervised novelty 

detection score can be a practical solution to the problem, which is consistent with 

safety and security. Also, our work proves that only two weeks of traffic flows are 

sufficient to obtain the desired result in a year. As a result, it reduces the execution 

time and acts as a less resource-intensive task. 
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6.2 Future Work 

We used Gaussian Mixture Model, One-Class Support Vector Machine, 

Autoencoder, and LSTM-Autoencoder methodologies for our Anomaly detection 

models. We believe that there is a space for more improvement in terms of 

differentiating malicious machines and machines under attack. Moreover, an 

hourly-based feature extraction procedure needs two days for 1000 machines to 

create a feature vector. We can improve the execution time of this procedure. 

Furthermore, instead of only offline analysis, we can think about online analysis. 

We need to enhance the accuracy of the attack time identification for a machine. 

Additionally, we are identifying the host and time of the attack in an unsupervised 

manner in this research, which could open up the possibility of also defining a 

type of priority of the attack in an unsupervised way.
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