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ABSTRACT

Probabilistic Symbolic Execution (PSE) extends Symbolic Execution (SE), a path-

sensitive static program analysis technique, by calculating the probabilities with which

program paths are executed. PSE relies on the ability of the underlying symbolic

models to accurately represent the execution paths of the program as the collection

of input values following these paths. While researchers established PSE for numerical

data types, PSE for complex data types such as strings is a novel area of research.

For string data types SE tools commonly utilize finite state automata to represent

a symbolic string model. Thus, PSE inherits from SE automata-based symbolic string

models to calculate the probabilities of string-based constraints describing program

paths. However, to our knowledge, there is lack of research on suitability of automata-

based symbolic string models in the context of PSE.

This thesis proposes four automata-based symbolic string models for PSE and

analyzes their suitability using two criteria: accuracy and performance. We compare

the probability computed by the model to the actual probability and the amount of

time took to compute it. Our results show that each model varies in their accuracy,

however none is able to consistently compute actual value. In addition, our evaluation

did reveal that this amount of inaccuracy depends upon the characteristics of a

software program. From these findings we suggest guidance when selecting an au-

tomaton model for PSE based on the performance and accuracy requirements and the

characteristics of the program under analysis. Additionally, we suggest future areas

of research to the accuracy and performance deficiencies observed in our evaluation.
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CHAPTER 1

INTRODUCTION

1.1 Quantitative String Analysis

Quantitative string analysis is a type of software engineering technique which

quantifies the behaviour of a software program using the number of possible values a

string variable can have along different execution paths in the program. Quantitative

string analyses have many different applications in the software engineering and

development processes including security vulnerability detection [17,37–41], bug and

error detection [7], and test case generation [17]. The ability to analyze the behaviour

of programs which quantitative string analysis allows is important to common string

heavy programs such as web applications. Quantitative string analysis research has

followed a few primary directions in recent years including quantitative information

flow analysis [8, 30, 35] and probabilistic symbolic execution [1, 27]. Despite these

different approaches to quantitative string analysis, the different analysis techniques

have a shared fundamental requirement: a constraint solver capable of quantifying the

number of execution paths followed for a set of string values. Such a string constraint

solver must rely on an underlying symbolic string model to count the number of string

values which can occur along execution paths.

Quantitative string analysis has emerged as a research area in recent years due to

the the ability to provide more information than the more common reaching analysis.
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A reaching analysis for string variables is used to determine if different sections of

code in a program can execute for a given set of string values. Quantitative string

analyses are used to count the number of executions which reach different portions of a

program rather than the binary true or false result of the reaching analysis. The more

robust quantitative data allows additional software engineering applications such as

detection of program errors which can not be detected with a reaching analysis.

1.2 Example

1 public boolean checkPassword (

2 String password ,

3 String attempt) {

4 if (password != attempt) {

5 return true;

6 }

7 return false;

8 }

(a) Password checking function

Σ = [A, B]
1 ≤ k ≤ 2

1) String password

String attempt

83.3%
true

16.7%
true

4) if (password != attempt)

5) return true 7) return false

(b) checkPassword execution tree

Figure 1.1: Password Matching Example

Figure 1.1 demonstrates the usefulness of a quantitative string analysis when

compared to a reaching analysis. The Java function in Figure 1.1a is used to check a

password from user input (attempt) against an already known password (password).

The function contains an error in line 4 where password and attempt are compared

for inequality instead of equality as indicated from the subsequent returns of true

and false on lines 5 and 7 respectively. Figure 1.1b is the execution tree for this

function which illustrates the code paths that can occur during execution of this

function. For this example, the string alphabet (Σ) has been restricted to only the

letters A and B and the initial string length (k) is either 1 or 2. As a result of these



3

restrictions, the possible initial string values for both the password and attempt

variables are the following 6 values: A, B, AA, AB, BA, and BB. The differences between

the quantitative and reaching analyses is shown when evaluating line 4 of the program

and processing the predicate: password != attempt. A reaching analysis shows that

at least one of the six values for password is not equal to one of the six values for

attempt as shown by the true on the branch from node 4 to node 5 in the execution

tree. The reaching analysis also shows the same for the branch from node 4 to node

7 with another true label. Since both branches reach lines 5 and 7 of the program,

no error is detected since that is the expected behavior. The additional information

provided in a quantitative analysis is able to expose the error in the function. When

the set of six string values which represent attempt are tested for equality with the

set representing password, a total of 36 possible combinations of string values are

evaluated for inequality. This results in 83.3% of these combinations evaluating as

not equal and there for following the branch to line 5 of the function. The other 16.7%

of combinations evaluate as equal and follow the branch to line 7. The behavior of

the function as shown by accepting 83.3% of password attempts for the restricted

string values is not the expected behavior of the function. Through this example, it

is clear that the additional information provided by a quantitative analysis allows for

additional useful applications when compared to reaching analyses.

1.3 Symbolic String Models

While the example in Figure 1.1 clearly demonstrates the usefulness of a quan-

titative string analysis, the reliability of the analysis depends upon the accuracy

of the number of execution paths computed from the set of possible string values.
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Because of an inability to store the set of all possible values for non-trivial string

alphabets and string lengths, quantitative string analyses must make use of some

form of symbolic string model to represent this set of values a string variable can

have along different code paths in a program. Because string values in a program are

often altered by string operations, the quantitative string analysis must also emulate

these operations for the symbolic string model. For example, the Concatenate

operation joins a second string to a first string so that the characters from the first

string precede the characters from the second in the new string resulting from the

operation, e.g. Concatenate(A, B) = AB. Similar to simulating string operations,

string predicates must also be emulated for the symbolic string model in an analysis.

For example, the Equals predicate checks if a first string value is equal to a second

string value and returns true or false depending on if the strings are the save value,

e.g. Equals(AB, BA) = false. Due to these requirements for a symbolic string model,

only a few symbolic string models have proven to be robust enough for use in string

analysis research. One proven symbolic string model is the Finite State Automaton

(FSA) which was chosen to perform this research analysis on string constraints.

1.4 Thesis Statement

This thesis analyzes four string constraint solvers which utilize finite state au-

tomata to model symbolic string values in the context of probabilistic symbolic

execution. In particular this thesis addresses the following research statements:

• Accuracy :

– How often do automata-based solvers produce invalid analyses?
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– How does an automata-based string constraint solver solver compare in its

calculation of branch probability to the actual branch probability? How

do automata-based solvers compare in this calculation to one another?

– What characteristics of a string constraint effect accuracy of an automata-

based solver? How large is this effect?

• Performance:

– What is the relative performance of one automata-based solver compared

to others?

– How does the performance of different automata-based solvers compare for

constraint solving specifically?

– How does the performance of different automata-based solvers compare for

model counting specifically?

– How do the characteristics of a string constraint effect the performance of

an automata-based solver?

• Accuracy vs. Performance trade-offs :

– What is the relationship between accuracy and performance for an automata-

based solver?

– What automata-based solver produces the best combination of accuracy

and performance?

– How is the relationship between accuracy and performance affected by

specific characteristics of a string constraint?

1.5 Contributions

The main contributions of this thesis are as follows:
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• Identification of Collapse Problem (Sections 2.2.3, 2.3.2, 3.1.3, 3.2.3, 3.3.4, and

3.4.6)

• Four Automata-based Symbolic String Models (Sections 3.1, 3.2, 3.3, and 3.4)

• String Constraint Solver Framework (Chapter 4)

• String Constraint Model Counting Oracle (Sections 4.4.3 and 5.3.1)

• Evaluation of Suitability of Automata-based Symbolic String Models (Chapters

5 and 6)
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CHAPTER 2

BACKGROUND

This chapter provides the background information relevant to this thesis. Section

2.1 explains Symbolic Execution (SE). Section 2.2 describes an enhancement of SE,

Probabilistic Symbolic Execution (PSE). Section 2.3 explores the modeling of string

constraints using symbolic string models. Finally, Section 2.4 details the modeling of

string constraints using Finite State Automata (FSA) specifically.

2.1 Symbolic Execution

Symbolic Execution (SE) [24] is a path-sensitive static program analysis technique

that determines what program inputs result in execution of different code paths. SE

is an important software analysis technique with many useful applications such as

detecting security vulnerabilities [26], detecting program errors [9], and aiding in

generating test cases [22]. While SE was initially used with simple integer variable

types, more recent research extends SE to analyze complex types such as floating

point numbers [5], sets [10,25], and strings [34].

2.1.1 Description

When SE interprets a program, instead of executing the program on a set of

concrete inputs values, SE uses a symbolic value each time the program requires



8

a new input value. This means that SE maps each input variable x in the program

domain to a corresponding symbolic value X in the symbolic codomain maintained by

SE. Initially symbolic values represent all concrete values in the domain of that data

type. For example an integer input variable x is mapped to the symbolic value X and

has a corresponding solution set SX containing all possible integers, i.e. m(x) = X

and SX = Z. SE also maintains a symbolic program state, which is a mapping of a

program variable to a corresponding symbolic expression. A symbolic expression is a

finite combination of symbolic values and domain operations specific to the domain

of the symbolic values. In SE, a symbolic expression is produced from a domain

operation performed on one or more previous symbolic expressions and is usually

assigned to a new program variable. For example, when processing the statement

y = x − 2 where x is an input variable, SE adds the variable y to the set of known

variables with the symbolic expression X − 2 where X is a previous symbolic value

where m(x) = X.

When SE encounters a conditional statement or branch condition, SE must follow

either the true or false branch to continue the analysis. In order to explore each

branch, SE generates a branch constraint, a symbolic predicate that restricts the set of

concrete program inputs that can follow the branch path. The true branch constraint

is generated by substituting the program variables in the branch condition for their

corresponding symbolic expressions from the symbolic program state. The false

branch constraint is generated from negating that branch condition, i.e., negating

the true branch constraint.

Once a branch constraint is generated, it is conjoined with constraints of all pre-

viously taken branches to yield a single combined constraint called the path condition

(PC ). If no previous branches exist, the PC is true. A PC is a conjunction of



9

1 public void testInt(int x) {

2 int y = x - 2;

3 if (y == 0) {

4 println("true");

5 } else {

6 println("false");

7 }

8 }

(a) testInt method

1) int x

true false

2) [PC2 ← true]
x← X

int y = x - 2

3) [PC3 ← true]
x← X, y ← X − 2

y == 0

4) [PC4 ← X == 2]
x← X, y ← X − 2

SAT, END

6) [PC6 ← X 6= 2]
x← X, y ← X − 2

SAT, END

(b) testInt SE execution tree

Figure 2.1: The testInt Java method demonstrating SE.

predicates which restrict SX by a function PCn such that PCn(X) → SnX , where

SnX is the set of all concrete values for input variable x which reach program point n.

For example, if the PC at a program point n is X == 2, the function PCn(X) would

produce the set {2} since only the integer 2 satisfies the predicate X == 2. From

this definition it is clear that a PC exists for all statements in a program analyzed

using SE starting with the initial PC with a simple true predicate.

A typical SE analysis passes the PC computed for a branch to a constraint solver to

determine if the PC of the branch is satisfiable (SAT) or unsatisfiable (UNSAT). The

solver produces a symbolic model from the constraint and uses this model to determine

satisfiability. If the solver determines a branch is SAT, SE continues interpreting

statements along that code path. If the solver determines a branch is UNSAT, it

is reported but not followed for any further analysis. In this way SE systematically

analyzes all feasible paths of execution in a program.
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2.1.2 Example

A simple example of SE is shown in Figure 2.1 for the Java method testInt in

Figure 2.1a. The SE tree in Figure 2.1b contains four nodes labeled 2, 3, 4, and

6 which correspond to the those line numbers in testInt. The PC and variables

for each node in the tree correspond to values before that line of code and after the

previous line. The first step of SE is initializing symbolic variables for each input

variable. The only input variable of the method is the integer parameter x which is

initialized to the unrestricted symbolic variable X. The PC is also initialized at this

time as PC1 ← true. Both the initial PC and the initial symbolic variable x are

displayed in node 2 as PC2 and x2 respectively. Next, the assignment statement on

line 2 is interpreted and the new variable y is initialized to the symbolic value X − 2

from x − 2 where x is replaced by its symbolic variable X. This addition of the y

variable is reflected in node 3 of the SE tree representing the state before interpreting

line 3.

Line 3 of testInt contains the first conditional statement of the method and

requires the generation of both true and false branch constraints. To generate

these constraints, the condition must be transformed into its symbolic equivalent

by substituting for the variables in the conditional statement: y == 0→ X − 2 ==

0 → X == 2. The true branch becomes X == 2. Next, SE follows the true

branch and must generate the new PC for this code path by conjoining the true

branch constraint, X == 2, with PC3 which yields PC4 ← true ∧ X == 2 which

can be simplified to PC4 ← X == 2. SE then determines that PC4 is satisfiable

since 2 ∈ SX , thus satisfying the PC ← X == 2. This satisfied branch is reported

by SE as indicated in the SE tree for node 4 by the “SAT” token. Since the true
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branch leads to line 4, SE next interprets this line which consists of a side-effect free

statement, i.e., it does not alter the symbolic program state. After line 4, there are no

more statements for SE to interpret along this code path within the testInt method.

When SE encounters the end of a code path, it reports the end, as is shown in node

4 of the tree by the “END” token, and backtracks to explore other paths.

The false branch constraint for the condition on line 3 is generated by negating

the true branch constraint: ¬(X == 2)→ X 6= 2. SE must then generate the PC for

this false branch path by conjoining the branch constraint, X 6= 2, and PC3 which

produces PC6 ← true ∧ X 6= 2 or PC6 ← X 6= 2. SE then determines that PC6 is

satisfiable since all but one integer in SX satisfies the condition (2 being the single

exception). SE reports that this branch constraint is satisfied as shown in node 6 of

the tree by the “SAT” token. Following the false branch SE advances to line 6 along

the current code path. Since the statement on line 6 is side-effect free, SE attempts

to advance to the next statement. Because there are no more statements along this

path, SE produces the “END” token. At this point SE has exhaustively explored all

possible code paths within the testInt method and has found that both branches of

the condition in line 3 are SAT. This information reported by SE can be used for

many applications such as in a reachability analysis which can conclude that lines 4

and 6 are reachable due to the true and false branches being SAT.

2.1.3 Limitations

The largest drawback of SE is poor scalability due to the path sensitive nature

of the technique requiring the traversal of too many paths. The number of paths

grows exponentially as the number of conditional statements in the program increases.

Additionally, the presence of loops in the program increases the performance cost since
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new branch constraints are generated each time the loop condition is checked. To

mitigate this problem, SE exposes only a finite number of loop iterations which limits

the performance cost at the expense of analysis completeness. Trade-offs of this type

between performance and accuracy are commonly used to adjust the performance of

SE based analyses, allowing otherwise impractical analyses to be completed.

SE is also limited by the quality of information it reports, where satisfiability of a

code path provides only a coarse 1 or 0 approximation of the probability that the path

will be executed. This lack of quantitative information limits the types of analyses

which can be conducted using the SE technique. This limitation can be seen in the

testInt example in Figure 2.1 where the condition on line 3 produced a true branch

with one satisfying input, 2, while the false branch is satisfied by all the remaining

inputs. Clearly the false branch is overwhelmingly more probable to execute than

the true branch, but SE simply reports both as SAT.

Both the performance and the quantitative information limitation are addressed

by the probabilistic symbolic execution technique.

2.2 Probabilistic Symbolic Execution

Probabilistic Symbolic Execution (PSE) [16] is an enhancement of SE which

provides a quantitative analysis of execution for a software program in the form

of conditional branch probabilities rather than branch satisfiability (SAT or UNSAT)

reported by SE. This enhancement allows PSE to prioritize code paths more likely to

be executed while differing less probable paths to analyze when time permits. Though

PSE is an emerging static analysis technique, it is already being used to aid program

understanding and error detection [16], to compute software reliability [4, 13], and
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to provide quantitative information flow analysis for software security [29]. While

most of this early research has been restricted to analyses of integer variables, there

is increasing interest into using PSE to analyze string variables in programs [1].

2.2.1 Description

PSE updates the symbolic program state in exactly the same way as traditional

SE, but handles reporting conditional branches differently. In SE the constraint

solver reports a branch constraint as either SAT or UNSAT, which is in fact a coarse

approximation of the probability of executing a branch where UNSAT and SAT

correspond to probabilities 0 and 1 respectively. PSE aims to provide a more detailed

understanding of program execution through the use of program path probabilities.

These path probabilities allow for quantitative analyses of a program rather than

satisfiability analyses.

When PSE processes a conditional branch, it determines which of two branch

paths to follow by selecting the branch with the larger execution probability. Each

execution probability for a branch is the ratio of the number of concrete execution

paths which satisfy the branch condition to the number of concrete execution paths

which reach the branch condition. This probability calculation is only possible due

to the bijective relationship between the set of all execution paths and the set of

input value combinations which is the k-fold Cartesian product produced from the

sets of concrete values for k input variables. Utilizing this relationship, the solver can

calculate the number of execution paths reaching a program point as the model count

of the solution set for the program point’s PC.

Definition A solution set, denoted as S, is the k -tuple set of solution values for a

symbolic path constraint or PC. Alternatively, a solution set Sn is the k-fold Cartesian
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product of the sets of values for k input variables which can reach at a program point

n, i.e. Sn = SnX1 × · · · × SnXk where SnXi∀i : 1 ≤ i ≤ k.

Definition Model count, denoted as MC, is the total number of solutions for a

symbolic constraint or PC. Alternatively, model count is the cardinality of a solution

set, i.e. MC(PCn) = |Sn| at a program point n.

The branch probability calculation Pb is shown in Formula 2.1 as the ratio of the

MC of the PC after the branch MC(PCb) to the MC of the PC before the conditional

statement is interpreted MC(PCc).

Pb(PCb, PCc) =
MC(PCb)

MC(PCc)
(2.1)

In addition to branch probability, the overall probability that a program point

is reached can also be used by PSE. This overall probability, called global execution

probability and denoted as Pg, can be used to prioritize all the remaining unexplored

paths for analysis. It is the ratio of the number of concrete execution paths reaching

a program point to the total number of concrete execution paths in the program.

Formula 2.2 shows this probability calculation as the ratio of the MC of the PC at

program point n (MC(PCn)) to the MC of the initial program inputs (MC(PCinit)).

Pg(PCn, PCinit) =
MC(PCn)

MC(PCinit)
(2.2)
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2.2.2 Example

−2 ≤ X ≤ 21) int x

true false

2) [PC2 ← true]
Pg(PC2) = 1.0, MC(PC2) = 5

x← X
int y = x - 2

3) [PC3 ← true]
Pg(PC3) = 1.0, MC(PC3) = 5

x← X, y ← X − 2
y == 0

4) [PC4 ← X == 2]
Pg(PC4) = 0.2
MC(PC4) = 1

x← X, y ← X − 2
Pb(PC4) = 0.2, END

6) [PC6 ← X 6= 2]
Pg(PC6) = 0.8
MC(PC6) = 4

x← X, y ← X − 2
Pb(PC6) = 0.8, END

Figure 2.2: testInt PSE execution tree

To demonstrate PSE, consider the testInt Java method from Figure 2.1a which

produces the PSE tree in Figure 2.2. For this PSE example, the input variable domain

is restricted to {i ∈ Z|−2 ≤ i ≤ 2} in order to better demonstrate PSE. This is shown

as the grey area left of the PSE tree. This restriction results in SX = {−2,−1, 0, 1, 2}

for symbolic variable X initialized from input variable x. PSE then interprets the

testInt method identical to SE until line 3 where the first conditional statement

is encountered. The program variables before the execution of line 3 have symbolic

values x = X and y = X − 2 just as in SE. PSE interprets the condition statements

exactly as SE by substituting variables for the corresponding symbolic values. This

produces PC4 ← X == 2 for the true branch and PC6 ← X 6= 2 for the false branch.

Instead of determining satisfiability for each branch, PSE calculates the execu-

tion probability of each branch using Formula 2.1. The true branch probability is
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calculated using Formula 2.1 as Pb(PC4, PC3) where the solution sets for PC4 and

PC3 are S4 = {2} and S3 = {−2,−1, 0, 1, 2} respectively. The resulting true branch

probability is 0.2. The false branch probability is calculated in the same way again

using Formula 2.1 as Pb(PC6, PC3) where the solution sets for PC6 and PC3, which

are S6 = {−2,−1, 0, 1} and S3 = {−2,−1, 0, 1, 2} respectively. The resulting false

branch probability is 0.8.

With both branch probabilities calculated, PSE chooses to explore the false branch

since it is more likely to be executed than the true branch. Upon reaching the end of

the path at line 6, PSE reports an “END” token. PSE next backtracks to the single

remaining path to explore, following the true branch from the branch condition on

line 3 to line 4. PSE reports with another “END” token after line 4 and completes

the analysis since no unexplored paths remain. This analysis determines that line 6 is

four times more likely to be executed than line 4 under the restricted input domain.

2.2.3 Limitations

While PSE uses probabilities for different code paths to address the performance

cost of SE, it does incur a new performance cost. These additional computations are

required for the MC used to compute branch probabilities. The performance cost

of the MC calculation depends on the algorithm used to calculate the MC for each

branch. The MC calculation algorithm performance cost is specific to each underlying

model used to represent the symbolic values. In this way, the choice of symbolic model

affects the performance of a PSE analysis. Just as in SE, PSE can sacrifice accuracy

for better performance by over-approximating solution sets. However, unlike regular

SE which identifies branches as SAT or UNSAT, PSE determines the likelihood of

taking that branch. Such calculations are more sensitive to a loss in accuracy.
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In addition to performance issues, PSE also suffers from accuracy problems which

can affect the validity of the analysis. A PSE analysis is invalid if it calculates that

a path PCx has a higher probability than another path PCy, i.e., PPSE(PCx) >

PPSE(PCy), while the opposite is actually true, i.e. Pact(PCx) < Pact(PCy). We

have used the term collapse to describe the problem which results in this type of

invalid analysis. A collapse occurs when two or more distinct possible values in the

solution set for a variable constraint before an operation or predicate are ”collapsed”

into a single possible value in the solution set of the variable constraint as a result

of the operation or predicate. This collapse results from the combination of two

factors: non-injective variable operations and the assignment of operation results to

new symbolic values.

An injective function is a function which never maps distinct elements from

its domain to the same element of its codomain. In the context of a program, a

non-injective function maps two or more combinations of parameters to the same

concrete value from the operation. However, a non-injective operation alone is not

sufficient to produce an invalid analysis. For example, integer variables are able to

use non-injective operations such as division but still do not suffer from the collapse

problem because integer variables can be expressed as functions of symbolic variables.

These functional relationships between integer variables define n-dimensional convex

polytopes which contain the solution set integers within.

The second factor causing collapse problems is the assignment of operation results

to new symbolic variables. That is the creation of a new symbolic variable as the

result of an operation with no explicit relation to the symbolic value arguments of

the operation. For example, the symbolic value Y is assigned to the integer variable

y from the integer division operation where the symbolic value X restricted by the



18

1 public void testDiv(int x) {

2 int y = x \ 2;

3 if (y == 0) {

4 println("true");

5 } else {

6 println("false");

7 }

8 }

(a) testDiv method

PCn Sn |Sn| Vn |Vn|
PC2 {−2,−1, 0, 1, 2} 5 {−2,−1, 0, 1, 2} 5

PC3 {−2,−1, 0, 1, 2} 5 {−2,−1, 0, 1, 2} 5

PC4 {0} 1 {0, 0, 0} 3

PC6 {−1, 1} 2 {−1, 1} 2

(b) Actual Solution Set vs.
Approximated Solution Set

−2 ≤ X ≤ 2

−1 ≤ Y ≤ 1

1) int x

true false

2) [PC2 ← true]
Pg(PC2) = 1.0, MC(PC2) = 5

x← X
int y = x / 2

3) [PC3 ← true]
Pg(PC3) = 1.0, MC(PC3) = 5

x← X, y ← Y
y == 0

4) [PC4 ← Y == 0]
Pg(PC4) = 0.2
MC(PC4) = 1
x← X, y ← Y

Pb(PC4) = 0.2, END

6) [PC6 ← Y 6= 0]
Pg(PC6) = 0.4
MC(PC6) = 4
x← X, y ← Y

Pb(PC6) = 0.4, END

(c) testDiv PSE execution tree

Figure 2.3: The testDiv Java method demonstrating the division problem in PSE

inequality −2 ≤ X ≤ 2 is divided by the integer 2, i.e., y ← Y : y = X
2

. This

assignment requires the set of values represented by Y to contain each of the values

represented by X divided by 2, resulting in a restriction of Y by the inequality

−1 ≤ Y ≤ 1. Assignments in this manner usually occurs due to a complex variable

domain and requires advanced models to accurately model the symbolic values for

the domain. This results in a need to produce a new symbolic value from variable

operations. The combination of non-injective variable operations and producing new

symbolic values results in a symbolic value which cannot have a one-to-one relation to

the operation inputs and similarly cannot have a one-to-one relation to the execution

paths of the program.

The example in Figure 2.3 demonstrates a collapse problem for integer variables.

Since integer variables do not usually produce collapse problems, we assign the result

of the division operation on line 2 to a new symbolic value, fulfilling the previously
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discussed requirements for the collapse problem to occur. The Java method testDiv

in Figure 2.3a is a slight modification of the testInt method from Figure 2.1a where

a division operation is used on line 2 instead of a subtraction operation. A table is

presented in Figure 2.3b displaying for each line n in the program: the solution set

denoted Sn, the size of the solution set denoted |Sn|, the bag (multiset) of actual

values which would appear in the program denoted Vn, and the number of values in

the bag denoted |Vn|. The PSE execution tree is presented in Figure 2.3c. As in the

previous example, the integer variable domain for the input values is restricted to the

set of integers values {−2,−1, 0, 1, 2}. The results of the assignment of y on line 2

are shown in the tree where y ← Y instead of assigning y in relation to X as was

done in testInt in Figure 2.2. The bag of actual values and the solution sets are in

agreement for both PC2 and PC3 due to both being true, this also results in a MC

of 5 representing all the execution paths in the program.

The collapsed value problem emerges when the true and false branch probabilities

are calculated from the branch constraints. The true branch is followed when the

input (y) value is 0 which occurs for three different x input values {−1, 0, 1} and

therefore three execution paths. However, PSE calculates the MC(PC4) from S4

which is {0} since 0 is the only value which satisfies the PC4. This is a clear example

of the collapse of multiple execution paths represented by the x inputs -1, 0, and

1 into the single value 0 in the solution set for PC4. The subsequent probability

calculations are affected by this difference in MC where the branch probability of 0.2

is obtained using Formula 2.1. This is in contrast to the bag of actual values in Table

2.3b which shows 3 out of 5 execution paths execute line 4 for an actual probability

of 0.6. The false branch is modeled correctly for PSE where Pb(PC6/PC3) = 0.4

corresponds to the 2 of 5 execution paths execute line 6. This difference in the
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probability of the true branch without a difference in the probability of the false

branch causes PSE to determine that the false branch is more likely to be executed

since Pb(PC6/PC3) > Pb(PC4/PC3). The value table clearly shows that with 3 of 5

execution paths, the true branch is actually more likely than the false resulting in an

invalid analysis reported by PSE.

This collapse problem is an example of a limitation of PSE due to the dependence

on the MC obtained for PC s. Since the MC is calculated from the solution set of

a constraint, the accuracy of PSE depends upon the accuracy of the symbolically

modeled constraint. PSE analyses of integer variables avoids the collapse of paths

by calculating a MC from the volume of the convex polytope which is defined by the

constraint inequalities in a k -dimensional vector space [16] where k is the number

of input variables to the program. Other complex data types are not able to easily

utilize a vector space to model constraints and must calculate MCs from the solution

set of the a constraint, which results in the collapse of paths. This becomes a common

problem when analyzing other variable data types such as strings where a nearly all

operations are not injective. It is clear that the choice of underlying symbolic model

is key to minimizing or eliminating the impact of this collapsing paths problem.

2.3 Modeling String Constraints

While many methods exist for modeling symbolic string variables, only a few of

these types of representation have been found appropriate for string analysis research.

These representations include most significantly bit-vectors [3,23], axiom based mod-

els [42], and finite state automata (FSA) [1,7,18,19,34,36–41]. These different string

models have been used to detect SQL injection vulnerabilities [17, 37–41], to detect
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string variable errors in programs [7], and to generate test cases for string variable

inputs [17]. This thesis focuses on the use FSA to model symbolic strings.

2.3.1 Symbolic String Models

Strings form a fundamental datatype in general purpose programming languages.

A string is a finite sequence of symbols or characters that are chosen from a non-

empty set of symbols called an alphabet, denoted Σ. The length of a string, k, can

be any non-negative integer with the special case of the 0 length string called the

empty string ε. Strings are represented in many different ways depending on the

programming language such as a null-terminated array in C, an explicit length array

in Java, or a singly linked list in Haskell. Additionally, often different string-like

data types can exist in the same programming language. For example, the String

and StringBuilder classes in Java are different data types but both represent the

same abstract string. This is similar to abstract integers implemented as both 32

and 64-bit concrete integer data types in a programming language. Because of the

common abstraction for string-like data types, each can be modeled by the same

symbolic string model just as different n-bit integers are modeled by the same integer

inequalities. In addition to modeling each string-like data type through a single

symbolic string model, the operations and predicates of the the string-like data type

must be modeled as well.

Formal language theory defines a set of simple operations for strings under which

the language is closed, e.g. Concatenate. Unlike integer arithmetic which is often

included in the programming language itself, string functions and operations are

usually implemented as library functions. For example, the Java StringBuilder

class includes the append method which is an implementation of the abstract string
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operation Concatenate. While it is possible to analyze these functions as part

of the detailed analysis, such an approach would be inefficient. Instead, string

functions are interpreted as single operations for the abstract string data type allowing

algorithms to model distinct operations for the chosen symbolic string model. While

this approach is sufficient for most common string operations, the complexity of

others, e.g. Format has rendered this approach impractical for those string func-

tions. Additionally, string operations which return data types other than strings are

difficult to analyze. These operations are mixed constraint type operations where the

analysis must utilize symbolic values for the other data types being returned from the

operation. For example, the Java String class contains the method length which

returns an integer. In PSE, a symbolic integer model would be needed to model the

behavior of the result of the length operation and an algorithm would be needed to

simulate the correct possible length values of the symbolic string model.

String predicates are handled similarly to mixed constraint type string operations

since a function is applied to a string data type and returns a boolean data type.

Unlike string operations which occur in a particular branch of execution in a pro-

gram, most predicates occur as branching conditions. For example the Java String

class contains the equals method which is an implementation of the abstract string

predicate Equals and is usually used in if statements to determine if the code

in the statement is executed. In PSE, this is represented in both branches of the

predicate by transforming using appropriate algorithms such that the symbolic string

model following the branch condition models the string values satisfying the branch

condition. For example, the symbolic string variable y represents the string variable y

in the Java if condition y.contains("B") where Σ = {A, B}, k = 1, and y = {ε, A, B}

before the branch condition. After this condition, yt = {B} follows the true branch
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and represents the string values where Contains(y, B) = true. yf = {ε, A} follows

the false branch and represents the string values where Contains(y, B) = false.

Just as some string operations impractical to emulate for symbolic string models due

to the operation complexity and/or the mixed constraint data types, some string

predicates can occur with sufficient complexity to render an analysis of the predicate

impractical.

Due to these requirements for symbolic string models, only a limited number of

model types have been found to be sufficiently robust to represent the alphabet and

length requirements while also being flexible enough models to simulate operations

and predicates.

2.3.2 Limitations

While symbolic string models are currently used in many areas of string analysis

research, some limitations still exist for all such models. One such limitation we

have identified in our explorations of symbolic string models is a collapse problem

which occurs as a result of some sequences of string operations and/or predicates.

As shown in Section 2.2.3, non-injective operations can result in the “collapse” of

multiple values in the constraint solution set (execution paths) into a single value

in the resulting solution set. This is a common problem for string variables since

many common string operations such as Substring and Replace are non-injective

operations.

Figure 2.4 illustrates an example of the collapse problem for string variables. PSE

of the Java method testStr in Figure 2.4a produces the corresponding tree in Figure

2.4c. Table 2.4b presents a table that displays for each line n in the program: the

solution set denoted Sn, the size of the solution set denoted |Sn|, the bag (multiset)
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1 public void testStr(String x) {

2 String y = x.replace("A","B");

3 if (y.contains("B")) {

4 println("true");

5 } else {

6 println("false");

7 }

8 }

(a) testStr method

PCn Sn |Sn| Vn |Vn|
PC2 {ε, A, B} 3 {ε, A, B} 3

PC3 {ε, A, B} 3 {ε, A, B} 3

PC4 {B} 1 {B, B} 2

PC6 {ε} 1 {ε} 1

(b) Actual Solution Set vs.
Approximated Solution Set

Σ = {A, B}
k = 11) String x

true false

2) [PC2 ← true]
Pg(PC2) = 1.0, MC(PC2) = 3

x← X
String y = x.replace("A","B")

3) [PC3 ← true]
Pg(PC3) = 1.0, MC(PC3) = 3

x← X, y ← R(X, A, B)
y.contains("B")

4) [PC4 ← C(R(X, A, B), B)]
Pg(PC4) = 0.33
MC(PC4) = 1

x← X, y ← R(X, A, B)
Pb(PC4) = 0.33, END

6) [PC6 ← ¬C(R(X, A, B), B)]
Pg(PC6) = 0.33
MC(PC6) = 1

x← X, y ← R(X, A, B)
Pb(PC6) = 0.33, END

(c) testStr PSE execution tree

Figure 2.4: The testStr Java method demonstrating PSE with string variables.

of actual values which would appear in the program denoted Vn, and the number of

values in the bag denoted |Vn|. The input strings for testStr is restricted to the

alphabet Σ = {A, B} and limited to an initial length k = 1 in order to simplify the

example. As a result of this restriction, the input string variable x can only have

three possible values: ε, A, or B. These initial input values assigned to the input

variable x as the symbolic string value X as shown in node 2 of the PSE tree. The

bag of actual values and the solution sets are in agreement for both PC2 and PC3

due to both being true, this also results in a MC of 5 representing all the execution

paths in the program.

Just as in testDiv from Figure 2.3, the collapse problem emerges when calculating

probabilities for the true and false branches of the conditional statement. The true

branch will be followed when the y string contains the B symbol which occurs for two
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different x input strings {A, B} and therefore two distinct execution paths. However,

PSE calculates the MC(PC4) from S4 which is {B} since B is the only string value

of y which satisfies PC4. It is clear that the two execution paths represented by the

x values A and B have collapsed into the single solution set value B. The subsequent

branch probability calculation are affected by the difference in MC and produce a

probability of 0.33 using Formula 2.1. The actual execution probability can be

calculated from the actual bag of string values shown in the table for PC4 where

2 out of 3 execution paths execute line 4 for an actual probability of 0.66. The

false branch of the condition is modeled correctly with a branch probability of 0.33

representing 1 out of 3 execution paths executing line 6. Due to the collapse problem,

PSE will report that line 4 is equally likely to execute as line 6 when line 4 is actually

twice as likely to execute as line 6. This example clearly demonstrates how easily an

invalid string analysis can occur with all commonly known symbolic string models.

2.4 Modeling String Constraints with Finite State Automata

All currently known symbolic string models suffer from the problem of non-

injective path collapse. In order to guarantee a valid PSE analysis for string variables,

a symbolic string model is needed which is not susceptible to this problem. Currently,

no symbolic string model is known which avoids this problem, thus one must be

created. While an entirely novel symbolic string model could be created to avoid this

collapse problem while maintaining acceptable performance, it would be much easier

to refine a known symbolic string model with proven performance in string analyses.

As previously discussed, common model choices for symbolic strings include axiom-

based models, bit-vector based models, and finite state automaton based models. Of
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these choices, the automaton based model was chosen for modification in this work

due to the flexible data structure and existing Java libraries which already support

using automata-based models in SE.

2.4.1 Finite State Automata

A finite state automaton (FSA) is a mathematical model of computation that

operates in response to an external sequence of symbols. A FSA accepts as input a

string and either accepts or rejects the string as the result of processing this string.

The set of strings accepted by a FSA (A) is called the language of the FSA, denoted

as L(A), and is always a regular language. More formally, a deterministic finite state

automaton A is defined as the quintuple (Q,Σ, δ, q0, F ) where

• Q is a finite set of states, Q 6= ∅

• Σ is a finite set of symbols called the alphabet, Σ 6= ∅

• δ is the transition function, δ : Q× Σ→ Q

• q0 is the start state, q0 ∈ Q

• F is the set of accepting or final states, F ⊆ Q

q0start q1
A-B

A-B

(a) An example Finite State
Automaton

q0start q1

A-B

ε

A-B A-B

(b) An Non-Deterministic
FSA

q0start

q1

q2

A

B

B

A

A

B

(c) A Non-Minimal FSA

Figure 2.5: Example FSAs

Figure 2.5a is a diagram of a simple FSA that will be used to explain and

demonstrate the FSA quintuple. The FSA represented by the diagram accepts a
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non-empty input string of any combination of A and/or B symbols. The set of states

Q for this FSA contain only two states, q0 and q1, i.e. Q = {q0, q1}. The start state

of the FSA is the q0 state and is not an accepting state, i.e. q0 /∈ F . The state q1

is an accepting state, i.e. q1 ∈ F . The alphabet Σ of this FSA consists of the two

symbols A and B meaning that no other symbols can appear in a string accepted by

the automaton. The transition function δ is comprised of the four distinct transitions:

(q0, A) → q1, (q0, B) → q1, (q1, A) → q1, (q1, B) → q1. In the diagram, the four distinct

transitions are represented by only two directed lines: the line from q0 to q1 for the

range of symbols from A to B and the line from q1 to itself for the same range of

symbols. This FSA begins its operation with the start state q0 as the current state

when processing the input string. If the input string is the empty string, the FSA has

completed processing the input string and it is rejected since q0 /∈ F in this FSA. If

the symbol is not A or B, the input string is also rejected since there is no transition

from state q0 for any other symbols. When the FSA processes the first symbol and it

is either A or B, the current state is changed to state q1 as required by the transition

function δ. Similarly to state q0, when a A or B symbol is processed while state q1

is the current state, δ requires updating the current state to q1. Also similarly to

state q0, if a symbol other than A or B is processed while the current state is q1, the

input string is rejected. When the last symbol in the input string is processed and

the string has not already been rejected for invalid symbols, if the current state is an

accepting state like q1, then the input string is accepted, otherwise the input string

is rejected.

One characteristic of FSAs important for understanding the use of automata as

symbolic string models is determinism where a FSA is either a deterministic (DFA)

or non-deterministic (NFA) automaton. For DFAs, the codomain of the transition
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function δ is a set of states rather than a powerset of states. In other words, every

state has only a single transition possible for every input symbol. Additionally, NFAs

allow the use of epsilon transitions, a transition from one state to another without

processing any input symbols: (qcurrent, ε)→ qnew. The FSA diagramed in Figure 2.5b

is a NFA which accepts the same language of strings as the previous FSA in Figure

2.5a which is a DFA. In the NFA diagram, the transition function from the state q0

has two possible result states when processing either of the symbols A or B. The NFA

also contains an epsilon transition from the state q1 to the state q0. One important

property of DFAs and NFAs is the relationship between the two where all DFAs (AD)

are also NFAs (AD) such that AD ⊂ AN . While NFAs have a different transition

function δ than DFAs, every NFA has an equivalent DFA where both automata

accept the same language of input strings. Because of this property, every NFA can

be converted to an equivalent DFA using a method known as subset construction [31].

Due to these properties and methods, it is often easier to construct a NFA to accept

a language of strings and then convert the automata to an equivalent DFA rather

than attempting to construct the DFA instead.

A type of automaton which is important for understanding automata as symbolic

string models is a minimal automaton. For each regular language, there exists a

minimal DFA which accepts the language. This minimal DFA has no equivalent

DFA with a smaller number of states. A minimal DFA can be created from any

non-minimal DFA by removing unreachable automaton states and merging equivalent

automaton states. Figure 2.5c shows a non-minimal DFA which accepts the same

language as the minimal DFA in figure 2.5a. There are three well common algorithms

used for minimizing DFAs: Hopcroft’s algorithm [20], Moore’s algorithm [28], and

Brzozowski’s algorithm [6]. Each of these three algorithms have different best case
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and average case run times which make the choice of algorithm to use in minimization

variable depending upon the context in which it will be used.

2.4.2 Automata as Symbolic String Models

Automata can be used to model symbolic string values such that the language

of the automaton is the solution set. There are four important areas of focus when

modeling symbolic string constraints with automata: initializing the automata for

the input string variable, emulating string operations, processing predicate branch

conditions, and model counting the symbolic string automata.

Initializing String Variables

Alphabet: Set of symbols

Bounding Length: Integer upper bound

String Type: Null (Empty), Concrete (Empty String, Literal), Unknown (Simple, Complex)

Figure 2.6: Initial Symbolic String Characteristics

In order to explain the initialization of an automata as a symbolic string variable,

it is necessary to explain some characteristics of different string solution sets. When

a string variable is initialized in a program, it will have three different characteristics:

an alphabet, an initial bounding length, and a string type. Figure 2.6 lists each of these

characteristics and briefly describes the characteristic.

A lphabet The alphabet of a symbolic string variable is most often specified as an

input parameter to the PSE analysis. While individual symbols can be specified, it

is often easier to specify a range of symbols in an existing symbol system such as the

Unicode symbols.
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Initial Bounding Length The initial bounding length of a symbolic string variable

is also usually specified as an input parameter to the PSE analysis. This bounding

length k is and upper bound on the initial length of strings in the solution set of

symbolic string values. This bound is applied due to the exponential increase in

solution set size for each linear increase in string length. To better demonstrate

this increasing complexity, the solution set for a string with Σ = {A, B}, k ≤ 1

is {ε, A, B} where a similar solution set for a string with of Σ = {A, B}, k ≤ 2

is {ε, A, B, AA, AB, BA, BB}, an increase in solution set size from 3 to 7 with only a

corresponding length increase of 1.

String Type The string type of a symbolic string value is a category assigned

after observing the behavior of different string variables as symbolic strings in this

analysis of symbolic string values. The three categories of string types are assigned

based upon the membership of the solution set for the corresponding symbolic string

variables and are the following string value types: null, concrete, and unknown. These

categories can be further refined based on the corresponding automaton construction

procedures and are the following five string types: empty, empty string, literal, simple

unknown, and complex unknown. The empty string type is the only null value type

and represents the the empty solution. This string type is only created when a string

variable represents a null value, e.g. str = null. The empty string string type is a

concrete string value type and represents the solution set containing only the empty

string. This string type is most often is generated as part of a predicate where a

string is checked to determine if it is the empty string, e.g. implicitly created for

str.isEmpty(), but can also often occur as string literals, e.g. str = "". A literal

string type is a concrete string value type and represents the solution set containing

only one non-empty string value. A literal type is most often used for string literals
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q0start

(a) Empty

q0start

(b) Empty String

q0start q1 q2 q3
A B C

(c) Literal

q0start

A-D

(d) Simple Unknown

q0start q1
A-D

(e) Bound Automaton

q0start q1

B-D

A

A-D

(f) Complex Unknown

Figure 2.7: FSA Creation Examples.

in a program, e.g. println("Hello World"). A simple unknown string type is an

unknown string value type with a solution set containing more all possible string

values for the specified alphabet and bounding length. The simple unknown string

type is used when initializing a string variable, often from an input source external

to the program under analysis, e.g. void func(String str). Finally, a complex

unknown string type is an unknown string value type with a solution set containing

more than one possible string value but not all possible string values for the specified

alphabet and bounding length. The complex unknown string type usually occurs as

the result of one or more string operations or as the result of applying a string

predicate. Because of this additional complexity of only containing some of the

possible string values in the solution set, the corresponding automaton representations

of complex unknown string types have a much more complex structure than any of the

other four types and are the main focus of this research of automata-based symbolic

string constraints.

When initializing a FSA as a symbolic string value, the FSA is created in one of

several different ways depending on the type of string represented. Figure 2.7 shows

examples of six different automata representing the different construction methods

for automata-based symbolic string models. Figure 2.7a is a single non-accepting
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state which is also the start state in the automata. This automaton is created for

all empty string type variables. Figure 2.7b shows an automaton consisting of only a

single accepting start state. This automaton is created for all empty string string type

variables. Figure 2.7c is an automaton which accepts only the string value ABC. This

is an example automaton created for a literal string type variable. The construction

of such an automaton begins with a non-accepting start state, q0 in the example, and

an additional state, q1 in the example, is added to the automaton with a transition

from q0 to q1 for the first symbol of the string value, A in the example. This process

is repeated for each subsequent symbol in the string value until all the symbols of the

string value are reflected in the automaton. To complete the literal type automaton,

the last added state, q3 in the example, is then made an accepting state. Figure 2.7d

is an automaton which accepts any string of any length in the with the alphabet

Σ = {A, B, C, D}. This is an example automaton created for a simple unknown string

type variable. The creation of such automata requires only a two part process. First, a

single accepting start state is used. Then, a transition is added to the automaton from

the start state to itself for every symbol in the alphabet Σ. Figure 2.7e is a bounded

automaton which in this example is a modification of the previous simple unknown

automaton in Figure 2.7d. This example automaton is bounded by an initial bounding

length k where k ≤ 1. Bounded automata like this are useful in some analyses where

in some operations and predicates an infinite automaton can not be used. Finally,

Figure 2.7f is an automaton that accepts any non-empty string with the alphabet

Σ = {A, B, C, D} where the accepted string must contain the A symbol. This is just one

example of an automaton representing a complex unknown string type variable. This

string type does not have a defined construction since such types are only produced

as a result from string operations and string predicates. To demonstrate this, the
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example automaton in Figure 2.7f was constructed by asserting the Contains(A)

predicate for a simple unknown string type for the alphabet Σ = {A, B, C, D} rather

than through any specific construction procedure. While complex unknown string

type variables are important to understanding how

Both following the creation of an automaton as symbolic string models and fol-

lowing any string operations or string predicates, an automaton is evaluated for

determinism and converted into a deterministic automaton if it is not already. Then

the automaton is minimized. This minimal DFA is optimized for space by utilizing

the fewest number of states and transitions possible to accept the language of the

automaton. Additionally, the minimal DFA is optimized for future algorithms which

emulate string operations and predicates since the performance complexity of those

algorithms is dependent upon the number of states and transitions in automata.

String Operations

Category: Examples

Injective ToString(str), Reverse(str)

Additive Concatenate(str1, str2), Insert(str1, int, str2)

Subtractive Delete(str1, int1, int2), Substring(str1, int1, int2)

Substitutive Replace(str1, char1, char2), Replace(str1, str2, str3)

Mixed Constraint Length(str), IndexOf(char)

Infeasible Format(str, obj[]), HashCode(str)

Figure 2.8: String Operation Categories

In order to discuss the simulating of string operations for automata-based symbolic

string models, six categories of string operations will first be explored. We assigned

these six categories to the different string operations we encountered in this analysis of

automata-based symbolic string models. These six categories are as follows: injective,
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additive, subtractive, substitutive, mixed constraint, and infeasible. These categories

are listed with example operations in the table in Figure 2.8. For the purposes of this

discussion, the string variable upon which the string operation is being performed is

always specified as the primary string argument for an operation.

Injective We identified injective string operations which are characterized by the

guaranteed one-to-one correspondence between the string values in the solution sets

of the resulting string and the primary string argument of the operation. In practice,

only the most simple of string operations have been identified as injective operations.

An example of an injective string operation is the ToString(str) operation where

the string returns a string representation of its value which is just the string itself

for a string data type. A more important example of an injective string operation is

the assignment of a string value to a string variable. When this type of operation is

simulated for automata-based symbolic string models, the algorithms simply create

a copy of the primary string argument automaton and returns the copy as the result

of the operation.

Additive We identified additive string operations where additional symbols appear

in the string returned by the operation compared to the primary string argument.

This category of operation does not discriminate based upon where in the primary

string argument the new symbols have been added. For example, the operation

Concatenate(str1, str2) adds the new symbols of str2 after the existing symbols of

the primary string argument str1. However, the Insert(str1, int, str2) operation adds

the new symbols of str2 to the primary string argument str1 as the index specified by

int. Both of these example operations add new symbols to primary string argument,

but not necessarily at the same location within the string. While these differences in

additive operations requires different simulating algorithms for each operation instead
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of relying on a single algorithm as is the case with injective operations.

Subtractive We identified subtractive string operations where symbols have been

removed in the string returned by the operation compared to the primary string

argument. This category of operation includes all operations which remove symbols

from the primary string argument regardless of the location at which the symbols are

removed. For example, the Delete(str1, int1, int2) operation removes all the symbols

in the primary string argument str1 from the index specified by the first integer

argument int1 to the index specified by the second integer argument int2. While

the Substring(str1, int1, int2) operation accepts the same arguments, it removes all

symbols from the primary string argument str1 both before the index specified by the

first integer argument int1 and after the second integer argument int2. Just as with

additive operations, simulating subtractive operations requires unique algorithms for

each specific operation.

Substitutive We identified substitutive string operations where symbols have been

substituted in the string returned by the operation compared to the primary string

argument. There are two sub-types of substitutive string operations: simple and

complex. The simple variant of the substitutive operation performs the substitution

of symbols without altering the length of the string, i.e., in a simple substitutive

operation, the lengths of the primary string argument and the string resulting from

the operation are the equal. An example of this is the Replace(str1, char1, char2)

operation where all instances of the first symbol argument char1 in the primary

string argument str1 are replaced with the second symbol argument char2. Because

individual symbols are being replaced by other individual symbols in the primary

string, the total length of the string does not change. The complex variant of

the substitutive operation performs the substitution of symbols without being able
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to guarantee that the length of the string will be unaltered, i.e., in a complex

substitutive operation, the lengths of the primary string argument and the string

resulting form the operation may or may not be equal. An example of this is the

Replace(str1, str2, str3) operation all instances of the second string argument str2

within the primary string argument str1 are substituted for the third string argument

str3. Because the lengths of the second and third string arguments may differ, the

replacement of the substrings within the primary string can result in string with a

different length. Despite the differences between the simple and complex substitutive

operations, the simulation algorithms for these operations are similar enough to group

them within the same category as we have done.

Mixed Constraint We identified mixed constraint string operations where the result

of the operation was not a string data type. An example of this operation type is

the Length(str) operation which returns an integer value representing the length

of the string. While the Length(str) operation could simulated by a fairly simple

algorithm, the return value would need to be a symbolic integer which could be

represented by one of many different symbolic integer models. Any algorithm used

to simulate a mixed constraint operation for automata-based symbolic strings would

also need to be specialized to return a symbolic model for the return data type of the

operation.

Infeasible We identified infeasible string operations where the complexity require-

ments of simulating the operation for automata-based symbolic string models is

not feasible by any known algorithms. An example of such an operation is the

Format(str, obj[]) operation where the primary string argument automaton would

need to be processed for a multitude of special character sequences for each possible

string value in the solution set of the automaton. Similarly, the mixed constraint
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(b) Add new start state
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(c) Add ε-transitions to start

q0start

q′0
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ε
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(d) Remove transitions after end

q0

q′0start

q1 q2 q3

ε

A-D A-D

(e) Set q′0 as start state

q0start q1
A-D

(f) Make deterministic and minimize

Figure 2.9: FSA Substring(A, 1, 2) operation example

operation HashCode(str) is also an infeasible operation due to the complexity

required to compute the hash code for each possible string value in the primary

string argument solution set.

Figure 2.9 demonstrates how a string operation can be simulated for an automata-

based symbolic string model. In this example, the Substring operation with a start

index of 1 and an end index of 2. This operation performed for a simple unknown

string type variable, shown in Figure 2.9a, with an alphabet Σ = {A, B, C, D} and initial

bounding length k ≤ 3. The first step to simulate the operation is the addition of a

new state q′0 to the automaton as shown in Figure 2.9b. Next Figure 2.9c show that

an epsilon-transition is created from the new state q′0 to the state at a length of 1 from

the start state, the state q1 in this case. This epsilon-transition represents the removal

of the symbols not captured in the substring operation, i.e. the symbols occurring

before the start index. Figure 2.9d illustraits the next step where the transitions
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leaving the states at the end length in the automaton have their outgoing transitions

removed and are made accepting states if they are not already. This step emulates the

removal of all symbols following the end index in original string. Figure 2.9e shows

that the start state of the automaton is changed from the previous start state q0 to the

newly added start state q′0. Finally, Figure 2.9f is an automaton which is the result

of making the previous automaton deterministic and then minimizing the resulting

automton. It is in this manner that the Substring string operation is simulated

so that an automaton accepting the language L(A) = {ε, A, B, C, D} is created and

returned from the algorithm. Other string operation simulation algorithms operate

similarly by altering the structure of automata, usually by adding states, adding and

removing transitions, and adding or removing states from the set of accepting states.

1: procedure FastSubstring(A)
2: A′ ← Copy(A)
3: for all qi ∈ Q′ do
4: δ′(q′0, ε)→ qi
5: for all qj ∈ F ′ do
6: δ′(qi, ε)→ qj
7: end for
8: end for
9: return A

10: end procedure

(a) Fast Substring Algorithm

1: procedure FollowTransitions(Q)
2: Qr ← ∅
3: for all q ∈ Q do
4: for all 〈q, α, qt〉 ∈ δq do
5: Qr ← Qr ∪ {qt}
6: end for
7: end for
8: return Qr

9: end procedure

(b) FollowTransitions

1: procedure PreciseSubstring(A, start, end)
2: A′ ← Copy(A)
3: i← 0, Qi ← {q′0}
4: while i < start do
5: Qi ← FollowTransitions(Qi)
6: i← i+ 1
7: end while
8: Qs ← Qi

9: while i < end do
10: Qi ← FollowTransitions(Qi)
11: i← i+ 1
12: end while
13: Qe ← Qi

14: RemoveTransitions(Qe)
15: q′0 ← qnew
16: F ′ ← Qe

17: for all qi ∈ Qs do
18: δ′(q′0, ε)→ qi
19: end for
20: return A
21: end procedure

(c) Precise Substring Algorithm

Figure 2.10: Two Substring operation algorithms
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An important consideration when selecting an appropriate simulation algorithm

for a string operation is the balance of precision and performance of the algorithm.

Most string operations can be simulated by many different algorithms some of which

have less computational complexity at the cost of over-approximating the solution

sets for the resulting automata-based symbolic string models. An example of this

performance difference can be seen in the two algorithms for the Substring operation

shown in Figure 2.10. The FastSubstring (2.10a) algorithm does not utilize any of

the indices which are arguments for a Substring operation, instead the algorithm

returns an over-approximated automaton where the solution set contains substring

values for all possible start and end indices to the Substring operation. The Pre-

ciseSubstring (2.10c) algorithm makes use of the start and end indices to provide

a more precise resulting automaton. This algorithm is the version of the Substring

operation used in the previous example shown in Figure 2.9. This precision comes

at the performance cost incurred by having to traverse along the transitions of the

automaton up to the start and end lengths. It is clear that PreciseSubstring is an

algorithm with much greater precision than the FastSubstring algorithm, but this

precision does come at the cost of performance. The computational complexity of the

FastSubstring algorithm is depends upon the number of states in the automaton

and the number of those that are accepting due to the nested loops on lines 3 and

5. In comparison, the PreciseSubstring algorithm contains two loops on lines 4

and 9 with a call to the FollowTransitions (2.10b) sub-algorithm nested within

the loop. This FollowTransitions sub-algorithm itself contains nested loops on

lines 3 and 4 which result in a PreciseSubstring algorithm which contains two

triple nested loops and two single loops on lines 14 and 17. The improvement

in computational complexity of the FastSubstring algorithm compared to the
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PreciseSubstring algorithm is clear, but at the cost of over-approximating the

solution set.

There do exist some string operations which will always have the potential to

over-approximate the solution set of a string variable. These are of subset of string

operations under which regular languages are not closed. Because the languages

accepted by automata are only regular languages, any operation under which regular

languages are not closed cannot be precisely modeled by an automaton. Thus, when

some string functions are modeled by an algorithm, the resulting automaton can be an

over-approximation of the actual solution set. For example, some algorithms which

model the Replace operation produce an over-approximated solution set [38, 39].

The choice to use an over-approximating modeling algorithm is made because either

it is much more efficient than a precise algorithm or no known precise modeling

algorithm is known. Which approach to utilize when choosing a string operation

simulation algorithm depends upon the analysis in which such algorithms are used.

String Predicates

Category: Examples

Full Match str1 = str2, EqualsIgnoreCase(str1, str2)

Partial Match Contains(str1, str2), StartsWith(str1, str2)

Mixed Constraint Length(str) > int, IndexOf(char) < int

Infeasible Matches(str1, strregex), str1 = Format(str2, obj[])

Figure 2.11: String Predicate Categories

In order to examine the application of string predicates for automata-based sym-

bolic string models, four categories of string predicates must first be reviewed. We

assigned these four categories to the different string predicates we encountered in

this analysis of automata-based symbolic string models. These four categories are as
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follows: full match, partial match, mixed type, and infeasible. These categories are

listed with example predicates in the table in Figure 2.11.

Full Match We identified full match string predicates where two string values are

compared to determine equality. Some of these predicates include some prepossessing

of the string arguments such that the string returned from this prepossessing is used

in the equality comparison. An example of a string predicate which includes some pre-

possessing of the string arguments is the EqualsIgnoreCase(str1, str2) predicate

where both string arguments str1 and str2 have their symbols converted into the same

case before being compared for equality. This is an extra step compared to the much

simpler predicate str1 = str2 which requires no prepossessing step before comparing

str1 and str2 for equality. Full match string predicates are very simple to simulate

for automata-based symbolic string models because the equality predicate is just the

automaton Intersect operation which has many known algorithms which can be

implemented [32]. Similarly, to check for inequality the Intersect operation is used

between the first automaton and the automaton returned from the Complement

operation performed on the automaton of the second string.

Partial Match We identified partial match string predicates where two string values

are compared to determine if a portion of the first string value is equal to either

a second string value or a portion of a second string value. One example of this

kind of predicate is Contains(str1, str2) where the first string str1 is checked to

see if it contains a sequence of symbols equal to the second string str2. Similarly,

the partial match predicate StartsWith(str1, str2) where the first string str1 is

checked to see if it begins with the sequence of symbols equal to the second string

str2. Partial match string predicates like full match predicates are fairly simple to

simulate for automata-based symbolic string models. Just like full match predicates,



42

partial match predicates use the automaton Intersect operation to check for partial

equality, however this check for partial equality requires the concatenation of simple

unknown string automata such that the new automata is added to the beginning

and/or the end of the second automaton in the predicate depending on the specific

predicate used. The check for partial inequality for partial match predicates is handled

similarly to full match types where the previously described concatenated second

automaton is processed by the Complement automaton operation before intersected

with the first automaton argument.

Mixed Constraint We identified mixed constraint string predicates where the op-

erations contained in the predicate where mixed constraint string operations. An

example of this kind of predicate is Length(str) > int where the length of a string

value is compared to an integer value. Just like mixed constraint string operations,

any algorithm which can simulate a mixed constraint string predicate would need to

be specialized to handle both automata-based symbolic strings and symbolic values

for the other data types included in the predicate.

Infeasible We identified infeasable string predicates where the complexity require-

ments of simulating the predicate for automata-based symbolic string models is not

feasible by any known algorithms. This infeasibility can occur due to either the

logic of the predicate itself being to complex or due to the inclusion of infeasable

string operations in the predicate. An example of an infeasible complex predicate

is Matches(str1, strregex) which would require the processing of the automaton

representing the regular expression string to be processed for all the possible regular

expressions such a string could have, a very complex task. An example of an infeasible

predicate due to included infeasible operations would be str1 = Format(str2, obj[])

where equality is checked between one string str1 and a formatted string returned
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from the infeasible string operation Format(str2, obj[]).

q0start q1 q2 q3
A-D A-D A-D

(a) Primary automaton

q0start q1
A

(b) A automaton

q0start q1

A-D

A

A-D

(c) A automaton prepared for
Intersect

q0start

q1

q2

q3

q4

q5

A

B-D

A-D

A

B-D

A-D

A

(d) Resulting automaton

Figure 2.12: FSA Contains(A1, A) true predicate example

Figure 2.12 how a string predicate can be simulated for an automata-based sym-

bolic string model. In this example, the true branch outcome is asserted for the

Contains(A1, A) predicate. This predicate is performed for a simple unknown string

type variable, shown in Figure 2.12a, with an alphabet Σ = {A, B, C, D} and initial

bounding length k ≤ 3. Figure 2.12b shows the literal string type automaton that

is created for the A argument of the Contains predicate. In order for the simulate

the predicate, the argument automaton must be modified to represent any string

containing A so that it can be used in an Intersect automaton operation. Figure

2.12c illustrates how this is done by concatenating two simple unknown string type

automata to the argument automaton, one preceding the argument automaton and

one following it. Figure 2.12d is the automaton which is returned by the intersection of

the primary automaton (Figure 2.12a) and the prepared argument automaton (Figure

2.12c). This automaton accepts any string up to length 3 which also contains the sym-

bol A which reflects only the string values for which the predicate Contains(A1, A)

is true.
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Model Counting

When modeling string constraints with automata in a quantitative string analysis

such as PSE, the MC must be calculated using the automaton quintuple. Fortu-

nately, research has shown that model counting an automaton can be reduced to

exactly counting the accepting paths of the automaton [1]. This means that a

simple algorithm for model counting automata requires a straightforward traversal

of the automata graph until no more transitions can be explored or up to a specified

bounding length k if the automaton is contains one or more infinite cycles. This MC

procedure will be examined in detail in Chapter 3. The calculation of MC from an

automata is an area of ongoing research aimed at reducing the performance cost of

model counting automata [1, 27]. While the automaton MC calculation procedure

could be optimized for better performance, the additional performance cost that is

required by even the most efficient algorithms when added to the other additional

performance costs required for using a PSE analysis results in a much more costly

analysis than an SE analysis. In addition to these performance issues, other problems

have been observed during quantitative string analyses which can render such analyses

invalid.

2.4.3 Limitations

The two significant limitations which have been observed in both our research and

other existing research using automata in SE and PSE are the collapse problem as

discussed in Section 2.3.2 and over-approximation as discussed in Section 2.4.2. The

occurrence of either one of these problems in a quantitative analysis can be enough

to alter the MC and the subsequent probability calculations which can result in an
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invalid PSE analysis.

q0start q1
A-B

(a) FSA for Σ = {A, B} and k = 1.

q0start q1
B

(b) FSA for Replace(X, A, B)

q0start q1
B

(c) PC4 Automaton

q0start

(d) PC6 Automaton

Figure 2.13: An sample Java method that uses PSE with String variables.

To illustrate how the collapse problem occurs for automata-based symbolic string

models, the example from Figure 2.4a will be revisited. The automata in Figure

2.13 correspond to the symbolic value X shown in the PSE tree in Figure 2.4c. This

automaton accepts ε since the initial state q0 is accepting and reaches the second

accepting state q1 by reading either an A or B symbol. The automaton therefore

accepts three strings: ε, A, and B. When the initial string value undergoes a Replace

operation on line 2, it produces the automaton shown in Figure 2.13a. This automaton

accepts ε since the initial state q0 is accepting and reaches the second accepting state

q1 by reading a B symbol. This automaton therefore accepts only two strings: ε and B.

It is clear that the non-injective Replace operation produces an automaton which

accepts fewer strings than the initial automaton, demonstrating the collapse problem

for automaton-based symbolic string models. This is also seen in the automata for

PC4 and PC6 in Figures 2.13c and 2.13d respectively where both automaton only

accept a single string for a total of two possible execution paths rather than the three

which actually exist.
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CHAPTER 3

AUTOMATA-BASED SYMBOLIC STRING MODELS

This chapter details the theoretical work required to complete the analysis of

automata-based symbolic string models. An automata-based symbolic string model,

shortened as automata model and denoted with the symbol M, encapsulates one

or more FSAs as well as any other important data and data structures required to

represent a solution set. Two instances of important data for each of the four au-

tomata models used in this analysis are the alphabet and the length of the automaton.

The alphabet of an automata model is used to represent all the symbols possible in

a quantitative analysis rather than just the symbols appearing in the solution set

of the symbolic string. These additional symbols in the alphabet are needed to

simulate string operations and predicates which require the construction of automata

representing every possible symbol rather than just the subset of symbols which

appear in the language of a specific automaton. The length of an automata model

is used differently depending on the version of the automata model but ultimately is

used to ensure the finite length of the automata when used in algorithms for string

operations, string predicates, or model counting. The automaton structure itself

remains the same for each type of automata model, using the quintuple defined in

Section 2.4.1.

For our analysis of automata-based symbolic string models we utilized four distinct
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versions of automata models: unbounded, bounded, aggregate bounded, and weighted-

transition aggregate. Section 3.1 details the unbounded automata model which serves

as the basis for comparison to the other modified automata models. Section 3.2

describes the bounded automata model which is a fairly simple modification of the

unbounded version. Section 3.3 describes the aggregate bounded automata model

which is a further modification of the bounded version. Finally, Section 3.4 covers

the weighted-transition aggregate automata model which incorporates a redesigned

FSA using weighted-transitions as a further refinement of the aggregate automata

model. Each of these automata models will be defined and three important uses of

the automata model will be examined: model counting the automata model, string

operations which result in an over-approximation of the solution set for the automata

model, and string operations which result in a collapse problem for the automata

model.

3.1 Unbounded Automata Model

k = 2

q0start

A-B

Figure 3.1: Unbounded Automata Model:
Σ = {A, B}, k = 2

The unbounded automata model consists of a FSA, an alphabet, and a length.

Figure 3.1 is an example of such an automata model with an alphabet Σ = {A, B} and

a length value k = 2. The length value of the unbounded automata model is used as a

maximum length counter when traversing automata when performing algorithms to

ensure that automaton cycles do not cause endless loops. The maximum length value
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must be modified as part of additive, subtractive, and complex substitutive string

operations to accurately reflect the way these operations alter the lengths of the

resulting strings. The creation process for the FSA component of the unbounded

automata model is completed as described in Section 2.4.2 for each of the empty, empty

string, literal, simple unknown, and complex unknown string types. The unbounded

automata model is equivalent to the automata models used in known string analysis

research [1, 7, 18,19,34,36–41].

3.1.1 Model Counting

1: procedure CountUnbounded(M)
2: k ← k ∈M
3: A ← A ∈M
4: q0 ← q0 ∈ A
5: mcr ←MCUnbounded(q0, k)
6: if q0 ∈ F then
7: mcr ← mcr + 1
8: end if
9: return mcr

10: end procedure

(a) Coordinating algorithm

1: procedure MCUnbounded(q, i)
2: if i ≥ 0 then
3: i← i− 1
4: end if
5: mcr ← 0
6: for qd ∈ {qe | δ(q, α)→ qe} do
7: if qd ∈ F then
8: mcr ← mcr + 1
9: end if

10: if i > 0 then
11: mcr ← mcr + MCUnbounded(qd, i)
12: end if
13: end for
14: return mcr
15: end procedure

(b) Recursive model counting algorithm

Figure 3.2: Model counting algorithms for unbounded automata models

Figure 3.2 shows the model counting algorithms for the unbounded automata

models where the coordinating algorithm is Figure 3.2a and the recursive algorithm

is Figure 3.2b. To count an unbounded automata model M, the model is passed as

the argument to the coordinating CountUnbounded algorithm. Next, the length k

and the start state q0 of the FSA A are retrieved for the call of the MCUnbounded

recursive algorithm. The initial call to this algorithm is made using the start state
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q0 as the state argument q and using the length value k as the counter i. Lines

1-3 of MCUnbounded decrements the counter i so that the recursive loops of this

algorithm will not continue endlessly. Line 4 initializes the model count value to

be returned by the algorithm mcr. Line 5 of MCUnbounded begins an iteration

through all the outgoing transitions of the state q provided as an input argument to

the algorithm, the tuple 〈αt, qd〉 which are the symbol and destination state of each

outgoing transition are the values used in this for loop. Lines 6-8 of MCUnbounded

check to see if the transition destination state qd is an accepting state, i.e. qd ∈ F .

If qd is accepting, then Line 7 of MCUnbounded increments the currently tracked

model count mcr of transitions outgoing from the initial state q. Next, lines 9-11 of

MCUnbounded check the counter i to determine if recursion should continue. If

so, the result of a recursive call to the MCUnbounded algorithm is added to the

currently tracked number of model counts mcr. The recursive call to the algorithm

on line 10 of MCUnbounded is made specifying the transition destination state

qd and the updated length counter i. As a result of the loop covering Lines 5-12 of

MCUnbounded, the number of strings accepted by the automaton up to length i

for outgoing transitions from the state q will be tracked by the mcr variable and is

returned from the algorithm on Line 13 of MCUnbounded. When the recursive

calls to MCUnbounded finally complete, line 5 of CountUnbounded stores the

returned model count as mcr. Lines 6-8 of CountUnbounded then check if the

start state q0 is accepting and increments the model count mcr if so, this accounts

for the possible empty string value.

While there is ongoing research into more efficient model counting algorithms

for automata [1, 27] as discussed in Section 2.4.2, the straightforward and easy to

understand Algorithm 3.2 is sufficient for our analysis of automata-based symbolic
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string models. This particular model counting algorithm will serve as a basis of

comparison when discussing the corresponding algorithms for bounded, aggregate, and

weighted automata models.

3.1.2 Over-Approximation

The over-approximation of a solution set due to the string operation simulating

algorithms has been discussed previously in Sections 2.4.2 and 2.4.3. However, there

is another possible source of over-approximation of a solution set for automata-based

symbolic string models, the composition automata model itself. The string operation

Concatenation is used to demonstrate this type of over-approximation for an un-

bounded automata model. The later Sections 3.2.2, 3.3.3, and 3.4.5 will examine how

the model caused over-approximation does or does not occur for bounded, aggregate,

and weighted automata models for the same Concatenation operation scenario.

k = 2

q0start q1

B
A

B

A

(a) M1 unbounded automata model

k = 2

q0start q1

B
A

B

A

(b) M2 unbounded automata model

k = 4

q0start q1 q2

B
A

B
A

B

A

(c) MC unbounded automata model
resulting from Concatenation operation

Figure 3.3: Concatenation(M1,M2) example for unbounded automata model

The example shown in Figure 3.3 demonstrates how over-approximation due to

model structure can occur for unbounded automata models. This example presents
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the string operation Concatenation(str1, str2) simulated for unbounded automata

modelsM1 andM2 representing the string variables str1 and str2 respectively. Figure

3.3a shows the model diagram corresponding to M1 which accepts the language of

strings up to a length 2 which contain only the symbols A and B and must end

in the symbol A, i.e., M1 has an alphabet ΣM1 = {A, B} and maximum length

kM1 = 2 and represents the solution set SM1 = {A, AA, BA}. This unbounded au-

tomata model structure can appear often in a software program by asserting the

EndsWith(M, A) predicate. Figure 3.3b shows the model diagram corresponding

to M2 which has an identical structure to the M1 unbounded automata model, i.e.,

ΣM2 = {A, B}, kM2 = 2, and SM2 = {A, AA, BA}. Figure 3.3c shows the diagram

of the unbounded automata model MC which is the result of the Concatenation

operation. This resulting model has the same alphabet as both the M1 and M2

models since the alphabet of the automata model resulting from the Concatenation

operation will be the Union of the two argument automata models. The maximum

length value of the MC model has been set as kMC
= 4 to reflect the addition of

two length 2 automata models in the additive string operation. The cause of the

over-approximation for theMC unbounded automata model is this maximum length

value and the fact that the length is tracked separately from the FSA. This can

be seen by comparing the expected solution set Se and actual solution sets for the

MC model SM2 . It is expected that the Concatenation of M1 with solution set

SM1 = {A, AA, BA} and M2 with solution set SM2 = {A, AA, BA} will produce the

solution set Se = {AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA} which has a model count

MC(Se) = 8. However, the actual solution set produced for the MC unbounded

automata model is Sa = {AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA, ABAA, ABBA, BBAA}

which has a model count MC(SMC
) = 11. This over-approximation occurs to the
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inclusion of the three string values ABAA, ABBA, and BBAA which cannot be produced

from the Concatenation of M1 and M2 since AB /∈ SM1 and BB /∈ SM1 . These

three string values only exist in the actual solution set SMC
due to the concatenation

of theM1 andM2 automata as infinite automata with a independently tracked length

value. Because this type of over-approximation for unbounded automata models is

due to the alteration of maximum length value independent of the FSA, it is possible

to similarly over-approximate the resulting models for any of the additive, subtractive,

or complex substitutive string operations.

3.1.3 Collapse

In addition to the problems of over-approximation the unbounded automata model

suffers from, the model is also susceptible to collapse problems as described in Sections

2.2.3 and 2.3.2. These collapse problems can manifest as the result of either subtractive

or substitutive (both simple and complex ) string operations. The Delete operation

is demonstrated to illustrate how collapse problems can occur due to the use of

subtractive operations for unbounded automata models. Similarly, the Replace

operation is examined to explain how collapse problems can occur when simulat-

ing substitutive operations for unbounded automata models. The specific Replace

operation chosen for this example is the simple substitutive version of the operation

Replace(M, α1, α2) where α1 is a single symbol to be replaced in the primary string

and α2 is a single symbol which replaces the α1 symbols in the resulting string. The

later Sections 3.2.3, 3.3.4, and 3.4.6 will examine how the collapse problem does or

does not occur for bounded, aggregate, and weighted automata models in the same

Delete and Replace scenarios.

The example shown in Figure 3.4 demonstrates how the collapse problem can occur
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k = 2

q0start

A-B

(a) M1 unbounded automata models

k = 1

q0start q1
A-B

A-B

(b) MD unbounded automata model
resulting from Delete operation

Figure 3.4: Delete(M1, 1, 2) example for unbounded automata model

for unbounded automata models due to subtractive string operations. This example

presents the string operation Delete(str1, ints, inte) simulated for the unbounded

automata modelM1 and the start and end indices 1 and 2. Figure 3.4a shows the di-

agram corresponding toM1 such thatM1 has an alphabet ΣM1 = {A, B}, a maximum

length kM1 = 2, and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}. Figure

3.4b shows the diagram of the unbounded automata modelMD which is returned from

the Delete(M1, 1, 2) operation. This automata modelMD has the same alphabet as

M1 such that ΣMD
= {A, B}. The maximum length value k forMD has been reduced

to k = 1 to reflect the deletion of symbols. The collapse problem is identified when

comparing the model count for the original automata model MC(M1) = 7 to the

model count of the resulting automata model MC(MD) = 2 instead of the expected

model count value of 6 (the empty string ε does not contain a symbol at index 1

and therefore would return an error from the Delete(str1, 1, 2) operation). Because

of the Delete operation, each of the A, AA, and AB string values in SM1 correlates

to the single A string value in SMD
. The same relationship exists for the B, BA, and

BB string values in SM1 and the single B string value in SMD
. Thus, the original

solution set values SM1 = {ε, A, B, AA, AB, BA, BB} collapse into the solution set values

SMD
= {A, B} as a result of the Delete(M1, 1, 2) operation. This particular type

of collapse behavior for unbounded automata models can occur for any subtractive

string operation.



54

k = 2

q0start

A-B

(a) M1 unbounded automata model

k = 2

q0start

B

(b) MR unbounded automata model
resulting from Replace operation

Figure 3.5: Replace(M1, A, B) example for unbounded automata model

The example shown in Figure 3.5 demonstrates how the collapse problem can

occur for unbounded automata models due to substitutive string operations. This

example presents the string operation Replace(str1, char1, char2) simulated for the

unbounded automata model M1 representing the string argument str1 and the sym-

bols A and B as the symbol arguments char1 and char2. Figure 3.5a shows the diagram

corresponding toM1 such thatM1 has an alphabet ΣM1 = {A, B}, a maximum length

kM1 = 2, and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}. Figure 3.4b

shows the diagram of the unbounded automata modelMR which is returned from the

Replace(M1, A, B) operation. This automata model MR has the same maximum

length as M1, kMR
= 2, since the symbols to be replaced (A) and the replacing

symbols (B) are both single symbols. However, the alphabet of the resulting model

only contains a single symbol ΣMR
= {B} since all A symbols were replaced in the

operation. The collapse problem can be seen when comparing the model count of the

original automata model MC(M1) = 7 to the model count of the resulting automata

model MC(MR) = 3. Due to the Replace operation, both the A and B string values

in SM1 correlate to the B string value in SMR
. Similarly, each of the string values

AA, AB, BA, and BB in SM1 correlate to the BB string value in SMR
. The empty string

value ε in SM1 correlates to the empty string value in the result solution set SMR
.

Thus, the original solution set values SM1 = {ε, A, B, AA, AB, BA, BB} collapse into the

solution set values SMR
= {ε, B, BB} as a result of the Replace(M1, A, B) operation.
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This type of collapse behavior for unbounded automata models can occur for any

substitutive string operations.

3.2 Bounded Automata Model

q0start q1 q2
A-B A-B

Figure 3.6: Bounded Automata Model:
Σ = {A, B}, k = 2

The bounded automata model was created to solve the issue of model over-

approximation as described in Section 3.1.2 for the unbounded automata model.

Figure 3.6 is an example of a bounded automata model with an alphabet Σ = {A, B}

and a length value k = 2. The bounded automata model consists of a FSA, an

alphabet, and a length. The length value for this model is used to bound the length

of the FSA to ensure that no cycles can exist within FSA, this allows the bounded

model to avoid the problem of tracking the maximum length value external to the

FSA which caused the over-approximation for the unbounded model.

1: procedure CreateBoundedFSA(Ainit, k,Σ)
2: Q← F ← {q0}, δ ← ∅
3: A ← 〈Q,Σ, δ, q0, F 〉
4: q ← q0
5: for i← 0 to k do
6: Q← Q ∪ {qn}, F ← F ∪ {qn}
7: for α ∈ Σ do
8: δ(q, α)→ qn
9: end for

10: q ← qn
11: end for
12: Ar ← Ainit ∩ A
13: return Ar

14: end procedure

Figure 3.7: Creation algorithm for bounded automata model
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The FSA creation process for a bounded automata model begins just as the

unbounded process, creating an initial FSA Ainit as one of the five initial FSAs

described in Section 2.4.2: empty, empty string, literal, simple unknown, and complex

unknown. While only the unknown string types have a corresponding FSA which can

contain cycles and would therefore need to be bounded by the length value k, the

bounding process can still be performed for the other string type FSAs without issue.

The bounding process is shown in Figure 3.7 where the initial FSAAinit, the bounding

length k, and the alphabet Σ are required parameters. Lines 2 and 3 initialize the

bounding FSA A with only the accepting start state q0 which is then stored as the

current state q on line 4. The loop on lines 5-11 is used to create the bounding FSA

which accepts all strings up to length k in the alphabet Σ. Line 6 creates a new state

qn and adds this state to the FSA as an accepting state. The loop on lines 7-9 creates

a transition from the current state q to the new state qn for every symbol α ∈ Σ.

On line 10 the current state qb is updated as the new state qn for the next iteration

of the loop. After the loop is completed, the FSA A is now the desired bounding

FSA accepting all strings up to the length k. Line 12 intersects the initial FSA Ainit

and the bounding FSA A to produce the desired bounded initial FSA Ar. This FSA

Ar has no cycles and accepts the same language as the initial FSA Ainit such that

L(Ai) = L(Ar) for all strings with lengths less than or equal to the bounding length

k. This bounded FSA Ar is added to the bounding length k and the alphabet Σ to

complete the construction of the new bounded automata model.

3.2.1 Model Counting

Figure 3.8 shows the model counting algorithms for the bounded automata models

where the coordinating algorithm is shown in Figure 3.8a and the recursive algorithm
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1: procedure CountBounded(M)
2: A ← A ∈M
3: q0 ← q0 ∈ A
4: mcr ←MCBounded(q0)
5: if q0 ∈ F then
6: mcr ← mcr + 1
7: end if
8: return mcr
9: end procedure

(a) Coordinating algorithm

1: procedure MCBounded(q)
2: mcr ← 0
3: for qd ∈ {qe | δ(q, α)→ qe} do
4: if qd ∈ F then
5: mcr ← mcr + 1
6: end if
7: mcr ← mcr + MCBounded(qd)
8: end for
9: return mcr

10: end procedure

(b) Recursive model counting algorithm

Figure 3.8: Model counting algorithms for bounded automata models

is shown in Figure 3.8b. This version of the model counting algorithm works nearly

the same as the unbounded version except that the bounded version does not include

a counter parameter to the recursive algorithm since a bounded FSA cannot contain

cycles.

3.2.2 Over-Approximation
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q1

q2

q3

A

B

A

A

(a) M1 bounded automata model
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q1

q2

q3
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B

A
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(b) M2 bounded automata model

q0start

q1

q2

q3

q4

q5

q6

q7
A

B

A

B

A

B
A

B

A

A

A

(c) MC bounded automata model resulting from
Concatenation operation

Figure 3.9: Concatenation(M1,M2) example for bounded automata model

The example shown in Figure 3.9 demonstrates how over-approximation due to
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model structure is prevented for bounded automata models. This example presents

the string operation Concatenation(str1, str2) simulated for bounded automata

models M1 and M2 representing the string variables str1 and str2 respectively.

Figures 3.9a and 3.9b show the diagrams corresponding to M1 and M2 such that

M1 and M2 both have an alphabet ΣM1 = ΣM2 = {A, B} and bounding length

kM1 = kM1 = 2 and both represent the solution set SM1 = SM2 = {A, AA, BA}.

The string operation and automata model parameters are identical to those dis-

cussed in Section 3.1.2 for the unbounded automata model where over-approximation

occurred. Figure 3.9c shows the diagram of the bounded automata model MC

which is the result of the Concatenation operation and has the same alpha-

bets as M1 and M2, that is ΣMC
= {A, B}. This resulting model MC has a

solution set SMc = {AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA} which matches the

expected solution set Se = {AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA} resulting from

the Concatenation(str1, str2) operation the alphabet ΣM1 = ΣM2 = {A, B} and

bounding length kM1 = kM1 = 2. Since the expected and actual solution sets

are equivalent, the expected and actual model counts are equal, i.e. MC(Se) =

MC(Mc) = 8. Because the length is incorporated into the structure of the FSA

by bounding the FSA in a bounded automata model, the over-approximation due to

the model which can occur for unbounded automata models cannot occur for bounded

automata models.

3.2.3 Collapse

While the bounded automata model prevents the over-approximation experienced

by unbounded models, the collapse problems due to subtractive and substitutive op-

erations still can occur for bounded automata models.
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q0start q1 q2
A-B A-B

(a) M1 bounded automata model

q0start q1
A-B

(b) MD bounded automata model resulting
from Delete operation

Figure 3.10: Delete(M1, 1, 2) example for bounded automata model

The example shown in Figure 3.10 demonstrates how the collapse problem can

occur for bounded automata models due to subtractive string operations. This exam-

ple presents the string operation Delete(str1, ints, inte) simulated for the bounded

automata model M1 and the start and end indices 1 and 2. Figure 3.10a shows

the diagram corresponding to M1 such that M1 has an alphabet ΣM1 = {A, B} and

maximum length k = 2 and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}.

Figure 3.10b shows the diagram of the bounded automata model MD which is re-

turned from the Delete(M1, 1, 2) operation and has the same alphabet as M1,

ΣMD
= {A, B}. As with the unbounded Delete operation in Section 3.1.3, the

solution set of the bounded automata model produced by simulating the Delete

operation SMD
= {A, B} and the corresponding model count MC(MD) = 2 does not

match the expected model count of 6 (the empty string should not be represented in

the model after the operation). This example demonstrates that bounded automata

models do not prevent collapses due to subtractive string operations.

q0start q1 q2
A-B A-B

(a) M1 bounded automata model

q0start q1 q2
B B

(b) MR bounded automata model resulting
from Replace operation

Figure 3.11: Replace(M1, A, B) example for bounded automata model

The example shown in Figure 3.11 demonstrates how the collapse problem can

occur for bounded automata models due to substitutive string operations. This
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example presents the string operation Replace(str1, char1, char2) simulated for the

bounded automata modelM1 representing the string argument str1 and the symbols

A and B as the symbol arguments char1 and char2. Figure 3.11a shows the diagram

corresponding to M1 such that M1 has an alphabet ΣM1 = {A, B} and a bounding

length kM1 = 2 and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}. Figure

3.11b shows the diagram of the bounded automata model MR which is returned

from the Delete(M1, 1, 2) operation. As with the unbounded Replace operation

in Section 3.1.3, the solution set for the bounded automata model produced by

simulating the Replace operation SM∇ = {ε, B, B} and the corresponding model

count MC(MR) = 3 does not match the expected model count of 7. As with the

Delete example, this Replace example demonstrates that the bounded automata

model does not prevent collapses due to substitutive string operations.

3.3 Aggregate Bounded Automata Model

1
q00start

1
q10start q11

1
q20start q21 q22

A-B

A-B A-B

Figure 3.12: Aggregate Bounded Automata Model:
Σ = {A, B}, k = 2

The aggregate bounded automata model, shortened henceforth as aggregate au-

tomata model, was created to prevent collapse problems which occur due to sub-

tractive string operations as described in Sections 3.1.3 and 3.2.3. Figure 3.12 is

an example of an aggregate automata model with an alphabet Σ = {A, B} and a
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length value k = 2. The aggregate model includes a sequence of FSAs, a sequence

of positive integers called factors, an alphabet, and a length. The factors (fn)kn=0

are updated in string operation simulation algorithms and are used as a multiplying

factors when computing the model count of an aggregate model. As with the bounded

model, the aggregate automata model uses the length value to bound the length of

FSAs. However, unlike the bounded automata model, the aggregate automata model

can contain more than one FSA. These multiple FSAs are collected into a sequence

such that each FSA in the sequence correlates to a FSA which accepts a language

of strings with precisely the length of the corresponding index in the sequence, i.e.

(An)kn=0 where L(An) only contains strings of length n. In the example aggregate

automata model, the FSA with start state q00 is at index 0 in the FSA sequence

and only accepts the empty string ε which is a string with length 0. Similarly, the

FSA with start state q10 is at index 1 in the FSA sequence and only accepts strings of

length 1. The process of FSA creation is similar to that used for unbounded automata

models, starting with the creation of an initial FSA Ainit as described in Section 2.4.2.

1: procedure FSASequence(Ainit, k,Σ)
2: for Ai

r ∈ (An
r )kn=0, f

i
r ∈ (fnr )kn=0 do

3: Ab ← LengthFSA(i,Σ)
4: Ai

r ← Ainit ∩ Ab

5: f ir ← 1
6: end for
7: return (An

r )kn=0, (fnr )kn=0

8: end procedure

(a) Creation algorithm for FSA sequence

1: procedure LengthFSA(k,Σ)
2: Q← F ← {q0}, δ ← ∅
3: A ← 〈Q,Σ, δ, q0, F 〉
4: q ← q0
5: for i← 0 to k do
6: Q← Q ∪ {qn}
7: for α ∈ Σ do
8: δ(q, α)→ qn
9: end for

10: q ← qn
11: end for
12: F ← F ∪ {qn}
13: return A
14: end procedure

(b) Creation algorithm for length
bounded FSA

Figure 3.13: Algorithms to create FSA sequence for aggregate automata model
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Figure 3.13 contains the algorithms used to create the FSA and factor sequences

for an new aggregate automata model. The sequence creation process begins using

the FSASequence algorithm shown in Figure 3.13a which requires an initial FSA

Ainit, an initial bounding length k, and an alphabet Σ as parameters. Lines 2-6

of the FSASequence algorithm initializes both the return FSA sequence (An
r )kn=0

and the return factor sequence (fn
r )kn=0 and then loops from 0 until k. Line 3 of the

FSASequence algorithm uses the LengthFSA algorithm create a bounding FSA

which only accepts strings of length i. The LengthFSA algorithm is shown in Figure

3.13b and accepts the length integer k and the alphabet Σ as parameters. Lines 2-4 of

LengthFSA initialize the bounding FSA A with only the non-accepting start state

q0 which is then stored as the current state q. The loop on lines 5-11 of LengthFSA

is used to create the bounding FSA which accepts only of length k in the alphabet

Σ. Line 6 of LengthFSA creates a new state qn and adds this state to the FSA

set of states Q ∈ A. The loop on lines 7-9 of LengthFSA creates a transition

from the current state q to the new state qn for every symbol α ∈ Σ. On line 10 of

LengthFSA the current state qb is updated as the new state qn for the next iteration

of the loop. After the loop is completed, line 12 of LengthFSA adds the last newly

added state qn to the set of accepting states F ∈ A. Line 13 of LengthFSA returns

the FSA A which is now the desired bounding FSA accepting all strings of length k

as Ab on Line 3 of FSASequence. Line 4 of FSASequence intersects the initial

FSA Ainit and the bounding FSA Ab producing the intersected FSA Ai
r at index i in

the FSA sequence (An
r )kn=0. Line 5 of FSASequence sets the factor at index i to 1

for the factor sequence (fn
r )kn=0. The loop on lines 2-6 of FSASequence continues

until all the FSAs in the FSA sequence (An
r )kn=0 are created and all the factors in the

factor sequence (fn
r )kn=0 are set to 1. Finally, line 7 of FSASequence returns both
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the completed FSA and factor sequences. These FSA and factor sequences are then

added to the bounding length k and the alphabet Σ to complete the creation of an

aggregate automata model.

3.3.1 String Operations

1: procedure ABinaryOp(Op,M1,M2,Σ)
2: (An

1 )kn=0 ∈M1, (An
2 )kn=0 ∈M2

3: AU2
←

⋃k
n=0An

2

4: for Ai
op ∈ (An

op)kn=0, f
i
op ∈ (fnop)kn=0 do

5: Ai
op, f

i
op ← Op(Ai

1, f
n
1 ,AU2

)
6: end for
7: Mop ← 〈(An

op)kn=0, (f
n
op)kn=0, k,Σ〉

8: returnMop

9: end procedure

(a) String operation and predicate
coordination algorithm for two aggregate

automata model arguments

1: procedure RestructFSAs(Mop)
2: (An

op)kn=0 ∈M, (fnop)kn=0 ∈M,Σ ∈M
3: kr ← GetMaxLength((An)kn=0)
4: for Ai

r ∈ (Am
r )kr

m=0, f
i
r ∈ (fmr )kr

m=0 do
5: f ir ← 0
6: Ab ← LengthFSA(i,Σ)
7: for Aj

I ∈ (An
t )kn=0 do

8: Aj
I ← Aj

op ∩ Ab

9: if L(Aj
I) 6= ∅ then

10: f ir ← f ir + fi
11: end if
12: end for
13: Ai

r ←
⋃kr

n=0An
I

14: end for
15: Mr ← 〈(An

r )kr
n=0, (f

n
r )kr

n=0, kr,Σ〉
16: returnMr

17: end procedure

(b) Restructuring algorithm for aggregate
automata models

Figure 3.14: Aggregate automata model utility algorithms for string operations and
predicates

Since the aggregate automata model contains a sequence of FSAs instead of a

single FSA, the simulation of string operations and predicates with more than one

aggregate automata model argument must now manage how the operation or predicate

will be simulated using two or more FSA sequences. The strategy we use in our work

for these multiple FSA sequences is to merge each non-primary FSA sequence into

a single FSA which can be used to simulate a string operation or predicate. Figure

3.14a is an algorithm for binary operations between two aggregate automata models



64

which details this merging of non-primary FSA sequences and the subsequence string

operation or predicate simulation. The ABinaryOp algorithm takes an operation or

predicate simulation algorithm Op as a parameter in addition to two automata model

parameters M1 and M2 and the alphabet Σ. Line 2 of the algorithm extracts the

FSA sequences for both the M1 and M2 models for later use in the algorithm. Line

3 merges all the FSAs in the FSA sequence for M2 using the Union operation and

producing the merged FSA AU2 . Line 4 initializes the operation or predicate result

FSA sequence (An
op)

k
n=0 and operation result factor sequence (fn

op)
k
n=0 before the loop

on lines 4-6. Line 5 of this loop performs the Op operation or predicate simulation

algorithm using the FSA and factor at index i of their respective sequences for M1

and the merged FSA AU2 . The FSA Ai
op and factor f i

op produced by the Op algorithm

are set as the respective FSA and factor at index i in the result sequences (An
op)

k
n=0

and (fn
op)

k
n=0. Lines 7 and 8 finish the algorithm by creating the operation or predicate

result aggregate automata model Mop on line 7 and returning that model from the

algorithm on line 8.

Unfortunately, the Union of non-primary FSA sequences for string operations

and predicates can result in an aggregate automata model which is vulnerable to

subtractive collapses due to produced FSA sequence containing individual FSAs which

accept strings of different lengths. Since the aggregate model was created specifically

for the prevention of subtractive collapses, this continuing vulnerability must be

removed by restructuring the FSA sequence produced by the simulation of the string

operation or predicate (An
op)

k
n=0. Figure 3.14b shows the RestructFSAs algorithm

which performs this restructuring and accepts the aggregate automata modelMop as

its only parameter. Line 2 of the algorithm extracts the FSA and factor sequences

(An
op)

k
n=0 and (fn

op)
k
n=0 and the alphabet Σ from the model Mop. Line 3 uses the
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GetMaxLength algorithm to determine the length kr longest accepted string in

the FSA sequence (An)kn=0. The loop on lines 4-14 begins by initializing the return

FSA and factor sequences (Am
r )krm=0 and (fm

r )krm=0 before iterating from 0 to kr. Line

5 within the loop sets the factor f i
r of the sequence (fm

r )krm=0 at index i to 0. On line

6, the algorithm LengthFSA seen in Figure 3.13b is used to create bounding FSA

Ab accepting only strings of length i. The loop on lines 7-12 begins by initializing

the FSA sequence (An
I )kn=0 before iterating from 0 to k. Line 8 utlizes the bounding

FSA created on line 6 Ab to bound the FSA Aj
op using the Intersection automata

operation to produce the resulting FSA Aj
I . Lines 9-11 are an if condition which is

used to increment the factor f i
r. After the completion of the loop from lines 7-12, all

the intersected FSAs in the sequence (An
I )kn=0 are merged using the Union operation

on line 13 to produce a single FSAAi
r which accepts all strings with a length i accepted

by the sequence (An
op)

k
n=0. Due to the if condition on lines 9-11, the factor f i

r at the

time line 13 is performed will equal the sum of all factors from the sequence (fn
op)

k
n=0

which correspond to FSAs in the sequence (An
op)

k
n=0 accepting strings of length i.

This summation of factors is done to preserve the adjustments made to factors due

to string operations and predicates expressed in the (fn
op)

k
n=0 sequence. Line 15 of the

RestructFSAs algorithm creates a new aggregate automata model Mr from the

sequence of merged FSAs (An
r )krn=0, the sequence of summed factors (fn

r )krn=0, the newly

computed bounding length kr, and the alphabet Σ. Line 16 finishes the algorithm by

returning this newly created Mr model.

While this process of restructuring the FSA sequence does ensure that subtractive

collapses do not occur, the additional performance costs are incurred due to the

restructuring. Specifically, more time is required to complete operation and pred-

icate simulations, additional temporary space is required to create the sequence of
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sequences, and the restructured sequence of FSAs becomes vulnerable to collapse due

to the Union of the bounded FSAs (this type of collapse is discussed in more detail

in Section 3.3.4).

3.3.2 Model Counting

1: procedure CountAggregate(M)
2: mcr ← 0
3: (An)kn=0 ∈M, (fn)kn=0 ∈M
4: for 〈Qi,Σi, δi, q

i
0, Fi〉 = Ai ∈ (An)kn=0 do

5: mc←MCBounded(qi0)
6: if qi0 ∈ F then
7: mc← mc+ 1
8: end if
9: mcr ← mcr + (mc× fi)

10: end for
11: return mcr
12: end procedure

Figure 3.15: Coordinating algorithm aggregate automata models

The model counting algorithm for the aggregate automata model is shown in Fig-

ure 3.15 utilizing the recursive MCBounded algorithm shown previously in Figure

3.8b and discussed in Section 3.2.1. The coordinating algorithm begins by initializing

the return model count mcr as 0. Next, the FSA sequence and the factor sequence

are retrieved from the aggregate automata model on Lines 3 and 4. Lines 5-11 contain

an iteration through each FSA quintuple 〈Qi,Σi, δi, q
i
0, Fi〉 = Ai ∈ Ai in the aggregate

model M. For each of these FSAs, the model count is determined with a call to

the recursive algorithm MCBounded and stored as the current model count mc as

shown on Line 6. Lines 7-9 account for an empty string with an if condition which

checks if the current start state qi0 is accepting and increments the current model

count mc. Line 9 is where the return model count mcr is updated by the addition of

the current model count mc multiplied by the factor fi corresponding to the current
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FSA Ai. After iterating through all the FSAs in the aggregate automata model, the

return model count mcr is returned from the algorithm.

3.3.3 Over-Approximation

1
q10start q11

1
q20start q21 q22
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(a) M1 aggregate automata model
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(d) MC aggregate automata model resulting
Concatenation operation

1
q20start q21 q22

2
q30start

q31

q32

q33 q34

1
q40start q41 q42 q43 q44

A A

A

B

A-B

A

A

A-B A A-B A

(e) MR aggregate automata model after RestructFSAs

Figure 3.16: Concatenation(M1,M2) example for aggregate automata model

The example shown in Figure 3.16 demonstrates how over-approximation due to

model structure is prevented for aggregate automata models. This example presents

the string operation Concatenation(str1, str2) simulated for aggregate automata
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models M1 and M2 representing the string variables str1 and str2 respectively.

Figures 3.16a and 3.16b show the diagrams corresponding to M1 and M2 such that

M1 and M2 both have an alphabet ΣM1 = ΣM2 = {A, B} and bounding length

k = 2 and both represent the solution set SM1 = SM2 = {A, AA, BA}. Figure 3.16c

shows the diagram of the aggregate automata model MU2 which is produced on line

3 of the ABinaryOp procedure from the FSA sequence in the M2 model. Figure

3.16d shows the aggregate model MC produced by simulating the Concatenation

operation for M1 and MU2 . Figure 3.16e shows the aggregate model MR which was

created by the RestructFSAs algorithm performed on the MC model. While

there are 2 additional intermediary steps in the aggregate version of this Con-

catenation operation compared to the bounded version from Section 3.2.2, the

aggregate automata model also does not over-approximate the solution set. The 8

values in the aggregate model’s solution set match the expected solution set of 8, i.e.

Se = SMR
= {AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA}. This provides an example

of how over-approximation of a solution set due to an automata model is prevented

in aggregate automata models.

While aggregate automata models avoid over-approximation of the solution set,

the use of factors in the calculation of the model count as seen in the CountAg-

gregate algorithm in Figure 3.15 can result in over-approximation of the model

count calculated for the model. The previous example in Figure 3.16 shows how

this type of model count over-approximation can occur. The aggregate automata

models M1 and M2, shown in figures 3.16a and 3.16a respectively, both have a

model count MC(M1) = MC(M2) = 3 which should produce an aggregate model

from the Concatenation operation with a model count of 9. However, the model

count of the restructured aggregate model MC(MR) = 11. This over-approximation
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occurs due to the summation of the factors on lines 9-11 of the RestructFSAs

algorithm in Figure 3.14b. When this condition on lines 9-11 occurs with an i value

of 3, the factors from A1
C and A2

C FSAs are summed to produce a factor of 2 for

the A3
R. This new factor of 2 is used to reflect the merging both of the AAA string

value from the A1
C FSA and the AAA string value from the A2

C FSA into the A3
R FSA.

However, since the the A3
R FSA also represents ABA string value from A1

C but not A2
C

and the BAA string value from A2
C and not A1

C , both the ABA and BAA string values

are over-approximated in the A3
R FSA. It is due to this merging of FSAs and the

corresponding summation of factors which results in model count over-approximation

for aggregate automata models.

3.3.4 Collapse

While the aggregate automata model does improve upon the bounded model by

preventing collapses due to subtractive string operations, aggregate automata models

are still susceptible to collapses from substitutive string operations.

1
q00start

1
q10start q11

1
q20start q21 q22

A-B

A-B A-B

(a) M1 aggregate automata model

1
q10start q11

2
q20start q21

A-B

A-B

(b) MD aggregate
automata model resulting
from Delete operation

3
q10start q11

A-B

(c) MR aggregate
automata model after
restructuring the FSA

sequence

Figure 3.17: Delete(M1, 1, 2) example for aggregate automata model

The example shown in Figure 3.17 demonstrates how the collapse problem is

prevented for aggregate automata models due to subtractive string operations. This

example presents the string operation Delete(str1, ints, inte) simulated for the ag-

gregate automata modelM1 and the start and end indices 1 and 2. Figure 3.17a shows
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the diagram corresponding to M1 such that M1 has an alphabet ΣM1 = {A, B} and

maximum length k = 2 and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}.

Figure 3.17b shows the diagram of the aggregate automata model MD which is

returned from the Delete(M1, 1, 2) operation and has the same alphabet as M1,

ΣMD
= {A, B}. The prevention of the collapse due to the Delete operation can be

seen by comparing the M1 model count MC(M1) = 7 and the MD model count

MC(MD) = 6 which is the expected outcome due to the empty string ε not being

a valid argument for the Delete operation. This prevention of subtractive collapse

is accomplished first by the Delete algorithm which preserves the 4 distinct string

values AA, AB, BA, and BB from the FSA A2
1 as the 2 distinct string values A and

B accepted by the FSA A2
D and the factor f 2

D = 2. The 6 expected distinct string

values represented byMD are maintained inMR produced from the RestructFSAs

algorithm with the model count MC(MR) = 6. This example demonstrates why the

factor summation on lines 9-11 of the RestructFSAs algorithm is necessary to

prevent subtractive collapses where the merging of the FSAs A1
D and A2

D requires the

summation of their respective factors f 1
D = 1 and f 2

D = 2 to preserver the model count

MC(MR) = 6 calculated from the 2 string values accepted by A1
R multiplied by the

factor f 1
R = 3. It is this use of an FSA sequence and summation of factors which

allows aggregate automata models to prevent collapse problems due to subtractive

string operations.

The example shown in Figure 3.18 demonstrates how the collapse problem can

occur for aggregate automata models due to substitutive string operations. This

example presents the string operation Replace(str1, char1, char2) simulated for the

aggregate automata modelM1 representing the string argument str1 and the symbols

A and B as the symbol arguments char1 and char2. Figure 3.18a shows the diagram
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(a) M1 aggregate automata model
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(b)MR aggregate automata model resulting
from Replace operation

Figure 3.18: Replace(M1, A, B) example for aggregate automata model

corresponding to M1 such that M1 has an alphabet ΣM1 = {A, B} and maximum

length k = 2 and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}. Figure

3.18b shows the diagram of the aggregate automata modelMR which is returned from

the Replace(M1, A, B) operation and has the same alphabet asM1, ΣMR
= {A, B}.

There is no need to use the RestructreFSAs procedure on MR because simple

substitutive operations do not alter the length of the strings accepted by FSAs which

is the reason such a procedure is required. It is clear that the 7 distinct string values

represented in M1 by the model count MC(M1) = 7 are not properly represented

in the MR model with the model count MC(MR) = 3. While the empty string ε

is properly represented in both the A0
1 and A0

R models, the A and B string values in

A1
1 are only represented as the single value B in A1

R and the AA, AB, BA, and BB string

values in A2
1 are only represented by the single string value BB in A2

R. It is in this way

that collapses due to substitutive string operations can occur for aggregate automata

models.
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3.4 Weighted Transition Automata Model

1
q00start

0
q10start q11

0
q20start q21 q22

A-B, 1

A-B, 1 A-B, 1

Figure 3.19: Weighted-Transition Aggregate Bounded Automata Model

The weighted-transition aggregate automata model, shortened henceforth as weighted

automata model, was created primarily to prevent collapse problems which occur

due to substitutive string operations as described in Sections 3.1.3, 3.2.3, and 3.3.4.

The weighted automata model was also created with the intent of preventing the

model count over-approximation and Union collapses observed in aggregate automata

models. Figure 3.19 is an example of a weighted automata model with an alpha-

bet Σ = {A, B} and a length value k = 2. As the example shows, the weighted

automata model is nearly identical to the aggregate automata model due to the

weighted model building upon the improvements made in the aggregate model for

preventing subtractive collapse. In fact, there are only two differences between the

two automata models: the weighted model uses a weighted-transition finite state

automaton (WFSA) sequence instead of the FSA sequence used in the aggregate

model and the lack of a factor sequence in the weighted model. The factor sequence

of the aggregate model is incorporated as transition weights of the new WFSAs which

prevents the model count over-approximation in the weighted model. Before detailing

the creation process for a weighted automata model in Section 3.4.2, the new type of

automaton, the WFSA, will be detailed in Section 3.4.1.
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3.4.1 Weighted-Transition Finite State Automaton

A weighted-transition finite state automaton (WFSA) is a modification of FSA so

that in addition to accepting or rejecting input strings, the actual number of identical

input strings accepted can be determined. Due to this ability to quantify accepted

input strings, the language accepted by the WFSA W , called the language of the

WFSA and denoted as L(W), is not a set of strings but is instead a multiset or bag

of strings. Because the language of the WFSA is a multiset rather than a set of

strings, a WFSA can accept and therefore represent multiple instances of the same

input string. More formally, a weighted-transition finite state automatonW is defined

as the 6-tuple (Q,Σ, δ, q0, F, i) where

• Q is a finite set of states, Q 6= ∅

• Σ is a finite set of symbols called the alphabet, Σ 6= ∅

• δ is the transition function, δ : Q× Σ× Z→ Q

• q0 is the start state, q0 ∈ Q

• F is the set of accepting or final states, F ⊆ Q

• iε is an integer counting the number of empty strings represented by the start

state q0 if the start state is an accepting state q0 ∈ F

There are two notable differences between the FSA quintuple and the WFSA

6-tuple: the addition of the empty string counter iε and the added positive integer

argument in the transition function. The addition of the empty string counter allow a

WFSA to represent more than a single empty string value which can be required due to

either a subtractive or a complex substitutive string operation. For example, the string

operation Delete(str, 0, 1) could create one or more empty strings when deleting

strings of length 1, but would only be represented in an FSA by a single accepting start
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state. Since a WFSA can represent more than a single empty string via the empty

string counter iε, the Delete operation can be represented accurately. The transition

function of a WFSA δWFSA : (q, α, iw) → qd differs from the transition function of

a FSA δWFSA : (q, α) → qd due to the addition of the iw positive integer weight

parameter. It is this weight parameter in the WFSA transition function that allows

a WFSA to accept a multiset of string values rather than just a set. Since collapse

problems for symbolic string models occur due to using set based models to reprent

multisets of string values in quantitative analyses, the ability of WFSAs to accept

a multiset of strings is essential to solving collapse problems for automata-based

symbolic string models.

In addition to these differences in the WFSA 6-tuple compared to the FSA

quintuple, the automata operation for the WFSA must be changed from their FSA

counterparts. Specifically, the minimization algorithm (whether Hopcroft, Moore,

or Brzozowski), SubsetConstruction (determinization), Intersection, Union,

Subtraction, Concatenation, and Complement automata operations must

be modified so that they perform appropriately with the new weighted transitions

δ : (q, α, iw) → qd and empty string counter iε. In particular, the SubsetCon-

struction and minimization algorithms must ensure that transitions are duplicates

according to states, symbols, and weights before reducing such duplicate transitions

to single transitions with increased weights.

3.4.2 Model Creation

The creation process for WFSA sequence of the weighted model is shown in

Figure 3.20 and starts with the WFSASequence algorithm shown in Figure 3.20a.

WFSASequence requires an initial WFSA Winit similar to the five initial FSAs
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1: procedure WFSASequence(Winit, k,Σ)
2: for Wi

r ∈ (Wn
r )kn=0 do

3: Wb ← LengthFSA(i,Σ)
4: Wi

r ←Winit ∩Wb

5: end for
6: return (Wn

r )kn=0

7: end procedure

(a) Creation algorithm for FSA sequence

1: procedure LengthWFSA(k,Σ)
2: Q← F ← {q0}, δ ← ∅, iε ← 0
3: W ← 〈Q,Σ, δ, q0, F, iε〉
4: q ← q0
5: for i← 0 to k do
6: Q← Q ∪ {qn}
7: for α ∈ Σ do
8: δ(q, α, 1)→ qn
9: end for

10: q ← qn
11: end for
12: F ← F ∪ {qn}
13: if k = 0 then
14: iε ← 1
15: end if
16: return W
17: end procedure

(b) Creation algorithm for length
bounded FSA

Figure 3.20: Algorithms to create WFSA sequence for weighted automata model

described in Section 2.4.2: empty, empty string, literal, simple unknown, and complex

unknown. Also required by the WFSASequence procedure are an initial bounding

length k and an alphabet Σ. WFSASequence begins by initializing the WFSA

sequence (Wn
r )kn=0 on line 2 before iterating the loop on lines 2-5 from 0 to k. Each

iteration of the loop creates a bounding WFSA on line 3 using the LengthWFSA

algorithm with the current i value and the alphabet Σ. Similar to the LengthFSA

algorithm for aggregate automata models, the LengthWFSA algorithm shown in

Figure 3.20b is used to create a WFSA which accepts all strings of the specified

length k using every combination of symbols in the alphabet Σ. LengthWFSA

initializes the return WFSA on lines 2-3 with the single non-accepting start state q0,

not transitions, and an initial empty string count iε = 0. Line 4 of LengthWFSA

sets the current state q as the WFSA W start state q0. Next in the LengthWFSA

algorithm, the loop on lines 5-11 creates the structure of the bounding WFSA W
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while iterating from 0 to k. Line 6 within the loop creates a new state qn and adds

it to the set of states Q ∈ W . Lines 7-9 of LengthWFSA then create a transition

from the current state q to the new non-accepting state qn with a weight of 1 for every

symbol in the specified alphabet Σ. The last part of this loop updates the current

state q by setting it to the newly added state qn allowing future loop iterations to

add transitions from that state. After the loop in LengthWFSA used to create

the WFSA structure, line 12 adds the current state q to the set of accepting states

F ∈ W making it the single accepting state in the WFSA. The if condition on lines

13-15 of LengthWFSA checks if k is 0 and if so updates the empty string counter iε

to 1. LengthWFSA completes on line 16 by returning the created length bounding

WFSA W from the algorithm. WFSASequence resumes its iteration using the new

bounding WFSA Wb from line 3 in the Intersection operation on line 4 between

it the initial WFSA Winit producing a WFSA stored as W i
r at index i in the WFSA

sequence (Wn
r )kn=0. After WFSASequence finishes the loop from lines 2-5, the

WFSA sequence (Wn
r )kn=0 which is now complete is returned on line 6. This returned

WFSA sequence is used along with the bounding length k and the alphabet Σ to

create the new weighted automata model.

3.4.3 Model Counting

Figure 3.21 shows the model counting algorithm for the weighted automata model.

The coordinating algorithm CounteWeighted shown in 3.21a utilizes the recursive

model counting algorithm MCWeighted which is shown in 3.21b. The model

counting process begins using the CountWeighted procedure which accepts the

weighted automata model M as its only parameter. CountWeighted starts by

initializing the result model count mcr as 0 on line 2 and extracting the WFSA
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1: procedure CountWeighted(M)
2: mcr ← 0
3: (Wn)kn=0 ∈M
4: for 〈Qi,Σi, δi, q

i
0, Fi, i

i
ε〉 ∈ (Wn)kn=0 do

5: mcr ← mcr + MCWeighted(q0, 1)
6: if qi0 ∈ Fi then
7: mcr ← mcr + iiε
8: end if
9: end for

10: return mcr
11: end procedure

(a) Coordinating algorithm

1: procedure MCWeighted(q, i)
2: mcr ← 0
3: for 〈it, qd〉 ∈ {〈i, qe〉 | δ(q, α, i)→ qe} do
4: iw ← i× it
5: if qd ∈ F then
6: mcr ← mcr + iw
7: end if
8: mcr ← mcr + MCWeighted(qd, iw)
9: end for

10: return mcr
11: end procedure

(b) Recursive model counting algorithm

Figure 3.21: Model counting algorithms for weighted automata models

sequence (Wn)kn=0 from the M model on line 3. The loop on lines 4-9 of Coun-

tWeighted are responsible for calculating the model count for each WFSA in

the (Wn)kn=0 sequence. Line 4 of CountWeighted begins the loop by extracting

the WFSA 6-tuple 〈Qi,Σi, δi, q
i
0, Fi, i

i
ε〉 at the corresponding index i for use in each

iteration of the loop. Line 5 of CountWeighted utilizes the MCWeighted

recursive algorithm with the start state qi0 ∈ Wi and initial transition weight 1 as

parameters to count the number of string values represented by WFSA Wi. The

MCWeighted recursive algorithm takes two parameters, a WFSA state q and an

initial transition weight i. MCWeighted begins by initializing its return model

count mcr as 0. The MCWeighted procedure then loops through lines 3-9 for each

transition δ(q, α, i) → qe leaving the WFSA state q using weight i and destination

state qe of the transition as it and qd for each iteration of the loop. Line 4 of this loop

multiplies the transition weight parameter i by the weight it for the loop iteration’s

transition to produce a new transition weight iw. Lines 5-7 of MCWeighted check

if the destination state qd of the loop iteration’s transition is an accepting state and

if so the the return model count mcr is incremented by the new transition weight

iw. Line 8 of MCWeighted then makes the recursive call to itself specifying the
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destination state qd of loop iteration’s transition and the new transition weight iw.

After the loop in MCWeighted is complete, line 10 returns the updated return

model count mcr. After CountWeighted increments the return model count mcr

by model count returned from MCWeighted, lines 6-8 of CountWeighted ensure

that the correct number of empty string values are accounted for by checking if qi0 is

an accepting state and incrementing the return model count mcr by the empty string

counter iiε if it is an accepting state. After CountWeighted completes the iteration

through the loop on lines 4-9, the computed model count mcr is returned on line 10.

While this process of model counting weighted automata models is very similar to

the same process for aggregate models, the use of WFSA does alter alter the model

counting process. This alteration is most noticeable on line 6 of MCWeighted which

uses the newly computed transition weight iw to increment the model count instead

of an increment of 1 per transition as is the case when model counting unbounded,

bounded, and aggregate automata models.

3.4.4 String Operations and Predicates

The use of WFSAs for the weighted automata model requires the creation of

additional string operation and predicate simulation algorithms since the existing

FSA algorithms can not be used. These WFSA operation and predicate simulation

algorithms are altered from their existing FSA versions in three primary ways: uti-

lizing the WFSA specific automata operation algorithms, including the empty string

counter, and adjusting WFSA transitions to incorporate weight adjustments. The use

of the WFSA specific auotmata operation such as Union and Intersection is a very

simple change needed since the WFSAs is used instead of FSAs. The inclusion of the

empty string counter for adjustments is needed primarily for subtractive and complex
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substitutive operations which can produce an empty string value corresponding to

more than one string values prior to the operation. The adjustments of transition

weights by the simulation algorithms is is the means by which collapse problems are

prevented in weighted automata models. Each of these three alterations of existing

FSA operation and predicate simulation algorithms allows the performance of these

algorithms to be compared between the weighted model and each of the unbound,

bounded, and aggregate models with a focus on model differences rather than algorithm

differences.

1: procedure WBinaryOp(Op,M1,M2,Σ)
2: (Wn

1 )kn=0 ∈M1, (Wn
2 )kn=0 ∈M2

3: WU2
←

⋃k
n=0Wn

2

4: for Wi
op ∈ (Wn

op)kn=0 do

5: Wi
op ← Op(Wi

1,WU2)
6: end for
7: Mop ← 〈(Wn

op)kn=0, k,Σ〉
8: returnMop

9: end procedure

(a) String operation and predicate
coordination algorithm for two weighted

automata model arguments

1: procedure RestructWFSAs(Mop)
2: (Wn

op)kn=0 ∈M,Σ ∈M
3: kr ← GetMaxLength((Wn)kn=0)
4: for Wi

r ∈ (Wm
r )kr

m=0 do
5: Wb ← LengthFSA(i,Σ)
6: for Wj

I ∈ (Wn
t )kn=0 do

7: Wj
I ←Wj

op ∩Wb

8: end for
9: Wi

r ←
⋃kr

n=0Wn
I

10: end for
11: Mr ← 〈(Wn

r )kr
n=0, kr,Σ〉

12: returnMr

13: end procedure

(b) Restructuring algorithm for weighted
automata models

Figure 3.22: Weighted automata model utility algorithms for string operations and
predicates

Since the weighted automata model uses a WFSA sequence in the same way

that the aggregate model uses its FSA sequence, the same problems expressed in

Section 3.3.1 for operations and predicate simulation are also problems that need

addressing for weighted automata models. Figure 3.22 contains the WBinaryOp

procedure in Figure 3.22a and the RestructWFSAs procedure in Figure 3.22b.

The WBinaryOp procedure is used to coordinate the simulation of string opera-
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tions or predicates which require two weighted automata models. The WBinaryOp

procedure functions very similarly to the ABinaryOp procedure where the only

differences in the WBinaryOp version are the use of WFSAs instead of FSAs and the

removal of factors. The RestructWFSAs procedure also functions very similarly

to the RestructFSAs procedure for aggregate models where the only differences in

the RestructWFSAs procedure for weighted models is the use of WFSAs instead

of FSAs and the removal of factors. While the restructuring process for the WFSA

sequence of a weighted automata model should not be nessesary to prevent subtractive

collapses, the similar RestructWFSAs procedure is used to preserve consistency

between the two models.

3.4.5 Over-Approximation

The example shown in Figure 3.23 demonstrates how over-approximation due to

model structure is prevented for weighted automata models. This example presents

the string operation Concatenation(str1, str2) simulated for weighted automata

models M1 and M2 representing the string variables str1 and str2 respectively.

Figures 3.23a and 3.23b show the diagrams corresponding to M1 and M2 such that

M1 andM2 both have an alphabet ΣM1 = ΣM2 = {A, B} and bounding length k = 2

and both represent the solution set SM1 = SM2 = {A, AA, BA}. Figure 3.23c shows

the diagram of the weighted automata modelMU2 which is produced on line 3 of the

WBinaryOp procedure from the WFSA sequence in the M2 model. Figure 3.23d

shows the weighted automata model MC produced by simulating the Concatena-

tion algorithm for M1 and MU2 . Figure 3.23e shows the weighted automata model

returned from the RestructWFSAs procedure performed on theMC model. Just

as with the bounded and aggregate automata models, the weighted model prevents the
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Concatenation operation
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(e) Mr weighted automata model after restructuring the WFSA sequence

Figure 3.23: Concatenation(M1,M2) example for weighted automata model

over-approximation of its solution set for the Concatenation(M1,M2) operation

since the expected solution set Se and the solution set of the restructured model SMR

are equal, i.e. Se = SMR
{AA, AAA, ABA, BAA, AAAA, AABA, BAAA, BABA}. This example

demonstrates how over-approximation of a solution set due to an automata model is

prevented in weighted automata models.

The example in Figure 3.23 also demonstrates that weighted automata models

do not suffer from model count over-approximation observed in aggregate models as
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described in Section 3.3.3. The expected model count is 9 for both the model produced

by the Concatenation MC and the restructured model MR which matches the

actual model counts MC(MC) = MC(MR) = 9. Weighted automata models do not

suffer from model count over-approximation because the factor sequence in aggregate

models which is the cause for the over-approximation is not present in weighted

models.

3.4.6 Collapse

1
q00start

0
q10start q11

0
q20start q21 q22

A-B, 1

A-B, 1 A-B, 1

(a) M1 weighted automata model

0
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q20start q21

A-B, 1

A-B, 2

(b) MD weighted
automata model resulting
from Delete operation

0
q10start q11

A-B, 3

(c) Mr weighted automata
model after restructuring

the WFSA sequence

Figure 3.24: Delete(M1, 1, 2) example for weighted automata model

The example shown in Figure 3.24 demonstrates how the collapse problem is pre-

vented for weighted automata models due to subtractive string operations. This exam-

ple presents the string operation Delete(str1, ints, inte) simulated for the weighted

automata model M1 and the start and end indices 1 and 2. Figure 3.24a shows

the diagram corresponding to M1 such that M1 has an alphabet ΣM1 = {A, B} and

maximum length k = 2 and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}.

Figure 3.24b shows the diagram of the weighted automata model MD which is

returned from the Delete(M1, 1, 2) operation and has the same alphabet as M1,

ΣMD
= {A, B}. The prevention of a collapse due to the Delete operation can be seen

by comparing the expected model count of 6 (empty string is not a valid target of the

Delete(str1, ints, inte) operation) to the model counts of both the model returned
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from the delete operation MC(MD) = 6 and the restructured model MC(MR) = 6.

This is an example of the prevention of collapse due to subtractive operations using

weighted automata models.

1
q00start

0
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0
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(a) M1 weighted automata model

1
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0
q10start q11

0
q20start q21 q22

B, 2

B, 2 B, 2

(b) MR weighted automata model
resulting from Replace operation

Figure 3.25: Replace(M1, A, B) example for weighted automata model

The example shown in Figure 3.25 demonstrates how the collapse problem is

prevented for weighted automata models due to substitutive string operations. This

example presents the string operation Replace(str1, char1, char2) simulated for the

weighted automata modelM1 representing the string argument str1 and the symbols

A and B as the symbol arguments char1 and char2. Figure 3.25a shows the diagram

corresponding to M1 such that M1 has an alphabet ΣM1 = {A, B} and maximum

length k = 2 and represents the solution set SM1 = {ε, A, B, AA, AB, BA, BB}. Figure

3.25b shows the diagram of the weighted automata modelMR which is returned from

the Delete(M1, 1, 2) operation and has the same alphabet as M1, ΣMR
= {A, B}.

The prevention of the collapse due to the Replace(M1, A, B) operation can be seen

when comparing the expected model count 7 with the actual model count after the

Replace operation MC(MR) = 7. This collapse prevention is accomplished due to

the use of weighted transitions in the WFSA where the Replace algorithm changes

the one A transition in W1
1 and the two A transitions in W2

1 to one and two B

transitions respectively. Since these B transitions are duplicates of already exiting
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transitions, the minimize automata operation merges these duplicate transitions.

However, since WFSAs have weighted transitions, the merging of the duplicates in

the WFSA minimization algorithm requires the summation of the duplicate transition

weights to produce the weight 2 B transitions seen in WFSA W1
R and W2

R. Thus the

A and B string values accepted by W1
1 are represented by the two B string values

accepted by W1
R. Similarly, the AA, AB, BA, and BB string values accepted by W2

1

are represented by the four BB values accepted by W2
R. It is through the use of

these weighted transitions that weighted automata model prevent collapses due to

substitutive string operations.
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CHAPTER 4

STRING CONSTRAINT SOLVER FRAMEWORK
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Figure 4.1: The String Constraint Solver Framework (SCSF)

The String Constraint Solver Framework (SCSF) is a Java software program which

is used to solve a specified string constraint directed graph and determine either
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the satisfiability of the constraint or its model count depending on which option is

specified. SCSF was adapted from the Processor component of the String Solver

Analysis Framework detailed by Kausler [21]. This chapter will cover the different

components used in the construction of this software analysis tool. Section 4.1 reports

the third party software libraries upon which SCSF depends. Section 4.2 details the

user interface to the SCSF tool. Section 4.3 explores the string constraint graphs

(SCG) used as input to the SCSF tool. Section 4.4 describes the different components

and their role in the software architecture of the SCSF tool. Section 4.5 outlines the

test suite which ensures the correct functioning of the different components of the

SCSF tool. Finally, Section 4.6 covers the various utility scripts used to orchestrate

and supplement the SCSF tool in the analysis produced by this work.

4.1 Third Party Dependencies

Library Copyright Holder Version

Apache Maven The Apache Software Foundation

Apache Commons CLI The Apache Software Foundation 1.3.1

Apache log4j The Apache Software Foundation 1.2.17

Jackson Project FasterXML, LLC 2.7.2

jgrapht Barak Naveh and Contributors 0.9.1

dk.brics.automaton Anders Møller 1.11-8

Java String Analyzer Anders Møller, Aske Simon, and Asger Feldthaus 2.1-1

JUnit JUnit 4.12

mockito Mockito contributors 1.10.19

hamcrest www.hamcrest.org 1.3

NumPy NumPy Developers 1.9.2

SciPy Enthought, Inc. 0.16.0

Table 4.1: SCSF Third Party Dependencies

In the creation of the SCSF tool and its associated utility scripts, we utilized
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many third party software libraries to speed the development process of the tool

and to leverage the domain expertise embedded in these libraries. Table 4.1 lists

each of these third party dependencies with the copyright holder associated with the

library and the version used in the SCSF tool. The uses of each of these third party

dependencies in the SCSF tool and associated scripts is listed below:

• The Apache Maven build automation tool allows easy tracking and updating of

the third party dependencies in the SCSF tool.

• The Apache Commons CLI is used easily create a robust and standardized

command line interface to the SCSF tool.

• The Apache log4j library is used to provide logging messages for the SCSF tool.

• The Jackson Project JSON library and parser which is used to parse the input

SCG files which are expected to be in the JSON file format.

• The jgrapht graph theory library is used to construct the SCGs as Java objects

in memory for processing in the SCSF tool.

• dk.brics.automaton is an automaton library used to create FSA for the un-

bounded, bounded, and aggrgate automata model implementations in the SCSF

tool.

• Java String Analyzer is a string analysis tool which it includes a library of string

operation and predicate simulation algorithms for dk.brics.automaton FSAs.

• JUnit is a unit testing framework used to create the unit test suite that accom-

panies the SCSF tool.

• mockito is a mocking framework used to create the test doubles for the unit

tests in the test suite that accompanies the SCSF tool.

• hamcrest is library which is used to create easy to understand matching assertion

critera for the unit tests in the test suite that accompanies the SCSF tool.
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• NumPy is a python library which enables the use efficient use of large arrays

and matrices, it is used in the python utility scripts to gather and analyze the

results of the evaluation described in Chapter 5.

• SciPy is a python library used for scientific and technical computing, it is used

in the python utility scripts to perform statistical tests for the result analysis

in the evaluation described in Chapter 5.

4.2 Interface

SCG File Path 〈filepath〉 Initial Bounding Length: 〈integer〉 ≥ 0

Reporter Type: Satisfiability Automata Model Type: Unbounded

Model Count Bounded

Solver Type: Concrete Aggregate

Automaton Model Weighted

Figure 4.2: SCSF Command Line Parameters

The command line processor component of SCSF uses Apache Commons CLI

library to parse command line options and perform the appropriate configuration

actions, e.g., converting the SCG file into an in-memory directed graph data structure.

SCSF has one required command line parameter, a file path to a SCG file. The

SCG file is expected to be a .json file adhering to a particular JSON schema and

will be discussed in more detail in Section 4.3.1. SCSF also accepts five additional

optional parameters which can be used to change the behaviour of the SCSF tool

when solving the string constraints in the specified SCG. Without these optional

parameters specified, default values are supplied instead. These five total command

line parameters are listed and enumerated in Figure 4.2. The initial bounding length
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parameter can be used to refine the solver behaviour. The initial bounding length

parameter specifies a maximum length for unknown string types when represented

by symbolic string models with a default bounding length of 10. The reporter

type parameter determines whether the SCSF will solve the constraints for either

satisfiability which is the default option or for probability, i.e., SE vs PSE. The

solver type parameter specifies which string constraint solver to utilize, the options

being either the default option of the automata model solver or the concrete solver

oracle. Finally, if the automaton model solver type is chosen, an automta model type

parameter can be used to choose an automata model with the default model as the

unbounded automata model.

4.3 Inputs

The only input to the SCSF tool is a string constraint graph (SCG) for which

the chosen string analysis will be performed. As mentioned in Section 4.2, SCSF

requires the SCG file to be provided as a .json file. This file must also adhere to a

specific JSON schema so that the edge and node data of the graph can be accurately

converted into an in-memory graph data structure. This graph schema has emerged

from the conversion of existing serialized graph files from the work of Kausler [21]

into JSON files and thus reflects a string constraint SCG obtained via Dynamic

Symbolic Execution (DSE) [11, 33], i.e. each vertex in the SCG was recorded during

the symbolic execution of a concrete software program. Section 4.3.1 describes this

schema by detailing the required structure of an SCG. Section 4.3.2 then describes

the creation of multiple synthetic SCGs which are used as the primary dataset for

this analysis of automata-based symbolic string models.
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4.3.1 Constraint Graph Structure

Alphabet: Size 〈integer〉 ≥ 0

Alphabet Declaration 〈Alphabet Declaration〉

Verticies: Incoming Edges

Source Vertex Id 〈integer〉 ≥ 0

Source Type {t, s1, s2, s3, s4, s5, s6}

Source Constraints

Vertex Id 〈integer〉 ≥ 0

Time Stamp 〈integer〉 ≥ 0

Value 〈StringConstraint〉

Number 〈integer〉 ≥ 0

Actual Value 〈string〉

Type 〈integer〉 ≥ 0

Id 〈integer〉 ≥ 0

Figure 4.3: SCG File Components

The schema for a graph file specifies two main components: an optional alphabet

specification and an array of graph vertices. Both of these components are encapsu-

lated in an outer JSON object. The characteristics of both the alphabet and vertices

components are listed in Figure 4.3. The alphabet specification is a JSON object

named alphabet and contains a maximum length and a symbol set specification. The

maximum length has the key size and an integer value, e.g. "size":4. The symbol

set specification in the JSON file has the key declaration and a string value which

expresses the characters in the alphabet in the same way as bracket expression in a

regular expression, e.g. "declaration":"A-Ca-C" which specifies only the characters

A, B, C, a, b, and c are in the alphabet. If an alphabet specification is not included in

the graph file, one is generated from the known string values which appear within the
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constraint graph. The vertices in the graph file are JSON objects which are contained

in an array. Each vertex object contains the following items: an incoming edges array,

a source constraints array, a time stamp, a value, a number, an actual value, a type,

and an id. The array of incoming edges contains objects with two data items: a source

vertex id corresponding the the id of another vertex object and a source time string

value indicating that the current vertex object is either the primary (t) or non-primary

(s1-s6) parameter of a operation or predicate. The source constraints array contains

the ids of other vertex objects visited before the current vertex was recorded. The

time stamp value is the time at which the current vertex was recorded during the

SCG creation process. The value is a string representation of the string constraint.

The number is an integer indicating the number of previous visited constraints along

the execution path before the current vertex. The actual value is the record of the

actual string value the string variable corresponding to the current vertex recorded

during the dynamic symbolic execution. The type is a integer value from 0 to 11

indicating a category of string constraint applying to the vertex, this value is not

used in the SCSF tool and is a legacy of the previous work [21] upon which the SCSF

tool is built. The id value is a positive integer which uniquely identifies the vertex

object within the array of vertices. Both the alphabet specification and the vertices

array are the only components of a JSON graph file expected as the input to the

SCSF tool.
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4.3.2 Synthetic Constraint Graphs

Alphabet: 〈Alphabet Declaration〉 Input String(s): Specified Concrete String(s)

Maximum Consecutive Empty String (ε)

String Operations: 〈integer〉 > 0 Unknown String

Figure 4.4: Synthetic SCG Generation Script Options

The synthetic SCG dataset is generated from a Python script, which produces

one or more SCGs depending on the specified options. The script accepts a number

of options, which configure the resulting SCGs. A user can configure which string

operations and predicates are used to produce the SCGs. Other important script

options include input string options, an alphabet specification, and the initial string

length k. The input string options allows a user to specify one or more concrete

string values as the initial strings values appearing at the root node in the SCGs.

Additionally, two unique string values can be chosen as input strings: the empty string

and an unknown string value (represents any string in the the specified alphabet up

to k). The alphabet specification is used to generate both appropriate arguments for

string operations which appear in the string constraints as well as generating random

strings for the actual value field of the SCGs. The initial string length is used in

conjunction with the unknown string value to limit the possible length of the random

string generated for the actual value string.

The script is used to produce multiple string constraint graphs containing a

thorough combination of possible string operations and predicates. The script begins

by producing root nodes for the constraint graph corresponding to each of the specified

input string options. Next, each configured string operation is used to produce an

array of string operation nodes where each operation produces a thorough set of op-
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eration nodes for each possible argument configuration. For example, the substring

operation will produce an operation for each of the following argument configurations

when the initial string length is 2: {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}. Each of

these string operation nodes are collected into a set for later use. String predicates

undergo a similar process and are collected into a separate set. The set of predicate

nodes are then used to produce an n-fold Cartesian product up to a depth (n)

specified as a script option. The resulting Cartesian product set contains all possible

combinations of string operations in all possible operation orders. This set is then

combined with the set of string predicates, producing a set where all possible string

operation configurations are constrained by all possible string predicates. In this way,

the script attempts to anticipate all possible string constraint graphs which can occur

in a software program for the specified alphabet, initial strings, and operation depth.

4.4 Components

The three primary components of the SCSF tool are the reporter which is detailed

in Section 4.4.1, the parser which is discussed in Section 4.4.2, and the solver which is

explored in Section 4.4.3. Additional major components of the SCSF tool include the

automata models which are detailed in Section 4.4.4, the weighted-transition finite

state automaton implementation explored in Section 4.4.5, and the symbolic string

model algorithms discussed in Section 4.4.6.

4.4.1 Reporters

The reporter component of SCSF is responsible for gathering the result of solving

each branch PC in the SCG and reporting these results to standard output. Due to
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this central role, the reporter becomes the primary orchestrating component. The

reporter retrieves each node from the SCG and must determine if the node represents

a root node (a new string variable in the SCG) an operation node (a string operation)

or a constraint node (a string predicate). For each of these node types, the node is

then passed to the parser using the appropriate method for the node type. If the

node type was a constraint node, the reporter gathers the results from the parser’s

semantic action (solving the true and false branch PC s). Once all nodes in the SCG

have been parsed and all semantic actions have been performed, the reporter reports

the gathered results to standard output. The abstract class Reporter is implemented

in the SCSF tool by two different reporters: SATReporter for satisfiability analyses

and MCReporter for quantitative analyses.

Satisfiability Reporter

The SATReporter is an implementation of the Reporter abstract class in the

SCSF tool and is responsible for coordinating and reporting the results of a SE

analysis. This reporter requires a jgrapht directed graph of string constraint vertices,

a Parser implementation, and an implementation of the ExtendedSolver abstract

solver (satisfiability solver). The SATReporter outputs the following information for

each predicate graph vertex:

• The integer id of the vertex.

• The ”actual value” string value for the predicate vertex.

• If the predicate is a singleton branching point, i.e. all involved string variables

only represent single concrete string values.

• The satisfiability of the true predicate branch.

• The satisfiability of the false predicate branch.
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• Whether the predicate branches are disjoint, i.e. branches are disjoint if there

is no overlap in their solution sets: St ∩ Sf = ∅.

• A string representation of the previous string initializations, operations, and

predicates.

Model Count Reporter

The MCReporter is an implementation of the Reporter abstract class in the SCSF

tool and is responsible for coordinating and reporting on the results of a PSE analysis.

This reporter requires a jgrapht directed graph of string constraint vertices, a Parser

implementation, and an implementation of the ModelCountSolver solver interface.

The MCReporter outputs the following information for each predicate graph vertex:

• The integer id of the vertex.

• The ”actual value” string value for the predicate vertex.

• If the predicate is a singleton branching point.

• The satisfiability of the true predicate branch.

• The satisfiability of the false predicate branch.

• Whether the predicate branches are disjoint

• The accumulated time of previous variable initializations, operations, and pred-

icates.

• The id of the previous initialization, operation, or predicate vertex for the

primary string argument in the predicate.

• The model count corresponding to the symbolic string model of the incoming

primary string variable in the predicate.

• The time to perform the previous variable intialization, operation, or predicate

for the primary string variable in the predicate.
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• The model count of the true predicate branch.

• The time required to compute the model count for the true predicate branch.

• The time required to simulate the predicate for the true predicate branch.

• The model count of the false predicate branch.

• The time required to compute the model count for the false predicate branch.

• The time required to simulate the predicate for the false predicate branch.

• The amount of overlap between the true and false predicate branches, i.e. model

count of the disjoint symbolic string model.

• A string representation of the previous string initializations, operations, and

predicates.

4.4.2 Parser

The parser component of SCSF is responsible for determining the appropriate

semantic action for each node in the SCG. The parser accomplishes this in three

different ways, one way for each of the different node types: root, operation, and

constraint. For root nodes, the parser determines the string type of the new string

value so that the appropriate symbolic string model can be created by the solver. For

operation nodes, the parser determines the string operation so that the appropriate

operation simulating algorithm can be chosen by the solver. For constraint nodes, the

parser determines the string predicate so that the appropriate predicate simulating

algorithm can be chosen by the solver. Through interpreting these three different

node types in the SCG, the graph structure is converted into a series of action to be

performed by the solver.
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4.4.3 Solvers

The solver component of SCSF is responsible for managing the symbolic string

values through a variety of actions which correspond to the parser’s semantic ac-

tions. These actions include creating new symbolic string models, simulating string

operations for symbolic string models, determining satisfiability of a symbolic string

model, and determining the model count of a symbolic string model. This solver

component implements the bridge design pattern so that the actions can be applied

to a variety of possible symbolic string models and allowing the symbolic string

model implementation to vary independent of the solver [15]. Two different solver

implementations are available: a concrete solver and an automaton model solver.

Concrete Solver

The concrete solver ConcreteSolver provides the string constraint oracle and

implements the ModelCountSolver interface and extends the ExtendedSolver ab-

stract class allowing ConcreteSolver to serve as the solver component for either

type of reporter in the SCSF tool. This concrete solver can provide an oracle for

either SAT or MC solvers due to two distinct differences from other abstract solver

implementations: it models symbolic strings using arrays of concrete string values

and it invokes the actual string operations and predicates rather than simulating such

operations using algorithms. The ConcreteSolver models symbolic strings using an

array of all possible concrete string values. These arrays of string values are created

according to the different string types described in Section 2.4.2 where the empty

string type is an empty array, the empty string string type is a 1 element array where

the only element is the empty string "", and the literal string type is a 1 element
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array where the only element is the string literal. The complex unknown string type

is only created as the result of string operations and predicates and so is not needed.

The simple unknown string type is created by creating an array filled with only one of

each and every possible string value for the specified alphabet and bounding length.

This requires significantly more memory than string constraint solvers which employ

symbolic models, but guarantees accuracy since each possible string value is accounted

for in the array. The solver performs string operations on each concrete string which

precisely simulates the results of string operations on the possible concrete string

values. However, this does require a significant performance cost due to performing

operations for each possible combination of strings and operation arguments. Both

the performance and memory cost associated with the concrete solver makes it an

impractical choice for real world analysis, but sufficient to provide the satisfiability

and model count oracle for our analysis of automata-based symbolic string models.

Automaton Model Solver

The automata model solver AutomtonModelSolver provides the string constraint

oracle and implements the ModelCountSolver interface and extends the ExtendedSolver

abstract class allowing ConcreteSolver to serve as the solver component for either

type of reporter in the SCSF tool. The AutomatonModelSolver requires an ini-

tial bounding length and an Alphabet object which are used when creating initial

symbolic string models. This solver also requires an implementation of the abstract

AutomatonModelManager which is an abstract factory for producing AutomatonModel

objects which are further detailed in Section 4.4.4. The AutomtonModelSolver is

responsible for coordinating the semantic actions assigned by the reporter, this means

that the solver coordinates the initialization of a new symbolic string model, simulates
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a string operation, or simulates either the true or false branch of a string predicate.

The initialization of new symbolic string models is accomplished by requesting the

appropriate model from the AutomatonModelManager object. The simulation of string

operations is accomplished by requesting the appropriate operation simulation from

the AutomatonModel corresponding to the primary string argument of the operation.

The simulation of either true or false branches of a predicate is accomplished by

requesting the appropriate operation simulation from the AutomatonModel corre-

sponding to the primary string argument of the predicate. This coordination role of

a AutomatonModelSolver allows the implementations of both the AutomatonModel

factory and the AutomatonModel itself to vary independent of the solver, allowing the

addition of future automaton models.

4.4.4 Automaton Models

The automaton model sub-component of SCSF is responsible managing automata

models. The responsibilities of these automata models include the creation of new

automata models, model counting, and simulating string operations and predicates

for automata models. The automata model sub-component consists of an abstract

automata model interface as well as concrete implementations of this interface for the

four automata models discussed in detail in Chapter 3. The abstraction of an au-

tomata model is another implementation of the bridge design pattern allowing the con-

crete automata model implementations to vary independent of the AutomatonModelSolver

[15]. In this manner, the AutomatonModelSolver uses the abstract AutomatonModel

as its symbolic string model rather than any specific automata model implementation

allowing for greater flexibility when modifying or adding automata model implementa-

tions. This flexibility also allows future automata models to be implemented with lit-
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tle extra overhead. The four automata models implemented for the AutomatonModel

interface are as follows: UnboundedAutomatonModel, BoundedAutomatonModel, AggregateAutomataModel,

and WeightedAutomatonModel

Unbounded Automata Model

The UnboundedAutomatonModel is an implementation of the unbounded automata

model described in Section 3.1. An UnboundedAutomatonModel contains an integer

to track the maximum length, an Alphabet object to encapsulate the alphabet for the

model, and a dk.brics.automaton.Automaton object as the FSA implementation.

An UnboundedAutomatonModel object is responsible for determining its model count,

simulating string operations where it is the primary argument, and simulating string

predicates where it is the primary argument. An UnboundedAutomatonModel object

does utilize algorithms external to the itself for model counting, operation simulation,

and predicate simulation. These external algorithms operate upon dk.brics.automaton.Automaton

objects and therefore require only dk.brics.automaton.Automaton objects instead

of AutomatonModel objects. Therefore, the aspects of model counting, operation sim-

ulation, or predicate simulation specific to unbounded automata models are handled

within the UnboundedAutomatonModel object.

Bounded Automata Model

The BoundedAutomatonModel is an implementation of the bounded automata

model described in Section 3.2. A BoundedAutomatonModel is comprised of an integer

bounding length of the FSA, an Alphabet object to encapsulate the alphabet for the

model, and a dk.brics.automaton.Automaton object as the FSA implementation.

A BoundedAutomatonModel object is responsible for determining its model count,
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simulating string operations where it is the primary argument, and simulating string

predicates where it is the primary argument. A BoundedAutomatonModel object

also uses external algorithms for model counting, operation simulation, and pred-

icate simulation. These external algorithms are the same algorithms used by the

UnboundedAutomatonModel since both it and UnboundedAutomatonModel use the

same dk.brics.automaton.Automaton objects for their FSAs. Similarly, the aspects

of model counting, string operation simulation, or string predicate simulation specific

to a bounded automata model are handled within the UnboundedAutomatonModel

object.

Aggregate Automata Model

The AggregateAutomataModel is an implementation of the aggregate automata

model described in Section 3.3. An AggregateAutomataModel object includes an

integer to track the bounding length of the model, an Alphabet object to encapsulate

the alphabet for the model, and an array of a dk.brics.automaton.Automaton

objects as the FSA sequence implementation. An AggregateAutomataModel object

is responsible for determining its model count, simulating string operations where it

is the primary argument, and simulating string predicates where it is the primary

argument. An AggregateAutomataModel object also uses external algorithms for

model counting, operation simulation, and predicate simulation. These external algo-

rithms are the same algorithms used by both the UnboundedAutomatonModel and the

BoundedAutomatonModel since all three use the same dk.brics.automaton.Automaton

objects for their FSAs. Similarly, the aspects of model counting, string operation

simulation, or string predicate simulation specific to a aggregate automata model are

handled within the AggregateAutomataModel object.
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Weighted Automata Model

The WeightedAutomatonModel is an implementation of the weighted automata

model described in Section 3.4. A WeightedAutomatonModel contains an integer

to track the bounding length of the model, an Alphabet object to encapsulate the

alphabet of the model, and an array of WeightedAutomaton objects as the WFSA

sequence implementation. A WeightedAutomatonModel object is responsible for

determining its model count, simulating string operations where it is the primary

argument, and simulating string predicates where it is the primary argument. A

WeightedAutomatonModel also uses external algorithms for model counting, opera-

tion simulation, and predicate simulation. Unlike the other three automata model

implementations, a WeightedAutomatonModel object uses external algorithms which

operate upon WeightedAutomaton objects. The the aspects of model counting, string

operation simulation, or string predicate simulation specific to a weighted automata

model are handled within the WeightedAutomatonModel object.

4.4.5 Weighted-Transition Finite State Automaton

The WeightedAutomaton is an implementation of the weighted-transition finite

state automaton defined in Section 3.4.1. A WeightedAutomaton object includes

both an integer serving as the empty string counter iε and a WeightedState object

which servers as the initial state q0 in the WFSA. This initial state object is the

only state contained within WeightedAutomaton object, the other WeightedState

objects acting as states in the WFSA are reached from this initial WeightedState. A

WeightedState includes a boolean variable to mark the state as accepting and a set

of WeightedTransition objects which are the outgoing transitions from the WFSA
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state. A WeightedTransition includes a minimum char, a maximum char, an inte-

ger transition weight, and a destination WeightedState. By using both minimum and

maximum char values, a single WeightedTransition can represent multiple WFSA

transitions for adjacent symbols. It is the combination of the WeightedAutomaton

class, the WeightedState class, and the WeightedTransition class that the imple-

mentation of a WFSA is achieved in the SCSF tool. While this WFSA structure

is useful in the SCSF tool, using WFSAs as part of an automata model requires

working automata operation algorithms for some essential operations. The algo-

rithms implemented for the SCSF tool include: Brzozowski’s minimization [6], De-

terminization (subset construction), Intersection, Union, Subtraction, and

Concatenation.

4.4.6 Symbolic String Model Algorithms

The collection of symbolic string constraint algorithms is best divided into three

separate types of algorithms: model counting algorithms (Section 4.4.6), string and

predicate simulation algorithms using FSAs, and string and predicate simulation

algorithms using WFSAs.

Model Counting Algorithms

Because the model counting algorithms discussed in Sections 3.1.1, 3.2.1, 3.3.2,

and 3.4.3 are specific to each automata model, the portions of each procedure specific

to an automata model, i.e. CountUnbounded, CountBounded, CountAggre-

gate, and CountWeighted, are encapsulated within their respective AutomatonModel

implementations. However, the algorithms specific only to either FSAs ore WFSAs,

i.e. MCUnbounded, MCBounded, and MCWeighted, were implemented as al-
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gorithms separate from the AutomatonModel classes. The StringModelCounter class

in the SCSF tool provides implementations for each of these FSA or WFSA specific

algorithms. These model counting algorithms each utilize and return BigInteger

object to allow for much larger integer values which can occur due to longer string

lengths and larger alphabets.

FSA Algorithms

While the existing string and predicate operation simulation algorithms from the

Java String Analyzer library [12] were sufficient for SE analyses, some operations

and predicates required more precise algorithms to be useful in PSE analyses. The

SCSF tool includes more precise versions of the following string operation simulation

algorithms: Delete, Insert, Prefix, SetCharAt, SetLength, Substring,

Suffix, and Trim.

WFSA Algorithms

Since WeightedAutomaton objects did not have either the Java String Analyzer

library to provide string operation and predicate simulation algorithms, such algo-

rithms were created to operate on WeightedAutomaton objects. Some operations and

predicates have both precise and imprecise simulation algorithms for WeightedAutomaton

objects, specifically: Prefix, Replace (for single symbol arguments), Substring,

and Suffix. Other operations and predicates with precise simulation algorithms for

for WeightedAutomaton objects include: Delete, Insert, SetCharAt, SetLength,

and Trim. In addition to these precise algorithms, the following string operations

and predicates have simulation algorithms for WeightedAutomaton objects included
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in the SCSF tool: Replace (for string arguments), Reverse, ToLowerCase, and

ToUpperCase.

4.5 Test Suite

The SCSF test suite contains 6635 unit tests covering the concrete solver, the four

automata models, the WFSA implementation, and the symbolic string algorithms

created for the SCSF tool. The test suite does not cover the other components of

the SCSF tool either because the component is a legacy component from the String

Solver Analysis Framework [21] or because the component is primarily serving a

straightforward coordinator which is not complex enough to benefit from unit testing

coverage. The unit test in the SCSF test suite were created primarily as part of a

test-driven-development [2] and follow a Given-When-Then class and method style

[14] to aid comprehension of each unit test. To ensure the independence of the objects

under test, the mockito library is used to provide test doubles for the interfaces and

abstract classes upon which many components within SCSF tool depend. This test

suite is able to provide easy to understand verification that the components are correct

and perform as expected indecent of the evaluation detailed in Chapter 5.

4.6 Utility Scripts

The final portion of the SCSF tool is actually external to the tool. The utility

scripts accompany the SCSF tool and consist of five primary Python script files and

other supporting utility Python scripts which automate the evaluation described in

Chapter 5. One of these scripts, run.py, orchestrates the other four automation

scripts allowing the entire evaluation process to be invoked using a single script with
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appropriate command line arguments specified (documentation of the command line

arguments is built into this and all other scripts). The four other primary scripts

are: generate graphs.py, run solvers on graphs.py, gather results.py, and

analyze results.py. The generate graphs.py script automates the generation of

the synthetic SCG dataset discussed in Section 4.3.2. The run solvers on graphs.py

script automates the execution of the SCSF tool on the specified set of graphs

using the specified different reporters and solvers. The gather results.py script

automates the collection of the result data from the SCSF tool and generates a single

result data file fore each automata model. Finally, the analyze results.py script

automates the statistical analysis of the result data and generates the appropriate

LaTeX output data tables and gnuplot plots for this data.
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CHAPTER 5

EVALUATION

In order to evaluate the suitability of different automata models for modeling

symbolic string constraints in PSE, each automata model is evaluated in a set of

controlled experiments. These experiments consist of each automata model and a

model counting oracle solving a series of synthetic string constraints. The result

data from these experiments is used to measure the accuracy and performance of

each automata model in PSE analyses. Additionally, the independent variables of

the evaluation (detailed later in Section 5.2) are analyzed in isolated experiments to

determine their effects on accuracy and performance for the automata models.

This chapter is organized as follows. Section 5.1 details the procedure used to con-

duct the evaluation. Section 5.2 explains the independent variables of the evaluation.

After that, the next two sections of this chapter describe the measurements recorded

in the evaluation experiments which are be used to determine the suitability of the

automata-based constraint solvers: Section 5.3 describes the measurement of accuracy

and Section 5.4 describes the measurement of performance. Section 5.5 reports the

additional data analyses which compare accuracy and performance metrics. Finally,

Section 5.6 concludes the chapter by detailing the evaluation environment.
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Constraint Graph Configuration

Constraint Generation

Constraint Graphs

Constraint Solveing

Solved Constraint Data

Data Collection

Collected Solved Constraint Data

Data Analysis

Analysis Results

input

output

input

output

input

output

input

output

Figure 5.1: The Evaluation Procedure

5.1 Evaluation Procedure

Figure 5.1 is a diagram illustrating the evaluation procedure and the associated

input and output data for each step in the procedure. The four diamonds on the right

side of the diagram and consist of the Constraint Generation, Constraint Solving, Data

Collection, and Data Analysis steps in the evaluation. The five grey rectangles on the

left side of the diagram represent the different inputs and outputs for each step of the

evaluation procedure where the output of one step is becomes the input of the next

step in the evaluation, except for the the output of the Data Analysis step which are

the results of the evaluation and are discussed in Chapter 6.

5.1.1 Constraint Generation

The Constraint Generation step is responsible for creating the inputs to the

evaluation’s controlled experiments. These inputs are the Constraint Graphs and
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consist of multiple sets of synthetic string constraints that are generated as graphs in

the format described in Section 4.3. A constraint graph is created from a collection of

independent constraint subgraphs. These sub-constraints are in turn created from a

combination of parameters as specified by the Constraint Graph Configuration. These

parameters are the independent variables in the evaluation and are later explained

in Section 5.2. The graph generation begins by reading each the Constraint Graph

Configuration into memory. Next, nodes representing operations and predicates and

edges representing the targets and arguments of the operations and predicates are

created according to the configuration parameters. These nodes and edges form

string constraint graph structures which correspond to the individually constraints

to be analyzed in the PSE analysis. These constraints are then collected into the

Constraint Graphs which consist of multiple JSON files. The Constraint Generation

step is automated by a python script for repeatability and ease of use. Next, constraint

solvers use these constraint graphs in the Constraint Solving step of the evaluation

procedure.

5.1.2 Constraint Solving

The Constraint Solving step is responsible for performing the PSE analyses on

each of the Constraint Graphs. Each PSE analysis of a graph is conducted for each of

the four automa-based constraint solvers as well as the concrete solver oracle. These

PSE analysis are performed by SCSF (Chapter 4). This process invokes SCSF for

each combination of generated graph and solver. Each invocation of SCSF produces

a tab-delimited text file as Solved Constraint Data. The data columns reported by

SCSF are listed and explained in Table 5.1. The Constraint Sequence column values

are of special note because of the additional data embedded in these values which are
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Column Explanation

Constraint Id The integer which uniquely identifies the constraint within its parent
constraint graph. This id corresponds to the node id of branch predicate
of the constraint graph.

Constraint Sequence A string value specifying the sequence of operations and predicates which
comprise the sub-constraint. This value contains additional information
about the operations and predicates in the sequence.

Cumulative Time The total time required to perform all dependent string operations and
string predicates.

Before MC The model count before the terminal predicate of its target symbolic
string. This model count represents the number of execution paths
reaching the predicate.

false MC The model count of the false branch of the constraint.

false MC Time The time required to calculate the model count of the symbolic string
model representing the false branch of the constraint.

false Predicate Time The time required to model the false branch predicate for the two
symbolic string arguments.

true MC The model count of the true branch of the constraint.

true MC Time The time required to calculate the model count of the symbolic string
model representing the true branch of the constraint.

true Predicate Time The time required to model the true branch predicate for the two symbolic
string arguments.

Table 5.1: Data Columns Reported For Solved Constraints

extracted later in the evaluation procedure. The Constraint Solving step is automated

by another python script and produces a text file for each combination of generated

graph and symbolic model.

5.1.3 Data Collection

The Data Collection step is responsible for gathering all of the individual result

text files which constitute the Solved Constraint Data and partitions them into three

data groups: model counting accuracy, constraint solving performance, and model

counting performance. The collection step begins by reading the result text files into

memory. Next, the data tables are grouped by the constraint graphs from which the

result tables were produced. This grouping ensures that the Constraint Id values in
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Column Explanation

File The name of the result file containing the data result. This corresponds to
the generated graph solved to produce the data result.

String Type The type of the initial input string of the constraint as described in Section
2.4.2.

Operation 1 The first operation in the constraint.

Operation 1 Arg The category of argument combination received by the first operation in
the constraint.

Operation 2 The second operation in the constraint.

Operation 2 Arg The category of argument combination received by the second operation in
the constraint.

Predicate The branch predicate of the constraint.

Predicate Arg The input string type of the second string argument for the branch predicate
of the constraint.

Table 5.2: New Data Columns Extracted from Constraint Sequence Values

each group can be used to identify the same sub-constraint solved using each of the five

solvers. Next, an intermediate processing step parses each Constraint Sequence value

for each data row and extracts the values for 7 new data columns which are added to

the results tables. An additional File data column is also added to the result tables.

These 8 new data columns are defined and explained in Table 5.2. Next, the result

tables in each constraint graph group are partitioned into three subtables: a model

count data table, a constraint solving performance data table, and an operation and

predicate performance data table. In both the model count table and the constraint

solving table, each data rows corresponds to a single sub-constraint solved during

the PSE analysis. The separate model count data for each of the five solvers are

appended to a single output data row under separate data columns. Similarly, the

separate constraint solving performance results are appended for each of the solvers.

The operation and predicate performance data is also appended to a row, but in

this output data table, each row corresponds to a specific operation or predicate in

each constraint instead of the constraint itself. Finally, the groups of these subtables
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are joined to form three result data tables as the Collected Solved Constraint Data.

This Data Collection step is automated as another python script and produces three

tab-delimited text files for processing in the Data Analysis step.

5.1.4 Data Analysis

The Data Analysis step is responsible for transforming the Collected Solved Con-

straint Data into information useful for determining the suitability of the four automata-

based solvers in PSE analyses. This Data Analysis will also evaluate the effects of

the independent variables (detailed later in Section 5.2) on the suitability of each

solver. The Data Analysis begins by reading the three text files into memory. Next,

informative measurements are taken for solver accuracy and performance. The details

of these measurements are provided later in Section 5.3 for accuracy and Section 5.4.2

for performance. The Data Analysis is also automated by a python script to ensure

repeatability and produces Analysis Results.

5.2 Independent Variables

The five independent variables of the evaluation listed along with their values in

Table 5.3. These variables are introduced in the evaluation through representations in

the synthetic Constraint Graphs. These independent variables correspond to five char-

acteristics of string constraints discussed in Sections 2.4.2, 2.4.2, and 2.4.2. So that

this evaluation is relevant for PSE analyses on actual software programs, the synthetic

graphs are generated according to the format described in Section 4.3. The nodes

and edges of the graphs are generated representing the independent variable values

specified as the Constraint Graph Configuration parameters. The representation of
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Variable Values

String Alphabet {A, B}, {A, B, C}, {A, B, C, D}, {A, B, C, D, E}
Initial Maximum String Length 1, 2, 3, 4

Initial Input String Type Literal, Simple, Complex

Constraint Operations



reverse()
concat(Literal)
concat(Simple)
concat(Complex )
delete(Same)

delete(Different)
replace(Same)

replace(Different)


×



none
reverse()

concat(Literal)
concat(Simple)
concat(Complex )
delete(Same)

delete(Different)
replace(Same)

replace(Different)


Constraint Predicate contains(Literal), contains(Simple), contains(Complex ),

equals(Literal), equals(Simple), equals(Complex )

Table 5.3: The Independent Variables in the Evaluation

these independent variables in the graph nodes and edges is described in this section

as follows: the string alphabet in Section 5.2.1, the initial maximum string length in

Section 5.2.2, the initial input string type in Section 5.2.3, the string operations in

Section 5.2.4, and finally, the string predicates in Section 5.2.5. Additionally, Section

5.2.6 describes the distribution of the independent variables in the synthetic graphs.

5.2.1 String Alphabet

The string alphabet for a constraint is the set of symbols in the language of the

strings in the constraint. Section 2.4.2 discusses the properties of the string alphabet

which characterizes a string constraint. The four string alphabet values which appear

in this evaluation are listed in Table 5.3. In this evaluation, the string alphabet is

treated as an interval quantitative variable for the size of the alphabet value. This is

because the the algorithms which are used in the Constraint Solving step are limited
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by the size of the alphabet, not the actual symbols in the alphabet.

The alphabet variable is represented in constraint generation by restricting the

concrete strings in constraints to the language of strings over the string operations.

This variable is also represented in the Constraint Solving step by restricting the

language of string values represented by the symbolic string models of the solvers.

5.2.2 Initial String Length

The initial maximum string length of an input strings is the maximum possible

length for the string values represented by the primary input string in the constraint.

For example, a string input variable is assigned from an external source in a program,

the corresponding symbolic string value for this variable will represent all possible

string values with a length between 0 and the initial maximum length. Section

2.4.2 describes the initial maximum string length as a property of the string length

characteristic in a string constraint. The four initial maximum string length values

which are used in this evaluation are listed in Table 5.3. In this evaluation, the initial

maximum string length is an interval quantitative variable.

The length variable is represented in the synthetic graphs by ensuring the concrete

strings in the graph are not longer than the maximum length. This variable is also

used in the Constraint Solving step by restricting the input string values represented

by the symbolic string models of the solvers to the initial maximum length.

5.2.3 Input String Type

The input string type of a constraint defines the distribution of the string values

in the set represented by the symbolic string value. Section 2.4.2 explains the three

types of input strings in detail. Table 5.3 lists these three types which are used in this
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evaluation. Table 5.3 shows these three values used specifically for the initial input

string in a constraint. The initial input string type in a constraint is the type for

the string variable which is the primary input string variable in the constraint. For

example, in the constraint contains(concat(s1, s2), s3), the string variable s1 is this

primary input string variable. In this evaluation, the input string type is a categorical

variable because of its three unordered categories.

String variable Concrete Value

Assignment

target source

Figure 5.2: Literal Input String Type Graph Representation

Literal The created graph structure representing an Literal input string type is

shown in Figure 5.2. There are three nodes in the structure: one for a string variable,

one for an assignment operation, and one for the concrete string value. Two edges

connect the string variable and concrete value nodes to the assignment operation node

as target and source edges respectively. This structure represents the assignment of

the concrete value to the string variable in a program.

String variable External Source

Assignment

target source

Figure 5.3: Simple Input String Type Graph Representation
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Simple The created graph structure representing an Simple input string type is

shown in Figure 5.3. There are three nodes in the structure: one for the string

variable, one for an assignment operation, and one for the call to an external process.

An external process is any external source of a string value such as standard input,

another program, etc.. The target and source edges connect the string variable and

external source nodes respectively to the to the assignment operation. This structure

represents an assignment of an unknown string value to the input string variable in

a program.

String variable

External Source

Assignment

String variable

Concrete Value

Assignment

contains

target

source

target

source

target source

Figure 5.4: Complex Input String Type Graph Representation

Complex The created graph structure representing an Complex input string type

is shown in Figure 5.4. The Complex string is constructed using an Simple string,

a Literal string, and a contains operation node. The string variable node from

the Simple structure is connected with an edge to the contains operation node as

the primary string argument (target). The string variable of the Literal structure

is connected with an edge to the contains operation as the second string argument

(source). This structure for the Complex input string type results in the contains

operation applied to the input string variable from the Simple string structure and

therefore creating an complex distribution of string values represented for that string
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variable. As the creation process indicates, the Complex input string type is not

strictly an initial string input type since it requires both a Literal and an Simple

string type to construct. However, in this evaluation, the entire Complex structure

is considered as representing the single Complex initial input string type.

5.2.4 Operations

The string operations in a constraint are the sequence of either one or two op-

erations in the constraint. Section 2.4.2 explains how these operations characterize

a constraint and describes the four string operation types included in the gener-

ated synthetic graphs: Injective, Additive, Subtractive, and Substitutive. Since each

string operation in an operation category has similar effects on a symbolic string

value, then only one operation from each category is represented in the constraints

for this evaluation. These chosen operation are reverse for Injective operations,

concat for Additive operations, delete for Subtractive operations, and replace

with char arguments for Substitutive operations. Additionally, The concat, delete,

and replace operations each takes a sequence of arguments. For each operation,

the argument sequences can be categorized into distinct argument configurations

based on the similar effects on a symbolic string value. The concat operation has

three configurations for its single string argument: Literal, Simple, and Complex.

The delete operation has two configurations for its two integer arguments: Same

and Different. The replace operation has two configurations for its two character

arguments: Same and Different. Table 5.3 shows values of the string operations

independent variable in this evaluation where the variable values are the sequence

of either one or two operations produced from the cross product shown in the table.

The string operations variable is a nominal categorical variable due to the operation
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sequences being unordered category values.

One of the goals of this evaluation is to determine the effects of the different string

operation types on the automata-based solvers. Unfortunately, the string operations

variable values are operation sequences and can not be used directly to isolate the

effects of specific operation types. Instead, different PSE constraint graph sets are

used to determine these effects: graphs only containing one operation or operation

argument configuration for all constraints and graphs including one operation or

operation configuration for all constraints. These two series of experiments allows

the effects of the string operation type to be isolated. While the string operation

variable is used differently in these two series of experiments, it is still a nominal

categorical variable because of the unordered category values.

String variable

reverse

target

Figure 5.5: reverse Operation Graph Representation

reverse The created graph structure representing the reverse operation is shown

in Figure 5.5. There are only two nodes in the structure: one for the target string

variable and one for the reverse operation. There is a single target edge from

the string variable to the reverse operation. This structure represents a reverse

operation in the synthetic constraint graphs.

concat The created graph structure representing the concat operation is shown in

Figure 5.6. There are three nodes in this structure: one for the target string variable,
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String variable String Argument

concat

target source

Figure 5.6: concat Operation Graph Representation

one for the argument string variable, and one for the concat operation. There are

two edges in the structure: a target edge connecting the target string variable to

the operation and an argument edge (source) connecting the string argument to the

operation. The string argument node in this structure represent one of the three

input string structures shown in Section 5.2.3: Literal, Simple, or Complex. This is

the structure representing a concat operation in the synthetic graphs.

String variable int Arg 1 int Arg 2

delete

target
source

source

Figure 5.7: delete Operation Graph Representation

delete The created graph structure representing the delete operation is shown in

Figure 5.7. There are four nodes in this structure: one for the target string variable,

one for the first int argument (the start index), one for the second int argument (the

end index), and one for the delete operation. The target edge connects the string

variable to the operation node. Two source edges connect the two argument nodes to

the operation node. These source edges are labeled s1 and s2 in the synthetic graph

files.
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String variable char Arg 1 char Arg 2

replace

target
source

source

Figure 5.8: replace Operation Graph Representation

replace The created graph structure representing the replace operation is shown

in Figure 5.8. This structure contains four nodes: one for the target string variable,

one for the first char argument, one for the second char argument, and one for the

replace operation. There is a target edge connecting the string variable and the

operation. There are two source edges connecting the two argument nodes and the

operation node. These source nodes are labeled s1 and s2 in the generated graph

files.

5.2.5 Predicates

The predicates in a constraint are the terminal predicate as well as any other

predicate in the constraint. In this evaluation, only the terminal predicates will

be considered predicates since all other predicates in the Constraint Graphs are the

contains predicates needed to create Complex input strings. Section 2.4.2 explains

how predicates can characterize constraints and describes the two types of predicates

which are used in this evaluation: Partial Match and Full Match predicates. One

predicate is chosen from both categories to be included in the Constraint Graphs. The

contains predicate represents the Partial Match category and the equals predicate

represents Full Match category. Both of these predicates have a target a string and

takes one string argument. The string argument in this evaluation is always one of

three input string types: Literal, Simple, and Complex. Table 5.3 shows these six
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predicate configurations as the predicates variable values. The predicates variable is

a nominal categorical variable in this evaluation due to the predicate configurations

being unordered category values.

String variable String Argument

Predicate

target source

Figure 5.9: Predicate Graph Representation

Figure 5.9 shows the created graph structure for both the contains and equals

predicates. This structure contains three nodes: one for the target string variable,

one for the argument string variable, and one for the predicate. An edge connects

the target string variable to the predicate while a source edge connects the argument

string variable to the predicate. to the operation and an argument edge (source)

connecting the string argument to the operation. The string argument node in this

structure represent one of the three input string structures shown in Section 5.2.3.

This structure is created to represent both the contains and the equals predicates

in the synthetic graphs.

5.2.6 Distribution of Independent Variables in Graphs

Four of the five independent variables in this evaluation are evenly distributed

through the Constraint Graphs so that the results of the experiments are not skewed

by the effects of any particular variable value. These four variables are the string

alphabet, the initial maximum string length, the initial input string type, and the

predicates. For each string alphabet and initial maximum string length, a constraint

graph file is generated where all constraints in the graph file have one of three initial
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input string variables with the corresponding alphabet and maximum string length.

The three initial variables correspond to the three initial input string type values.

Each of these graphs a all combinations of string operation sequences. Each of these

sequences is duplicated twelve times so that each string predicate configuration is

applied to all operation sequences.

Operation Distinct Operations

reverse() 1

Distinct Operations per Alphabet

{A, B} {A, B, C} {A, B, C, D} {A, B, C, D, E}
concat(Literal) 2 3 4 5

concat(Simple) 1 1 1 1

concat(Complex) 1 1 1 1

Distinct Operations per Length

1 2 3 4

delete(Same) 2 3 4 5

delete(Different) 1 3 6 10

Operation Distinct Operations per Alphabet

{A, B} {A, B, C} {A, B, C, D} {A, B, C, D, E}
replace(Same) 2 3 4 5

replace(Different) 2 6 9 16

Table 5.4: The Number of Distinct Argument Combinations for String Operations

Unlike the other independent variables in the evaluation, the string operations

variable is not evenly distributed through the Constraint Graphs. This is due to

the different number of distinct operation configurations for the different chosen

operations. This is further complicated by the different number of distinct operation

argument configurations for different string alphabet and initial maximum string

length values. These differences for the chosen operations is shown in Table 5.4.

The table illustrates that the number of distinct replace and concat operations in a

synthetic graph is dependent on the string alphabet. The number of distinct delete
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operations in turn is dependent on the initial maximum string length.

To ensure that any one string operations value does not skew the evaluation results,

a data normalization process is applied the Collected Solved Constraint Data. This

normalization applies integer weights to each result data row corresponding to the op-

erations and argument configuration in the constraint solved to produce the row. For

example, the constraint contains(delete(replace(s1, A, B), 2, 2), s4) has the string

operations {A, B, C, D, E} and initial maximum string length of 4. The corresponding

data row will be given a weight of 36. This weight is the product of the weights for the

two individual operation argument configurations, 3 for the replace operation with

Different character arguments and 12 for the delete operation with Same integer

arguments. This data normalization allows each of the distinct operation argument

configurations to be included in a graph without skewing the result data.

5.3 Accuracy

The extent to which a solver can accurately represent the concrete values of

concrete execution is the most important measure for determining its suitability in

PSE. In this evaluation, two different measurements of model counting accuracy are

taken by comparing the actual model count of the oracle solver to the model counts

reported by the four automata-based solvers. This oracle is described in Section

5.3.1. Section 5.3.2 then explains the two different measurements of model counting

accuracy. Additionally, Section 5.3.3 addresses the application of these metrics to the

independent variable effect isolation experiments.



124

5.3.1 Oracle / ConcreteSolver

In order to determine the accuracy of the model count reported by a solver, an ac-

tual model count is needed. In thes evaluation, ConcreteSolver described in Section

4.4.3 performs this task. Because ConcreteSolver performs its concrete operations

and predicate for the Constraint Graphs through the same Solver interface used by

the automata-based solvers, the model counts reported by the ConcreteSolver are

an oracle of actual model counts for the Constraint Graphs. values returned by the

concrete evaluation of actual string values provide the oracle for the automata models

which symbolically represent this exact concrete process. Just as with the automata

models, the oracle records the before branch, the true branch, and the false branch

model count. The model count prior to the branching predicate is recorded as the

number of concrete string values, which reach the predicate and serve as the target

string for the terminal predicate. The true branch model count is the number of

concrete strings that evaluate to true. Similarly, the false branch model count is the

number of concrete strings that evaluate to false. These three model count numbers

are used to measure the accuracy of the solvers.

5.3.2 Measurement

The model counting accuracy of an automata models is measured in two ways: first

as the frequency with which the more probable branch determined by the automata

model agrees with the actual branch more likely to be executed and second as the

model count difference between the actual model count and the count reported by

the automata model.
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Agreement

When an automata model reports a branch as more probable to execute when the

alternate branch is actually more likely to execute, this incorrect report of branch

choice produces an invalid analysis as explained in Section 2.2.3. In this evaluation,

the actual correct branch choice is provided by the oracle when the branch probabili-

ties computed using Formula 2.1. To determine if the automata model agrees with the

choice of more probable branch for a constraint, the true and false branch probabilities

are compared using logical Formula 5.1 to determine agreement. This formula shows

that agreement depends on either both the actual true branch probability PA
t and

the automata model true branch probability Pt being greater than or equal to their

respective false branch probabilities, PA
f and Pf , or both false branches being more

probable than the true branches. The frequency of these agreement results is recorded

across all constraints for each automata model to measure the probability of an invalid

analysis when using the model.

(PA
t >= PA

f ∧ Pt >= Pf ) ∨ (PA
t < PA

f ∧ Pt < Pf ) =⇒ Agreement (5.1)

Percentage difference

Because automata models are representations of the concrete values satisfying

a constraint, the actual numerical difference between the model count reported by

the oracle and the model count reported by the automata model is not sufficient to

measure accuracy. In PSE, model counts are used to determine the probabilities of

taking one branch over another. For this reason, this evaluation uses the branch
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probabilities calculated using Formula 2.1 from the before branch and after branch

model counts. The measurement of model counting accuracy (the branch percentage

difference) is calculated from both the oracle and automata model branch probabilities

using Formula 5.2. The formula calculates the percentage difference Pdiff as the

absolute value of the difference between the actual branch probability PA
b and the

automata model probability Pb. This percentage difference in branch probability

measures the accuracy in the representation of concrete values by the symbolic string

automata model.

Pdiff = |PA
b − Pb| (5.2)

5.3.3 Effects of Independent Variables

The accuracy measurements of agreement and percentage difference are also ap-

plied to the results of the independent variable experiments. These additional ex-

periments allow us to determine if there is a statistically significant effect for each

independent variable on the model counting accuracy of each of the four automata

models.

5.4 Performance

The second criteria used in evaluating the suitability of automata models in PSE is

performance. Performance in this instance refers to the time required to perform the

PSE analysis. A PSE analysis can be partitioned into the separate constraint solving

and model counting phases for a constraint. While the time required for both of these
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parts of the analysis contribute to the overall required time, the time required by the

constraint solving part has no influence on the time required by the model counting

part and vice versa. Because of this separation, the data analysis can evaluate

each performance metrics separately as well as their combination. This section is

partitioned as follows: Section 5.4.1 explains the constraint solving performance

metrics, Section 5.4.2 describes the model counting performance, and Section 5.4.3

details the combination of constraint solving and model counting performance.

5.4.1 Constraint Solving Performance

The constraint solving performance in a PSE analysis is determined by the time

required to solve a string constraint for either the true or false branch of the con-

straint. This constraint solving time is the sum of the time required to initialize

all the input string values to the constraint, the time required to model all of the

intermediate operations and predicates for their symbolic string model arguments,

and the time required to model either the true or false branch predicate for the two

symbolic string model arguments.

Measurement

To measure the constraint solving time of a constraint, the following three result

data columns are used: Cumulative Time, true Predicate Time, and false Predicate

Time. The constraint solving time is calculated for either a true branch or a false

branch and is the sum of the Cumulative Time and the respective branch predicate

time. To compare the constraint solving time between the different automata models,

the following is calculated from the constraint solving times of each model: average,

median, variance, and standard deviation. These calculated values assess the ex-



128

pected relative constraint solving performance for each automata model while also

determining the consistency of this performance.

5.4.2 Model Counting Performance

The model counting performance in a string variable PSE analysis is the time

required to determine the number of string values represented by the symbolic string

model. This model counting process is described in Sections 3.1.1, 3.2.1, 3.3.2, and

3.4.3 for models in this evaluation, the Unbounded Automaton Model, the Bounded

Automaton Model, the Aggregate Bounded Automata Model, and the Weighted Tran-

sition Aggregate Bounded Automata Model respectively.

Measurement

The experimental results for each constraint graph record the time in microsecond

required to determine the model count from the model representing the true and false

branches of the constraint. From these model count times, we compute the average,

median, variance, and standard deviation of these times for each automata model.

These measurements allow a relative performance comparison to be made between the

different automata models in terms of general performance and the consistency of such

performances. Additionally, due to the almost identical model counting algorithms for

each automata model, the relative performance between models will remain consistent

for any alternative model counting algorithms.

5.4.3 Combined Constraint Solving and Model Counting Performance

The combined constraint solving and model counting performance is the time

required to solve a constraint for either the true or false branch and to determine
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Accuracy Measurement Performance Measurement

Percentage Difference Constraint Solving Time

Percentage Difference Model Counting Time

Percentage Difference Combined Constraint Solving and Model Counting Time

Table 5.5: Accuracy vs Performance Comparison Analyses

the model count of the resulting symbolic string model. The combined constraint

solving and model counting time is measured as the sum of the constraint solving

time and the model counting time for either the true or false branch of a constraint.

This additional measurement of performance is included in an attempt to evaluate

the general relative performance of the four automata models in a PSE analysis.

5.5 Comparison of Accuracy vs Performance

In addition to individual analyses of the accuracy and performance of automata

models in PSE, three additional analyses are performed to compare the accuracy and

performance criteria for each automata-based solver. Each of the analyses listed in

Table 5.5 compares the measurement of accuracy to the measurement of performance

for true and false branches of all constraint in the Collected Solved Constraint Data.

The three analyses are performed to determine what relationship if any exists

between the accuracy and performance metrics for each solver. The comparisons

will provide guidance on which solvers are best when accuracy and performance are

equally important for a PSE analysis. Additionally, the same three comparisons

are performed for each of the experiments isolating independent variables. The

additional comparisons allow the combined effects on accuracy and performance to

be determined in their respective proportions.
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5.6 Evaluation Environment

The evaluation was conducted on a MacBook ProTMwith a 2 Ghz Intel Core

i7TMprocessor and 8 GB of RAM. The version 1.8 JVM was used for the solving

of constraints for each automata model and the oracle. The only change to the

default JVM was a specification of maximum heap size which was set as 6 GB for all

constraints solved.
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CHAPTER 6

RESULTS AND CONCLUSIONS

In this chapter we review the results of the evaluation described in Chapter 5.

This chapter begins with Section 6.1 which examines the results of the evaluation

with a focus on accuracy (Section 6.1.1), performance (Section 6.1.2), and the balance

between accuracy and performance (Section 6.1.1). Section 6.2 offers guidance on the

strengths and weaknesses observed for the solvers. Finally, Section 6.3 discusses the

known threats to the validity of these results. Section 6.4 covers the conclusions which

can be reached from the analysis. Section 6.5 explores possible directions for future

work based on this analysis. Finally, section 6.6 concludes this paper with some final

thoughts regarding the conducted analysis.

6.1 Results

The results of the evaluation of automata-based symbolic string model suitability

are divided into the following three subsections: Section 6.1.1 reviews automata

model accuracy, Section 6.1.2 reviews automata model performance, and Section 6.1.1

reviews the comparison of automata model accuracy versus model performance.
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6.1.1 Accuracy

Two different automata model accuracy measurements were recorded in the eval-

uation: the branch choice agreement described in Section 5.3.2 and the percentage

difference described in Section 5.3.2. Section 6.1.1 reviews the branch choice agree-

ment results. Section 6.1.1 reviews the percentage difference results.

Branch Choice Agreement

Selection Unbounded Bounded Aggregate Weighted

All 84.6% 99.3% 99.3% 99.8%

Table 6.1: Frequency of Branch Selection Agreement

Overall Table 6.1 displays the measured frequency of branch choice agreement for

each of the automata models for all string constraints in the evaluated dataset. This

table shows that the weighted automata model agrees with the constraint solving

oracle more frequently than any other model. Unfortunately, this 99.8% branch

choice agreement still leaves a 0.2% of string constraints where an invalid analysis

still occurs. Later examination of the effects of the independent evaluation variables

will demonstrate why these invalid analyses still occur for the weighted automata

model.

The unbounded model chooses the incorrect branch with the most frequency where

it disagrees for 15.4% of string constraints. This disagreement is 14.7% larger than

the model with the second largest frequency of disagreement. This indicates that

the use of an external maximum length, the only difference between the unbounded

and bounded models, is a significant source of disagreement in unbounded automata

models. The bounded and aggregate models both choose the correct predicate branch
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with 99.3% frequency which indicates that neither the subtractive collapse problems

for bounded models nor the model count over-approximation for aggregate models are

significant enough to cause a significant number of branch choice disagreements. The

percentage difference measurements discussed in Section 6.1.1 will provide a more

detailed comparison of the accuracy of these two models.

Unbounded Bounded Aggregate Weighted

Selection Agree ∆ r Agree ∆ r Agree ∆ r Agree ∆ r

|Σ| = 2 82.6% -2.0 0.02 98.9% -0.4 0.01 98.8% -0.5 0.02 99.6% -0.2 0.01

|Σ| = 3 84.5% -0.1 0.00 99.4% 0.1 0.00 99.3% 0.0 0.00 99.9% 0.1 0.01

|Σ| = 4 85.8% 1.2 0.01 99.4% 0.1 0.01 99.5% 0.2 0.01 99.8% 0.0 0.00

|Σ| = 5 85.7% 1.1 0.01 99.6% 0.3 0.02 99.6% 0.3 0.02 99.9% 0.1 0.01

k = 1 84.2% -0.4 0.00 98.8% -0.5 0.02 98.9% -0.4 0.02 99.6% -0.2 0.01

k = 2 84.7% 0.1 0.00 99.3% 0.0 0.00 99.3% 0.0 0.00 99.7% -0.1 0.01

k = 3 84.7% 0.1 0.00 99.5% 0.2 0.01 99.5% 0.2 0.01 99.9% 0.1 0.01

k = 4 84.9% 0.3 0.00 99.7% 0.4 0.02 99.6% 0.3 0.02 100.0% 0.2 0.02

Literal 82.7% -1.9 0.02 99.6% 0.3 0.02 99.6% 0.3 0.02 99.6% -0.2 0.02

Simple 86.5% 1.9 0.02 99.0% -0.3 0.01 99.0% -0.3 0.01 99.9% 0.1 0.01

Complex 84.7% 0.1 0.00 99.4% 0.1 0.01 99.4% 0.1 0.01 99.8% 0.0 0.00

Table 6.2: Frequency of Branch Selection Agreement For Different Initial String
Characteristics

Initial String Type Table 6.2 displays the measured frequency of branch choice

agreement for each of the automata models for the string constraints in the evaluated

dataset having the specified initial string characteristic. The ∆ column for each au-

tomata model provides the difference between the overall agreement and this specific

data subset. The r column for each automata model is the correlation coefficient which

is a measure of the size of the effect of the independent variables. The guidelines for

effect size of r are as follows: a small effect size is 0.1, a medium effect size is 0.3,

and a large effect size is 0.5. This table focuses on the three following initial string

characteristics: alphabet size, initial string length, and initial string type.
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The effects of both the alphabet size and the initial string length on the branch

choice agreement are similar for each of the four automata models. None of the effect

sizes measured by the r correlation coefficient indicate a significant effect with the

largest effect sizes measured at 0.02 which is well below the threshold for even a

small effect size at 0.10. A trend seen from the ∆ for each of the automata models is

the increasing frequency of branch choice agreement as both alphabet size and initial

string length increase. Extrapolating from this initial trend for each model, we expect

the branch choice agreement frequency to increase for each larger alphabet size and

initial string length.

Each of the initial string types has a minimal effect on the frequency of branch

choice agreement where 0.02 is the largest measured effect size for a string type. This

0.02 effect size is the result of disagreement for a literal initial strings using either

unbounded or weighted models. The only other string type with larger disagreement

than overall is for the simple type where both the bounded and aggregate models

measure a 0.01 effect size for the increased disagreement frequency.

String Operations Table 6.3 displays the measured frequency of branch choice

agreement for each of the automata models for the string constraints in the evaluated

dataset which use the specified string operation. The ∆ column provides the difference

between the overall and data subset percentage difference. The r column shows the

effect size for the independent variable. The table shows results for the following

four string operations: concat, delete, replace, and reverse. The ∃ prefix for an

operation indicates a data subset which includes at least one instance of the operation

in the constraint. The ∀ prefix for an operation indicates a data subset which includes

only instances of the operation in the constraint.

The branch agreement frequency of the unbounded automata model is significantly
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Unbounded Bounded Aggregate Weighted

Selection Agree ∆ r Agree ∆ r Agree ∆ r Agree ∆ r

∃ concat 75.5% -9.1 0.11 99.6% 0.3 0.02 99.6% 0.3 0.02 99.9% 0.1 0.01

∃ concat(L) 75.0% -9.6 0.12 99.5% 0.2 0.01 99.5% 0.2 0.01 99.9% 0.1 0.01

∃ concat(S) 76.2% -8.4 0.11 99.7% 0.4 0.03 99.7% 0.4 0.03 99.9% 0.1 0.01

∃ concat(C) 74.4% -10.2 0.13 99.6% 0.3 0.02 99.7% 0.4 0.03 99.9% 0.1 0.01

∀ concat 72.1% -12.5 0.15 99.6% 0.3 0.02 99.9% 0.6 0.05 99.9% 0.1 0.01

∀ concat(L) 70.7% -13.9 0.17 100.0% 0.7 0.06 100.0% 0.7 0.06 100.0% 0.2 0.03

∀ concat(S) 74.5% -10.1 0.13 99.5% 0.2 0.01 99.5% 0.2 0.01 99.5% -0.3 0.03

∀ concat(C) 72.2% -12.4 0.15 98.8% -0.5 0.03 99.7% 0.4 0.03 99.7% -0.1 0.01

∃ delete 91.7% 7.1 0.11 99.3% 0.0 0.00 99.3% 0.0 0.00 99.7% -0.1 0.01

∃ delete(s) 88.9% 4.3 0.06 99.6% 0.3 0.02 99.6% 0.3 0.02 99.8% 0.0 0.00

∃ delete(d) 95.5% 10.9 0.18 99.1% -0.2 0.01 99.0% -0.3 0.02 99.7% -0.1 0.01

∀ delete 99.5% 14.9 0.28 99.6% 0.3 0.02 99.5% 0.2 0.01 99.8% 0.0 0.00

∀ delete(s) 99.5% 14.9 0.28 99.8% 0.5 0.04 99.8% 0.5 0.04 99.8% 0.0 0.00

∀ delete(d) 99.5% 14.9 0.28 99.5% 0.2 0.01 99.5% 0.2 0.01 99.8% 0.0 0.00

∃ replace 87.6% 3.0 0.04 98.9% -0.4 0.02 98.9% -0.4 0.02 99.7% -0.1 0.01

∃ replace(s) 89.0% 4.4 0.06 99.5% 0.2 0.01 99.5% 0.2 0.01 99.8% 0.0 0.00

∃ replace(d) 87.5% 2.9 0.04 98.1% -1.2 0.05 98.1% -1.2 0.05 99.6% -0.2 0.02

∀ replace 97.6% 13.0 0.23 97.9% -1.4 0.06 97.9% -1.4 0.06 99.6% -0.2 0.02

∀ replace(s) 99.8% 15.2 0.28 99.8% 0.5 0.04 99.8% 0.5 0.04 99.8% 0.0 0.00

∀ replace(d) 96.4% 11.8 0.20 96.9% -2.4 0.09 96.9% -2.4 0.09 99.4% -0.4 0.03

∃ reverse 89.0% 4.4 0.06 99.5% 0.2 0.01 99.4% 0.1 0.01 99.8% 0.0 0.00

∀ reverse 99.9% 15.3 0.29 99.9% 0.6 0.05 99.9% 0.6 0.05 99.9% 0.1 0.01

Table 6.3: Frequency of Branch Selection Agreement For Different Operations

affected by the concat operation. The ∆ for each concat data subset is negative and

each has an effect size greater than 0.10 which is the small effect size threshold.

Because each of the exclusive data subsets for the delete, replace, and reverse

operations have both positive ∆ values and effect sizes just short of the medium

effect size threshold of 0.30, we can confirm that branch choice disagreement for the

unbounded model is the primarily the result of additive string operations such as

concat.
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The bounded and aggregate automata models have almost equivalent branch choice

agreement for the different string operation data subsets. Both automata models

have the largest disagreement due to replace operations where the string constraints

which include only replace operations with different character arguments. The effect

size for this data subset is 0.09, only slightly less than the threshold of small effect

sizes at 0.10. The only significant difference between the agreement frequency for

unbounded and aggregate models is seen for the exclusive concat operations with

complex arguments where the bounded model has a negative ∆ and the aggregate

model has a positive delta.

The effect of string operations on the agreement frequency for weighted automata

models is negligible where the maximum effect size is 0.03. While there are some neg-

ative ∆ values for the different string operation data subsets, the smallest agreement

percentage of 99.4% indicates the lack of significant effects on weighted automata

model agreement frequency due to the operations in a string constraint.

Unbounded Bounded Aggregate Weighted

Selection Agree ∆ r Agree ∆ r Agree ∆ r Agree ∆ r

contains 98.9% 14.3 0.22 99.2% -0.1 0.01 99.2% -0.1 0.01 99.6% -0.2 0.02

contains(L) 97.6% 13.0 0.13 98.0% -1.3 0.05 98.1% -1.2 0.05 99.0% -0.8 0.05

contains(S) 100.0% 15.4 0.14 100.0% 0.7 0.03 100.0% 0.7 0.03 100.0% 0.2 0.01

contains(C) 99.1% 14.5 0.17 99.6% 0.3 0.01 99.7% 0.4 0.02 99.9% 0.1 0.01

equals 70.4% -14.2 0.17 99.5% 0.2 0.01 99.4% 0.1 0.01 100.0% 0.2 0.03

equals(L) 98.7% 14.1 0.14 98.6% -0.7 0.03 98.5% -0.8 0.03 100.0% 0.2 0.02

equals(S) 45.3% -39.3 0.30 100.0% 0.7 0.03 100.0% 0.7 0.03 100.0% 0.2 0.01

equals(C) 63.0% -21.6 0.21 99.8% 0.5 0.02 99.8% 0.5 0.02 100.0% 0.2 0.02

Table 6.4: Frequency of Branch Selection Agreement For contains and equals

Predicates

String Predicates Table 6.4 displays the measured frequency of branch choice

agreement for each of the automata models for the string constraints in the evaluated
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dataset which use the specified string predicate. The ∆ column provides the difference

between the overall and data subset percentage difference. The r column shows the

effect size for the independent variable. The table shows results for the contains and

equals string predicates.

The unbounded automata model shows very poor agreement accuracy for the

equals predicates using both simple and complex types of string arguments. The

0.30 correlation coefficient for the equals predicate using simple arguments meets the

threshold of a medium effect size (r ≥ 0.30). This effect of disagreement along with

the 0.21 effect size for disagreement of equals predicates using complex arguments

account for nearly all of the branch choice disagreement for unbounded automata

models.

Again the bounded and aggregate automata models have very similar frequencies

of branch choice agreement for the different predicate data subsets. Both of these

automata models have larger disagreement due toe predicates using a literal string

type argument when compared to the positive ∆ values for the other argument specific

predicate data subsets. However, neither of these disagreements is as significant as

the operation data subsets since the 0.05 and 0.03 effect sizes are significantly less

than the 0.09 effect size maximum from the operation data subsets.

The predicate data subset for the weighted automata model is the most significant

of all the data subsets for the model. Every variation of the equals predicate has

100% branch choice agreement, demonstrating that all branch choice disagreements

arise from contains predicates. Specifically, the contains predicate for literal string

type arguments is the only contains data subset with a negative ∆ with an effect size

of 0.05, the largest effect size of any data subset for the weighted automata model.
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Model Count Percentage Difference

Selection Unbounded Bounded Aggregate Weighted

Average 9.93 1.02 0.95 0.40

Standard Deviation 27.12 5.54 5.57 4.76

Table 6.5: Model Counting Percentage Difference

Overall Table 6.5 displays the metrics for the difference between model and oracle

branch probability for each of the automata models for all string constraints in the

evaluated dataset. The model with the largest average percentage difference is the

unbounded automata model at 9.93 which is nearly ten times the second largest

percentage difference of the bounded model at 1.02. The bounded and aggregate are

only separated by an average difference of 0.07. The weighted model is clearly the

most accurate automata model with an average percentage difference of only 0.40, less

than half the difference of the aggregate model. While each of the bounded, aggregate,

and weighted automata models have average differences of 1.02 or less, the standard

deviations for each of these models is significantly higher ranging from 5.57 for the

aggregate model to 4.76 for the weighted model. These larger standard deviations

indicate that the majority of constraints had no or very small percentage differences.

The standard deviation of the unbounded automata model at 27.12 indicate the

magnitude of the problem with inaccuracy for the model.

Unbounded Bounded Aggregate Weighted

Selection Avg ∆ d Avg ∆ d Avg ∆ d Avg ∆ d

true Branches 16.28 6.35 0.19 0.99 -0.03 0.01 0.88 -0.07 0.02 0.05 -0.35 0.41

false Branches 3.57 -6.36 0.40 1.06 0.04 0.01 1.02 0.07 0.01 0.75 0.35 0.05

Table 6.6: Model Counting Percentage Difference For true and false Branches
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true or false Predicate Branch Table 6.6 shows the metrics for the difference

between model and oracle branch probability for each of the automata models for the

string constraints in the evaluated dataset for either only the true branch or only the

false branch. The ∆ column provides the difference between the overall percentage

difference and the percentage difference of the specific data subset. The d column

uses Cohen’s d measurment of effect size which has the following guidelines: a very

small effect is 0.01, a small effect is 0.2, a medium effect is 0.5, a large effect is 0.8, a

very large effect is 1.2, and a huge effect is 2.0.

The unbounded automata model has a clear accuracy deficiency when calculating

the probability of the true constraint branch shown by the effect size of 0.19 which

is just short of the small effect size threshold of 0.20. This increased difference in

true predicate branches is explained by the inaccuracy of full match predicates for

unbounded models seen earlier in agreement frequency as well as shown later when

examining percentage differences for predicated data subsets. Each of the bounded,

aggregate, and weighted automata models average larger percentage differences for

false branches than for true branches. While the bounded and aggregate models have

very small effect sizes of 0.01 due to the false branchs, the weighted model has a larger

effect size of 0.05 although that still falls well short of the small effect size threshold

of 0.20.

Initial String Type Table 6.7 shows the metrics for the difference between model

and oracle branch probability for each of the automata models for the string con-

straints in the evaluated dataset having the specified initial string characteristic. The

∆ column provides the difference between the overall and data subset percentage

difference. The d column shows the effect size for the independent variable. This

table focuses on the three following initial string characteristics: alphabet size, initial
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Unbounded Bounded Aggregate Weighted

Selection Avg ∆ d Avg ∆ d Avg ∆ d Avg ∆ d

|Σ| = 2 10.80 0.87 0.03 1.82 0.80 0.09 1.72 0.77 0.09 0.97 0.57 0.07

|Σ| = 3 10.01 0.08 0.00 0.87 -0.15 0.03 0.82 -0.13 0.03 0.27 -0.13 0.04

|Σ| = 4 9.55 -0.38 0.01 0.79 -0.23 0.05 0.71 -0.24 0.06 0.25 -0.15 0.04

|Σ| = 5 9.34 -0.59 0.02 0.59 -0.43 0.13 0.56 -0.39 0.11 0.12 -0.28 0.14

k = 1 12.95 3.02 0.10 1.41 0.39 0.05 1.26 0.31 0.04 0.91 0.51 0.06

k = 2 8.70 -1.23 0.05 1.18 0.16 0.03 1.10 0.15 0.03 0.44 0.04 0.01

k = 3 8.93 -1.00 0.04 0.83 -0.19 0.05 0.79 -0.16 0.04 0.14 -0.26 0.12

k = 4 9.11 -0.82 0.03 0.67 -0.35 0.10 0.66 -0.29 0.08 0.11 -0.29 0.15

Literal 10.12 0.19 0.01 0.42 -0.60 0.11 0.41 -0.54 0.10 0.37 -0.03 0.01

Simple 9.30 -0.63 0.03 1.50 0.48 0.10 1.31 0.36 0.07 0.40 0.00 0.00

Complex 10.33 0.40 0.01 1.14 0.12 0.02 1.12 0.17 0.03 0.42 0.02 0.00

Table 6.7: Model Counting Percentage Difference For Different Initial String
Characteristics

string length, and initial string type.

Each of the four automata models demonstrate increasing branch probability

accuracy as either the alphabet size or the initial string length increase. This trend

of increasing branch probability accuracy is a stronger indication than the branch

agreement frequency results for determining that larger alphabet sizes and initial

string lengths will produce more accurate automata models.

The literal initial string type only increased percentage difference for the un-

bounded automata model and only with the very small effect size of 0.01. The

simple initial string type increased the percentage difference for both the bounded and

aggregate automata models with 0.10 and 0.07 effect sizes respectively. While this is

half and less than half of the small effect size threshold, these effect sizes are some of

the largest out of the independent variable data subsets for both of these automata

models. The complex initial string type has an increased percentage difference for

each of the four automata models, but not with any significant effect sizes.
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Unbounded Bounded Aggregate Weighted

Selection Avg ∆ d Avg ∆ d Avg ∆ d Avg ∆ d

∃ concat 14.94 5.01 0.15 0.94 -0.08 0.02 0.81 -0.14 0.03 0.39 -0.01 0.00

∃ concat(L) 14.38 4.45 0.14 0.82 -0.20 0.03 0.85 -0.10 0.02 0.41 0.01 0.00

∃ concat(S) 15.51 5.58 0.17 1.24 0.22 0.04 0.86 -0.09 0.02 0.48 0.08 0.02

∃ concat(C) 16.04 6.11 0.18 0.82 -0.20 0.04 0.72 -0.23 0.04 0.41 0.01 0.00

∀ concat 17.98 8.05 0.22 0.79 -0.23 0.04 0.66 -0.29 0.05 0.60 0.20 0.03

∀ concat(L) 16.94 7.01 0.19 0.52 -0.50 0.07 0.52 -0.43 0.06 0.52 0.12 0.02

∀ concat(S) 17.53 7.60 0.22 1.35 0.33 0.06 0.79 -0.16 0.03 0.73 0.33 0.06

∀ concat(C) 17.92 7.99 0.22 0.67 -0.35 0.07 0.48 -0.47 0.09 0.44 0.04 0.01

∃ delete 5.66 -4.27 0.21 0.95 -0.07 0.01 0.91 -0.04 0.01 0.42 0.02 0.00

∃ delete(s) 7.23 -2.70 0.11 0.67 -0.35 0.07 0.59 -0.36 0.08 0.33 -0.07 0.02

∃ delete(d) 3.46 -6.47 0.45 1.22 0.20 0.03 1.24 0.29 0.05 0.51 0.11 0.02

∀ delete 0.95 -8.98 1.35 0.70 -0.32 0.07 0.71 -0.24 0.05 0.35 -0.05 0.01

∀ delete(s) 1.27 -8.66 0.90 0.29 -0.73 0.21 0.29 -0.66 0.19 0.29 -0.11 0.03

∀ delete(d) 0.73 -9.20 1.88 0.73 -0.29 0.06 0.75 -0.20 0.04 0.36 -0.04 0.01

∃ replace 8.27 -1.66 0.07 1.37 0.35 0.06 1.36 0.41 0.07 0.36 -0.04 0.01

∃ replace(s) 7.54 -2.39 0.10 0.80 -0.22 0.04 0.71 -0.24 0.05 0.32 -0.08 0.02

∃ replace(d) 8.48 -1.45 0.06 2.07 1.05 0.15 2.14 1.19 0.17 0.40 0.00 0.00

∀ replace 3.82 -6.11 0.41 1.88 0.86 0.12 1.88 0.93 0.13 0.41 0.01 0.00

∀ replace(s) 2.17 -7.76 0.58 0.25 -0.77 0.24 0.25 -0.70 0.21 0.25 -0.15 0.05

∀ replace(d) 4.64 -5.29 0.34 2.66 1.64 0.19 2.66 1.71 0.20 0.51 0.11 0.02

∃ reverse 7.51 -2.42 0.10 0.81 -0.21 0.04 0.72 -0.23 0.05 0.35 -0.05 0.01

∀ reverse 2.25 -7.68 0.56 0.24 -0.78 0.26 0.24 -0.71 0.23 0.24 -0.16 0.05

Table 6.8: Model Counting Percentage Difference For Different String Operations

String Operations Table 6.8 shows the metrics for the difference between model and

oracle branch probability for each of the automata models for the string constraints

in the evaluated dataset which uses the specified string operation. The ∆ column

provides the difference between the overall and data subset percentage difference. The

d column shows the effect size for the independent variable. The table shows results

for the following four string operations: concat, delete, replace, and reverse.

The unbounded automata model is significantly affected by additive string op-
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erations as demonstrated by the concat data subsets where the effect sizes range

from 0.14 to 0.22. These results indicate that over-approximation of the solution sets

seen in unbounded automata models produces greater inaccuracy than the different

collapse problems due to subtractive and substitutive operations. From these un-

bouned percentage difference results, we can see that the percentage difference due to

subtractive collapse is significantly less than the difference due to substitutive collapse.

Specifically, the 0.73 percentage difference of delete operation with different index

arguments provides a positive 1.88 effect size which is closer to the huge effect size

threshold at 2.0 than the large effect size threshold at 1.2. Comparing this to the

replace operation with different character arguments which has a 4.64 percentage

difference and only a 0.34 positive effect size. This comparison clearly shows that

collapses due to substitutive operations such as replace are a more signifigant source

of inaccuracy for automata-based symbolic string models.

The bounded and aggregate automata models both have the largest difference in

branch probability due to the replace string operation. The two data subsets for

replace operations using different character arguments produce effect sizes of 0.19

and 0.20 for the bounded and aggregate models respectively. These results indicate the

small but significant effect that substitutive collapses have on the branch probability

and therefore the model accuracy. As with the agreement frequency, this measurement

of percentage difference also indicates less accuracy for a bounded model for concat

operations using simple string type arguments.

The weighted automata model has only insignificant effect sizes ranging from 0.00

to 0.06 for each of the operation data subsets. While the 0.06 effect size falls well

below the small effect size threshold of 0.20, it is the largest effect size of all the

operation data subsets indicating minor inaccuracies in branch probabilities due to
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additive operations for weighted automata models.

Unbounded Bounded Aggregate Weighted

Selection Avg ∆ d Avg ∆ d Avg ∆ d Avg ∆ d

contains 3.27 -6.66 0.46 1.26 0.24 0.03 1.19 0.24 0.03 0.75 0.35 0.05

contains(L) 2.19 -7.74 0.86 1.92 0.90 0.10 1.81 0.86 0.10 1.18 0.78 0.09

contains(S) 1.04 -8.89 1.04 1.04 0.02 0.00 1.04 0.09 0.01 1.04 0.64 0.08

contains(C) 5.49 -4.44 0.22 0.87 -0.15 0.04 0.79 -0.16 0.04 0.22 -0.18 0.07

equals 16.58 6.65 0.19 0.78 -0.24 0.07 0.71 -0.24 0.07 0.05 -0.35 0.41

equals(L) 1.04 -8.89 2.23 0.91 -0.11 0.03 0.93 -0.02 0.00 0.09 -0.31 0.27

equals(S) 24.52 14.59 0.36 0.61 -0.41 0.14 0.45 -0.50 0.18 0.03 -0.37 0.55

equals(C) 24.25 14.32 0.37 0.78 -0.24 0.07 0.69 -0.26 0.08 0.04 -0.36 0.57

Table 6.9: Model Counting Percentage Difference For contains and equals

Predicates

String Predicates Table 6.9 shows the metrics for the difference between model and

oracle branch probability for each of the automata models for the string constraints

in the evaluated dataset which uses the specified string predicates. The ∆ column

provides the difference between the overall and data subset percentage difference.

The d column shows the effect size for the independent variable. The r column shows

the effect size for the independent variable. The table shows results for the contains

and equals string predicates.

The unbounded automata model has the most significant difference to branch

probability due to equals predicates for both the simple and complex types of

arguments. The effect sizes of 0.36 and 0.37 are the largest effect sizes for an

unbounded model due to an increase in percentage difference, demonstrating that full

match predicates are the largest source of inaccuracy for unbounded models. This is

consistent with the results for the frequency of branch choice agreement.

Each of the bounded, aggregate, and weighted automata models have increased

percentage differences for the contains predicates using literal and simple arguments.
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For each of these three models, the contains predicate with literal arguments is a

significant source of percentage difference for the model where it is the second largest

effect size for both the bounded and aggregate models and is the largest effect size of

any of the independent variable data subsets for the weighted model. The weighted

model is also significantly affected by the contains predicate with simple arguments

with the second largest effect size of weighted models.

6.1.2 Performance

The findings of the evaluation for solver suitability based upon performance cri-

teria appear in the following three subsections: cumulative constraint solving time

in Section 6.1.2, model counting time in Section 6.1.2, and combined cumulative

constraint solving and model counting time in Section 6.1.2.

Cumulative Constraint Solving Time

Figure 6.1 shows the boxplot for the constraint solving time of each automata

model where the y-axis is in microseconds and is on a logarithmic scale. The figure

shows that the constraint solving times for the unbounded and bounded automata

models are very similar where the solving time for bounded models varies slightly

more than unbounded models. The aggregate automata model requires more time to

solve string constraints than either the unbounded or the bounded models which is to

be expected due to the aggregate model containing a sequence of FSAs instead of a

single FSA. Finally, the weighted automata model has significantly worse constraint

solving performance than any of the other three automata models. This performance

difference is due to the complexity added by weighted transitions when simulating

string operations and predicates.
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Figure 6.1: Boxplots of Constraint Solving Times

Model Counting Time

Figure 6.2 shows the boxplots for both the model counting times and the constraint

solving times of each automata model where the y-axis is in microseconds and is on

a logarithmic scale. The boxplots for the model counting times (labeled MC) of

each of the four automata models shows that model counting performance is nearly

equivalent between models. The box plots for constraint solving time (labeled S) in

the same plot shows the extreme difference between model counting and constraint

solving times, demonstrating the practical irrelevance of model counting time to the

overall analysis time in a quantitative string analysis.
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Figure 6.2: Boxplots of Model Counting Times and Constraint Solving Times

Combined Model Counting and Constraint Solving Time

Figure 6.3 shows the boxplot for the combined constraint solving and model

counting time of each automata model where the y-axis is in microseconds and is on

a logarithmic scale. This boxplot is nearly identical to the boxplot for the constraint

solving times for the automata models due to the practical irrelevance of the model

counting time when combining it with the constraint solving time.

6.1.3 Accuracy vs Performance Comparisons

The comparisons of the accuracy and performance metrics reported by the evalu-

ation are summarized in the following three subsections: model counting percentages

difference versus cumulative constraint solving time in Section 6.1.3, model counting

percentages difference versus model counting time in Section 6.1.3, and model count-

ing percentages difference versus combined cumulative constraint solving and model

counting time in Section 6.1.3.
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Figure 6.3: Boxplots of Combined Model Counting and Constraint Solving Times

Accuracy vs Constraint Solving Performance

Figure 6.4 shows a scatter plot for all four automata models where the x-axis is the

constraint solving time and the y-axis is the branch probability percentage difference,

the x-axis is on a logarithmic scale. The scatter plot shows the bounded automata

model has the best balance of performance and accuracy where the bounded model

is clustered just left of the aggregate model on the log scaled x-axis. This scatter

plot also helps to illustrate just how many of the 542592 string constraints for each

automata model result in large percentage differences. This was captured by the

standard deviation measurements for each model, but the visualization in Figure 6.4

shows that achieving 100% model counting accuracy will remain a difficult problem.
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Figure 6.4: Scatterplot of Percentage Difference vs Constraint Solving Times

Accuracy vs Model Counting Performance

Figure 6.5 shows a scatter plot for all four automata models where the x-axis is the

model counting time and the y-axis is the branch probability percentage difference.

Because the model counting performance of each of the four automata models is

practically equivalent, the plot of percentage difference vs model counting time mostly

serves as as a visualization of the percentage differences between the automata models.

Accuracy vs Combined Model Counting and Constraint Solving Perfor-

mance

Figure 6.6 shows a scatter plot for all four automata models where the x-axis is the

combined constraint solving and model counting time and the y-axis is the branch
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Figure 6.5: Scatterplot of Percentage Difference vs Model Counting Times

probability percentage difference, the x-axis is on a logarithmic scale. Again, due

to the practical irrelevance of model counting time when combined with constraint

solving time, the scatter plot of percentage difference and combined time is nearly

identical to the scatter plot of percentage difference and constraint solving time.

6.2 Recommendations

Criteria Model Comparison Relationship

Accuracy Weighted > Aggregate ≈ Bounded > Unbounded

Combined Performance Unbounded ≈ Bounded > Aggregate > Weighted

Balance of Accuracy and Performance Bounded > Aggregate > Weighted > Unbounded

Table 6.10: Solver Recommendations Based on Suitability
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Figure 6.6: Scatterplot of Percentage Difference vs Combined Model Counting and
Constraint Solving Times

Table 6.10 summarizes the accuracy and performance results discussed in Sections

6.1.1 and 6.1.2. The model with the best accuracy was the weighted automata model

which maintained at least a 99% branch agreement frequency across all independent

variable data subsets and had a significantly smaller average percentage difference

than the other automata models. The aggregate automata model had slightly smaller

percentage difference metrics than the bounded model despite both models having

practically equivalent branch choice frequencies. The unbounded automata model

had significantly worse branch choice agreement frequency and significantly larger

percentage differences than the other automata models. Both the unbounded and

the bounded automata models have similar combined constraint solving and model

counting times with the unbounded model performing slightly better than the bounded
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model. The aggregate model has a consistently longer combined times than either

the unbounded or bounded models while the weighted model has significantly worse

performance than any of the other three models.

When attempting to balance accuracy and performance, the bounded automata

model has very good combined time and sufficient accuracy for most analyses with

99.3% branch agreement frequency and only 1.02 average percentage difference. The

aggregate model provides the second best balance between accuracy and performance

with equivalent agreement frequency and slightly better percentage difference but the

combined time of the aggregate model is significant enough compared to the bounded

model that the bounded is clearly better balanced of the two models. While the

weighted model is the most accurate of all the automata models, it is not enough

of an accuracy improvement to overcome the significant combined time performance

cost of the model compared to either the bounded or aggregate model. The unbounded

model is has extremely poor accuracy when compared to each of the other automata

models making it a worse choice than even the extremely slow weighted model.

6.3 Threats to Evaluation Validity

We have identified nine threats to the validity of the evaluation of the suitability

of automata-based symbolic string models. These threats include two internal threats

to validity and sLiteral external threats to validity.

6.3.1 Internal Threats to Validity

The identified internal threats to the validity of this evaluation include: the small

size of the string alphabet and the small values for initial maximum string length.
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Small Size of the String Alphabet The small sizes of the string alphabet values

in this evaluation appear to be a source of selection bias. This is a necessary

choice in the evaluation because the time required to complete the evaluation grows

quadratically as the alphabet size increases. This makes evaluation of larger alphabet

sizes infeasible. To mitigate this risk, four alphabet sizes were chosen so that the

effects on accuracy and performance for constraints with larger alphabets can can be

extrapolated from the curve produced. Both the branch choice agreement and the

percentage difference results indicate that model accuracy increases as the size of the

string alphabet increases.

Small Values for the Initial String Length The small lengths chosen as initial

maximum string length values in this evaluation appear to be another source of

selection bias. This is also a necessary choice due to the evaluation time growing as the

initial maximum length increases. As a result, small values are needed for the initial

maximum string length if an evaluation to be feasible. As with the size of the string

alphabet, the accuracy and performance suitability of the solvers for larger initial

maximum string length values can be extrapolated from the curve produced for the

four values evaluated. Both the branch choice agreement and the percentage difference

results indicate that model accuracy increases as initial string length increases.

6.3.2 External Threats to Validity

The identified external threats to the validity of this evaluation include: the

synthetic data set used in the evaluation, the evaluation of only reverse, concat,

delete, and replace operations, using the char argument replace operation instead

of String arguments, the use of only contains and equals predicates, the creation
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of Complex string types using only the contains predicate, the possible sub-optimal

string operation modeling algorithms, the sub-optimal model counting algorithms,

and the automaton models chosen for the evaluation.

Only reverse, concat, delete, and replace Operations Because only the

reverse, concat, delete, and replace operations appear in the the string constraint

graphs, the results of this evaluation may not apply for constraints with other string

operations. However, observations from the SCSF test suite and made during early

experimental testing show that each operation in a category has similar effects on

the automata model count. Additionally, the string operation modeling algorithms

for each category of operation have similar performance cost complexity. These

two observed similarities indicate that the relative differences the evaluation reports

between automata-based solvers are likely to hold for those operations not evaluated

from evaluated categories.

replace with char Arguments Similar to the previous threat, using the char

argument version of the replace operation appearing in the string constraint graphs

without the String argument version also being included can mean the evaluation

finding are not applicable to constraints which include the String argument version

of the operation. The reason this threat to validity differs from the previous threat

is the length alteration that can result from a String argument replace operation.

Since this alteration can not occur for the char argument version, it would appear

capable of producing different accuracy and performance results for subsequent con-

straints. However, exploratory testing shows that this does not occur for known string

argument values. The use of unknown string argument values as used in the concat
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operation, the contains predicate, and the equals predicates is a topic for future

exploration and is detailed in the Future Work section (6.5.2).

Only contains and equals predicates Because the contains and equals pred-

icates are the only predicates included in the the Constraint Graphs, the results of

the evaluation may not be generalizable to constraints with predicates which were

not included. However, as with the string operations in the evaluation, the effects

observed for automata model count using different predicates within both partial

match and full match categories are similar enough that evaluating more than one

predicate from either category was deemed redundant. This also applies to the

performance effects of the different predicates where the algorithm complexity of the

predicates within either category was similar enough that more than one predicate

from either category was again deemed redundant.

Creating Complex Unknown String Type Using Only contains As a con-

sequence of only using the contains operation to create complex unknown string

types in the string constraint graphs, the evaluation findings may not apply to

string constraints where complex unknown strings types may occur with different

origins. The reason a complex unknown string type is needed as an initial string

in the evaluation is due to the observed added vulnerability to such string types to

over-approximation as well as collapses due to both subtractive and substitutive string

operations. However, since automata models produced from contains operations

have been proven to experience both the over-approximation and collapse issues,

we feel complex unknown string types created using only the contains predicate is

sufficient to characterize the accuracy and performance of automata-based symbolic
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string models.

Sub-optimal Operation and Predicate Simulation Algorithms The use of

string operation and predicate simulation algorithms which are likely to be sub-

optimal can result in the evaluation results not being relevant for automata-based

solvers using optimal operation modeling algorithms. However, because the SCSF

tool implemented the same simulation algorithms for FSAs contained within un-

bounded, bounded, and aggregate automata models, the comparative accuracy and

performance of these three automata models would be consistent with an evaluation

using more optimized FSA algorithms. Additionally, because the weighted automata

model uses string operation and predicate simulation algorithms which use WFSAs

similarly to the corresponding FSA algorithms, the similar complexity of these WFSA

algorithms allow comparisons to be made between weighted automata model accuracy

and performance and the other automata models which would be consistent with an

evaluation with more optimized WFSA algorithms.

Sub-optimal Model Counting Algorithms Similar to the previous threat, the

use of sub-optimal model counting algorithms may result in the evaluation results

not applying to solvers which use optimal model counting algorithms. However,

the nearly identical computational complexity of the three utilized model counting

algorithms MCUnbounded, MCBounded, and MCWeighted allows the rela-

tionship between the four automata models regarding accuracy and performance to

be consistent with evaluations using more optimal model counting algorithms.

Chosen Automata Models The choices of automaton models is the last identified

threat to evaluation validity. It is possible that the results of this evaluation would
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not be applicable to either significantly modified versions of the four automaton

models or entirely new automaton models. However, because the evaluation of

automata models is intended to explore and illuminate the different accuracy problems

suffered by automata models and how performance is affected by the presence of such

problems, the four chosen automata models are sufficient to satisfy this intention.

Since these accuracy issues arise from the unbounded automata model which is the

automata model of choice in string analysis research, any other new or heavily

modified automata models would need to address these same concerns as well.

6.4 Conclusions

Our analysis of the suitability of automata-based symbolic string models deter-

mined that none of the four proposed automata models were suitable to model string

constraints without some amount inaccuracy. Whether or not a particular automata

model is suitable for a particular analysis will largely depend on the accuracy and

performance requirements of the analysis itself and we hope the results of our eval-

uation provide enough data to help others in making this determination. While

this evaluation of suitability is dependent upon the particular analysis, the significant

inaccuracies of the unbounded automata model makes it unsuitable for all but the most

forgiving string analyses. Because the unbounded automata model is essentially the

same model used in most ongoing quantitative string analysis research, it is important

that unsuitability of the model in any practical quantitative analysis is known.

Some insights into the factors which affect automata model accuracy were observed

in the evaluation of the four automata models. Both the branch choice agreement and

percentage difference results demonstrate that the characteristics of the initial string
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do not have any significant effect upon the resulting accuracy metric. In fact, the trend

of ever increasing accuracy as both the size of the string alphabet and the initial string

length increases indicates that for much larger alphabet sizes and initial string lengths,

such as those appearing in analyses of real world software programs, The inaccuracies

seen by each of the automata models would be less likely to occur. The main source

of inaccuracy for each of the automata models is the string operations and predicates,

in particular the substitutive operations and the partial match predicates. Only the

weighted automata model did not suffer from significant inaccuracy due to substitutive

string operations in our evaluation because it was created to prevent substitutive string

collapses. However, even the weighted model had significant inaccuracy due to partial

match predicates, although the magnitude of these inaccuracies were not as large as

those seen for the other three automata models for partial match predicates.

From the results of this evaluation, we propose that a greater focus should be

applied to three particular areas for automata-based symbolic string model research:

improvements in multiset models, optimization of string operation simulation algo-

rithms, and optimization of string predicate simulation algorithms.

6.5 Possible Future Work

While our analysis of the suitability of automata-based symbolic string models

provides answers about what is required of a sufficiently suitable automata model,

this analysis has raised many possibilities for future testing, additional evaluation

enhancements, and other possible techniques to provide symbolic string models.
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6.5.1 Additional testing

We would like to expand the variety of string operations and predicates used in

this evaluation to include addition injective, additive, subtractive, and substitutive op-

erations as well as additional full match and partial match predicates. However, such

an addition would require each additional operation and predicate to be simulated by

an algorithm which would need to be created for the weighted automata model and

possibly for the other three models if no such algorithm currently exists in the Java

String Analyzer library.

We would also like to evaluate the string constraint graphs of real world software

programs such as the open source software dataset evaluated by Kausler [21]. Unfor-

tunately, such an evaluation would require either significant optimization of the string

constraint solver oracle or the use of a super computer if not both. This would also

require a significant rewrite of the solver oracle to process very large collections of

strings without encountering memory errors as the current version would encounter

for such large collections.

6.5.2 Enhancements

We would like add different automata models to the SCSF and evaluation to

determine if some other choices about the design of the automata models could result

in better accuracy or performance. One such change would be the use of factors and

the strategy of restructuring aggregate automata models, we would like to explore

other possible strategies to handle this problem without introducing the model count

over-approximation discussed in Section 3.3.3. Another such change would be to

test a version of the weighted automata model which does not utilize a sequence of
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WFSAs but instead uses only a single WFSA since the weighted-transitions should

be sufficient to prevent subtractive collapses. While these are the only two known

additional models we would like to evaluate, it would be very useful to evaluate

other currently unknown automata models in the same way as the four currently

implemented models.

We would also like to improve the algorithms required to solve and count the string

constraints. While our evaluation ensured that the relative comparisons between each

automata model was consistent due to the similar operation and predicate simulation

algorithms, we would like to explore the accuracy and performance improvements

that could be possible by optimizing these algorithms. One idea in particular would

be to utilize concurrent processing for many of these algorithms where a process is

applied for each transition or state in a collection. While no amount of this kind

of optimization would allow constraint solving time to be similar to model counting

time, such optimization would allow for much quicker quantitative string analyses.

Another area we would like to explore is the impacts upon accuracy of string op-

erations and predicates with different combinations of arguments. While we explored

some different operation and predicate argument configurations in our evaluation,

we did not explore the full depth of such configurations. An example of such a

set of argument configurations is seen for the Substring operation which can have

four possible argument configurations: known start and end indices, a known start

index but unknown end index, an unknown start index and unknown end index, and

unknown start and end indices. Similar configurations exist for most of the different

string operations and predicates and we would like to explore how these different

configurations impact the accuracy and performance of a string analysis.

Finally, we would like to enhance our evaluation by adding support for mixed
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constraint string operations and predicates. This would allow us to evaluate the im-

pacts upon accuracy and performance of mixed constraint operations and predicates.

This evaluation could also include comparisons between different implementations of

the symbolic models of the other data constraints in an attempt to find the best

combination of symbolic string models and other data type symbolic models.

6.5.3 Other

One area of future work that we have shown to be of vital importance to quan-

titative string analysis is the need for multiset symbolic models. While we have

attempted to create one such model with the weighted automata model, it is important

to evaluate the advantages and disadvantages for creating and using multiset models

for other commonly used symbolic string models such as bit-vectors and axiom-based

models. Obviously a bit-vector can not be used since the use of only a single bit

does not allow the representation of more than a single instance of an element in a

set, but other vector based symbolic models could be created in the same manner

that we created the weighted-transition finite state automaton from the finite state

automaton. Also, the creation of multiset models should not be limited to symbolic

string models either, multiset models are needed for all datatypes in quantitative

analyses.

Another possible area of future research we can speculate about based on our

evaluation is the use of machine learning models to predict both branch choice and

global execution probability. By utilizing either our concrete string solver oracle or

even an accuracy automata model such as the weighted model, a machine learning

model could be trained to perform quantitative string analyses with the performance

advantages enjoyed by most machine learning models.
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6.6 Final Thoughts

We hope that our evaluation of the suitability of finite-state automata to model

string constraints in quantitative string analyses has provided useful information to

guide both the selection of automata models in analyses and the direction of future

string analysis research. We believe we proved the unsuitability of the commonly used

unbounded automata-based symbolic string model for quantitative analyses to to it

being significantly susceptible to accuracy errors. We believe we demonstrated the

need to use multiset symbolic models such as the weighted automata-based symbolic

string model in quantitative analyses. Finally, we believe we demonstrated the need

for more research and optimization of the algorithms which simulate string operations

and predicates for symbolic string models in quantitative analyses instead of research

and optimization of model counting symbolic string models.
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