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“I know you think you understand what you

thought I said, but I’m not sure you realize that

what you heard is not what I meant.”
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ABSTRACT

Current Digital Personal Assistants can be quite efficient while performing

routine tasks like setting up reminders and looking up information. However, they

do not attempt to establish common ground–the process of establishing and building

mutual understanding–and require a significant amount of initial data to learn how

to understand user intent. In this thesis, an incremental processing framework is

leveraged through a chatbot interface which updates its understanding state at each

inputted word, asks the user to clarify input when the system is unsure and prompts

users to give feedback several times during an interaction, all of which are instrumental

in establishing conversational grounding between them and enable the system to

begin with little or no training data. User interactions can be utilized as labeled

data for retraining the model and improving it. We evaluated our model with

users on Amazon Mechanical Turk and with each iteration–retraining the model

with the labeled data from previous interactions and opening it for new users–this

conversational grounding model learns a mapping between the users’ words and the

actions performed by the system to improve the chatbots natural dialogue. Hence,

demonstrating that since dialog processing involves language, it should be seen as

a type of joint activity that requires coordination of both participants to establish

common ground in order to communicate successfully and systems like these that

have provisions for conversational grounding can work with little or no training data.

Moreover, our data shows that with each update of the model the user affinity towards

the system increased and the users prefer a system that asks for multiple clarifications
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over the course of interaction than a system that assumes understanding of utterances

without giving any explicit feedback.
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CHAPTER 1

INTRODUCTION

The common ground between two humans in a dialog includes mutual beliefs and

knowledge about the shared environment–about what they both can see, about what

they both have already talked about, etc. Common ground is also a form of self-

awareness. For example, two people, Susan and Bill, are aware of certain information

they each have. To have common ground, their awareness must be reflexive - it must

include that very awareness itself [5]. A significant body of work has investigated

common ground in human-human communication, for example, as reported in [3] we

see how a shared cultural background, and spatial reasoning capabilities affect human

communication.

In the following section, we explain further and give examples of how grounding

is accomplished between two humans.

1.1 Grounding Between Humans

In Figure 1.1, we see a father and son enjoying their day out together. Their

respective individual knowledge is shown on each side with their common ground

(within green boxes), which includes all that they both mutually perceive. There

is some information that is only part of their own individual knowledge e.g., only

the father knows that the bird is an eastern bluebird, which the son is not aware of
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Figure 1.1: Common ground between two humans

since it is not part of the son’s knowledge, and therefore not part of the common

ground between them. Similarly, the knowledge that the son will go and sleep later is

something only he is aware of. It is only when the father and the son start a dialog,

that they can begin to unravel each other’s intent, share more knowledge in the dialog

process, and add some information as part of common ground by reaching a mutual

understanding. This is done by taking turns, clarifying and providing feedback for

each other to signal understanding. In other words, we can break grounding down

into four distinct constituents:

• Knowledge of language

• Displays of understanding

• Displays of misunderstanding
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• Memory

For the rest of this section, I will first explain each of these for human-human

dialog in detail followed by a comparison of the same in the case of dialog between a

human and an autonomous system.

Knowledge of Language Following Pierre Lison’s explanation of grounding, [13],

we as humans associate words with objects we see around us, knowledge that we

read about, emotions that we feel, and abstract ideas. We bring that knowledge of a

language with us when one person talks to another person: both dialog participants

can assume certain pieces of common ground with each other simply because they

are aware that they are talking to another human and they have similar associations

between words, objects, emotions, and abstract ideas. Moreover, when two people

with little or no background with each other begin interacting, they are also learning

from that conversation; building a mapping between the words and the knowledge

gained from the interaction. This continual interplay of using words and compre-

hending words alters the dialog participants’ understanding of the meaning of those

words. In other words, language understanding must happen during the dialog for

the two participants to understand each other, but the dialog itself plays into how

the participants understand language.

Displays of Understanding But how does a dialog participant even know that

their dialog partner is understanding when they speak? When two people talk to each

other, the dialog partners take turns playing the role of speaker and listener. When a

speaker is speaking, the listener gives feedback to indicate understanding by different
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means, for example nodding intermittently, maintaining eye contact, saying okay or

yes at intervals, or even completing the speaker’s sentences. Even if the listener gives

no feedback, it is still safe to assume that listener understood the speaker’s intent if

they both share the same knowledge. For example, two computer science professors

talking about efficiency of algorithms will take as common ground the knowledge that

both of them are experts of the same field.

Displays of Misunderstanding Unfortunately, natural language is a challenging

communication medium even for people which means that two individuals are not

likely to completely understand one another. To mitigate misunderstandings, signal-

ing mechanisms are ideal for coordinating what the speakers mean with what their

listener understands them to mean [5]. During a conversation when the listener is not

sure about their own understanding they stop the speaker to take a turn and clarify

by asking the speaker what he meant. These are Clarification Requests (CRs) and

as reported in [14], in human-human dialog, 3-6% of dialog acts–a functional unit of

a dialog used by the speaker to change the context [13]–are CRs. Humans can ask

targeted types of clarification depending on where they isolated the misunderstanding,

for example phonetic, syntactic, semantic, or referential misunderstandings.

Memory With knowledge of language that two dialog participants can use to

effectively communicate, and with the help of feedback to signal understanding,

and CRs to signal misunderstanding, the very nature of two people talking to each

other builds important information not just about language or the dynamics of

dialog, but about the indiviuals themselves. Two individuals may talk about their
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hobbies, names of family members, or their occupations. This information goes

beyond language understanding and links those attributes to those individuals. Dialog

partners learning attributes about each other is an important part of building common

ground.

1.2 Grounding between a Human and an Autonomous Sys-

tem

A human dialog participant uses knowledge of language, feedback, CRs, and

memory of their dialog partner to establish common ground with that partner. What

happens when one of the dialog participants is an autonomous system of some kind

(e.g., a robot, personal assistant, virtual agent, etc.)? Can we assume that systems

can make use of the four aspects of grounding that I described above?

[3, 6] argues that in human-system dialog, although humans and systems are

co-present in a shared environment, they have significantly mismatched capabilities in

perceiving the shared environment. In order for humans and systems to communicate

with each other successfully using language, it is important for them to mediate such

differences and to establish a common ground.

This is further illustrated in the same scenario in Figure 1.1 by replacing

the boy in the figure with a robot, as depicted in Figure 1.2. In this case, the robot

has highly limited knowledge of language and perceptual information about the scene

are severely mismatched (according to [3]). This misalignment of knowledge bases is

what makes it harder for a natural dialog to occur in human-robot dialog.
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In the following, I explain the implications of this misalignment on the four

aspects of grounding.

Figure 1.2: Common ground between a human and a robot

Knowledge of Language Language in automated systems is usually modeled from

interaction data. In a more formal sense, knowledge of language in a system amounts

to learning a mapping from utterances (i.e., a transcription or typed input into the

system from the human “speaker”) to an abstract, computable representation that

lends itself to some specific task. These data-driven systems require large amounts of

annotated data to learn the mappings between the spoken input and the system

response. Acquiring this data usually involves a lot of time, effort and money.

Sometimes even a minor change to the model or task renders previously obtained

data useless when applied to a different model or novel task.

Data is tied to grounding in an important way: if underlying models of a
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Digital Personal Assistant (DPA) system learns how to map between user utterance

and system response, this is itself a learning of what kinds of actions are expected.

This makes the data collection process challenging. Approaches for data collection

have included Wizard-of-Oz (e.g., [17]) studies where a human participant performs

some kind of task with a system, only (unknown to the human participant), the system

is actually being controlled by another human. Though this results in realistic data

to fully automate a system to perform the task in question, the “wizard” behind the

scenes may introduce complexities into the interaction which could render the data

useless. Data obtained this way is helpful for analysis and improving the system

but it is manufactured to a great extent. Therefore, whenever a model is retrained,

significant amount of data is needed for evaluation at each stage and the initial lack

of it becomes a huge roadblock in making marked progress.

Displays of Understanding Current systems can signal understanding, but it is

usually in the form of a system turn where the system utters okay or yes. Current

systems do not indicate understanding as utterances unfold like humans do (i.e., with

head nods, etc., as explained above). Moreover, even if systems signal understanding

by uttering okay, it’s still not clear to the user if the system did actually understand,

which leads to incorrect system actions and frustration on the side of the user.

Displays of Misunderstanding CRs are even more crucial in automated systems

than between two humans because systems are more prone to miscommunications.

Yet current DPAs don’t signal misunderstandings in a natural way: when a system

misunderstanding happens, they take a dialog turn and offer a vague request for
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clarification which usually requires the user to repeat their entire utterance. This is

frustrating to users because, as mentioned above, humans are able to produce targeted

CRs, isolating the specific point of miscommunication (e.g., a referrential or phonetic

misunderstanding).

Sometimes the user might see an okay or a yes pop up on the screen when

a chatbot tries to signal understanding through feedback. This okay or yes, however,

does not necessarily mean that it understood the user’s input; it usually is just

the system recognized transcript and there is no guarantee that the request was

actually understood or that it will lead to the right system action. The user usually

assumes that the system understood a user utterance because it did not ask for

any clarifications like we humans do while interacting with other humans. Current

systems only display ongoing understanding of an utterance by displaying the state

of the transcribed speech to the user, but even perfect transcription does not mean

understanding, as mentioned in [9]. What is not displayed is the system’s semantic

representation of the transcription because it’s not easily understandable by users.

Memory Another major shortcoming of current systems is the lack of memory.

The following interactions between a known system (S) and a user (U) as reported in

[12] illustrates this:

(1)

a. U: Hey S, call my mom.

b. S: I don’t know “mom.”

c. U: My mom is Martha.

d. S: OK, calling Martha.
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(2)

a. U: Hey S, call my mom.

b. S: I don’t know “mom.”

Following [12], by uttering OK, the system makes the user think that system

signaled understanding. However, the user was later surprised that the system

misunderstood, as evidenced in (2-a). This is a prime example of mismatches of

communication as noted in [3]. More specifically in this case, the system had no

memory to store and recall facts about users and interactions in order to build mutual

understanding. For this kind of grounding to be accomplished, the system should

dynamically update with each interaction while signaling understanding to the user.

Discussion Ideally, a system should attempt to establish common ground–the pro-

cess of establishing and building mutual understanding–between itself and users with

knowledge of language (i.e., by learning a mapping between aspects of language

and a semantic abstraction), signaling understanding to users at appropriate times,

signalling misunderstandings when necessary, and by remembering important infor-

mation about the dialog partner [10].
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1.3 Thesis Statement

In this work I hypothesize that conversational grounding in human-system

dialog –manifested through incremental processing– enables the system to work with

little or no training data.

To address my hypothesis I will leverage a Graphical User Interface (GUI),

following my previous work in [10] to display the internal state representation of our

Dialog System (DS) in an intuitively readable way to the user and construct a system

that can work with little or no training data and have it learn autonomously as it

interacts with the user. At every turn of the dialogue, the system will attempt to

incrementally establish and maintain common ground through feedbacks and CRs

which will make the dialog feel more natural.

The next Chapter talks about the related background work in this domain

that is an amalgamation of Computer Science, Data Science and Psychology. Chapter

3 is where I describe the model of our system and provide an in depth understanding

of the various modules and their connections that make the incremental processing

model work. Then in Chapter 4 I explain our data collection mode and method

followed by the experiment I conducted, and evaluation of results. Lastly, In Chapter

5 and 6, I present our conclusion and take a look at the future work that my work in

this thesis can potentially serve as a foundation for.
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CHAPTER 2

BACKGROUND AND RELATED WORK

A DS is a program that interacts with a human in a natural language,

usually through text, speech, or both. Prevalent DSs are commonly used by people

from all walks of life to perform simple routine tasks like getting weather updates,

setting up a reminder or making a phone call. Generally speaking, one’s personal

assistant performs such tasks; therefore, it is befitting to collectively refer to them

as DPAs e.g. SIRI, Alexa, Cortana, Foxsy, Meekan, just to name a few. Based on

the mode of communication, these DPAs can be categorized mainly into (a) Spoken

Dialog Systems (SDSs) that use speech to interact with the user, e.g. Cortana (b)

Chatbots that use text, e.g. ELIZA and (c) Multimodal Dialog Systems (MDSs) that

can process two or more modes of input, e.g. MATCH that utilizes speech, text and

haptic input. My thesis work uses a chatbot interface to signal understanding to the

user in an intuitive way which helps to incrementally establish common ground with

the system. The concept of having common ground is potentially generalizable to

other DSs with additional work needed to be done to suit each type.

Irrespective of the communication medium, interaction with all the DPAs

happens through language use and takes the form of dialog. By virtue of being

humans, we are accustomed to a certain way of engaging in dialogue that revolves
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around assuming certain pieces of common ground between participants. Since hu-

mans use DPAs to accomplish tasks, delegate small jobs and enable multi-tasking in

a hands-free situation, the nature of conversing with them should, to the greatest

extent possible, mirror a conversation between two human participants. This will not

only reduce human cognitive load but will also foster a dialog that is effortless and

less frustrating, and feels more natural.

To accomplish this, I will utilize an incremental processing framework to

demonstrate the process of grounding i.e. the process of establishing common ground

in dialog [4]. In any dialog, participants take turns to communicate successfully.

Dialog between two participants is a type of joint activity made up of joint actions

called dialog acts, e.g. utterances, clarifications, feedback, etc. A joint action is

one performed by an ensemble of people acting in coordination with each other. To

complete any joint activity, participants need to perform joint actions to advance and

they cannot take joint actions without assuming certain pieces of common ground

[5]. Since dialog participants take actions as a whole, they need to have a combined

understanding of all the fundamental knowledge that is prerequisite to performing a

joint action. This shared understanding is in effect, the sum of their mutual, common,

or joint knowledge, beliefs and suppositions [3, 5, 11] called common ground and it

has three components. First is the knowledge that each participant has before the

start of the joint activity; second is the knowledge they gain with each completed

step of the joint action; third is the awareness of all the knowledge. Therefore, the

common ground is first established and more information is added to it increment

by increment. This is how dialog participants include the common knowledge that

participants share about the task as it proceeds. In some cases, information is also
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removed from the common ground through clarifications and feedbacks to ensure a

high degree of accuracy in the estimate of common ground which both participants

have. The remarkable thing about common ground is that both participants are

aware of both–what they know and what the other participant knows. This common

ground is the key to coordination in dialog.

It is known that dialog processing is, by its very nature, incremental [15] and

even then most dialogue agents process whole dialogues. No dialogue agent (artificial

or natural) processes whole dialogs, if only for the simple reason that dialogs are

created incrementally, by participants taking turns. At the level of taking-turns,

most currently implemented dialog systems are incremental i.e. they process user

utterances as a whole and produce their response utterances as a whole but it is not

so when we consider processing parts of the utterances. [9]

Incremental systems hence are those where ‘Each processing component will

be triggered into activity by a minimal amount of its characteristic input.’ If we

assume that the characteristic input of a dialogue system is the utterance, we would

expect an incremental system to work on units smaller than utterances. Fig 2.1

illustrates how an incremental processor compares to a sequential processor.

Figure 2.1: Input processed by Incremental and Sequential Processor. Even a much

slower Incremental Processor can finish before a Sequential Processor [?]
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In the InproTK [16] framework we can see that it does incremental processing

where incremental systems consist of a network of processing modules. A typical

module takes input from its left buffer, performs some kind of processing on that

data, and places the processed result onto its right buffer. The data is packaged as

the payload of Incremental Units (IUs) which are passed between modules. The IUs

themselves are also interconnected via so-called same level links (SLL) and grounded-

in links (GRIN), the former allowing the linking of IUs as a growing sequence, the

latter allowing that sequence to convey what IUs directly affect it (refer to Fig 2.2 for

an example). A complication particular to incremental processing is that modules can

“change their mind” about what the best hypothesis is, in light of later information,

thus IUs can be added, revoked, or committed to a network of IUs. InproTK determines

how a module network is “connected” via an XML-formatted configuration file, which

states module instantiations, including the connections between left buffers and right

buffers of the various modules. Also part of the toolkit is a selection of “incremental

processing-ready” modules, and so makes it possible to realize responsive speech-based

systems.

Figure 2.2: Example of IU network; part-of-speech tags are grounded into words,

tags and words have same level links with left IU; four is revoked and replaced with

forty [2]
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An incremental framework like InproTK is essential because common ground

isn’t just there, ready to be exploited; people have to establish it with each person

that they interact with. The first step in establishing either type of common ground

is finding the right shared bases–the right evidence. For example, if a father and a

son were at the beach, their joint gaze on a conch shell would be excellent evidence

that each of them have that information that there is a conch shell between them but

it is poor evidence that they each have the information that the shell is six years old

[5]. The father could judge it highly likely that the conch shell is part of our common

ground, but unlikely that its age is [3]. Shared bases vary in what H. H. Clark calls

quality of evidence and the type of information they give rise to. People are fallible

in these judgments and they know it. Fortunately, we have practical strategies in

using language for preventing such discrepancies and repairing them when they arise

[5]; e.g. asking each other questions to remove certain assumptions we had before

the dialogue started, but later on turned out to be false. Therefore, when it comes

to coordinating on a joint action, people cannot rely on just any information they

have about each other. They must establish just the right piece of common ground,

and that depends on them finding a shared basis for that piece. The shared basis is

what Schelling called the key to the coordination problem and what Lewis called the

coordination device [3].

It takes two people working together to perform joint activities e.g., play a

duet, shake hands, play chess or waltz. To succeed, the two of them have to coordinate

both the content and process of what they are doing for example, Alan and Barbara

on the piano, must come to play the same Mozart duet [5]. This is coordination

of content. They must also synchronize their entrances and exits, coordinate how



16

loudly to play forte and pianissimo, and otherwise adjust to each other’s tempo and

dynamics. This is coordination of process. They cannot even begin to coordinate

on content without assuming the existence of common ground. To coordinate on

process, they need to update their common ground moment by moment considering

all collective actions are built on it.

What does it take to contribute to conversation? For example, suppose Alan

utters to Barbara, “Do you and your husband have a car?” In the standard view of

the speech acts [1], what Alan has done is ask Barbara whether she and her husband

have a car, and, in this way, he has carried the conversation forward. But this isn’t

quite right. Consider this actual exchange:

Alan: Now, -um, do you and your husband have a j- car

Barbara: - have a car?

Alan: Yeah

Barbara: No -

Even though Alan has uttered “Do you and your husband have a car?”, he

hasn’t managed to ask Barbara whether she and her husband have a car. We know

this because Barbara indicated with “-have a car?”, that she hasn’t understood him

(Actually, the word ask is ambiguous between ‘utter an interrogative sentence’ and

‘succeed in getting the addressee to recognize that you want certain information.’

You can say, Ken asked Julia, “Are you coming?” but failed to ask her whether she

was coming because she could not hear him. We are using ask in the second sense

here.) Only after Alan has answered her query (with “yeah”) and she is willing to

answer the original question (“no-”) do the two of them apparently believe he has

succeeded. Therefore, asking a question requires more than uttering an interrogative
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sentence. It must also be established that the respondent has understood what the

questioner meant [5].

We can see that the above observations are not true for human-robot dialog

since Chatbots, PAs, SDSs do not share the same world representation as humans.

Their representations of the shared world are misaligned with that of human beings

because their design limits the number of communication channels to just one-the

verbal channel or in some cases text whereas humans can perceive the world and

communicate with others by making use of at least five channels (i.e. sense organs)

each time they communicate. Hence, extracting information from what we perceive

through our senses is very normal for us, but not always an option for current robots

or DPAs and SDSs. Therefore, it is all the more important to establish common

ground before participating in any type of joint activity so that with each dialog act,

both participants come one step closer to the goal of their activity.

The work presented in [3] includes a dialogue system that attempts to me-

diate a shared perceptual basis between the human and the robot through automatic

knowledge acquisition. As conversation proceeds, the robot first matches human

descriptions to its internal representation of the shared world. It then automatically

acquires and confirms through dialog, common ground knowledge about the shared

environment. The acquired knowledge is used to enrich the robot’s representation

of the shared world. Their results have shown that an extra effort from the robot,

to make its human partner aware of its internal representation of the shared world,

contributes to better common ground. This was applied to a setting involving a

human and the NAO robot. This kind of work is yet to be accomplished in situations

where the interaction is between a chatbot or an SDS and a human.
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Similar to our work, Julian Hough and David Schlangen presented a simple

real-time, real-world grounding framework presented in [8], and a system which imple-

ments it in a simple robot, allowing investigation into different grounding strategies.

However my approach is different because we are using a GUI to signal understand-

ing while their emphasis was on the grounding effects of non-linguistic task-related

actions. They experimented with a trade-off between the fluidity of the grounding

mechanism with the safety of ensuring task success. They had a simple pick-up-and-

place robot with uni-modal communication abilities, which is simply its manipulation

behavior of objects. They used basic reinforcement learning to make the robot realize

when it had made a mistake by deducting points for each mistake. This ensured that

the robot at least asks for a clarification, the next time it is not sure what the next

best action would be. Likewise, a positive reinforcement mechanism worked when it

did the right thing and promoted it to do the right thing the next time it thought

so. While this robot did not have Natural Language Generation (NLG) capabilities,

its physical actions are first class citizens of the dialogue so it is capable of dialogic

behavior through action.

Furthermore, in our preliminary work, a system called amBrOISEa [10]

explored if a GUI helps in establishing common ground between the system and the

user by signaling understanding. All the dialog acts were shown using the GUI i.e.

Calrification Request (CRs), shown in 2.3 and feedback i.e. when the tree expands

to denote confirmation of intent. Selection of a property as shown in Figures 2.3,

2.4, 2.5 and 2.6 was denoted by the red dot. The map on top zoomed into the areas

that best match the intent and gave users the options to choose from, shown in Fig

2.6. The user can then pick and add the options from the suggestions pane to the
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itinerary pane. Part of the task was to recreate their itinerary when done. Through

this system we were only exploring incremental grounding as a preliminary step to see

if visual feedback helps users better understand the system while interacting because

users can see what they say. It did show us that users prefer incremental grounding

over incorrect system action but we did not address the problem of lack of training

data and long term memory in this work. Also, this was not the best type of GUI for

demonstrating conversation grounding because the onus to clarify the utterance was

on the user and not the system. Also, the system had no explicit feedback. We were

not trying to solve the problem of lack of training data or memory.

Figure 2.3: Expanding-right tree GUI used in amBrOISEa [10]
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Figure 2.4: GUI depicting clarification through the ‘?’ symbol. Values it is confused

between are denoted by the red dot preceding them [10]

Figure 2.5: Low is selected as the intended value for price [10]
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Figure 2.6: Depicting complete intent. Suggestions pane showing suggestions based

on intent [10]

My thesis builds off of the amBrOISEa model considering results of [10]

were positive overall: the system proved useful and allowed users to fill an itinerary

using speech. Users were able to recreate their itineraries with the autonomous system

much more accurately than with the baseline system. Minimal grounding indeed took

place through the GUI by the tree and map, both of which updated incrementally

as the users’ utterances unfolded, by properties (i.e. ontology) pre-set in the system,

and by improving the mapping between utterances and properties. This will be a

starting point for the work here to autonomously improve the Natural Language

Understanding (NLU) unit. This will involve a strong influence of grounding which

will in turn, help in making the system understanding better. We go beyond that

previous work by improving the GUI and by applying the incremental model of

natural language understanding to a domain where remembering important facts

is the primary purpose of the system. The difficulty lies in mapping from a surface
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form utterance (i.e., a sequence of words) to isolate the important bits of information

that need to be stored. Though we attempted to build a system that can work with

minimal training data in previous work [10], the system was only able to interact

with users for a couple of minutes and anything that was learned was then forgotten.

In this work I will set up a system that continues to learn and improve over time–a

system that not only remembers facts, but learns from past interactions and improves

while needing little or no training data to begin with. In the next section we will

demonstrate how that was accomplished by describing my model.
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CHAPTER 3

OUR MODEL

Our proposed method lends itself to conversational grounding to know if

the system and the user are able to understand each other while creating a shared

common ground of knowledge to keep adding to, as the conversation unfolds. Applied

to any DPA, SDS, or chatbot, we can bootstrap a system to work reasonably well

with minimal or no training data, and, using a GUI to make up for the shortcomings

of the system, we can signal ongoing understanding in an intuitive, graphical way and

allow the user to correct system mistakes explicitly, while only minimally disrupting

the interaction between the system and user. In this way, users annotate their input

directly though it seems as if it’s just an ordinary dialogue.

To accomplish this, our model relies on four modules combined with the

incremental processing framework. This setup enables processing installments of the

entire utterance where each word is considered an installment. This means that the

processing of the entire utterance happens word by word even though the length of

the complete utterance varies with each person’s information entered by the user.

The components of our system interact with each other to get intermediate results

as they pass through different modules and do so incrementally every time a word

is entered. This is a major advantage over non-incremental systems which makes
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the system process faster while having provisions for the system to send clarification

requests and other notifications as and when needed. Below we describe the modules

and their functioning in greater detail.

3.1 Graphical User Interface

For grounding we will bootstrap this system by overcoming the shortcomings

of the untrained NLU through buttons and clarification requests in the GUI, allowing

the user to make the system understand intent in real-time and be able to make

changes to it if required. The goal of the GUI is to intuitively inform the user

about the internal state of the system’s ongoing understanding with each turn. One

motivation behind this is that the user can determine if the system understood that

user’s intent before providing the user with a response (e.g. a frame with past slots

filled, or a clarification request that asks the last entry to the frame be resolved); If

any misunderstanding takes place, it happens before the system considers it as part

of the common ground in the ongoing dialog and is potentially more easily repaired,

in an incremental way.

We hypothesize that the user experiences more natural communication as

our incrementality provisions manifested in the interface adhere to the principle of

least collaborative effort. People apparently don’t like to work any harder than they

have to, and in language this truism has been embodied in several principles of least

effort. Grice [7] expressed this idea in terms of two maxims: Quantity - make your

contribution as informative as required for the current purpose of the exchange, but

do not make your contribution more informative than is required - and Manner - Be
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brief (avoid unnecessary prolixity). According to this version, speakers are supposed

to create what we will call proper utterances, one they believe will be readily and

fully understood by their addressees.

Fig 3.1 shows us how the user interaction begins. They are provided an

example utterance at the top that can be used as a reference throughout. At the

bottom, there is an input box where the user types the utterance and with each

white space encountered, the word before that space is processed.

Figure 3.1: Chatbot’s response

Figure 3.2: User utterance for Fig 3.1

We can see in Fig 3.3 and Fig 3.5 that the user entered values for lastname

and notes respectively, and was shown the internal representation of the system in a

user interpretable way i.e. a frame that shows the two slots firstname and lastname

filled out. There are no CRs encountered till now as the system was fairly certain of

what to do with words sent to it for processing. Moreover, now since the user entered
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a word and that was understood as it is by the system and shown to the user, it is

now part of the common ground that exists between them.

Figure 3.3: Chatbot’s response

Figure 3.4: User utterance for Fig 3.3
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Figure 3.5: Chatbot’s response

Figure 3.6: User utterance for Fig 3.5

In another scenario, the user could have entered something that was assigned

a lower confidence value by the NLU and it could not reach the select threshold. That

is when the system sends a CR to the user to get a confirmation on it’s decision. At
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this point the user can not type any other token value pairs until the CR is dealt

with. This is done to avoid keeping CRs’ resolution for later and prevent the system

from making faulty assumptions that would give us incorrect training examples in

the end. In the GUI we force the user to resolve CRs by disabling the input box until

the clarification is received by the system, after which they can continue typing their

utterance if they want to enter more information. Fig 3.7 illustrates CR

Figure 3.7: A Clarification Request (CR) for firstname slot

To respond to a CR the user has two choices- to respond with a no and

re-enter the intended information for the latest token entered, shown in Fig 3.8 or to

respond with a yes and have the system confirm the previously added slot value as

the intended information indeed, shown in Fig 3.9. Upon getting the clarified entry,

that slot’s information is added to the common ground. In both these cases we chose

to bypass the NLU as the result of clarification is the true intent and need not be

processed.
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Figure 3.8: User responding no to a CR for the firstname token

Figure 3.9: User responding yes to a CR for the firstname token

Irrespective of the response, the user is shown the system’s understanding

to denote what is part of the common ground after each CR. That’s because there is
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Figure 3.10: Reset button press response

a chance that the previous entry may not remain the same post-resolution, we show

the filled frame till that point with the latest entry changed. This manifestation of

the GUI, i.e. having yes and no button presses to respond is unique to CRs and in

case of Reset or Go Back button presses, users are shown a message that tells them

what the button press did and the action they need to perform next. Reset, removes

the entire frame while Go Back removes the latest slot from the frame. The users

can press Go Back multiple times to clear more than one slot if they wanted, shown

in Fig 3.10 and Fig 3.11.

When the user presses the Done button, it marks the end of the utterance

and the information entered for that person is considered complete. Now the user

can begin to enter information for a new person.

The Back To MTurk button was created to manage Amazon Mechanical

Turk (MTurk) submissions and it’s working is explained in the data collection section.

The upcoming sections contain a detailed explanation of the NLU and

DM, which will help in better understanding GUI behaviour within an incremental
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Figure 3.11: Go Back button press response

processing framework.

3.2 Natural Language Understanding

In amBrOISEa [10], we approached the task of NLU as a slot-filling task [9],

where an intent is complete when all slots of a frame are filled was shown by a tree

structure. Similarly with our chatbot, we see a frame like shown in Fig 4.8.
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Figure 3.12: A picture of an entire frame, where the red rectangle shows the slots i.e.

firstname, lastname, email, notes and web with the values that user filled them with

The main driver of the NLU will be the Simple Incremental Update Model

(SIUM) which has been used in several systems that reported substantial results in

various domains, languages, and tasks. Following Kennington and Schlangen (2016)

[9], though originally a model of reference resolution, it was always intended to be

used for general NLU. The model is formalized as follows:

P (I|U) =
1

P (U)
∗ P (I)

∑
rεR

P (U |R = r)P (R = r|I) (3.1)

That is, P (I|U) is the probability of the intent I (i.e., a frame slot) behind

the speaker’s (ongoing) utterance U. This is recovered using the mediating variable

R, a set of properties which map between aspects of U and aspects of I. We used this

model in [10] to get us started with no training data. Also, SIUM assigns probability

mass to words that are similar to properties, so it can work with little or no taining

data. Based on the usual contact list information usually found in address books,
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we opted for six pieces of information (e.g. The frame for person can be filled by

concepts such as firstname with a value say, biff where the concept has properties like

firstname, first, name, fname etc. Properties are pre-defined by a system designer

and can match words that might be uttered to describe the concept in question. For

P (R|I), probability is distributed uniformly over all properties that a given intent

is specified to have. If other information is available, more informative priors could

be used as well.) The mapping between properties and aspects of U can be learned

from data. During application, R is marginalized over, resulting in a distribution over

possible concepts. This occurs at each word increment, where the distribution from

the previous increment is combined via P(I), keeping track of the distribution over

time. For the purpose of the equation, concept is equivalent to intent.

When the current word gets a low confidence value assigned to it, the system

sends out a CR that the user sees and has to respond to first. This new entry bypasses

the NLU and is selected as the intent because it is now clarified.

3.3 Dialogue Management

The DM plays a crucial role in the DS [9]: as well as determining how to act,

the DM is called upon to decide when to act, effectively giving the DM the control

over timing of actions. The DM policy is based on a confidence score derived from the

NLU (in this case we used the distribution’s argmax value) using thresholds for the

actions set by hand (i.e. trial and error) deemed suitable with our experience during

testing the application with test data. At each word and resulting distribution from

NLU, the DM needs to choose one of the following:
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• wait - wait for more information in order to make sense (i.e. for the next word.)

Confidence value lower than 0.4.

• select - as the NLU is confident enough, fill the slot with the argmax from NLU.

Confidence value higher than 0.6.

• request - signal a CR on the current slot and the proposed value. Confidence

value between 0.4-0.6.

The system uses OpenDial here as an IU-model to perform the task of the DM and

gives us the opportunity to adjust the values through reinforcement learning. The DM

processes make a decision for each slot, with the assumption that only one slot out of

all that are processed will result in a non-wait action (though this is not enforced).

The system in [10] improves upon previous work by leveraging the GUI to

learn as it interacts. We accomplished this by collecting the words of a completed

utterance and corresponding filled slots then informing the NLU that the utterance

led to the filled slots-effectively providing an additional positive training example for

the NLU. The NLU can then improve its probabilistic mapping between words and

slot values; i.e., through updating the sub-model P (U |R) by retraining the classifier

with new information. This is a useful addition because the system designer could

not possibly know beforehand all the possible utterances and corresponding intents

for all users; this effectively allows the system to begin from scratch with little or no

training data. In the system we propose here, improving NLU and the DM will allow

us to train the model from the data annotated by the user and also help in adjusting

the thresholds on which the DM acts, which in combination with grounding that adds

to the long-term memory component.
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3.4 System Description

For our work, we utilized the InproTK toolkit, written in Java that does

this for us. It is like the oil that keeps the systems running whenever dropped. At the

time the user finishes entering a word–denoted by entering a space after a sequence of

letters–everything before that space is processed. We chose a word as our incremental

unit because of the kind of task we are trying to accomplish i.e. for each person enter

values for at most six tokens of information. Once we have the incremental unit, the

processing starts with sending that unit to the next module i.e. NLU.

Our system has a Java server (named conv-server1 on heroku) where the

above explained components, along with their interactions are present. This is the

biggest piece of the project. The next big piece is the front-end (names conv-augi

on heroku) written in Javascript and served through NodeJS. The front-end and

back-end are connected to each other via web sockets which facilitates full-duplex

communication over a single connection.

In conv-server1, we provide the structure –a frame– that will contain each

person’s information. This frame is setup as a slot-filling task for the user where each

slot is a token of information for that person that is filled by it’s value. This is part

of our ontology which has one concept that belongs to intent for which information is

to be entered by the user. This intent is named personproperties, refer to Fig 3.13.

Also here, we define the concepts which represent the basic information that can be

provided by the user for each person such as: first name (given name), last name

(family name), email (email ID), profession (their occupation), web (their website)

and notes (an adjective that helps you remember them by). Each concept has its own
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set of at least three properties which are synonyms of the concepts. This is done to

ensure that even if the user enters a different word that denotes the same concept eg.

occupation instead of profession, the system will still be able to correctly map input

to the concept and not treat it as invalid and wait. Lastly, we added sixteen examples

for each concept to train the model the first time. These examples are in the JSON

format as shown in Fig 3.14 and this is where we add more examples of each concept

when we get data after each user interaction.

Figure 3.13: Depicting intent, concept and properties

Figure 3.14: Sample of training examples

As soon as the web sockets connection is established, a new instance for the

user is created and the session information is stored in a hashmap. Now, the user can

start sending and receiving information from the server without waiting for a long

time.
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There are two channels for processing the input, one is incremental- utilized

for each word and the other is- sequential that is utilized at the end of the utterance

to process the last IU of the utterance to submit and completely process the entire

utterance before sending anything back to the client. Each time the user enters a

concept with the information associated with it, it is stored in a linkedHashmap

where the concept is the key and the value associated with it is stored inside a

FrameForDisplay object along with a flag for stating if it is in the clarify state or

not. Each time there is a CR, that entry is marked until resolved, in case of a ‘yes’

the flag value is changed to false and no other change happens while in case of ‘no’

the value inside FrameForDisplay is changed to the new one that came from ‘no’

and the flag is changed to false denoting that the update was made. When the user

clicks ‘Done,’ the contents of the linkedHashmap are displayed as a frame that’s now

considered part of their common ground.

At the end of every person’s information, the user is prompted for feedback.

Fig 3.15 shows us the feedback frame, where they can click on any of the smiley faces

which best describes their experience. We predict that the number of happy faces

will increase with each successive iteration.
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Figure 3.15: System asking for feedback

The next section describes our data collection process, experiment performed

and the evaluation.
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CHAPTER 4

DATA COLLECTION

The entire system was hosted on Heroku which enables online, concurrent

user access for multiple turkers at the same time. Fig 4.1 depicts the data collection

infrastructure. The entire system was hosted as a combination of three separate apps

- conv-consent for taking the turkers’ consent, conv-augi for hosting the interface

and conv-server for hosting the server. The database was a Heroku add on–a fea-

ture that comes as part of Heroku apps–utilized to collect the turkers’ data. After

successfully deploying the system, we used the Heroku-generated Uniform Resource

Locator (URL) to publish Human Intelligence Tasks (HITs) on Amazon Mechanical

Turk (Mturk).

MTurk It is a crowd sourcing marketplace that lets turkers (MTurk workers)

perform data collection tasks for requesters through external HITs. For each HIT the

requester is required to set duration and expiration of the task, maximum assignments

and payment for each task among other settings. When the turkers see our HIT listed

on Mturk, they consent to our terms and instructions first, then start interacting with

our chatbot and submit their HIT assignment when done.
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Figure 4.1: Overview of data collection setup

With the collected data we retrained our model after each of four iterations.

Each iteration is defined as the entire exercise where we publish HITs for turkers

to interact with while closely monitoring the data. Once the HIT times out, query

all the data from the database, run scripts to convert it to JSON format, add these

training to our system’s ontology, retrain the NLU model and push the changes back

to conv-server. Thus being able to publish another batch of HITs for the next iteration

which contains a retrained model.

Our data analysis is best seen through these four iterations where each

iteration contains all the interaction data from three novel turkers. In the next section

we discuss the experiment followed by a brief description of the data collected followed

by evaluation of data in the final section.
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4.1 Our Experiment

4.1.1 Task

Each user was to imagine that they were the career center head of a renowned

university attending a gala to network with people so that they can invite those people

to attend their own university wide Career Fair at a later date. While networking

at the gala, they should use Conv-augi (our system) to maintain a contact list. The

information they enter for each person can be categorized under these six tokens

(NLU slots) in any order or combination: firstname for First name, lastname for

Last name, email for Email, web for their Website, profession for Work and notes for

Notes. Valid input would contain token along with the corresponding information for

each.

4.1.2 Performing the Experiment

In the entire duration of each turker’s interaction with Conv-augi they were

disallowed to enter details of people they knew existed e.g. celebrities. An example

of their utterance would be, firstname biff lastname tannen profession teacher email

asteacher@gmail.com web aster.org notes funny. They can even enter information

in any order or combination for example for the same utterance turkers could enter

it this way: lastname tannen firstname biff email asteacher@gmail.com profession

teacher web aster.org notes funny.

Each turker was to enter no less than twenty-five people’s information and

at least three token-value pairs for each. Since MTurk allows users to exit the HIT



42

without submitting data, some turkers entered lesser data resulting in inconsistent

number of values for some of the training data. The data we received is summarized

in Table 4.1 and a detailed description follows in the next section.

Iteration Happy Sad Angry dissatisfied number of CRs Training Data Instances Cumulative Training Data
1 75 1 3 3 113 78 94
2 71 1 2 9 255 93 187
3 70 2 0 6 96 78 265
4 122 3 4 5 207 138 403

Table 4.1: Data collected over four iterations

4.1.3 Data Description

In each iteration, turkers entered contact information for twenty-five people.

After submitting each person’s information to the system, the user was asked to rate

their experience of entering that person’s information. For example in Fig 4.2 we

can see this person’s information consists of firstname and lastname after which the

system asks them to rate that experience which they can do by clicking one of the

four smileys - happy, dissatisfied, angry and sad.

Figure 4.2: Rating each contact information entered
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Figure 4.3: Sum of happy, sad, angry and dissatisfied feedback faces per iteration

The CRs are shown in 3.7 where the user has the option to respond in yes

or no in case clarification is required. The number of training data instances is the

highest sum of values out of all the tokens i.e. if in an iteration, firstname has the

highest number of values entered by the turker, then that is the value of the training

data instance. This was selected as the criteria to ensure no CRs are left out of the

evaluation. Cumulative training data is the sum of training data examples before and

after an iteration. The next section focuses on the evaluation of this data.

4.1.4 Evaluation

We were focused on finding out whether - (1) the system and user were able

to establish common ground, (2) is the system learning and getting better with each

iteration and (3) do number of CRs decrease with each iteration. Ideally, the system

should have improved its ability to interact with users by familiarizing itself with

various new examples obtained as a result of establishing common ground.
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Fig 4.4 shows the number of each smiley rating per iteration. Another related

graph is shown in Fig 4.5 where we compare the number of training examples added

with every iteration to the number of happy faces received in the rating. With the

help of these two graphs we can conclude that user affinity with the system increases

with an increase in training data and the happiness of users increases. It also shows

us that the system is grounding well with users because their interactions result in

many more happy smiley ratings compared to the other smileys in each iteration.

Figure 4.4: Number of CRs versus the happy faces in each iteration

We compared the number of CRs over the iterations and the results we got

are shown in Fig 4.6. We did not expect a dip in the number of CRs in between

iterations, but more of a gradual decrease over the four iterations. Now, when

comparing the total number of CRs with the number of happy faces, shown in Fig

4.5, we can say that the users like the system in general. The correlation coefficient
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between training data and count of happy is 0.957882944. This is another indication

of common ground being established because with more training data the users are

happy. That means the system is able to show its understanding to their users and is

learning with added data. Fig 4.4 shows that there even if there are CRs, keeping in

mind they are all new users we can say that there is learning due to the fact that there

is common ground which allows feedback and CRs but even then they are happy as

the system does the right system action.

Figure 4.5: Number of happy feedback for the amount of training data per iteration
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Figure 4.6: Total number of CRs per iteration

In Fig 4.7 we see the total number of training examples with each iteration.

There is a high increase in the number of training examples with every iteration. That

means we are adding a significant number of training examples for each successive

iteration that the system can learn from. We had anticipated that this ratio of

happiness versus number of interactions (i.e., collected data) would show us a point

where increasing the number of interactions is no longer improving the system. That

point would indicate the amount of data needed to train the model that would work

well for any subsequent new user as well.
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Figure 4.7: Total number of training examples per iteration

Figure 4.8: Total number of tokens (slots) filled by the user with total counts at the

top
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Finally Fig 4.8 shows the number of tokens (slots) turkers entered in each

iteration. This increased for the first two iterations and the fourth iteration. What we

can derive is that since turkers were able to add more information with each successive

iteration, in the same amount of allotted time to do the task, the system is therefore

learning a mapping from the training examples we are giving it and improving over

each iteration.

Discussion Taken together, the results tell an informative story: the feedback (i.e.,

second aspect of grounding) and clarification (i.e., third aspect of grounding) mecha-

nisms of our system enabled users to effectively signal that the system’s understanding

was indeed correct for that particular interaction. This resulted in labeled training

data that we used to improve the knowledge of language (i.e., the first aspect of

grounding). Importantly, the incremental nature of the feedback and CR mechanisms

allowed us to assume that, at the end of the user-typed utterance, the understanding

was complete and correct. A non-incremental version would have required an explicit

and unnatural system turn asking ”is this information correct?” which we wanted to

avoid.

Though we cannot state with certainty the intent behind the user when they

select one of the emojis, we can say that, overall, the fact that the happy emjois cor-

relates highly with the amount of training data tells us that the increased knowledge

of language resulted in increased ”overall” user satisfaction with the system. We can

see that this happened even though each iteration had novel users who had never

before interacted with the system, so we can safely assume that they were not just

getting used to the interface and task.
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In the next section, we discuss the conclusion of our work and shed some

light on possible future work that this work will be helpful in.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The evaluation of our results shows that our initial assumption that if the

turker is not making any changes to their input before submitting the utterance to the

system, the system provides incrementally shown feedback and has provision for CRs

showing that the user and system interactions are correct. Since they are correct and

we trained our model using those interactions as training examples, and each iteration

has novel turkers using our app, we can say that the system is getting better with

each user interaction.

We can also say that the users like a system that asks CRs for an ongoing

utterance even if the CRs come up multiple times in an utterance and they are not

annoyed by it since they rate the system happy irrespective of the number of CRs

received.

This work also shows that our DPA with a chatbot interface successfully

establishes common ground during human-robot dialog. Consequently, it can ask

for feedback and clarifications thereby letting the user correctly annotate all the

interactions while having a sense of control during the entire interaction with our

interface. On the other hand, the DPA is able to learn and improve over time by
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utilizing those correct system interactions as training examples.

Incremental processing is the key concept for facilitating the creation and

maintenance of this shared basis between dialog participants.

From the user perspective, they like interacting with the interface in general,

we can see that with increase in the training data, there is also an increase in user

satisfaction with the system. There is a constant increase in the number of happy

faces with each iteration that indicates a higher level of performance of the system

with each iteration because more data is being added with each subsequent iteration.

CRs were considered a good mechanism by users when they had entered

incorrect information without themselves realizing it while, it was considered annoying

when the CR was raised for a correct slot value. Therefore, users dislike false positives.

To conclude, we can say for sure that incremental processing is the answer

to solving the grounding problem, which in turn solves the training data problem

by providing user with feedback and asking for CRs that gives us correct training

examples, that are annotated to serve long term memory by querying what the user

wants to recall.

5.1 Future Work

This research is an ongoing process and there is scope for improvement.

One of them is to do an A/B test between our system i.e. an incremental one with

a non-incremental one. There can also be a questionnaire that the users can fill out
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as part of their study giving us more data on how natural was their experience. In

general, we can improve the task do a more detailed user study that gives us additional

notes about the GUI, interaction etc.

Research on whether the DM thresholds that are, as of now, manually set

should be changed in value to accommodate more selects or should we, based on the

number of CRs sent or the happy rating received, let the thresholds set dynamically

which would require a more detailed user study. Another research arena would be

to model more than one concept i.e. intent at one time. Right now users are only

allowed to add information for person, that can be modified to add more concepts

like company, restaurants, schools etc. along with it.

We can also try and find out if the same concept when applied to users

who are kids instead of adults results in greater, equal or lesser likability towards the

interface and if common ground is easily established because it hard to know children’s

intent from an utterance that doesn’t map to the intent very well. Another point here

is to look into this system’s utility with kids and adults that have communication or

learning disorders.

Since DS and conversational grounding is a rapidly advancing area of Com-

puter Science, Psychology and Data Science there will be a lot of scope for future

work with any new advancements made in these fields.
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