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ABSTRACT

Partial differential equations (PDEs) are used throughout science and en-

gineering for modeling various phenomena. Solutions to PDEs cannot generally

be represented analytically, and therefore must be approximated using numerical

techniques; this is especially true for geometrically complex domains. Radial basis

function generated finite differences (RBF-FD) is a recently developed mesh-free

method for numerically solving PDEs that is robust, accurate, computationally ef-

ficient, and geometrically flexible. In the past seven years, RBF-FD methods have

been developed for solving PDEs on surfaces, which have applications in biology,

chemistry, geophysics, and computer graphics. These methods are advantageous, as

they are mesh-free, operate on arbitrary configurations of points, and do not introduce

artificial singularities, as surface parameterizations are known to do. In this thesis,

we develop a new RBF-FD method that uses projections on the tangent plane to

approximate the Laplace-Beltrami operator (surface Laplacian). We then compare

this method to two other previously developed RBF-FD methods: the Projected

Gradient method and the Hermite RBF-FD method, on a set of benchmark problems

posed on the sphere and torus. We also provide guidelines for choosing the various

parameters involved in the methods.
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CHAPTER 1

INTRODUCTION

Partial differential equations (PDEs) have been used for centuries to model prob-

lems in physics, geology, biology, economics, and many other scientific disciplines.

Analytic solutions to PDEs are known for only the simplest problems on simple

domains such as circles, and rectangles. Some problems, even on relatively simple

domains, are proven not to have closed form solutions. Consequentially, there has

been extensive research into techniques that can numerically approximate solutions

to PDEs.

Finite difference methods are a common and effective technique for numerically

solving PDEs. These methods involve finding approximate solutions at discrete points

on uniform spatial grids. Therefore, they are limited to fairly simple domains, or

at least require modification for each new domain to which they are applied. The

computational cost of a given method is dependent on the number of points chosen in

the domain, and as such, even modest refinement of grids for problems with relatively

few spatial dimensions can be quite costly. These limitations strongly motivate the

search for high-order, mesh-free methods, which are both highly-accurate and robust.

In 1990, Kansa [1] developed the so called multiquadric method — a radial basis

function (RBF) method for numerically solving PDEs. RBF methods are high-order,

mesh-free, and dimension-independent. With this success, several more RBF col-
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location methods [2, 3] were developed in the 90’s, however, these global methods

do not scale well to large problems, as they become computationally expensive and

ill-conditioned. Shortly after the turn of the millennium, the radial basis function

generated finite difference method (RBF-FD) was independently introduced by a

number of groups [4, 5, 6, 7] to address the issues with global RBF methods. RBF-FD

is a local method that scales well to large problems (see Sections 2.3) while still giving

high-order accurate solutions.

Over the last decade, researchers have shown increasing interest in applying RBF

techniques to solving PDEs on surfaces. Applications of surface PDEs are numerous

in biology, chemistry, materials science, and computer graphics, and include reaction-

diffusion [8, 9, 10], chemical oscillator [11], and transport [12, 13, 14] problems.

While several RBF-FD methods for solving PDEs on surfaces have been developed,

there have yet to be any studies that directly compare the local techniques on the

same test problems. Here we do exactly this. Specifically we compare the Projected

Gradient method, the Hermite RBF-FD method, and a new Tangent Plane method to

approximate the Laplace-Beltrami operator — a surface differential operator present

in many surface PDEs.

In the early 2010’s, Flyer and Wright introduced the Projected Gradient method

to solve the shallow water equations on the sphere [12, 13]. Fuselier and Wright

generalized it to arbitrary surfaces using global RBFs [11] and this was later extended

by Shankar et al. [15, 16] to local RBF-FD. We discuss the Projected Gradient method

at length in Section 3.2.2.

In 2012, Piret developed two global RBF techniques called the low-order and high-

order Orthogonal Gradients methods (OGr) [8], which were RBF adaptations of the

Closest Point method [17]. In 2016, Piret and Dunnn used the Hermite interpolation
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techniques of [18, 19] to create a local method, which they named Fast OGr [20].

Each of the three OGr methods are a combination of an algorithm to approximate

normal vectors, and an algorithm to generate finite difference weights. We refer to

the portion of Fast OGR that generates finite difference weights as Hermite RBF-FD

and discuss it in Section 3.2.3.

In 2006, Demanet [21] introduced a technique for using 2-dimensional Euclidean

finite difference stencils to approximate surface differential operators. This is done

by projecting points on the surface into the tangent plane and finding finite dif-

ference weights for the co-planar points. We combine Demanet’s technique with

2-dimensional planar RBF-FD to create a new Tangent Plane method, which we

describe in detail in Section 3.2.1.

The remainder of this thesis is outlined as follows. Chapter 2 contains background

information on RBF interpolation and finite differences. Additionally, it reviews

some vector calculus identities regarding the Laplace-Beltrami operator. Chapter 3

details the three high-order methods that are used to generate finite difference weights

for the Laplace-Beltrami operator. Chapter 4 discusses parameter selection, and

showcases numerical results comparing the three RBF-FD methods. Lastly, chapter

5 summarizes these results and concludes with some ideas to be explored in the future.
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CHAPTER 2

BACKGROUND

2.1 Finite Difference Weights from Lagrange Interpolation

Polynomial interpolation is foundational to much of the theory behind this work

and finite differences in general. Generalizing polynomial interpolation to multi-

dimensional data is not straightforward; in particular, minimal-degree polynomial

interpolation is usually not unique. One of the principle advantages of RBF interpo-

lation is that it easily generalizes to any dimension. Recently, there has been growing

interest in incorporating polynomial basis terms into RBF techniques and thus, we

begin with a review of relevant properties of polynomial interpolation as they pertain

to finite difference weights.

Given a set of distinct points {xn}Nn=0 ⊂ R and associated function values {fn}Nn=0 ⊂

R, the Lagrange form of the interpolating polynomial of degree N is given by

pN(x) =
N∑
n=0

`n(x)fn (2.1)

where

`n(x) =
N∏
k=0
k 6=n

(x− xk)
(xn − xk)

, for n = 0, 1, . . . , N (2.2)

are the Lagrange polynomials associated with the points {xn}Nn=0. This form of

polynomial interpolation can generate finite difference weights due to the following
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theorem.

Theorem 2.1. Let f ∈ CN+1([−R,R]), {xn}Nn=0 ⊂ (−R,R) and m ≤ N . Suppose

that we are given weights {wn}Nn=0 ⊂ R such that for any polynomial p up to degree

d ≤ N

dm

dxm
p(x)

∣∣∣∣
x=0

=
N∑
n=0

wnp(xn).

Then for h > 0,

dm

dxm
f(x)

∣∣∣∣
x=0

=
1

hm

N∑
n=0

wnf(hxn) +O(hN−m+1).

Proof : Let TN(x) be the (N + 1)st partial sum of the Taylor series of f about x = 0

so that

f(x) = TN(x) +O(xN+1).

Then

N∑
n=0

wnf(hxn) =
N∑
n=0

wnTN(hxn) +O(hN+1)

=
dm

dum
TN(u)

∣∣∣∣
u=0

+O(hN+1), for u = hx

= hm
dm

dxm
TN(x)

∣∣∣∣
x=0

+O(hN+1)

= hmf (m)(0) +O(hN+1)

and thus

dm

dxm
f(x)

∣∣∣∣
x=0

=
1

hm

N∑
n=0

wnf(hxn) +O(hN−m+1)

as desired.

Differentiating the Lagrange form of the interpolating polynomial (2.1) we obtain
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dm

dxm
pN(x)

∣∣∣∣
x=0

=
N∑
n=0

`(m)
n (0)︸ ︷︷ ︸
wn

f(xn)

where the weights wn = `(m)
n (0) are only dependent on the locations of {xn}Nn=0. If

f is any polynomial of degree ≤ N then f = pN and the weights are exact1 – thus

satisfying the premise of the theorem.

When applied to equally spaced points, this method yields the same weights as the

usual derivation using the method of undetermined coefficients and the Taylor series

expansion [23, p. 7]. Note that Theorem 2.1 guarantees a minimum order of accuracy,

but the actual order may be higher. For example, the finite difference weights that

approximate d
2

dx
2f |x=0 for the points −h, 0, h ∈ R given by h−2,−2h−2, h−2, are a

second-order-accurate approximation while the theorem only guarantees first-order

accuracy.

While Lagrange interpolation is effective for finding finite difference weights for

arbitrary node layouts in one dimension, it does not generalize to arbitrary node

layouts in higher dimensions. The theorem, however, does generalize to higher

dimensions though it does not prescribe a method for finding such weights.

2.2 Radial Basis Functions

2.2.1 Mairhuber-Curtis Theorem

Polynomial interpolation in one dimension is quite powerful and leads to high

order approximations, difference rules, and quadrature rules. It is very natural to try

1It is worth noting that a naive computation of finite difference weights using derivatives of
Lagrange polynomials is unstable, however a stable algorithm is presented by Fornberg in [22].
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extending its utility to multidimensional data. Indeed, multidimensional polynomial

interpolation is possible, but there are a few difficulties that arise.

For one, polynomial interpolation suffers from the curse of dimensionality. As the

dimension increases, the number of basis terms increases rapidly to span polynomials

of the same degree. For example, second degree polynomials in two dimensions require

six basis terms:

1, x, y, x2, xy, y2,

while second degree polynomials in three dimensions require ten basis terms:

1, x, y, z, x2, xy, xz, y2, yz, z2.

In general the number of terms in the basis is given by
(
deg+dim

deg

)
. For a fixed dimension,

this quantity grows like a polynomial of degree equal to the dimension.

There is also a question of linear independence. In one dimension, n polynomial

basis terms are linearly independent over n points if the points are distinct. This is

not the case in higher dimensions. In particular any distinct set of points that lie on

an algebraic surface will give rise to linearly dependent basis terms if the basis is not

chosen carefully. For example, the terms 1, x2, y2, z2 are linearly dependent on the

sphere.

Of course if one knows that points come from a sphere then one can simply choose

the spherical harmonics as a polynomial basis and linear independence (of the basis

at least) is guaranteed. This begs the question: is there a choice of polynomial

basis which will be linearly independent for any collection of points? The famous

Mairhuber-Curtis theorem2 [24, 25] settles this question, and the answer is no.

2Occasionally the theorem is called the Haar-Mairhuber-Curtis theorem.
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Here we present a simplified version of the Mairhuber-Curtis theorem that is

sufficient for our purposes.

Theorem 2.2. Let φ1, φ2, . . . φN be linearly independent functions from Rd to R with

d > 1. Then there exists a distinct set of points x1,x2, . . .xN ∈ Rd such that the

matrix 
φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)
...

...
. . .

...
φ1(xN) φ2(xN) . . . φN(xN)

 (2.3)

is singular.3

Proof : Choose any set of points x1,x2, . . .xN ∈ Rd and suppose that (2.3) is not

singular. In Rd with d ≥ 2, a finite set of points cannot separate the space. Thus, there

is some simple closed path that passes through the points x1 and x2 but none of the

others. Let x(t) be a parameterization of this curve such that x(0) = x1,x(1) = x2,

and x(2) = x1 closing the curve. Consider the function

f(t) = det





φ1(x(t)) φ2(x(t)) . . . φN(x(t))

φ1(x(t+ 1)) φ2(x(t+ 1)) . . . φN(x(t+ 1))

...
...

. . .
...

φ1(xN) φ2(xN) . . . φn(xN)


,


and note that it is continuous in t, since the determinant is a continuous function of

the matrix entries. Then we have that

3The matrix in (2.3) is called the interpolation matrix, because, if it is non-singular, then there
is a unique linear combination of φ1, φ2, . . . φN that interpolates a given function at the points
x1,x2, . . .xN .
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f(0) = det





φ1(x1) φ2(x1) . . . φN(x1)

φ1(x2) φ2(x2) . . . φN(x2)

...
...

. . .
...

φ1(xN) φ2(xN) . . . φN(xN)




and

f(1) = det





φ1(x2) φ2(x2) . . . φN(x2)

φ1(x1) φ2(x1) . . . φN(x1)

...
...

. . .
...

φ1(xN) φ2(xN) . . . φN(xN)




= −f(0)

since we have swapped the first and second rows. By the intermediate value theorem

we know that there is some t0 ∈ [0, 1] such that f(t0) = 0 and thus the points

x(t0),x(t0 + 1),x3,x4, . . .xN satisfy our theorem.

The importance of the Mairhuber-Curtis theorem (in our context at least) is

that one cannot choose a set of basis functions independent of the point set and be

guaranteed a uniquely solvable multidimensional interpolation problem. Naturally,

one wonders: is there a good way to choose basis functions that are dependent on

the point set? The answer is a resounding yes !

In 1971 Hardy [26] developed such a technique in the context of Cartography.

Hardy was working with scattered elevation data and attempting to recreate surfaces.

He was creating interpolants that he described as “the summation of a single class of

quadric surfaces” which he called multiquadric surfaces, and they were of the form∑
ci
[
(xi − x)2 + (yi − y)2 + C

]1/2
where C ≥ 0. This was the first instance of what we now call radial basis function

(RBF) interpolation. Hardy did not prove any theoretical results, but since then,



10

there has been considerable mathematical work done in validating and generalizing

Hardy’s method.

2.2.2 Radial Basis Function Interpolation

When RBFs are discussed in the literature, their definition is given somewhat

circumlocuitously or by example. They share a common form and are dubbed RBFs

if they have desirable interpolation properties. The necessary conditions in general

are not known [27, p. 27], however there has been extensive theory developed that

describes sufficient conditions. We refer the reader to [27, 28] for a thorough discussion

of these conditions and proceed with a description of the form of radial basis functions

and provide several examples.

Definition 2.1. A function Φ : Rd ×Rd → R is a radial kernel with respect to the

norm ‖·‖, if there exists a function φ : [0,∞)→ R such that Φ(x,y) = φ(‖x− y‖).

Some functions φ are called RBFs, and Table 2.1 provides some select examples.

In principle, one can choose any norm, but we restrict ourselves to the standard

Euclidean norm for the entirety of this thesis.

Given a distinct set of points X = {xn}Nn=1 ⊂ Rd and a radial basis function

φ, the corresponding radial kernel Φ generates functions φn : Rd → R given by

φn(x) = Φ(x,xn) = φ(‖x− xn‖) for n = 1, 2, . . . , N . These φn are radially symmetric

about the point xn and are linearly independent over Rd, thus they form a basis for a

space, and are also called radial basis functions.4 Radial basis function interpolation

is the process of finding interpolants that exist in this space.

4Some authors choose to call φ basic functions [27, p. 18] to distinguish them from φn. Others
rely on context.
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Given function values {fn}Nn=1 ⊂ R that correspond to the points in X, we seek

an interpolant of the form

s(x) =
N∑
n=1

cnφ(‖x− xn‖)

for some RBF φ, and some set of weights {cn}Nn=1 ⊂ R. For a given φ, finding s is

equivalent to finding the weights {cn}Nn=1 that satisfy the linear system
φ(‖x1 − x1‖) φ(‖x1 − x2‖) . . . φ(‖x1 − xN‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) . . . φ(‖x2 − xN‖)

...
...

. . .
...

φ(‖xN − x1‖) φ(‖xN − x2‖) . . . φ(‖xN − xN‖)



c1
c2
...
cN

 =


f1
f2
...
fN

 . (2.4)

The matrix in Equation (2.4) is called the RBF interpolation matrix. For many

choices of RBF, and in particular for all of the infinitely smooth RBFs listed in

table 2.1, the interpolation matrix is guaranteed to be non-singular, and the resulting

interpolant s is called an RBF interpolant.

RBF interpolation can be used to approximate functions in a manner similar to

Table 2.1: Some select radial basis functions. For the infinitely smooth RBFs, ε is
a parameter that controls the shape of the functions. Though the odd polyharmonic
splines appear smooth as functions of r, the corresponding radial kernels only have
finite smoothness at their centers. For example, using φ(r) = r3 in one dimension, the
kernel centered at 0 is given by |x− 0|3, which has a discontinuous third derivative.

Infinitely Smooth Polyharmonic Splines

Multiquadric φ(r) =
√

1 + (εr)2 Thin-plate spline φ(r) = r2 log r

Gaussian φ(r) = e−(εr)
2

Natural Cubic Spline φ(r) = r3

Inverse Multiquadric φ(r) =
√

1 + (εr)2
−1

Even PHS φ(r) = r2` log r

Inverse Quadratic φ(r) =
(
1 + (εr)2

)−1
Odd PHS φ(r) = r2`+1
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Figure 2.1: RBF interpolation (Gaussian ε = 2.369) of the Runge Function over
[−1, 1] at N = 20 equally-spaced points compared with polynomial interpolation.
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Figure 2.2: Error on a log-log scale when interpolating the Runge function with
Gaussians (ε = 47.06). Note the apparent spectral convergence.
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polynomial interpolation. One result that is particularly impressive is that some

RBFs exhibit spectral convergence.5 Figure 2.1 shows the Runge Function f(x) =

1/(1 + 25x2) interpolated over the interval [−1, 1] at N = 20 equally-spaced points

using using Gaussian RBFs as compared to polynomial interpolation. Figure 2.2

shows that as N increases, the error in the RBF interpolant decreases geometrically.6

Of course one of the primary motivations of RBFs was to interpolate higher-

dimensional data. A standard test case in two dimensions is Franke’s function [27,

p. 20] [30] given by

f(x, y) =
3

4
exp

(
−1

4

(
(9x− 2)2 + (9y − 2)2

))
+

3

4
exp

(
− 1

49
(9x+ 12)2 − 1

10
(9y + 1)2

)
+

1

2
exp

(
−1

4

(
(9x− 7)2 + (9y − 3)2

))
− 1

5
exp

(
−(9x− 4)2 − (9y − 7)2

)
.

Figure 2.3 shows a plot of Franke’s function over [0, 1]2 along with an RBF recon-

struction using only N = 100 points. Figure 2.4 shows that convergence of the RBF

interpolant is again faster than seventh order.

In the preceding examples, the parameter ε has been chosen without explanation.

In fact, selecting a good value for this parameter is critical for the success of RBF

interpolation when using infinitely smooth RBFs. As seen in Figure 2.5, the parameter

ε controls the “shape” of the RBF. As ε grows larger, the function becomes sharper or

more peaked, and as ε grows smaller, the function becomes flatter. In particular, as

ε→∞ the interpolation matrix converges to the identity and the condition number

tends to 1 leading to a very stable interpolation problem. However, as the condition

5Specifically, RBFs that are infinitely smooth exhibit spectral convergence when interpolating
certain classes of functions. See [27, 28, 29] for a thorough discussion.

6The error cannot decrease indefinitely. Eventually it will begin to increase due to ill-conditioning.
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Figure 2.3: (a) Franke’s Function, (b) an RBF reconstruction using N = 100
Gaussians (ε = 2.2), (c) the error, (d) the sample points which are composed of
Halton points [31] and equally spaced points along the boundary.
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Figure 2.4: Error on a log-log scale when interpolating Franke’s function over [0, 1]2

with Gaussians (ε = 10.6). Note the apparent spectral convergence.

number becomes larger, the approximation accuracy of the RBF interpolant becomes

poor. Figure 2.6 shows the Runge Function again interpolated with Gaussians, but

this time with ε = 100 — much too high. The interpolant is essentially zero every-

where except near the interpolation points where it quickly spikes up to interpolate

the function. Such an interpolant has been dubbed the “bed-of-nails interpolant” as

the function visually appears to be resting on the sharp tips of the Gaussian.

The interpolation matrix is guaranteed to be non-singular for all ε > 0, however,

as ε→ 0 the condition number of the interpolation matrix increases without bound.

Figure 2.7 shows plots of the condition number and the maximum error as a function

of ε for the problem of interpolating the Runge Function at n = 100 equally spaced

points. As expected, for ε large the condition number is small and the error is
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Figure 2.5: The Gaussian for different choices of ε.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0
The Bed-of-Nails Interpolant

R nge F nction
RBF Interpolant

Figure 2.6: Interpolating the Runge Function at n = 20 equally spaced points using
Gaussian RBFs with ε = 100 - the bed-of-nails interpolant.

large. For ε small, the condition number is large and the error is also large due to

ill-conditioning. Finding effective algorithms and heuristics for choosing ε is an active

area of study [32, 33]. There also exist stable algorithms that can compute the RBF

interpolant for all values of ε > 0 and for the limiting case of ε→ 0. However, these

are domain-specific, RBF-specific, or both [34, 35, 36, 37].

For the convergence plots in Figures 2.2 and 2.4, ε was optimized for interpolation

over the maximum number of points listed in each plot. Figure 2.8 shows the same

plots but includes larger values of N . Since ε is fixed, the interpolation matrix

eventually becomes ill-conditioned. Decreasing ε will allow for larger interpolation



17

100 101 102 103

ε

102

106

1010

1014

1018

1022
Co

nd
iti

on
 N

um
be

r
Shape vs Condition Number

(a) Condition Number

100 101 102 103

ε

10−6

10−4

10−2

100

M
ax

 E
rro

r

Shape vs Max Error

(b) Maximum Error

Figure 2.7: (a) The condition number of the interpolation matrix and (b) the
maximum error of the interpolant when interpolating the Runge Function at n = 100
equally spaced points for varying values of ε. Though the condition number appears
to plateau around 1018 this is simply numerical instability of the calculation. In
reality, the condition number continues to grow rapidly.

matrices, however it will also reduce the accuracy of the interpolants, leading to

little or no change in the error of the best approximation. Furthermore, it has been

shown that, in the limit as ε → 0, interpolation using Gaussian RBFs converges to

polynomial interpolation and therefore suffers from Runge Phenomenon [38]. As a

consequence, even stable algorithms may have a limit to their accuracy.

2.2.3 Local RBF Interpolation

A common strategy to keep computational costs down is to create an interpolant

by patching together local interpolants to the function. This is known as local RBF

interpolation in contrast to global RBF interpolation as described previously.

With local interpolation, a parameter k ∈ N is chosen to be smaller than N the

total number of points. Then to evaluate the interpolant at a point x in the domain,
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Figure 2.8: Stagnation in the error as N increases for (a) Runge’s Function, and
(b) Franke’s Function.

we first find the closest interpolation point

xcp = argmin
xn

‖x− xn‖ .

We then reorder the points by distance from xcp so that x1 = xcp and

‖x2 − x1‖ ≤ ‖x3 − x1‖ ≤ · · · ≤ ‖xk − x1‖ .

Under this local ordering, we form the set {xn}kn=1 which is called the stencil. We

call x1 the stencil center, and k the stencil size. The stencil is said to contain the k

nearest neighbors to x1 (itself included). We then perform RBF interpolation using

only points in the stencil as interpolation points. Note that the resulting interpolant

may be discontinuous at points that are equidistant from the two nearest interpolation

points. Also note that the ordering of points is not necessary to the process, but is

used here merely as a convenient way to express the stencil and stencil center.
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To see that this is computationally more efficient, suppose that we wish to in-

terpolate to M points. Finding the global RBF interpolant weights requires O(N3)

operations using Gaussian elimination. Then evaluating the interpolant at M points

requires O(MN) operations for a total computational complexity of O(MN + N3).

Local interpolation requires that for each of the N interpolation points we form the

stencil of the k nearest neighbors. This can be done using O(N logN) operations

with a KD-tree. Then we find the weights for each stencil by inverting N matrices of

size k×k requiring O(Nk3) operations. For each of the M points at which we wish to

evaluate the interpolant, we find the closest interpolation point which is O(M logN)

when using the KD-tree. Lastly, evaluating the local interpolants is O(Mk) for a

total of O(M logN + Nk3). For fixed M and k, local interpolation is more efficient

and can be easily parallelized.

The drawback to local interpolation is that the convergence rate is tied to the

stencil size and is no longer spectral for fixed k. Figure 2.9 shows the convergence

rates of local RBF interpolation to the Runge Function. The convergence rates are

approximately polynomial.

2.2.4 Polyharmonic Splines and Polynomials

Our focus is on using RBFs to approximate differential operators which are in-

herently local (opposed to integral operators for example). This coupled with the

improved efficiency of local RBF interpolation makes it ideal for our purposes —

sacrificing only spectral convergence rates. Since spectral convergence rates were the

primary reason for choosing the infinitely smooth RBFs, it is natural to consider

alternatives. In particular we turn our attention to polyharmonic splines.

The polyharmonic spline (PHS) RBFs are given by
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Figure 2.9: Convergence of local RBF interpolation to the Runge Function using
Gaussians. Note that the order of convergence is polynomial (not spectral) and is
dependent on the stencil size k.

φ(r) = r2`+1 or φ(r) = r2` log r

for ` ∈ N where the exponent is referred to as the degree of the PHS. Unlike

infinitely smooth RBFs, PHSs only attain polynomial convergence rates, even for

global interpolation as seen in Figure 2.10, however, they do not require tuning a

shape parameter. Furthermore, they do not guarantee non-singular interpolation

matrices, but are rather conditionally positive definite.

Definition 2.2. [27, p. 63] A real-valued continuous even function f is called

conditionally positive definite7 of order m on Rd if

7Historically this was the definition given for strictly conditionally positive definite functions.
Some texts continue to use this as the definition of strictly conditionally positive definite functions,
and use a slightly different definition for conditionally positive definite functions.
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Figure 2.10: Convergence of global RBF interpolation to the Runge Function using
PHSs (without appended polynomial terms).

N∑
j=1

N∑
k=1

cjckf(xj − xk) ≥ 0 (2.5)

for any distinct points {xn}Nn=1 ⊂ Rd and non-zero c ⊂ RN satisfying

N∑
j=1

cjp(xj) = 0

for all polynomials p of degree less than or equal to m− 1.

The PHSs φ(r) = r2`+1 and φ(r) = r2` log(r) are each CPD of order `+1. The key

property of CPD RBFs of order `+ 1 is that their interpolation matrices will be non-

singular if a basis of polynomials up to degree ` are added to the interpolant (provided

that the polynomials are not linearly dependent on the set of interpolation points)

and appropriate extra conditions are satisfied. Specifically, the new interpolant takes
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the form

s(x) =
N∑
n=1

cnφ(‖x− xn‖) +
L∑

m=1

λmpm(x)

and is subject to the moment conditions

N∑
n=1

cnpm(xn), for m = 1, 2, . . . , L

where L is the dimension of the polynomial space up to degree `, and {pm}Lm=1 is a

basis for this space. The interpolation and moment conditions can be expressed as

the linear system [
A P

P T 0

] [
c
λ

]
=

[
f
0

]
, (2.6)

where A is the RBF matrix from (2.4), Pij = pj(xi) and fi = f(xi). Here we say that

the PHSs are augmented with a polynomial basis of degree `, or equivalently, degree

` polynomials are appended [27, ch. 6-8].

A particularly satisfying result, is that interpolation in one dimension using φ(r) =

r3 and augmenting with up to linear terms will exactly reproduce cubic splines with

natural boundary conditions [39] [28, p. 10].

Reintroducing polynomials also reintroduces the difficulties of multivariate poly-

nomial interpolation. In this setting, the number of basis terms is not equal to

the number of interpolation points, so we are always free to choose a full basis

of polynomials up to a given degree. Furthermore, we are not obligated to add

polynomials as we add points, thus avoiding Runge phenomenon that can accompany

high-degree polynomial interpolation. The more difficult barrier is the non-uniqueness

of polynomial interpolants in higher dimensions. This manifests as the matrix P

in (2.6) being column-rank deficient.

Experimentally this is not an issue if sufficiently many points are chosen pseudo-
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randomly. If however, the points lie on an algebraic surface then polynomial terms will

necessarily be linearly dependent. Even if the manifold is not an algebraic surface, it

is likely that it can be approximated (at least locally) by an algebraic surface leading

to ill-conditioning of (2.6). As our main focus here is on solving PDEs on manifolds,

this must be addressed, and we do so in Section 3.1.

2.3 Radial Basis Function Finite Differences

Any interpolation scheme can be used to generate finite difference weights for

differential operators. RBF interpolation is no exception, and the resulting method

is called radial basis function finite differences (RBF-FD).

Suppose we are given a set of points {xn}Nn=1 ⊂ Ω and a differential operator L.

We would like a set of weights ω ∈ RN such that for any function f : Ω→ R we have

that Lf
∣∣
x=x1

≈
∑

n ωnf(xn). For ease of notation, we will use Lf to denote Lf
∣∣
x=x1

.

Suppose we are given a function f : Ω→ R. Then there exists an RBF interpolant

of the form

s(x) =
N∑
n=1

cnφ(‖x− xn‖) +
L∑

m=1

λmpm(x)

where the interpolation weights c,λ satisfy (2.6): A P

P T 0


c

λ

 =

f

0

 .
Applying the linear operator to the interpolant, we have that



24

Lf ≈ Ls

=
∑
n

cnLφ(‖x− xn‖) +
∑
m

λmLpm(x)

=
[
LφT LπT

] [c
λ

]
=
[
LφT LπT

] [ A P

P T 0

]−1
︸ ︷︷ ︸[

ωT γT
]

[
f
0

]
(2.7)

= ωT f .

Thus our finite difference weights ω are found by solving the system[
A P

P T 0

] [
ω
γ

]
=

[
Lφ
Lπ

]
where the values of Lφi = Lφ(‖x− xi‖) and Lπi = Lpi are calculated analytically.

Again, this direct approach requires that P is full column-rank.

We now have a theorem to complement Theorem 2.1.

Theorem 2.3. Suppose ω ∈ RN are finite difference weights for the points {xn}Nn=1 ⊂

Rd that approximate the differential operator L(·)
∣∣
x=x1

generated using RBF-FD

augmented with a basis of polynomials up to degree `. These weights are exact when

applied to polynomials up to degree `.

Proof : Let f be a d-variate polynomial of degree at most ` and let p1, p2, . . . pL be a

basis for d-variate polynomials up to degree `. Then there exist λ ∈ RL such that

f(x) =
L∑

m=1

λmpm(x)

and the RBF interpolant is defined by the weights c = 0 and λ. From (2.7) we have
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ωT f =
[
LφT LπT

] [ A P

P T 0

]−1 [
f
0

]
=
[
LφT LπT

] [c
λ

]
=
[
LφT LπT

] [0
λ

]
=

L∑
m=1

λmLpm(x)

∣∣∣∣
x=x1

= L

(
L∑

m=1

λmpm(x)

)∣∣∣∣
x=x1

= Lf
∣∣
x=x1

.

Together these theorems imply that increasing the degree of the polynomial basis

will ensure accuracy up to an order dependent on the degree and the order of the

differential operator [40]. For a more extensive discussion of RBF-FD convergence

rates, see [41, 42].

2.4 Vector Calculus Definitions and Identities

The Laplace operator (or the Laplacian) denoted ∆ or ∇2 is defined as the

divergence of the gradient. For a function f , the Laplacian of f is given by

∆f := ∇ · (∇f) =
∑
k

∂2

∂x2k
f

where xk for k = 1, 2, . . . , d denote orthonormal coordinates for Rd.

For a given manifold M, the Laplace-Beltrami operator, denoted ∆M or ∇2
M, is

a generalization of the Laplacian to functions defined on M. It can be expressed in

terms of a parameterization of M, however, forming parameterizations for arbitrary

surfaces can be difficult and may lead to artificial coordinate singularities. In an effort
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to avoid this, we will express ∆M in terms of the ambient Cartesian coordinate system.

Specifically we will consider this in the context of 2-dimensional closed orientable

manifolds embedded in R3.

For a point x ∈ M, let n(x) denote the outward-oriented unit normal to M at x.

Let f̃ : M→ R and let f : R3 → R be any extension of f̃ such that it has continuous

first partial derivatives. Then the surface gradient of f̃ is the component of the

gradient of f that is tangent to the surface. Mathematically this is the component of

the gradient of f that is orthogonal to the surface normal, or the projection into the

plane tangent to the surface at x. Symbolically that is

∇Mf̃(x) = ∇f − Projn∇f
= ∇f − (n · ∇f)n

∇Mf̃ = (I − nnT )∇f (2.8)

= P∇f

where P is the projection matrix I − nnT (note that P is dependent on x). This

formula holds when evaluating at points on M, as ∇f̃ is not defined off of the surface.

Then we have that the Laplace-Beltrami operator is given by

∆Mf̃ = P∇ · (P∇f). (2.9)

Equations (2.8) and (2.9) will be important to the Projected Gradient method de-

scribed in Section 3.2.2.

Alternatively we can express the Laplace-Beltrami operator in terms of local

coordinates. At a point x ∈ M let n be the unit vector normal to the surface at

x. Let t1, t2 be orthogonal unit vectors that are orthogonal to n. Now, n, t1, t2 form

a basis for R3, which we will refer to as the local coordinate system. Then for a

function f̃ : M → R and any extension f : R3 → R with continuous second partial
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derivatives, we have

∆Mf̃ =
∂2f

∂t21
+
∂2f

∂t22
and ∆f =

∂2f

∂t21
+
∂2f

∂t22
+
∂2f

∂n2 .

Thus, we have the identity

∆M = ∆− ∂2

∂n2 . (2.10)

Note that the local coordinates are dependent on x, and thus ∂
2

∂n
2 is not simply

the second derivative in the constant direction n. Rather, we must differentiate the

normal vector n to obtain

∂2

∂n2 = n · ∇(n · ∇)

=
(
∇ · n

)︸ ︷︷ ︸
κ

(
n · ∇

)
+ nTH(·)n,

where κ = ∇ · n is the mean curvature. This equation converts the derivative with

respect to the local coordinate system to an expression involving the gradient and

the Hessian with respect to the global coordinate system. Equation (2.10) then gives

the identity

∆M = ∆− κ
(
n · ∇

)
− nTH(·)n (2.11)

which is proven in [43] and will be useful in Section 3.2.3.

Note that some authors (including the authors of [43]) use the notation ∂
2

∂n
2 to

denote the derivative where n is fixed. If a vector v is fixed, then the directional

derivatives of a function f with respect to that vector are given by
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∂f

∂v
(x) = v · ∇f(x) = vT∇f

∂2f

∂v2 (x) =
∂

∂v
vT∇f

= vT∇
(
vT∇f

)
= vT∇

(
(∇f)Tv

)
= vTH(f)v.

For this reason, some authors give Equation (2.11) as ∆M = ∆− κ ∂
∂n
− ∂

2
f

∂n
2 .
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CHAPTER 3

THREE RBF TECHNIQUES FOR APPROXIMATING

THE LAPLACE-BELTRAMI OPERATOR

In this chapter we detail three RBF algorithms for finding finite difference weights

that approximate the Laplace-Beltrami operator: the Projected Gradient method, the

Hermite RBF-FD method (part of the Fast OGr method), and a new Tangent Plane

method. All of these can be done using (almost) any RBF, however, our focus is

on using PHSs which benefit greatly from appending polynomial basis terms. As

noted in section 2.2.4, a full basis of polynomial terms will will be (nearly) linearly

dependent when restricted to a manifold. Therefore we begin this chapter with a

technique for overcoming this linear dependence.

3.1 Overcoming the Rank Deficiency of the Polynomial Basis

As mentioned in section 2.3, the addition of polynomial basis terms to the RBF

interpolant leads to rank deficient or ill-conditioned interpolation matrices when

interpolating functions on manifolds. This is due to linear dependence of polynomials

on algebraic surfaces. For example, the functions 1, x2, y2, z2 are linearly dependent on

a sphere and thus will generate linearly dependent columns in P from Equation (2.3).

Even if the surface is not algebraic, it is likely that it will be approximately algebraic,

at least locally, leading to ill-conditioned systems.
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In [44] many methods to numerically bypass the rank deficiency of the polynomial

basis terms are explored. Here we briefly elaborate on the most promising of these

methods that employs the SVD and the Schur complement.

A more general form of of the system (2.6) is given by[
A P

P T Q

] [
c
d

]
=

[
f
g

]
(3.1)

which we can express as two systems of equations

Ac + Pd = f and P Tc +Qd = g.

We first solve for d as follows:

Qd− g = −P Tc

= −P TA−1Ac

= −P TA−1(f − Pd)

= P TA−1Pd− P TA−1f

P TA−1f − g = (P TA−1P −Q)d

d = (P TA−1P −Q)−1(P TA−1f − g). (3.2)

Here, the matrix P TA−1P − Q is called the Schur complement of the saddle point

system (3.1), and may be rank deficient. In our case (with the exception of the

Hermite method described in section 3.2.3), we have that Q = 0, and often find that

P is column-rank deficient. Thus P TA−1P − Q = P TA−1P will be rank deficient,

and cannot be inverted. We instead use a pseudo-inverse of this matrix to solve for

d in (3.2). Once d is computed, a simple substitution finds c:

c = A−1(f − Pd).

Note that the pseudo-inverse requires a tolerance parameter that is used to de-

termine which singular values of the matrix are to be truncated. In practice we find
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that choosing this tolerance to be 10−12 is effective.

3.2 Three RBF-FD Methods for Manifolds

Each of the methods investigated here seek to approximate a surface differential

operator at a specified point on a surface, using information from nearby points on

that surface. All of the methods in this section share some common notation that is

discussed presently and summarized in Table 3.1.

Let M ⊂ R3 denote a closed orientable manifold and let LM be a surface differential

operator on M. Let X ⊂ M be a discrete set of N nodes. Let x1 ∈ X and let

{xn}kn=1 ⊂ X denote the k nodes in X that are closest to x1 (itself included). We

refer to the set {xn}kn=1 as the stecil, and to the point x1 as the stencil center. Our

goal is to find finite difference weights {ωn}kn=1 ⊂ R such that for any sufficiently

smooth function u : M→ R

LMu(x)

∣∣∣∣
x=x1

≈
k∑

n=1

ωnu(xn).

Each of the methods explored will also require n, the unit vector normal to M at x1.

For a few of the methods, it will be convenient to define T as the plane tangent to

the surface at x1.

The finite difference weights that are generated will approximate LM at the single

point x1. These processes may be repeated (possibly in parallel) to generate weights

for each x ∈ X, thus approximating LM over the entire surface.

3.2.1 Tangent Plane Method

In [21], Demanet describes a surprisingly simple finite difference approximation

for surface operators. His method reduces the problem of finding finite difference
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weights for a surface differential operator, to one of finding finite difference weights

for points in R2. We couple his technique with 2-dimensional RBF-FD to create a

new RBF finite difference technique for surface differential operators.

Consider the points x′n = (I − nnT )xn for n = 1, 2, . . . , k which are simply the

projection1 of the stencil onto T (note that x1 = x′1). Such a projection can be seen

in Figure 3.1a. Let the weights {ωn}kn=1 be finite difference weights that approximate

LT at x1. Then those same weights are a finite difference approximation of LM at x1.

To elaborate, let u : M → R and define g : T → R by g(x′) = u(x) where

x′ = (I − nnT )x. Then we find finite difference weights {ωn}kn=1 such that

LT g(x)

∣∣∣∣
x=x1

≈
k∑

n=1

ωng(x′n)

and these same finite difference weights approximate LM via

LMf(x)

∣∣∣∣
x=x1

≈
k∑

n=1

ωnf(xn).

1Technically, Demanet uses a slightly different projection than this.

Table 3.1: Table of symbols for Chapter 3.

M A smooth, orientable, closed manifold embedded in R3.

u An arbitrary scalar function defined on M.

LM A surface differential operator on M.

∇, ∆ The gradient and Laplacian (respectively) in R3.

∇M, ∆M The surface gradient and surface Laplacian (respectively) on M.

x1 The stencil center.

k The number of points in the stencil.

{xn}kn=1 The stencil.

u A vector containing un = u(xn) for n = 1, 2, . . . , k.

n The surface normal at x1.

T The plane tangent to M at x1.
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This is advantageous since it is much easier to construct finite difference weights

for LT . In the context of the Laplace-Beltrami operator, LT = ∆T is simply the

2-dimensional Laplacian with respect to the intrinsic coordinates of T .

To approximate LT , we use Gram-Schmidt to find vectors t1 and t2 such that

t1, t2,n are pairwise orthonormal. Then t1 and t2 parameterize T , and any point

x ∈ T can be represented as x = xt1 + yt2 for a unique (x, y) ∈ R2. The problem is

now reduced to finding finite difference weights for points in R2, for which, we choose

to use 2-dimensional RBF-FD as described in Section 2.3.

Some efficiency can be gained by noting that one need not actually calculate

{x′n}kn=1, but can instead compute the pairwise distances directly. We first translate

the stencil so that x1 = 0. The matrix R =

[
t1 t2 n

]
is then an isometry such that

RT (when multiplying on the left) rotates points in the tangent plane to a plane that

is parallel to the x-y plane. After this rotation, projection onto the tangent plane can

be accomplished by simply dropping the z coordinate of the resulting vector. This

is aesthetically similar to using a different metric in the formulation of the distance

matrix. We define the “weighted distance” as dist(x,y) =
√

(x− x1)
TW (y − x1)

where the “weight matrix” W is given by W =

[
t1 t2 0

] [
t1 t2 0

]T
.

There is a pitfall that must be avoided with this method. Defining g as the

projection of f onto M is not necessarily well-defined. The projection operator is

rank-deficient and may not be 1-to-1 on a domain containing the stencil. Figure 3.1b

depicts such a case. If two points in the stencil get mapped to the same point (or

nearly the same point) on T then the RBF interpolation matrix will be singular (or

ill-conditioned). This can be overcome by increasing the total number of points on

the surface, while keeping the stencil size constant. This will cause the points in X

to more densely cover the surface, and will result in stencils that are roughly flat as
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seen in Figure 3.1a.

(a) (b)

Figure 3.1: The projection of stencils (black) onto the tangent plane (blue). In (a)
the stencil is nearly flat (co-planar), leading to a locally one-to-one projection. In (b)
the stencil is not flat, the mapping is not one-to-one, and the resulting finite different
weights will fail to approximate the operator.

Note that this method effectively reduces the dimension of the space by 1 which

will require fewer polynomial terms to achieve a given order of accuracy as per

Theorems 2.1 and 2.3.

3.2.2 Projected Gradient Method

The projection method was first introduced by Flyer and Wright in [12] using

a global RBF approximation method on the sphere and extended later to RBF-FD

in [13]. Fuselier and Wright generalized it to arbitrary surfaces using global RBFs [11]

and this was later extended by Shankar et al. [15, 16] to RBF-FD.

The Projected Gradient method uses RBF-FD to approximate first order differ-

ential operators and then represents higher order operators as compositions of the

approximations of the first order operators. In the case of the Laplace-Beltrami
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operator we have ∆M = ∇M · ∇M, and so we first seek an approximation to ∇M. We

define the projection operator P : R3 → T as

P = I − nnT =

[
px py pz

]
.

The surface gradient can be defined as an operator acting in the ambient space

∇M := P∇ =


px · ∇

py · ∇

pz · ∇

 =:


Gx

Gy

Gz

 ,
where each Gx,Gy,Gz are linear operators in R3 that can be approximated via RBF-

FD. For Gx we have

[
A P

P T 0

] [
W T
x

ΓTx

]
=

[
GxAT

GxP T

]
(3.3)

where A and P are from Equation (2.3), (GxAT )i,j = Gxφ(x−xi)|x=xj
, and (GxP T )i,j =

Gxpi(x)|x=xj
. We discard Γx, and the matrix Wx contains the finite difference weights

that approximate Gx. Similar computations can be done to find Wy and Wz which

approximate Gy and Gz, respectively. Note that these matrices approximate their

respective operators at each point in the stencil so that each row of Wx contains finite

difference weights that approximate Gx at the corresponding point in the stencil.

Therefore WxWx ≈ GxGx and we can approximate the surface Laplacian as

∆M ≈ W = WxWx +WyWy +WzWz.

The matrix W will approximate ∆M at all points in the stencil, but the first row will

give the weights that approximate ∆M at x1. Generally, the approximation for points

farther away from the center will be worse. Unlike the other methods presented here,

the Projected Gradient method will necessarily compute finite difference weights for



36

each point in a stencil, many of which will give particularly good approximations.

Though we do not compare it here, the overlapped RBF-FD method [45] does exactly

this and offers considerable speed-up by performing the computation on fewer stencils

that overlap to cover the surface.

3.2.3 Hermite RBF-FD

Hermite RBF-FD for approximating surface operators was done by Piret and

Dunnn in [20] as part of the Fast Orthogonal Gradients method (Fast OGr) — itself

an improvement on the high-order and low-order RBF Orthogonal Gradients methods

(RBF-OGr) introduced by Piret in [8].

Each of the RBF-OGr and Fast OGr methods have two distinct parts. First they

use rough approximations of the surface normals to reconstruct the surface implicitly

as the level set function of an RBF interpolant s. Since the surface is approximately

the level set of s, we have that ∇s is approximately normal to the surface and can

be used as a better approximation of the normal vectors. Second, they use these

normal vectors to construct a function f : R→ R that interpolates u at the nodes in

such a way that ∇f is tangent to the surface (or equivalently orthogonal to ∇s hence

the name Orthogonal Gradients). In the case of the original RBF-OGr methods,

they used the improved approximation of the normal vectors to place points at an

ε distance interior and exterior to the surface (tripling the number of points and

adding ε as a hyper-parameter) and then used the closest-point mapping to extend f

off of the surface. Fast OGr instead uses the improved approximation to the normal

vectors and Hermite RBF-FD to create f that interpolates u at the nodes and directly

enforces that ∇f is tangent to the surface.
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Each of these parts is truly distinct in the sense that one can use the first part as

a separate algorithm that only approximates surface normals, and if one already has

good approximations to the surface normals, then one can use the second part as a

distinct algorithm to construct the interpolant f with the desired property that ∇f

is tangent to the surface. This thesis is not concerned with approximating surface

normals, and thus we only consider the second part of Fast-OGr: Hermite RBF-FD.

As presented in [20], Fast OGr enforces that ∇s (where s is the interpolant)

is tangent to the surface, and thus ∇s = ∇Ms ≈ ∇Mu. They then used this

to approximate the three component differential operators ∂
∂x
, ∂
∂y
, ∂
∂z

with matri-

ces Dx, Dy, Dz respectively, and (as in the Projected Gradient method) construct

D = DxDx +DyDy +DzDz ≈ ∆ and thus Du ≈ ∆u ≈ ∆Mu.

Here, we instead use Hermite RBF-FD to approximate ∆ directly. Recall the

identity (2.11) from Section 2.4:

∆Mu = ∆u− nTH(u)n− κ∂u
∂n

.

If we enforce that nTH(u)n = 0 and ∂u
∂n

= 0, we have that ∆u = ∆Mu
2. We will

enforce these conditions on the stencil interpolant only at the stencil center x1, and

thus define the functionals

Lx(·) =
∂

∂n
(·)
∣∣∣∣
x=x1

and Hx(·) = nTH(·)n
∣∣∣∣
x=x1

for convenience.3 In this new notation, we wish to find an RBF interpolant s that

satisfies Lxs = 0,Hxs = 0, and still reproduces polynomials exactly (satisfying

theorem 2.1). Following the method of symmetric Hermite RBF-FD [18, 19], we

2It is worth mentioning that in [8] this was this enforced approximately by the low-order and
high-order methods respectively.

3Note that in Appendix A, we use this same notation to denote the same operators before
evaluation at a point x = x1.
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use an interpolant of the form

s(x) =
k∑

n=1

cnφ (‖x− xn‖) + dLyφ (‖x− y‖) + eHyφ (‖x− y‖) +
L∑

m=1

λmpm(x)

subject to the constraints

Lxs = 0

Hxs = 0∑
n

cnpm(xn) + dLxpm(x) + eHxpm(x) = 0, for m = 1, 2, . . . L.

Using the lemmas in Appendix A, this gives the interpolation matrix the form
A Lφ Hφ P

LφT Hφ1 LHφ1 LpT

HφT LHφ1 HHφ1 HpT

P T Lp Hp 0

 , (3.4)

whereA is the standard RBF interpolation matrix, Lpi = Lxpi(x), Lφi = Lxφ(‖x− xi‖),

Hφi = Hxφ(‖x− xi‖), and so on (as described in Appendix A, where the each of the

operators is evaluated at x = x1). Note that the center four blocks of this matrix are

each 1× 1 in size (that is to say they are scalars), the four corner blocks are matrices

and the rest are vectors of the appropriate sizes. Thus, the two center columns are

each column vectors, and the two center rows are each row vectors. The total size of

the matrix is (k+ 2 +L)× (k+ 2 +L) where k is the stencil size and L is the number

of polynomial terms.

The full system for finding finite difference weights is then given by
A Lφ Hφ P

LφT Hφ1 LHφ1 LpT

HφT LHφ1 HHφ1 HpT

P T Lp Hp 0



ω
γ1
γ2
λ

 =


∆φ

∆Lφ1

∆Hφ1

∆p

 (3.5)

where ω are the finite-difference weights.

Note that the Hermite RBF-FD method involves the computation of HH and ∆H
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which are fourth order surface differential operators. Consequentially, one cannot use

PHS RBFs below ninth order as they are not sufficiently smooth (see the paragraph

following Lemma A.7).

The addition of the L and H basis terms bring up the question of linear de-

pendence. Indeed, with the addition of these terms the matrix given in (3.5) may

be singular depending on the RBF used and the particular manifold. Two notable

examples that induce singularity are 1) odd degree PHSs on the sphere, and 2) any

choice of RBF on a plane (see Lemma A.8 and the paragraph that precedes it). This

last example is particularly important as all manifolds will locally appear flat for

small enough stencils. As with the singularity introduced by the polynomial terms,

this can be ameliorated by use of the SVD approach detailed in Section 3.1.
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CHAPTER 4

NUMERICAL RESULTS

In Section 4.1 we enumerate the parameters of each of the three methods presented

in Chapter 3, review their restrictions, and suggest guidelines for parameter selections.

Sections 4.2 and 4.3 use these guidelines to test accuracy and stability, respectively.

These tests are conducted over two manifolds: the unit sphere and a torus with

major radius rmajor = 1 and minor radius rminor = 1/3. We discretize the sphere and

the torus using the minimum energy nodes generated by the spherepts package [46]

and the phyllotaxis or spiral nodes, respectively. Examples of these nodesets can be

seen in Figure 4.1.

4.1 Parameter Selection

The three methods detailed in Chapter 3 each have the same three parameters that

must be chosen: the stencil size k, the degree of PHS, and the degree of polynomial

basis `. Additionally the SVD method requires a tolerance parameter. We choose

10−12 unless otherwise specified and do not explore the effects of this parameter here.

Note that the Tangent Plane method projects the points into a plane, where a basis

of polynomials is linearly independent on that plane. Thus there is no polynomial

dependence due to the surface itself, but polynomial dependence on the stencil is
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(a) Minimum energy nodes on the
sphere.

(b) Phyllotaxis nodes on the torus.

Figure 4.1: (a) N = 2000 minimum energy nodes on the sphere, and (b) N = 2000
phyllotaxis nodes on the torus. Note that the phyllotaxis nodes exhibit clustering
around the outer “equator” of the torus. This is not the case when N is chosen to
be Fibonacci number. Choosing such numbers will, in theory, give better stencils,
however, it severely restricts the choices for N . We opted to choose N arbitrarily, so
that we could test more configurations.

still possible. In practice, this is unlikely, and therefore the SVD method may be

substituted for Gaussian elimination.

For the other three parameters, it is sensible that their selection should emanate

from a desired order of convergence R. Polynomial reproduction guarantees a the-

oretical order of convergence due to Theorems 2.1 and 2.3, therefore we first select

the degree of polynomial basis `. As the Laplace-Beltrami operator is a second order

differential operator, we should select ` = R + 1.

We emphasize theoretical here, because the theorems suggest convergence as a

single stencil is scaled in the ambient space. If stencils on manifolds are scaled,

they will necessarily not lie on the manifold unless the manifold is locally linear.

Additionally, stencils on manifolds will not usually tessellate, and thus we will be

required to introduce new stencils that are distinct under scaling.
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Next we choose the stencil size k, and to do so, we must first know the number

of polynomials in our basis. Let L =
(
`+d
`

)
be the number of polynomial terms in

a basis of polynomials of degree ` in d dimensions. For the Projected Gradient and

Hermite RBF-FD methods we let d = 3 and for the Tangent Plane method d = 2. In

special circumstances this number can be reduced. For example, on the sphere, the

L = (` + 1)2 spherical harmonics of degree less than or equal to ` are an orthogonal

basis of polynomials of that degree. Extra polynomial terms will be linearly dependent

and the SVD method of Section 3.1 will yield the same finite difference weights.

If k < L, then the interpolation matrix in (2.6) will be singular due to the block

structure of the matrix. In [47] and [40] they make two observations in the context of

RBF-FD in R2. First, that increasing stencil size marginally increases accuracy, but

does not change convergence rates. Second, that increasing the stencil size “improves”

the eigenvalues of the differentiation matrix, in the sense that they more closely

align with the eigenvalues of the differential operator. They hypothesize that this

improvement may be due to one-sided stencils near the boundary of their domain.

In [47] they note that interpolation accuracy is moderately increased as the degree

of PHS is increased. Of course with a higher degree of PHS, one requires augmentation

with a higher degree of polynomial basis. It is therefore reasonable to choose the

highest degree PHS available, namely φ(r) = r2`+1. Choosing higher degrees would

go against PHS theory, however [47] concluded that choosing lower degree PHSs is

stable. Note that the Hermite RBF-FD method fails for PHS degree below 9, and

therefore we revert to the 9th degree PHS whenever a lower degree is prescribed.

In conclusion, we recommend choosing parameters as follows. First choose a

desired order of accuracy R. Then choose the degree of appended polynomials to be

` = R+ 1. Let L be the number of polynomials in a basis of degree ` on the manifold
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(or in R2 in the case of the Tangent Plane method), and choose k ≈ 2L. Lastly,

choose φ(r) = r2`+1.

4.2 Accuracy

We measure the accuracy of these methods in three tests each applied to the unit

sphere and a torus with major radius rmajor = 1 and minor radius rminor = 1/3.

Additionally, we test for polynomial reproduction by approximating the Laplace-

Beltrami operator on the unit sphere, and applying the approximation to a spherical

harmonic. The spherical harmonics are an orthogonal basis for polynomials restricted

to the sphere, and thus we expect that any method that is exact for polynomials on

the sphere, will be exact for the spherical harmonics.

For uniform grids, convergence rates for finite difference approximations are mea-

sured in h, the mesh width. Though there are ways to assign a value to h for

unstructured points [27], we will take a different approach. For a uniform grid in

2 dimensions, we note that h−1 ∝
√
N where N is the total number of points in the

grid. Since surfaces are 2 dimensional, it is reasonable to use increasing
√
N as a

substitute for decreasing h for the purpose of measuring convergence rates.

4.2.1 Polynomial Reproduction

Our first test it to verify that our numerical results agree with Theorems 2.1 and

2.3. To test this, we choose M to be the unit sphere, and let

f(x, y, z) = 5x4y − 10x2y3 + y5,

a 5th degree spherical harmonic. The spherical harmonics are eigenfunctions of

the Laplace-Beltrami operator on the sphere, and thus ∆Mf = −5(6)f . We then
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approximate ∆Mf using each method and compare against the known analytical

results. Figure 4.2 shows the function f and the results of the experiment. Six of the

nine tests generally slope downward; as the number of points on the sphere increase,

their accuracy improves. These methods are not reproducing the polynomial exactly,

but rather are converging to the true solution. The remaining three methods are

more accurate by several orders of magnitude, but the error increases as the total

number of points is increased. These three methods are reproducing polynomials

exactly but for round-off error. The larger the total number of points, the more error

they accumulate.

The Hermite RBF-FD method reproduces the 5th degree spherical harmonic when

appending at least 5th degree polynomials, as expected. The Projected Gradient

method requires appending 6th degree polynomials to be exact. This is due to the

fact that the Projected Gradient method reproduces ∇M exactly rather than ∆M.

For a polynomial on the sphere, ∇M can be shown to be a polynomial of one degree

higher. Thus, when the Projected Gradient method enforces reproduction of 6th

degree polynomials, the weights will exactly recover ∇M and ∆M. Lastly, the Tangent

Plane method fails to reproduce polynomials. As mentioned in Section 3.2.1, this is

because polynomial reproduction is enforced on the tangent plane rather than on the

manifold.

4.2.2 Differentiation

To test differentiation accuracy, we choose a test function on the sphere to be the

sum of seven Gaussians. Specifically

f(x) =
7∑
i=1

e−σir
2
i (x) (4.1)
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(a) The spherical harmonic f(x, y, z) =
5x4y−10x2y3+y5. Note that ∆Mf ∝ f .

(b) The same spherical harmonic from
another angle.
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(c) Approximation errors of ∆Mf .

Figure 4.2: (a,b) The 5th degree spherical harmonicf(x, y, z) = 5x4y − 10x2y3 + y5

viewed from two angles. (c) Errors in approximating ∆Mf using the three methods of
Chapter 3. The Projected Gradient method appended with 6th degree polynomials,
and the Hermite RBF-FD method appended with 5th or 6th degree polynomials
successfully reproduce the 5th degree spherical harmonic.
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with shapes

σ1 = 2 σ2 = .5 σ3 = .3 σ4 = .1

σ4 = 5 σ5 = 2 σ6 = 1.5,

distance functions

ri(x) =
∥∥∥x− 1

‖ci‖
ci

∥∥∥ ,
and centers

c1 = [0 0 1]T c2 = [1 − 1 1]T c3 = [2 0 1]T c4 = [−5 7 0]T

c5 = [2 − 13 1]T c6 = [2 12 − 15]T c7 = [1 0 − 1]T .

The exact solution of ∆Mf is given by

∆Mf(x) =
7∑
i=1

−σi
[
4 + r2i (x)

(
− 2 +

(
− 4r2i (x)

)
σi

)]
exp

(
− σir2i (x)

)
. (4.2)

Both f and ∆Mf can be seen in Figure 4.3.

Figure 4.4 shows the results of the approximation. As expected, each method

attains convergence at a rate at least one order higher than the degree of polynomials

appended, with one exception. The Tangent Plane Method when appending degree

5 polynomials, as measured by the `∞ norm measures the order of convergence to be

roughly 3.78, slightly less than the predicted fourth degree convergence.

A similar test was performed on the torus. Figure 4.5 depicts a sum of seven

Gaussians on the torus and the surface Laplacian of that function. Figure 4.6 shows

the convergence results for the test on the torus. The convergence rates are as

expected or better, however there are a few spikes in error for the `∞ norm in a

few cases. As these spikes are not present for the `2 norm, we believe this indicates

relatively poorer approximations on only a few stencils. This is likely due to the
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(a) The function f given in Equa-
tion (4.1) - a sum of seven Gaussians.

(b) The same function from another
angle.

(c) A plot of ∆Mf . (d) A plot of ∆Mf . from another angle.

Figure 4.3: (a)(b) The function f given in Equation (4.1) - a sum of seven Gaussians,
with the centers of the Gaussians plotted in black. (c)(d) ∆Mf viewed from the same
angles as (a)(b) respectively.
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Figure 4.4: Error in `2 and `∞ norms, when approximating ∆Mf on the sphere.
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regularity, and occasional clustering of the phyllotaxial nodes.

(a) A sum of seven Gaussians on the torus. (b) The same function from another angle.

(c) The surface Laplacian of the sum of seven
Gaussians

(d) The surface Laplacian of the sum of seven
Gaussians from another angle.

Figure 4.5: (a)(b) A sum of seven Gaussians on the torus and (c)(d) the surface
Laplacian of that sum.

4.2.3 Poisson Problem

Here we test accuracy by solving the Poisson problem ∆Mu = g, where g is chosen

via the method of manufactured solutions to be ∆Mf given by Equation (4.2). The

true solution is then u(x) = f(x) + C where f is given by (4.1), for any arbitrary

constant C. The discrete version of the system Du = g is also not uniquely solvable.

To remedy this, we use a Lagrange multiplier.
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Figure 4.6: Error in `2 and `∞ norms, when approximating ∆Mf on the torus.
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To use Lagrange multipliers, we must pose this problem as a constrained mini-

mization problem. Naturally, we want to minimize ‖Du− g‖2, but we must derive

an appropriate constraint. In u(x) = f(x) + C, we would like to enforce that C = 0.

From this, we have
∫∫

M(u− f)dA =
∫∫

MCdA = 0. Thus
∫∫

M udA =
∫∫

M fdA is the

constraint we will use. A convenient way of approximately enforcing this is

N∑
n=1

u(xn) = b =
N∑
n=1

f(xn).

Then our problem can be posed as the systemD 1

1T 0


u

λ

 =

g

b


where λ ≥ 0 is the Lagrange multiplier. We expect that λ = 0, as that corresponds to

Du = g being exactly satisfied. We used a direct sparse solver to solve this system,

and in all test cases λ = 0 was verified up to machine precision.

Figures 4.7 and 4.8 show the results compared to the known solutions on the

sphere and torus, respectively. The 5th order methods on the sphere seem to converge

at an order of roughly 3.5, otherwise the rates are above the expected minimum

convergence rates.

4.2.4 Forced Diffusion Problem

Here we test accuracy by solving the forced diffusion problem

ut = ∆Mu+ g (4.3)

where g is a forcing function dependent on both space and time. We again use

the method of manufactured solutions by choosing a true solution u, and setting

g = ut −∆Mu. We choose for the sphere and the torus, u(x, t) = e−tf(x) where each
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Figure 4.7: Error in `2 and `∞ norms, when solving the Poisson problem on the
sphere.
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Figure 4.8: Error in `2 and `∞ norms, when solving the Poisson problem on the
Torus.
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f is the sum of seven Gaussians - the same functions chosen in the previous sections.

We will solve this using the method of lines approach, using each of our methods

to approximate the spatial differential operator. Since our motivation is to test the

accuracy and stability of the spatial approximation, we choose a high-order time

stepping method and relatively small step sizes — just enough to showcase the

differences in the spatial approximations. We choose ∆t = .005 and take 200 steps

using the third-order backward differentiation formula to a finial time of t = 1.

Figure 4.9 shows the results on both the sphere and the torus. All of the algorithms

are stable, and they are all higher than fourth order. In particular, each of them is

of higher order than the theoretical minimums guaranteed by Theorems 2.1 and 2.3.

The Tangent Plane method seems to achieve the highest order of convergence, and the

Hermite RBF-FD method has the highest total accuracy, with the Projected Gradient

method being a middle ground for the two standards.

4.3 Stability

For time dependent problems, the stability of spatial finite difference approxima-

tions is measured by the eigenvalues of the differentiation matrix. These eigenvalues

should align closely with the eigenvalues of the operator itself. The Laplace-Beltrami

operator is a diffusive operator. For a given compact manifold without boundary, it

has at least one eigenvalue of 0 (corresponding to a constant function), and the rest

will be negative real numbers [48]. The specific values will depend on the surface.

In particular, if the eigenvalues of our differentiation matrices have a positive real

component, then any time-stepping scheme will be unstable.

For the sphere, the eigenfunctions are the spherical harmonics, and the eigenvalues
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Figure 4.9: Error in `2 and `∞ norms, when solving the forced diffusion problem on
the sphere.
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Figure 4.10: Error in `2 and `∞ norms, when solving the forced diffusion problem
on the Torus.
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are −`(` + 1) where ` is the degree of the spherical harmonic. Since our weights are

exact for the spherical harmonics, we expect many of these to be exact, and hope

that the remaining eigenvalues are close to eigenvalues of higher degree spherical

harmonics.

Each subplot in Figures 4.11 and 4.12 shows the 100 eigenvalues with largest

real component of the differentiation matrices. The matrices were generated by

applying each method appended with 5th degree polynomials to N = 8000 minimum

energy nodes. Each subplot shows a range of stencil sizes k with the smallest stencils

chosen to be the theoretical minimum: the dimension of a basis of up to 5th degree

polynomials. On the sphere, that would be k = (5 + 1)2 = 36 spherical harmonics for

the Projection and Hermite RBF-FD methods. On the torus, these are chosen to be

a full basis of 3-variate polynomials: k =
(
5+3
5

)
= 56. For the Tangent Plane method,

a full basis of 2-variate polynomials, k =
(
5+2
5

)
= 21, is chosen, for either surface.

Note that some of the subplots in Figures 4.11 and 4.12 are duplicated at a smaller

scale in order to show the stencil sizes for which the eigenvalues of the matrices

more closely align with the eigenvalues of the operator. For most choices of the

stencil size, the eigenvalues of the matrices align closely with the eigenvalues of the

differential operator, but there are a few exceptions. The Tangent Plane method

seems to have spurious eigenvalues if the stencil size is selected at the minimum

value, but these do not appear if the stencil size is at least 150% of the minimum

value. Quite surprisingly, the Projected Gradient and Hermite RBF-FD methods

have no eigenvalues with positive real part at the minimum stencil size, though the

imaginary components become smaller (more closely approximating the eigenvalues of

the differential operator) as the stencil size increases. To verify these results, we test

against the forced diffusion problem from the previous section, this time varying the
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Figure 4.11: The 100 eigenvalues with the largest real parts for the differentiation
matrices of each method when appending 5th degree polynomials, and applied to the
minimum energy nodes on the sphere. Several different stencil sizes k are compared.
Here, the minimum stencil size k is given by the dimension of the polynomial basis.
For the Projected Gradient and Hermite RBF-FD methods, that is the number of
spherical harmonics. For the Tangent Plane method, that is a full basis for 2-variate
polynomials.
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Figure 4.12: More eigenvalue plots as described in Figure 4.11, this time on the
torus using the phyllotaxis nodes.
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stencil size. The results can be seen in figure 4.13, and they agree with the assessment

of the eigenvalues, except that there are values of N for which the minimum stencil

sizes are not sufficient for the Projection and Hermite RBF-FD methods. In particular

for our minimum energy nodeset with N = 2070, the minimum stencil size for the

Projected Gradient and Hermite RBF-FD method yields matrices that are unstable

for our time-stepping scheme. Additionally note, that though there is a legend entry

for the Tangent Plane method with the minimum stencil size, it does not appear

on the plot. None of the matrices generated using the Tangent Plane method and

the minimum stencil size lead to stable time-stepping. Again, this agrees with our

observation that the Tangent Plane method with the minimum stencil size generates

matrices that have eigenvalues with positive real component.

4.4 Timings

As a final numerical comparison, we consider the time it takes to form a dif-

ferentiation matrix versus the accuracy of a direct approximation of the operator.

Figure 4.14 shows the time in seconds to form the differentiation matrices compared

with the accuracy of the matrices in a direct computation of ∆M. These stencils were

the same stencils used in Figures4.4a and Figure 4.4b.

The timing results in Figure 4.14 demonstrate the efficiency of the Tangent Plane

method, however they should be taken with a grain of salt. While the Tangent Plane

method is very fast, we do not claim that the implementations of any of these methods

are optimized. In particular, the Projected Gradient method can be made much faster

by using overlapped stencils as in [45].
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Figure 4.14: The time in seconds to form a differentiation matrix using each of the
methods appended with polynomial basis for 4th, 5th, and 6th degree polynomials,
compared with the accuracy of computing ∆M on the sphere. The total number of
points used ranged between 1000 and 8000, and were the same as in Figure 4.4a and
Figure 4.4b.
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CHAPTER 5

CONCLUSION

We have conducted the first direct comparison of the Projected Gradient method,

the Hermite RBF-FD method, and the new Tangent Plane method for approximat-

ing the Laplace-Beltrami operator, and solving differential equations involving the

Laplace-Beltrami operator. All methods proved accurate and stable in all three

test cases, under appropriate parameter selection schemes. Given a desired order

of accuracy R, parameters are chosen in the following ways:

1. Choose ` = R + 1 to be the degree of polynomials to append.

2. Choose φ(r) = r2`+1. The minimum degree PHS for the Hermite RBF-FD

method is r9.

3. For the Projection and Hermite RBF-FD methods, let L be the dimension of a

basis of 3-variate polynomials of degree ` on the surface. For the Tangent plane

method, let L be the dimension of a basis of 2-variate polynomials of degree `.

4. Choose k ≥ 3
2
L. Larger stencils will have improved eigenvalues.

It is difficult to draw precise mathematical conclusions from a collection of con-

vergence plots. Though, what amounts to a series of examples does not constitute a

mathematical proof, it is noteworthy that they contain no counterexamples. That is
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to say that with our prescribed parameter regime, each method successfully approx-

imated the solution in each test with an observed convergence rate that was roughly

on par with, or exceeded the theoretical convergence rate.

Nevertheless, we may make some observations. For a given degree of appended

polynomials, it appears that the Hermite RBF-FD method is the most accurate, and

the Projected Gradient method is usually the second most accurate. This agrees

with the theory, since the Hermite method will reproduce polynomials for ∆M, while

the Projected Gradient method will reproduce polynomials for ∇M, and the Tangent

Plane does not reproduce polynomials in general. When it comes to the order of

accuracy, the ranking seems to be reversed with the Tangent Plane as the highest,

while the Projection and Hermite RBF-FD methods are roughly the same. Perhaps

both the relatively sub-par accuracy and the above expected convergence rates of

the Tangent Plane method are due to the stencils becoming increasingly flat under

refinement. The Projection and Hermite RBF-FD methods would, in theory, have

no benefit from this. The Tangent Plane method seems to be far faster than the

other two methods for a given desired accuracy. This is expected given that our

parameter selection regime mandates that the Projected Gradient and Hermite RBF-

FD methods have larger stencil sizes and more terms in the polynomial basis than

the Tangent Plane method for a desired order of accuracy.

Though we recommend choosing the stencil size to be greater than the minimum

theoretical value, it is interesting that the minimum value appears to be sufficient

most of the time for the Projection and Hermite RBF-FD methods. In [40], they

theorized that stencil sizes may be chosen smaller when they do not contain boundary

nodes. As none of our nodes are boundary nodes, this would seem to support their

hypothesis.
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We have succeeded in our goal to provide reliable parameter-selection guidelines,

but there is still much to be explored. We have taken normal vectors as given, however

they often must be approximated in applications where the surface is not known.

Errors in the normals may have larger effects for some methods than others. Several

parameters remained the same throughout all of our experiments. Most notable

among them is our SVD tolerance and the choice of node set. Both of the sets of

nodes that we used were relatively well-spaced. Computational complexity and speed,

are two metrics that we hope to address in the future. In particular, incorporating the

overlapping stencils technique of [45] to the Hermite RBF-FD method would make

for a very fast, and highly accurate method.
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APPENDIX A

HERMITE RBF-FD LEMMAS

Section 3.2.3 makes extensive use of the operators

Lx(·) = n · ∇x(·) and Hx(·) = nTHx(·)n.

We dedicate this appendix to proving several lemmas regarding these operators. Note

that this notation differs slightly from that of Section 3.2.3. Here we use this notation

to refer the operators, where in Section 3.2.3 this notation is used to refer to the

functionals that are given by evaluating the operators at a stencil center. Also note

that we treat the vector n as a constant direction and thus it is not differentiated

with successive application of the operators.

Before stating and proving the lemmas, let us first establish some common nota-

tions. For a given RBF φ, let φ0(r) = φ(r) and φn+1(r) = 1
r
d
dr
φn. Let x = [x y z]T

and y = [a b c]T be vectors in R3, and let r = ‖x− y‖. Lastly, let p = n · (x − y)

and n = [nx ny nz]
T for notational convenience.

Lemma A.1.

Lxφn(r) = pφn+1(r) = −Ly

Proof : See that
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dr

dx
=

d

dx

(
(x− a)2 + (y − b)2 + (z − c)2

)1/2
= 2(x− a)

1

2

(
(x− a)2 + (y − b)2 + (z − c)2

)−1/2
= (x− a)

1

r
d

dx
φn(r) = φ′n(r)

dr

dx
= (x− a)φn+1(r),

and similarly

∇xφn(r) = (x− y)φn+1(r)

Lxφn(r) = n · (x− y)φn+1(r)

= pφn+1(r).

Also since d
da
φ(r) = −(x− a)φ1(r) = − d

dx
φ(r) it follows that Ly = −Lx.

Lemma A.2. For n ∈ N,

Lxp
n+1 = (n+ 1)pn.

Proof : Consider

∂

∂x

(
n · (x− y)

)n+1
= (n+ 1)

(
n · (x− y)

)n
nx

∂

∂y

(
n · (x− y)

)n+1
= (n+ 1)

(
n · (x− y)

)n
ny

∂

∂z

(
n · (x− y)

)n+1
= (n+ 1)

(
n · (x− y)

)n
nz

∇x

(
n · (x− y)

)n+1
= (n+ 1)

(
n · (x− y)

)n
n

Lx

(
n · (x− y)

)n+1
= n · ∇x

(
n · (x− y)

)n+1

= (n+ 1)
(
n · (x− y)

)n
n · n

= (n+ 1)
(
n · (x− y)

)n
.

Lemma A.3.

Hxφ(r) = LxLxφ(r) = φ1(r) + p2φ2(r) = Hyφ
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Proof : From Lemma A.1 we have that Lxφ(r) = pφ1(r). Then

LxLxφ(r) = Lx

(
pφ1(r)

)
= φ1(r)Lxp+ pLxφ1(r)

= φ1(r) + p2φ2(r).

Next consider

∂

∂x
φ(r) = (x− a)φ1(r)

∂2

∂x2
φ(r) = φ1(r) + (x− a)2φ2(r)

∂2

∂xy
φ(r) = (x− a)(y − b)φ2(r).

Then

Hxφ(r) = nT


∂
2
φ

∂x
2

∂
2
φ

∂xy
∂
2
φ

∂xz
∂
2
φ

∂xy
∂
2
φ

∂y
2

∂
2
φ

∂yz

∂
2
φ

∂xz
∂
2
φ

∂yy
∂
2
φ

∂z
2

n

= n2
x

∂2φ

∂x2
+ n2

y

∂2φ

∂y2
+ n2

z

∂2φ

∂z2
+ 2nxny

∂2φ

∂xy
+ 2nxnz

∂2φ

∂xz
+ 2nynz

∂2φ

∂yz

= (n2
x + n2

y + n2
z)φ1(r) +

(
nx(x− a) + ny(y − b) + nz(z − c)

)2
φ2(r)

= φ1(r) + p2φ2(r).

Lastly we have that Hxφ = LxLxφ = (−Ly)(−Ly)φ = Hyφ.

Lemma A.4.

LxHxφ(r) = 3pφ2(r) + p3φ3(r)

Proof : From Lemma A.3 we have
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LxHxφ(r) = Lx

(
φ1(r) + p2φ2(r)

)
= Lxφ1(r) + φ2(r)Lxp

2 + p2Lxφ2(r)

= pφ2(r) + 2pφ2(r) + p3φ3(r)

= 3pφ2(r) + p3φ3(r).

Lemma A.5.

HxHxφ(r) = 3φ2(r) + 6p2φ3(r) + p4φ4(r)

Proof : From Lemmas A.3 and A.4 we have

HxHxφ(r) = LxLxHxφ(r)

= Lx

(
3pφ2(r) + p3φ3(r)

)
= 3φ2(r)Lxp+ 3pLxφ2(r) + φ3(r)Lxp

3 + p3Lxφ3(r)

= 3φ2(r) + 3p2φ3(r) + 3p2φ3(r) + p4φ4(r)

= 3φ2(r) + 6p2φ3(r) + p4φ4(r).

Lemma A.6.

∆Lxφ(r) = 5pφ2(r) + r2pφ3(r)

Proof : From Lemma A.1 it follows that

d

dx
Lxφ(r) =

d

dx
pφ1(r)

= nxφ1(r) + p(x− a)φ2(r)

d2

dx2
Lxφ(r) = nx(x− a)φ2(r) + nx(x− a)φ2(r) + pφ2(r) + p(x− a)2φ3(r)

= 2nx(x− a)φ2(r) + pφ2(r) + p(x− a)2φ3(r)

∆Lxφ(r) = 5pφ2(r) + r2pφ3(r).
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Lemma A.7.

∆Hxφ(r) = 5φ2(r) +
(
r2 + 7p2

)
φ3(r) + p2r2φ4(r)

Proof : From Lemma A.3 it follows that

d

dx
Hxφ(r) =

d

dx

(
φ1(r) + p2φ2(r)

)
= (x− a)φ2(r) + 2pnxφ2(r) + p2(x− a)φ3(r)

d2

dx2
Hxφ(r) = φ2(r) + (x− a)2φ3(r) + 2n2

xφ2(r) + 2pnx(x− a)φ3(r)+

2pnx(x− a)φ3(r) + p2φ3(r) + p2(x− a)2φ4(r)

= φ2(r) + (x− a)2φ3(r) + 2n2
xφ2(r) + 4pnx(x− a)φ3(r)

+ p2φ3(r) + p2(x− a)2φ4(r)

∆Hxφ(r) = 3φ2(r) + r2φ3(r) + 2φ2(r) + 4p2φ3(r) + 3p2φ3(r) + p2r2φ4(r)

= 5φ2(r) +
(
r2 + 7p2

)
φ3(r) + p2r2φ4(r).

Note that both of the expressions for ∆Hxφ(r) and HxHxφ(r) involve φ4(r). This

function is not smooth for PHS of degree 8 or less. To see this, consider that for

φ(r) = r` where ` is odd, we have that

φ1(r) =
1

r

d

dr
φ =

1

r
`r`−1 = `r`−2

and for φ(r) = r` log(r) where ` is even we have that

φ1(r) =
1

r

d

dr
φ =

1

r

(
`r`−1 log(r) + r`

1

r

)
=
(
` log(r) + 1

)
r`−2.

Each application of 1
r
d
dr

drops the degree by 2, thus, φ(r) = r9 is the lowest degree of

PHS that can be used.

As noted in Section 3.2.3, the terms φ,Hxφ,Lxφ may not be linearly independent.

Here we present two noteworthy examples: 1) on the plane, any choice of φ will cause

Lxφ = 0, and 2) on the sphere, choosing φ to be an odd PHS will cause Lxφ to be a
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linear multiple of φ. The first of these is easy to see, as n is orthogonal to the plane,

and thus x−y is orthogonal. Thus p = n·(x−y) = 0 and Lxφ = pφ1(r) = 0. This is a

very important example, as stencils over smooth surfaces will appear increasingly flat

under refinement. The second example is also important, as the sphere is a common

manifold in applications. It is however, less obvious to see why it is the case.

Lemma A.8. If φ(r) = rk where k is odd, then

φ ∝ Lxφ

on any sphere.

Proof : Let M be a sphere of radius R and let x,y ∈ M. Let φ(r) = rk where k is

odd. Then from Lemma A.1 we have that Lx = pkrk−2 We will show that p = − r
2

2R

and thus Lx = − k
2R
φ(r).

Define L =
√
r2 − p2. Note that r2 ≥ p2 since ‖n‖ = 1, so p = ‖n · (x− y)‖ ≤ r.

Also note that p must be negative, since n is oriented outward and y is on another

angle of the tangent plane.

On the sphere, n is parallel to the line passing through the center of the sphere

and x. This gives us the configuration seen in Figure A.1. Then we have that

R2 = (R + p)2 + L2

= R2 + 2Rp+ p2 + L2

0 = 2Rp+ p2 + L2

= 2Rp+ p2 + r2 − p2

= 2Rp+ r2

p = − r2

2R
.



xx

y

R

r

L

−p

center

Figure A.1: A visualization of the argument used to prove Lemma A.8.
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