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ABSTRACT 

Integrated social-ecological systems research is challenging; complicated 

feedback and interactions across scales in multi-use landscapes are difficult to decouple. 

Novel methods and innovative data sources are needed to advance social-ecological 

systems research. In this thesis, we use network science as a means of explicitly assessing 

feedback between social and ecological systems, and internet search data to better predict 

visitation in protected areas. This thesis seeks to provide empirical examples of emerging 

social-ecological systems science methods as a precedent for resource managers on-the-

ground, as well as extending the line of scientific inquiry on the subject. 

In the first chapter of this thesis, we used an online survey to gather information 

on the collaborative network and current projects of 169 wetland management 

organizations in the state of Montana. We used this information along with geographic 

analyses to delineate the flow of information between managers and ecological 

connectivity of projects, characterizing the social-ecological network of wetlands and 

wetland management within the state. We demonstrate that just 2 key organizations 

facilitate landscape scale information sharing, while most stakeholders collaborate on the 

basis of project difficulty and proximity <10km. This chapter contributes to an emerging 

body of literature on social-ecological networks, a promising frontier for integrating 

social and environmental sciences, specifically addressing feedbacks within and between 

the two systems. 
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For the second part of this thesis, we apply novel data to a classic natural resource 

management problem. In recent years, visitation to U.S. National Parks has been 

increasing, with the majority of this increase occurring in a subset of parks. Improved 

visitation forecasting would allow park managers to more proactively plan for such 

increases and subsequent visitor-related challenges. In this study, we leverage internet 

search data that is freely available through Google Trends to create a forecasting model. 

We compare this Google Trends model to a traditional autoregressive forecasting model. 

Overall, our Google Trends model accurately predicted 97% of the total visitation 

variation to all parks one year in advance from 2013-2017 and outperformed the 

autoregressive model by all metrics. While our Google Trends model performs better 

overall, this was not the case for each park unit individually; the accuracy of this model 

varied significantly from park to park. This project applies a contemporary social science 

data set to a traditional natural resource management problem, demonstrating the 

potential for social-ecological systems research to provide real-world solutions in multi-

use landscapes. Both chapters of this thesis explicitly address feedbacks between social 

and ecological systems, a key advance for social-ecological systems science. 
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CHAPTER ONE: NETWORK GOVERNANCE OF NATURAL RESOURCES: 

MAKING COLLABORATION COUNT 

Abstract 

In contemporary multi-use landscapes, management of ecological resources is 

essential for environmental and societal well-being. Management efficacy is often 

constrained by the capacity of individual organizations to act at the scale of ecological 

processes. Ecological processes function at landscape scales, while management of 

natural resources consists of an overlapping patchwork of jurisdiction and influence. 

Collaboration is a common prescription for the cohesive management of ecological 

resources at the landscape scale, but collaboration is costly. Land management 

organizations must decisively pick and prune their collaborations with other stakeholders 

to best match the ecological connectivity of the landscapes they manage. Empirical 

studies have demonstrated the utility of social-ecological networks to quantify fit in 

coupled natural and human systems and make concrete prescriptions about collaborative 

resource management. Social-ecological network science characterizes resource and 

management systems as an interconnected network of nodes (organizations, resource 

patches) and ties (collaboration, connectivity, management). Previous studies have used 

single distance thresholds to define ecological connectivity and estimate ecological 

outcomes at the whole system scale. With this research, we explore the potential biases 

that can be introduced into social-ecological network analyses by setting single 

connectivity thresholds and demonstrate the utility of incorporating ecological outcomes 
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on the scale of individual patches opposed to the whole system. For this research, we 

delineate the social-ecological network of wetlands and wetland management in 

Montana, U.S. We address the current gaps in social-ecological network methodology in 

two key ways. We use a gradient of wetland connectivity to illustrate the possible 

ramifications of defining set connectivity thresholds in social-ecological network studies. 

We also incorporate a measure of wetland vegetation quality into our descriptive analysis 

to better understand the role of environmental condition in the system. Using these 

methodological advances, we discover that just two wetland management organizations 

in the system are responsible for ensuring efficient information diffusion and facilitating 

cohesive wetland management at the landscape scale. This project makes a 

methodological contribution to social-ecological network science broadly by exposing 

sources of potential bias and assessing outcomes at a finer scale than previous work. 

Introduction 

Ecological processes generally occur on a scale larger than any one entity can 

manage (Cadenasso 2003, Cowling, Egoh, Knight, O’Farrell, Reyers, Rouget & 

Wilhelm-Rechman 2008; Yarrow & Marín 2007). Because no single decision maker has 

the capacity to oversee entire ecoregions, the burden of management is spread among 

many stakeholders in an overlapping mosaic of jurisdictions that rarely coincide with 

ecological boundaries (Dallimer & Strange 2015; de Groot, Alkemade, Braat, Hein & 

Willemen 2010; Hamilton, Fischer & Ager 2019; Hein, van Koppen, de Groot & van 

Ierland 2006). In the American West, resource governance is further fragmented by a 

variety of social factors including historic land ownership, private interests, and 

government hierarchies (Andrews 2006; Kauffman 2002). 
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Within complex jurisdictional patchworks, research shows that collaboration 

between independent entities can lead to more efficient problem solving and improved 

environmental outcomes, as compared to siloed governance (Miller, Zhao & Calantone 

2006; Scott 2015). The structure of collaboration, which organizations collaborate with 

which others, influences the ability of actors to solve complex problems (Mason & Watts 

2012). Collaboration, notably, comes at a substantial cost for stakeholders in the form of 

staff time and financial investment (Koontz & Thomas 2006; March 1991). With these 

costs in mind, it follows that land management organizations should aim to maximize 

their environmental returns on investing in collaboration. Characterizing the tangible 

ecological impacts of specific collaborative arrangements and identifying worthwhile or 

deleterious collaborations, however, have proved difficult (Crona & Hubacek 2010). 

The contribution any specific collaboration makes to address the cohesive 

management of a resource depends largely on the connectivity of the ecological system 

itself (Bodin, Alexander, Baggio, Barnes, Berardo, Cumming & Sayles 2019). For 

example, collaborative management of disconnected resources is superfluous, while 

collaborative management of highly connected resources is worthwhile. In addition to the 

management implications, ecological connectivity in general has considerable impact on 

the ecological condition of both terrestrial and aquatic resources (McRae, Hall, Beier & 

Theobald 2012; Wolf, Noe & Ahn, 2013). Species dispersal distances and community 

composition depend largely on ecological connectivity (Kareiva & Wennergren 1995; 

Ricketts 2001). The degree to which any given landscape is connected however can vary 

greatly depending on the species or mechanism of interest (Bunn, Urban & Keitt 2000; 

Laita, Kotiaho & Mönkkönen 2011). In wetland systems, surface water connectivity is 
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highly indicative of wetland nutrient cycling, a key consideration for studying wetland 

vegetation composition (Cook & Hauer 2007). Defining ecological connectivity through 

hydrology however is likely less relevant when interested in avian dispersal. Ecological 

connectivity, specific to the species of interest therefore, is a key consideration when 

assessing fit of organizational collaborations to the resources they manage. 

Social-ecological networks are a promising tool to assess the fit, or degree of 

alignment, between natural systems and the social institutions that manage them (Bodin 

2017; Sayles & Baggio 2017; Treml, Fidelman, Kininmonth, Ekstrom & Bodin, 2015). 

This lens for studying coupled natural and human systems delineates two distinct, but 

connected networks of nodes representing organizations or ecological patches, and ties 

representing social collaboration, ecological connectivity, or management actions. 

Studying complex systems, like resource management in the American West, using a 

network approach allows for a nuanced understanding of the degree to which 

relationships dictate outcomes (Jackson 2010, Newman 2010; Tassier 2013). For 

example, Guerrero, Bodin, McAllister & Wilson (2015) used social-ecological networks 

to empirically assess the fit of a collaborative restoration initiative to the ecological 

connectivity of native vegetation in Western Australia. Similarly, Kininmonth, Bergsten 

& Bodin (2015) used this framework to demonstrate how Swedish municipalities can 

utilize coordinating third party actors to best manage interconnected wetlands. 

Defining social connectivity in coupled natural and human systems is often 

unequivocal; people can report who they communicate with and document analysis can 

detail formal collaborations (Nkhata, Breen & Freimund 2008). Defining connectivity 

between discrete ecological resources such as wetlands, however, has proved more 
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challenging (Leibowitz, Wigington, Rains & Downing 2008). When building networks of 

ecological connectivity, social-ecological network analyses commonly specify distance 

thresholds to define resources connectivity (Guerrero et al. 2015). As described above, 

describing ecological connectivity without considering the natural history of the species 

or mechanism in question likely constitutes a significant loss of valuable information. 

Additionally, we do not yet understand how setting different connectivity thresholds may 

bias the results of social-ecological network studies and generate misleading conclusions. 

Furthermore, while social-ecological network measures have proved useful in 

quantifying the system-level fit of natural resource management, they have seldom been 

associated with ecological outcomes on the scale of each observation (i.e. the node level) 

(Barnes et al. 2019). For example, Bodin et al. (2014) used social-ecological network 

analysis to compare the fit of two distinct common-pool resource use systems, using the 

overall state of the resource as the outcome variable. Natural resource management and 

ecological research often focus on ecological outcomes at the scale of individual units or 

patches of interest. Hence, the ability to estimate the impact of network position on 

individual patches would greatly advance the utility of social-ecological network 

analysis. 

Lastly, social-ecological network science theory and methodology have 

progressed rapidly since the framework was first proposed (Bodin & Tengӧ 2012). These 

advances, while impressive and worthwhile, have neglected the literature regarding 

complex problem solving in social networks. The capacity for a social network to rapidly 

diffuse important information to all actors is critical for comprehensively adapting to 

disturbances in coupled natural and human systems (Baggio & Hillis 2018). Failure to 
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estimate the ability of the associated social systems to circulate beneficial information 

represents a missed opportunity to better understand and frame this emerging field. 

In this study, we examine the social-ecological network structure of wetland management 

in Montana. We make three specific contributions that address the gaps described in the 

preceding paragraphs. First, we define ecological connectivity as a gradient of varying 

thresholds to both explore the utility of this method and to recognize the ramifications 

and potential biases of defining arbitrary thresholds. We also incorporate a measure of 

ecological condition at the node level to draw descriptive inference about the feedback 

between environmental health and social-ecological network structure. Finally, we 

examine how social-ecological network analyses can be better understood and 

corroborated by further exploring the capacity of the social network to rapidly diffuse 

information and solve complex problems. 

We delineate the social-ecological network of wetland managers and wetlands in 

Montana, U.S. for this empirical research. While addressing the methodological gaps 

outlined above, we aim to answer several key research questions: To what degree is 

general or any collaboration associated with improved ecological condition? How readily 

and on what basis do wetland managers in the state collaborate? And lastly, what are the 

implications of these observed trends on the capacity of wetland managers to efficiently 

solve complex problems? While this research provides considerable insight for wetland 

management in the state of Montana, our aim is rather to make methodological advances 

and expand the line of inquiry for social-ecological network science broadly. 
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Methods and Data 

Conceptual Framework 

In this research, we analyze two distinct, but highly interconnected networks. 

These include the collaborative network of Montana wetland management organizations 

and the wetland systems they manage. We refer to this two level network as a social-

ecological network. Our framework for understanding this social-ecological network 

builds upon the established framework developed by Bodin & Tengӧ (2012). We first 

define network substructures, or building blocks, theorized to be important to our 

outcome of interest, effective resource management (Table 1). We then survey the social-

ecological network for the occurrences of these building blocks, comparing them to 

expected occurrences given stochastic network formation or to each other. In our 

analyses, similar to the recent work by Barnes et al. (2019), we also draw inferences 

about the association between social-ecological network structure and resource health by 

incorporating a measure of wetland vegetation condition at the node level (Table 1). 

We investigate our research questions by focusing on two key building blocks. 

Building block 1 represents the number of reported collaborations of each wetland 

managing organization and the reported environmental condition of their associated 

wetlands. This building block is imperative as a baseline for this study to understand how 

any collaboration, regardless of structure, is associated with wetland condition. The 

second building block we identified as critical for this study represents siloed (2a) or 

collaborative (2b) management of connected resources and the associated ecological 

condition of wetlands within each structure. Using building block 2, we are able to 

determine at what level of ecological connectivity between projects organizations are 
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more likely to collaborate and the association between these collaborations and 

ecological condition. We also use building block 2 to explore the possible biases which 

can be introduced into social-ecological network studies by setting blanket connectivity 

thresholds. 

Table 1.1: Social-ecological network building blocks modified from Guerrero et 
al. (2015) & Bodin et al. (2016)*. 

Theory Building block 

1. Degree of managing 

organization. 

 

The number of collaborations, 

or degree, of an organization 

increases their access to 

relevant information and their 

influence within the network 

(Scott 2015). This is theorized 

to have an association with 

the ecological condition of the 

resources they manage.  

 

(1)  

2. Collaborative management 

of connected resources. 

 

The position of an ecological 

node in either an open (a) or 
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closed (b) square is measure 

of organizational 

collaboration (or lack thereof) 

on management of connected 

resources. This is theorized to 

be an indicator of social-

ecological fit with 

implications for ecological 

condition (Bodin et al. 2016). 

(2a)  (2b)  

 

* Social nodes are represented by blue circles and the connections between them by 

blue lines. Ecological nodes are represented by green squares and the connections 

between them by green lines. Resource management is represented by the grey lines 

between the social and ecological nodes. The “?” indicates that we are interested in 

node level characteristics of nodes in that specific position within the building blocks.  

 

Study Area & Scope 

To answer our research questions, we chose to focus on wetlands and 

organizations involved in wetland management in the state of Montana, U.S. Wetlands 

systems are fitting for this research because individual wetlands are discrete in nature, but 

highly connected at the landscape scale (Calhoun et al. 2017). We concentrate on 

Montana because wetland restoration, mitigation, and preservation have emerged as a top 

priority for land management within the state (Montana Department of Environmental 
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Quality 2013). Montana has approximately 2.5 million acres of wetlands within the state, 

representing 2.6% of the land cover (Montana Wetland & Riparian Mapping Center 

2019). These wetland areas are managed by over 150 different organizations, 

encompassing stakeholders at federal, state, and county scales, representing government, 

private, non-profit, and tribal interests. While we focused on capturing organizations who 

work within the state of Montana, some organizations included in the study are not 

physically located within the state, as they have jurisdictions that span multiple state 

lines. We treated these organizations no differently than those who have home offices 

within the state. 

Data Collection 

In this study, we aimed to identify and survey all organizations involved in 

wetland management in the state of Montana. To do this, we began with simple internet 

searches using key words such as: “Montana,” “wetlands,” “restoration,” “riparian,” 

“conservation,” etc. We then evaluated each resulting organization individually for 

relevance to this research. Once we believed we had a relatively representative sample of 

organizations, we used unstructured interviews with five key organizations to identify 

stakeholders we had missed through internet searches. 

After our first round of identifying wetlands management organizations, we used 

Qualtrics (2017) survey software to design and distribute an online survey to all 

identified organizations (S1). This survey used a roster, or list, format to allow 

respondents to select other organizations with whom they collaborate on wetland 

management. In addition to the list of identified organizations, the survey also allowed 

organizations to self-identify any missing organizations who they collaborate with on 
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wetland management. We then surveyed all relevant, newly identified organizations 

through snowball sampling. We also asked survey respondents to answer a variety of 

questions regarding the function of their organization in order to determine their 

relevance to this study and to classify each response as either federal, state, county, tribal, 

non-profit, or private. 

To ensure that the ecological measures used in this study were in-line with 

wetland function, we first defined our environmental outcome of interest (reference 

quality of the wetland, i.e. vegetative makeup), and then defined reasonable connectivity 

thresholds based on this outcome. Wetland vegetation makeup is heavily influenced by 

nutrient flow from adjacent areas (<5km); this effect is diminished as distance increases 

(Houlahan, Keddy, Makkay & Findlay 2006). With this in mind, we constructed 

ecological networks using 1, 2, 5, 10, & 20km connectivity thresholds. 

To gather relevant ecological data, we asked respondents to identify specific 

wetlands that have been a focus for their organization in the last year (name, lat/long) and 

estimate the ecological condition of these wetlands compared to a reference (pristine) 

wetland. Respondents reported ecological condition of their identified wetlands on a 4-

factor Likert scale where the lowest score represents a highly degraded wetland and the 

highest represents a reference or pristine wetland (Table 2).
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Table 1.2: Likert scale used to assess wetland vegetation condition 
Score Wetland Vegetation Condition 

4 At a reference condition, i.e. pristine wetland with all native species 

3 Level of disturbance indicates a slight departure from a reference condition 

2 Level of disturbance indicates moderate departure from a reference condition 

1 Level of disturbance indicates severe departure from a reference condition 

 

To assemble the ecological networks, we created 1, 2, 5, 10, & 20km buffer areas around 

each identified wetland using ArcGis software (Fig. 1). We then created connectivity 

matrices for each threshold area, taking two wetlands as connected if the lat/long 

coordinate provided by the survey respondent of one wetland was within the buffer of the 

other. 

 
Figure 1.1 Simplified map of the wetlands and the ecological connectivity 

measure used in our study. The light green squares represent wetlands that were 
identified using the online survey. Dark green circles are a 20km threshold around 

each wetland. 
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Our sampling efforts in total produced data on the collaborative structure of 169 

wetland management organizations and 55 managed wetlands. Using the inherent 

information on the management of these wetlands, we were able to link both networks 

into a complete social-ecological network for analysis. 

Analyses 

Social-Ecological Estimation 

All two level (social-ecological) network analyses were completed using a 

combination of MPnet exponential random graph model simulation and estimation 

software for multilevel networks (Wang, Robins & Pattison 2009) and the ‘R’ coding 

language for statistical computing (2018). Using MPnet, we were able to estimate the 

prevalence of social collaboration within our network compared to what would be 

expected given stochastic network formation. This method is referred to as exponential 

random graph modeling (Frank & Strauss 1986; Wang, Robins, Pattison & Lazega 2013). 

Exponential random graph models compare observed network statistics to some number 

of randomly simulated networks of similar specifications (1,000 in this case). We use this 

method to calculate the number of ties (n) in building block 1 (Table 1) which would be 

expected given stochastic network formation and compare this to our observed network. 

This method was first proposed for use in social-ecological network analysis by Bodin & 

Tengӧ (2012). 

Using MPnet, we were also able to count the occurrences of building blocks 2a 

and 2b (Table 1) and count the number of wetlands at or near a reference condition 

(reported condition of 3 or 4) in each configuration. These counts allowed us to make 

descriptive inferences about collaborative management of connected resources in this 
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system, as well as to explore the implications and potential biases introduced by set 

connectivity thresholds in social-ecological network studies. 

Social Network Exploration 

To better understand the formation and implications of our observed social-

ecological network, we further explored our study system using established social 

network metrics. All one level (social) network analyses were completed using ‘R.’ We 

intended to understand the overall structure of the collaborative network of Montana 

wetland management organizations by estimating the capacity for complex problem 

solving within our social network as a function of the observed social-ecological 

network. 

We first assessed the modularity of the social network. To determine if the entire 

network is dominated by one cohesive core or multiple sub groups, we used the random 

walk method developed by Rosvall & Bergstrom (2008). This method, implemented in 

the ‘igraph’ (2006) package for ‘R’, maps the probability of information flows within a 

network to delineate the number and structure of distinct modules (Csardi & Nepusz 

2006; Rosvall & Bergstrom 2008; Rosvall, Axelsson & Bergstrom 2009). 

We further assessed the modularity of the social network by applying a k-core 

decomposition algorithm to identify the core organizations. This analysis was also done 

using ‘igraph’. The k-core algorithm defines a minimum set of ties k and recursively 

removes all nodes with fewer than k ties, maximizing k to produce the optimum core 

(Batagelj & Zaversnik 2002; Seidman 1983). 

We then calculated the degree to which each management organization plays a 

bridging role, or contributes to the overall connectivity of the network. We estimated an 
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organization’s role in bridging by calculating the betweenness centrality for each node. 

Betwennness centrality is a standard proxy for estimating an organization’s likelihood to 

fulfil a bridging role within a network (Berardo 2014; Geys & Murdoch 2010). 

(𝑉𝑉) = ∑ 𝜎𝜎𝑠𝑠𝑠𝑠(𝑣𝑣)/𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠≠𝑣𝑣≠𝑡𝑡   

The betweenness centrality of any given node 𝑉𝑉 is represented by the proportion 

of shortest paths 𝜎𝜎 between all combinations of nodes 𝑠𝑠 & 𝑡𝑡 which pass through node 𝑣𝑣. 

The betweenness centrality for any given organization is therefore representative of the 

number of times that the shortest path between any two organizations in the network goes 

through that specific organization. 

Results 

 Social-Ecological Network Findings 

Building Block 1 

To estimate the association between an organization’s social connectivity and the 

ecological condition of the wetlands they manage, we ran a correlation test between the 

number of ties (degree) of each organization and the average ecological quality of the 

wetlands they reported managing. This yielded a very weak correlation of 0.17 (Fig. 2). 

This result is in-line with current literature which suggests that increased collaboration 

alone is not an adequate prescription for improving natural resource management. 



16 
 

 
 

 
Figure 1.2. Correlation between the number of collaborations each organization 

reported (degree) and the average ecological condition of each organization’s 
reported wetlands (quality). Wetland quality was reported on a factor scale from 1-

4, where 1 represents a highly degraded wetland and 4 represents a pristine or 
reference condition wetland.  

We assessed the degree to which wetland management organizations are 

collaborating on wetland projects compared to what would be expected under stochastic 

network formation. The resulting parameter estimate from our two level exponential 

random graph modeling was -0.49 with a standard error of 0.002. When an absolute value 

of an exponential random graph modeling estimate is more than 2x that of the standard 

error, the results are considered significant. This significant, negative output indicates 

that wetland management organizations collaborate significantly less (n) than we would 

expect given stochastic network formation. 

Building Block 2 

We counted the occurrences of both building blocks 2a and 2b, representing 

siloed and collaborative management of connected resources respectively. We counted 

these occurrences for our connectivity thresholds of 2, 5, 10, & 20km and counted the 
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number of wetlands at or near a reference condition in each substructure (reported 

condition 3 or 4). Results from this descriptive analysis indicate that wetland 

management organizations tend to collaborate on connected wetland projects when the 

wetlands are further from a reference condition, i.e. more highly degraded. These results 

also suggest that this effect is exacerbated by increased proximity of the wetland projects 

(Fig. 3). This finding also demonstrates that results from social-ecological analyses can 

be variable depending on the defined threshold for ecological connectivity. In summary, 

this analysis shows that collaboration between wetland management organizations is 

associated with increasing project proximity and reduced ecological condition and that 

the ratio of observed substructures is variable based on the ecological connectivity 

threshold.
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Figure 1.3. Change in the percentage of wetlands at or near a reference condition 

in substructures 2a and 2b at increasing connectivity thresholds. The numbers 
inside the grey circles show the number of substructures which occur at each given 

threshold. 

Social Network Findings 

Given that organizations collaborate largely on the basis of proximity, we would 

expect that the social network of wetland management organizations in the state would be 

highly modular based on region. We assessed the social network modularity as well as 

the role each node plays in overall network connectivity. 

Whole Network Findings 

The random walk algorithm showed that the social network is non-modular (i.e. 

resulting modularity estimate was 0). This result suggests that the peripheral 

organizations are all connected to one primary core of key organizations. 
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To further explore this result, we tested a k-core decomposition algorithm on the social 

network to identify if a core truly exists. The social network produced an optimal core 

with a k of 10 and 22 nodes, meaning that there are 22 interconnected core nodes with at 

least 10 connections to each other (Fig. 4). This result reinforces the conclusion that the 

social network has one cohesive core and is not modular. This is in contrast to what we 

would expect given the social-ecological network outputs. 

 
Figure 1.4. Results from the k-core decomposition algorithm in the social 

network of Montana wetland management organizations. In the first three panels, 
organizations become transparent when they are no longer have the required 

number of ties (1, 5, 10). The fourth panel shows just the optimal core with each 
organization optimized to have 10 ties. 
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Node Specific Findings 

To understand how a non-modular, core periphery network can result from 

independent organizations primarily collaborating based on proximity, we assessed the 

bridging role of each individual organization (Fig. 5). To do this, we measured the 

betweenness centrality (number of times the shortest path between any given pair of 

organizations goes through that organization) of each organization in the sample. Results 

from this analysis showed that just two organizations are responsible for the cohesive and 

efficient structure of information sharing among wetland management organizations in 

Montana. The vast majority of wetland management organizations play little to no 

bridging role within the social network, i.e. they are never or only very rarely on the most 

direct path between any given pair of organizations in the network. The top two bridging 

organizations have a betweenness centrality of 2,465 & 4,935. Given that in this network 

there are 14,196 unique pairs of organizations, this means that ~35% & 17% of all 

possible communications go through the top two bridging organizations respectively. 

When we remove either of these organizations individually, and rerun the random walk 

algorithm testing for modularity, we continue to see a non-modular network (modularity 

of 0). In contrast, when we remove both of the top bridging nodes, our resulting 

modularity of information flow is 3. This suggests that the core of the wetland 

management network in Montana is resilient to removal of either of the two key 

collaborative organizations, but not both. 
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Figure 1.5. Density of betweenness centrality of the observed social network of 
wetland management organizations in Montana. The X axis is on the square root 

scale to maximize the amount of information displayed. The black dashed line 
represents the median betweenness centrality of observed social nodes. 
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Figure 1.6. Observed social network of wetland management organizations in 

Montana. The node size is a function of the number of collaborations each 
organization has with others (degree). Exact office locations have been slightly 

adjusted to protect the identity of survey respondents. 

Discussion 

Our results from the social-ecological analyses for building blocks 1 & 2 show 

that wetland management organizations in Montana collaborate less readily than we 

would expect given stochastic network formation. Where collaborations are present, we 

illustrate that environmental variables (location & condition) are associated with, and to 

some extent likely dictate the structure of collaboration among managers. Given that 

proximity appears to be a strong indicator of collaboration (i.e. organizations tend to 

collaborate with other organizations who have projects close to theirs), we would expect 

the overall social network to be modular based on region. Highly modular networks are 

inefficient for complex problem solving and could result in less-than-optimal 
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environmental outcomes. When we further examine the social network of wetland 

management organizations, we find a core periphery network structure. Core periphery, 

or non-modular networks, are associated with rapid diffusion of useful information and 

efficient complex problem solving (Mason & Watts 2012). 

When we examine the role that individual organizations play in the overall 

collaborative network, we find that just two key (highest betweenness centrality) 

organizations are responsible for the coherence of the social network. We assume that 

cohesive management of ecological resources, notably highly connected resources such 

as wetlands, at the landscape scale should be a primary goal for all large scale resource 

management plans. This goal can be difficult to accomplish given the inconsistencies 

between management jurisdiction, the costs of collaboration, and varying management 

goals. Yet, with this in mind, we couple established methods and an emerging frontier in 

network science to show that just a small number of organizations willing to bear the 

burden of collaboration can facilitate cohesive management at a landscape scale. 

This paper is not intended to make a strong statement specifically about wetland 

management in Montana or make prescriptions, calls to action etc. for wetland managers 

in the state. In this study, we aim to advance the burgeoning field of social-ecological 

network analysis by showing the utility of variable connectivity thresholds, incorporating 

node level measures of ecological condition, and demonstrating how measures of 

information diffusion and complex problem solving within the social nework can be used 

to further explore and substantiate findings from this emerging field. We also show that 

the ratio of network substructures, or building blocks is variable based on the defined 

ecological connectivity threshold. Because it is commonplace to set just one threshold in 
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social-ecological network studies, this introduces a significant source of bias for this 

body of literature. We use this paper to caution against setting single ecological 

connectivity thresholds in future research and instead using variable or more advances 

measures of connectivity. 

Constraints 

A significant constraint in this study and with much survey-based research 

generally is the reliability of self-reported data. Self-reported survey data is known to 

have significant biases in terms of time, favoritism, self-image, etc. (Bound, Brown & 

Mathiowetz 2001). In addition to this limitation, we were also unable to survey the entire 

social network of wetland managers in Montana. While a strength of network science is 

the ability for each individual unit of analysis to be understood and influential, network 

studies are known to be highly influenced by incomplete sampling (Kossinets 2006). In 

this study, we show the influence that just a few nodes can have on network structure. For 

this reason, the incomplete sampling of the social network poses a significant limitation 

for the real-world implications of this research. 

Future Research 

We propose that future research into this specific study system would benefit 

from more robust measures of social connectivity and environmental condition. 

Leveraging data on collaborative interactions such as email correspondence or co-

authorship on projects would provide a more empirical measure of collaboration 

compared to self-reporting. Researchers could also use a more robust measure of 

ecological condition such as floristic quality indexes or remotely sensed data. 



25 
 

 
 

We also urge the production of methods based research and tool development for 

multilevel network analysis and for estimating node characteristics as a function of 

network structure. One promising avenue for this is the advancement of auto-logistic 

actor attribute models (Lusher, Koskinen & Robins 2013). Increasing the usability of 

auto-logistic actor attribute models will allow future research to estimate the effect size of 

specific network building blocks on nodes within them; this method is similar to a linear 

modeling framework, while acknowledging the lack of independence in network data. 

Conclusions 

Social-ecological network analysis is a growing field with innumerable possible 

trajectories for future research. We build upon the current frameworks for 

operationalizing these networks to show that just two organizations willing to bear the 

burden of collaboration can facilitate cohesive management of connected resources at a 

state-wide scale. Alongside this empirical study, we explore a gradient of ecological 

connectivity thresholds to build a dynamic understanding of the role of connectivity in 

the two level system. We observed variable results based the gradient of connectivity 

thresholds, which leads us to warn against arbitrary thresholds of ecological connectivity 

in future social-ecological network studies as they may bias findings. Lastly, we employ 

traditional methods in social network analysis to further explore the social component of 

our two level network, showing the utility of these well-established methods to bolster 

social-ecological network findings. While the information presented in this study can 

surely be of use for informing wetland management practices in Montana, U.S., we want 

to make clear the constraints of this research due to data availability and emphasize the 
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methodological advances made in this research for future social-ecological network 

studies and for natural resource management research broadly. 
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CHAPTER TWO: BRINGING FORECASTING INTO THE FUTURE: USING 

GOOGLE TO PREDICT VISITATION TO U.S. NATIONAL PARKS 

Abstract 

In recent years, visitation to U.S. National Parks has been increasing, with the 

majority of this increase occurring in a subset of parks. As a result, managers in these 

parks must respond quickly to increasing visitor-related challenges. Improved visitation 

forecasting would allow managers to more proactively plan for such increases. In this 

study, we leverage internet search data that is freely available through Google Trends to 

create a forecasting model. We compare this Google Trends model to a traditional 

autoregressive forecasting model. Overall, our Google Trends model accurately predicted 

97% of the total visitation variation to all parks one year in advance from 2013-2017 and 

outperformed the autoregressive model by all metrics. While our Google Trends model 

performs better overall, this was not the case for each park unit individually; the accuracy 

of this model varied significantly from park to park. We hypothesized that park attributes 

related to trip planning would correlate with the accuracy of our Google Trends model, 

but none of the variables tested produced overly compelling results. Future research can 

continue exploring the utility of Google Trends to forecast visitor use in protected areas, 

or use methods demonstrated in this paper to explore alternative data sources to improve 

visitation forecasting in U.S. National Parks. 
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Introduction 

Visitation to parks and protected areas benefits human health, local and national 

economies, and promotes pro-conservation behavior (Cullinane Thomas, Koontz, & 

Cornachione, 2018; Halpenny, 2010; Maller, Townsend, Pryor, Brown, & St Leger, 

2006; Maples, Sharp, Clark, Gerlaugh, & Gillespie, 2017). In 2017, the United States 

National Park Service (NPS) broadly contributed an estimated 306,000 jobs and $35.8 

billion in direct economic output; visitor spending specifically contributed to an 

estimated 188,600 jobs and $14.4 billion in economic output, and visitors spent an 

estimated $18.2 billion in local gateway regions (Cullinane Thomas et al., 2018). But 

while park visitation leads to positive outcomes for humans and economies, some argue 

that too many people are “loving parks to death” (e.g., Daysog, 2018; Duncan, 2016; 

Simmonds et al., 2018). Large numbers of visitors can stress natural, cultural, and human 

resources, and lead to a decrease in the quality of visitor experiences (Graefe, Vaske, & 

Kuss, 1984; Hallo & Manning, 2010; Marion, Leung, Eagleston, & Burroughs, 2016). 

Additionally, legal standards may be violated under rapid visitation growth scenarios. 

The NPS is required to identify the maximum number of visitors an area can hold without 

causing resource damage, and to manage visitation at or below this capacity (Cahill, 

Collins, McPartland, Pitt, & Verbos, 2018), but unpredictable increases in visitation may 

limit mangers’ ability to adhere to these standards under changing conditions. One 

notable example of rapid visitation increase can be seen in Joshua Tree National Park 

(Fig. 2.1) starting in 2013. In 2017, 61 of 417 areas managed by the NPS set a new record 

for visitation. Forty-two of these areas broke a record high set in just 2016, and between 

2012 and 2017 visitation to the NPS overall grew by 17% (National Park Service, 2018c; 
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Ziesler & Singh, 2018). Throughout the paper we refer to all areas managed by the 

National Park Service (national parks, national battlefields, national memorials, etc.) as 

NPS units. Without forewarning and sufficient time to prepare, a dramatic increase in 

visitation at an individual national park unit may necessitate that staff address only the 

most pressing needs, at the expense of long-term planning. 

 
Figure 2.1. Time series showing yearly reported visitation to Joshua Tree 

National Park for 2008 - 2018. Figures showing the yearly visitation for all national 
parks can be found in the supplementary material at 

http://hillislab.boisestate.edu/GoogleTrendsForecasting. 

Presently, the NPS predicts future visitation using a model based on historic 

visitation from the previous five years (Ziesler, 2016). While past visitation may be a 

reasonably accurate predictor of future visitation, these models, often referred to as 
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autoregressive, do not account for outside factors, such as the overall state of the 

economy or news & social media attention (Wilmot & McIntosh, 2014). Additionally, 

events such as hurricanes and eclipses influence visitation and are not correlated with the 

previous year’s visitation (Ziesler & Singh, 2018). Managers would benefit from having a 

more accurate method for predicting future visitation quickly and comprehensively. 

Improved forecasting ability could help managers better understand trends in future 

visitation. For example, managers could assess whether a recent spike in visitation is a 

new baseline, a unique anomaly, or whether visitation will continue to increase. Finally, 

predicting visitation can help determine which management actions park officials should 

consider and implement. 

While improved forecasting ability would enable managers to mitigate impacts of 

rapidly increasing visitation, it is important to recognize that limited financial or staff 

capacity could inhibit managers’ access to collecting new data. Therefore, there is a need 

to explore how existing data sources can be utilized, especially those that are cheap, 

relatively easy to analyze, and can be collected at any time. Open-source digital data, 

such as those reported through Google Trends, are relatively effortless to collect and 

represent an opportunity for park managers to make use of search engine data. Mining 

digital data can be especially useful because, by analyzing the records that visitors leave 

behind online, it may be possible to predict changes in rates of visitation that are not 

captured by the current autoregressive model. 

Overall, the goal of this research is not to identify the absolute best forecasting 

model for each and every national park unit, but rather to explore the use of easily 

accessible search engine data and test an alternative forecasting model which can be 
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applied to all parks and protected areas in general. To do this, we analyzed Google 

Trends data for its predictive ability across U.S. National Parks; we did not include other 

units managed by the National Park Service such as national monuments, historic sites, 

etc. The specific objectives of this study are to: (1) investigate whether Google Trends is 

useful for predicting future visitation to U.S. National Parks as compared to an 

autoregressive model, and (2) explore explanations for the discrepancy in model efficacy 

between parks. We hypothesized that the utility of Google Trends as a predictor would 

not be uniform across all parks. Specifically, we speculated that our ability to use Google 

Trends to forecast park visitation may be affected by the proportion of people who plan 

their visits to each park well in advance (e.g., the previous year), operationalized as the 

population surrounding each park and park popularity. 

Literature Review 

A majority of Americans (86%) use general search engines such as Google to 

plan travel (Fesenmaier, Xiang, Pan, & Law, 2011). Additionally, 65% said that general 

search engines were very useful or essential for planning a trip (Fesenmaier et al., 2011). 

Given that such a high percentage of people use general search engines to plan travel, 

researchers have started exploring the feasibility of using search engine data to forecast 

tourism arrivals (e.g. Bangwayo-Skeete & Skeete, 2015; Dergiades, Mavragani, & Pan, 

2018; Yang, Pan, Evans, & Lv, 2015). However, no previous study has explored using 

Google Trends to predict visitation to parks or protected areas. Other sources of 

publically available online data, such as social media, have been useful for exploring 

visitation to public lands (Sessions, Wood, Rabotyagov, & Fisher, 2016; Tenkanen et al., 

2017; Wood, Guerry, Silver, & Lacayo, 2013). However, obtaining data from social 
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media sites can be time-intensive and currently requires knowledge of how to interact 

with application programming interfaces (APIs). Additionally, many social media sites 

are now restricting access to their data. Since many public lands managers may not have 

time, knowledge, or access to gather this data, we explore the usability of Google Trends, 

which is easy and free for anyone to download. 

Previous studies have explored the utility of using Google Trends to forecast a 

range of social phenomena, including flu-related emergency room visits, cinema 

admissions, private consumption, and tourist demand (Araz, Bentley, & Muelleman, 

2014; Hand & Judge, 2012; Önder & Gunter, 2016; Vosen & Schmidt, 2011). Search 

engine data has numerous advantages, including the ability to track preferences in real 

time and providing a high frequency of data (Yang et al., 2015). In one of the earliest 

studies investigating the utility of Google Trends, Choi and Varian (2012) found that 

Google Trends was useful for predicting present conditions in a variety of contexts, such 

as sales of motor vehicles and parts, claims for unemployment, and predicting visitors to 

Hong Kong. However, the authors state that more research is needed to explore whether 

this data would be useful for making future projections (Choi & Varian, 2012). 

After Choi and Varian’s initial finding that Google Trends may be useful for 

tourism, more researchers started to explore ways to use this data. Bangwayo-Skeete and 

Skeete (2015) tested whether Google search data can predict visitor arrivals at popular 

tourist destinations in the Caribbean Islands, and found that Google search data 

significantly improved the ability of models to forecast future visitation. Additionally, Li, 

Pan, Law, and Huang (2017) found that using a search index to forecast future tourism 

demand in Beijing was more accurate than traditional models using past visitation alone. 
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Park, Lee, and Song (2017) also found that models using Google Trends to forecast short-

term tourism inflows to South Korea performed better than traditional time-series models. 

However, Dergiades et al. (2018) noted that using search engine data to forecast tourism 

is often filled with language and platform bias, particularly for destinations that have 

many international visitors. Not all visitors use the same search engines or search for 

things in the same languages. 

This body of literature shows that search engine data can be highly useful for 

forecasting tourism demand. However, it is uncertain how well this data can predict 

visitation to parks and protected areas specifically. These visitors may have different 

search habits than visitors to big cities or hotels. Google Trends data has the potential to 

improve current visitation forecasting methods by capturing trends in social media, news 

media, and other cultural or social shifts that influence public desire to plan and 

subsequently visit any given park unit. Google Trends therefore may represent the 

culmination of these various social phenomena, but further research is necessary to better 

understand the utility of this emerging tool. 

Methodology 

Study Sites 

The U.S. National Park Service (NPS) has 60 units designated as National Parks. 

Two of these sites were not included in this study because of their recent designations 

(Pinnacles and Gateway Arch, which were designated in 2013 and 2018 respectively). 

The relatively new designations did not allow enough historical data for modeling. One 

site, National Park of American Samoa, does not have visitation data for 2008 – 2010, 

and was therefore also not included in this study. The 57 parks studied collectively had 
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85.2 million visits in 2017 (National Park Service, 2018b). National Parks were chosen as 

opposed to other units managed by the National Park Service because they have the most 

reliable visitation data, the highest numbers of visitors, the highest economic and cultural 

impact, and have seen unprecedented visitation changes in recent years (Ziesler & Singh, 

2018). 

Data Collection 

All data used in this paper is readily available through an open source application 

found here: http://hillislab.boisestate.edu/GoogleTrendsForecasting/. This application 

was created using the ‘shiny’ package for the ‘R’ statistical platform (Chang, Cheng, 

Allaire, Xie, & McPherson, 2018). 

Park Visitation 

We retrieved data on historic park visitation from the National Park Visitor Use 

Statistics Portal (National Park Service, 2018c). Methods for collecting these data 

generally include the use of car counters, concessioner reports, and permit information, 

but are specific to each NPS unit. Unit-specific protocols can be found on the NPS 

Visitor Use Statistics website (https://irma.nps.gov/Stats/) (Ziesler & Singh, 2018).We 

downloaded monthly visitation data for each of the 57 U.S. National Parks from 2006 – 

2017; we then summed all months into yearly counts to avoid confounding seasonal 

variation and increase the interpretability of this research. Although we believe some 

reported visitation counts may be erroneous (e.g. “0”), we took all data as is.
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Google Trends 

We downloaded search history data for each national park individually from 2007 

– 2017 using the Google Trends interface, which can be accessed at 

https://trends.google.com/trends/. These data are reported and were downloaded at the 

monthly scale for each park. For most search terms, data is available from 2004 – present. 

In order to complete the search instantly, Google analyzes a sample of the total volume of 

searches and the data is then indexed from 0 to 100, where 100 is the highest volume of 

searches for the selected range. A value of 50 indicates there are half as many searches 

for the term that month compared to the month indexed at 100. In summary, the indexed 

Google Trends data represents the total number of people searching for the specified 

term, compared to the total volume of searches in the selected area, scaled such that the 

highest value in the selected time frame is set to 100.  

Google Trends provides the option to track either search terms or topics. While 

search terms represent only those who type in the exact phrase in a specified language, 

topics represent anyone searching for the specified concept, in any language. We 

therefore used topics rather than search terms due to the ability to capture a broader array 

of searches in other languages and reduce bias. We also set Google Trends to provide 

data based on worldwide searches, since many U.S. National Parks host international 

visitors. 

Spatial Data 

We downloaded two sets of spatial data for this study to explore our second 

research question. The first dataset included shapefiles of the locations of each national 

park in the U.S., which we downloaded from the NPS (National Park Service, 2018a). 
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We also downloaded 2010 U.S. census block data from ESRI Data & Maps (ESRI, 

2018). 

Data Analysis 

Modeling 

In this study, we created an autoregressive model to compare against our 

predictions using Google Trends values alone. We created our own autoregressive model, 

rather than comparing our projections to those of the National Park Service, to establish 

that the variation in model accuracies are a result of the predictive variable (Google 

Trends vs. past visitation), rather than statistical methods. By creating our own 

autoregressive model, we can ensure that we are comparing parallel methodologies and 

achieving the greatest level of interpretability and contrast between the two models. 

Our autoregressive model predicts the expected visitation for each specific park for a 

given year (yi) based on the visitation to that specific park from the five previous years: 

XVis t-1, XVis t-2, XVis t-3, XVis t-4, XVis t-5 

We chose a 5-year autoregressive interval because this is the interval used by the 

National Park Service for forecasting, although they use a simple trend line extension 

based on the last 5 years of visitation (Ziesler, 2016). We used a hierarchical model 

structure to allow each park to retain its own intercept in the equation (β0Park[i]). We fit 

this model to a negative binomial distribution in a Bayesian framework. We chose a 

negative binomial distribution as opposed to a Poisson distribution for these models 

because the negative binomial distribution includes a term (ϕ) to account for 

overdispersion, or high amounts of variability between parks (Gardner, Mulvey, & Shaw, 

1995). We constructed these models with the ‘rstanarm’ package in the R statistical 



44 
 

 
 

programming language (Goodrich, Gabry, Ali, & Brilleman, 2018). A Bayesian model is 

preferred to a frequentist model in this situation because it offers greater flexibility when 

assessing predictor and outcome variables which are on considerably different scales (e.g. 

Google Trends values and park visitation) (Clark, 2005). 

yi ∼NB(μi,ϕ) 

log(μi) = β0 + β0Park[i] + β1 ∗ XVis t-1 + β2 ∗ XVis t-2 + β3 ∗ XVis t-3 + β4 ∗ XVis t-4 + β5 ∗ XVis 

t-5 

Our Google Trends model has a similar overall structure, although it uses a 

specific Google Trends parameter, or slope estimate for each park (β1Park[i]) to predict 

visitation, and is informed by the sum of the Google Trends values for each park one year 

previous to the year being predicted (XGoogle), rather than by previous visitation. 

yi∼NB(μi,ϕ) 

log(μi) = β0 + β0Park[i] + β1 ∗ XGoogle + β1Park[i] ∗ XGoogle 

Both the autoregressive and Google Trends models predict park visitation on the 

annual scale, one year in advance. For example, when we are predicting visitation for 

2015, we are only using visitation through 2014 and Google Trends values through 2014 

for the autoregressive and Google Trends models respectively. 

For both models, we used the default weakly informative prior distributions in the 

‘rstanarm’ package (Goodrich et al., 2018). The default priors for both the intercept and 

all coefficients, are normally centered at 0, with a standard deviation of 10 and 2.5 for the 

intercept and coefficients respectively. The default weakly informative error standard 

deviation or “sigma” is exponential. These prior distributions were chosen because they 

are extremely conservative. The package automatically rescales these priors if necessary 
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to match the order of magnitude of the data. Our autoregressive model did not require any 

rescaling, so the default priors were kept. The Google Trends model rescaled the standard 

deviation of our Google Trends coefficient only; the rescaled standard deviation was 

0.017. Both models showed adequate mixing and Markov Chain convergence. 

Validation 

To assess the out-of-sample predictive ability of both models, we blocked all data 

from 2013 - 2017 by year so that each block contains the data for all parks for that year. 

We then used all data prior to that year to inform or “train” predictions for that block. As 

we progressed through the blocks, we included blocks prior to the year being predicted or 

“tested.” (Fig. 2.2). This procedure is often called cross-validation on a rolling basis. We 

chose to validate our models in this way because it allowed us to make use out of all 

available data, while not informing any predictions based on present or future data 

(Bergmeir & Benítez, 2012). It is in this same vein that we blocked our data by entire 

years, as opposed to by both park and year. This prevented the models from using any 

present or future data, even those from other parks. 

 
Figure 2.2. Our implementation of cross-validation on a rolling basis. 

Error 

We specified our models to yield 2,000 visitation predictions for each park, for 

each year. We took the median of these predictions as our projected visitation forecast. 

All error metrics were calculated based on these median predictions compared to the 
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observed visitation for each park. We chose to use three different metrics to test the 

accuracy of our median predictions. These included R2, sometimes referred to as the 

coefficient of determination, the mean absolute error (MAE), and mean percent variation 

from the observed visitation, or mean percent error. The first two metrics were used to 

compare the overall accuracy of our predictions (median prediction) for all parks, and the 

latter two were used to test the accuracy of our median predictions for each park 

individually. R2 is a useful measure for comparing overall model accuracy (Fig. 3), but is 

unreliable for small sample sizes (e.g. park specific error). R2 also assumes a normal 

distribution for all data, which is not met for the park specific data, further highlighting 

the limitation of this metric for park specific error estimation (The Pennsylvania State 

University, 2018). To compare the error for specific parks, we use the other two metrics. 

For transparency, the R2 for specific parks is provided on the error metrics page of the 

supplementary online application, but we do not recommend using this as an accuracy 

metric for the reasons stated above. We do not use mean percent error to measure overall 

model error because summing total visitation and total model predictions to calculate this 

would result in information on small parks being dominated by larger parks. 

Exploratory Analysis 

With model results in hand, we explored under what conditions Google Trends 

accurately forecasted national park visitation. We hypothesized model accuracy would be 

influenced by both the population surrounding each park and park popularity; we used 

average visitation as an analog for park popularity. We found the population within 50 

miles (80.5 km) of each park by creating a 50-mile buffer around each park area using 
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ArcGIS and summing the populations of all 2010 census blocks for which the centroid 

was located inside the buffer area. 

To explore these hypotheses, we ran correlation tests, looking at the association 

between both the mean park visitation (Fig. 5A) and the total population within 50 miles 

(80.5 km) of each park (Fig. 5B), and the mean percent error between our median 

visitation prediction and the observed visitation for each park. 

Results 

Overall Model Accuracy 

We calculated the mean absolute error (MAE), and R2 between the observed 

visitation and the median prediction for all parks, for all years (2013 – 2017) for both 

models. Our Google Trends model outperformed our autoregressive model by both 

metrics (Table 2.1). 

Table 2.1: Overall error metrics for autoregressive and Google Trends median 
model predictions 
 

 

Model MAE R2 

Google Trends 202,080 0.977 

Autoregressive 230,547 0.867 

 

Overall, our Google Trends model explains 97.7% of all variation in National 

Park visitation (Fig. 2.3A). Compared to our autoregressive model, which explains 86.7 

% of all variation (Fig. 2.3B), the Google Trends model is much more consistent; 

especially when predicting high visitation numbers. 
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Figure 2.3. Scatterplots showing observed vs predicted visitation using the Google 
Trends model (Fig. A) and autoregressive model (Fig. B). The lines represent a 1:1 
line of perfect fit. An interactive version of these plots (showing the year and park 

for each data point) is available at 
http://hillislab.boisestate.edu/GoogleTrendsForecasting.  

Park-Specific Accuracy 

We calculated the MAE and mean percent error (Fig. 2.4) between the observed 

visitation and the median prediction for each park, for all years (2013 – 2017) for both 

models (S2). At the park level, both the Google Trends and autoregressive models 

showed considerable variation in accuracy. Our autoregressive model produced a mean 

percent error that ranged from 4.37% to 39.61% for individual parks. For our Google 

Trends model, the low and high of this metric were 3.51% and 26.31% respectively. 

These values can be interpreted as follows: on the scale of the observed visitation, on 

average for all modeled years, how much higher or lower were the model projections for 

that specific park from the real visitation. 

We also show the MAE for each specific park. Because MAE is highly correlated 

with the scale of the data (Willmott & Matsuura, 2005), we suggest that MAE should be 

used only to compare between models for individual parks, rather than between parks 
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(i.e. larger parks will tend to naturally have larger MAE). For this reason, we compare 

predictions between parks using the mean percent error (Fig. 2.4).  

 

 
Figure 2.4. Difference in mean percent error between the Google Trends and 

autoregressive models, by national park. The full park name associated with each 4-
letter code can be found on the online application 

(http://hillislab.boisestate.edu/GoogleTrendsForecasting/) under the tab “Unit code 
key & population data.” 

For the majority of national parks individually, our autoregressive model 

outperformed our Google Trends model. In these cases, where the autoregressive model 

http://hillislab.boisestate.edu/GoogleTrendsForecasting/
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is preferred, it is from 0.34% to 12.6% more accurate than the Google Trends model. In 

cases where the Google Trends model outperforms the autoregressive model, it is 0.03% 

to 27.2% more accurate. 

Exploratory Results 

Exploratory analyses examining which factors might influence the accuracy of 

Google Trends model predictions were largely insignificant. The mean yearly visitation 

to each park yielded an insignificant correlation of -0.07 with the mean percent error of 

each park (Fig. 2.5A). When we calculated the same metric for population within 50 

miles of each park, we produced a weak correlation of -0.31 (Fig. 2.5B).  

 
Figure 2.5. Correlations between the mean percent error of the Google Trends 

model and mean park visitation (Fig. A) and population within 50 miles of the park 
(Fig B). Each point represents one national park. 

Discussion 

Our study found that Google Trends is a useful tool for forecasting future 

visitation at U.S. National Parks. As with previous studies, which demonstrate that search 

engine volume is a useful indicator of future tourism arrivals (Bangwayo-Skeete & 

Skeete, 2015; Dergiades, Mavragani, & Pan, 2018; Yang, Pan, Evans, & Lv, 2015), we 
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show that Google Trends can perform well in the context of U.S. National Parks. This is 

true despite the factors that make park visitation different from general tourism arrivals, 

such as limited cellular or internet service, or differences in planning behaviors. 

However, this study does not suggest that Google Trends is always a better tool than 

previously established models; rather, we encourage consideration of these data as a 

supplemental resource where appropriate. We speculate that Google data is most useful 

when park visitation is measured consistently, and given Google's status as a leading 

search engine. Futher, we aimed to demonstrate a method for testing the usefulness of 

mining search engine data for park settings, and suggest that future research continue 

exploring how and when these data sources can augment or update present visitation 

forecasting efforts. 

While our Google Trends model performed better than our autoregressive model 

overall, the autoregressive model performed better for a higher number of individual 

parks. To explain these differences, we predicted that factors related to pre-trip planning 

(i.e. nearby population) and popularity of parks (i.e. number of visitors) would correlate 

with the accuracy of the Google Trends model; we expected that parks with smaller 

proximate populations and higher visitation would be searched more often in the pre-

planning phase, and thus the Google Trends model would perform better for those parks. 

However, only one of these factors (nearby population) correlated loosely (cor = -0.31) 

with forecasting accuracy, and the relationship was the opposite of what we hypothesized 

(Fig. 5B). This correlation indicates that Google Trends was a slightly better predictor in 

parks that had larger nearby populations compared to parks with smaller nearby 

populations. Our hypothesis that the magnitude of visitation would impact the efficacy of 
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our Google Trends model resulted with an insignificant correlation of -0.07. This 

suggests that the utility of Google Trends as a predictor is unaffected by the number of 

visitors a park receives. We found no minimum visitation threshold for this model to be 

useful. 

It also appears that previous growth rate contributes to the discrepancy in model 

performance. The autoregressive model, although extremely accurate for the majority of 

parks, shows a tendency to predict unrealistically high levels of visitation (e.g. >12 

million visitors) for years following visitation spikes in large parks. This tendency 

appears to explain the majority of the error in the autoregressive model. 

Limitations and Future Research 

A significant limitation when considering Google Trends data, especially from the 

practitioner perspective, results from how Google reports the data. Google Trends does 

not report raw numbers, but rather rescales values between 1 and 100, where 100 is 

always the highest volume of searches for the selected time range. This means that every 

time there is a new high in Google search interest included in a user’s search parameters, 

the data will rescale. In other words, the values Google reports may vary based on the 

time range selected. It is therefore not possible to create a permanent database of trend 

numbers, nor is it possible to make an assessment about visitation based on a single 

number. Any given value on Google Trends lacks meaning alone, but rather needs to be 

interpreted in the context of trends over time. Additionally, values cannot be compared 

across search topics or time frames and it cannot be assumed that a certain value means 

the same thing each time Google Trends data are viewed. Alternatively, access to the 
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algorithm, or collaboration with Google, may allow researchers to use the raw search data 

and yield numbers that can be used by practitioners. 

Additionally, the accuracy of visitation data reported by the National Park Service 

(NPS) may affect the predictive ability of these models. For example, Kobuk Valley 

National Park reports zero visitors in 2014 and 2015. Because we used a hierarchical 

approach where all park predictions borrow strength from each other, the impact of a few 

inaccurate parks may impact the model’s ability to predict for other parks (Steenbergen & 

Jones, 2002). Future research could couple the visitation data reported by the NPS with 

other sources, such as interviews with NPS staff, to build more accurate estimates of 

yearly park visitation. 

Another limitation of using Google Trends is that countries which do not use 

Google would not be accounted for in a Google Trends model. While the use of Google 

“topics” rather than search terms accounts for language differences, visitors from those 

nations where use of Google is restricted or uncommon would not be included in 

forecasting calculations. Future research can delve into the applicability of Google 

Trends for specific types of cases by applying U.S. only searches, rather than 

international searchers, for parks that see low international visitation. 

Future research into Google Trends can also experiment with smaller temporal 

scales, such as weekly or monthly data, or spatial scales, such as sites within parks or 

larger geographic regions. Smaller time scales may also allow researchers to test the 

hypothesis that Google Trends can be used to predict visitation changes as a direct result 

of acute events (e.g. superblooms, wildfire, or news & social media attention). 

Researchers could also explore what lag times exist between Google searching and 
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visitation; for example, they could use questionnaires to determine how far in advance 

people begin researching their destination park via Google, perhaps exploring whether 

visitors to certain parks begin trip planning sooner. Since this study used search data from 

the current year to predict visitation the following year, we assumed some visitors would 

be searching for information about a park the year prior to visiting. Finally, future 

research may test alternative hypotheses as to when and why Google Trends models 

perform better or worse than autoregressive models. 

Management Implications 

Due to the limitations outlined above, we do not recommend managers substitute 

current autoregressive forecasting with Google Trends modeling. However, managers 

may consider Google Trends, or similar search volume data, as part of a mosaic of data 

informing expectations of future conditions. Additionally, parks and protected area 

managers who do not have access to forecasting tools due to time or monetary 

constraints, can monitor Google Trends to gain an idea of future visitation volume, 

particularly as it relates to past trends. 

Conclusions 

While the Google Trends model constructed for this study performed better than 

our autoregressive model overall, it does not necessarily follow that Google Trends is a 

superior tool for modeling individual U.S. National Parks. Instead, we suggest that 

Google Trends, or other search engine volume metrics, be considered when modeling 

future visitation, and utilized in part or in full when appropriate. Further research is 

needed to further explore this tool, as well as address limitations. Finally, future research 
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may employ the methods presented in this paper to test new and emerging data sources 

related to visitor volume, density, spatiotemporal distribution, and more. 
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S1. Chapter 1 Supplemental Information 

Survey tool used for data collection in chapter 1 
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S2. Chapter 2 Supplemental Information 

Table S1. Park specific error metrics for autoregressive (AR) and Google 
Trends (GT) model predictions.  

Park GT MAE 

GT mean 
percent error 
(%) 

AR 
MAE 

AR mean 
percent error 
(%) 

Acadia 488,431 14.75 217,869 7.39 

Arches 309,460 21.33 153,804 10.81 

Bad Lands 81,481 8.17 80,212 8.14 

Big Bend 45,484 11.64 43,998 11.30 

Biscayne 23,656 4.93 29,966 6.13 

Black Canyon of the 
Gunnison 

48,663 18.70 46,745 18.24 

Bryce Canyon 539,741 24.09 240,666 11.50 

Canyonlands 149,904 21.16 125,657 18.26 

Capitol Reef 243,327 23.43 164,637 15.95 

Carlsbad Caverns 42,936 8.83 42,953 8.87 

Channel Islands 58,537 19.60 60,121 18.81 

Congaree 22,580 17.89 23,847 18.77 

Crater Lake 143,822 21.10 120,365 17.99 

Cuyahoga Valley 78,037 3.51 172,225 7.41 

Denali 118,870 20.41 118,892 20.70 

Death Valley 179,446 14.59 114,889 9.53 

Dry Tortugas 8,351 12.57 6,778 10.37 

Everglades 88,890 8.43 89,947 8.57 

Gates of the Arctic 1,472 13.46 663 5.79 

Glacier 542,936 18.80 218,064 8.07 

Glacier Bay 64,049 12.01 58,709 11.09 

Great Basin 31,801 21.74 31,626 22.50 

Grand Canyon 968,392 17.05 1,242,26
6 

20.88 
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Great Sand Dunes 82,670 20.92 76,583 19.31 

Great Smokey Mountains 1,340,246 12.40 4,469,57
5 

39.61 

Grand Teton 422,420 13.41 190,025 5.90 

Guadalupe Mountains 26,590 14.58 22,051 11.66 

Haleakala 176,253 17.14 172,697 16.01 

Hawaii Volcanos 299,417 16.20 191,847 10.87 

Hot Springs 172,655 11.60 105,476 7.14 

Isle Royale 5,769 26.31 5,149 22.01 

Joshua Tree 605,830 24.81 273,236 12.35 

Katmai 5,743 19.16 4,013 12.83 

Kanai Fjords 30,799 10.05 20,170 6.21 

Kings Canyon 78,167 13.88 80,267 13.96 

 

 

Table S1 cont. 

Park GT MAE 

GT mean 
percent error 

(%) 
AR 

MAE 

AR mean 
percent error 

(%) 

Kobuk Valley 8,117 NA 8,247 NA 

Lake Clark 5,309 26.61 6,270 33.04 

Lassen Volcanic 67,888 13.62 72,385 14.91 

Mammoth Cave 53,842 9.37 80,152 14.34 

Mesa Verde 49,219 9.11 51,552 9.45 

Mount Rainier  129,197 9.66 110,668 8.44 

Northern Cascades 4,909 19.61 3,603 13.52 

Olympic 297,997 9.06 140,088 4.37 

Petrified Forest 76,577 9.71 89,325 11.86 

Redwood 58,523 11.32 51,400 9.96 

Rocky Mountain 834,281 19.90 1,037,23
5 

24.80 
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Saguaro 111,526 12.84 102,733 12.10 

Sequoia 169,893 14.33 132,021 11.65 

Shenandoah 128,865 9.08 87,602 6.42 

Theodore Roosevelt 86,008 12.48 70,686 10.39 

Virgin Islands 46,978 13.46 30,911 9.36 

Voyageurs 10,086 4.23 16,909 7.11 

Wind Cave 44,646 7.55 41,348 6.83 

Wrangell-St. Elias 6,427 8.82 5,444 7.10 

Yellowstone 458,662 11.04 695,581 17.58 

Yosemite 467,972 10.04 718,864 17.00 

Zion 874,822 21.53 572,177 14.26 
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