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ABSTRACT

“Traditional” Metal Carbonyl Clusters (MCCs) contain a framework of multiple
metal atoms bound together through formal metal-metal (M-M) bonds. Current methods of
synthesis result in different cluster sizes and lack a method to control growth. This project
proposes a new method of MCC synthesis to build larger structures utilizing secondary
non-covalent interactions to develop “non-traditional” MCCs. The N,N’-diarylurea moiety
is a strong hydrogen bond donor/acceptor that can induce self-assembly into larger
secondary structures. The union of metal carbonyl and urea chemistry provides a potential
method of “non-traditional” MCC synthesis. This proof of concept experiment will
elucidate foundational information such as: reduction-oxidation potentials, chemical
organization, chemical structure, and binding constants. The x-ray crystal structures detail
a nearly planar molecular organization and refute the formation of urea ribbons due to a
stabilizing intramolecular hydrogen bond interaction. Stabilizing n-x stacking and a urea-
7 stacking interactions were observed as a result of the planar orientation. A titration study
confirms the strong anion binding capability of the metal carbonyl appended urea moiety
and confirms anion binding as a possible method of coordinating multiple units together to
build “non-traditional” MCCs. The n-x interactions and urea-n interactions were observed
as the largest contributor to the molecular structure and as a result, the appended group 6
metal centers are separated by distances between 6.00 A and 8.00 A. The close contact
between metal nuclei has the potential to allow for electrochemical communication albeit

not with these compounds. The characterization and synthesis of 1,3-bis(p-

Vi



isocyanophenyl)urea and its group 6 metal containing derivatives provided sufficient data

to lay a solid foundation for continuing research.
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CHAPTER ONE: BACKGROUND
1.1 Introduction to Metal Carbonyl Cluster Chemistry

The transition metals are of interest to many because there is still a lot of chemistry
to be discovered. One area of interest that has been around since the 1930s is metal carbonyl
cluster (MCC) chemistry.!? Due to the increase of electron density of the transition metals,
the nuclei are bound to ligands such as carbon monoxide (CO) that stabilize the electron
rich nuclei as shown in Figure 1la. MCCs are multinuclear compounds containing a
framework of metal atoms bound together through formal metal-metal (M-M) bonds as
shown in Figure 1b. The first metal carbonyl compounds were discovered between the
1930s and the 1950s in the form of Co2(CO)s, Fe2(CO)s, and Fes(CO)12.2 MCCs can vary
in size depending on the synthetic method used and there is some debate on the minimal
amount of metal centers required to be defined as a cluster; however, that number is
subjective and speculative. Traditionally, three metal nuclei is the most common minimal
amount required to be considered a cluster.> MCCs were the subject of many studies during
the 1970s and 1980s because of promising results in catalysis, the cluster cores acting as
electron reservoirs, and nanoparticle development.>* For a cluster to be considered an
electron reservoir it must be able to undergo reversible reduction and oxidation events.

Figure 2 shows an example of a CO stabilized cluster that exhibits the electron reservoir



property. When exposed to an electric potential, the [Nis2Cs(CO)36]® complex shows the

ability to accept and donate electrons as depicted in Figure 2b.

A) CO B) CO CO
OC CcO

OC ”"‘H!;,, | \“‘\\\\"\CO \I\|/I |\|/|/

M oc” | co /|
o™ | ~co cc\| / co “©

CO M
oc” | >co
CcO

Figure 1 A)Example of a generic saturated metal carbonyl, B) Example of a

generic saturated metal carbonyl cluster.

B)

-02 0.5 1.0 -1.5 -1.900
E [VOLT]
6-
[Ni_C(co) ]
32 6 36
Figure 2 A) Model metal carbonyl cluster depicting 32 metal centers, 6

interstitial carbons, and 36 CO stabilizing ligands. B) The oxidation-reduction
potential of the [Nis2Cs(CO)36]> MCC.

1.2 The Traditional Synthetic Methods of MCCs
Coordinatively saturated metal species are relatively unreactive but coordinatively
unsaturated metal species are able to condense into larger clusters. Traditionally, these
clusters have been designed using three well-documented synthetic pathways: photolysis,
pyrolysis, and chemically induced condensation reactions. > While these methods are
proven, they are not methods to synthesize predefined structures; rather they are methods

to promote growth. An example of this growth is shown in Figure 3 by the condensation



of Os3(CO)12, by pyrolysis to yield: Oss(CO)16, Oss(CO)1s, Os7(CO)21, and Osg(CO)23.%°
Even though these methods of synthesis are effective, the product distribution is very
broad. This project proposes a new method of MCC synthesis that will allow for some
control over the product distribution. One possible method of synthesis is to build larger
structures via self-assembly through secondary non-covalent interactions to develop “non-

O=

10C)0s Osic0ly

|
/

A) s L o B) l."’\X:.“o-nﬁ \

ool —

—

Figure 3 Possible metal carbonyl cluster geometries A. Oss(CO)16, B. Oss(CO)1s,
C. Os7(CO)21, D. Osg(CO)23 and E. Osg(CO)23

traditional” metal carbonyl clusters.

A “traditional” MCC might be more simply defined as a complex with multiple
metal nuclei upon further deconstruction. A structure that contains at least three metal
nuclei but that are not covalently bound may still fall under the simple definition of a MCC
but labeled as a “non-traditional” MCC. As long as there are multiple metal centers
available it might be conceivable that the properties “non-traditional” MCC to resemble a

“traditional” MCC.



1.3 Introduction to the Diaryl Urea Moiety

The urea moiety is ubiquitous throughout chemistry and biology and has been the
subject of many discussions.”~® Recently, urea has been exploited for its use in building
larger secondary structures via self-assembly.” Several key features of the urea moiety give
it the unique ability to self-assemble into larger structures. First, the carbonyl of the urea is
a powerful hydrogen bond acceptor and the hydrogens on the urea nitrogens are strong
hydrogen bond donors. The hydrogen bonding capability of the urea moiety allow for self-
association into foldamer structures and hydrogen-bonded chains as seen in Figure 4a.”1%-
12 Second, the strong hydrogen bond donor ability of the urea hydrogens also allows for
binding around various anions and opens up the possibility of using urea as a templating

agent as seen in Figure 4b.13

a) Self-assembled urea tapes b) Halide or oxoanion binding
TR o Sy Rl i - =&
O ” Pl i " O\ /”\ /@
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F g g%_,/;:
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™, N = ¢) m-n interactions
S r: T R Q R
0 [F P
= i A
- T

Figure 4 Various modes of self-assembly of the urea moiety. a) Urea tapes
facilitated by strong hydrogen acceptor-donor ability of the urea carbonyl and urea
N-Hs b) Anion complexes possible due to the hydrogen bond donor ability of the urea
N-Hs c) Stabilizing n-  interactions

From Figure 4b it is easy to see how one urea moiety would attract one anion in a
1:1 ratio. However, depending on the strength of the urea binding pocket (host) and the

strength of the anion (guest) different ratios of binding can occur other than a simple 1:1



ratio. The other ratios that could be seen, 1:2 or 1:3, stem from increasing the number of
urea functional groups in the host molecule which would allow for multiple anion
molecules to be bound.* Additionally, the crystal packing organization might also be
affected by the binding strength of the urea moiety.

Crystal engineering can be impacted by anion binding through co-crystallization
with the anions which can affect the overall crystal packing and physical properties.t>1°
Co-crystallization with a cation/anion pair will cause the spatial orientation in the crystal
lattice structure to be altered in some manner. A potential change in crystal packing could
be facilitated by strongly basic anions because the strongest hydrogen bonds are formed by
the most electronegative anions.*® Anion binding will play a large roll in crystal
engineering and in finding ways to alter the crystal packing structure. As previously
mentioned, MCCs are characterized by their electronic properties which are typically
examined in the solid state and being able to modify the solid crystal structure will aide in
further experimentation. Finally, the urea moiety can be further functionalized with aryl
rings on either side to promote self-assembly into larger structures via m-stacking
interactions. 1’19

There are several parameters that affect the stabilizing -stacking interactions. First,
most of the information will be gathered in the solid state because the molecules will be
locked in a conformation. In the liquid state the urea moiety will rotate and spin on an axis
disrupting the m-stacking interactions. Secondly, the distances between molecules will
determine if the stabilizing effect is actually a result of n-stacking. The normal range for
n-stacking distances is between 3.3 — 3.8 A. Finally, there are several ways that z-stacking

aromatic rings can arrange: parallel stacked, offset stacked, or T-shaped. Depending on



other steric interactions or potential solvent interactions one of those arrangements will be
preferred.r’1® Understanding the fundamental elements surrounding the N,N’-diarylurea
moiety is vital in trying to develop a “non-traditional” style of MCC.

This project will detail the union of metal carbonyl and urea chemistry by
examining the various intermolecular interactions observed in the functionalized N,N’-
diarylurea moiety appended to group 6 metal carbonyls and lay the foundation for methods
of synthesis for non-traditional MCCs.

1.4 Introduction to Carbonyl (CO) and Isocyanide (NC)

As previously stated, CO ligands surround transition metals to form stable
complexes.?’ The CO ligand is able to achieve the stabilizing effect because of its unique
molecular orbitals. CO’s molecular orbitals are shaped such that the filled o-orbital lies
on the carbon molecule and the empty two n"-orbitals also reside on the carbon molecule.
Electron rich metal centers can be stabilized by offloading, or back donating, electrons
into the empty 7" orbitals. This orbital configuration, shown in Figure 5a and Figure 5c, is
what makes CO considered to be a weak -donor and a stronger r-acceptor.?’ The
isocyanide ligand (NC) has a similar molecular orbital to CO as seen in Figure 5b and 5d

and as a result exhibits similar sigma-donor and n-acceptor properties.?%:2



Figure 5 (A) Molecular model of CO c-orbital (B) Molecular model of aryl
isocyanide o-orbital (C) Molecular model of CO n"-orbital (D) Molecular model
of aryl isocyanide nt"-orbital

A ligand can be identified as a m-accepting ligand by evaluating bond distances
from the metal center to the ligand. Strong m-acceptors, such as CO, see a shortening M-C
bond length but a lengthening of the C-O bond as depicted in Figure 6. The lengthening
of the C-O bond is a result of the electron rich metal center offloading electrons into the
CO ligand & * -orbitals. As the & * -orbitals (antibonding) are populated the bond order
decreases and is observed by the increase in distance between the C-O. Experimental
evidence documents the NC ligand as a m-acceptor, but not as strong as CO.???3 These
similarities in bonding properties are attributed to the isolobal structures of molecular
orbitals of CO and NC. Furthermore, unlike the CO ligand, the NC ligand has been
shown to be functionalized in other organic molecules which would allow for the

incorporation of other stabilizing groups such as an aryl ring.2°
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Figure 6 c-donor and s-acceptor diagram of a metal with a CO ligand

1.5 Union of Urea Chemistry and MCC Chemistry: A New Synthetic Method of
Non-traditional Clusters

My research hypothesis asks if the self-assembly/templating characteristics of the
urea moiety can be utilized in bringing multiple metal carbonyls into close contact in order
to elucidate previously unknown structural organizations. There are multiple accounts of
the urea moiety forming larger secondary structures via non-covalent interactions as well
as the NC ligand being further functionalized after attachment to a metal.”?*2°> With all the
potential applications of MCCs and the lack of continual research, the field is prime for a
new synthetic method to emerge that allows for advancements and rejuvenation of the
MCC era. Due to this project being a proof of concept experiment, a lot of the work
surrounding the synthesized compounds will be to determine foundational information
such as: reduction-oxidation potential, chemical organization, chemical structure, and
binding constants. Finally, this thesis will take a brief look into future avenues of interest

that will be available as a result of this fundamental research.



CHAPTER TWO: SYNTHESIS, CHARACTERIZATION, AND PROPERTIES OF
METAL APPENDED N,N’-DIARYLUREAS
2.1 Introduction

Metal carbonyls are transition metals that are stabilized by the carbon monoxide
(CO) ligand. The CO ligand allows for the electron rich metal center to off-load electron
density to the empty =n’-orbitals of the CO, thus stabilizing the compound.}® A
conglomeration of metal carbonyls will yield a metal carbonyl cluster (MCC). Low-valent
metal clusters have been of interest since the early 1970s due to their connection to
nanoparticles and nanotechnology. Initial studies explored applications as electron
reservoirs and homogeneous catalysts, but it was determined that cluster fragments of the
overall larger cluster were responsible for these properties.* Further studies have suggested
that several reported metal carbony! clusters share properties similar to nanocapacitors. 42’
A major road block in the advancement of MCC chemistry is the large product distribution.
The traditional methods of synthesis rely on thermal, photochemical, or redox condensation
to build larger and larger structures, but because these methods rely on unsaturated metal
nuclei reacting with one another, the range of products varies. This remains the largest
barrier to the advancement of MCC chemistry.!

It is hypothesized that larger MCC subunits can be designed through incorporation
of organic ligands capable of non-covalent interactions that promote self-assembly as
shown in Figure 7. Through the incorporation of a linker molecule capable of non-covalent

interactions it should be possible to assemble a larger structure that incorporates metal
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carbonyls. An integral part of supramolecular chemistry is determining the method that
promotes most efficient building, and the non-covalent interactions are a large contributor.
As a result of the result of research in non-covalent interactions, there have been many
advancements in chemical sensing, molecular recognition, and self-assembly.?3-% In order
to facilitate self-assembly, an ideal ligand would be the urea moiety which is a well-known
self-assembling agent and potentially offers another way of MCC formation. 123132 N N’-
diarylurea molecules have been examined and shown to exhibit self-assembly
characteristics through non-covalent interactions such as n-stacking and hydrogen bonding
to make larger secondary structures. The versatility of the N,N’-diarylurea moiety in

promoting supramolecular interactions was the reason for its selection.”** The union of

@ ® @
ce - . ) [
+ — @@ .. o — e
@
®e [ ®
. = Transition Metal + (CO)_ . = hydrogen bonding, 7t-

interactions, Coulombic
attraction, etc

Figure 7 Generic outline of a linker molecule being attached to transition metal
carbonyl and being assembly into a larger structure via secondary non-covalent
interactions.

N,N’-diarylurea molecules and metal carbonyls has the potential to produce a new form of
MCCs.

Conjoining a saturated metal carbonyl to a N,N’-diarylurea moiety is unique
synthetic challenge because a CO ligand needs to be displaced and replaced with a ligand
that can be further functionalized. The stabilizing CO ligand is a strong w-acceptor and
similarly, the isocyanide (NC) ligand is also a strong n-acceptor albeit weaker than CO.

Isocyanides have been seen in transition metal complexes which provides precedence that
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the NC ligand and a CO ligand can be switched.?? The NC is the linker for metal
carbonyls and N,N’-diarylureas and should allow for exploration of the strong secondary
interactions between different metal appended N,N’-diarylurea moieties. Scheme 1 shows

the synthetic route taken to develop the linker molecule as well as appending the metal

c c o ¢
11
NH, N oot .. .
cl cl N NZ
KOHaq) triphosgene (~0.16 eq) \©\ j-)L /@"
EtOH, CHCI, * CH,Cly E E
H, A NH; EtsN 85%
(OC)5M‘CSN NzC’M(CO)5 M(CO)s
\Q O /©/ (M = Cr, Mo, W)
Cr, 519% NJJ\N PdO (cat.)
M= Mo, 77% DR DMF
W, 44%

Scheme 1: The synthetic method to create the metal appened species. * K. Heinze and J.
Volker. Eur. J. Inorg. Chem. 2003, 21, 3918-3923

carbonyls. The goal is to potentially elucidated interactions between multiple metal centers
that are a direct result of the organization from the N,N’-diarylurea non-covalent
interactions to create a “non-traditional” MCC.
2.2 Results and Discussion

Table 1 shows each of the novel compounds synthesized which exclusively include
1a, 1b, 2a, 3a, 3b, and 4a. Complex 1a would include the NC substituent with the organic
linker molecule labeled “a’ and complex 2b would include the NCCr(CO)s substituent and
organic linker *b’ etc. Complexes 1a and 1b (Table 1) were both prepared by utilizing the
strategy described by Heinze, and Gale to prepare a structure with similar
functionalities.>*3* Compounds 1a and 1b were purified by sublimation and solvent

extraction. Compounds 2a, 3a, and 4a (Table 1) were prepared via chemical
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decarbonylation using Trimethylamine N-oxide (TMANO) to displace a CO ligand from
the metal carbonyl, [M(CO)s] = [M(CO)s], then an unsaturated intermediate reacts with
the available carbon of the NC on compound 1b. Compound 3b (Table 1) was synthesized
utilizing the TMANO method as well in an effort to determine as much supramolecular
information as possible when only one metal was appended versus two metal centers. The
NC ligand was monitored by infrared spectroscopy (IR) because the carbon did not show
up well in the 3C NMR and because NCs have a diagnostic peak around 2200 cm™, as
summarized in Table 1. It is worth noting that the C=N stretching frequency increases
upon metal coordination, suggesting that the NC acts primarily as a o-donor with very
little—if any—rm-accepting character. The increase in stretching frequency of the C=N
from 2127 cm™ to ~2140 cm™ is due to less back donation from the metal centers to the
NC and is seen throughout all metal bound complexes. Alternatively, the C=0 stretching
frequency decreases in all metal bound complexes suggesting that as one CO is replaced
with an NC ligand, the CO ligands become better n-acceptors. The complete structures of
2a, 3a, 3b, and 4a were confirmed by single-crystal X-ray diffraction studies where the

crystals were grown from an acetonitrile solution in a freezer at -20 °C.
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Table 1 Diagnostic infrared C=N and C=O stretching frequencies for
compounds 1-4

N=C (1) a) : )
N=C—Cr(CO)s (2) o
R= N=C—Mo(CO)s (3)
N=C—W/(CO). (4)
N N
| J
R H
b) o /@/
N)KN
| J

v(N=C)cm® v(C=0)cm?
1a 2127 N/A
2a 2143 2058, 1955
3a 2143 2063, 1956
4a 2144 2059, 1950

*Recorded in CH,Cl,

In order to obtain as much information supramolecular interactions, crystal
structures of compounds 2a, 3a, 3b, and 4a were obtained. The crystal structures that were
elucidated for compounds 2a, 3a, 3b, and 4a showed some high order packing and are
shown in Figure 8 and Figure 9. Most interestingly, it was observed that complexes 2a, 3a,
and 4a were essentially planar molecules as a result of the NN’ -diarylurea moiety
intramolecular hydrogen bond interactions. It is worth noting that a different crystal

organization pattern was observed for compound 3b (Figure 9a).
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Figure 8 (A) Molecular structure of complex 2a (B) Molecular structure of
complex 3a (C) Molecular structure of complex 4a. Thermal ellipsoids are
rendered at the 50% probability level. Only urea N-H atoms and aromatic
hydrogen atoms participating in hydrogen bonding are shown. Solvent molecules
(CH3CN) are omitted.
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A)

B)

Figure 9 (A) crystal structure of complex 3b (B) Unit cell organization of
complex 3b. Only urea N-H atoms participating in hydrogen bonding are shown.
Solvent molecules (DMF) is shown in unit cell.

Literature examples detail how the urea moiety can form urea ribbons via hydrogen
bonds as seen earlier in Figure 4. In order for the hydrogen bond interaction to occur, the
phenyl ring needs to be slightly tilted out of plane from the rest of the molecule, Figure
10b. The steric hindrance between the phenyl rings is enough to disrupt the formation of
the hydrogen bonds and subsequently the urea ribbons (Figure 10a).31:% The Cortho—Cipso—
Nurea—Curea torsion angles of 0.46° and 7.5° (Table 2) are similar to those reported by

Nangia for other N, N’ -diarylureas bearing para-substituted electron-withdrawing groups.*



Table 2

M - Cisocyanide

Cortho - H-- 'Ourea

Cortho_cipso_N urea_C urea
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Selected bond distances, close contacts, and torsion angles for
complexes 2a, 3a, and 4a.

2a (M =Cr)

3a(M=

Mo) 4a(M=W)

1.981(2), 1.979(2)
2.24,2.22

3.31

3.29

Torsion Angles (°)

11,61

Distances (A)
2.127(2), 2.130(2)
2.25,2.23

3.33

3.32

0.46, 7.5

2.119(3), 2.113(3)
2.25,2.23
3.32

3.31

0.45,7.8

t distance between adjacent mean N, N’-diarylurea molecular planes
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Figure 10
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(A) Planar conformation demonstrating steric interactions that

prevent urea ribbon formation. (B) Absence of intramolecular hydrogen bond
between ortho proton and urea oxygen that would allow for aryl ring rotation and
urea ribbon formation. (C) Highlighting the atoms that are used to calculate the
torsion angle and determine planarity.
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The crystal structures of 2a, 3a, and 4a clearly detail an essentailly planar
orientation between the urea and the aromatic rings. Interestingly, the crystal structures do
not show the formation of urea ribbons but rather show that the planar orientation is
prefered due to a stabilizing intramolecular hydrogen bond interation. The planar structure
is most likely attributed to an intramolecular hydrogen bond happening between the ortho
aryl protons and the urea carbonyl oxygen atom showing contact distances of 2.25 A and
2.23 A. A similar type of arylurea intramolecular interaction was also documented by
Etter.3” Molecular modeling studies have been done that detail the N,N’-diphenylurea does
favor the planar conformation.'® These intramolecular hydrogen bond features are present
in compounds 2a, 3a, and 4a with structural information presented in Table 2. The level of
contribution to the molecular structure that the intramolecular hydrogen bond interaction
is responsible for is visible through the torsion angles seen in Table 2. The planar
conformation is measured by the angle of the Cortho—Cipso—Nurea—Curea Mmolecules. In complex
2a, 3a, and 4a the torsion angles are relatively similar and small and that is a direct result
of the strength of the Cortho — H---Ourea interaction. The crystal structures also show n- @
interactions similar to that suggested in Figure 4 which are a large contributing factor of
the prefered crystal packing. Overlapping aryl rings have been documented as a stabilizing
interaction and can promote one organizational pattern over others.8

In the proposed ©- © stacking image in Figure 4c, the aryl rings do not directly
overlap but are actually staggered. This staggered pattern repeats evenly and the distances
between centers of the aryl rings do not exceed 4.2 A.*>% The molecular packing of
compound 2a, 3a, and 4a do resemble the m-m stacking example but upon closer

examination there are subtle differences. Figure 11a shows the distance between any two
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molecules alternating from 3.33 A to 3.32 A but more importantly, the distances between
the centers of the aryl rings differ from literature values. The distance from the top face of
one aryl ring to the bottom face of the aryl ring above is 3.76 A, while the distance from
the bottom face of the same aryl ring to the top face of the aryl ring below is 4.79 A. The
importance of this lies within the positioning of each molecule when looking at the crystal
packing from a “top-down” perspective such as in Figure 11b. Unlike Figure 4c, the
stacking pattern in Figure 11a does not repeat evenly for every two molecules, instead the

top and bottom face of any given molecule have different overlap patterns.

R e W .

376A | 333A
o

at9A L 332A

<>
(b) _ _
n—m interactions
Oéﬂ@.@ urea—= interactions

Figure 11 (a) Distances between adjacent N,N'-diarylurea planes and the aromatic ring
centroids of complex 3a. (b) Alternating stacking motifs viewed normal to the N,N'diarylurea
planes. Hydrogens atoms and all ring substituents are omitted for clarity

The top face interaction is most similar to a true n-mt stacking interaction but the
bottom face interaction is more closely related to a urea-x stacking interaction. In the latter
case, the distance between the aryl ring center and the urea nitrogen atom is only 3.34 A,

suggesting the existence of a non-covalent urea—x interaction. Similar close contacts are
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also observed in the Cr- and W-containing derivatives (2a and 4a), as tabulated in Table 2.
Due to the planar conformation, the molecules overlapped with one another and were
stabilized by n-n stacking and a urea-= stacking interaction. The crystal lattice structure of
compound 3a is shown in Figure 11a and the planarity is ubiquitous even with potential
steric bulk of Mo(CO)s subunits. The N,N' -diarylurea moiety promotes uniform packing
and results in staggered placement of metal atoms (Figure 11b). The proximity of the metal
atoms to one another is one of the defining characteristics of this crystal structure.

A considerable amount of interest in MCCs results in the ability of metal atoms to
communicate electronically and the electron transfer process between metal nuclei. In
species that are electroactive the parameter that affects electron transfer the most is physical
distance. Figure 12a shows the unit cell of complex 3a and the spatial organization of
multiple molecules. Interestly. in typical biological systems experience electron transfer
events at a range of 4 A to 14 A %39 With an observed separation of 6.0 to 7.6 A between
metal atoms in Figure 12D, it is easy to see potential of these compounds to evolve into a
relevant charge transferring material, however, compounds 2a, 3a, 3b, and 4a are not
expected to undergo reversible redox events and have only been able to undergo
irreversible oxidation (Appendix-A Figure S5). It is worth nothing that the metal carbonyls
appended to the organic linker molecule only have one metal nuclei, in future works if
larger premade clusters were to be appended it would be expected that the crystal packing
organization will be different and might not fall within the accepted distances of electronic

communication.



(b)

Figure 12 (a) Molecular packing of 3 with the orientation of the molecules relative
to the unit cell axes shown. (b) Alternative representation of the molecular packing of
3 viewed through the N,N’ -diarylurea planes with the CO ligands omitted and Mo
atoms depicted at full Van der Waals radius.

An oxidation-reduction potential of complexes 2a, 3a, and 4a was obtained in order
to examine the electrochemcial properties. The cyclic voltammogram (Figure S5) shows
the ability of these complexes to be irreversiblly oxidized. Interstingly these complexes
undergo a two electron oxidation where one electron is removed prior to the second and at
a lower potential. The electron oxidation is not surprising because the complexes have two
metal centers, what is surprising is that the oxidation steps happen at different potentials
suggesting that there is some intramolecular communication between the to metal nuclei.
This thesis is not yet at the point to consider charge transferring materials, instead this
thesis sought to identify fundamental interactions complexes 2a, 3a, 3b, and 4a to elucidate
foundational chemical packing properties.

Another method to promote cluster building and crystal packing with the urea

moiety is to coordinate molecules around an anion because the urea hydrogens are known
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to bind anions.”*® A study about the anion-binding behavior in a non-aqueous solutions
was carried out with compounds 1a, 1b, 2a, 3a, 3b, and 4a. The mono-urea systems
typically do not self-assemble therefor the anion titration study was conducted as a
foundational experiment to determine the baseline strength of anion binding.* All
compounds were subjected to various anions to determine a baseline of binding between
the urea hydrogens and different classes of anions. As representatives of the halides,
inorganic oxoanions, and organic oxoanions, CI, NOs", and H3CCOO" were used in the
form of their tetrabutylammonium salts. The host—guest interaction of interest can be
represented by the equations in Figure 13. The interactions of host-guest chemistry can be
treated as a system in equilibrium where the amount of free host (H) and free guest (G) is
in balance with the complexed host-guest (HG). As a result of the host-guest interactions
being in equilibrium, the general equilibria constant (Ka) is related to the concentrations of
the [H], [G], and [HG]. However, only the concentrations of the [H] and [G] are known
from the beginning of the experiment. Initially the concentraion of [HG] will be zero
because no amount of [G] will have been titrated into the [H] solution. As the titration of
[G] into a solution of [H] progresses to form the [HG] complex, there will be a change in
a physical property that can be monitored, in this case chemical shift (§) through *H NMR.
The AJ is related to the mole fraction of [HG]/[H]o, monitoring the change in chemical
shift at each addition of [G] to a known [H]o solution allows for the determination of the
[HG]. Being able to identify the [HG] through *H NMR then enables the K. to be
determined through the use of a non-linear regression equation that requires the initial
concentration of the host, [H]o, the intial concentraion of the guest. [G]o, and the host-guest

concentraion, [HG].
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o= e = ite) 2 = 2 ()
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Figure 13 Equations to determine non-linear bonding constants for host-guest
chemistry

A series of 'H NMR incremental titrations were conducted to extract the binding
constants of each anion with each new compound. All methods and calculations were set
up analogous to the methods described by Pall Thordarson.*?#* A steady increase in
magnitude of binding is seen in Figure 14 with changing anions, NOz™ < CI" < H:CCOO,
this is consistent with the literature by Bregovic et. al. As preiviously mentioned, the mono-
urea host molecules were not expected to bind in any other ratio than 1:1 and that is what
was observed in the mass spectrometry data in Appendix A. In Figure 14, the two separate
linear portions of the graph will intersect around the 1 molar equivalent which is supporting
evidence for a 1:1 binding ratio. The m/s data in Appendix A shows that the most abundant
species is the 1:1 host-guest complex for all compounds based on relative peak intensities

and isotopic patterns.
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Figure 14 (a) Overlay of 'H NMR spectra obtained during the titration of 1 (8.98
x 10° M in CD3CN) with [BusN]CI. (b) Comparison of 'H NMR chemical shifting

observed during titration of 1 with nitrate, chloride, and acetate anions. The dotted
lines represent the results of non-linear fitting to a 1:1 host—guest binding model

Unfortunately, the N-H signal experienced broadening because of the low
concentration (= 1 x 10 M), and as a result the aromatic proton chemical shifts were used
to probe binding behavior. The two unique aromatic proton chemical shifts observed for
compounds 1-4, are a result of a protons nearest the urea moiety (H,) and the protons
nearest the NC functional group (Hg). The protons closer to the urea moiety (H.) show up
more down field than the protons closer to the NC moiety. The (H,) signal also experienced
broadening therefor, the (Hg) signal was used to determine K for all host—guest complexes.
Figure 14a illustrates the effects of chloride titration on the aromatic *H NMR signals of
1a, while Figure 14b compares the magnitude of the *H NMR chemical shifts observed
upon titration of 1a with the different anions nitrate, chloride, and acetate anions. Figure
15 details the magnitude of the *H NMR chemical shift for complexes 2a, 3a, and 4a. A
similar trend is seen by all molecules and the corresponding anions. From Figure 14b and
Figure 15 it is clear to see that the chemical shifts change as the anions change from NO3

< CI'< CH3COO".
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Figure 15 'H NMR chemical shifting observed during titration of (a) 2a, (b) 3a,
and (c) 4a (~ 0.1 mM in CD3CN) with nitrate, chloride, and acetate anions. The dotted
lines represent the results of non-linear fitting to a 1:1 host—guest binding model

The titration study confirms that anion binding is a strong feature of the urea moiety
even with the addition of multiple metal carbonyls attached to the molecule. The binding
constants from compounds 1a, 2a, 3a, and 4a are in the magnitude of 103, 10* and 10° as
tabulated in Table 3 which is interestig because it provides enough support to potentially
pursure anion binding as a method of templating. Anion binding could be used as a possible
method of coordinating multiple units together if more than one urea moeity were present
in the system which could potentially bring multiple metal carbonyls within close

proximity to build non-traditional MCCs through secondary interactions.
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Table 3 Equilibrium constants (log K) for formation of host—guest complexes
of 1-4 with selected anions.
log K?
Urea Host NO3~ Cl- CH3;COO~
la 3.62(5) 4.42(3) 5.30(8)
2a 3.52(3) 4.35(3) 5.41(7)
3a 3.60(3) 4.35(8) 5.50(3)
4a 3.70(3) 4.58(3) 5.66(4)

#1n CDsCN solution at 25 °C. Values in parentheses indicate uncertainty in the last figure

2.3 Conclusion

The characterization and synthesis of 1,3-bis(p-isocyanophenyl)urea and its group

6 metal containing derivatives provided sufficient data to lay a solid foundation for

continuing research. The mostly planar conformation of the crystal structure is largely a

result of the of the hydrogen bonding ability of the ortho proton closer to the oxygen

molecule of the urea carbonyl. The urea pocket has a high affinity to bind anions at very

low concentrations (10, 10, and 10° M). The crystal packing structure revealed the n-n

interactions and urea-z interactions as the largest contributor to the molecular overlay. As

a result of the crystal packing structure, it was observed that the appended group 6 metal

centers are between 6.00 A and 8.00 A which is a distance that has the potential to allow

for electrochemical communication.
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CHAPTER THREE: FINAL STATEMENTS
3.1 Conclusion

Throughout the duration of this project, | have been able to develop a method that
allows for organic molecules with the ability to self-assemble to be appended to low-valent
metal carbonyls. A thorough study of the molecular organization revealed important
foundational information about the role of x -stacking and urea- = stacking in the molecular
crystal structure. The crystal structures allowed me to see the preferred method of
organization as well as determine which features contribute the most to the organization
patterns. The appended metal carbonyls are in close proximity in the solid state to
suggestion potential for electronic communication. The titration studies revealed a strong
affinity to bind anions at the urea hydrogens which opens the door to continuing research
to unlock different binding ratios with the incorporation of multiple urea moieties or to
pursue co-crystallization with an anion to alter the molecular crystal packing.

3.2 Future Works

The results of this project allow for the continuation of this research in several
different directions: 1. Alteration of the substitution of the aromatic rings of the N,N’-
diarylurea moiety can change the conformation from mostly planar to something different
which may unlock new crystal packing organization patterns. 2. Appending larger premade
MCCs to the organic linking molecule to increase the overall metal nuclearity. 3. Changing
the urea group to another known self-assembling moiety. 4. Continuing with anion binding

studies to explore different potential binding ratios or crystal packing organizations.
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Regardless, additional research should be put into the field of understanding
supramolecular interactions of metal carbonyl complexes and the facilitating role that self-

assembling agents possess.
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CHAPTER FOUR: EXPERIMENTAL

General Considerations. All synthetic operations were carried out under a nitrogen
atmosphere using standard Schlenk techniques to exclude moisture and oxygen. Nitrogen
was prepurified by passage through columns of activated copper catalyst (BASF PuriStar
R3-11G) and molecular sieves (RCI-DRI 13X). Glassware was dried in an oven at 130 °C,
assembled while hot, and allowed to cool under reduced pressure. All solvents were dried
according to published procedures and degassed with nitrogen prior to use.** Cr(CO)s
(Beantown Chemical, 99%), Mo(CO)s (Acros, 98%), W(CO)s (Beantown Chemical, 97%),
PdO (Acros), trimethylamine N-oxide dihydrate (Beantown Chemical, 98%), and
triphosgene (Chem Impex, 99%) were used as received without further purification. 4-
isocyanophenylamine was prepared according to literature procedures and sublimed prior
to use.®®

Infrared spectra were obtained using a Thermo Scientific Nicolet iS5 FTIR
spectrometer equipped with a 0.2 mm BaF: liquid cell. *H and 3C NMR data were recorded
on a 600 MHz Bruker AVANCE IIlI spectrometer. Electrospray ionization mass
spectrometry (ESIMS) was carried out using a Bruker HCTultra CTD Il spectrometer in
negative ion mode. Samples of 1-4 were dissolved in CH3CN and treated with the
tetrabutylammonium salts of chloride, nitrate, and acetate prior to injection into the mass
spectrometer. Elemental analyses were performed by Atlantic Microlab, Inc in Norcross,

GA, USA.
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Synthesis of 1,3 bis(p isocyanophenyl)urea (1a). 4-isocyanophenylamine (3.00 g,
25.4 mmol) was dissolved in 80 mL of anhydrous dichloromethane, followed by addition
of 7.8 mL of triethylamine. The solution was cooled to 0 °C and triphosgene (1.20 g, 4.04
mmol) was slowly introduced into the reaction vessel. (CAUTION: Triphosgene is toxic
and its reaction with 4-isocyanophenylamine generates considerable heat and an abundance
of hydrogen chloride. Triphosgene should be added very slowly and in several portions to
allow for sufficient heat exchange with the cooling media.) The light yellow reaction
mixture was magnetically stirred for 3 hours at 0 °C, then stirred for an additional 45 hours
at 25 °C. Methanol (10 mL) was added to the reaction mixture and stirring was continued
for an additional hour. Organic solvents were removed under reduced pressure, and the
residues were dissolved in 60 mL of dimethyl formamide (DMF). Deionized water (60 mL)
was slowly added, and the reaction vessel was gently heated to ensure that the solution
remained clear. After addition of deionized water, the solution was allowed to cool slowly
to room temperature, whereupon an off-white precipitate formed. The precipitate was
filtered and washed with three 20 mL portions of water, followed by 20 mL of diethyl ether
and 20 mL of hexanes, respectively. After drying under reduced pressure for one day, 1
was obtained with sufficient purity for further experimentation. Yield: 2.82 g (84.6%). IR
(CH2Cly, cm™): ven 2027 (vs). *H NMR (CDsCN, 20 °C): & 7.38 (d, 4H, Ar-H, J = 8.86
Hz), 7.53 (d, 4H, Ar-H, J = 8.86 Hz), 7.60 (br s, 2H, N-H). 3C NMR (CD3CN, 20 °C): &
119.3, 127.1, 140.3, 151.9, 163.5, ipso C not observed. MS(ESI): m/z 297 [M + CIT], 324
[M + NO37, 321 [M + CH3COOT". Anal. Calcd for CisH10N4O: C, 68.69; H, 3.84; N,

21.36. Found: C, 68.47; H, 4.05; N, 21.17.
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Synthesis of 1-(isocyanophenyl)urea (1b). 4-Isocyanophenylamine (2.67 mmol,
318 mg) and 4-isocyanophenylamine (2.54 mmol, 300 mg) were added to a standard
Schlenk flask and dissolved in 20 mL of CH3CN. The flask was refluxed for 3 h. After
reflux, the flask was cooled to rt and the solvent was removed under reduced pressure.
The product was extracted with toluene and filtered. The filtrate was washed with toluene
followed by hexanes and dried under vacuum at 0 °C for several h. The pale yellow solid
was transferred to a tared vial (433 mg, 72% vyield). IR (CH2Clz, cm™): yon 2064 (w). *H
NMR (600 MHz, CD3CN, §): 7.05 (t, J = 7.41 Hz, 1H, Ar H), 7.31 (t, J = 8.15 Hz, 2H,
Ar H), 7.37 (m, 3H), 7.44 (d, J = 7.61 Hz, 2H, Ar H), 7.53 (d, J = 8.59 Hz, 2H Ar H),
7.55 (br s, 1H, NH). 3C NMR (600 MHz, CDsCN): § 117.29, 119.01, 122.91, 127.06,
128.85, 139.07, 140.74, 152.29, 163.36, 206.47. MS(ESI): m/z 367.8 (M), 339.8 (M -
CO), 311.8 (M - 2C0), 283.8 (M - 3CO), 255.8 (p- 4C0O), 227.8 (M- 5CO), 199.8 (M-
6C0O), 171.8 (M-7CO), 143.8 (M - 8CO).

Synthesis of Complex 2a. Cr(CO)s (317 mg, 1.44 mmol) and 1a (182 mg, 0.694
mmol) were combined with 25 mL of DMF and heated to 90 °C, whereupon PdO (14 mg,
0.12 mmol) was added to the reaction vessel. The reaction mixture was magnetically stirred
at 90 °C for 15 minutes, then allowed to cool to room temperature. DMF was removed by
vacuum distillation, leaving behind an oily residue. The oily residue was extracted with
dichloromethane and filtered to remove insoluble impurities. Hexanes were added slowly
to the dichloromethane filtrate until the solution became cloudy, then the solution was
centrifuged at 5000 rpm for 2 minutes, after which the clear supernatant was decanted and
dried under reduced pressure. The residual pale yellow solid was dissolved in warm

acetonitrile, then cooled slowly to -20 °C to yield crystals of 22CH3CN. Yield: 242 mg
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(50.7%). IR (CH:2Cl, cm™): ven 2143 (M), vco 2058 (), 1955 (vs). *H NMR (CDsCN, 20
°C): § 7.43 (d, 4H, Ar-H, J = 8.75 Hz), 7.58 (d, 4H, Ar-H, J = 8.89 Hz), 7.71 (br s, 2H, N—-
H). $3C NMR (CDsCN, 20 °C): 6 120.2, 127.9, 141.1, 153.0, isocyanide and adjacent ipso
carbons not observed. MS(ESI): m/z 681 [M + CI], 708 [M + NOz], 705 [M + CH3COO"
]". Anal. Calcd for C27H13Cr2Ns011: C, 47.18; H, 1.91; N, 10.19. Found: C, 47.23; H, 1.83;
N, 10.16.

Synthesis of Complex 3a. Mo(CO)es (811 mg, 3.07 mmol) and 1a (403 mg, 1.54
mmol) were dissolved in 25 mL of tetrahydrofuran (THF). A dropping funnel charged with
trimethylamine N-oxide dihydrate (342 mg, 3.07 mmol), THF (10 mL), and methanol (10
mL) was attached to the reaction flask, the contents of which were added dropwise to the
reaction mixture over the course of 1 hour. The reaction mixture was magnetically stirred
for 6 hours at room temperature, after which the solvents were removed under reduced
pressure. The residues were extracted with dichloromethane and filtered to remove
insoluble impurities. Hexanes were added slowly to the dichloromethane filtrate until the
solution became cloudy, then the solution was centrifuged at 5000 rpm for 2 minutes, after
which the clear supernatant was decanted and dried under reduced pressure. The residual
off-white solid was dissolved in warm acetonitrile, then cooled slowly to -20 °C to yield
crystals of 3a. Yield: 871 mg (77.0%). IR (CH2Clz, cm™): yen 2143 (M), veo 2063 (S), 1956
(vs). 'H NMR (CDsCN, 20 °C): & 7.38 (d, 4H, Ar-H, J = 8.88 Hz), 7.53 (d, 4H, Ar—H, J =
8.84 Hz), 7.60 (br s, 2H, N—H). 13C NMR (CDsCN, 20 °C): § 119.3, 127.2, 140.4, 151.8,
isocyanide and adjacent ipso carbons not observed. MS(ESI): m/z 769 [M + CI], 796 [M
+ NOz7, 793 [M + CH3COOT. Anal. Calcd for C2sH10M02N4O11: C, 40.89; H, 1.37; N,

7.63. Found: C, 41.03; H, 1.38; N, 8.15.
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Synthesis of Complex 3b. Mo(CO)s (556 mg, 2.10 mmol) and 1b (500 mg, 2.10
mmol) were dissolved in 25 mL of tetrahydrofuran (THF). A dropping funnel charged with
trimethylamine N-oxide dihydrate (233 mg, 2.10 mmol), THF (10 mL), and methanol (10
mL) was attached to the reaction flask, the contents of which were added dropwise to the
reaction mixture over the course of 1 hour. The reaction mixture was magnetically stirred
for 6 hours at room temperature, after which the solvents were removed under reduced
pressure. The residues were extracted with ethyl acetate and filtered to remove insoluble
impurities. The filtrate was adsorbed onto silica then run through a column (50% CH2Cl/
40% hex/10% EtOAC), after which the solvents were removed under reduced pressure. The
residues were resuspended with dimethylformamide (DMF) and then slowly titrated with
water to produce crystalline needles of 3b. Yield: 606 mg (60.7%). IR (CH2Clz, cm™): ven
2143 (M), vco 2063 (s), 1956 (vs). *H NMR (CDsCN, 20 °C): & 7.05 (t, 1H, Ar-H, J = 7.41
Hz), 7.31 (t, 2H, Ar—H, J = 8.15 Hz), 7.40 (m, 3H), 7.45 (d, J = 7.61 Hz, 2H, Ar H), 7.55
(d, J = 8.59 Hz, 2H Ar H), 7.61 (br s, 1H, N-H). 3C NMR (CDsCN, 20 °C): 5 119.3,
127.2,140.4, 151.8, isocyanide and adjacent ipso carbons not observed. MS(ESI): m/z 474.
Anal. Calcd for C2sH10M02N4O11: C, 40.89; H, 1.37; N, 7.63. Found: C, 41.03; H, 1.38; N,
8.15

Synthesis of Complex 4a. W(CO)s (369 mg, 1.05 mmol) and 1a (132 mg, 0.503
mmol) were combined with 25 mL of DMF and heated to 90 °C, whereupon PdO (10 mg,
0.082 mmol) was added to the reaction vessel. The reaction mixture was magnetically
stirred at 90 °C for 5 minutes, then cooled to room temperature. DMF was removed by
vacuum distillation, leaving behind an oily residue. The oily residue was extracted with

dichloromethane and filtered to remove insoluble impurities. Hexanes were added slowly
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to the dichloromethane filtrate until the solution became cloudy, then the solution was
centrifuged at 5000 rpm for 2 minutes, after which the clear supernatant was decanted and
dried under reduced pressure. The residual yellow solid was dissolved in warm acetonitrile,
then cooled slowly to -20 °C to yield crystals of 4a. Yield: 211 mg (44.1%). IR (CH2Cly,
cm™): ven 2144 (M), veo 2059 (s), 1950 (vs). *H NMR (CDsCN, 20 °C): § 7.43 (d, 4H, Ar-
H, J=8.93 Hz), 7.57 (d, 4H, Ar-H, J = 9.00 Hz), 7.69 (br s, 2H, N-H). *C NMR (CDsCN,
20 °C): 6 119.3, 127.3, 140.4, 151.8, isocyanide and adjacent ipso carbons not observed.
MS(ESI): m/z 945 [M + CIT, 972 [M + NOs7T, 969 [M + CH3COOT". Anal. Calcd for
C27H13NsOu1W2: C, 34.10; H, 1.38; N, 7.36. Found: C, 34.29; H, 1.31; N, 7.41.
Determination of Equilibrium Formation Constants (K) by *H NMR. In typical
titration experiments, CD3CN solutions of urea hosts 1-4 (0.75 mL, 0.10 mM) were loaded
into standard NMR tubes and initial *H NMR spectra were collected. Fourteen aliquots of
an anion-containing solution were then delivered to the NMR tubes using a microsyringe,
the mass of each aliquot being recorded on a microbalance. The first ten aliquots of titrant
were taken from a stock solution of the anion guest (2.0 mM) prepared by dissolving a
known quantity of the appropriate tetrabutylammonium salt in a 0.10 mM solution of the
urea host, thereby minimizing host dilution effects. The final four aliquots were taken from
a stock solution of anion guest (4.0 mM) prepared in the same manner. Sufficient anion
was delivered during each titration step to enable collection of *H NMR spectra at the
following approximate [anion]/[urea] ratios: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.2, 2.0, 3.0, and 4.0. The upfield shifting of the aromatic proton signals centered between
7.38-7.43 ppm was recorded and values of K were calculated by non-linear fitting to a 1:1

binding model using the WinEQNMR2 software package.*
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Crystal Structure Determination of Complexes 2-4. X-ray diffraction data were
collected at 100 K on a Bruker D8 Venture using MoKa-radiation (A = 0.71073 A). Data
were corrected for absorption effects using the SADABS area detector absorption
correction program.“® The structures were solved by direct methods using Olex2 with the
SHELXT structure solution program and refined with the SHELXL refinement package
using least squares minimization.#’=*° All non-hydrogen atoms were refined with
anisotropic thermal parameters. Hydrogen atoms attached to heteroatoms were identified
from the residual density maps and refined with isotropic thermal parameters. All other
hydrogen atoms in the investigated structure were located from difference Fourier maps,
but their positions were ultimately placed in geometrically calculated positions and refined
using a riding model. Additional calculations and refinement of structures were carried out
using APEX3 and SHELXTL software.>® Graphical representations of crystallographic
data were generated using the Mercury software package.®! X-ray data collection and
refinement parameters are tabulated in Table 4.

Electrochemical Measurements. Cyclic voltammograms were recorded in 0.1 M
[BusN][PFs] DMF solutions at v = 100 mV/sec with a Princeton Applied Research
VersaSTAT 3 potentiostat. All experiments were performed using a standard three-
electrode configuration under an atmosphere of pure nitrogen. Glassy carbon working
electrodes (3 mm, CH Instruments) were used for all measurements and were polished
with aqueous slurries of 0.3 um and 0.05 um alumina powder, sequentially. After
polishing, the electrodes were rinsed with Milli-Q water, methanol, and dichloromethane
and dried in a stream of air. Working electrodes were preconditioned by performing three

cyclical scans from 2.0 to -2.5 V at 250 mV/sec in a DMF solution of [BusN][PFe] (0.1



35

M). A graphite rod served as the counter electrode and a silver wire immersed ina 0.1 M
DMF solution of [BusN][PFe] and separated from the cell compartment by a porous glass
frit (CoralPor 1000) was employed as a Ag*/Ag pseudoreference electrode. Measured
potentials are reported relative to the ferrocenium(1+)/ferrocene(0) redox couple, which

was achieved by addition of ferrocene at the end of each set of scans.



Table 4
and 4a.
Compound 2a 3a
Formula C27H13Cr2NsO11 - Co7HizMoz
N5O11
Formula weight 687.42 775.30
Temperature (K) 100 100
Crystal system monoclinic monoclinic
Space group P2i/c P2i/c
a (A) 6.8126(2) 6.8694(5)
b (A) 13.8536(5) 14.0047(10
)
c (A) 32.1439(11) 32.536(2)
a (deg) 90 90
p (deg) 93.8630(10) 93.115(2)
y (deg) 90 90
Volume (A3 3026.82(17) 3125.5(4)
Z 4 4
density (g/cm® 1.509 1.648
abs coeff (mm) 0.784 0.867
F(000) 1384 1528
Crystal size (mm) 0.42x0.18 x0.12 0.4 x0.05
x 0.05
A (MoKa) (A) 0.71073 0.71073
20 range (deg) 5.87 to 55.068 5.8181to
61.12
reflns (coll) 40623 120953
reflns (unique) 6937 9565
Data/restraints/par 6937/0/415 9565/0/415
ameters
GOF (on F?) 1.131 1.072
Final R indexes [I > R1 = 0.0356, Ri=
26 (D] wR2 = 0.0848 0.0327,
WR>2 =
0.0578
Final R indexes [all R1=0.0433, Ri =
data] wR2 = 0.0877 0.0555,
WR> =
0.0623
Largest diff. 0.45/-0.23 0.58/-0.47

peak/hole (e A®)
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X-ray data collection and refinement parameters for complexes 2a, 3a,

4a
C27H13Ns
O011W2
951.12
100
monoclini
C
P2i/c
6.8575(4)
13.9691(9)

Monosubsssss
species

32.525(2)
90
93.145(2)
90
3110.9(3)
4
2.031
7.454
1784
0.17 x
0.14 x
0.05
0.71073
5.804 to
54.968
50308
7120
7120/0/41
5
1.206
R1 =
0.0242,
WRy =
0.0463
Ri1 =
0.0312,
WRy =
0.0477
0.88/-0.43
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Figure S3.  ESI-MS data for 1:1 host—guest complexes of 3a with (a) NOs™, (b) CI
, and (c) CH3COOr
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Figure S4.  ESI-MS data for 1:1 host—guest complexes of 4 awith (a) NOs™, (b) CI'
, and (c) CHsCOOr
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Figure S5.  Cyclic voltammograms of complexes 2a, 3a, and 4a (= 1 mM) recorded
in 0.1 M [BusN][PFs] DMF solution at v = 100 mV/sec with a glassy carbon working
electrode, graphite rod counter electrode, and a silver wire pseudoreference electrode
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