
SWARM BEHAVIOR TO MITIGATE REBOUND IN AIR

CONDITIONING DEMAND RESPONSE EVENTS

by

Jason Yasuto Kuwada

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mechanical Engineering

Boise State University

August 2019

c© 2019
Jason Yasuto Kuwada

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Jason Yasuto Kuwada

Thesis Title: Swarm Behavior to Mitigate Rebound in Air Conditioning Demand
Response Events

Date of Final Oral Examination: 30th August 2019

The following individuals read and discussed the thesis submitted by student Jason
Yasuto Kuwada, and they evaluated the presentation and response to questions
during the final oral examination. They found that the student passed the final
oral examination.

John F Gardner, Ph.D. Chair, Supervisory Committee

Hoda Mehrpouyan, Ph.D. Member, Supervisory Committee

Aykut Satici, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by John F Gardner, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.

This one’s for you Mike. I hope you found your peace.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. John Gardner for your expertise and patience along

with the opportunity to work on this project. Your mentorship has helped me grow

personally and professionally. Thank you to Dr. Hoda Mehrpouyan and Dr. Aykut

Satici for contributing valuable insight.

I would also like to thank my colleagues, Ryan Schwartz and Sukjoon Oh for

their foundational work. Additionally, I’d like to recognize Travis Pruitt and the

rest of the team at the IAC. Your companionship has been key to the completion of

this research. Thank you to my family and friends for their continued support. In

particular, I would like to thank Cierra for her ongoing encouragement throughout

the entirety of my work.

Finally, I would like to thank the Department of Energy’s Industrial Assessment

Center for funding my work and making all of this possible.

v

ABSTRACT

Thermostatically Controlled Loads (TCLs) have shown great potential for De-

mand Response (DR) events. However, it has been commonly seen that DR events

using TCLs may cause demand rebound, especially in homogeneous populations. To

further explore the potential for DR events, as well as the negative effects, a stability

and resilience analysis were performed on multiple populations and verified with agent

based modeling simulations.

At the core of this study is an added thermostat criterion created from the

combination of a proportional gain and the average compressor operating state of

neighboring TCLs. Where DR events in TCLs are commonly controlled by set point

manipulation, the modified thermostat behavior proposed in this study alters the

effective dead band of each individual TCL. Previous work has shown the effectiveness

of the proposed behavior to mitigating the demand rebound.

By adding the average operating state of neighboring TCLs and a proportional

gain, the systems feedback is changed, opening the possibilities to creating an unstable

response. Stability limit are found from linearized systems, differing in delay schemes

and connection architecture. The stability analysis was verified through agent-based

modeling simulations on MATLAB. The linearization assumption was tested by sim-

ulating the systems while altering the parameters of population size and thermostat

dead band.

Resilience of several systems, differing in connection architecture, is computed and

vi

compared to results of a simulated denial of service attack on the system. Resilience

for each architecture was calculated using the algebraic connectivity of the graph.

The simulated attack is completed by removing the TCLs ability to communicate

with in the agent based model.

The stability analysis showed the effect of the gain value on the performance of the

system and that the stability limit was directly affected by the effective deadband. As

the deadband size was increased, the predicted results found from the analysis aligned

with simulations of the system. Contrarily the resilience analysis was validated by

simulations with smaller deadband sizes. Simulations of cyber-attacks also showed

optimal attacks based on operating state of thermostats, as well as locations within

the population.

vii

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES . xiii

1 Introduction . 1

1.1 Background . 1

1.2 New Technologies and Electrical Distribution Models 5

1.2.1 Centralized Control . 7

1.2.2 Decentralized Control . 8

1.3 Demand Rebound . 9

2 Modeling Approach . 12

2.0.1 Heat Transfer Dynamics of Agents . 13

2.0.2 Peer to Peer Communication . 14

2.0.3 Modified Thermostat Behavior . 17

2.1 Delays and Discrete Time Domain . 19

2.1.1 Discretization of the Heat Transfer Equation 19

2.1.2 Implemented Delays . 21

2.2 System Parameters . 23

2.3 Baseline Behavior . 26

viii

3 Stability . 28

3.1 Background . 28

3.1.1 What is a System . 28

3.1.2 Stability . 29

3.2 Calculating Stability . 30

3.2.1 Linearization . 30

3.2.2 Approach . 36

3.3 Validation of the Linearized System . 37

3.3.1 Gain Value effect on Dead Band . 42

3.4 Heterogeneous Simulations . 48

3.5 Stability Analysis Conclusions . 49

3.6 Future Work . 51

4 Resilient System Design . 52

4.1 Security And Resilience . 52

4.2 Simulated Attack . 55

4.3 Results . 57

4.4 Resilience Conclusions . 61

4.5 Future Work . 63

5 Conclusions . 64

REFERENCES . 66

A Stability Metrics . 69

A.1 Indices of Performance for Varying Populations 69

ix

B Resilience Metrics . 75

C Source Code . 88

C.1 Ring Lattice Generator . 89

C.2 Square Lattice Generator . 90

C.3 Eigenvalue Analysis . 91

C.4 Create MATLAB Animation . 94

C.5 Homogenous Linear . 95

C.6 Homogenous Non-Linear . 100

C.7 Heterogeneous Parameters . 107

C.8 Heterogeneous Varying Ambient Temperature . 109

C.9 Deadband Analysis . 114

x

LIST OF TABLES

2.1 Population Parameter Values . 25

3.1 Gain Values at Stability Limit for Varying Population Sizes 35

3.2 Gain Values at Stability Limit for Varying Deadband Sizes 35

3.3 Eigenvalue Analysis Compared to Linear Simulation 37

3.4 Indices of Performance for Varying Gain Values 40

4.1 Percent Increase for Varying Population with 20% Failure 58

4.3 Number of Homes till Failure with Varying Location 60

4.4 Summary of Location Effect from Cyber Attacks 61

A.5 Indices of Performance, Ring, Last M, δ = 0.2 . 74

B.1 IOP of Resilience with Concurrent, Square Lattice, & δ = 0.5 76

B.2 IOP of Resilience with Concurrent, Ring Lattice, & δ = 0.5 77

B.3 IOP of Resilience with Last m, Square Lattice, & δ = 0.5 78

B.4 IOP of Resilience with Last m, Ring Lattice, & δ = 0.5 79

B.5 IOP of Resilience with Full Delay, Square Lattice, & δ = 0.5 80

B.6 IOP of Resilience with Full Delay, Ring Lattice, & δ = 0.5 81

B.7 IOP of Resilience with Concurrent, Square Lattice, & δ = 0.2 82

B.8 IOP of Resilience with Concurrent, Ring Lattice, & δ = 0.2 83

B.9 IOP of Resilience with Last m, Square Lattice, & δ = 0.2 84

xi

B.10 IOP of Resilience with Last m, Ring Lattice, & δ = 0.2 85

B.11 IOP of Resilience with Full Delay, Square Lattice, & δ = 0.2 86

B.12 IOP of Resilience with Full Delay, Ring Lattice, & δ = 0.2 87

xii

LIST OF FIGURES

1.1 CASIO Duck Chart . 3

1.2 Example of demand rebound in a homogeneous population. 10

2.1 Example of common graph topology. 17

2.2 Example of (a) Homogeneous Neighborhood and (b) Heterogeneous

Neighborhood in Boise, Idaho via Google Earth. 24

2.3 Example of hourly TMY data for Boise (July 21st) fitted with a spline. 25

2.4 Example of demand rebound in a homogeneous population. 26

2.5 Example of demand rebound in a Heterogeneous population. 27

3.1 Visual representation of linearized thermostat. 30

3.2 Example of an unstable response of the linear system. 36

3.3 Predicted unstable response of the non-linear system. 38

3.4 Indices of performance for varying gain values. 41

3.5 Grouping of temperature trajectories. 42

3.6 Rapid cycling of TCLs. 43

3.7 Effective deadbands with varying gain values. 44

3.8 Example of rapid cycling due to deadband changes. 45

3.9 Rapid cycling between hours 2 and 4 of simulation. 46

3.10 Operating state of rapid cycling TCL. 47

3.11 Histogram of m̃ values during two hour period. 48

xiii

3.12 Example response of heterogeneous population. 49

3.13 Indices of performance for heterogeneous populations. 50

4.1 Algebraic Connectivity for Varying Populations of Homes. 57

4.2 Deadband effects on percent increase. 59

4.3 Locational effects on percent increase. 61

xiv

1

CHAPTER 1

INTRODUCTION

1.1 Background

Electric utilities have their origins in the late 19th century and have evolved in

the technological and social environment of the early 20th century. This has led to

the current situation in which consumers have come to expect that electricity will

always be available, regardless of when and how a consumer requires it, and utilities

accept the responsibility of meeting those requirements. Utilities pull from a variety

of generation sources to produce the required power. A subset of these generation

sources (i.e nuclear, coal) continually operate, utilizing large thermal masses that are

cost efficient at supplying a constant amount of power to the grid, but are unable to

respond quickly to changes in demand.

The rapid deployment of intermittent renewable energy generation on the elec-

tric grid has presented significant challenges to the entities that are responsible for

maintaining the reliability of our electric distribution system. In 2016, China led the

expansion for solar photovoltaic (PV) growth, pushing the global PV capacity up by

50% [1]. With this spike in solar capacity, renewables account for nearly two-thirds, or

approximately 165 gigawatts of net new power in the 2016. Renewables are forecasted

to continue to grow through the year 2022 due to technology cost reductions and

changing market dynamics. With its new policy changes, China continues to pioneer

2

the growth capacity for renewables, already surpassing its 2020 solar PV target, (as

of 2017). The two main challenge facing China’s growth in renewables are the cost

of renewable subsidies and grid integration.

Since the grid has very little inherent ability to store energy, the variable nature of

wind and solar energy forces the utility to constantly compensate for those variations

by modifying the output of the resources they do control. Typically, this compensa-

tion is done by changing the output of hydropower or natural gas generators, which

can reach full generation in a matter of minutes, allowing for tracking of peak loads or

filling in the valleys caused by a renewable generation source suddenly losing power

production (e.g. cloud covers solar farm, wind quickly dies down, etc.).

Similarly, California is facing problems with the increase of renewables on the grid.

In 2013, the California Independent System Operator (CAISO) introduced the “Duck

Chart” [2]. Figure 1.1 shows a series of lines, each representing the net energy demand

in the California grid during a spring day (31 March) on each of 8 years. Net energy

is the energy provided by the electric utilities, which is equal to the energy consumed

minus the solar energy produced by distributed (non-utility owned) solar resources.

The base line of the graph (labeled 2012 (actual)) is prior to California’s incentives to

promote installation of customer-owned solar generation. The general shape of that

line, with a minimum around 3 AM, a peak mid morning, a lull in mid-afternoon and

a high peak around dinner time, is typical of an aggregated electrical demand curve

throughout the developed world. Additional lines show the impact that the increasing

penetration of solar (2013) and that of the growth of solar penetration predicted at

the time of the study. As solar generation increases (because more facilities are built)

the net demand that utilities must meet changes drastically during the daylight hours.

However, the load required at night is not impacted.

3

Figure 1.1: CASIO Duck Chart

There are two major areas of concern that the duck curve highlights. One is

that the greatly reduced net demand at mid-day might lead to over generation due

to other constraints on grid operation. Over generation is an issue because the so-

called base load generating stations cannot be economically ramped up and down to

meet this relatively short period of high solar generation. As an attempt to mitigate

over-generation the system operator curtails the amount of power that it’s VG can

produce. The act of curtailment is done by changing the blade pitch on a wind

turbine or reducing the output from an inverter on a solar PV. Having this type of

control over VG sources is typical for larger power plants but not always an option

for smaller systems, such as roof top or distributed systems. Curtailment also reduces

the benefits of VG on the grid. For “every unit of VG curtailed represents a unit of

energy not sold on to the grid and a unit of fossil fuel not avoided.”[2]

4

The second issue is a rapid change in demand that utilities must compensate for

as the sun sets across the region. Even those generators that can change their output

have limitations as to how fast those changes can occur. Therefore, the concern is

that there can come a time when the steepness of the ramp exceeds the ability of

utilities to meet rapidly changing needs.

While California works to mitigate the evolution of the Duck Chart, Hawai’i is

already facing the effects of over-generation from solar PV [3]. Where the predictions

of the Duck Chart forecast reduced demand, Hawaii has seen system wide demand

below zero. In 2013 the local utility, Hawaii Electric Company (HECO), recorded

instances where the grid receives enough solar generation to drive demand plunge

below zero on a system wide level, causing power to back feed into certain distribution

circuits. In response, HECO placed new interconnection requirements which halted

the growth of solar PV.

Unlike California, Hawai’i’s challenges with over generation from solar PV comes

mainly from the large amount of distributed systems on the grid. While revisiting

the CASIO study, Scott Madden found that California’s Duck Chart is not driven

from distributed systems, but from utility scale solar [4]. In this 2016 study, it was

also found the predictions depicted in the duck chart are occurring, and faster than

originally forecasted. This shows that not only states with large penetration from

distributed systems should be concerned with effects similar to the Duck Chart.

In addition to these problems exposed by California and other system opera-

tors relative to solar energy, other utilities and independent operators find related

challenges to the growing impact of wind generation capacity. These concerns are

the main motivations for developing grid-level energy storage solutions in the form of

electro-chemical batteries. Grid-scale battery deployment is seen as the main solution

5

to these problems, although they come at considerable expense and the long-term

environmental impacts and costs associated with these technologies remain uncertain

[5].

1.2 New Technologies and Electrical Distribution Models

Batteries are only one way to tame the duck curve. A growing number of energy

observers are pointing out that by enlisting the cooperation of electricity users, and

incentivizing changes in their behavior, we can impact the problem by changing

consumption at critical times of the day [6]. Increasing development of the electrical

smart grid offers unprecedented opportunity for more complex electrical supply and

demand interactions in a relationship that has been historically unilateral. The

smart grid allows for the application of modern communication technology, such as

the internet of things, to improve or modify widespread electrical transmission and

distribution.

In addition to developments related to the smart grid, utilities have begun to

embrace Demand Side Management (DSM) as a way of helping it meet customer

needs. In the broadest sense, DSM refers to those programs implemented by a

utility (or independent grid operator) in which they endeavor to modify (or manage)

customer use of electricity in some way. DSM programs mainly fall into two categories:

(1) Energy Efficiency programs such as LED lighting or insulation upgrades, and (2)

Demand response programs utilities use to incentivize deferral of energy consumption

during times of high demand.

This shift in the utility-customer relationship has led observers to speculate that

we are at the dawn of a new era in which the relationship between energy providers

6

and customers is re-defined in a way that empowers individual consumers to provide

services back to the grid in addition to simply consuming. The terms used to describe

this new relationship include the producing consumer, or prosumer [7], and the Energy

Internet [8]. The speculation around the future of the prosumer is, until now, limited

to the relationships between individual prosumers and the utility (or with third party

aggregators acting on behalf of the utility).

Much of this activity is focused on thermostatically-controlled loads (TCLs) such

as those systems used for space heating and cooling, hot water or refrigeration and

food storage. Systems that use electricity in this manner are normally designed

to maintain temperature, not at a single constant set point, but within a range of

temperatures, known as the thermostat deadband.

In a typical DR application, residential air conditioning compressors (but not

the circulating fan) are temporarily turned off under control of the utility, allowing

the inside temperature to rise above the thermostat setting. The grid is relieved of

the load that the AC compressor would have drawn and the homeowner (if present)

experiences a small and possibly noticeable increase in indoor temperature. These

programs are nearly universally used to shed load at times of very high demand, but

they can also be used to increase consumption at times of energy surplus, resulting in

a somewhat cooler home than the set point would imply. A common interpretation

of this effect is that energy is being stored in the thermal mass of the home. In this

respect, the home acts like a thermal battery, albeit a leaky one with limited storage

capacity.

The ability of any individual TCL to impact the energy balance of the grid is

limited. Therefore, most applications entail the aggregation of many hundreds and

thousands of loads, coordinated by a central controller. The dynamics and control of

7

such aggregated loads is the subject of significant research [6], [9], [10] and grid

operators across the country have significant experience using aggregated DR to

manage peak loads.

1.2.1 Centralized Control

Grid operators typically exert central control over large populations of TCLs

through radio links or power line carrier protocols. For example, Idaho Power has

an AC Cool Credit program where individual consumers, in exchange for a small

reduction in their monthly electric bill, give the utility permission to install equipment

on their AC unit [11]. This equipment can receive a signal from Idaho Power that

shuts off the unit’s compressor for a short period of time. After that time has expired,

the unit is allowed to turn back on while another population is disconnected, thus

reducing the overall demand for as long as required and preventing uncomfortable

conditions from occurring within any individual homes.

Another common method of controlling TCLs is through set-point control. Call-

away [6] makes the case that changing thermostat set-points of a population of TCLs

can be used to follow the variability of wind generation. Building on this work,

Bashash and Fathy [12, 13] developed a model that uses a centralized controller

to broadcast a uniform signal to vary the thermostat set-point temperature of the

population of TCLs. This enables the tracking of a real wind power trajectory.

A centralized controller can coordinate many agents without knowing individual

agent states. By comparing a reference to a received aggregate output value, the

controller determines what signal to broadcast to all agents. Each agent then makes

a decision based on the signal and defined probabilities [14].

8

Similarly, Zhang et al. [15] developed a control scheme where the centralized

control signal is broadcast to all agents. The agents then decide how to implement

the signal based on their local temperature and power state.

A priority-stack-based control strategy can be an effective way to control TLCs

[16]. Sorting the population of TCLs by temperature into two stacks, one where the

TCLs are off and the other where the TCLs are on, allows for the most appropriate

selection of the next TCL to turn on or off. When the grid has excess power, perhaps

due to an increase in wind generation, the centralized controller can send a signal to

the TCLs. The TCL with the highest priority in the off stack will turn on first and

then continue down the stack until the excess power is being utilized. This also works

the other way. When the grid is trying to reduce load, the TCLs in the on column

turn off sequentially, in order of priority, until the desired reduction has been met.

The downside of this model is the need to have the information of all agents in the

system accessible to the central controller to sort correctly.

1.2.2 Decentralized Control

In decentralized control, agents take in information and make decisions as indi-

viduals, rather than being told what to do by one controller.

One method of decentralized demand response is to use price signalling and

adaptive mechanisms, coupled with smart meters, to prevent loads from syncing up

and creating high peak demand [17].

With the rising number of electric vehicles (EVs), an additional opportunity for

demand response has been created. EV charging management allows for the vehicles

to charge at times of low demand or to match renewable energy production. Xydas

et al. [18] developed a model to demonstrate the effectiveness of ”responsive” EVs.

9

These vehicles determine their charging schedule according to a signal that takes

power demand and generation forecasts into account. Their model demonstrated

that responsive EVs could reduce the peak charging demand of all EVs, including

unresponsive EVs, by shifting demand to a time when the unresponsive EVs were

finished charging. They also demonstrated the ability of responsive EVs to charge in

response to a real time photovaltic (PV) generation profile.

1.3 Demand Rebound

DR events in populations of TCLs have the potential to create a rebound effect in

the aggregate power. This rebound is caused by the synchronization of the individual

TCLs. Homogeneous populations are especially prone to synchronization due to each

home having the same time constant, or time in which the houses take to heat and

cool. An example of demand rebound in a population of homogeneous TCLs is

shown in Fig.1.2. Details on the simulation will be covered in the following chapter,

but it is important to note that this simulation models 100 homogeneous TCLs

starting at an equilibrium point. The equilibrium point is created by a distribution

of indoor temperatures throughout the population and causes a steady response for

the aggregate power. At two hours into the simulation, a DR event is introduced.

The DR event forcibly turns the AC compressor of all the TCLs in the population to

an Off state for 15 minutes. During this 15 minute time period, all the TCLs heat

up or move to the upper limit of the deadband and wait to turn back on. After the

DR event all the houses turn On as soon as they are allowed, this is the cause for the

synchronous behavior, creating large ramps and falls in the aggregate power.

Schwartz showed the potential for local communication to mitigate rebound in

10

(a) Aggregate Power (b) Temperature Trajectories

Figure 1.2: Example of demand rebound in a homogeneous population.

air conditioning demand response events [19]. While Schwartz’s work showed the

positive impact of changing the system dynamics using local communication, it raised

questions of stability and resilience. The added connectivity of TCLs within a

population allow increased freedom for individual TCLs to move between operating

states. While the increased freedom has been shown to mitigate the synchronization

in TCLs (which is the cause of demand rebound), the method of implementation

introduced feedback which can lead to instability of the population. Additionally,

this technique depends on mesh-like communication networks which may create vul-

nerabilities for cyber-physicals attacks on the system, leading to the need for resilience

to be inherently designed into the system.

The thesis of this work is to develop a framework to understand the role that

local communication, or a ‘mesh network’ can play in mitigating demand rebound

and other beneficial behaviors. As such, this work aims to tie the dynamics of the

system to theoretical bases in both stability and resilience. The rest of the paper is

organized as follows. Chapter 2 describes the modeling approach for the simulations

used in this study as well as the proposed thermostat modification. Chapter 3 shows

11

the effect the purposed thermostat modification has on the stability of the system.

Chapter 4 give insight into the resilience benefits of the mesh network and finally,

Chapter 5 reviews the important findings of this research as a well as future work.

12

CHAPTER 2

MODELING APPROACH

The majority of the modeling techniques used by Schwartz are incorporated into

the techniques used to lay the groundwork for the this study [19], including the use

of Agent-based Modeling (ABM) techniques. ABM has been a fixture of the social

sciences for many years and has proven to be an effective means of understanding

emergent behavior from a large number of individual actors. More recently, ABM

has been identified as a means of understanding complex physical systems, such as

the electric grid, where large numbers of individual homes or even appliances can

be modeled in a coherent framework that allows for easy control of the statistical

distribution of agent parameters and behavior [15].

In order to show the aggregate power of the population, as well as observe the

individual effects on each TCL, agent based modeling was chosen. Agent based mod-

eling allows the observer to define agents and their interactions with the environment

and each other. The agents in the model are residential houses equipped with with a

smart thermostat with the ability to communicate to it’s nearest neighbors [20]. The

thermostats control the houses’ air conditioning (AC) units based off of interactions

with the environment, (ambient outdoor temperature), and communications with

neighboring houses.

13

2.0.1 Heat Transfer Dynamics of Agents

The proposed work grows on previous research. At the base of this work is the nu-

merical approximation to the coupled Fokker-Planck equations derived from Malhamé

and Chong [9]. The Fokker-Planck equations describe the statistical distribution of

the individual agents and how the distributions evolve over time. There are no closed

form solutions to these equations, as such they are approximated numberically.

Callaway furthers this work by contributing equivalent parameters for the first

order model and showing populations of thermostatically controlled loads can act

as virtual storage devices by collectively managing them [6]. Through this work,

Callaway found load populations with greater heterogeneity are better candidates for

set-point control of thermostatically controlled loads, where previous work focused

on homogeneous populations. Bashash and Fathy modeled each thermostatically

controlled load with their own first order differential equation and used Monté Carlo

simulations to represent the community [12]. The heat transfer dynamics for a single

house, as defined by Bashash and Fathy, are shown in

Ṫ =
1

RC

(
T∞ − T (t) +R

(
QI −m(t)Q

))
(2.1)

where:

T (t) Indoor Air Temperature ◦C
T∞ Outdoor Air Temperature ◦C
C Thermal Capacitance of Building kWh/◦C
R Thermal Resistance of Building ◦C/kWh
QI Internal Heat Gain kW
Q Load Cooling Capacity kW
m(t) Discrete State of AC Power -

It should be noted that the variable m(t) is a discrete variable representing the

14

operating state of the air conditioning unit, having a value of one if the unit is

operating and a value of zero if the unit is off. This is shown mathematically in

Equation 2.2.

m(t) =


0, if T (t) ≤ Tmin

1, if T (t) ≥ Tmax

m(t−), otherwise

(2.2)

where Tmin and Tmax are the lower and upper limits of the thermostat deadband,

δ. The setpoint temperature, Tsp, is related to these limits as shown in Equation 2.3.

Tmin = Tsp −
δ

2
, Tmax = Tsp +

δ

2
(2.3)

Considering a population containing N, number, of TCLs, the total load can be

expressed as

PTCL(t) =
N∑
i=1

1

ηi
Q̄imi(t) (2.4)

where ηi is the coefficient of performance (COP) of the ith load.

2.0.2 Peer to Peer Communication

The core of this approach is a small amount of information sharing between

thermostats that are in close proximity. For this study, thermostats allow each home

to be aware of the on/off state of the compressors in the four nearest homes. The

selection of the connections may be defined by the layout of the neighborhood (e.g. the

15

next door neighbors, the house across the street and over the fence in the backyard)

or they may be defined by the topology of the electric distribution system.

The logistics of information sharing are not covered in this study, but it is clear

that a large number of options are available covering a spectrum of technologies

from internet-based server models where the connections can be implemented and

programmed centrally, to local communication protocols such as Zigbee, Bluetooth

and power-line carrier methods [21].

It is also important to address privacy concerns in information sharing situations.

These concerns are addressed by noting that the information being shared (whether

the compressor is on or off) is something a typical next door neighbor can observe by

opening the window that is nearest the neighbor’s outdoor condenser unit. In some

locations, that information could be deduced from a careful observer on the public

sidewalk. This information is likened to be similar to whether or not inside lights are

on. While it is not usually noticed, it is clearly observable from the outside.

Graph theory is the mathematical lens through which a network of connected

houses can be viewed. As Barabási [22] explains, in graph theory the network (or

graph) is described as a set of nodes (the agents) and edges (links between agents).

The degree, d, of a node describes the number of connections that node has to

other nodes. These connections between agents can be directed or undirected. In

a directed link, connection is established in one direction from one agent to another,

similar to citations in a paper or a webpage linking to another webpage. Other

networks utilize undirected links, like the power grid where transmission line current

can flow both directions. The connections between residential thermostats in this

model are assumed to be undirected because the information (ON/OFF state of the

compressors) flows both ways on the edges of the graph.

16

Networks of connections are often represented as an adjacency matrix, A . For

a network containing N nodes, the adjacency matrix has N rows and N columns

containing elements that follow the rules:

Aij =


0, if nodes i and j are not connected to each other

1, if nodes i and j are connected to each other

(2.5)

For an undirected network the adjacency matrix is symmetric, Aij = Aji, and

since a house is not connected to itself, the diagonal consists of zeros. The adjacency

matrix can be used to find the degree of house i by summing either the column or

the row corresponding to that house:

di =
N∑
j=1

Aij =
N∑
j=1

Aji (2.6)

The graph structures utilized in this study are the square lattice and ring lattice.

Both of these connection architectures are applicable to decentralized control. An

example of a square lattice is shown in Fig. 2.1a and an example of a ring lattice is

shown in Fig. 2.1b. For reference, a star lattice, Fig. 2.1c, is a common architecture

for centralized control. In a star lattice, the central node acts as the nucleus of the

graph; in application to a demand response system, this central node would represent

the utility provider.

Now consider a situation in which the state of the AC unit, m(t), for each house can

be communicated from its thermostat to nearby connected thermostats. The variable

m̃i is introduced to represent the average state of the thermostats communicating

with agent i. The adjacency matrix representing connected agents can be used to

easily calculate all of these values simultaneously:

17

(a) Square Lattice

(b) Ring Lattice (c) Star Lattice

Figure 2.1: Example of common graph topology.

m̃ =
1

d
A m (2.7)

In Equation 2.7, m̃ and m are vectors of N, number of homes, representing the

entire population. A is a matrix of NxN size, as defined as in Equation 2.5. The

number of connected homes, or degree, is denoted by d. For this study, d is a constant

throughout the population equal to four, (d = 4). This means that each house is

connected to four neighboring houses.

2.0.3 Modified Thermostat Behavior

Consider a new non-dimensional temperature variable defining a normalized po-

sition within the deadband, θi, where the bottom of the deadband is θi = 0 and the

top of the deadband is θi = 1.

θi =
Ti − Tmin,i

Tmax,i − Tmin,i
=
Ti − (Tsp,i − δi

2
)

δi
(2.8)

Now typical thermostat behavior can be described in terms of this normalized

parameter instead of individual house temperatures and deadbands:

18

mi(t) =


0, if θi ≤ 0

1, if θi ≥ 1

mi(t
−), otherwise

(2.9)

Here, a new addition to the thermostat model is proposed which uses the average

state of the surrounding units, m̃, to inhibit operation based on the number of

connected units that are operating.

mi(t) =


0, if θi −Kgainm̃i ≤ 0

1, if θi −Kgainm̃i ≥ 1

mi(t
−), otherwise

(2.10)

The variable Kgain, is a proportional gain to the control feedback introduced. In

the simplest term, Kgain is a knob that lets the user adjust the effectiveness of the m̃

modification.

The addition of the average ON/OFF state of connected neighbors allows agents

to reduce overall demand by causing an earlier entry to the OFF state and a later

entry to the ON state, essentially shifting the deadband up, if a larger number of

neighbors turn ON. For example, consider a network with d = 4, where two of a

house’s neighbors are ON, resulting in a m̃ of 0.5. Assuming Kgain = 1, this house

will turn OFF as soon as θ = 0.5, or halfway through the deadband, instead of the

standard θ = 0, and won’t turn ON until θ = 1.5. With a connection degree of four,

each thermostat has the ability to use five upper and five lower bounds depending on

the state of neighboring thermostats.

19

2.1 Delays and Discrete Time Domain

While 2.1 accurately describes the heat transfer dynamics of a house using a simple

thermostat, it is unlikely, in implementation, that the average state of neighboring

thermostat will be available concurrently for the modified thermostat criteria. While

it is possible to simulate a model which uses the average state of neighboring ther-

mostats concurrently, this adds an algebraic loop because the newly computed state

of thermostat is required to compute the state of adjacent thermostats. By moving

from the continuous time domain to the discrete time domain, delays are able to be

incorporated without introducing additional non-linearities, while making it possible

to eliminate the implicit nature of the computation.

2.1.1 Discretization of the Heat Transfer Equation

The discretization follows the process outlined by Ogata [23], starting from the

general state space model shown as:

ẋ(t) = Ax(t) +Bu(t) (2.11)

y(t) = Cx(t) +Du(t) (2.12)

The discretization was completed on a single agent, or a single state system. As such,

the variables A, B, C, and D are scalar variables. These variables are defined in

Equations 2.13-2.17. The population of TCLs are created by compiling N number

of state equations. The same result can be seen from creating the state equations to

represent vectors with N number of states. Equations 2.11 and 2.11 represent a single

order equation, the state parameters are:

20

A =
−1

RC
(2.13)

BI =
1

RC
(2.14)

BII =
Q

C
(2.15)

C = 0 (2.16)

D =
1

η
Q̄i (2.17)

It should be noted the the system has multiple inputs, of ambient outside temperature

and HVAC operating state. Equations 2.14 & 2.15 define the variables for both inputs,

ambient outside temperature and HVAC operating state, respectively. With equal

sampling intervals, tsamp, it is assumed that Equations 2.11 & 2.12 the discrete time

system can be shown in the form,

X((k + 1)tsamp) = G(tsamp)X(ktsamp) +H(tsamp)U(ktsamp) (2.18)

Y (ktsamp) = CX(ktsamp) +DU(ktsamp) (2.19)

where G(tsamp) and H(tsamp) are through the solution of the continuous time system.

The general form of these equations can be seen below.

G(tsamp) = eAtsamp (2.20)

H(tsamp) = (eAtsamp − I)BA−1 (2.21)

It is to be noted that H(tsamp) can take this form if and only if the matrix A is

invertible. For the house model, indoor air temperature, T , is the only state variable.

21

Ambient outdoor temperature, T∞, and compressor operating state, m(t), are both

inputs to the system. For a single home and a constant sampling interval of one

minute we find Eq. 2.20 and Eq. 2.21 to be:

G(tsamp) = e
tsamp
RC (2.22)

HI(tsamp) = (e
tsamp
RC − I)

(
1

RC

)(
1

RC

)−1
(2.23)

HII(tsamp) = (e
tsamp
RC − I)

(
Q

C

)(
1

RC

)−1
(2.24)

Plugging in Equations 2.22 - 2.24 into the discrete state space form, the complete

equation for the heat transfer dynamics can be seen in Eq 2.25.

T (k + 1) = GT (k) +HIT∞ +HIIm(k) (2.25)

The number of TCLs simulated are based of Equation 2.26. L is chosen to change

the size of the population to ensure the total number of TCLs in a model is a squared

number. This is done due to the restrictions of constructing a square lattice.

N = L · L (2.26)

For any N , number of homes, in a simulation Equation 2.25 is calculated N times

at each time step.

2.1.2 Implemented Delays

In the discrete time domain, delays are now able to be added without adding

non-linearities. Delays are added to θ and m̃ in the thermostat switching criteria in

22

different combinations. Three different delay schemes are introduced to the thermo-

stat criteria: concurrent, last average operating state, and full delay.

The first of the three delay schemes is the most similar to that used in the

continuous time domain. Here the current thermostat state is a function of the

current values of neighboring states. This implementation is unlikely to be able to

know the average operating state with the use on decentralized control. The switching

criteria for the concurrent thermostat is shown in Ep. 2.27.

mi(k) =


0, if θi(k)−Kgainm̃i(k) ≤ 0

1, if θi(k)−Kgainm̃i(k) ≥ 1

mi(k − 1), otherwise

(2.27)

The second delay scheme uses a concurrent temperature reading and the last

average operating state of neighboring compressors. For the remained of this report,

this delay scheme will be referenced as ‘last m’ delay. This delay scheme is the most

likely to be implemented and can be seen in Ep. 2.28.

mi(k) =


0, if θi(k)−Kgainm̃i(k − 1) ≤ 0

1, if θi(k)−Kgainm̃i(k − 1) ≥ 1

mi(k − 1), otherwise

(2.28)

While the final delay scheme is also unlikely to be implemented, it is imported to

understand the effect of the delays on the thermostat reading. As such the final delay

scheme is a full delay, both the thermostat reading and average operating state of

neighboring compressors are delayed. The full delay switching criteria can be found

in Eq. 2.29.

23

mi(k) =


0, if θi(k − 1)−Kgainm̃i(k − 1) ≤ 0

1, if θi((k − 1)T)−Kgainm̃i(k − 1) ≥ 1

mi(k − 1), otherwise

(2.29)

These three delay schemes are implemented in simulations and analyzed through-

out the remained of the report.

2.2 System Parameters

Demand rebound, or the synchronization following a demand response event, is

particularly common in populations of homogeneous TCLs. The majority of the

study assumes homogeneity for the house parameters, such as thermal resistance and

capacitance. A homogeneous population is assumed because having a population of

identical TCLs in a distributed Demand Response (DR) event is the most likely case

for synchronization, or more simply, the worst case possible. Parameter values were

adopted from the [6] study and are displayed in the Table 2.1. While populations of

homogeneous houses are not entirely realistic, they are a fair approximation for tract

houses, also referred to as cookie cutter neighborhoods. An example of tract housing

found in Boise, Idaho is shown in Figure 2.2a.

While simulating homogeneous houses gives insight to a more severe case, neigh-

borhoods generally resemble Figure 2.2b. Heterogeneous houses are simulated to

reinforce the result from the homogeneous populations. By confirming results found

in the homogeneous populations, this study will test the feasibility of implementing

the proposed thermostat modification.

24

(a) (b)

Figure 2.2: Example of (a) Homogeneous Neighborhood and (b) Heterogeneous
Neighborhood in Boise, Idaho via Google Earth.

Homes with varying size and construction material are estimated by creating a

statistical distribution around the homogeneous values. A parameter spread of ±15%

is desired, which results in the normal standard deviations found in Table 2.1. The

values were generated using MATLAB’s RANDN() function. The RANDN() function

returns a sample of random numbers with a normal distribution based off of a mean

and standard deviation provided.

The energy transfer rate of a house’s AC unit is sized depending upon the thermal

dynamics of the house. The homogeneous population of houses’ 14 kW is equivalent

to a 4 ton unit (1 ton = 3.5 kWth), which, for these parameters, means that the

cooling rate is 0.8 ◦C/hr, or the temperature moves from the upper limit of the

deadband to the lower limit in about 37.5 minutes. The necessary tonnage to achieve

this cooling time for the heterogeneous population was calculated and then rounded

up to the nearest half-ton to reflect sizes commercially available. The resulting range

in unit sizes is 3.5-5 tons (12.25-17.5 kWth). Rounding up of the unit size results

25

in slight over sizing, which means some houses will cooler faster than 37.5 minutes

and therefore cycle more often than their homogeneous counterpart. The minimum

cooling time for a heterogeneous house is 30.4 minutes.

Table 2.1: Population Parameter Values

Parameter Value
Standard Deviation

(Heterogeneous)
R, Thermal resistance 2 ◦C/kW 0.1 ◦C/kW
C, Thermal capacitance 10 kWh/◦C 0.5 kWh/◦C
P , Energy transfer rate 14 kW -
η, Load efficiency 2.5 0.125
Tsp0, Initial setpoint temperature 20 ◦C 1 ◦C
T∞, Ambient temperature 32 ◦C -
δ, Thermostat deadband 0.5 ◦C 0.025 ◦C

It should be noted that for the homogenous populations, the ambient temperature,

T∞, is kept at a constant 32◦C. While this is not realistic, it allows the study to focus

on the effect of the input, m(t). In order to properly test the feasibility of the study,

the heterogeneous simulation has an ambient temperature that will vary akin to the

temperature changes on a single day (e.g. Figure 2.3). To improve upon their model,

12AM 3AM 6AM 9AM 12PM 3PM 6PM 9PM 12AM

Time of Day

15

20

25

30

35

40

T
e
m

p
e
ra

tu
re

 (
°
C

)

Figure 2.3: Example of hourly TMY data for Boise (July 21st) fitted with a spline.

hourly typical meteorological year (TMY) data for Boise, Idaho [24] for the week of

July 21 to July 28 is used to represent a realistic summer temperature profile.

26

2.3 Baseline Behavior

Baseline behavior shows the demand rebound effect that this study aims to mit-

igate. In simulations of the baseline behavior, N number of homes are simulated

using the techniques described above. The aggregate power starts at an equilibrium

point by setting 42.8% of the homes to the On state, as found by Bashash and Fathy

[12]. At two hours into the simulation, a DR event is introduced. The introduced DR

event will forcibly turn Off all of the AC compressors and hold them in the Off state

for 15 minutes.

(a) Aggregate Power (b) Temperature Trajectories

Figure 2.4: Example of demand rebound in a homogeneous population.

It can be seen that the DR event syncs the TCLs. This happens because during

the 15 minutes all of the agents heat up moving to the upper limit of the deadband.

When the DR event has ended, all of the agents wish to turn back, creating large

ramps in the aggregate power. Since all of the houses have the same parameters in

the homogeneous population, they all heat and cool at the same rate. This maintains

the synchronized behavior after the DR event.

The baseline response for the heterogeneous population is shown in Figure 2.5.

Here the DR event is applied 10 minutes before the maximum ambient temperature

27

is experienced. Similar effects of demand rebound can be seen in the heterogeneous

population, however, the variance of the house parameters and the changing outdoor

temperature have a damping effect on the aggregate power.

(a) Aggregate Power (b) Temperature Trajectories

Figure 2.5: Example of demand rebound in a Heterogeneous population.

28

CHAPTER 3

STABILITY

3.1 Background

3.1.1 What is a System

Kulakowski et al. provides a definition of a system as any combination of com-

ponents which act together toward a common objective [25]. Kulakowski et al.

also gives a more philosophical definition of a system as an isolated part of the

universe which holds interest. While we are able to describe the isolated system using

mathematical equations, a system can never truly be separated from its environment.

The interactions between systems and their environments can be categorized into two

types of variables, independent and dependent. Independent variables are generated

outside of the system and are not affected by the dynamics within the system. These

variables are recognized as inputs to the system. Independent variables that which

do not interact with the system are neglected, as no interest is found from them.

Dependent variables are generated within the system and those which have significant

interest to the observer are considered outputs.

For the sake of this study, the system is defined as a population of residential

thermostatically controlled loads (TCLs). Recalling that a system is a combination

of components acting toward a single goal, a population of TCLs are only able to

29

be described as a single system by adding a form of interaction between individual

components. Where a single TCL operates as an independent system, isolated from

neighboring TCLs, a population of TCLs with added communication interact with

each other to form a common objective; this objective is demand response.

Independent variables for the population of TCLs would be the ambient outside

air temperature, as well as any disturbances to the system, such as demand response

events. The output variable would be the aggregate power used by the TCLs. The

goal of demand response is to reduce demand peaks; therefore, it is essential that the

output of our system is stable.

3.1.2 Stability

While techniques for evaluating stability on non-linear control systems exist, such

as Lyapunov Functions (such as [26]), stability of linear control systems have been

extensively studied. Studying the natural response of a linear time-varying system,

Nise defines a stable system if the natural response approaches zero as time approaches

infinity [27]. Similarly, a system is unstable if the natural response approaches infinity

as time approaches infinity. Lastly, in regard to the natural response, a system is

considered marginally stable if the natural response is constant or oscillates as time

approaches infinity.

Looking at the total response of the system, or the sum of the natural response

and the forced response, a stable system is defined as having a bounded output for

every bounded input. If any of the outputs from a bounded input are unbounded the

system is considered unstable.

Focusing on the natural response, we are able to predict the stability of a linear

and continuous system if the system poles fall on the left half plane, or rather, the

30

poles possess negative real parts. For a system in the discrete time domain, stability

is found when all poles fall within a unit circle centered at the origin, or the largest

magnitude of the system pole is less then one.

3.2 Calculating Stability

3.2.1 Linearization

With the system defined, the issue of solving stability is now addressed, partic-

ularly, the impact the proportional gain, Kgain has on the stability of the system.

As previously mentioned, there are numerous methods to solving a non-continuous

control system but because the aim of this study is to analyze the entire population

as a whole, as well as to avoid excess computing levels, a linearization for the discrete

input m is introduced. Allowing m to equal any value within the range [0,1], the

input is now continuous. This is done by setting m equal to the position within the

dead band, θ. Visually this can be seen in the Figure 3.1.

Figure 3.1: Visual representation of linearized thermostat.

31

The assumption of linearization by setting the compressor power equal to a con-

tinuous value can be seen in commercial HVAC units as variable compressors are

introduced to the market. As previously mentioned, in the continuous time domain

stability is found by analyzing the eigenvalues of the system matrix. If the eigenvalues

fall on the left-hand side of the imaginary axis, or have negative real parts, the system

is stable. In the discrete time domain, the eigenvalues must fall within the unit circle,

or have a magnitude less than one. For each of the three styles of delays the system

matrix has been solved to be able to compute the eigenvalues. The closed loop

system matrix for each delay style is calculated from the open loop matrices shown

in Equations 2.22 - 2.24. It is to be noted the the variable I found in the new system

matrices are the identity matrix. The closed loop form for each delay scheme was

found by defining the input m in terms of the system’s state variables. By redefining

the input, a feedback loop is created. With the input m written in terms of state

variables, the system matrix can be re-written to incorporate these dynamics.

The closed loop system matrix of the concurrent delay style is a N x N matrix.

The linear input m(k) is defined in terms of the position within the deadband θ(k)

shown in Equation 3.1.

mi(k) = θi(k)−Kgainm̃i(k) (3.1)

Substituting Equation 2.7 into Equation 3.1, which yields:

m(k) = θi(k)−Kgain
1

d
Am(k) (3.2)

Like terms are combined and the input m(k) is written as a function of θ(k).

32

m(k) =

(
I +Kgain

1

d
A

)−1
· θ(k) (3.3)

Finally, substituting Equation 3.2 into the vector form of the system equation

(Equation 2.25), we can find the closed loop system matrix to be the matrix multiplied

by the vector of state variables. This is shown in Equation 3.4.

Gcl,con = G+
1

δ
HII

(
I +

Kgain

d
·A
)−1

(3.4)

The closed loop system matrix for the last m delay scheme is a 4∗N x 4∗N matrix.

Due to the introduced delays, three states are introduced. The state variables for the

last m and full delay schemes are θ(k), θ(k − 1), m(K), and m(k − 1), respectively.

The derivation of the system matrix for the last m delay scheme is shown below.

Starting with the linear input:

m(k + 1) = θ(k + 1)−Kgainm̃(k) (3.5)

Re-write m̃ from Equation 3.5 in terms of the adjacency matrix.

m(k + 1) = θ(k + 1)− Kgain

d
Am(k) (3.6)

The system equation described in Chapter 2 is shown below.

T (k + 1) = GT (k) +HIT∞ +HIIm(k) (3.7)

The system equation is re-written by substituting the definition of θ and shwon below.

δ ∗ θ(k + 1) + Tset = GT (k) +HIT∞ +HIIm(k) (3.8)

33

Equation 3.5 is plugged into Equation 3.8 to get θ(k+1) in terms of the state variables.

θ(k + 1) = G[θ(k) + Tset] +
HI

δ
T∞ +

HII

δ
m(k)− Tset

δ
(3.9)

With θ(k + 1) described in state variables, plug Equation 3.9 into Equation 3.6.

m(k + 1) =

[
G[θ(k) + Tset] +

HI

δ
T∞ +

HII

δ
m(k)− Tset

δ

]
− Kgain

d
Am(k) (3.10)

As theta(k) and m(k) are state variable, the identity matrix is used to write them

in terms of themselves. Writing the state equations in matrix form we find:



θ(k + 1)

θ(k)

m(k + 1)

m(k)


=



G 0

(
1
δ

)
HII 0

I 0 0 0

G 0

(
1
δ

)
HII −

(
Kgain

d

)
A 0

0 0 I 0





θ(k)

θ(k − 1)

m(k)

m(k − 1)


+



1
δ
HI

0

1
δ
HI

0


T∞(k) +



1
δ
(G− I)

0

1
δ
(G− I)

0


(3.11)

As such, the close loop system matrix is shown as follows:

Gcl,lastM =



G 0

(
1
δ

)
HII 0

I 0 0 0

G 0

(
1
δ

)
HII −

(
Kgain
d

)
A 0

0 0 I 0


(3.12)

Note, the full delay scheme uses the same state variables as the last m delay

scheme. The derivation for the system matrix of the full delay scheme is shown

below. Starting with the linear input for this delay scheme:

34

m(k + 1) = θ(k)−Kgainm̃(k) (3.13)

Re-write m̃ from Equation 3.13 in terms of the adjacency matrix.

m(k + 1) = θ(k)− Kgain

d
Am(k) (3.14)

Note the Equation 3.14 is already in terms of the state variables described at the

beginning of this section. The equation for θ is described in Equation 3.8. Moving to

matrix form, the state equation is shown in Equation 3.15.



θ(k + 1)

θ(k)

m(k + 1)

m(k)


=



G 0

(
1
δ

)
HII 0

I 0 0 0

I 0 −
(
k
d

)
A 0

0 0 I 0





θ(k)

θ(k − 1)

m(k)

m(k − 1)


+



1
δ
HI

0

0

0


T∞(k) +



1
δ
(G− I)

0

0

0


(3.15)

As such the final close loop matrix for the full delay is shown below:

Gcl,full =



G 0

(
1
δ

)
HII 0

I 0 0 0

I 0 −
(
k
d

)
A 0

0 0 I 0


(3.16)

By incrementally increasing the gain value, Kgain, until the magnitude of the

largest eigenvalue falls outside of the unit circle, the gain value at the stability limit

is found. This test was repeated for both a square and ring lattice, as the connection

architecture, as well as varying population size and delay style. a summary of these

35

values are shown on Fig. 3.1. All values utilize a deadband of δ = 0.5◦C.

Table 3.1: Gain Values at Stability Limit for Varying Population Sizes

δ = 0.5
Population Size Square Lattice Ring Lattice
L N Con Last M Full Con Last M Full
5 25 1.2073 0.9767 0.9767 1.7485 0.9767 0.9767
10 100 0.9767 0.9767 0.9767 1.7364 0.9767 0.9767
15 225 0.9985 0.9767 0.9767 1.7365 0.9767 0.9767
20 400 0.9767 0.9767 0.9767 1.7364 0.9767 0.9767
25 625 0.9845 0.9767 0.9767 1.7364 0.9767 0.9767
30 900 0.9767 0.9767 0.9767 1.7364 0.9767 0.9767
35 1225 0.9807 0.9767 0.9767 1.7364 0.9767 0.9767
40 1600 0.9767 0.9767 0.9767 1.7364 0.9767 0.9767
45 2025 0.9791 0.9767 0.9767 1.7363 0.9767 0.9767
50 2500 0.9767 0.9767 0.9767 1.7364 0.9767 0.9767

The stability limit is effected greatly by the change for concurrent to either delays.

The concurrent systems are also the only delay scheme found to be effected by change

in population size. To test the effect of the deadband on the stability limit, a single

population size, N = 100 was analyzed for both the square and ring lattice. The

results from this analysis is shown in Table 3.2.

Table 3.2: Gain Values at Stability Limit for Varying Deadband Sizes

L = 10 & N = 100

δ
Square Lattice Ring Lattice

Con Last M Full Delay Con Last M Full Delay
2.0 0.994 0.994 0.994 1.768 0.994 0.994
1.5 0.992 0.992 0.992 1.764 0.992 0.992
1.0 0.988 0.988 0.988 1.757 0.988 0.988
0.5 0.977 0.977 0.977 1.736 0.977 0.977
0.4 0.971 0.971 0.971 1.726 0.971 0.971
0.3 0.961 0.961 0.961 1.709 0.961 0.961
0.2 0.942 0.942 0.942 1.674 0.942 0.942
0.1 0.883 0.883 0.884 1.570 0.883 0.884

36

From Table 3.2, it can be seen that the size of the deadband greatly affects the

stability limit of the system.

3.2.2 Approach

In order to validate the eigenvalue analysis of the linearized systems, a simple

simulation was conducted and compared. Simulations were composed using a combi-

nation of dynamics systems and agent-based modeling. Using the equations provided

in Section 3.2 these simulations were created and tested within MATLAB.

It is to be noted that the linearized system has the capability to go unstable. An

example of the an unstable response for the linear system is shown in Fig. 3.2, where

Fig. 3.2a is the aggregate power of the population and Fig. 3.2b is the individual

temperature trajectories over the course of the simulation. For this example, the

simulation is comprised of 100 homes, with a deadband of δ = 0.5, and a square

lattice structure for communication. The simulation also utilizes the last m delay

criteria and a gain value of Kgain = 1.0, eigenvalue analysis predicts the unstable

response.

(a) Aggregate Power (b) Individual Temperature Trajectories

Figure 3.2: Example of an unstable response of the linear system.

37

Table 3.3: Eigenvalue Analysis Compared to Linear Simulation

Square & Concurrent
δ ζ Lin Sim Diff

2.0 0.994 0.994 0.000
1.5 0.992 0.992 0.000
1.0 0.988 0.988 0.000
0.5 0.977 0.976 0.001
0.4 0.971 0.970 0.001
0.3 0.961 0.961 0.000
0.2 0.942 0.941 0.001
0.1 0.883 0.883 0.000

Square & Last M
δ ζ Lin Sim Diff

2.0 0.994 0.994 0.000
1.5 0.992 0.992 0.000
1.0 0.988 0.988 0.000
0.5 0.977 0.977 0.000
0.4 0.971 0.971 0.000
0.3 0.961 0.962 -0.001
0.2 0.942 0.943 -0.001
0.1 0.883 0.890 -0.007

Square & Full Delay
δ ζ Lin Sim Diff

2.0 0.994 0.994 0.000
1.5 0.992 0.992 0.000
1.0 0.988 0.988 0.000
0.5 0.977 0.976 0.001
0.4 0.971 0.970 0.001
0.3 0.961 0.960 0.001
0.2 0.942 0.939 0.003
0.1 0.884 0.875 0.008

Ring & Concurrent
δ ζ Lin Sim Diff

2.0 1.768 0.994 0.774
1.5 1.764 0.992 0.772
1.0 1.757 0.988 0.769
0.5 1.736 0.976 0.760
0.4 1.726 0.970 0.756
0.3 1.709 0.961 0.748
0.2 1.674 0.941 0.733
0.1 1.570 0.883 0.687

Ring & Last M
δ ζ Lin Sim Diff

2.0 0.994 0.994 0.000
1.5 0.992 0.992 0.000
1.0 0.988 0.988 0.000
0.5 0.977 0.977 0.000
0.4 0.971 0.971 0.000
0.3 0.961 0.961 0.000
0.2 0.942 0.943 -0.001
0.1 0.883 0.890 -0.007

Ring & Full Delay
δ ζ Lin Sim Diff

2.0 0.994 0.994 0.000
1.5 0.992 0.992 0.000
1.0 0.988 0.988 0.000
0.5 0.977 0.977 0.000
0.4 0.971 0.970 0.001
0.3 0.961 0.960 0.000
0.2 0.942 0.939 0.003
0.1 0.884 0.875 0.008

3.3 Validation of the Linearized System

In order to validate the linearization and eigenvalue analysis, analysis of the non-

linear system was completed. Because the non-linear system is a population of limit

38

switching agents defining the characteristics of instabilities raises issues. While the

linear system offers a decent representation of the behavior of variable speed units,

the stability predictions must be validated through nonlinear simulations. It is also

important to note that the linear system was able to go unstable for certain gain

values. For the example of an unstable response for the linear system, a simulation

using the same model parameters is completed on the non-linear system. The non-

linear response is shown in Fig 3.3.

(a) Aggregate Power (b) Individual Temperature Trajectories

Figure 3.3: Predicted unstable response of the non-linear system.

While our linearized analysis predicts that the system would be unstable at k=0.8,

the simulation shows no clear sign of instability. Indices of performance were chosen

to further inspect the effect of the proportional gain, Kgain, on the non-linear system.

Maximum aggregate power, number of compressor cycles following the DR event,

and standard deviation of the individual temperature trajectories were chosen as

these indices of performance (Equations 3.17-3.19). These indices were collected from

populations with varying gain values and deadband sizes.

The max power, or peak demand, is the maximum aggregate power of the popu-

lation of TCLs over the course of the simulation.

39

Max Power = max(PTCL) (3.17)

Number of cycles if the average number of cycles a house experiences in the

population, after the DR event is imposed on the system. This is the cost at which the

system operates. As the criteria is stronger individual TCLs will experience larger

number of cycles and while it is not included in the simulation, larger number of

cycles are correlated to a less efficient operation and shortened lifetime of AC units.

Number of Cycles =
1

N

N∑
i=1

Cycles(DREvent+) (3.18)

Standard deviation of the individual temperature trajectories was taken as the

average of the standard deviation of the nominal position within the deadband for the

population of TCLs. ’Stability’ of the aggregate power is related to the distribution

of the houses throughout the deadband. Grouping, or a small standard deviation is

related to unwanted behavior seen in 1.2.

Std Dev =
1

Nsteps

Nsteps∑
k=1

√√√√ 1

N − 1

N∑
i=1

|θi(k)− µ|2 (3.19)

Where µ is defined as mean of the populations position within the deadband at the

time. shown below:

µ =
1

N

N∑
i=1

θi(k) (3.20)

Maximum aggregate power and average number of cycles are shown graphically in

Fig. 3.4. There are several notable characteristics to be seen in the maximum power

and number of cycles. After approximately a gain of Kgain = 1.0, the system is no

40

L = 10 & N = 100
Square,Last M, & δ = 0.5

k Power Cycle StdDev
0.10 504 8.82 0.279
0.20 453.6 8.73 0.293
0.30 375.2 8.61 0.302
0.40 341.6 8.52 0.309
0.50 302.4 8.37 0.319
0.60 296.8 8.19 0.325
0.70 285.6 8.18 0.334
0.80 296.8 8.15 0.322
0.90 302.4 7.99 0.347
1.00 291.2 7.97 0.351
1.10 280 7.86 0.351
1.20 280 7.85 0.361
1.30 280 7.72 0.376
1.40 280 7.73 0.372
1.50 280 7.91 0.344
1.60 280 7.97 0.361
1.70 280 7.91 0.371
1.70 280 7.91 0.371
1.80 280 7.75 0.373
1.90 280 7.96 0.364
2.00 280 8.68 0.375
2.10 280 8.92 0.396
2.20 324.8 10.21 0.414

(a)

L = 10 & N = 100
Square,Last M, & δ = 0.5

k Power Cycle StdDev
2.30 296.8 9.99 0.399
2.40 296.8 9.76 0.403
2.50 296.8 9.79 0.405
2.60 291.2 9.29 0.426
2.70 291.2 9.29 0.429
2.80 291.2 9.3 0.439
2.90 291.2 9.3 0.442
3.00 291.2 9.3 0.454
3.10 291.2 9.15 0.463
3.20 291.2 9.09 0.466
3.30 291.2 9.05 0.467
3.40 291.2 8.93 0.471
3.50 291.2 8.88 0.474
3.60 291.2 8.85 0.470
3.70 291.2 8.83 0.503
3.80 319.2 10.45 0.480
3.90 336 16.72 0.548
4.00 375.2 20.59 0.513
4.10 420 31.1 0.459
4.20 464.8 58.72 0.426
4.30 560 117.23 0.293
4.40 436.8 39.63 0.458
4.50 560 132.64 0.236

(b)

Table 3.4: Indices of Performance for Varying Gain Values

longer positively effected by the rising gain. Shortly after the gain of Kgain = 2.0 an

increase in both maximum power and number of cycles is experienced. Lastly, as the

gain values approached four, the system witnesses a large increase in both maximum

power and number of cycles.

The anomalous behavior observed through the indices of performance was not

predicted by the eigenvalue analysis and there was no clear signs of the system

41

Figure 3.4: Indices of performance for varying gain values.

exhibiting an unstable response. It is to be noted that the metric of standard

deviation did not accurately represent the system, as two groupings of houses became

apparent. An example of this behavior is shown in the Fig. 3.5. The two groupings

of temperature trajectories caused a higher standard deviation, usually related to a

better distribution of temperatures across the population. More than one grouping

was not anticipated prior to the testing.

It was mentioned that as the gain value approaches four, a drastic spike in

maximum power and number of cycles is witnessed. Temperature trajectories for

a system of 100 houses with a deadband of δ = 0.5 and Kgain = 4.0 is shown in Fig.

3.6. After the DR event occurs, it can be seen the some of the TCLs experience rapid

cycling. While commercial HVAC units utilize control to avoid rapid cycling, this

42

Figure 3.5: Grouping of temperature trajectories.

feature has been omitted from the simulation. The delay introduced by the lock out

feature would have been difficult to incorporate into our linearized model. However,

the model does represent the worst case scenario.

3.3.1 Gain Value effect on Dead Band

To get further insight to the responses of the non-linear system, the effect of

varying gain values on the upper and lower bounds of the deadband were observed.

To begin the analysis, first a deeper look into the m̃ values must be completed. Due to

the discrete nature of the operating state, m, and the constant number of connections,

the average value of neighboring thermostats is constricted to five discrete values.

With a constant degree of four, the possible m̃ values are shown in Eq. 3.21.

43

Figure 3.6: Rapid cycling of TCLs.

m̃i =



0, if 0 of the connected houses are on.

0.25, if 1 connected house is on.

0.5, if 2 connected houses are on.

0.75, if 3 connected houses are on.

1.0, if 4 connected houses are on.

(3.21)

In combination to the gain value, m̃ changes the switching criteria of the ther-

mostats effectively changing the deadband to five different possible values. Each of

these values vary as the gain varies. The effective deadbands are plotted for varying

gain values.

44

(a) Kgain = 0.0 (b) Kgain = 0.5

(c) Kgain = 1.0 (d) Kgain = 2.0

(e) Kgain = 3.0 (f) Kgain = 4.0

Figure 3.7: Effective deadbands with varying gain values.

At a gain value of zero, the deadbands positions are the same as that of a simple

thermostat. As the gain value increases, the effective deadbands move to decreasing

45

values. At a gain values of Kgain = 1.0, a possible upper bound overlaps with a

possible lower bound. At a gain value of Kgain = 2.0 a similar trend occurs as two of

the deadband bounds overlap and again at Kgain = 4.0 where three deadband bounds

overlap. It is important to note that the m̃ value for each home can change with each

time step of the simulation.

As these possible upper and lower bounds overlap, it increases the change of rapid

cycling. If a individual home experiences upper and lower bounds that continuously

places it’s thermostat outside of the allowable deadband, a TCL will switch between

operating states at undesirable speeds. An example of this behavior is shown in

Figure 3.8.

Figure 3.8: Example of rapid cycling due to deadband changes.

In Figure 3.8, two temperature trajectories are shown from a simulation utilizing a

46

gain of k = 4.0, 100 homes, and deadband size of δ = 0.5◦C. One of the temperature

trajectories witnesses rapid cycling to the changing deadbands, switching between

operating states at every time step at its worst point. The rapid cycling occurs for

nearly a two hour duration, between hours two and four of the simulation, (shown in

Figure 3.9). Contrasting from the TCL rapid cycling, another TCL from the same

simulation is plotted showing expected operating conditions. Here, the deadband

changes to allow the TCL to desynchronize from its neighbors but does not cause

rapid cycling.

Figure 3.9: Rapid cycling between hours 2 and 4 of simulation.

To better visualize this problem, the operating state, m, of the rapid cycling

TCL has been plotted in Figure 3.10. Figure 3.10a shows the operating state and the

temperature trajectory of the rapid cycling TCL. During this two hour period, the AC

47

unit turns on 17 times for an average 2.5 minutes. The shortest time the compressor

is On during the two hour period is one minute and the longest the compressor is on

is 14 minutes (near the end of the time period).

This rapid cycling occurs because of the added thermostat modification. This

effect arises because of the combination of the overlapping deadbands and the way

the average operating state, m̃, is calculated. Because of the modified thermostat

behavior, house temperatures can move from within the thermostat deadband to

outside the allowable range just based off of the operation of neighboring TCLs. This

phenomenon can occur at every time step, (as seen in Figure 3.10a), as the average

operating state of neighboring units is calculated. Figure 3.10b shows the effect of m̃

on the operating state of a single TCL experiencing rapid cycling.

(a) Temperature trajectory with m (b) m̃ effect of operating state.

Figure 3.10: Operating state of rapid cycling TCL.

Figure 3.10b suggests that during this two hour period, when m̃ is a non-zero

number the AC compressor experiences a change of state. The majority of the time

within the two hour period of rapid cycling, the m̃ value is equal to zero. This is seen

in Figure 3.11.

48

Figure 3.11: Histogram of m̃ values during two hour period.

3.4 Heterogeneous Simulations

In an attempt to further validate the implementation of the proposed criteria,

a simulation and analysis was completed for the heterogeneous population with a

varying outdoor temperature.

Aggregate power is plotted against ambient outdoor temperature. Fig. 3.12 is

of a 100 home simulation which utilizes a deabband of δ = 0.5 and a gain values of

Kgain = 0.8. To observe the effect of the gain value on the heterogeneous population,

the indices of performance are shown below.

49

(a) Aggregate Power (b) Individual Temperature Trajectories

Figure 3.12: Example response of heterogeneous population.

3.5 Stability Analysis Conclusions

Through the linearization assumption, the closed loop system equation was able

to be computed from each of the three delay styles introduced in the study. An

eigenvalue study was completed from the closed loop systems to predict stability

based off of varying gain values. The gain values at the stability limit approached a

value of Kgain = 1.0 as the deadband increased. Agent based models were used to

validate the predictions of the eigenvalue study.

While the assumption used to linearize the heat transfer equation was a large one,

it did give insight to the dynamics of the population of TCLs. It was found that as

the deadband size increases, the linearization assumption becomes more valid. For

a TCL with an infinitely large deadband, the first order heat transfer dynamics will

act akin to that of the linear first order system. Instability was not seen in the

non-linear systems with a gain value above the predicted stability limit and because

of this, further analysis of the effect of the gain value on the effective deadband was

completed. Due to the discrete nature of m̃ five possible values for each the upper

and lower bounds of the deadband are created. In combination with the gain value,

50

Figure 3.13: Indices of performance for heterogeneous populations.

m̃, moves these bounds to an new position, creating an effective deadband. At a

gain value of Kgain = 1.0, the position of a lower bound and upper bound coincide,

possibly cause the thermostat to rapid cycle. This behavior could have lead to the

predicted instability.

At a gain value of Kgain = 2.0 and Kgain = 4.0, the deadband bounds coincide

again. The overlap of the upper and lower bounds cause an increase in number of

cycles, as well as the spike in maximum power. The periodic behavior witnessed

through the indices of performance are caused by these overlaps in the upper and

lower bounds.

51

3.6 Future Work

In order to fully understand the effects of the gain value on the system, a refined

definition of instability for a population of TCLs needs to be created. Through

the indices of performance, the instability prediction from the linear analysis was

validated by the deadband analysis. The deadband analysis showed the possibility

for rapid cycling, but other than the decreased effectiveness of the the gain on the

aggregate power near the predicted stability limit, there were no clear indicators for

what instability was for the nonlinear system.

Furthering this point, only a single stability limit was found using the eigenvalue

analysis on the linear system. Why the anomalous behavior does not appear in

the linear analysis and how to incorporate it into definitions of stability should be

addressed.

Further analysis into how each connection architecture effects the unwanted be-

haviors. It was seen using the square lattice that un-predicted grouping began to occur

at varying gain values. This was not consistent for smaller or larger gain values. It

is important to understand the cause of these groupings and how to avoid it in the

future.

52

CHAPTER 4

RESILIENT SYSTEM DESIGN

4.1 Security And Resilience

With more and more demand response being added to the power grid in efforts

to mitigate over generation issues, issues of security and resilience begin to emerge.

Security of cyber physical systems, such as the electric grid, have become a growing

topic of interest. Need for security can be seen from examples such as the Ukraine

Power Grid Attack [28]. In order to design not only a secure system for demand

response, but a secure and resilient system the definitions of both must be understood

in terms of cyber physical systems.

Security, as defined by the US Department of Homeland Security, is the act of

adding physical means or cyber defense measures to reduce the risk to a critical

infrastructures[29]. These defenses protect from intrusions, attacks, or the effects

of both natural and manmade disasters. Examples provided for security measures

include requiring badge entry at doors and using antivirus software. Through this

definition and examples, it can be seen that security of cyber-physical systems works

to keep unauthorized users, both intentional and unintentional, from accessing critical

information and data from the system. If security is used to keep unauthorized

users out of a system, what can be done to reduce the effects of intruders who have

successfully infiltrated the system?

53

Resilience offers systems the ability to endure and recover from attacks, intentional

and unintentional, as well as naturally occurring threats[29]. This is done through

the effort to prepare and adjust to changing conditions and possessing the ability to

recover from system disturbances. An example of a resilience measure is installing a

generator to provide back up powering in the case of a power outage[30]. A deeper

definition of resilience in terms of cyber-physical systems is provided by Rieger et al

through the definition of resilient control systems [31]. Rieger et al defines resilient

control systems as a system that maintains state awareness and an accepted level of

operational normalcy in response to disturbances, including threats of an unexpected

and malicious nature.

Rothrock explains the problem of relying solely on security is that security will

not stop all attacks[30]. Because attacks are not always from outside adversaries and

the security system cannot prepare for every possible attack, the system cannot be

’locked down’ to the point where all attacks are defended against. Resilience is needed

for cyber physical systems in order to ensure operation amidst having the systems

vulnerabilities exploited.

Vulnerabilities are security flaws and can be found in any system. Any vulnera-

bility can be exploited by an adversary to become an entry point to the system. A

common entry point in cyber physical systems is communication between devices and

added communication is an integral component to demand response systems. While

vulnerabilities of a system are inherently created through the design of the system,

albeit generally created unintentionally, the ability to overcome system vulnerabilities

can also be incorporated at early stages of the design stage.

Resilience itself is an emergent property of a system [32]. Therefore the resilience

of a system can not only be analyzed by studying the interactions between individual

54

parts of the system, but also be altered by changing those interactions. This means

that the resilience of a demand response system can be improved through alterations

of the communication used.

Analyzing resilience of our system in early design stages is crucial to the ability

of creating a resilient system. The use of complex network theory, aligned with

graph spectral theory gives the ability to calculate resilience of complex engineered

systems [33]. By using these theories to calculate the resilience of a complex system,

Mehrpouyan et al show how design structure can effect the resilience of these systems.

This work emphasizes the ability to use graph theory to show the interconnection of

nodes within a system. Elements of these theories, such as the adjacency matrix, the

degree matrix, and the Laplacian matrix, are used to define metrics of resilience.

The Laplacian matrix is defined as:

L = D −A (4.1)

Where D is the degree matrix, or a diagonal NxN matrix representing the number of

connections each node has. The algebraic connectivity, or second smallest eigenvalue

of the laplacian matrix, quantifies the average difficulty to isolate a node from the

system. A lower algrabraic connectivity is related to a higher level of modularity

within the system. Mehrpouyan explains the importance of modularity in a system

but is clear to highlight that modularity does not increase the systems tolerance to

failure but increases the reliability of the system because of the ability to fix and

maintain the system’s modules individually.

Open Automated Demand Response (OpenADR) is a excellent example of in-

corporating security and resilience in early design for demand response systems[34].

55

OpenADR was introduced by the Lawrence Berkeley National Lab in an attempt to

standardize the communication protocols for demand response systems. OpenADR

2.0 was developed by the OpenADR Alliance and addressed improved needs through

certification processes[35]. Herberg et al’s OpenADR 2.0 shows different architectures

for the protocol and exclaims the security and resilience benefits compared to the

previous version.

OpenADR targets a specific subcategory of demand responses, real time pricing

demand response, or the ability of the utility to calculate varying demand rates

and provide information to the end user in real time. While OpenADR shows the

inclusion of resilience in the design stages of a complex system, it focuses solely on the

communication of the system, and does not take into account physical implications.

The resilience was also determined by the communication tools used to create the

varying architectures and Herberg et al never explicitly defines measures of resilience

for this system [35].

4.2 Simulated Attack

The security of the designed system will be tested by analyzing the effects of

failures due to cyber-physical attacks through two parts. The first part being an

analysis of the algebraic connectivity of varying populations. The second part of the

study will be validating the analysis of the algebraic connectivity by simulating a

cyber-physical attack in the agent based model. By comparatively analyzing these

two parts, improvements in security and resilience of the proposed model will be

shown.

The simulated attack will show the effects of a loss of communication between

56

neighboring thermostats. This simulated attack could possibly occur from commu-

nication jamming or a denial of service attack targeting a communication module.

This attack assumes the first stage of Industrial Control System (ICS) Kill-Chain

has previously been completed and focuses on the second stage. ICS Kill-Chain is

defined by Sans in 2015 [28]. By compromising the peer-to-peer communication, it

is effectively setting the m̃ value to zero for any attacked thermostat. As mentioned

earlier, if the m̃ value is set to zero, the thermostat effectively reverts back to the

simple thermostat model, which could lead to a dangerous rebound after a DR event.

For the simulation, m̃ is calculated through the use of the adjacency matrix of

the system. The loss of communication of a thermostat from the population will be

modeled by setting the row and column of the corresponding thermostat equal to

zero. This act of reverting to the simple thermostat model will be recognized as a

failure of the thermostat in the demand response system. Different levels of failure, or

differing percent of failed nodes out of the total population, are to be tested. Using a

percent of zero failure, or 100% operation, as a baseline, the different levels of failure

are tested to the point that demand response is not longer effectively reducing the

peak demand of the aggregate system. Baseline simulations will be created at each

population, including varying connection architectures.

To compare to the baseline, varying populations are simulated with fixed per-

centages of total number of houses attacked. The indices of performance used in the

previous section are used to represent the systems throughout the simulated attacks.

It is to be noted that this test case uses varying numbers of homes. Each simulation

starts at an equilibrium point with 42.8% of the house’s in an ’On’ state and the

remaining houses ’Off’. The demand response event occurs at two hours into the

simulation and has a duration of 15 minutes.

57

4.3 Results

By solving for the eigenvalues of the Laplacian matrix, the algebraic connectivity

of the graph can be found [33]. The algebraic connectivity, or second smallest

eigenvalue of the Laplacian matrix, was found for varying populations and varying

graph construction. These results can be seen in Figure 4.1.

Figure 4.1: Algebraic Connectivity for Varying Populations of Homes.

To test the effect of the resilience of a graph to the desired demand response ability

of the population, the simulated nodal attack was completed for varying populations

and graph structures. For each simulation percent increase of maximum power is

displayed for varying populations, as they experience an attack on 20% of total

population. These values are shown on Table 4.1.

58

Table 4.1: Percent Increase for Varying Population with 20% Failure

δ = 0.2 & Con
N Square Ring
25 10.53% 16.67%
100 12.16% 13.89%
225 11.59% 6.98%
400 10.67% 5.56%
625 13.10% 6.08%
900 11.89% 4.58%
1225 9.57% 3.76%
1600 12.01% 3.42%
2025 11.42% 3.32%
2500 10.96% 3.19%

Avg. 11.39% 6.74%

δ = 0.2 & Last M
N Square Ring
25 10.53% 10.53%
100 12.16% 3.66%
225 9.04% 4.49%
400 7.33% 4.13%
625 5.72% 3.46%
900 3.71% 3.09%
1225 1.75% 2.88%
1600 3.10% 2.83%
2025 4.25% 2.86%
2500 4.46% 2.87%

Avg. 6.20% 4.08%

δ = 0.2 & Full
N Square Ring
25 10.53% 5.26%
100 11.69% 4.94%
225 10.84% 4.44%
400 9.43% 2.80%
625 33.68% 2.57%
900 3.96% 1.90%
1225 1.11% 1.29%
1600 3.19% 0.98%
2025 4.35% 0.77%
2500 4.42% 0.76%

Avg. 9.32% 2.57%

δ = 0.5 & Con
N Square Ring
25 14.29% 6.67%
100 15.09% 10.71%
225 12.71% 6.67%
400 14.15% 12.94%
625 17.57% 17.16%
900 13.26% 18.32%
1225 15.74% 14.31%
1600 18.09% 20.27%
2025 17.01% 21.46%
2500 21.76% 20.81%

Avg. 15.97% 14.93%

δ = 0.5 & Last M
N Square Ring
25 14.29% 6.67%
100 13.21% 20.75%
225 12.71% 15.52%
400 13.59% 15.64%
625 15.24% 19.12%
900 14.47% 20.61%
1225 16.94% 15.43%
1600 18.013% 22.06%
2025 18.05% 22.12%
2500 21.83% 21.45%

Avg. 15.84% 17.94%

δ = 0.5 & Full
N Square Ring
25 21.43% 13.33%
100 12.96% 16.36%
225 11.97% 16.52%
400 13.88% 20.10%
625 16.09% 19.06%
900 15.86% 20.10%
1225 16.56% 18.74%
1600 20.38% 20.94%
2025 16.54% 21.43%
2500 2.16% 20.97%

Avg. 14.78% 18.77%

Each population uses a baseline for maximum power from a simulation with zero

houses attacked. It should be noted that for each of the population sizes, the baseline

varies between connection architecture. For all population with a deadband equal to

δ = 0.2 it can be seen that the percent increase for a ring lattice is less than that of

a square lattice. As the deadband increases, the simulated response becomes greater

removed from the predictions using algebraic connectivity, or simply, the square lattice

59

experiences smaller percent increases of maximum power. The only population with

a deadband equal to δ = 0.5 where the ring lattice shows greater robustness is the

population utilizing the a concurrent delay scheme. The deadband effects on perecent

increase for the last m delay scheme are showed graphically in Figure 4.2.

(a) δ = 0.2◦C (b) δ = 0.5◦C

Figure 4.2: Deadband effects on percent increase.

Through the testing of the simulation it was observed that the location of the

houses which were attack effected the aggregate demand of the system. This was

verified by varying the location of attacked homes on a constant population of 100

homes, connected with a square lattice. Locations chosen for the attacks were the

first N number of attacked homes of the population, the last N number of attacked

homes in the population, and alternately attacking the first 2*N number of attacked

homes in the population. An example of the alternating attack would be if two homes

in a population were attacked home number one and home number three would lose

ability to communicate with neighboring homes. A summary of the effect of varying

attack location is shown through percent increase of maximum power. This test for

robustness was completed on two deadband sizes, δ = 0.2 and 0.5, focusing on the

last M delay scheme. Percent of attacked homes is also varied, using 10%, 20%, and

60

30%An example of this work is shown in Table 4.3, for a deadband size of δ = 0.5,

square lattice structure, and a percent attacked of 20%.

Table 4.3: Number of Homes till Failure with Varying Location

Population Front Back Alternating
25 14.3% 7.1% 14.3%
100 13.2% 13.2% 22.6%
225 12.7% 11.9% 26.3%
400 13.6% 11.2% 18.9%
625 15.2% 14.0% 31.1%
900 14.5% 14.5% 18.4%
1225 16.9% 13.5% 32.9%
1600 18.0% 17.2% 22.1%
2025 18.0% 16.7% 37.6%
2500 21.8% 19.9% 24.9%

Average 15.8% 13.9% 24.9%

A summary of all the populations tested for the effects of varying location are

shown in Table 4.3. The values shown are the average percent increase over varying

population sizes. An example of this average is shown on the final row of Table 4.3.

Table 4.4, gives insight into location effects seen in simulated cyber attacks on

the proposed DR system. For attacks on systems with deadbands of δ = 0.2, a cyber

attack located at the front of the population is more effected by the attack than when

the attack is located at the back of the population. For larger percentages of attacked

houses, the attack alternating between every other house in front of the population is

the most critical. A clear distinction between attacks on the front of the population

versus those at the back of a population were not seen for systems with a dead band

of δ = 0.5. However, it was clear that simulations following the alternating attack

pattern caused the largest percent increase in maximum aggregate power.

61

Table 4.4: Summary of Location Effect from Cyber Attacks

δ % Attack
Front Back Alternating

Square Ring Square Ring Square Ring

0.2
10% 5.4% 4.1% 0.9% 0.0% 4.2% 2.9%
20% 6.2% 4.1% 0.9% 0.0% 12.1% 7.4%
30% 9.2% 4.6% 1.4% 0.0% 21.0% 17.5%

0.5
10% 6.7% 8.6% 8.5% 8.9% 11.5% 10.6%
20% 15.8% 17.9% 13.9% 16.7% 24.9% 21.1%
30% 26.3% 26.8% 24.8% 27.1% 38.9% 26.4%

The locational effects shown in Table 4.4 are plotted for two different deadband

sizes. These plots can be seen in Figure 4.3.

(a) δ = 0.2◦C (b) δ = 0.5◦C

Figure 4.3: Locational effects on percent increase.

4.4 Resilience Conclusions

The results displayed in Figure 4.1 clearly shows that both population size and

graph structure effect the resilience of a population. Algebraic connectivity was

calculated after the simulated attack, presenting a value of zero for each system. An

algebraic connectivity of zeros shows that the graph is not connected. This coincides

with simulating an attack to remove the ability to communicate between houses.

62

Algebraic connectivity for a centralized controller was found to be a value of one.

This calculated value for the centralized controller was larger than all values, except

25 homes connected with a square lattice, validating the decision to move toward a

de-centralized controller.

The ring lattice, on average, showed both better algebraic connectivity, as well as a

better ability, as a whole, to operate with attacked homes. For larger populations and

larger percentages of attacked homes the ring lattices saw a smaller percent increase

in maximum power. It should be noted that percent increase and maximum are not

the same because baseline results were calculated for each population size with square

and ring lattices.

The simulated attack created failures in communication by altering the adjacency

matrix of the graph, setting row and column of the corresponding houses to zero.

For the simulation the attacked houses were the first corresponding houses in the

simulation, (i.e. house 1,2,3..N - Number of Attacked Homes). Slight differences

were found when the attacked houses were positioned at the end of the population.

When further studied, the location of the attack showed larger differences on the total

number of houses to failure. The most vulnerable of the test attacks was attacked at

the beginning of the population but alternating every other house.

One reason the attack alternating every other house was the most effective is

because it effects more houses in the population. By attacking the houses in a close

group, only a few of the houses neighboring the edge houses are effected. However,

distributing the attack effects every house connected to the attacked houses.

63

4.5 Future Work

Showing the comparison between lattice structures shows the dependence of the

demand response to the graph as well as shows potential reasoning on using one

above the other. Only two simple lattice structures were used for the study, further

work testing other lattice structures is needed to find the optimal graph for the

proposed criteria. It should be noted the study on the effects of location of attacks

was completed only with the square lattice, further testing should be done on all

additional lattice structures.

For the study the arbitrary gain value in the additional criteria was kept at a

constant of k=0.8. This was chosen because it fall clearly below the stability limit in

a parallel study of the stability of the system. Testing the effect of the gain value on

the resilience of the system show a great area of interest.

Another interesting point maybe to look further into the effects of population size.

For the larger populations with a ring lattice, it appears that the value of failed homes

may be asymptotically approaching a value, but it is unclear at this point.

Finally, the study has looked at the ability of the system to function while under

an cyber-physical attack. In moving forward in the advancement of the purposed

criteria, the ability of the system to self heal is crucial.

64

CHAPTER 5

CONCLUSIONS

Through both the eigenvalue analysis of the linear system and the simulations

of the nonlinear system it was shown that choice of gain, connection degree, and

connection architecture effected the performance of the population in demand re-

sponse events. It is important to note that undesirable effects can be introduced

to the population by the proposed mesh thermostat behavior. With higher values

of the proportional gain Kgain it was shown to cause unstable response in the linear

system, spikes in peak demand for the nonlinear system, and groupings of temperature

trajectories on populations utilizing a square lattice.

While the eigenvalue analysis gave insight to the nonlinear system, the behavior

of the nonlinear system was much more complex than what we were able to capture

with the linear system. However it is important to note that for systems with large

deadband values the system acted closer to the linear assumption.

By simulating cyber-physical attacks on the system, we were able to see that

the system resilience, as measured by the algebraic connectivity, is sensitive to the

method of attack and the type of connection architecture implemented. Contrary to

the eigenvalue analysis of stability, the algebraic connectivity was more aligned to the

simulations when a smaller deadband was utilized.

One of the limitations to this study is the first order equation used to describe

65

the heat transfer dynamics. Zhang et al showed the importance for the second order

equation in this type of analysis [15]. The second order equation takes into account

the internal mass of the TCLs. Moving this work to the second order equation would

give a more realistic simulation for the demand response events. Also incorporating

a lock-out stage on the AC compressors will help narrow the gap of what is being

simulated to what is implemented.

To validate the simulated model, a hardware in the loop (HIL) simulation should

be created. The HIL simulation would give insight to the complexity of a real

embedded system utilizing the mesh behavior. A HIL simulation may be comprised

of several built model homes which have the same time constant as those being

modeled in the simulation. The built models will be embedded within the population

of simulated models. Model parameters and the order of the model will be validated

with the HIL simulation.

Model predictive control is increasingly pursued with demand response events.

The ability to incorporate solar penetration into the simple swarm behavior and test

it’s ability for tracking against model predictive control is desired for the future steps

of this project.

66

REFERENCES

[1] “Renewables 2017.”

[2] P. Denholm, M. O’Connel, G. Brinkman, and J. Jorgenson, “Overgeneration
from Solar Energy in California: A Field Guide to the Duck Chart,” Tech. Rep.
NREL/TP-6A20-65023, National Renewable Energy Laboratory, Nov. 2015.

[3] J. S. John, “Hawaiis Solar-Grid Landscape and the Nessie Curve,” Feb. 2014.

[4] C. Vlahoplus, G. Litra, P. Quinlan, and C. Becker, “Revisiting the Duck Curve,”
Oct. 2016.

[5] L. Vandepaer, J. Cloutier, and B. Amor, “Environmental impacts of Lithium
Metal Polymer and Lithium-ion stationary batteries,” Renewable and Sustainable
Energy Reviews, vol. 78, pp. 46–60, Oct. 2017.

[6] D. S. Callaway, “Tapping the energy storage potential in electric loads to
deliver load following and regulation, with application to wind energy,” Energy
Conversion and Management, vol. 50, pp. 1389–1400, May 2009.

[7] J. Rodrguez-Molina, M. Martnez-Nez, J.-F. Martnez, and W. Prez-Aguiar,
“Business Models in the Smart Grid: Challenges, Opportunities and Proposals
for Prosumer Profitability,” Energies, vol. 7, pp. 6142–6171, Sept. 2014.

[8] K. Zhou, S. Yang, and Z. Shao, “Energy Internet: The business perspective,”
Applied Energy, vol. 178, pp. 212–222, Sept. 2016.

[9] R. Malhame and C.-Y. Chong, “Electric load model synthesis by diffusion ap-
proximation of a high-order hybrid-state stochastic system,” IEEE Transactions
on Automatic Control, vol. 30, pp. 854–860, Sept. 1985.

[10] Z. Xu, J. Ostergaard, M. Togeby, and C. Marcus-Moller, “Design and Modelling
of Thermostatically Controlled Loads as Frequency Controlled Reserve,” in 2007
IEEE Power Engineering Society General Meeting, pp. 1–6, June 2007.

[11] “A/C Cool Credit.”

67

[12] S. Bashash and H. K. Fathy, “Modeling and Control of Aggregate Air Condi-
tioning Loads for Robust Renewable Power Management,” IEEE Transactions
on Control Systems Technology, vol. 21, pp. 1318–1327, July 2013.

[13] S. Bashash and H. K. Fathy, “Modeling and control insights into demand-side en-
ergy management through setpoint control of thermostatic loads,” in Proceedings
of the 2011 American Control Conference, pp. 4546–4553, June 2011.

[14] L. B. Wood and H. Harry Asada, “Cellular Stochastic Control of the Collective
Output of a Class of Distributed Hysteretic Systems,” Journal of Dynamic
Systems, Measurement, and Control, vol. 133, no. 6, p. 061011, 2011.

[15] W. Zhang, J. Lian, C. Y. Chang, and K. Kalsi, “Aggregated Modeling and
Control of Air Conditioning Loads for Demand Response,” IEEE Transactions
on Power Systems, vol. 28, pp. 4655–4664, Nov. 2013.

[16] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “Aggregate Flexibility
of Thermostatically Controlled Loads,” IEEE Transactions on Power Systems,
vol. 30, pp. 189–198, Jan. 2015.

[17] S. D. Ramchurn, P. Vytelingum, A. Rogers, and N. Jennings, “Agent-Based
Control for Decentralised Demand Side Management in the Smart Grid,” In-
ternational Foundation for Autonomous Agents and Multiagent Systems, p. 8,
2011.

[18] E. Xydas, C. Marmaras, and L. M. Cipcigan, “A multi-agent based scheduling
algorithm for adaptive electric vehicles charging,” Applied Energy, vol. 177,
pp. 354–365, Sept. 2016.

[19] R. Schwartz, “Local Peer-to-Peer Communication to Improve Demand Response
in Residential Neighborhoods,” Boise State University Theses and Dissertations,
Dec. 2018.

[20] “Agent-Based Simulation Modeling.”

[21] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Inter-
net of Things: A Survey on Enabling Technologies, Protocols, and Applications,”
IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[22] A.-L. Barabsi and M. P3sfai, Network Science. Cambridge University Press, July
2016. Google-Books-ID: iLtGDQAAQBAJ.

[23] K. Ogata, Discrete-Time Control Systems. Pearson, 2 ed., Dec. 1994.

[24] “NSRDB update - TMY3: Alphabetical List by State and City.”

68

[25] B. Kulakowski, J. Gardner, and J. L. Shearer, Dynamic Modeling and Control
of Engineering Systems. Cambride, 2012.

[26] “Multiple Lyapunov functions and other analysis tools for switched and hybrid
systems - IEEE Journals & Magazine.”

[27] N. Nise, Control System Engineering. Wiley, 7 ed., 2015.

[28] R. M. Lee, M. j. Assante, and T. Conway, “Analysis of the Cyber Attack on the
Ukrainian Power Grid,” EISAC, Mar. 2016.

[29] “What Is Security and Resilience?,” Dec. 2012.

[30] R. Rothrock, “Security vs. resilience: Know the difference.”

[31] C. Rieger, Q. Zhu, and T. Basar, “Agent-based cyber control strategy design for
resilient control systems: Concepts, architecture and methodologies,” in 2012
5th International Symposium on Resilient Control Systems, (Salt Lake City, UT,
USA), pp. 40–47, IEEE, Aug. 2012.

[32] Y. Y. Haimes, K. Crowther, and B. M. Horowitz, “Homeland security pre-
paredness: Balancing protection with resilience in emergent systems,” Systems
Engineering, vol. 11, pp. 287–308, Dec. 2008.

[33] H. Mehrpouyan, B. Haley, A. Dong, I. Y. Tumer, and C. Hoyle, “Resilient Design
of Complex Engineered Systems,” ASME 2013 International Design Engineering
Technical Conferences and Computers and Information in Engineering Confer-
ence, no. 55881, p. V03AT03A048, 2013.

[34] C. McParland, “OpenADR open source toolkit: Developing open source software
for the Smart Grid,” in 2011 IEEE Power and Energy Society General Meeting,
(Detroit, MI, USA), pp. 1–7, IEEE, July 2011.

[35] U. Herberg, D. Mashima, J. G. Jetcheva, and S. Mirzazad-Barijough, “Ope-
nADR 2.0 deployment architectures: Options and implications,” in 2014 IEEE
International Conference on Smart Grid Communications (SmartGridComm),
pp. 782–787, Nov. 2014.

69

APPENDIX A

STABILITY METRICS

A.1 Indices of Performance for Varying Populations

70

(a) Indices of Performance, Square, Last
M, δ = 2.0

(b) Indices of Performance, Square, Last
M, δ = 0.5

71

(a) Indices of Performance, Square, Last
M, δ = 0.4

(b) Indices of Performance, Square, Last
M, δ = 0.3

72

(a) Indices of Performance, Square, Last
M, δ = 0.2

(b) Indices of Performance, Square, Last
M, δ = 0.1

73

(a) Indices of Performance, Ring, Last M,
δ = 2.0

(b) Indices of Performance, Ring, Last M,
δ = 0.5

74

Table A.5: Indices of Performance, Ring, Last M, δ = 0.2

75

APPENDIX B

RESILIENCE METRICS

76

Table B.1: IOP of Resilience with Concurrent, Square Lattice, & δ = 0.5

77

Table B.2: IOP of Resilience with Concurrent, Ring Lattice, & δ = 0.5

78

Table B.3: IOP of Resilience with Last m, Square Lattice, & δ = 0.5

79

Table B.4: IOP of Resilience with Last m, Ring Lattice, & δ = 0.5

80

Table B.5: IOP of Resilience with Full Delay, Square Lattice, & δ = 0.5

81

Table B.6: IOP of Resilience with Full Delay, Ring Lattice, & δ = 0.5

82

Table B.7: IOP of Resilience with Concurrent, Square Lattice, & δ = 0.2

83

Table B.8: IOP of Resilience with Concurrent, Ring Lattice, & δ = 0.2

84

Table B.9: IOP of Resilience with Last m, Square Lattice, & δ = 0.2

85

Table B.10: IOP of Resilience with Last m, Ring Lattice, & δ = 0.2

86

Table B.11: IOP of Resilience with Full Delay, Square Lattice, & δ = 0.2

87

Table B.12: IOP of Resilience with Full Delay, Ring Lattice, & δ = 0.2

88

APPENDIX C

SOURCE CODE

function adj = AdjMatrixRingLatticeGen(N_agents,N_connections)

%N_agents = Total number of agents in population (length of Adj
 Matrix)
%N_connections = Number of connections per agent

A = zeros(N_agents,N_agents); %initialize adj matrix

if mod(N_connections,2) == 0 %checks to make sure even number of
 connections

 for i = 1:N_connections/2

 v1 = ones(1,length(diag(A,i)));
 v2 = ones(1,length(diag(A,N_agents-i)));
 A = A + diag(v1,i) + diag(v1,-i) + ...
 diag(v2,N_agents-i) + diag(v2,-(N_agents-i));
 end
adj = A;
else

adj = 'Does not compute odd # of connections';

% Odd number of connections is a more complex matrix since AnyLogic
% flips which side has 2 connections vs 1 connection in a manner I
 didn't
% want to spend time figuring out since we are using 4 or 8
 connections.

end
end

Not enough input arguments.
Error in AdjMatrixRingLatticeGen (line 6)
A = zeros(N_agents,N_agents); %initialize adj matrix

Published with MATLAB® R2018a

1

89

C.1 Ring Lattice Generator

function adj = AdjMatrixLatticeSqGen(N,periodic)
%
% fucntion to create an adjacency matrix for
% a squre lattice graph with or without periodic
% boundary conditions
% N - size of the N * N lattice grid
% periodic: boolean
%
Id = eye(N);
Ze = zeros(N,N);
D1 = diag(ones(N-1,1),1);
D2 = Ze;
D2(1,N) = 1;
tmp=ones(N-1,1);
%A = diag(tmp,-1)+diag(tmp,1);
A = diag(tmp,1);
if periodic
 A(1,N) = 1;
end

ad1 = kron(Id, A);
ad2 = kron(D1,Id);
if periodic
 ad3 = kron(D2,Id);
else
 ad3 = kron(D2,Ze);
end
adj = ad1+ad2+ad3;
adj=adj+adj';
if N==2
 adj=[0 1 0 1;1 0 1 0;0 1 0 1;1 0 1 0];
end

Not enough input arguments.
Error in AdjMatrixLatticeSqGen (line 9)
Id = eye(N);

Published with MATLAB® R2018a

1

90

C.2 Square Lattice Generator

Table of Contents
 .. 1
All Concurrent .. 2
All Concurrent jason test 10/21/18 ... 2
Concurrent temp Last M .. 3
Last temp Last M .. 3

clear all;
format compact

% Model Parameters
R = 2;
C = 10;
Qc = -14.0;
Q=14;
Beta = 2.5;
Tset = 20.0;
deldb = 0.1;
Tinf= 32;
Qi=0;
k1=1;

L = 10; %setting up an LxL grid
N=L*L; %Number of Houses
graphtype = 'S';
%graphtype = 'S';
if graphtype == 'R'
 deg=4;
 LAdj=AdjMatrixRingLatticeGen(N,deg);
elseif graphtype == 'D'
 LAdj=AdjMatrixLatticeSqGen8(L,true);
 deg = 8;
else
 LAdj=AdjMatrixLatticeSqGen(L,true);
 deg = 4;
end

% Simulation times
delt = 1/60; % integrate set size (hr)
nhours = 24; % how long to run
DRHour = 5; % time when the DR event happens
DRDuration = 0.25; % duration in minuts of DR event
DRDuration = round(DRDuration/delt);
%
nsteps = round(nhours/delt);
stepDRStart = round(DRHour/nhours * nsteps);
stepDREnd = stepDRStart + DRDuration;
stepSWEnd = stepDRStart + 8*DRDuration;
stepSWEnd = 5000; %supress swarm end this way

1

91

C.3 Eigenvalue Analysis

hrc=-delt/(R*C);

m=zeros(N,nsteps);
rho=zeros(N,nsteps);
Non = round(0.428*N);
m(1:Non,1) = 1; % 42.8% of the devices are ON
T(1:N,1)=Tset - (deldb/2);
dt0ON = deldb/(Non-1);
dt0OFF = deldb/(N-Non-1);
for i=1:Non
 T(i,1)= Tset - (deldb/2) + dt0ON*(i-1);
end
for i = Non+1:N
 T(i,1)= Tset - (deldb/2) + dt0OFF*(i-Non-1);
end

P=zeros(N,1);
P(:,1)=m(:,1)*Q/Beta;
time=zeros(nsteps,1);
mtilde = (LAdj * m(:,1))/deg;
rhotilde = (LAdj * rho(:,1))/deg;

ei=0;
k=0.85;
count=1;
G=expm(hrc*eye(N));
H2=(R*Qc)*(eye(N)-expm((hrc)*eye(N)));

All Concurrent
while ei <1
Amatrix=G+((1/deldb)*H2*inv(eye(N)+(k/deg)*LAdj));
min(eig(Amatrix));
ei=max(abs(eig(Amatrix)));
k=k+0.0001;
count=count+1;

end
kCon=k-0.0001
Con_i=count;
beep

kCon =
 0.8834

All Concurrent jason test 10/21/18
ei=0; k=1; while ei <1 Amatrix=G+((1/deldb)*H2*(eye(N)-(k/deg)*LAdj)); min(eig(Amatrix));
ei=max(abs(eig(Amatrix))); k=k+0.001; count=count+1;

end kContest=k-0.001 Con_i=count;

2

Concurrent temp Last M
ei=0;
k=0.85;
count=1;
Gnew_T=zeros(4*N);
Gnew_T(1:N,1:N)=G;
Gnew_T(1:N,(2*N+1):3*N)=(1/deldb)*H2;
Gnew_T((N+1):2*N,1:N)=eye(N);
Gnew_T((2*N+1):3*N,1:N)=G;
Gnew_T((3*N+1):4*N,(2*N+1):3*N)=eye(N);

while ei <1
Gnew_T((2*N+1):3*N,(2*N+1):3*N)=(1/deldb)*H2-((k/deg)*LAdj);
ei=max(abs(eig(Gnew_T)));
k=k+0.0001;
count=count+1;

end

kLastM=k-0.0001
LastM_i=count;
beep

kLastM =
 0.8834

Last temp Last M
ei=0;
k=0.85;
count=1;
Gnew=zeros(4*N);
Gnew(1:N,1:N)=G;
Gnew(1:N,(2*N+1):3*N)=(1/deldb)*H2;
Gnew((N+1):2*N,1:N)=eye(N);
Gnew((2*N+1):3*N,1:N)=eye(N);
Gnew((3*N+1):4*N,(2*N+1):3*N)=eye(N);

while ei <1
Gnew((2*N+1):3*N,(2*N+1):3*N)=(1/deldb)*H2-((k/deg)*LAdj);
ei=max(abs(eig(Gnew)));
k=k+0.0001;
count=count+1;

end

kLastTM=k-0.0001
LastTM_i=count;
beep

kLastTM =
 0.8835

3

%
% Make an avi file from a movie
%
filename=uiputfile('*.avi');
myVideo = VideoWriter(filename);
myVideo.FrameRate=15;
open(myVideo);
writeVideo(myVideo, F);
close(myVideo);

Published with MATLAB® R2018a

1

94

C.4 Create MATLAB Animation

clear all;

% Model Parameters
R = 2;
C = 10;
Qc = -14.0;
Q=14;
Beta = 2.5;
Tset = 20.0;
deldb = 0.5;
Tinf= 32;
Qi=0;
k1=0.8

L = 10; %setting up an LxL grid
N=L*L; %Number of Houses
graphtype = 'S';
%graphtype = 'S';
if graphtype == 'R'
 deg=4;
 LAdj=AdjMatrixRingLatticeGen(N,deg);
elseif graphtype == 'D'
 LAdj=AdjMatrixLatticeSqGen8(L,true);
 deg = 8;
else
 LAdj=AdjMatrixLatticeSqGen(L,true);
 deg = 4;
end

% Simulation times
delt = 1/60; % integrate set size (hr)
nhours = 12; % how long to run
DRHour = 2; % time when the DR event happens
DRDuration = 0.25; % duration in minuts of DR event
DRDuration = round(DRDuration/delt);
%
nsteps = round(nhours/delt);
stepDRStart = round(DRHour/nhours * nsteps);
stepDREnd = stepDRStart + DRDuration;
stepSWEnd = stepDRStart + 8*DRDuration;
stepSWEnd = 5000; %supress swarm end this way
hrc=-delt/(R*C);

cycles=zeros(N,1);
m=zeros(N,1);
m_last=zeros(N,1);

rho=zeros(N,1);
Non = round(0.428*N);
m(1:Non) = 1; % 42.8% of the devices are ON
T(1:N,1)=Tset - (deldb/2);
dt0ON = deldb/(Non-1);

1

95

C.5 Homogenous Linear

dt0OFF = deldb/(N-Non-1);
for i=1:Non
 T(i,1)= Tset - (deldb/2) + dt0ON*(i-1);
 cycles(i)=1;
end
for i = Non+1:N
 T(i,1)= Tset - (deldb/2) + dt0OFF*(i-Non-1);
end

P=zeros(N,1);
P(:,1)=m*Q/Beta;
time=zeros(nsteps,1);
mtilde = (LAdj * m)/deg;
rhotilde = (LAdj * rho)/deg;

tic
for k = 1:nsteps-1
 for j = 1:N
 T(j,k+1)=exp(hrc)*T(j,k)+(1-exp(hrc))*Tinf+R*(1-exp(hrc))*Qi
+(R*Qc)*(1-exp(hrc))*m(j);
 end

 rho(:,k+1) = makerhovec(T(:,k+1),Tset,deldb);
 time(k+1)=k*delt;
 mtilde(:,k+1) = (LAdj * m)/deg;
 rhotilde(:,k+1) = (LAdj * rho(:,k+1))/deg;
 m_last(:)=m(:);
 mout(k,:)=m(:);

 for j = 1:N
 % Simple Thermostat Model
 if k < (stepDRStart-1)
% if rho(j,k+1) > 1
 m(j) = rho(j,k);
% elseif rho(j,k+1) < 0
% m(j) = rho(j,k+1);
% end
 end

 % Additional Criteria
 if k > (stepDRStart-1) && k < (stepSWEnd-1)
% if (rho(j,k) -k1*mtilde(j,k)) > 1
 m(j) = (rho(j,k+1) -k1*mtilde(j,k));
% elseif (rho(j,k) - k1*mtilde(j,k)) <= 0
% m(j) = 0;
% end
 end

 if k>(stepDRStart-1) && k < (stepDREnd-1)
 m(:)=0;
 end

 P(j,k+1)=m(j)*Q/Beta;

2

96

 if (m(j)-m_last(j)) == 1
 cycles(j)=cycles(j)+1;
 end

 end

end
toc
pout=sum(P);
figure
plot(time,pout)
ylabel('Power')
xlabel('Time')
title('Discrete')

figure
plot(time,T')
ylabel('Temperature')
xlabel('Time')
% low_temp=round(min(T(:,stepDRStart:end)'),2);
% [lt,bin]=hist(low_temp,unique(low_temp));
% [~,idx]=sort(lt,'descend');
% temp_inst=lt(idx)
% temp_values=bin(idx)
% eff_db=mean(min(T(:,stepDRStart:end)'))
% hold on
% refline(0,temp_values(2))
% hold off
mean(cycles)
max(pout)
devation=mean(std(rho))
beep

k1 =

 0.8000

Elapsed time is 0.046633 seconds.

ans =

 0.4300

ans =

 397.1661

devation =

3

97

 0.0087

4

98

Published with MATLAB® R2018a

5

99

Agent Based Model of TCL in Discrete Form
clear all;
format compact

% Files needed to include in folder
% ----------------------------------
% AdjMatrixRingLatticeGen.m
% AdjMatrixLatticeSqGen8.m
% AdjMatrixLatticeSqGen.m
% makerhovec.m
% MakeAVI.m
% -----------------------------------

%%%
%%%%%
%If video is desired
vid=0; %[0] - No to video [1] - Yes to Video
%%%
%%%%%

% Model Parameters
% From Callaway
% https://ac.els-cdn.com/S0196890408004780/1-s2.0-
S0196890408004780-main.pdf?_tid=4165d845-5c8b-4b7a-8c59-
ee93f2ba5105&acdnat=1552589032_382c3b81482263bf736457833c524332
R = 2; % Thermal Resistance
C = 10; % Thermal Capacity
Qc = -14.0; % Cooing Capacity of AC
Q=14; % Redundant Variable for AC
Beta = 2.5; % COP of AC
Tset = 20.0; % Homogeneous Set Point Temperature
deldb = 0.5; % Deadband Size
Tinf= 32; % Ambient Temperature
Qi=0; % Internal Heat Gains

%Gain Value
k1=0.80 %Calculated Stabilty at k=1.0 for larger deadbands

% Population Size (Square Number needed for Square Lattice Graph)
L = 10; % Setting up an LxL grid
N=L*L; % Number of Houses

% Choose Graph Type
graphtype = 'S';

if graphtype == 'R' %Creates Ring Lattice
 (deg=4)
 deg=4;
 LAdj=AdjMatrixRingLatticeGen(N,deg);

1

100

C.6 Homogenous Non-Linear

elseif graphtype == 'D' %Creates Square Lattice
 (deg=8)
 LAdj=AdjMatrixLatticeSqGen8(L,true);
 deg = 8;
else %Default Square Lattice
 (deg=4)
 LAdj=AdjMatrixLatticeSqGen(L,true);
 deg = 4;
end

% Simulation times
delt = 1/60; % integrate set size (hr)
nhours = 12; % how long to run
DRHour = 2; % time when the DR event
 happens
DRDuration = 0.25; % duration in Hours of DR
 event
DRDuration = round(DRDuration/delt); % duration in minutes of DR
 event
%
nsteps = round(nhours/delt);
stepDRStart = round(DRHour/nhours * nsteps);
stepDREnd = stepDRStart + DRDuration;
stepSWEnd = stepDRStart + 8*DRDuration;
stepSWEnd = 5000; %supress swarm end this way

% Create Exponetial Constant used in Discrete Space
hrc=-delt/(R*C);

% Initialize Simulation Metrics
cycles=zeros(N,1); % Number of Cycles Per Home
m=zeros(N,1); % HVAC Operating State
m_last=zeros(N,1); % HVAC last operating State
rho=zeros(N,1); % Normalized Position within
 DB

% Create Initial Conditions
Non = round(0.428*N); % 42.8% for initial stability
m(1:Non) = 1; % 42.8% of the devices are ON
T(1:N,1)=Tset - (deldb/2); % Initialize Indoor
 Temperature
dt0ON = deldb/(Non-1); % Incremental Temperature
 Change
dt0OFF = deldb/(N-Non-1); % Incremental Temperature
 Change

% Create unifom distributions of intial Temerature
for i=1:Non
 T(i,1)= Tset - (deldb/2) + dt0ON*(i-1); %Distribution for
 On
end
for i = Non+1:N
 T(i,1)= Tset - (deldb/2) + dt0OFF*(i-Non-1); %Distribution for
 Off

2

101

end

% Initialize Model Outputs and Average Values
P=zeros(N,1); % Power (kW)
P(:,1)=m*Q/Beta; % Power for Intial States
time=zeros(nsteps,1); % Simulation Time
mtilde = (LAdj * m)/deg; % Average Operating State
rhotilde = (LAdj * rho)/deg; % Average Position within DB

% Create Frames and Video for House States
if vid == 1
 figure
 hold on
 for j=1:N
 hold on
 xpos=floor((j-1)/10)+1;
 ypos=rem(j,10);
 if ypos == 0
 ypos = 10;
 end

 % Red Markers are Off & Blue Markers are On
 if m(j) == 0
 p=plot(xpos,ypos,'or','MarkerFaceColor','red');
 else
 p=plot(xpos,ypos,'ob','MarkerFaceColor','blue');
 end
 end
 name=[num2str(0) ' hrs and ' num2str(0) ' min'];
 title(name)
 hold off
 drawnow
 % Set up Video Frames
 F(nsteps) = struct('cdata',[],'colormap',[]);
 F(1)=getframe(gcf);

 hold on
end

% Start Simulation
for k = 1:nsteps-1
 for j = 1:N
 % Compute Temperature for individual TCLs
 T(j,k+1)=exp(hrc)*T(j,k)+(1-exp(hrc))*Tinf+R*(1-exp(hrc))*Qi
+(R*Qc)*(1-exp(hrc))*m(j);
 end

 % Update Simulations Values
 rho(:,k+1) = makerhovec(T(:,k+1),Tset,deldb);
 time(k+1)=k*delt;
 mtilde(:,k+1) = (LAdj * m)/deg;
 rhotilde(:,k+1) = (LAdj * rho(:,k+1))/deg;
 m_last(:)=m(:);

3

102

 mout(k,:)=m(:);

 % Thermostat Criteria for Individual Homes
 for j = 1:N
 % Simple Thermostat Model
 if k < stepDRStart-1
 if rho(j,k+1) > 1
 m(j) = 1;
 elseif rho(j,k+1) < 0
 m(j) = 0;
 end
 end

 % Additional Criteria
 if k > (stepDRStart-1) && k < (stepSWEnd-1)
 if (rho(j,k+1) -k1*mtilde(j,k)) > 1
 m(j) = 1;
 elseif (rho(j,k+1) - k1*mtilde(j,k)) <= 0
 m(j) = 0;
 end
 % Count Number of Cycles after DR Event
 if (m(j)-m_last(j)) == 1
 cycles(j)=cycles(j)+1;
 end

 end

 % DR Event
 if k>(stepDRStart-1) && k < (stepDREnd-1)
 m(j)=0;
 end

 % Individual Power Consumption
 P(j,k+1)=m(j)*Q/Beta;

 end

 % Update Video Frames
 if vid == 1
 for j=1:N

 xpos=floor((j-1)/10)+1;
 ypos=rem(j,10);
 if ypos == 0
 ypos = 10;
 end

 % Only change plot if states change (Much Faster)
 if (m_last(j)-m(j)) == 1
 plot(xpos,ypos,'or','MarkerFaceColor','red')
 elseif (m(j)-m_last(j)) == 1
 plot(xpos,ypos,'ob','MarkerFaceColor','blue')
 end
 if k>stepDRStart && k < stepDREnd

4

103

 plot(xpos,ypos,'or','MarkerFaceColor','red')
 end
 end

 pause(0.05) %Pause to Allow viewer to see times
 drawnow
 name=[num2str(floor((1+k)/60)) ' hrs and '
 num2str(rem(k,60)) ' min'];
 title(name)
 F(k+1)=getframe(gcf);
 end
end

% Save Video using popup window
if vid==1
 hold off
 MakeAVI
end

% Sum Aggregate Power
pout=sum(P);

% Plot Aggregate Power vs Time
figure
area(time,pout)
ylabel('Power')
xlabel('Time')
title('Discrete')

% Plot Individual Temperature Trajectories
figure
plot(time,T')
ylabel('Temperature')
xlabel('Time')
low_temp=round(min(T(:,stepDRStart:end)'),2);
[lt,bin]=hist(low_temp,unique(low_temp));
[~,idx]=sort(lt,'descend');
temp_inst=lt(idx)
temp_values=bin(idx)

% %Below is some an attempt to find and plot an effective deadband
% eff_db=mean(min(T(:,stepDRStart:end)'))
% hold on
% refline(0,temp_values(2))
% hold off

% Display Preformance Metrics
num_cycles=mean(cycles)
max_pow=max(pout)
devation=mean(std(rho))

k1 =
 0.8000
temp_inst =

5

104

 95 4 1
temp_values =
 19.7400 19.7500 19.7300
num_cycles =
 8.1500
max_pow =
 296.8000
devation =
 0.3222

6

105

Published with MATLAB® R2018a

7

106

Table of Contents
Creating Heterogenous parameters ... 1
File Naming Structure .. 1
Defining Means and StdDev ... 1
Creating Random Arrays .. 1
Write Data To File .. 2

Creating Heterogenous parameters
clear all

File Naming Structure
L=5;
N=L*L
name='HeteroParam_test';
filetype='.xlsx';
name=strcat(name,num2str(N),filetype);
Sheet=1;

N =

 25

Defining Means and StdDev
R_m=2; R_s=0.1; %C/kW
C_m=10; C_s=0.5; %kWh/C
P=14; %kW
Beta_m=2.5; Beta_s=0.125;
T0_m=20; T0_s=1; %C
Tinf=32; %C
Theta_m=0.5; Theta_s=0.025; %C
% 43% of n home On
m=zeros(N,1);
Non = round(0.428*N);
m(1:Non) = 1; % 42.8% of the devices are ON
m=m(randperm(length(m))); %Randomize location of beginning state

Creating Random Arrays
Using Normal Distribution

R=normrnd(R_m,R_s,[N,1]);
C=normrnd(C_m,C_s,[N,1]);
Beta=normrnd(Beta_m,Beta_s,[N,1]);

1

107

C.7 Heterogeneous Parameters

deldb=normrnd(Theta_m,Theta_s,[N,1]);
T0=normrnd(T0_m,T0_s,[N,1]);

Write Data To File
xlswrite(name,'R',Sheet,'A1')
xlswrite(name,'C',Sheet,'B1')
xlswrite(name,{'Beta'},Sheet,'C1')
xlswrite(name,{'Deldb'},Sheet,'D1')
xlswrite(name,{'T0'},Sheet,'E1')
xlswrite(name,{'m'},Sheet,'F1')
xlswrite(name,R,Sheet,'A2')
xlswrite(name,C,Sheet,'B2')
xlswrite(name,Beta,Sheet,'C2')
xlswrite(name,deldb,Sheet,'D2')
xlswrite(name,T0,Sheet,'E2')
xlswrite(name,m,Sheet,'F2')

Published with MATLAB® R2018a

2

108

clear all;
format compact

% Files needed to include in folder
% ----------------------------------
% AdjMatrixRingLatticeGen.m
% AdjMatrixLatticeSqGen8.m
% AdjMatrixLatticeSqGen.m
% makerhovec.m *Please Note This file differs for
 Hetero
% MakeAVI.m
% BoiseTemp_24.xlsx
% HeteroParam_'Size'.xlsx *Sizes are Squares from 25 to 2500
% -----------------------------------

%%%
%%%%%
%If video is desired
vid=0; %[0] - No to video [1] - Yes to Video
%%%
%%%%%

% Model Parameters Consistant Throughout Populatoin
Qc = -14.0; % Cooling Capacity of AC
Q=14; % Redundant variable
Tset = 20.0; % Thermostat Set Point
Tinf= xlsread('BoiseTemp_24.xlsx'); % 24 Hours of Ambient Temp in
 Boise
Qi=0; % Internal Heat Gain
k1=0.8; % Gain Value

% Population Size (Square Number needed for Square Lattice Graph)
L=10; % Setting up an LxL grid
N=L*L; % Number of Houses

% Create String for File Name of Heterogenous Parameters
name='HeteroParam_';
filetype='.xlsx';
name=strcat(name,num2str(N),filetype);
Sheet=1;
param=xlsread(name); % Load xlsx file

% Model Heterogenous Paramters
% Standard Deviations and Means defined in Ryan's Thesis
R=param(:,1); % Thermal Resistance
C=param(:,2); % Thermal Capacitance
Beta=param(:,3); % COP of AC Unit
deldb=param(:,4); % Thermostat Deadband
T(:,1)=param(:,5); % Initial Temperature
m=param(:,end); % Initial State (42.8% On & Randomly
 Assigned)
%--

1

109

C.8 Heterogeneous Varying Ambient Temperature

% Choose Graph Type
graphtype = 'S';

if graphtype == 'R' %Creates Ring Lattice
 (deg=4)
 deg=4;
 LAdj=AdjMatrixRingLatticeGen(N,deg);
elseif graphtype == 'D' %Create Square Lattice
 (deg=8)
 LAdj=AdjMatrixLatticeSqGen8(L,true);
 deg = 8;
else %Creates Square Lattice
 (deg=4)
 LAdj=AdjMatrixLatticeSqGen(L,true);
 deg = 4;
end

% Simulation times
delt = 1/60; % integrate set size (hr)
nhours = 24; % how long to run
DRHour = 17.36; % time when the DR event
 happens | 10 minutes before max temp
DRDuration = 0.25; % duration in Hours of DR
 event
DRDuration = round(DRDuration/delt); % duration in minutes of DR
 event
%
nsteps = round(nhours/delt);
stepDRStart = round(DRHour/nhours * nsteps);
stepDREnd = stepDRStart + DRDuration;
stepSWEnd = stepDRStart + 8*DRDuration;
stepSWEnd = 5000; % supress swarm end this way

% Create Exponetial Constant used in Discrete Space
hrc=-delt./(R.*C);

% Initialize Simulation Metrics
cycles=zeros(N,1); % Number of Cycles Per Home
m=zeros(N,1); % HVAC Operating State
m_last=zeros(N,1); % HVAC last operating State
rho=zeros(N,1); % Normalized Position within
 DB

% Initialize Model Outputs and Average Values
P=zeros(N,1); % Power (kW)
P(:,1)=m*Q./Beta; % Power for Intial States
time=zeros(nsteps,1); % Simulation Time
mtilde = (LAdj * m)/deg; % Average Operating State
rhotilde = (LAdj * rho)/deg; % Average Position within DB

% Create Frames and Video for House States
if vid == 1

2

110

 figure
 hold on
 for j=1:N
 hold on
 xpos=floor((j-1)/10)+1;
 ypos=rem(j,10);
 if ypos == 0
 ypos = 10;
 end

 % Red Markers are Off & Blue Markers are On
 if m(j) == 0
 p=plot(xpos,ypos,'or','MarkerFaceColor','red');
 else
 p=plot(xpos,ypos,'ob','MarkerFaceColor','blue');
 end
 end
 name=[num2str(0) ' hrs and ' num2str(0) ' min'];
 title(name)
 hold off
 drawnow
 % Set up Video Frames
 F(nsteps) = struct('cdata',[],'colormap',[]);
 F(1)=getframe(gcf);

 hold on
end

tic
% Start Simulation
for k = 1:nsteps-1
 for j = 1:N
 % Compute Temperature for individual TCLs
 T(j,k+1)=exp(hrc(j))*T(j,k)+(1-exp(hrc(j)))*Tinf(k)+R(j)*(1-
expm(hrc(j)))*Qi+(R(j)*Qc)*(1-exp(hrc(j)))*m(j);
 end

 % Update Simulations Values
 rho(:,k+1) = makerhovec(T(:,k+1),Tset,deldb(:));
 time(k+1)=k*delt;
 mtilde(:,k+1) = (LAdj * m)/deg;
 rhotilde(:,k+1) = (LAdj * rho(:,k+1))/deg;
 m_last(:)=m(:);

 % Thermostat Criteria for Individual Homes
 for j=1:N
 % Simple Thermostat Model
 if k < stepDRStart-1
 if rho(j,k+1) > 1
 m(j) = 1;
 elseif rho(j,k+1) < 0
 m(j) = 0;
 end
 end

3

111

 % Additional Criteria
 if k > (stepDRStart-1) && k < (stepSWEnd-1)
 if (rho(j,k+1) -k1*mtilde(j,k)) > 1
 m(j) = 1;
 elseif (rho(j,k+1) - k1*mtilde(j,k)) <= 0
 m(j) = 0;
 end

 % Count Number of Cycles after DR Event
 if (m(j)-m_last(j)) == 1
 cycles(j)=cycles(j)+1;
 end

 end

 % DR Event
 if k>stepDRStart && k < stepDREnd
 m(:)=0;
 end

 % Individual Power Consumption
 P(j,k+1)=m(j)*Q/Beta(j);

 end

 % Update Video Frames
 if vid == 1
 for j=1:N

 xpos=floor((j-1)/10)+1;
 ypos=rem(j,10);
 if ypos == 0
 ypos = 10;
 end

 % Only change plot if states change (Much Faster)
 if (m_last(j)-m(j)) == 1
 plot(xpos,ypos,'or','MarkerFaceColor','red')
 elseif (m(j)-m_last(j)) == 1
 plot(xpos,ypos,'ob','MarkerFaceColor','blue')
 end
 if k>stepDRStart && k < stepDREnd
 plot(xpos,ypos,'or','MarkerFaceColor','red')
 end
 end

 pause(0.05) %Pause to Allow viewer to see times
 drawnow
 name=[num2str(floor((1+k)/60)) ' hrs and '
 num2str(rem(k,60)) ' min'];
 title(name)
 F(k+1)=getframe(gcf);
 end

4

112

end
toc

% Save Video using popup window
if vid==1
 hold off
 MakeAVI
end

pout=sum(P);
% figure
% yyaxis left
% plot(time,pout)
% ylabel('Power')
% xlabel('Time')
% title('Discrete')
% hold on
% yyaxis right
% pp = plot(time,Tinf,'-r');
% legend('Power','Temperature','Location','northwest')
% hold off
%
% figure
% plot(time,T','-')
% ylabel('Temperature')
% xlabel('Time')
% low_temp=round(min(T(:,stepDRStart:end)'),2);
% [lt,bin]=hist(low_temp,unique(low_temp));
% [~,idx]=sort(lt,'descend');
% temp_inst=lt(idx)
% temp_values=bin(idx)
% eff_db=mean(min(T(:,stepDRStart:end)'))

startDate = datenum(2000,7,21,0,0,0);
endDate = datenum(2000,7,21,24,0,0);
xData = linspace(startDate,endDate,length(Tinf));
%hold on
% yyaxis right
% p = plot(time,Tinf,'-r');
% hold off

MaxPower=max(pout(stepDRStart+1:end))
NumCycles=mean(cycles)
devation=mean(std(rho))

Elapsed time is 0.454670 seconds.
MaxPower =
 410.3702
NumCycles =
 6.4500
devation =
 0.5136

5

113

m_tilde=[0 0.25 0.5 0.75 1.0];
k=0.0:0.5:5;
X=length(k);
Y=length(m_tilde);

F(X) = struct('cdata',[],'colormap',[]);

for i=1:X
 figure
 hold on
 for j=1:Y
 upperbound(i,j)=1-k(i)*m_tilde(j);
 lowerBound(i,j)=-k(i)*m_tilde(j);

 up=[upperbound(i,j) upperbound(i,j)];
 lp=[lowerBound(i,j) lowerBound(i,j)];
 yy=[0 1];
 plot(up,yy,'r-x',lp,yy,'b-o')
 name=['k = ' num2str(k(i))];
 title(name);
 legend('Upper Bound','Lower Bound')
 end
 rectangle('Position',[lowerBound(i,end) 0 abs(lowerBound(i,1)-
lowerBound(i,end)) 1],'FaceColor', [0 0.5 0.5 0.5])
 rectangle('Position',[upperbound(i,end) 0 abs(upperbound(i,1)-
upperbound(i,end)) 1],'FaceColor', [0.5 0 0 0.5])
 axis([-5 5 0 1])
 hold off
 drawnow
 pause(5)
 F(i)=getframe(gcf);
end

MakeAVI

1

114

C.9 Deadband Analysis

2

115

3

116

4

117

5

118

6

119

Published with MATLAB® R2018a

7

120

