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ABSTRACT

This work is concerned with implementing Gentzen’s consistency proof in the

Coq theorem prover.

In Chapter 1, we summarize the basic philosophical, historical, and mathematical

background behind this theorem. This includes the philosophical motivation for

attempting to prove the consistency of Peano arithmetic, which traces itself from

the first attempted axiomatizations of mathematics to the maturation of Hilbert’s

program. We introduce many of the basic concepts in mathematical logic along the

way: first-order logic (FOL), Peano arithmetic (PA), primitive recursive arithmetic

(PRA), Gödel’s 2nd incompleteness theorem, and the ordinals below ε0.

In Chapter 2, we give a detailed exposition of one version of Gentzen’s proof.

Gentzen himself gave many similar proofs of the consistency of PA, as did several

others after him; we describe the version given in Mendelson [20]. In comparison to

the latter, our formulation fills in many erstwhile omitted details that we feel the

reader deserves to see spelled out. We also have made other minor rearrangements,

but altogether have found little to improve on that classic work of exposition.

Chapter 3 is a detailed walkthrough of our present 5000-line implementation,

with each section corresponding to the 11 sections of our code. There were three

main conceptual challenges to implementing the chapter 2 proof: properly defining

the ordinals below ε0 and proving their basic properties, defining PAω’s proof trees in

a streamlined way, and defining the proof tree transformation operations discussed in

section 2.4. We have successfully addressed these problems, as discussed in sections

vi



3.2, 3.8, and 3.9 respectively. Our implementation is still incomplete as of this writing,

but we substantiate our claim that the remaining work is largely routine.

In our concluding chapter, we consider the likely future directions of this work,

and discuss its place in the current literature.
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CHAPTER 1

INTRODUCTION

Mathematics occupies a special place in our intellectual landscape as the only place

where results can be believed with certainty ; even physicists recognize their field as

fallible, pointing to how the theory of relativity overturned centuries of evidence for

Newtonian mechanics. Yet one single instance of the smallest proof can settle the

biggest question–once, and forevermore. To every other discipline, mathematics is

looked up to as the paragon of certitude.

Outsiders are often surprised to learn that about a century ago, almost nothing felt

certain in mathematics, as rival schools of thought in the mathematical world battled

to define the very core of their subject. This “foundational crisis of mathematics”, as

it became known, eventually subsided, but not until spawning an entire new branch

of math known as mathematical logic. This area of study, with its subdivisions of

set theory, model theory, computability theory, and proof theory, came to take on a

life of its own in the mathematical community. However, this last subfield of proof

theory was motivated quite directly to reason about the limits of what is provable,

and to this day attempts to answer some of the hard questions about exactly what

can be put under the scope of mathematical certainty.

Although the foundational contributions here are minor, this work nevertheless

descends from these motivations, and cannot be understood without them. Below,
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we sketch out this intellectual genealogy, introducing proof theory along the way.1

1.1 The Axiomatic Method

Whenever any human makes any kind of argument for some conclusion, that

argument must rest on some premise2 that is merely assumed, and the conclusion

is only credible insofar as the premise(s) are. If the premise is called into question,

there are only 3 possibilities:

1. The premise is justified by invoking the conclusion. This is called a circular

argument.

2. The premise is justified by invoking a new premise, which is in turn justified by

a new premise, and so on forever. This is called an infinite regress.

3. The premise is justified by invoking a new premise, which is in turn justified by

a new premise, and so on until we reach some premise A that cannot itself be

justified, but which feels self-evident (at least to some). A is called an axiom.

This basic philosophical observation, that every argument rests on either a circular

argument, an infinite regress, or some axiom A, is known as Munchausen’s trilemma

and has been known for thousands of years.3 Since the first two options are rarely

advocated, almost all of the major thinkers in the Western intellectual tradition

1This story has been told many times at varying levels of accuracy. The fact is, these issues are
complicated, subtle, and often misunderstood even by experts, and in the space of this chapter,
we cannot hope to do full justice to many of the details. While we note our more egregious
oversimplifications and omissions in various footnotes, even these can only go so far; readers desiring
a more advanced and comprehensive treatment of these topics are recommended to consult [13], [30].

2Or multiple premises, but that is irrelevant here.
3Even though the term itself was not coined until 1968, after an 18th century satire of an

impossibly heroic Baron Munchausen, who pulled himself out of a mire by pulling on his own
hair.
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have supported (3) in some form. Mathematical arguments (i.e. proofs) are not

at all immune to Munchausen’s trilemma, and so we cannot even be certain about

mathematical conclusions (i.e. theorems) unless they are proved from axioms we are

certain about.

In this regard, Euclid’s axiomatic development of geometry stands out as by far

the most significant achievement of its time. However, Euclid’s precision in stating

his axioms and proving his theorems is quite lax by modern standards, and his axioms

did not cover any areas of math outside geometry. In the intervening two millenia,

little progress was made to axiomatize even the fundamental properties of numbers

(i.e. basic arithmetic), and the more ambitious project of putting all of mathematics

on a firm foundation of axioms would have to await the more precise language of

mathematical logic.

1.2 Mathematical Logic

Formal logic is based on the simple idea that any argument can be regarded as valid

or invalid, depending on whether the conclusion truly follows from the premise(s), and

that valid inferences tend have an identifiable structure that distinguishes them from

invalid inferences. For instance, if for some propositions P,Q, we know that P implies

Q (which we write P → Q) and that P is true, then we also know Q is true. This

is called a rule of inference, since it lets us take two premises (P → Q and P ) and

validly derive a conclusion (Q) no matter what P,Q actually mean as sentences. That

is, the rule, which is known as modus ponens, can be identified simply by its structure:

P → Q P
modus ponens

Q
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Another rule of inference is called modus tollens, which says that if we know

P → Q and that Q is false (which we write ¬Q, i.e. “not Q”), then we can validly

infer P is false:

P → Q ¬Q
modus tollens¬P

On the other hand, if we know P → Q and ¬P , then we cannot validly infer

anything about Q. A common mistake for novices is to infer ¬Q from those two

premises, and this is an invalid inference (as careful thought will reveal).

In the mid 19th century, these observations began to finally become published by

multiple philosophers and mathematicians. Most notably, George Boole’s 1854 Laws

of Thought [3] introduced an entire syntax to represent propositional logic, a formal

system for distinguishing valid and invalid inferences. In modern terms, the language

of propositional logic looks like:

Notation Meaning

P → Q P implies Q

P ↔ Q P if and only if Q

¬P not P

P ∧Q P and Q

P ∨Q P or Q

Propositional logic, also known as Boolean algebra or Boolean logic,4 went on

to become physically realized in Boolean circuits, and ultimately would provide the

theoretical foundation for computer science. Still, the 5 logical connectives in the

4Strictly speaking, these terms are not fully synonymous, but they were treated as such in the
19th century since the distinctions are subtle.
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above table could only do so much, only capturing some of the more basic logical

inferences. To formalize all mathematics, more powerful tools were needed.

1.3 First-Order Logic

Gottlob Frege (1848-1925) was the first to articulate what we now call logicism,

the view that all mathematics can be grounded in pure logic [45]. While mathematics

has always been recognized as having a very logical quality, the idea of all mathe-

matics being reduced to formal logic was new and striking: mathematicians talk

about all sorts of domain-specific subject matter like ellipses, quadratic functions,

integrals, etc., which have actual content to them, so it would certainly seem that

mathematicians need at least some properly mathematical knowledge and intuitions

to do their job, and that their thoughts cannot be reduced to the workings of and ’s

and if-then’s.

But Frege was also among the first to discover that formal logic could be made

more powerful than just Boole’s propositional logic. In addition to the connectives

listed above, he introduced the quantifiers :

Notation Meaning

∀xP (x) for all x, property P holds of x

∃xP (x) for at least one x, property P holds of x

For instance, the classic (valid) inference:

1. (Premise 1): Socrates is a man

2. (Premise 2): All men are mortal
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3. (Conclusion): Socrates is mortal

Cannot be captured in propositional logic. However, if we define the properties

P (x) := “x is a man” and Q := “x is mortal”, then this inference can be formally

represented in modern logic as follows:

P(Socrates) ∀x(P(x) → Q(x))

Q(Socrates)

In this way, propositional logic matured under Frege’s genius into first-order logic

(FOL),5 which is more powerful but also more sophisticated. In modern terms, to

define FOL, we first define the notion of a term:

1. Variables x, y, z, ... are terms (we will often denote these x0, x1, x2, ... to ensure

we do not run out of variable names).

2. Constants c0, c1, c2, ... are terms (e.g. in the above example, “Socrates” is a

constant)

3. If we have a function f and t1, t2, ..., tn are terms, then f(t1, t2, ..., tn) is a term.

For instance, we will regard addition + as a function when we formalize arithmetic

in FOL. Then x1 and x4 are terms, so x1 + x4 will also be a term. An example of

a constant will be 0, and we could also regard other numbers such as 7 or 53 as

constants.6

An atomic formula is anything of the form t1 = t2, where t1, t2 are terms. For

instance, 5 = 5 and 3 = 2 are both atomic formulas, which can either be true or false.

5Actually, FOL is a specific kind of logic with quantifiers, where the “first-order” indicates that
we quantify only over variables, and not propositions themselves, i.e. we can say ∀x but not ∀P .
The technical advantages of using first-order logic were not known to Frege and were only widely
recognized around 1930. For simplicity we do not describe this here, but the interested reader can
consult plato.stanford.edu/entries/logic-firstorder-emergence/

6As we will see later, we will actually only need 0 as a constant symbol.



7

2 + 2 = 4 is also an atomic formula, since 2 + 2 and 4 are both terms. If we include

multiplication as a function, we can also have atomic formulas like 4 + 8 = 3 · 4 or

4 · 4 · 4 = 15 · 2 + 7 · 5.

In addition, 3 + x0 = 5 or 5 · x0 = x1 + 4 are atomic formulas, but unlike our

previous examples, these do not have definite truth values. Whereas we can determine

whether 4+8 = 3 ·4 is true or false, we cannot say the same about 3+x0 = 5 without

further context: we have to know what x0 actually is. We call x0 here a free variable

because this context is missing. This is important from a logical point of view because

if an atomic formula has a free variable, then it does not express a specific proposition

that we can regard as either true or false. We will say an atomic formula is closed if

it has no free variables. We will say the same about terms, e.g. 9 · 2 is a closed term

since it has no free variables, while x1 + 8 is not a closed term since it has x1.

With that mind, a formula is what you get when you start with atomic formulas,

and apply logical connectives/quantifiers to them. More precisely, a formula in FOL

is either:7

1. An atomic formula

2. ¬A, where A is a formula

3. A→ B, where A,B are both formulas

4. ∀xiA(xi), where A is a formula and xi is any variable.

7If we want, we can also build formulas out of the other connectives ∨,∧, and ∃. However, it
turns out that this is unnecessary, since we can represent those using just the connectives ¬,→, and
∀. This is because for any A, the formula ∃x0A(x0) is logically equivalent to ¬∀¬A(x0), and so we
can regard the symbol ∃ merely as an abbreviation for ¬∀¬. Similarly, A ∨B as well as A ∧B can
both be written as a (more complicated) formula involving just ¬ and→, although this is a technical
point which we will not prove here.
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So for instance, 5 = x0 is a formula by (1) since its an atomic formula, which

means ¬(5 = x0), which we will write as 5 6= x0, is also a formula by (2). Applying

(3) to this, 5 6= x0 → 2 · 3 = 6 is another formula. Finally, ∀x0(5 6= x0 → 2 · 3 = 6) is

also a formula by (4).

As with terms and atomic formulas, we will say a formula is closed if it has no

free variables, and consequently, it is only the closed formulas that have a definite

truth value. For instance, neither 5 = x0 nor 5 6= x0 → 2 · 3 = 6 are closed. On the

other hand, in

∀x0(5 6= x0 → 2 · 3 = 6)

we will say the variable x0 is bound by the universal quantifier ∀x0, and is not

free. Now that x0 is bound, this formula now has a definite truth value (namely, it is

true, because 2 · 3 = 6 is always true for every possible value of x0).

In modern terms, the axioms of FOL, which we will use for the remainder of this

work, are as follows:

(FOL1) A→ (B → A)

(FOL2) (A→ (B → C))→ ((A→ B)→ (B → C))

(FOL3) (¬B → ¬A)→ ((¬B → A)→ B)

(FOL4) (∀xA(x))→ A(t) (if t is a closed term)

(FOL5) (∀x(A→ B))→ (A→ ∀xB) (if x is not a free variable in A)

In addition, FOL has two rules of inference. The first is modus ponens, which we
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saw earlier:

P → Q P
modus ponens

Q

The other is universal generalization. This says that if we have proved that some

property P holds for some arbitrary x (i.e. where x is a free variable) then we have

proved P holds for all x:

P (x)
universal generalization

∀xP (x)

(1-3) are axioms expressible in pure propositional logic, and FOL extends this

with (4-5). These latter two add significant expressive power to mathematical logic.

This made FOL a system more worthy of carrying out Frege’s logicist program. But

to do so, he needed one more important ingredient: set theory.

1.4 Set Theory

In mathematics, a set is simply a collection of objects. This, of course, is a very

familiar notion outside of mathematics, but what Frege needed was a well-developed

theory of infinite sets, and this is the nontrivial notion which the discipline of set

theory refers to, and that did not exist at all before the 19th century.

There was good reason for this: infinite sets, to put it mildly, are strange, and

in many cases do not behave at all like the finite sets we are accustomed to. For

instance, Galileo (and others) [38] had noticed that even though the set of integers

Z = {...,−2,−1, 0, 1, 2, ...} is “about twice as big” as the set of natural numbers

N = {0, 1, 2, ...}, in another sense these sets have the same size, since it is possible to

put them in 1:1 correspondence:
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N 0 1 2 3 4 5 6 7 8 9 10 ...

Z 0 1 -1 2 -2 3 -3 4 -4 5 -5 ...

Because of counterintuitive phenomena like this, Western intellectual thought,

going back to the ancient Greeks, generally rejected infinite sets. Most followed

Aristotle, who drew the distinction between potential and actual infinity, accepting

the former while rejecting the latter.

To believe in potential infinity means to simply accept that for every number n,

we can form a bigger number S(n) (i.e. here S(n) denotes the successor of n, which

means n+1). This implies that there is no biggest number, that the natural numbers

will never “run out”, and instead are unending. We can say they are never finished,

which in Latin corresponds to in- not + finitus ’finished’, where we get the term

infinite.

The idea of actual infinity arises from asking what happens if it were finished.

Rather than treating the numbers as some specific individual (mathematical) objects

that we can always obtain more of, believing in actual infinity is to collect all of these

into a single set N, and think about the mathematical properties this set might have:

Potential infinity: 0, 1, 2, 3...

Actual infinity: {0, 1, 2, 3, ...}

And strange things happen when one moves from potential to actual infinity,

with many paradoxical results that were known even to the Greeks. Galileo himself

apparently did not know what to make of his personal discovery that N seemingly

both is and is not the same size as Z.
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However in the 1870s, the mathematicians Georg Cantor (1845-1918) and Richard

Dedekind (1831-1916), in disregard of Aristotle’s warnings and the received wisdom

of two millennia of mathematical thought,8 began to treat these infinite sets as actual

objects with specific properties, founding the modern field of set theory. In particular,

they would say that two sets have the same size, or cardinality, exactly when they

can be put in 1:1 correspondence. For instance, N and Z have the same size under

their definition, and they realized that even though it may be counterintuitive that

they are equally big, this was not contradictory.

We say that some formal system is contradictory or inconsistent if, for some

formula A, the system proves A and it also proves ¬A. Virtually all mathematicians

and philosophers regard inconsistent systems as completely useless: we do not want

our system to be able to prove a statement if it is not true,9 and its not possible for A

and ¬A to both be true. Worse, since from two contradictory formulas it is possible

to prove anything, such a system would also be uninteresting.

And so Cantor and Dedekind continued to work in their new set theory, they went

further than Galileo or anyone had, proving more theorems that seemed strange, but

never proving a contradiction. But there was one particular theorem Cantor proved

that stood above the others: while one might expect that all infinite sets have the

same size under their definition. While their cardinality concept might be internally

consistent, it would not be that interesting if it said every infinite set is the same size,

yet Cantor showed this was not the case.

8Strictly speaking, they were not the first, as Bolzano had made the case for actual infinities in
work published posthumously in 1851. Still, this had little influence, and at any rate this stopped
short of recognizing the cardinality concept or its importance.[8]

9Different philosophers might disagree about the exact meaning of “true”, but in this context it
is virtually unanimous that whatever “true” can reasonably mean, at least one of {A,¬A} is not
true.
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Dedekind and Cantor both considered R, the set of all real numbers, which

includes 0, 11, 4.3, 7
3
,
√

2, π, e,
√
π + 3

e
, and can be thought of as the set of all numbers

that can be represented by a possibly infinite decimal such as 37.835829437.... This

is a more abstract set than N and is less easily visualized, since many of its members

have an infinite decimal expansion with no particular pattern, but R is perhaps the

only rival to N in terms of how often it is studied by mathematicians. And as the

first demonstration of the power of set theory when they gave the first mathematically

rigorous definitions of the real numbers. Their definitions were different but equiv-

alent, and both described the reals in terms of the more familiar natural numbers.

The catch was, their definition involved the actual infinity N, and with only potential

infinity, the cherished real numbers had no rigorous foundation.

Then Cantor went even further, and showed that R cannot be put in 1:1: corre-

spondence with N. In modern notation, while |N| = |Z| since they can be put into 1:1

pairing, |N| < |R|, because Cantor proved that no matter how cleverly one rearranges

the elements of N and R, there will always be extra numbers left over in R that are not

matched. This meant that their notion of size was not trivial, that not all infinities

are the same, and that R is fundamentally bigger than N.

Today, Cantor’s result is considered among the great theorems of mathematics, but

at a time when actual infinities were widely viewed as “too big” be even be coherent

objects of study, Cantor faced open ridicule by many of his contemporaries, who often

mistook their personal distaste of the new intellectual edifice with its logical merits,

and called Cantor and Dedekind’s work inconsistent. But his critics also included

the leading mathematicians of the time, such as Leopold Kronecker (1823-1891) and

Henri Poincare (1854-1912). While acknowledging the apparent consistency of these

completed infinities (in spite of themselves), they dismissed the new set theory as
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hollow and meaningless.

In any case, as mainstream mathematics became more abstract and general in

the 19th century with certain developments in real analysis, abstract algebra, and

topology, there grew a latent desire to talk about infinite sets like N and R. The set

theory of Cantor and Dedekind was ready-made to provide a rigorous foundation for

mathematics well beyond just geometry or arithmetic, and over time mathematicians

would notice this. And here, no one was more ahead of the curve than Gottlob Frege.

1.5 Basic Laws

Technically, Frege did not use Cantor and Dedekind’s set theory per se but was

certainly inspired by it, and actually developed a more complicated logical structure

that similarly promised to fulfill his logicist dreams, and give a full axiomatization of

all mathematics. For simplicity, we describe his magnum opus in modern set-theoretic

terms. This was his Grundgesetze der Arithmetik (“Basic Laws of Arithmetic”) [10],

a landmark work in which, starting from just a few logical axioms, (his “Basic Laws”)

he carefully derived many of the fundamental laws of arithmetic. This 2-volume tome,

published in 1893 and again in 1903, went all the way back to his 1879 book where

he introduced the machinery we saw in 1.3, as well as his 1884 Die Grundlagen der

Arithmetik (“The Foundations of Arithmetic”) [9], which was a philosophical analysis

of the concept of number.

But now, he had actually formalized arithmetic, now that he had extended his

earlier work with his famous Basic Law V 10:

10The actual statement of Basic Law V in Frege’s work is actually more technical, resembling

{x | P (x)} = {x | Q(x)} ⇐⇒ ∀x(P (x)↔ Q(x))

But the much simpler statement given here is the actual import of the axiom in the context of



14

Axiom (Basic Law V). If P is some property, we can form the set of objects having

that property:

{x | P (x)}

For instance, if the property is “green”, then we can form the set of all green

things. Similarly, we can form the set of all even numbers, or the set of all sets with

more than 5 elements.

At the same time, a young philosopher named Bertrand Russell (1872-1970) was

coming around to similar ideas. As he set out on his own quest to reduce mathematics

to pure logic, he began to play around with certain properties of sets. Noticing that

if we regard any collection of objects as being a set, then some sets will be members

of themselves, while others will not. For instance, then if we let U be the set of all

sets, then U would itself be a set, and so by its definition U would be a member of

U , i.e. U ∈ U .

Thus we can consider either a) the sets S which are members of themselves (i.e.

S ∈ S) or b) the sets S which are not (i.e. S 6∈ S). Russell considered the latter

collection of sets:

R := {S | S 6∈ S}

and asked, Is R a member of itself?

If R 6∈ R, then R is a set which is not a member of itself. But then R is a set that

should be in R, so R ∈ R.

the rest of his formalism [45].
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If R ∈ R, then R is a set which is a member of itself. But then R is a set that

should not be in R, so R 6∈ R.

In other words, if R 6∈ R, then R ∈ R; but if R ∈ R, then R 6∈ R. Either way, we

have reached a contradiction.

This result became known as Russell’s paradox, and became noteworthy for how

elegant it is, using only the concept of self-reference as well as 6∈. But in particular,

since membership ∈ is a logical property, so is 6∈. Thus, in Frege’s Basic Law V, the

logical property P (x) can be taken to be x 6∈ x, and hence, in Frege’s system, we can

build Russell’s set R, and derive a contradiction. In 1903, just as the 2nd edition of

Frege’s Basic Laws was going to press, he received a letter informing him that the

entire framework he had been working on for 2 decades was inconsistent. As Russell

reflected 60 years later [39, p. 127]:

As I think about acts of integrity and grace, I realise that there is nothing

in my knowledge to compare with Frege’s dedication to truth. His entire

life’s work was on the verge of completion, much of his work had been

ignored to the benefit of men infinitely less capable, his second volume was

about to be published, and upon finding that his fundamental assumption

was in error, he responded with intellectual pleasure clearly submerging

any feelings of personal disappointment. It was almost superhuman and

a telling indication of that of which men are capable if their dedication is

to creative work and knowledge instead of cruder efforts to dominate and

be known.

Frege promptly wrote an Appendix to his work, describing the derivation of

contradiction within his own system. He then tried to restrict his Basic Law V



16

to be consistent, while still being powerful enough to derive arithmetic as he wanted,

but in vain.

Russell’s paradox itself, in the way it uses unboundedly large sets, came to be

seen as the Achilles heel of set theory, even of the axiomatic method itself. In

the aftermath, other antinomies of infinite sets became more widely known, and

critics were emboldened. Set theory was not even internally consistent, as Cantor

and Dedekind had believed; here, finally, was the actual contradiction. As Poincare

wrote in “The Last Efforts of the Logicists” (emphasis in original) [25, pp. 193-195]:

Logic therefore remains barren, unless it is fertilized by intuition...Logicism

is no longer barren, it engenders antinomies. It is the belief in the existence

of actual infinity that has given birth to these non-predicative definitions...

There is no actual infinity. The Cantorians forgot this, and so have fallen

into contradiction.

1.6 Last Efforts

Russell, for his part, continued where Frege gave up, and together with A.N.

Whitehead, went on to publish Principia Mathematica (PM ) [41], an even more

ambitious attempt than Frege’s. PM developed a new approach now known as type

theory, which, roughly speaking, puts objects into certain collections called types,

where we write x : T to indicate “x is of type T”. For instance, we might write 5 : nat

to indicate that 5 is a natural number, {3, 16} : set(nat) to mean {3, 16} is a set of

natural numbers, and {{0, 8}, {1, 6, 9}} : set(set(nat)) to mean {{0, 8}, {1, 6, 9}}

is a set of sets of natural numbers. For notational convenience, we can say that these

objects are, respectively, type 0, type 1, and type 2.
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Types are different from sets in that every object has exactly one type. In the

above example, while we have {3, 16} : set(nat), we will never have {3, 16} : nat,

nor {3, 16} : set(set(nat)). One consequence is that this system disallows objects

like {2, {6, 11}}: this is not of type set(nat), nor of set(set(nat)). We say this

object is not well-typed, or that it fails to type-check, and so we cannot build it in our

system. In general, a type n+ 1 object is a set whose members are of type n.

In this way, roughly speaking, type theory prevents the construction of even the

statement S 6∈ S which is essential to Russell’s paradox, because we can only say

X ∈ Y when X is of type n and Y is of type n+ 1, which is impossible when X = Y .

In this way, Russell and Whitehead showed that this scourge of Frege’s system was

not a problem in theirs.11

Nevertheless, they were unable to prove that their system was consistent, and

even though no one could find any contradictions, this did not mean none were there.

After all, if someone as careful as Frege had allowed contradiction to slip in with the

seemingly innocuous Basic Law V, how could anyone’s preferred logical system to be

safe?

But after 2000 pages and 3 volumes, the authors confessed intellectual exhaustion,

not finishing their planned 4th volume, let alone a consistency proof of their system.

Moreover, they had not even completed the logicist program to their satisfaction,

as their system still depended on 3 axioms which were clearly mathematical and

not logical in nature: the axiom of reducibility, the axiom of choice, and the axiom

11The type theory in PM is more complicated, and includes types of n-ary relations for any n
with the types of the arguments determined by arbitrary sequences of n types. The fact that types
of sets are sufficient to define relation types was not known until 1914, when it was first shown that
any ordered pair could be expressed as a set [39, p. 224]. A type theory for functions was proposed
by Alonzo Church in the 1930’s, and it is Church’s simply typed lambda calculus, one of the (very
early) precursors of the Calculus of Constructions discussed in chapter 3.
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of infinity. While the former two are beyond our scope here, the axiom of infinity

simply asserts that infinite sets exist. Clearly, this was what much of the controversy

with actual infinity was about. Feeling unable to answer their critics despite about

spending 2 decades of their own lives, they too left the field of mathematical logic.

1.7 Intuitionism

By the year 1920, Cantor and Dedekind were no longer alive, and neither were

the most prominent early critics of set theory, Kronecker and Poincare. With Russell

and Whitehead having abandoned their quest as well, the logicist program was no

more. But in their place, new battle lines were already being drawn.

In the nearly 50 years since Cantor and Dedekind began their work, mainstream

mathematics became even more abstract, and even further removed from its original

motivations in the physical sciences. The intuitions of number, space, and time, which

had guided mathematical thought from time immemorial, was no longer the North

Star it used to be in some of the era’s new and exciting results:

Theorem (Brouwer’s fixed point theorem). If X ⊆ Rn is homeomorphic to the unit

ball, then any continuous function f : X → X has a fixed point x = f(x) ∈ X.

Theorem (Hilbert’s Nullstellensatz). If I be an ideal over an algebraically closed field

K, then for any p ∈ K[x1, ..., xn] that vanishes on V (I), there is some r ∈ N such

that pr ∈ I.

Divorced from any commonsense intuitions and untethered from what any outsider

would call “reality”, some mathematicians began to wonder whether their Ivory

Tower lectures were grounded in anything reasonable, or if their field had become
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meaningless sophistry. What was needed was a logical grounding of mathematics in

some fixed axioms; otherwise, we could simply invent the above theorems along with

their “proofs”, and this would pass for good mathematics as long as we used the

appropriate jargon.

Of course, it was now clear that mathematics could not be done with just logical

axioms; the logicist program had clearly failed in 5 volumes and 3 nonlogical axioms.

But in this new view, having some mathematical axioms was fine, as long as they were

consistent, so that they prevented an “anything goes” situation where anything was

provable. On a different view, the abstruse “theorems” above are meaningless; after

all, they could no longer claim any connection to the physical intuitions that breathed

life into mathematics in the first place. Roughly speaking, these views would mature

in the 1920’s into the rival schools of formalism and intuitionism [34], and the clash

between them became known as the Grundlagenstreit (“foundational dispute”).

L.E.J. Brouwer (1881-1966) was a rising star in the mathematical world at this

time, recently making a name for himself with his deep results in topology, including

his fixed point theorem above. But he was uneasy with the direction his field had

taken in past decades–including some of his own work–and in the late 1910’s, he

began to speak his mind.

According to intuitionism, mathematics is a creation of the human mind, which

organically develops ideas one at a time. These ideas spring from physical intuitions,

which may change over time as we understand the world around us. Moreover, the

fancy symbols that we use to represent math, such as +,
∫
,∈, δ, are merely tools to

communicate these ideas between different minds.

In Brouwer’s view, is is inaccurate to say that all mathematical statements are

true or false. Rather, there are the statements that have been proved, the statements
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that have been refuted, and those which have not yet been decided. After all, since

mathematics is a mental process, and this process runs as time progresses, it follows

that mathematics yesterday is not the same as it is today. Since there are plenty of

unsolved problems in math, we cannot always say up front whether some statement

A is provable or if A is disprovable.

But this has a radical implication: A ∨ ¬A need not hold, because we might not

have proved A yet. But A ∨ ¬A, the simple belief that A is either true or false,

is the Law of Excluded Middle (LEM) which had been considered a fundamental

principle of logic since the time of Aristotle. In this framework, LEM does hold for

finite sets, but Brouwer argued that it was a mistake to blindly carry this Law over

to infinite sets, since these are unending objects that we will always have incomplete

information about, and hence for any amount of time we study them, there will always

be statements we have not proved yet.

1.8 Formalism

As the 20th century began, David Hilbert (1862-1943) showed his stature in the

mathematical world when he proclaimed 23 problems for mathematicians to work on

over the century. Given at the famous 1900 International Congress of Mathematicians,

Hilbert’s problems, as they came to be known, would come to guide much of the course

of 20th century mathematics. Hilbert’s name today is attached to even more theorems

than he had problems that day, and his eminence as a mathematician was rivalled

only by Poincare, and none after the latter’s 1912 death.

Hilbert, in contrast to Poincare, was a forceful advocate of Cantor’s set theory,

and in fact his 1st problem was the continuum hypothesis that Cantor had himself
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posed: after famously proving that |N| < |R|, Cantor asked if there is any set S

such that |N| < |S| < |R|. In asking this, Hilbert was clearly interested in questions

arising from set theory, and wanted his fellow mathematicians to take infinite sets as

seriously as he did. But the 2nd problem Hilbert described was even more striking

(emphasis in original) [14]:

When we are engaged in investigating the foundations of a science, we

must set up a system of axioms which contains an exact and complete

description of the relations subsisting between the elementary ideas of that

science. The axioms so set up are at the same time the definitions of those

elementary ideas; and no statement within the realm of the science whose

foundation we are testing is held to be correct unless it can be derived

from those axioms by means of a finite number of logical steps...above

all I wish to designate the following as the most important among the

numerous questions which can be asked with regard to the axioms: To

prove that they are not contradictory, that is, that a definite number of

logical steps based upon them can never lead to contradictory results.

Notably, this was still before Frege’s system was shown inconsistent in 1903. Yet

even before that fiasco gave impetus to the consistency question, here Hilbert already

showed concern to secure the foundations of his field, lest they be pulled out from

under him as later befell Frege.

In 1899 Hilbert also gave a rigorous axiomatization of geometry that answered

many of the doubts that had sprung up about Euclid’s geometry, which was by then

seen as sloppy and imprecise. Hilbert attempted to prove the consistency of his

own axioms, but only achieved a partial result, and showed that the consistency of
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geometry reduced to the consistency of mathematical analysis.12 Nevertheless, he

was primarily a mathematician rather than a logician, and at first Hilbert and his

students did little to follow up on his 2nd problem, and his involvement to the brewing

foundational crisis was sporadic and relatively minor.

But when Brouwer began espousing his intuitionist philosophy, he awakened a

sleeping giant. Hilbert, who had previously respected the young Brouwer, now saw

a threat to the soul of mathematics. From the 1920’s on, the most prestigious

mathematician in the world saw himself as the defender of the new mathematics with

its high abstraction and platonic beauty. To Brouwer’s rejection of LEM, Hilbert

railed [39, p. 476]:

Taking the principle of excluded middle from the mathematician would

be the same, say, as proscribing the telescope to the astronomer or to

the boxer the use of his fists. To prohibit existence statements and the

principle of excluded middle is tantamount to relinquishing the science of

mathematics altogether.

To those who continued to criticize Cantor’s set theory, he defied [15]:

No one shall drive us out of the paradise which Cantor has created for us.

Yet Hilbert himself, evidently, had his own doubts about the actual infinite. In

the same 1926 lecture, “On the Infinite”, where he defended Cantor’s paradise with

biblical language, he also pointed to the paradoxes of set theory such as Russell’s,

acknowledging that they did not reflect well on the set theory he was defending:

These contradictions, the so-called paradoxes of set theory, though at

first scattered, became progressively more acute and more serious. In

12By that time, the latter was more familiar and well-understood by mathematicians.
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particular, a contradiction discovered by Zermelo and Russell had a down-

right catastrophic effect when it became known throughout the world of

mathematics...Admittedly, the present state of affairs where we run up

against the paradoxes is intolerable. Just think, the definitions and de-

ductive methods which everyone learns, teaches, and uses in mathematics,

the paragon of truth and certitude, lead to absurdities! If mathematical

thinking is defective, where are we to find truth and certitude?

Indeed, between his rhetorical flourishes, one notices that Hilbert himself had

doubts about the infinite, and whether it even made mathematical sense to talk

about. As his biography notes [27], he was naturally inclined to skepticism, and felt

uneasy placing blind faith in anything, including such an evidently shaky concept as

actual infinity.

On the other hand, Hilbert was the magistrate of mathematics, and his own life’s

work was nothing less than the ushering in of the increasingly abstract and powerful

methods that defined this new era of math. On some level, he recognized that these

new abstractions were detached from the physical intuitions that made us believe

them in the first place. But they were interesting nevertheless, interesting enough to

fill his own lifetime, and the lifetime of many, many mathematicians, then and since,

and no one could take that away from them. No one would expel them from Cantor’s

paradise.

The formalists, as Hilbert’s school came to be known, likened mathematics to a

game of chess: one is allowed to make moves according to certain specific, formal

rules, and these rules are specified in advance. The players do not make these moves

because they have practical importance outside the board; its just a game, after all.

Rather, the game is played because it is interesting, and that is reason enough.
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More than anything, the formalists wanted their Game of Mathematics to be

interesting. But if his mathematics was inconsistent, then it would be “anything

goes” and would certainly not be interesting. With this in mind, Hilbert stepped up

and put the consistency question center stage. When he had first posed it back in

1900, it can be formulated as follows:

Question (Original Hilbert’s 2nd Problem). Is analysis consistent?

In mathematics, analysis, refers to the study of continuous quantities such as the

numbers in R.13 It includes calculus (or rather, the rigorous underpinnings of calculus)

and as such, occupies a central place in the mathematical pantheon. Thus, when

Hilbert had reduced the consistency of geometry to the consistency of analysis, this

was considered an important step, because analysis was by then a more extensively

studied subject than geometry.

Analysis differs from arithmetic in that it is mostly about R, while the latter

is about N. As Cantor showed, the first set is bigger than the second (assuming,

of course, they both exist). For roughly these reasons, analysis is a more powerful

system than arithmetic.

On the other hand, while analysis requires some amount of set theory14 to rig-

orously axiomatize, set theory itself was advancing far beyond even the abstract

considerations in analysis that prompted Cantor and Dedekind to conceive the field.

While Cantor had already developed the theory of sets bigger than R, sets in the 20th

century were much, much bigger.

13However, analysis is somewhat of an umbrella term, and also includes complex analysis and
functional analysis, which are concerned with somewhat more abstract objects.

14Or something equivalent, such as the type theory mentioned earlier.
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In 1908, responding to the controversy surrounding the axiom of choice,15 Ernst

Zermelo (1871-1953) formulated a set of axioms of set theory suitable for axiomatizing

in greater generality than before. Moreover, while he was unable to give a full proof

of consistency, he showed that his system avoided Russell’s paradox.16 In the 1920’s,

Abraham Fraenkel and Thoralf Skolem proposed some strengthenings to Zermelo’s

scheme, resulting in the very powerful theory called ZFC (Zermelo-Fraenkel with

Choice) which was capable of axiomatizing all of mathematics: arithmetic, analysis,

and far, far beyond. Today, ZFC is often taken as the axiomatization of mathematics

as a whole. It did not occupy this central place until around the 1950’s and 1960’s,

with rival systems such as PM ’s type theory having supporters, but in the 1920’s it

was clear that set theory was capable of axiomatizing all of math. But with a system

so strong–grander even than the Cantor-Dedekind set theory that already provoked

such stinging criticism–it became important to prove that this system was consistent,

and this became the holy grail of Hilbert’s program17:

15Controversy over this axiom played a secondary role in the foundational disputes over set theory
and type theory, though we will not elaborate on this here, but see [1].

16Zermelo himself had discovered this paradox slightly before Russell, but evidently did not realize
its implications and publish this result. His new system avoided the antinomy using a different
strategy than Russell’s approach in PM.

17In the late 1920’s, Hilbert’s program evolved from being (mostly) about consistency to demand-
ing the stronger notion of conservativity. If T is some formal system in the language L, a stronger
system T ′ with a more expressive language L′ is conservative over T if it does not prove any statement
in L that T did not already prove (even though it may be prove new statements in L′ that could
not be expressed in L). To Hilbert, likely influenced by his top student Hermann Weyl (1885-1955)
(who was in turn influenced by Brouwer), this became important when he made the distinction
between “real” mathematical statements–those justified at least indirectly by empirical reality and
physical intuitions–and the “ideal” statements that Brouwer found meaningless. Whereas in the
old math where actual infinity was disallowed, it was only possible to express “real” statements,
but in the more powerful language of set theory, it was now possible to both express and prove
“ideal” statements. Hilbert wanted a proof that set theory was conservative over the the “real”
math of earlier times. This way, whenever set theory was used to prove a “real” statement, it would
be known that the statement could also be proven in the more trustworthy “real” mathematics.
Since the latter proof would often be more difficult and less elegant, set theory would be seen as a
convenient set of tools for proving these “real” statements more easily [44].
It should also be noted that Hilbert’s program evolved in many other directions in the late 1920’s.
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Question (Strong Hilbert’s 2nd Problem). Is set theory consistent?

But even to Hilbert, this was rather ambitious, and to anyone less entranced by

this level of idealism, even a consistency proof for analysis was a rather tall order.

For these reasons, mere mortals in the burgeoning field of mathematical logic began

to increasingly consider how to prove the consistency even of arithmetic:

Question (Weak Hilbert’s 2nd Problem). Is arithmetic consistent?

And even this revealed itself to be a difficult problem. But even before mathe-

maticians could realize this, it had to be stated unambiguously just what we mean

by “arithmetic.” That is, it needed a precise axiomatization.

1.9 Peano Arithmetic

Even before Frege was axiomatizing arithmetic as a stepping stone to his grander

logicist program, others had been making progress on this first step of putting the

basic concept of the natural numbers under the scope of the axiomatic method.

Building on the work of Hermann Grassman and Richard Dedekind, in a landmark

1889 treatise Giuseppe Peano gave the first suitably simple and rigorous set of axioms

for arithmetic. The resulting axiomatic theory came to be called Peano arithmetic

(PA), and proving the consistency of these axioms came to be seen as fundamental

to securing the foundations of the rest of mathematics.18

For instance, there was the demand of completeness, i.e. of showing that for every A, either A or
¬A is provable. There was decidability, the problem of showing that there exists an algorithm that
can decide in a finite amount of time whether or not a given A is a theorem of some system. All
these questions are deep, and continue to be studied in some form by contemporary research in proof
theory. Our aim in this thesis, however, is entirely on the consistency question, which certainly had
a central place in Hilbert’s program throughout.

18The 1889 axioms were given in the language of second-order logic, while the importance of instead
using first-order logic was not widely recognized until the 1930’s [7]. Following other standard
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Like every axiomatic system we discuss henceforth, PA is a theory in the language

of FOL and has as its logical axioms the 5 axioms listed in section 3. In addition, PA

has the function symbols S,+, ·, the constant symbol 0, and the predicate symbol =.

In addition to the 5 logical axioms, PA has the following arithmetical axioms:

(1) (∀x, y, z) x = y ∧ y = z → x = z

(2) (∀x, y) x = y → S(x) = S(y)

(3) (∀x) S(x) 6= 0

(4) (∀x, y) S(x) = S(y)→ x = y

(5) (∀x) x+ 0 = x

(6) (∀x, y) x+ S(y) = S(x+ y)

(7) (∀x) x · 0 = 0

(8) (∀x, y) x · S(y) = x · y + x

Finally, we have the axiom schema of induction, which gives an infinite number

of individual axioms. Namely, for any formula P (x), the following is an axiom of PA:

(IP (x)) P (0) ∧ ∀x(P (x)→ P (S(x)))→ ∀xP (x)

In this scheme, axioms (1-2) are the equality axioms, (3-4) are the successor

axioms, (5-6) are the addition axioms, and (7-8) are the multiplication axioms. Peano

sources, we exclusively discuss the first-order version of PA; though this muddles the historical
discussion, we claim this oversimplification does not make the basic themes here suffer too much.
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arithmetic is strong enough to carry formalize just about any reasoning about the

natural numbers that one can imagine. It has long been known that PA gets most

of its power from the axiom schema of induction. To understand this power, it helps

to consider what one gets without induction: consider the theory consisting of only

the axioms (1-8) except including the following axiom (9)19 :

(9) (∀x) x = 0 ∨ ∃y(x = S(y))

This is the well-known theory called Robinson’s Q (or simply Q) which is capable

of proving any quantifier-free statement involving addition and multiplication, such

as 10 ·10 ·10+9 ·9 ·9 = 12 ·12 ·12+1. However, it is too weak to prove almost anything

nontrivial that involves quantifiers. For instance, it cannot prove the commutativity

of addition:

(∀x, y) x+ y = y + x

Because Q is incapable of formalizing almost any interesting arithmetic, while PA

is the opposite, proof theorists often like to study axiomatic theories between them

in strength, and often this is done by adding to Q a small amount of PA’s induction

schema. Notably, rather than adding to Q an induction axiom for every formula, we

can instead do so for every formula with bounded quantifiers. Such a formula P (x)

may look like:

(∃y ≤ x · x · x) y · 3 = x+ 5

19The theory we get from (1-8) but without including (9) is generally considered too weak to be
interesting.[37] Axiom (9) is redundant in PA because it is provable using induction.
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For technical reasons, these are called ∆0 formulas, and the resulting extension of

Q is called I∆0 (“Induction over ∆0 formulas”). I∆0 can prove the commutativity of

addition, as well as most other basic facts about arithmetic [4, p. 85]. However, it is

not nearly the system that PA is, being far too weak to formalize all the arithmetic

that mathematicians do. Most notably, while I∆0 can prove most facts about addition

and multiplication, it cannot say anything interesting about exponentiation (as it

turns out, PA can).

PA was and is an elegant set of axioms for capturing the concept of number. The

trouble is, it has had its critics. Albeit, significantly fewer people have been skeptical

of the consistency to PA than have objected to set theory, but nevertheless it has had

its doubters, and if anyone does not believe the axioms, then those axioms cannot

give us the certitude we would like from mathematical proof.

This doubt becomes unsurprising if one scrutinizes PA’s axiom schema of induc-

tion over all formulas. While inducting over bounded, i.e. ∆0 formulas is perfectly

sensible, doing so over arbitrary formulas involves further assumptions. In particular,

if we have a PA formula with an unbounded quantifier such as ∃x, this quantifier

is ranging over our entire domain, namely the completed infinity N. This “x” that

apparently exists is no longer something we can necessarily construct. The viewpoint

of potential infinity only gives us the number n+1 when we have the number n, but a

statement like ∃x posits a number “somewhere out there” that we perhaps will never

see. If we believe that all of N is there up front, then this is fine, but otherwise, it is

hard to justify unbounded induction.

On the other hand, despite the wide variety of mathematicians and philosophers

who have studied these issues, no one of any philosophical persuasion has maintained

serious doubts about I∆0 (to our knowledge).
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The formalists had asked for a consistency proof for arithmetic to settle any

skeptics’ doubts once and for all, but we have avoided a crucial question so far:

how could that consistency proof be formalized, so that no one could reasonably

object? The idea of Munchausen’s trilemma was well-understood: any rigorous

proof would have to begin with some axioms, and those axioms would have to be

uncontroversial themselves. To prove the consistency of PA, one could not use the

unbounded induction of PA in the first place, because anyone disbelieving in PA

would mistrust such a proof in the first place. And one certainly could not use a

stronger (and thus even less trustworthy) system like ZFC.

What was needed was a specific system whose consistency no one could doubt.

From there, and only from there, could the consistency proof for PA be carried out.

And maybe then, the consistency of analysis could be established, and just maybe,

with enough zeal, this could be bootstrapped up to set theory, and Cantor’s paradise

would be vindicated at last. But what was needed was the firm foundation on which

to begin this edifice: axiomatic bedrock.

Unfortunately, for all of Hilbert’s dedication to precision in the axiomatic method,

he never did state unambiguously what he felt this bedrock should be. However, he

did emphasize that the techniques used in a consistency proof must be “finitary”:

justified by our own experience with the numbers we actually encounter in practice,

and not appealing to any notion of actual infinity, even in disguised form as with PA.

Following the influential analysis of [36], it is often held by contemporary experts

that Hilbert’s “finitary” methods are one and the same with one specific axiomatic

system: primitive recursive arithmetic.20

20Although this view is not unanimous, and as we note below, there is particular disagreement
about whether quantifier-free induction over certain transfinite ordinals was considered permissible
by the Hilbert school.
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1.10 Primitive Recursive Arithmetic

It is not an accident that primitive recursive arithmetic (PRA) has come to be

associated with finitary reasoning: the paper where Skolem first defined it was titled

(in translation), “The foundations of elementary arithmetic established by means of

the recursive mode of thought without the use of apparent variables ranging over

infinite domains” [39, p. 302]. To formulate this system, Skolem first had to define a

certain set of functions on the natural numbers that he felt were finitary, the primitive

recursive functions. These include:

i The constant zero function: f(x) = 0.

ii The successor function, S(x).

iii The projection functions: for any n and any i ≤ n, we have the function denoted

P n
i defined by P n

i (x1, ..., xn) = xi.

Besides these, there are two rules for building new primitive recursive functions:

iv Composition: If f : Nk → N is primitive recursive and g1, ..., gk : Nm → N

are all primitive recursive, then so is the function h defined by h(x1, ..., xm) =

f(g1(x1, ..., xm), ..., gk(x1, ..., xm)).

(e.g. if k,m = 1, then this is just h(x) = f(g(x)).

v Primitive recursion: If f : Nk → N and g : Nk+2 → N are both primitive recursive,

we can define a new primitive recursive function h : Nk+1 → N as follows:

h(0, x1, ..., xk) = f(x1, ..., xk)

h(S(y), x1, ..., xk) = g(y, h(y, x1, ..., xk), x1, ..., xk)
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For instance, using the primitive recursion rule, we can build the addition function

h(y, x) = y + x. In the above, let f be P 1
1 and let g be S ◦ P 3

2 (which is primitive

recursive by rule (4)). Then we have:

h(0, x) = P 1
1 (x) = x

h(S(y), x) = S(P 3
2 (y, h(y, x), x)) = S(h(y, x))

as desired. And in fact, we can build multiplication from addition in a similar way,

then build exponentiation from multiplication, superexponentiation from exponenti-

ation, etc. Just about any function on the natural numbers we would naturally think

of is primitive recursive, and in fact it took a few years before Ackermann devised a

function that was not primitive recursive.

The first 2 axioms of PRA will be (1-2) in the axioms of PA/Q/I∆0 above. PRA

also has axioms (3-8), the defining equations for S,+, and ·, but it will have much

more than that: the defining equations for every primitive recursive function. Finally,

it will have induction over quantifier-free formulas, i.e. formulas without quantifiers

at all, even bounded ones. This is a slightly more restrictive condition than ∆0. For

instance, the ∆0 formula we gave above as P (x):

(∃y ≤ x · x · x) y · 3 = x+ 5

is not quantifier-free, and so PRA is not able to use induction on it.21

As it turns out, PA is itself able to define all primitive recursive functions and

21It is possible to formally show that theories with ∆0 induction are (sometimes) stronger than
quantifier-free induction. For instance, if we let IE0 denote the theory Q extended with quantifier-
free induction, then the “Tennenbaum phenomenon” does not apply to IE0 but does apply to I∆0

[42].
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more, using its induction schema [33]. Proving this very nontrivial fact is beyond our

scope here, but the upshot is that PRA ⊆ PA, i.e. PRA is weaker.22

However, PRA itself can formalize almost all arithmetic that mathematicians are

interested in, and the extra strength of PA comes from certain extremely fast-growing

functions that are mostly of interest to logicians. Nevertheless, the PA axioms are

more elegant, and no doubt it would be inconvenient if number theorists ever had to

retreat to PRA, where any induction proof can only be conducted with a quantifier-

free formula.

1.11 Paradise Lost

As the 1920’s marched forward, Hilbert promoted his 2nd problem with increasing

zeal, and results finally began to come from his close collaborators: Paul Bernays,

Wilhelm Ackermann, and John von Neumann. Hilbert and Bernays developed a

technique called the ε-calculus, which Ackermann used in his 1924 dissertation to

give a consistency proof, up to Hilbert’s standards, of a certain system of analysis,

22Our description of PRA here is slightly off: it actually has no quantifiers, e.g. instead of axioms
(1-8), it has the result of removing the universal quantifiers from those. For instance, (∀x)x+ 0 = x
becomes x+0 = x. Also, quantifier-free induction is a rule of inference rather than an axiom schema,
and has the form:

P (0) P (x)→ P (x+ 1)
Quantifier-free Induction

P (x)

Any statement of the form P (x) is naturally interpreted as ∀xP (x), so even though the language
of PRA does not have the symbols ∀,∃, it can still effectively express ∀ while avoiding the potential
objections to ∃. While finitism objects to ∃ for reasons noted above, in this view ∀xP (x) is interpreted
as “for every number x that we can construct, P (x) holds” and so is unproblematic.
Also, PRA and PA have incomparable languages: only the latter has ∀ and ∃, while only the former
has the function symbols for primitive recursive functions beyond S,+, and · (PA can still define
all these functions and refer to them for all practical purposes, it just doesn’t literally have notation
like xy). Thus when we say PRA ⊆ PA we are being somewhat imprecise, but essentially mean
that if PRA proves A, then PA proves A′, where A′ is the result of translating A into the language
of PA.
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but this was found to be erroneous shortly thereafter by von Neumann. The latter,

for his part, gave a 1927 consistency proof in a different style for a different system,

but this did not include the induction schema, which as we have seen, is typically

the most difficult part of consistency proofs. Nevertheless, Ackermann in that same

year gave a second consistency proof, which Bernays now looked over more carefully

and accepted [43]. Optimism was now high in the Hilbert school, and in 1928 Hilbert

himself gave a lecture declaring that the consistency of arithmetic had been settled,

and analysis was just around the corner [44].

In 1930, the young Kurt Gödel (1906-1978) began to approach these problems

independently from this group. By the end of the year, he dropped a bombshell, his

infamous 2nd Incompleteness Theorem, which in modern terms, roughly says:

Theorem (Gödel’s 2nd Incompleteness Theorem). Let T be a consistent, computably

enumerable theory with PRA ⊆ T . Then T 6` ConT .

An axiomatic theory is computably enumerable, abbreviated r.e., if its axioms can

be computably listed out; generally, non r.e. theories are considered uninteresting.

We will henceforth use the notation T ` A to denote that T proves A, and T 6` A

to denote that T does not prove A. The formula ConT is the statement that T is

consistent, and this statement can be formalized as an arithmetical formula in strong

enough arithmetical systems T . PRA ⊆ T means that T is at least as strong as

PRA, i.e. T proves every statement that A proves.23

If PA is consistent, then it certainly satisfies these conditions (as do most theories

we are concerned with), but this means:

Corollary 1. PA 6` ConPA
23Strictly speaking, we do not need T to be as strong as PRA for this theorem to apply, but PRA

is a convenient landmark for our purposes.
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And since PRA ⊆ PA, Gödel’s theorem also immediately implies:

Corollary 2. PRA 6` ConPA

Gödel’s results, once they came to be understood and accepted, came to be seen as

the death knell of even the weak version of Hilbert’s 2nd problem. Ackermann’s second

attempt at a consistency proof, praised in Hilbert’s 1928 lecture, was now scrutinized

again and was shown to fall through, the error being found by von Neumann. The

latter was legendary for his quickness of mind, and was by far the first to understand

Gödel’s results and draw out the corollaries. The leading young light of Hilbert’s

acolytes–and perhaps the mathematical world writ large–he advanced the point that

any nontrivial consistency proof was now ruled out; for if we did have a rigorous,

finitary argument for ConPA, it could be certainly be formalized in PA itself. But

since Gödel showed PA cannot formalize any such argument, it cannot exist in the

first place. Others were slower to comprehend what the 2nd Incompleteness theorem

implied, but no one seemed capable of formulating a cogent response.

It was in this intellectual milieu that Gerhard Gentzen (1909-1945) came of age

as a logician. Like most, he was initially unsure what to make of Gödel’s results, let

alone how to proceed in light of von Neumann’s stinging but important observations.

But he continued to wonder why the consistency of arithmetic felt intuitively obvious,

yet this feeling could not be put into mathematical words, or at least, not as a theorem

in PA itself. His thought process is observable from his notes, where, noticing that

Gödel’s results imply PA cannot conclude consistency so easily, asked [40, p. 125]:
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Where is the Gödel-point hiding?

In the next few years, while most others had given up once and for all, Gentzen

would continue searching for his Gödel-point. Some say he found it, while others

remain less sanguine.

1.12 Ordinals

As a foundation for mathematics, set theory is powerful because it is possible to

rigorously define any mathematical object as a set. For instance, the natural numbers

can be encoded this way, if we let 0 be {}, the empty set, which is typically denoted

by ∅. Then any n+ 1 can be written as {0, 1, .., n}, giving us all the natural numbers

as follows:

0 = ∅

1 = {0}

2 = {0, 1}

3 = {0, 1, 2}

4 = {0, 1, 2, 3}
...

In this way, every number is literally the set of all numbers smaller than it. Under

this definition set of all natural numbers, i.e. {0, 1, 2, ...}, can almost be regarded as a

number bigger than any n, since it contains every n. Cantor took this idea seriously,
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called this new “number” ω, and imagined continuing to count higher by putting ω

in another set:

ω = {0, 1, 2, ...}

ω + 1 = {0, 1, 2, ..., ω}

ω + 2 = {0, 1, 2, ..., ω, ω + 1}

ω + 3 = {0, 1, 2, ..., ω, ω + 1, ω + 2}

ω + 4 = {0, 1, 2, ..., ω, ω + 1, ω + 2, ω + 3}
...

And so ordinals were born, and a question that arises is, what happens if we

continue this sequence infinitely? To Cantor, the answer was simple; we just get to:

...

ω + ω = {0, 1, 2, ..., ω, ω + 1, ω + 2, ...}

ω + ω + 1 = {0, 1, 2, ..., ω, ω + 1, ω + 2, ...ω + ω}

ω + ω + 2 = {0, 1, 2, ..., ω, ω + 1, ω + 2, ...ω + ω ω + ω + 1}

ω + ω + 3 = {0, 1, 2, ..., ω, ω + 1, ω + 2, ..., ω + ω ω + ω + 1, ω + ω + 2}
...

and continue on as before. Since he was treating these as (generalizations of) number

anyways, Cantor decided to denote ω + ω as ω · 2. With this notation, we can more

clearly write out this whole sequence so far:
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0, 1, 2, ...ω, ω + 1, ω + 2, ..., ω · 2, ω · 2 + 1, ω · 2 + 2, ..., ω · 3, ω · 3 + 1, ω · 3 + 2, ...

and be tempted to take it even further. But now we can notice that we can isolate

out the subsequence:

ω, ω · 2, ω · 3, ω · 4, ω · 5, ...

and ask where this leads. Naturally, Cantor had this keep going to ω · ω, which he

called ω2. Noticing that he could make this whole sequence all over again on top of

ω2 to get ω3, and then do that again to get ω4, Cantor formed the sequence:

ω, ω2, ω3, ω4, ω5, ..., ωω

This whole process of reaching ωω is best visualized in Figure 1.1 below.

Figure 1.1: The ordinals up to ωω
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There is, however, no reason to stop there, and Cantor certainly did not. We can

run this whole process again to get ωω · 2, and then ωω · 3, and so on:

ωω, ωω · 2, ωω · 3, ωω · 4, ..., ωω · ω

and in Cantor’s scheme, many (but not all) of the usual rules of exponentiation carry

over to from the familiar finite numbers to these infinite ordinals. In particular, this

last ordinal here is equivalent to ωω+1. Continuing the pattern, we get:

ωω+1, ωω+2, ωω+3, ..., ωω·2, ..., ωω·3, ..., ωω·4, ......., ωω·ω

where this last term is equal to ωω
2
, and so its natural to continue with:

ωω, ωω
2

, ωω
3

, ωω
4

, ..., ωω
ω

Finally, abstracting this process even further, we can imagine building:

ωω, ωω
ω

, ωω
ωω

, ωω
ωω
ω

, ...

And the question arises as to what ordinal this sequence takes us to. This is the

ordinal ε0, which is equivalently defined as the smallest ordinal α such that ωα = α.

Every ordinal below ε0 can be written with a finite number of symbols {0, 1, 2, ..., 9, ω},

e.g.:

ωω
ω4·6+ω+3·2+ω5+4 · 3 + ωω

ω · 5 + 11 (*)

What Gentzen ultimately showed was that if one strengthens PRA with the
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axiom schema of quantifier-free induction over ε0, then this new system proves the

consistency of PA. We will call this system PRA+ ε0.

This result does not contradict Gödel’s theorem because PRA + ε0 is evidently

incomparable with PA, since PA seems unable to itself prove this schema. On the

other hand, PRA + ε0 does not contain PA,24 so this result is nontrivial since one

could conceivably believe in PRA+ ε0 without already trusting PA in the first place.

While the ordinals discussed above naturally seem infinitary in character, they

can in fact be coded into arithmetical theories as certain combinatorial objects. For

instance, in this way, PA actually proves quantifier-free induction over ωω, which is

enough to prove the consistency of PRA. In fact, Gentzen’s theorem also opened up

the field of ordinal analysis, where different theories can be calibrated in strength by

assigning them a proof-theoretic ordinal, which, roughly speaking, is the least ordinal

α such that quantifier-free induction up to α is sufficient to prove the consistency of the

given theory [26]. For instance, in modern terminology we say that Gentzen showed

that PA has proof-theoretic ordinal ε0, while PRA and I∆0 have proof-theoretic

ordinals ωω and ω2, respectively.

Finally, it is important to note that only quantifier-free induction is used, and

so every formula inducted on in Gentzen’s proof is itself finitary in character. After

all, if we had unbounded induction, then we would already have PA, since it gets its

strength merely from unbounded induction over ω.

24The proof of this claim is nontrivial, but see [29].
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1.13 What is ε0?

Up to now, we have not attempted to convince the skeptical reader of the validity

of quantifier-free induction over ε0, but it is known to have a finitary interpreta-

tion. In fact, Ackermann’s original 1924 dissertation under Hilbert’s supervision used

induction over ωω
ω

[43].

For instance, ε0 can be viewed as an ordering on finite rooted trees [16]. It is also

an ordering on hereditarily finite lists: finite lists, finite lists of finite lists, finite lists of

finite lists of finite lists, etc. For excellent elaborations of this, we recommend [35] and

[5] (the latter, in particular, is the best contemporary exposition of the consistency

of PA that we know of).

We don’t care about the elements of these lists, just their “membership structure”.

In this way, we can write them using only (matching) parentheses, as illustrated in

the table given on the next page.

In this scheme, ordinal addition is (usually) given by concatenating our lists, e.g.

ω+ 2 is given by concatenating (()) and ()(), yielding (())()(). The exponential ωα is

given by enclosing α’s list in parentheses, e.g. ωω+2 is ((())()()). From these two facts,

it is possible to define ordinal multiplication, and hence all of ordinal arithmetic. We

encourage the reader to attempt to write down the corresponding list for the ordinal

(*) given on page 39.

We say “usually” in the previous paragraph because, to add ordinals in that way,

we need them to be in Cantor normal form: in ordinal arithmetic, 1 + ω = ω (even

though ω + 1 6= ω), so 1 + ω is not in normal form until we rewrite it as ω. By the

same token, ()(()) = (()) in our scheme.

When we assert that we can induct over ε0, we are claiming that this ordering is
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well-founded : there is no infinite descending chain of ordinals

ε0 > α1 > α2 > α3 > ...

Just as there is (apparently) no sequence of numbers that descend:

ω > n1 > n2 > n3 > ...

Of course, we are only asking for quantifier-free induction over ε0, meaning that

the sequence of αi’s have to be picked out by a quantifier-free (and hence finitary)

formula. It may be useful to call this condition weak well-foundedness.

To be truly convinced that we are describing an actual (well-defined) ordering, let

alone a weakly well-founded ordering, one has to be able to say precisely what this

ordering is. It turns out that this is rather difficult, as we discuss in section 3.2.
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1 ()
2 ()()
3 ()()()
...

...
ω (())

ω + 1 (())()
ω + 2 (())()()

...
...

ω · 2 (())(())
ω · 3 (())(())(())

...
...

ω2 (()())
ω3 (()()())
...

...
ωω ((()))
ωω+1 ((())())
ωω·2 ((())(()))

ωω
2

((()()))
ωω

ω
(((())))

...
...
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CHAPTER 2

GENTZEN’S CONSISTENCY PROOF

Here we describe Schütte’s [28] 1950 reformulation of Gentzen’s proof, and our

exposition will itself follow that given in the appendix of the first edition of Mendel-

son’s 1964 Introduction to Mathematical Logic [20]. The appendix has been admired

for being one of the most accessible presentations of Gentzen’s difficult theorem, yet

it was taken out of later editions of his textbook. When asked why, he replied [32]:

I omitted it in later editions because I felt that the topic needed a much

more thorough treatment than what I had given, a treatment that would

require more space than would be appropriate in an introduction to math-

ematical logic.

Indeed, if one compares it to this chapter, one can find many places where the

argument rests on subtleties that are not discussed there, and perhaps would not be

properly appreciated by introductory logic students if they were. This becomes even

more evident in our Coq implementation of the proof, where we have had to fully

unwind the details.

In very oversimplified terms, the proof will proceed as follows: to prove the

consistency of PA, it will be easier to prove the consistency of a certain stronger

system called PAω, which has different axioms than PA, and many more inference

rules. To argue that 0 = 1 will never be the conclusion of a proof in PAω, we will
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show that all these inference rules have the subformula property, meaning that the

premise(s) is (are) a subformula (subformulas) of the conclusion. This means that

to prove a formula like 0 = 1, we must start with a subformula of 0 = 1 and apply

our inference rules. But since 0 = 1 has no subformulas (besides itself), it is not

provable.1

2.1 The System PAω

Any closed atomic formula in our language will be of the form s = t, where s and

t are terms built up only from the symbols 0, S,+, ·. For instance, 1 + 1 = 2 and

(5 + 8) · 5 = 4 · 4 · 4 are possible closed atomic formulas. The former we will call

correct, because when we evaluate the operations on either side of the equality, we

end up with the same term on both sides. The latter we will call incorrect, because

the evaluation yields 65 = 64, and 65 and 64 are clearly different terms. Note that

this evaluation process can always be completed in finite time, i.e. is computable.

The axioms of PAω consist of:

• All correct closed atomic formulas

• The negations of all incorrect closed atomic formulas

So 1 + 1 = 2 and ¬((5 + 8) · 5 = 4 · 4 · 4) are axioms of PAω. Thus, just from its

axioms, PAω “knows” everything about quantifier-free statements of arithmetic, but

nothing about any quantified statements like ∀n : n+ 0 = 0 or ∃n : S(n) = 0. These

will be handled by its rules of inference, which we classify as either weak, strong, or

Cut :

1This paragraph is simply meant to provide intuitions; in the actual proof, we will not actually
use the concept of subformulas, and so we will not define it precisely.
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1. Weak Rules:

(a) Exchange:

C ∨ A ∨B ∨D
C ∨B ∨ A ∨D

(b) Contraction:

A ∨ A ∨D
A ∨D

2. Strong Rules:

(a) Weakening:

D

A ∨D

(b) DeMorgan:

¬A ∨D ¬B ∨D
¬(A ∨B) ∨D

(c) Negation:

A ∨D
¬¬A ∨D

(d) Quantification:

¬A(t) ∨D
¬(∀xA(x)) ∨D
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(e) ω-Rule:

A(n) ∨D for each n ∈ N
(∀xA(x)) ∨D

3. Cut:

C ∨ A ¬A ∨D
C ∨D

In all these rules, C and D will be called the side formulas, and are optional,

except that D must occur in Weakening and at least one of C,D must occur in Cut.

For instance, Exchange gives us four rules:

1. Conclude C ∨B ∨ A ∨D from the premise C ∨ A ∨B ∨D

2. Conclude B ∨ A ∨D from the premise A ∨B ∨D

3. Conclude C ∨B ∨ A from the premise C ∨ A ∨B

4. Conclude B ∨ A from the premise A ∨B

We will later prove that these rules make PAω a strictly stronger system than

PA. Of particular note is that the induction schema of PA is subsumed by our much

stronger ω-Rule. Note that the ω-Rule completely upends our proof system, since

it requires infinitely many premises. Anywhere else in logic, a rule is something a

finite reasoner can use, e.g. “given premises P1, P2, ..., Pn, infer conclusion C”. We

can imagine the ω-Rule as requiring a function fA where for each n ∈ N, fA(n) is a

proof of A(n).

To see that the ω-Rule can prove anything regular induction can, suppose we can

prove both A(0) and ∀n(A(n) → A(n + 1)). Then we can let fA(0) be our proof of
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A(0), and if fA(k) has been defined, we can let fA(k+ 1) be the composition of fA(k)

and A(k) → A(k + 1). This gives us our function fA, which returns a proof of A(n)

for any n, and hence the ω-Rule allows us to conclude ∀nA(n).

In fact, the ω-Rule is much stronger than regular induction; for instance, it

can prove Con(PA). Since PAω ` Con(PA, n) for each concrete natural number

n (for the same reasons that PA proves these statements), PAω can then infer

∀nCon(PA, n), i.e. Con(PA).

2.2 Outline of the Consistency Proof

Of course, our point is not that PAω ` Con(PA), but to show that PRA + ε0 `

Con(PA). Since PAω is stronger than PA, it will suffice to show PRA + ε0 `

Con(PAω). As it turns out, despite the fact that PAω is stronger than PA, and even

though the ω-Rule, on its face, makes our proof system more complicated, it turns

out that this exact move will make it possible to reason about proofs, and ultimately,

show that none of them terminate with 0 = 1.

We said earlier that we can’t derive 0 = 1 in PAω, we note that 0 = 1 has no

subformulas, so any proof of 0 = 1 would have to use an inference rule that does not

have the subformula property.

More accurately, we will show that PAω does not prove any statement of the form:

0 = 1 ∨ 0 = 1 ∨ ... ∨ 0 = 1

Such a formula, consisting of the disjunction of one or more 0 = 1 atomic formulas,

we will call a dangerous disjunction, or simply dangerous.2 None of our axioms are

2Technically, we will also consider 0 = 1 ∨ (0 = 1 ∨ 0 = 1) dangerous, as well as any other
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dangerous, since none of our axioms are 0 = 1, and none are disjunctions of two

or more formulas. So, if we have imagine there were some derivation in PAω that

began with axioms and ended in such a contradiction, it would have had to “become

dangerous” at some specific step, and so we can ask what this step was. More

precisely:

What rules of inference can potentially begin with a non-dangerous for-

mula, and conclude with a dangerous formula?

Such a rule of inference will be deemed dangerous, otherwise, safe.

Proposition 1. The only dangerous rule in PAω is Cut.

Proof. Inspecting the rules of inference, the conclusions in DeMorgan, Negation,

Quantification, and the ω-Rule cannot be dangerous, since their first disjunct is

non-atomic, so these rules are safe.

However, Weakening and any of the Weak Rules do yield disjunctions in their

conclusions. But in each of these cases, if the conclusion is a dangerous disjunction,

the premise must also be dangerous. For instance, if we used Weakening to conclude

0 = 1∨ 0 = 1, then we began with 0 = 1, which was already dangerous, so it “wasn’t

Weakening’s fault” that we got into danger, and thus these rules are also safe.

On the other hand, Cut can be dangerous, if we take C :≡ D :≡ 0 = 1, and let A

be anything. Then the conclusion, 0 = 1∨ 0 = 1, is dangerous, but the right premise,

¬A∨ 0 = 1, is not dangerous, and neither is the left premise, so in this case we could

potentially move into danger.

Thus, Cut is the only rule that can get us into danger, so any dangerous derivation

in PAω from its axioms must invoke the Cut rule.

disjunction of 0 = 1 formulas, no matter how the parentheses are grouped.
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And what exactly is the Cut rule? To gain a better understanding of what the

rule says, it will be helpful to rewrite it, using the equivalence of 6 P ∨Q and P → Q:

¬C → A A→ D

¬C → D

Taking Γ :≡ ¬C, we obtain3:

Γ→ A A→ D

Γ→ D

Thus, Cut simply says that if from some premise(s) Γ we can prove some interme-

diate result A, and from A we can derive some conclusion D, then we can infer that

conclusion directly from our premise(s) Γ. Most mathematicians, of course, assume

this all the time, by breaking the proof of some theorem into multiple steps, e.g.

with arguments like “first, we will prove Lemma A1, use it to prove A2,..., and then

invoke Lemma An a few times to finally prove our theorem.” If Cut were disallowed,

mathematicians would not be able to piece together sub-proofs in this way, and have

to approach the proof of D in a more roundabout way.

What we will claim, however, is that the use of intermediate results is merely a

convenience for finishing proofs more efficiently, and that any proof can in principle

be done without this convenience. More precisely, any derivation in PAω that uses

Cut can be done without using Cut, although the Cut-free proof may be much, much

longer. For our purposes, this means that if we could prove a dangerous disjunct in

PAω, then we could make this dangerous derivation without using Cut. But since

all of the non-Cut rules are safe, this is impossible, so PAω can’t prove a dangerous

disjunct at all.

3This is the way the Cut rule is usually formulated in Sequent Calculus
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Thus, we must prove two claims:

Claim. If some formula A is provable in PA, it is provable in PAω.

Claim. If some formula A is provable in PAω, then it can be proved in PAω using

only the safe rules.

From which it follows that PA does not prove any dangerous disjunct A, since

PAω will never prove A using only its safe rules.

2.3 PA ⊆ PAω

In this section, we will prove that PAω is at least as strong as PA, so that for any

formula A, if PA ` A, then we also have PAω ` A. Taking A :≡ 0 = 1, it follows

that if PA ` 0 = 1, then PAω ` 0 = 1, so if PAω does not prove 0 = 1, neither does

PA.

(Technically, we will show something slightly weaker, since PA proves non-closed

formulas while PAω only proves closed formulas. In this section, we will show that if

PA ` A, then PAω proves every closed instance of A, by which we mean anything we

can get by replacing A’s free variables with closed terms. If A is closed, then its only

closed instance is itself, from which it follows that PAω proves every closed formula

that PA proves. Consequently, the implications for consistency will still apply, and

we will only have to manage this technicality about closed instances in part (4) of

Lemma 2 and part (2) of Lemma (5).)

Before showing that PA ⊆ PAω, it will be helpful to prove some auxiliary lemmas

about PAω: namely, that it proves associativity of disjunction, ¬A∨A for any formula

A (LEM), and that s = t→ (A(s)→ A(t)).
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Proposition 2. The associative rules:

(C ∨ A) ∨B
C ∨ (A ∨B)

C ∨ (A ∨B)

(C ∨ A) ∨B

are derivable from 3 applications of the exchange rule. Hence, we can treat

Associativity as an additional derived weak rule to abbreviate proofs.

Proof. The exchange rule has the following two special cases, corresponding to when

the left or right side formulas are absent:

(A ∨B) ∨ C
(B ∨ A) ∨ C

and
(C ∨ A) ∨B
(C ∨B) ∨ A

We use those special cases of the exchange rule to make the following derivations:

(C ∨ A) ∨B
(A ∨ C) ∨B
(A ∨B) ∨ C
C ∨ (A ∨B)

and

C ∨ (A ∨B)

(A ∨B) ∨ C
(A ∨ C) ∨B
(C ∨ A) ∨B

Lemma 1. For any closed terms s and t, if s = t is correct and A(x) is a formula

with x the only free variable (or A is closed), then PAω ` ¬A(s) ∨ A(t).

Proof. By induction on n, the number of connectives and quantifiers in A.

A is atomic (n = 0): Then A(s) is either correct or incorrect, so either A(s) or

¬A(s) is an axiom of PAω. If the latter, then we have:
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¬A(s)
Weakening

A(t) ∨ ¬A(s)
Exchange

¬A(s) ∨ A(t)

On the other hand, if A(s) is an axiom of PAω, then we claim A(t) also is. This

is because s = t is correct, so the terms s, t evaluate to the same value, and hence for

any term T and free variable x, the resulting substitutions T [s/x] and T [t/x] evaluate

to the same value (this must be shown by induction on terms; we leave the details to

our Coq implementation). As an atomic formula, A is of the form t1 = t2 for some

terms t1, t2, and since A(s) ≡ t1[s/x] = t2[s/x] is correct, so is A(t) ≡ t1[t/x] = t2[t/x]

A is not atomic: For the inductive step, suppose the claim holds for all k < n.

We have 3 cases:

1. A is B ∨ C: By the induction hypothesis, we have proofs of ¬B(s) ∨ B(t) and

¬C(s) ∨ C(t):

...
Induction Hypothesis

¬B(s) ∨B(t)
Weakening

C(t) ∨ (¬B(s) ∨B(t))
Exchange

¬B(s) ∨B(t) ∨ C(t)
Associativity

¬B(s) ∨ (B(t) ∨ C(t))

...
Induction Hypothesis

¬C(s) ∨ C(t)
Weakening

B(t) ∨ (¬C(s) ∨ C(t))
Exchange

¬C(s) ∨ C(t) ∨B(t)
Exchange

¬C(s) ∨B(t) ∨ C(t)
Associativity

¬C(s) ∨ (B(t) ∨ C(t))
DeMorgan

¬(B(s) ∨ C(s)) ∨ (B(t) ∨ C(t))

2. A is ¬B: Then since t = s is correct, by the induction hypothesis PAω `

¬B(t) ∨B(s), so we can derive:

...
Induction Hypothesis

¬B(t) ∨B(s)
Exchange

B(s) ∨ ¬B(t)
Negation

¬¬B(s) ∨ ¬B(t)
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3. A is ∀yB(x, y):

...

...
Induction Hypothesis

¬B(s,m) ∨B(t,m)
Quantification

¬∀yB(s, y) ∨B(t,m)
Exchange

B(t,m) ∨ ¬∀yB(s, y)
...
ω-Rule

∀yB(t, y) ∨ ¬∀yB(s, y)
Exchange

¬∀yB(s, y) ∨ ∀yB(t, y)

Where we’ve applied the ω-Rule to the statements:

B(t, 0) ∨ ¬∀yB(s, y), B(t, 1) ∨ ¬∀yB(s, y), ..., B(t,m) ∨ ¬∀yB(s, y), ...

which are all provable.

Corollary 3. If A is a closed formula, then PAω ` ¬A ∨ A.

Proof. Take any correct formula e.g. 0 = 0. If A is closed, A(0) is A, so since

PAω ` ¬A(0) ∨ A(0) by the last lemma, PAω ` ¬A ∨ A.

We are now ready to show:

Claim. Any formula provable in PA is also provable in PAω.

We must show that PAω proves every axiom of PA, and that for PA’s 2 rules

of inference (modus ponens and universal generalization), if PAω proves the premise

then it also proves the conclusion. Recall that PA has 5 logical axioms, 8 arithmetic

axioms, and the axiom schema of induction. We first consider the logical axioms:
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Lemma 2. PAω can prove all (closed instances of) the 5 logical axioms of PA.

Proof. 1. B → (C → B), i.e. ¬B ∨ (¬C ∨B).

...
LEM Lemma¬B ∨B

Weakening
¬C ∨ (¬B ∨B)

Associativity
¬C ∨ ¬B ∨B

Exchange
¬C ∨B ∨ ¬B

Exchange
¬B ∨ (¬C ∨B)

2. (B → (C → D))→ ((B → C)→ (B → D)), i.e.

¬(¬B ∨ (¬C ∨D)) ∨ (¬(¬B ∨ C) ∨ (¬B ∨D))

...
LEM

¬(¬B ∨ C) ∨ (¬B ∨ C)
Associativity

¬(¬B ∨ C) ∨ ¬B ∨ C
Exchange

¬B ∨ ¬(¬B ∨ C) ∨ C

...
LEM

¬(¬B ∨ ¬C ∨D) ∨ (¬B ∨ ¬C ∨D)
Exchange

¬B ∨ ¬C ∨D ∨ ¬(¬B ∨ ¬C ∨D)
Associativity

¬B ∨ ¬C ∨ (D ∨ ¬(¬B ∨ ¬C ∨D))
Exchange

D ∨ ¬(¬B ∨ ¬C ∨D) ∨ (¬B ∨ ¬C)
Associativity

D ∨ ¬(¬B ∨ ¬C ∨D) ∨ ¬B ∨ ¬C
Exchange

¬C ∨ (D ∨ ¬(¬B ∨ ¬C ∨D) ∨ ¬B)
Cut

¬B ∨ ¬(¬B ∨ C) ∨ (D ∨ ¬(¬B ∨ ¬C ∨D) ∨ ¬B)
Associativity

¬B ∨ ¬(¬B ∨ C) ∨ (D ∨ ¬(¬B ∨ ¬C ∨D)) ∨ ¬B
Exchange

¬B ∨ ¬(¬B ∨ C) ∨ ¬B ∨ (D ∨ ¬(¬B ∨ ¬C ∨D))
Exchange

¬B ∨ ¬B ∨ ¬(¬B ∨ C) ∨ (D ∨ ¬(¬B ∨ ¬C ∨D))
Contraction

¬B ∨ ¬(¬B ∨ C) ∨ (D ∨ ¬(¬B ∨ ¬C ∨D))
Associativity

¬B ∨ ¬(¬B ∨ C) ∨D ∨ ¬(¬B ∨ ¬C ∨D)
Associativity

¬B ∨ ¬(¬B ∨ C) ∨D ∨ ¬(¬B ∨ ¬C ∨D)
Exchange (4 times)

¬(¬B ∨ (¬C ∨D)) ∨ ¬(¬B ∨ C) ∨ ¬B ∨D
Associativity (twice)

¬(¬B ∨ (¬C ∨D)) ∨ (¬(¬B ∨ C) ∨ (¬B ∨D))

3. (¬B → ¬C)→ ((¬B → C)→ B), i.e. ¬(¬¬B ∨ ¬C) ∨ (¬(¬¬B ∨ C) ∨B)
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¬B ∨B
Negation

¬¬¬B ∨B
¬(¬¬B ∨ C) ∨ (¬¬¬B ∨B)

¬¬¬B ∨B ∨ ¬(¬¬B ∨ C)

¬¬¬B ∨ ¬(¬¬B ∨ C) ∨B
¬¬¬B ∨ (¬(¬¬B ∨ C) ∨B)

...
¬B ∨B
¬¬¬B ∨B

¬¬C ∨ (¬¬¬B ∨B)

¬¬¬B ∨B ∨ ¬¬C
¬¬¬B ∨ (B ∨ ¬¬C)

...
¬¬C ∨ ¬C

Weakening
B ∨ (¬¬C ∨ ¬C)

Associativity
B ∨ ¬¬C ∨ ¬C

Exchange
¬C ∨ (B ∨ ¬¬C)

DeMorgan
¬(¬¬B ∨ C) ∨ ¬(B ∨ ¬¬C)

Associativity
¬(¬¬B ∨ C) ∨ ¬B ∨ ¬¬C

Exchange
¬¬C ∨ (¬(¬¬B ∨ C) ∨B)

DeMorgan
¬(¬¬B ∨ ¬C) ∨ (¬(¬¬B ∨ C) ∨B)

4. ∀nB(n)→ B(t), i.e. ¬∀nB(n) ∨B(t), where t is closed.

¬B(t) ∨B(t)
Quantification

¬∀nB(n) ∨B(t)

5. ∀n(B → C(n))→ (B → ∀nC(n)), i.e. ¬∀n(¬B ∨C(n)) ∨ (¬B ∨ ∀nC(n)), if B

does not have a free occurrence of n.

...

¬(¬B ∨ C(n)) ∨ (¬B ∨ C(n))

¬(¬B ∨ C(n)) ∨ ¬B ∨ C(n)
Quantification

¬∀n(¬B ∨ C(n)) ∨ ¬B ∨ C(n)

C(n) ∨ (¬∀n(¬B ∨ C(n)) ∨ ¬B)
...
ω-Rule

∀nC(n) ∨ (¬∀n(¬B ∨ C(n)) ∨ ¬B)
Exchange

¬∀n(¬B ∨ C(n)) ∨ ¬B ∨ ∀nC(n)
Associativity

¬∀n(¬B ∨ C(n)) ∨ (¬B ∨ ∀nC(n))

Lemma 3. PAω can prove all 8 arithmetical axioms of PA.

Proof. All 8 arithmetical axioms of PA are universally quantified. Below, we show

that they hold for an arbitray term(s). PAω does not have universal generalization,

but we can apply the ω-Rule to (1-8) below to achieve the universal statement we

desire.
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1. t1 = t2 → (t2 = t3 → t1 = t3), i.e. t1 6= t2 ∨ (t2 6= t3 ∨ t1 = t3)

It is decidable whether the terms t1, t2 evaluate to the same number, so we can

consider the cases t1 = t2 or t1 6= t2.

t1 = t2: Then by Lemma 1, PAω ` t2 6= t3 ∨ t1 = t3, so by Weakening, PAω `

t1 6= t2 ∨ (t2 6= t3 ∨ t1 = t3)

t1 6= t2: Then t1 = t2 is incorrect, so t1 6= t2 is an axiom of PAω, so we have:

t1 6= t2
Weakening

t2 6= t3 ∨ t1 6= t2
Weakening

t1 = t3 ∨ (t2 6= t3 ∨ t1 6= t2)
Exchange

t2 6= t3 ∨ t1 6= t2 ∨ t1 = t3
Exchange

t2 6= t3 ∨ t1 = t3 ∨ t1 6= t2
Exchange

t1 6= t2 ∨ (t2 6= t3 ∨ t1 = t3)

2. t1 = t2 → S(t1) = S(t2), i.e. t1 6= t2 ∨ S(t1) = S(t2).

Either t1 = t2 or t1 6= t2. In the former case, S(t1) and S(t2) will have the same

value, so S(t1) = S(t2) will be an axiom, so we get:

S(t1) = S(t2)
Weakening

t1 6= t2 ∨ S(t1) = S(t2)

In the latter case, t1 6= t2 is an axiom, so we get:

t1 6= t2
Weakening

S(t1) = S(t2) ∨ t1 6= t2
Exchange

t1 6= t2 ∨ S(t1) = S(t2)

3. 0 6= S(t).

This will be an axiom of PAω.

4. S(t1) = S(t2)→ t1 = t2, i.e. S(t1) 6= S(t2) ∨ t1 = t2.

Either t1 = t2 or t1 6= t2. In the former case, we get:
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t1 = t2
Weakening

S(t1) 6= S(t2) ∨ t1 = t2

In the latter case, S(t1) and S(t2) will have different values, so S(t1) 6= S(t2)

will be an axiom, so we get:

S(t1) 6= S(t2)
Weakening

t1 = t2 ∨ S(t1) 6= S(t2)
Exchange

S(t1) 6= S(t2) ∨ t1 = t2

5. t+ 0 = t.

t+ 0 and t have the same value, so this will be an axiom.

6. t1 + S(t2) = S(t1 + t2).

This will be an axiom of PAω.

7. t · 0 = 0.

This will be an axiom of PAω.

8. t1 · S(t2) = t1 · t2 + t1.

This will be an axiom of PAω.

Lemma 4. For any formula B(n), PAω can prove the axiom schema of induction

for B(n).
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Proof. We want to show B(0)→ (∀n(B(n)→ B(n+ 1))→ ∀nB(n)), i.e.

¬B(0) ∨ (¬∀n(¬B(n) ∨B(n+ 1)) ∨ ∀nB(n))

Claim: For any k, PAω proves:

¬(¬B(0) ∨B(1)) ∨ ... ∨ ¬(¬B(k − 1) ∨B(k)) ∨B(k) ∨ ¬B(0)

After showing this claim, and letting C(x) be the formula ¬B(x) ∨ B(x + 1), we

can make the following derivation in PAω:

...
Claim

¬C(0) ∨ ¬C(1) ∨ ... ∨ ¬C(k − 1) ∨B(k) ∨ ¬B(0)
Associativity (k times)

¬C(0) ∨ (¬C(1) ∨ (... ∨ (¬C(k − 1) ∨ (B(k) ∨ ¬B(0)))..)))
Quantification

¬∀nC(n) ∨ (¬C(1) ∨ (... ∨ (¬C(k − 1) ∨ (B(k) ∨ ¬B(0)))..)))
Associativity

¬∀nC(n) ∨ ¬C(1) ∨ (... ∨ (¬C(k − 1) ∨ (B(k) ∨ ¬B(0)))..)))
Exchange

¬C(1) ∨ ¬∀nC(n) ∨ (... ∨ (¬C(k − 1) ∨ (B(k) ∨ ¬B(0)))..)))
Quantification

¬∀nC(n) ∨ ¬∀nC(n) ∨ (... ∨ (¬C(k − 1) ∨ (B(k) ∨ ¬B(0)))..)))
Contraction

¬∀nC(n) ∨ (¬C(2) ∨ ... ∨ (¬C(k − 1) ∨ (B(k) ∨ ¬B(0)))..)))

And repeating the last 4 steps k − 1 times, we get:

...
¬∀nC(n) ∨ (B(k) ∨ ¬B(0))

Exchange
B(k) ∨ ¬B(0) ∨ ¬∀nC(n)

Associativity
B(k) ∨ (¬B(0) ∨ ¬∀nC(n))

And we can derive this last formula for any k, so by the ω-Rule, we get:

...

...
B(k) ∨ (¬B(0) ∨ ¬∀nC(n))

...
ω-Rule

∀nB(n) ∨ (¬B(0) ∨ ¬∀nC(n))
Exchange

¬B(0) ∨ ¬∀nC(n) ∨ ∀nB(n)
Associativity

¬B(0) ∨ (¬∀nC(n) ∨ ∀nB(n))
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as desired. It remains to show the claim, and we will do so by induction on k

k=0: Then this is just ¬B(0) ∨B(0), which is an instance of LEM.

Induction step: We will abbreviate the formula

¬(¬B(0) ∨B(1)) ∨ ... ∨ ¬(¬B(k − 1) ∨B(k))

with C. Then our induction hypothesis is:

C ∨B(k) ∨ ¬B(0)

And we want to show:

C ∨ ¬(¬B(k) ∨B(k + 1)) ∨B(k + 1) ∨ ¬B(0)

Using the induction hypothesis, and the fact that we can prove excluded middle

for B(k + 1), we can make the following derivation:

...
Induction Hyp.

C ∨B(k) ∨ ¬B(0)
Weakening

B(k + 1) ∨ (C ∨B(k) ∨ ¬B(0))
Exchange

C ∨B(k) ∨ ¬B(0) ∨B(k + 1)
Exchange

C ∨B(k) ∨B(k + 1) ∨ ¬B(0)
Exchange

C ∨B(k + 1) ∨B(k) ∨ ¬B(0)
Exchange

C ∨B(k + 1) ∨ ¬B(0) ∨B(k)
Exchange

B(k) ∨ (C ∨B(k + 1) ∨ ¬B(0))
Negation

¬¬B(k) ∨ (C ∨B(k + 1) ∨ ¬B(0))

...
¬B(k + 1) ∨B(k + 1)

Weakening
C ∨ ¬B(0) ∨ (¬B(k + 1) ∨B(k + 1))

Associativity
C ∨ ¬B(0) ∨ ¬B(k + 1) ∨B(k + 1)

Exchange
C ∨ ¬B(0) ∨B(k + 1) ∨ ¬B(k + 1)

Exchange
C ∨B(k + 1) ∨ ¬B(0) ∨ ¬B(k + 1)

Exchange
¬B(k + 1) ∨ (C ∨B(k + 1) ∨ ¬B(0))

DeMorgan
¬(¬B(k) ∨B(k + 1)) ∨ (C ∨B(k + 1) ∨ ¬B(0))

Exchange
C ∨B(k + 1) ∨ ¬B(0) ∨ ¬(¬B(k) ∨B(k + 1))

Exchange
C ∨B(k + 1) ∨ ¬(¬B(k) ∨B(k + 1)) ∨ ¬B(0)

Exchange
C ∨ ¬(¬B(k) ∨B(k + 1)) ∨B(k + 1) ∨ ¬B(0)
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as desired.

Lastly, we must show that PAω subsumes the 2 rules of inference in PA: Modus

Ponens and Universal Generalization.

Lemma 5. 1. If PAω ` A and PAω ` ¬A ∨B, then PAω ` B.

2. If PAω proves every closed instance of A, then PAω proves every closed instance

of ∀nA(n).

Proof. 1. Suppose PAω ` A and PAω ` ¬A∨B. Then we can derive B as follows:

...
A

Weakening
B ∨ A

...
¬A ∨B

Cut
B ∨B

Contraction
B

2. Suppose PAω proves every closed instance of A. Let ∀nA′(n) be a closed

instance of ∀nA(n). Then for any n, A′(n) is the result of substituting all

of A(n)’s free variables for closed terms, so by assumption PA ` A′(n). Then

we have:

A′(0) A′(1) A′(2) A′(3) . . .
ω-Rule

∀nA′(n)

Putting the last 4 lemmas together, we have:

Theorem 1. Any closed formula provable in PA is also provable in PAω.

Corollary 4. If PAω is consistent, so is PA.

Now, the issue is to show that PAω is consistent.
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2.4 Proofs in PAω

In the next section, we will give an algorithm to eliminate all Cuts from any

proof in PAω. However, to show this algorithm terminates, we will need some extra

machinery. In this section, we will assign ordinals (below ε0) to proofs, and prove

some other technical lemmas we will need for Cut-elimination.

As already noted, in all our inference rules, the optional formulas C,D are called

the side formulas. The required formulas A,B we will call the principal formulas.

In Cut, the principal formula A will be called the Cut formula, and the number of

connectives and quantifiers in ¬A will be called the degree of the Cut.

Furthermore, in any proof P in PAω, the maximum degree of all Cuts in PAω

will be called the degree of P (if it’s Cut-free, it will have degree 0). If PAω ` A

with a proof of degree ≤ m, we will write PAω `m A. In eliminating Cuts, our aim

will be to show that for any formula A, if PAω `m+1 A, then PAω `m A. Applying

this result m+ 1 times, it will follow that PAω `0 A, so any proof of A can be made

Cut-free.

With this in mind, our initial presentation of PAω omitted one crucial detail. In

using the ω-Rule:

A(n) ∨D for each n ∈ N
(∀xA(x)) ∨D

we require that the sequence of proofs of A(0) ∨ D,A(1) ∨ D,A(2) ∨ D, ... have

some uniform bound M ∈ N on their degree. In other words, there is some M such

that for every n, PAω `M A(n) ∨D. Otherwise, we could apply the ω-Rule to get a

proof of infinite degree, which would cause the proof strategy outlined in the above

paragraph to fail. Note that this proviso make PAω strictly weaker; we leave it to
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the reader to verify that every use of the ω-Rule in the previous section is compatible

with this proviso.

We will also talk about the ordinal assigned to P in PAω, and say PAω `αm A if

there is a proof of A that has degree ≤ m and ordinal ≤ α. Since proofs are built out

of axioms and rules of inference, we will inductively define the ordinal of a proof P

as follows:

1. If P only consists of an axiom, then P has ordinal 0.

2. If P consists of a Weak Rule applied to some proof P′ with ordinal α, then it

has ordinal α.

3. If P consists of a Strong Rule (or Cut) applied to some premise(s), then P may

be assigned any ordinal greater than the ordinals of the proofs of these premises.

In particular:

(a) If P consists of Weakening, Negation, or Quantification applied to some

proof P′ with ordinal α1, then P has ordinal α > α1.

(b) If P consists of DeMorgan or Cut applied to some proofs P1 and P2 with

ordinals α1 and α2, then P has ordinal α > max{α1, α2}.

(c) If P consists of the ω-Rule applied to some proofs P0,P1,P2, ... with

ordinals α0, α1, α2, ..., then it has ordinal α > αi for every i.

When we discuss a specific proof P, such as:

...
A

Rule, α, m
B
...
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Rule will denote the rule of inference used to infer formula B from A, while α

and m will be the ordinal and degree (respectively) of the proof of B. If we

don’t care about one or more of these, we will write − or omit the later values.

For instance:

... -, α
B
...

will indicate that there is a proof of B of ordinal α, but we are not interested

in its degree or the rule(s) used to derive B.

Before proceeding to Cut-elimination, we will also need the following lemma:

Lemma 6 (Invertibility Lemma). The following three rules of PAω are invertible

(i.e. given the conclusion in the rule, one can prove the premise(s)):

1. Negation

2. DeMorgan

3. ω-Rule

Moreover, this can be done without a higher ordinal or degree than that of the

original proof.

To prove these 3 cases, we will need to define a notion of formula substitution:

for formulas A,B,C, FormSubB,C(A) is the result scanning A for disjuncts that are

identical to B, and replacing them with C. For instance, FormSubB,C(D ∨ (E ∨ B))

is D ∨ (E ∨ C), but FormSubB,C(D ∨ (E ∨ ¬B)) is D ∨ (E ∨ ¬B), since B does not
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occur in A as a standalone disjunct, but only inside the negation of a disjunct, and

hence is not substituted.

From this, we will also need to define a precise notion of proof substitution: if P is

a proof of some formula A, then ProofSubB,C(P) is the result of applying FormSubB,C

to A, and then recursively applying FormSubB,C to all the formulas in the derivation

of A. This is roughly how we will prove Lemma 6: for instance, with Negation, we

will take a proof P of ¬¬B ∨D, and apply ProofSub¬¬B,B to it, giving a proof P′ of

B ∨D. However, there are two complications with applying this procedure näıvely:

a) If D itself contains instances of ¬¬B, such as if D is ¬¬B, Lemma 6 states that

from a proof P of ¬¬B∨¬¬B we can get a proof of B∨¬¬B, but ProofSub¬¬B,B(P)

instead gives a proof of B ∨ B. Hence we really just want to apply FormSub to the

first ¬¬B but the second one is not a substitution target. This motivates us to define

FormSubB,C,I, which is FormSubB,C except only making substitutions as indicated by

some particular substitution indicator I. Structurally, I might (for instance) look like

0 (1 (0 0)), to indicate that in a formula of the form B ∨ (C ∨ (D ∨ E)), only C is a

substitution target, while B, D, and E are to be left alone.

Furthermore, we will need to change I as we traverse up the proof, since many

of the rules will either change the structure of our formula (e.g. Weakening), move

our substitution target(s) (e.g. Exchange), or even multiply them (e.g. Contraction).

Thus, it needs to be argued on a rule-by-rule basis that we can keep track of our

substitution targets, but here we leave the details to the reader.

b) We may run into compatibility issues with some of the inference rules. In our

example with ProofSub¬¬B,B(P), if part of P looked like:
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...
B ∨ E

Negation
¬¬B ∨ E

...

After substitution it would become:

...
B ∨ E

Negation
B ∨ E

...

Which is technically not a valid application of Negation. This is easily remedied:

instead of applying ProofSub¬¬B,B to P completely, we will make an exception if

Negation shows up like this, in which case, instead of substituting we will simply

delete the bottom formula from P.

Thus, to prove part (1) of Lemma 6 rigorously, we will describe a transformation

operation DubNegTransf such that DubNegTransf(P) is a proof of B ∨ D if P is a

proof of ¬¬B ∨D. Most of the time, DubNegTransf will simply apply FormSub¬¬B,B

recursively much like ProofSub¬¬B,B does, but it will make an exception if it encoun-

ters the Negation rule. We are now ready to spell this out:

Proof of Lemma 6. 1. Negation: Suppose there is a proof P of ¬¬B ∨ D with

ordinal α and degree m. Let DubNegTransf(P) be the result of applying

ProofSub¬¬B,B to (P) with ¬¬B as the only substitution target (and keeping

track of this as it possibly moves around as we traverse up P). However, in

the case of Negation, DubNegTransf will do something different (if ¬¬B shows

up in the relevant place indicated below). Namely, if P is (for some subproofs

P1,P2 and formula F ):

P1
-, < α,≤ m

B ∨ F
Negation, ≤ α,≤ m

¬¬B ∨ F
P2
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Then we will let DubNegTransf(P) be:

P1
′

-, < α,≤ m
B ∨ F ′
P2
′

where P1
′,P2

′ denote the application of DubNegTransf to those subproofs, and

F ′ denotes FormSub¬¬B,B,I(F ) for the appropriate substitution indicator I (we

will use this notation for the remainder of this proof). The reader can easily

verify that this is the only rule that has to be handled as a special case. Hence,

DubNegTransf(P) is a valid proof of B ∨D with ordinal and degree no higher

than that of P.

2. DeMorgan: If P is a proof of ¬(B ∨ C) ∨ D with ordinal α and degree m,

we want to get a proof of ¬B ∨ D (the case of ¬C ∨ D is similar). Then

define DeMorganTransf(P) similarly as with (1), except that it will apply

ProofSub¬(B∨C),¬B, the substitution target is ¬(B ∨ C), and the rule that

sometimes needs to be handled differently is DeMorgan. If P is (for some

subproofs P1,P2,P3 and formula E):

P1
-, < α,≤ m

¬B ∨ F
P2

-, < α,≤ m
¬C ∨ F

DeMorgan, ≤ α,≤ m
¬(B ∨ C) ∨ F

P3

Then let DeMorganTransf(P) be:

P1
′

-, < α,≤ m
¬B ∨ F ′

P3
′
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And the reader can verify that DeMorganTransf(P) is a valid proof of ¬B ∨D

with no higher ordinal or degree than that of P.

3. ω-Rule: If P is a proof of ∀xB(x) ∨ C with ordinal α and degree m, and n

is arbitrary, we want to get a proof of B(n) ∨ D. Define ω-RuleTransf(P)

analogously with (1-2), except it will apply ProofSub∀xB(x),B(n) and its special

case will be the ω-Rule. If P is (for some subproofs P1,P2 and formula F ):

...

P1
-, < α,≤ m

B(n) ∨ F ...
ω-Rule, ≤ α,≤ m

∀xB(x) ∨ F
P2

Then let ω-RuleTransf(P) be:

P1
′

-, < α,≤ m
B(n) ∨ F ′

P2
′

Finally, there is one more lemma we will need in the next section:

Lemma 7 (Erasure Lemma). Suppose A is one of B,¬B, with B atomic, and A is

not an axiom. If we can make the following derivation in PAω:

P1 -, α, m
E -, α+ 1, m

A ∨ E
P2

-, α+ β + 1, m
C ∨ A

Then we can also derive:

P3 -, α, m
E
P∗2

-, α+ β, m
C
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Proof. Note that A is atomic and not an axiom, it can only arise from an application

of Weakening. Let P∗2 be the result of “erasing” A from every formula in the subproof

P2. This procedure, like ProofSub, requires having a particular target formula, but

unlike it, we are actually changing the structure of the formula when we delete part

of it. This means there are several rules we have to handle differently. For instance,

an instance of Exchange would transform from:

...
G ∨ A ∨ F ∨H

Exchange
G ∨ F ∨ A ∨H

...

into:

...
G ∨ F ∨H

Exchange
G ∨ F ∨H

...

In this case, we can simply delete this redundant part of the tree. Contraction

poses a similar problem, since we would näıvely change:

...
A ∨ A ∨ F

Contraction
A ∨ F

...

into:

...
F

Contraction
F
...

since if the bottom A is a deletion target, so are both A’s above it. But as with

Exchange, we can simply delete this part of the tree.
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2.5 Cut-Elimination in PAω

It is in the following proof that we must use transfinite induction up to ε0:

Theorem 2. If PAω `αm+1 A, then PAω `2α

m A

Proof. By transfinite induction on α.

If α = 0, then there are no Cuts so the degree of the proof can’t be m+1. We will

also need α = 1 as a base case (in part (c) below). But if α = 1, then a Strong Rule

was only used once, and if the degree of the proof is nonzero, it must have been Cut.

Hence Exchange, Contraction, and Cut were the only rules used, but these rules all

require disjuncts as premises, whereas every axiom is either atomic or the negation

of an atomic sentence. It follows that no such proof is possible.

For the induction step, assume that for every αi < α:

If PAω `αim+1 A, then PAω `2αi
m A

We will search the proof tree level-by-level for the last application of a strong rule

or Cut, and we have separate cases depending on the rule. Each of the non-Cut rules

proceed similarly, so we will only show the ω-Rule explicitly. In this case, we have:

...
-, α0, m+ 1

B(0) ∨ C

... -, α1, m+ 1
B(1) ∨ C ...

ω-Rule, α, m+ 1
∀xB(x) ∨ C

with every αi < α, so by our induction hypothesis, we can transform this into:

...
-, 2α0 , m

B(0) ∨ C

...
-, 2α1 , m

B(1) ∨ C ...
-, 2α, m

∀xB(x) ∨ C



71

since if α > αi for all i, then 2α > 2αi for all i.

For Cut, we have:

...
-, α1, m+ 1

C ∨B

...
-, α2, m+ 1

¬B ∨D
Cut, α, m+ 1

C ∨D
which by our induction hypothesis, can be transformed into:

...
-, 2α1 , m

C ∨B

...
-, 2α2 , m

¬B ∨D
Cut, 2α, m+ 1

C ∨D
where B can be atomic, ¬E, E ∨ F , or ∀xE(x), 4 cases that we will consider

separately with the aim of reducing the degree of the final Cut from (up to) m + 1

down to m. In the last 3 cases, this will be achieved by removing one connective or

quantifier from B.

1. B is atomic, and we have:

...
-, 2α1 , m

C ∨B

...
-, 2α2 , m

¬B ∨D
Cut, 2α, m+ 1

C ∨D

since B is atomic, either B or ¬B is an axiom. If ¬B is an axiom, we can ask

where B showed up in the proof of C ∨B; the only possibility is Weakening, so

we have (for some formula E):

...
-, < 2α1 , ≤ m

E
Weakening, ≤ 2α1 , ≤ m

B ∨ E
...

-, 2α1 , m
C ∨B
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But then, by Lemma 7, we can derive:

...
-, < 2α1 , m

E
...

-, < 2α1 , m
C

Weakening, 2α1 , m
D ∨ C

Exchange, 2α1 , m
C ∨D

If B is an axiom, we can do the same with ¬B.

2. B is ¬E, so we have:

...
-, 2α1 ,m

C ∨ ¬E

...
-, 2α2 ,m

¬¬E ∨D
Cut, 2α,m+ 1

C ∨D

We claim that we can make this last Cut with E as the Cut formula in place of

¬E, thereby bounding its degree by m instead of m+ 1.

Since PAω `2α2
m ¬¬E ∨D, by Lemma 6(a) we have PAω `2α2

m E ∨D. Therefore

we can make the derivation:

...
-, 2α2 ,m

E ∨D
Exchange, 2α2 ,m

D ∨ E

...
-, 2α1 ,m

C ∨ ¬E
-, 2α1 ,m

¬E ∨ C
Cut, 2α,m

D ∨ C
Exchange, 2α,m

C ∨D

3. B is E ∨ F , so we have:

...
-, 2α1 ,m

C ∨ (E ∨ F )

...
-, 2α2 ,m

¬(E ∨ F ) ∨D
Cut, α,m+ 1

C ∨D
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Now, since PAω `2α2
m ¬(E ∨ F ) ∨D, by Lemma 6(b) we have

PAω `2α2
m ¬E ∨D,¬F ∨D

Therefore we can make the derivation:

...
-, 2α1 ,m

C ∨ (E ∨ F )
Associativity, 2α1 ,m

C ∨ E ∨ F

...
-, 2α2 ,m

¬F ∨D
Cut, max{2α1 , 2α2}+ 1,m

C ∨ E ∨D
Exchange, max{2α1 , 2α2}+ 1,m

C ∨D ∨ E

...
-, 2α2 ,m

¬E ∨D
Cut, max{2α1 , 2α2}+ 2,m

C ∨D ∨D
Exchange, max{2α1 , 2α2}+ 2,m

D ∨ C ∨D
Exchange, max{2α1 , 2α2}+ 2,m

D ∨D ∨ C
Contraction, max{2α1 , 2α2}+ 2,m

D ∨ C
Exchange, max{2α1 , 2α2}+ 2,m

C ∨D

Thus, PAω `max{2α1 ,2α2}+2
m , so we have PAω `2α

m when

2α ≥ max{2α1 , 2α2}+ 2

which is true if α ≥ 2. Otherwise, α = 1, which is why we covered this as an

unconditional base case above.

4. B is ∀xE(x), so we have:

...
-, 2α1 ,m

C ∨ ∀xE(x)

...
-, 2α2 ,m

¬∀xE(x) ∨D
Cut, α,m+ 1

C ∨D
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Now, since PAω `2α1
m C ∨ ∀xE(x), Lemma 6(c) says that for any number n, we

have PAω `2α1
m C ∨ E(n) (after applying Exchange). For any closed term ti,

we can apply ProofSubE(n),E(ti) (with substitution target E(n)) to this proof.

Since we are only substituting terms, we are not changing the structure of any

formulas in this proof, so no special cases need to be handled in any of the rules.

This means that for any closed term ti, we can build some proof:

P(i)
-, 2α1 ,m

C ∨ E(ti)
(*)

We would like to define an operation NegUnivTransf in analogy to the proof

of Lemma 6, and we will borrow the notation from there. If P is our proof

of ¬∀xE(x) ∨ D, then we would like NegUnivTransf(P) to be a proof of

C ∨ D, which we will accomplish by applying ProofSub¬∀xE(x),C to P (with

substitution target ¬∀xE(x)), a substitution that is compatible with every rule

except Quantification.

We note that since this gets rid of the final Cut in our original proof of C ∨

D, NegUnivTransf(P) will have degree m as long as NegUnivTransf doesn’t

introduce any new Cuts of degree > m, so our only task is to avoid this in

completing our definition of NegUnivTransf. With that in mind, we illustrate

the case of Quantification, by an extended example. If P is (for some subproofs

P1,P2,P3, formulas F1, F2, terms t1, t2, and ordinals β1 < β∗1 ≤ β2 < β∗2 ≤ 2α2):
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P1
-, β1,m¬E(t1) ∨ F1

Quantification, β∗1 ,m¬∀xE(x) ∨ F1

P2
-, β2,m¬E(t2) ∨ F2

Quantification, β∗2 ,m¬∀xE(x) ∨ F2

P3
-, 2α2 ,m

¬∀xE(x) ∨D

Then, besides applying ProofSub¬∀xE(x),C , we also want to replace each instance

of Quantification with a Cut of degree m.4 To a first approximation, we will let

NegUnivTransf(P) be:

P(2)
-, 2α1 ,m

C ∨ E(t2)

P(1)
-, 2α1 ,m

C ∨ E(t1)

P1
-, β1,m¬E(t1) ∨ F1
Cut, β∗1 ,m

C ∨ F1

P2
-, β2,m¬E(t2) ∨ F2
Cut, β∗2 ,m

C ∨ F2

P3
-, 2α2 ,m

C ∨D

where we are using (*) repeatedly. The only problem here is that this is no

longer necessarily a valid proof because of the ordinals: we don’t necessarily

have β∗i > max{2α1 , βi}. Because this problem runs all throughout the proof,

we must now change the ordinals wholesale to remedy this. Specifically, if γ is

an ordinal on any part of this proof (except one of the C ∨ E(ti)’s on the left

side), then convert γ to 2α1 + γ. The result is:

4We can imagine other configurations, such as having more instances of Quantification or having
them on multiple branches of a proof if they occur before another Cut, DeMorgan, or even the
ω-Rule.
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P(2)
-, 2α1 ,m

C ∨ E(t2)

P(1)
-, 2α1 ,m

C ∨ E(t1)

P1
-, 2α1 + β1,m¬E(t1) ∨ F1
Cut, 2α1 + β∗1 ,m

C ∨ F1

P2
-, 2α1 + β2,m¬E(t2) ∨ F2
Cut, 2α1 + β∗2 ,m

C ∨ F2

P3
-, 2α1 + 2α2 ,m

C ∨D

We note that since γ2 < γ1 implies 2α1 + γ2 < 2α1 + γ1, we have not damaged

the ordinal structure we already had in Pi, and in our new Cuts, we now have

2α1 + β∗i > max{2α1 , 2α1 + βi} as desired.

Finalyy, our original claim was that our new proof would have ordinal ≤ 2α,

where α > max{α1, α2}. This follows from:

2α1 + 2α1 ≤ 2max{2α1 ,2α2} + 2max{2α1 ,2α2} = 2max{2α1 ,2α2} · 2 = 2max{2α1 ,2α2}+1 ≤ 2α

Corollary 5. If PAω `αm A, then PAω `

m 2′s︷︸︸︷
2·
·2
α

0 A

Proof. Apply the previous theorem m times.

Corollary 6. PAω (and hence PA) is consistent

Proof. Reiterating our observations in Section 2.2, if PAω were inconsistent it would

prove a dangerous disjunction A, and by the last corollary, this would mean A has a

Cut-free proof. But A can’t be an axiom of PAω, and all of the non-Cut rules can’t

possibly bring a derivation into danger, so this situation is impossible.

So PAω does not prove a contradiction, and we showed in Section 2.3 that it

proves everything PA proves, so PA does not prove a contradiction either.
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CHAPTER 3

FORMALIZING GENTZEN’S PROOF IN COQ

Here we describe our implementation of Chapter 2 in the Coq theorem prover, a

strongly typed functional programming language designed for expressing mathemati-

cal assertions and verifying proofs. It is among the most well-known proof assistants,

having won the 2013 ACM Software System Award, and has been used to formally

verify a wide and extensive range of theorems in all branches of mathematics, such as

the Brouwer fixed-point theorem, Abel-Ruffini theorem, and prime number theorem.

Most famously, it was used to give the first surveyable proof of the 4-color theorem

in 2005. First proved in 1979 by having a large computer program verify the thousands

of combinatorial cases involved, many critics objected to the infeasibility of having

a human check that the computation steps were correct, or that the special-purpose

code was properly written to do what it was intended for. In contrast, when Gonthier

and Werner formalized a proof in Coq, the correctness of their program depended

(almost) only on the correctness of the general-purpose Coq kernel, which itself is

quite amenable to human verification. As Gonthier described their result [11]:

Even though the correctness of our proof still depends on the correct

operation of several computer hardware and software components (the

processor, its operating system, the Coq proof checker, and the Ocaml

compiler that compiled it), none of these components are specific to the
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proof of the Four Colour Theorem. All of them come off-the-shelf, fulfill

a more general purpose, and can be (and are) tested extensively on nu-

merous other jobs, probably much more than the mind of an individual

mathematician reviewing a proof manuscript could ever be. In addition,

the most specific component we use–the Coq system, to which the script is

tuned–can output a proof witness, i.e., a longhand detailed description of

the chain of formal logical steps that was used in the proof. This witness

can, in principle, be checked independently (technically, it is a term in a

higher-order lambda calculus). Because this witness records only logical

steps, and not computation steps, its size remains reasonable, despite the

large amount of computation needed for actually checking the proof.

The Coq kernel itself is a set of axioms; specifically, the formal system known

as the Calculus of inductive Constructions (CoC) developed by Thierry Coquand,

both of which lend their name to Coq. CoC is a very powerful system, but it is also

constructive, which means that proofs in it have a computational interpretation, most

particularly1 :

1. A proof of P → Q is a (computable) function that inputs any proof of P and

outputs a proof of Q.

2. A proof of ∀x ∈ S, P (x) is a (computable) function that inputs any s ∈ S and

outputs a proof of P (s).

3. A proof of P ∨ Q is an ordered pair (b, p), where either b = 0 and p is a proof

of P , or b = 1 and p is a proof of Q.

1To be precise, we are sketching out the Brouwer-Heyting-Kolmogorov (BHK) interpretation,
later (and independently) developed further as the Curry-Howard correspondence in type theory.
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4. A proof of ∃x ∈ S, P (x) is an ordered pair (s, p), where s ∈ S and p is a proof

of P (s).

This has a few nice consequences for Coq. From (1-2), any implication or univer-

sally quantified statement can be proved in Coq by simply writing the appropriate

computable function, i.e. computer program. Moreover, since the logic is construc-

tive, even proofs of disjunctions or existentials, as in (3-4), yield specific objects

witnessing them, giving us the “proof witnesses” mentioned by Gonthier above.

This is the system in which we’ve approached Gentzen’s consistency proof, and

our code is available at:

github.com/Morgan-Sinclaire/Gentzen/blob/master/gentzen.v

As of this writing, it stands at about 5000 lines,2 which is still a few thousand

lines short of completion. However, the majority of this is routine work, and in our

assessment the hardest problems have been solved. For the remainder of this chapter,

we substantiate this claim, and walk through our implementation in detail. The

following 11 sections correspond to the 11 sections in the code.

Though we will explain some of the more essential aspects of Coq’s syntax, we

cannot hope to give a comprehensive introduction in this space. For those who

desire a deeper understanding, we estimate that Chapters 1-7 of Pierce’s Software

Foundations [24] is necessary and sufficient to understand virtually all the details of

our implementation.

3.1 Basic Properties of Natural Numbers and Lists

The first 4 lines of the preamble read as follows:

2On our personal machine, this takes about 4 minutes to compile to the end.
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Require Import Omega.

Require Import Lia.

Notation "b1 && b2" := (andb b1 b2).

Notation "b1 || b2" := (orb b1 b2).

Omega and Lia are two standard arithmetic libraries which we’ll find convenient,

particularly in this section. Crucially, they are weak systems of arithmetic contained

in PRA and do not invoke the full strength of PA. Lines 3-4 are simply defining

shorthand notations for Boolean operations. It is worth noting here that Booleans

and propositions are treated differently in Coq, with bool and Prop being entirely

different types:

bool Prop

Inhabitants true, false 0 = 1, (forall n, n = n), etc.

Decidable? Yes No

Logical Connectives negb, orb, andb, leb, eqb ∼,∨,∧,→,↔

Thus, bool is just the set {true, false}, and the usual rules of classical logic apply

to those values, so reasoning about it is decidable and usually trivial. However, Prop

consists of any mathematical statement that can be expressed in Coq, and hence is

not decidable.

It is now worth skipping to the proof of eq refl on line 28:

Lemma eq refl : forall (n : nat), n = n. Proof. auto. Qed.
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This is a theorem3 which simply says that for every natural number n, n = n

holds. To Coq, this is actually a function which takes any n ∈ N as input and returns

a proof of n = n. In either case, the proof is trivial, and there is a proof tactic (or

just tactic, as Coq commands are called) called auto which can complete many trivial

proofs like this.

The proof on line 32 for addends leq is also easy,but not quite trivial enough for

auto:

Lemma addends leq : forall (m n p : nat), n + m = p -> n <= p ∧ m <= p.

Proof. intros. omega. Qed.

Instead, we call intros, which effectively introduces the objects n,m, p, much like

saying “let n,m, p be arbitrary”. intros also introduces the hypothesis n + m = p,

essentially saying “assume n+m = p”, and leaving as our goal to prove n ≤ p∧m ≤ p

from this assumption. For this, we can call omega, the arithmetic package which

can solve any quantifier-free equation that involves only addition (hence intros was

necessary to call before this).

In eq nat refl on line 35:

3In Coq syntax, Theorem, Lemma, Corollary, and Proposition are synonyms.
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Lemma eq nat refl : forall (n : nat), eq nat n n = true.

Proof.

intros. induction n as [| n IH].

- auto.

- simpl. apply IH.

Qed.

we are proving that boolean equality of numbers is reflexive, rather than proposi-

tional equality as in eq refl. Thus eq nat n n is a bool, which is decidable, while n

= n is a Prop. Since Coq requires every function written to be provably computable,

it has a strong type-checking system to ensure that, and as part of this, at certain

places in function definitions objects of type Prop are not allowed but bool is.

Since this is a different theorem, eq nat refl needs its own proof, and it turns

out that auto or even omega can’t solve this immediately. Instead we will call the

induction tactic, as we will for almost every proof we do about the natural numbers

(and many other data structures as well). The as keyword simply allows us to

designate n as the variable name inside the inductive step of our proof, and IH as

the name of our induction hypothesis. After calling induction, we have two cases

left4: the base case n = 0 and the inductive step. The base case is trivial, while

the inductive case just needs to be simplified with simpl before we can apply our

induction hypothesis.

Next comes our first (non-theorem) definition:

4We separate these by a dash -. If we have nested subcases, we will then use +, *, and then
simply brackets {}.
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Fixpoint geq nat (n m : nat) : bool :=

match (n, m) with

| (0, 0) => true

| (S n’, 0) => true

| (0, S m’) => false

| (S n’, S m’) => geq nat n’ m’

end.

Such definitions are specified in Coq using either the keywords Definition or

Fixpoint, with the latter being strictly stronger in that it can do recursive definitions,

which is what we’re doing here in defining boolean ≥ in a decidable manner. The

way Coq defines numbers, every n is either 0 or Sn′ for some other number n′, and

the match keyword allows us to reason about these cases for both n and m. In each

case, we must return a boolean, or recursively call our function in a way that Coq

knows will terminate.

Our proof of succ geq proceeds much as our last proof, except here we use the

rewrite tactic

rewrite <- IHn.

which rewrites the equation we have as our goal using the equation IHn that we

have. The <- indicates we have the right hand side of IHn in our goal, and we want

to turn it into the left hand side. If <- is omitted, this is the other way around.

Things proceed as usual until line 74, where our first nontrivial proof begins, of:
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Lemma lt nat decid : forall (n m : nat), n < m -> lt nat n m = true.

which simply says that if the propositional < relation holds between two numbers,

then so does the corresponding boolean relation. To do this, we first define a number

n to be lt nat decid nice if this property holds between n and every other number

n:

Definition lt nat decid nice (n : nat) :=

forall (m : nat), n < m -> lt nat n m = true.

Our strategy, then, is to prove that every n is lt nat decid nice. Here we again

proceed by induction, although more is going on in this proof than before, such as

the snippet:

- unfold lt nat decid nice. intros. destruct m.

+ inversion H.

+ unfold lt nat decid nice in IHn.

assert (n < m). { omega.}

apply IHn in H0. simpl.

The tactic unfold will unwind the definition of lt nat decid nice so we can use

it. destruct is similar to induction in that it breaks m into the cases where it is 0 or

Sm′, except we don’t get an induction hypothesis for the latter (since we don’t need

it in this case). inversion, when called on the hypothesis H, essentially unwinds the

“possible reasons why” H holds. In this case H is 0 < 0 which never holds, and so
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inversion simply notes that we have a contradiction, and we are done with this case.

The assert tactic lets us claim n < m, which we then quickly prove inside the curly

braces. We do this whenever we feel some minor claim could help us finish a proof,

and this claim is to simple and specific to be worth proving as a separate lemma.

And indeed, we put this claim to good use after we’ve proved it as H0.

The next couple hundred lines proceed more or less similarly, as we prove other

lemmas about numbers that we will need later (we emphasize again that none of these

require machinery that isn’t primitive recursive).

Beginning on line 264, we start to look at lists, primarily lists of numbers. First we

define inductively what a list of X is (X will almost always be nat for our purposes)

for this purpose the Inductive keyword is used to build data structures recursively:

Inductive list (X : Type) : Type :=

| nil : list X

| constr : X -> list X -> list X.

In the remaining 300 lines of the section, we set our own convenient notation for

lists, define some operations on lists, and prove some basic properties about them.

3.2 Ordinals up to ε0

Section 2, which runs from lines 643 to 1800, involves setting up the machinery

behind ordinal arithmetic that we need in Cut-elimination. Defining ordinals properly

turned out to be a very difficult task. One of the difficulties was simply in getting up

to ω · 2; for instance, if one näıvely defines the following:
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Inductive ord : Set :=

| Zero : ord

| succ : ord -> ord

| omega : ord.

Then one can get every ordinal up to but not including ω · 2. It is worth noting

that in traditional ZFC, ω ·2 is the first ordinal that requires the Replacement axiom

to construct. The use of Replacement is essentially in saying that if we have any

sequence, such as ω, ω + 1, ω + 2, ..., then we can put those into the set

{ω, ω + 1, ω + 2, ...} = ω · 2

and so building ω · 2 is easy. And in fact, in virtually every standard reference on

ordinal arithmetic, it is simply assumed that we can collect sequences like this, an

option not available in Replacement-free set theory, let alone the system PRA.

In our present implementation, an ordinal is defined inductively to be either 0 or

cons a n b, which we take to represent ωa · (n+ 1) + b, where n is a number and a, b

are ordinals. In the Coq syntax, this is:

Inductive ord : Set :=

| Zero : ord

| cons : ord -> nat -> ord -> ord.

For instance, any natural number m can be represented as either Zero or (if
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m = m′ + 1) as cons Zero m’ Zero, i.e. ω0 · (m′ + 1) + 0. However, the second and

even more difficult problem was defining an ordering on this new type ord. Under our

definition, ordinals need not be in Cantor normal form, since ω+ω3 is a valid member

of ord. Hence, if we want to compare it with ω2 and say the former is bigger, we

cannot simply match them by the first term. We also cannot simply write a function

to put ω+ω3 in Cantor normal form, since that would imply we had a subroutine to

determine that ω < ω3, but we don’t have such an ordering in the first place.

Our leading idea was to define ordinals to be in Cantor normal form, by defining

ord mutually recursively with ord lt. We worked on this for weeks, but it proved

rather complicated, and eventually we looked to see if anyone had already attempted

to do this in Coq, and it turned out that Pierre Castéran (with others) had. Castéran

is a highly respected figure in the Coq community, having co-authored the authori-

tative text for advanced Coq users.[2] Castéran’s code5 used some very heavy-duty

tactics and notations that initially left this author defeated (even after having gone

through [24]). Over time, however, we came to appreciate the stunning cleverness of

what was done, and copied Castéran’s ordering relation into our own code:

Inductive ord lt : ord -> ord -> Prop :=

| zero lt : forall a n b, Zero < cons a n b

| head lt : forall a a’ n n’ b b’, a < a’ -> cons a n b < cons a’ n’ b’

| coeff lt : forall a n n’ b b’, (n < n’)%nat -> cons a n b < cons a n’ b’

| tail lt : forall a n b b’, b < b’ -> cons a n b < cons a n b’

where "o < o’" := (ord lt o o’) : cantor scope.

5Available at www.labri.fr/perso/casteran, under “Ordinal notations and rpo”. The file that
we borrow from is EPSILON0.v, in the epsilon0 folder.



88

In this definition, where indicates that in the definition, the < will be taken to

mean ord lt instead of the usual less than relation on the natural numbers. The

cantor scope part defines a new scope we can open up if we want to, and in this

scope, < will have that meaning. Indeed, immediately after this definition we call

Open Scope cantor scope., and we close this at the very end of Section 2. In

addition, (n < n’)%nat is syntax to override the where statement, so that the <

symbol in parentheses will be taken to mean the usual less than relation on nat.

Turning back to the core definition itself, one will notice that it does not actually

correspond to the definition we actually want. In particular, if we have:

α = ω0 · (3 + 1) + ω0 · (2 + 1) = cons Zero 3 (cons Zero 2 Zero)

β = ω0 · (4 + 1) = cons Zero 4 Zero

Then α < β holds according to ord lt because of its coeff lt constructor since

3 < 4 as numbers. But this is equivalent to saying that, as ordinals, 4 + 3 < 5.

In Castéran’s file, this odd definition does not endear itself until a few hundred

lines later, when Cantor normal form is defined.6 This definition, which we we also

copied, runs as follows on line 813:

6In our implementation, we have also found it more natural to first spend a few hundred
lines proving useful order-theoretic properties about ord lt, such as transitivity, irreflexivity, and
completeness (connexivity).
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Inductive nf : ord -> Prop :=

| zero nf : nf Zero

| single nf : forall a n, nf a -> nf (cons a n Zero)

| cons nf : forall a n a’ n’ b,

a’ < a -> nf a -> nf (cons a’ n’ b) -> nf (cons a n (cons a’ n’ b)).

And we can now notice that in our previous example with α < β, α is not in

normal form, and in general, the ord lt relation does correspond to the usual <

relation on ordinals if they are in normal form. At this point, if we desired, we could

define a new ordinal < relation that works for all ordinals now that we have a proper

definition of normal form (and go on to prove that this new definition matches our

expectations), but for the sake of Cut-elimination we only need to consider ordinals

in normal form.

The point here is that by “cheating” with an only mostly-accurate ord lt relation,

Castéran was then able to define a fully accurate nf definition. This is because the

latter only invokes the former once, in the a′ < a condition of cons nf, where ord lt

actually is accurate. In this way, mutual recursion is avoided, which we had personally

found to be a rather awkward construction to attempt.

Our next few hundred lines involve defining boolean equality and less than rela-

tions on ordinals. Like many of our other definitions in this section, these assume

normal form, and will not necessarily work as intended otherwise. We also prove

further order-theoretic properties of ordinals, and similarly many of these theorems

don’t have the normal form assumption, even if we only had normal form ordinals in

mind as we stated and proved them.
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On lines 1158-1198 we actually define the ordinal arithmetic operations of addi-

tion, multiplication, and exponentiation (assuming normal form). In most standard

references (e.g. [17]) they are defined as follows, for ordinals α, β, γ:

Definition (Ordinal Addition).

(i) α + 0 = α

(ii) α + (β + 1) = (α + β) + 1

(iii) α + β = sup{α + γ | γ < β}

Definition (Ordinal Multiplication).

(i) α · 0 = 0

(ii) α · (β · 1) = α · β + α

(iii) α · β = sup{α · γ | γ < β}

Definition (Ordinal Exponentiation).

(i) α0 = 1

(ii) αβ+1 = αβ · α

(iii) αβ = sup{αγ | γ < β}

In each of these, the computational difficulty lies with taking supremums, because

it has to be rigorously shown that 1) there is and upper bound on any such sequence,

and 2) there is a least one. While (2) follows from the well-foundedness of ordinals,7

7Or, in our case, our axiom of well-foundedness below ε0
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(1) depends on Replacement as we noted earlier.

Thus we had to take a different approach, where the arithmetic operations are

provably computable. For addition, we ultimately arrived at:

Fixpoint ord add (alpha beta : ord) : ord :=

match alpha, beta with

| , Zero => alpha

| Zero, => beta

| cons a n b, cons a’ n’ b’ =>

(match (ord ltb a a’) with

| true => beta

| false =>

(match (ord eqb a a’) with

| true => cons a’ (n + n’ + 1) b’

| false => cons a n (ord add b beta)

end)

end)

end.

Syntactically, this is simply a nested match statement that covers every case for

alpha, beta, with the underscores denoting “otherwise”. ord ltb and ord eqb

are the boolean less than and equality relations we defined earlier. Our definition for

multiplication is:
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Fixpoint ord mult (alpha beta : ord) : ord :=

match alpha, beta with

| , Zero => Zero

| Zero, => Zero

| cons a n b, cons Zero n’ b’ => cons a ((S n) * (S n’) - 1) b

| cons a n b, cons a’ n’ b’ => cons (ord add a a’) n’ (ord mult alpha b’)

end.

Both of these took some careful thought to devise, as well as to confirm that they

match the standard definition. Exponentiation proved to be even harder, and after

being puzzled for nearly a week, we looked to see that Casteran had in fact given a

complicated but very workable definition. After copying that and specializing it to

when the base is 2 (the only case we need in our proof) we got:

Fixpoint ord 2 exp (alpha : ord) : ord :=

match alpha with

| Zero => cons Zero 0 Zero

| cons Zero n’ => nat ord (2 ^ (S n’))

| cons (cons Zero n Zero) 0 Zero =>

cons (cons (cons Zero n Zero) 0 Zero) 0 Zero

| cons (cons a n b) n’ b’ =>

ord mult (cons (cons (cons a n b) n’ Zero) 0 Zero) (ord 2 exp b’)

end.
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The rest of this section of our implementation is devoted to showing that normal

form ordinals are closed under these arithmetical operations. In the next 200 lines,

we prove some miscellaneous lemmas that will help with this task, and then nf add:

Lemma nf add : forall (alpha beta : ord),

nf alpha -> nf beta -> nf (ord add alpha beta).

Our proof strategy here is similar to our lt nat decid example in the previous

section: we first define α in normal form to be nf add nice if for any β in normal

form, α + β is in normal form. Then, we prove by induction over ord that every α

is nf add nice. Almost all the remaining major proofs in this section will follow this

template.

Indeed, before proving the corresponding nf mult, we will need to prove the

following lemmas:

Lemma add right incr : forall (alpha beta gamma : ord),

beta < gamma -> ord add alpha beta < ord add alpha gamma.

Lemma mult right incr : forall (alpha beta gamma : ord),

beta < gamma -> Zero < alpha -> nf gamma ->

ord mult alpha beta < ord mult alpha gamma.

But to prove the latter, we will actually need two auxiliary definitions:
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Definition mult right nice (alpha : ord) :=

alpha = Zero ∨ forall (beta gamma : ord),

beta < gamma -> nf gamma -> ord mult alpha beta < ord mult alpha gamma.

Definition mult right nice2 (beta alpha : ord) :=

alpha = Zero ∨ forall (gamma : ord),

beta < gamma -> nf gamma -> ord mult alpha beta < ord mult alpha gamma.

With these lemmas in hand, we then proceed to prove nf mult and nf 2 exp.

Finally, we prove:

Lemma ord 2 exp fp : forall (alpha : ord), nf alpha ->

alpha < ord 2 exp alpha ∨ alpha = cons (nat ord 1) 0 Zero.

As noted in Chapter 1, ε0 is defined to be the least ordinal α that satisfies ωα = α,

i.e. the least fixed point of the mapping α 7→ ωα. It follows that it is also a fixed point

of α 7→ 2α, but so is ω = 2ω. The above theorem states that ω is the only ordinal < ε0

with this property. This is rather difficult to prove on paper with the usual ordinal

exponentiation definition, since the ordinal computations quickly become unwieldy.

However, with our (Castéran’s) more computational definition, this becomes quite

doable.

We thought this theorem would be needed since, in the Cut-elimination argument,

we repeatedly apply the α 7→ 2α mapping, and want to use the fact that ε0 is the

supremum of α, 2α, 22α , ... for any α > ω. It would follow that induction up to ε0 is

precisely what we need to reason about such exponentiated sequences. However, as
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we came to understand the induction argument in more detail, it turned out that we

did not actually need this theorem.

3.3 FOL Machinery

Now we finally talk about first-order logic, and the language of PA/PAω. Our

first task is to inductively define terms, atomic formulas, and formulas:

Inductive term : Type :=

| zero : term

| succ : term -> term

| plus : term -> term -> term

| times : term -> term -> term

| var : nat -> term.

Inductive atomic formula : Type :=

| equ : term -> term -> atomic formula.

Inductive formula : Type :=

| atom : atomic formula -> formula

| neg : formula -> formula

| lor : formula -> formula -> formula

| univ : nat -> formula -> formula.

The only interesting feature here is how we treat variables with var and univ.

We imagine that we have variable names x0, x1, x2, ... and so that var n denotes xn,
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and for any formula A, univ n A denotes ∀xnA.

Next we inductively define num conn to simply count the number of connec-

tives/quantifiers in any formula, which we will need when we later prove theorems by

induction on this value. Then we define syntactic equality of formulas inductively, by

defining eq term, eq atom, and eq f. Many of the definitions in this section will follow

this pattern of induction over terms, atomic formulas, and formulas, and consequently,

many of the theorems will also have to induct over all three data structures.

Next we define our eval function. Our intent here is to take a term and compute

what number it actually is. For instance, the terms:

t1 := plus (succ zero) (succ zero)

t2 := succ (succ zero)

should both evaluate as 2, even though they are syntactically distinct (i.e. eq term

would return false). Since any closed term t is simply consists of sums and products

of (successors of) zero’s, t will evaluate to some number n. On the other hand, a

non-closed term such as var n (i.e. xn) should not have any definite numerical value.

In defining eval, one option would be to send non-closed terms to some value such

as NaN. But in that case, the range of eval would no longer be nat, but instead some

ad hoc type consisting of the natural numbers together with this extra inhabitant

NaN. We instead chose to preserve nat as the range by letting eval(t) be 0 if t is not

closed, otherwise 1 + n if n is the number t evaluates to. For instance, eval(zero)

is 1. We also define a kind of inverse function represent which takes a number n

and returns the term that represents it, e.g. represent(2) is succ (succ zero).

Next, we begin to build up the notion of an atomic formula being correct in the
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sense of Section 1 of Chapter 2, so that we may ultimately define the axioms of PAω.

Our correctness function calls eval in the appropriate manner to determine if a

given atomic formula is correct, incorrect, or undefined.

Over the next couple hundred lines, we define the (self-explanatory) boolean

predicate closed, as well as the function free list which returns the list of (indexes

of) free variables in a formula, e.g free list applied to ∀x2 : x7 = x1 would return

the list of numbers [7, 1]. After proving some basic facts about both of these functions,

we show that any formula A, closed(a) = true if and only if free list(A) = [].

With this robust notion of closedness in hand, over the next 100 lines we prove that

any closed formula is either correct or incorrect:

Lemma correctness decid : forall (a : atomic formula),

closed a a = true ->

correct a a = true ∨ incorrect a a = true.

Recall that we used this fact multiple times in our Chapter 2 proof, when we

asserted that if A is closed and atomic, then either A or ¬A is an axiom of PAω. Also

recall that this is a nontrivial fact, since Coq is constructive, and so what we have

shown in classical terms is that it is fully decidable whether or not a given formula is

an axiom.

The remaining 100 lines of this section are concerned with defining term sub-

stitution on formulas. Following the usual template in this section, we first define

substitution t as term substitution for terms, then substitution a as term sub-

stitution for atomic formulas, and finally:
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Fixpoint substitution (A : formula) (n : nat) (t : term) : formula :=

match A with

| atom a => atom (substitution a a n t)

| neg B => neg (substitution B n t)

| lor B C => lor (substitution B n t) (substitution C n t)

| univ m B =>

(match (eq nat m n) with

| true => A

| false => univ m (substitution B n t)

end)

end.

Thus substitution A n t means A[xn/t] “start with formula A, and replace

every free occurrence of xn with the term t.” To conclude the section, we show that

if t is a closed term and A is a formula with xn as its only free variable, then A[xn/t]

is closed:

Lemma one var free lemma : forall (A : formula) (n : nat) (t : term),

closed t t = true ->

free list A = [n] ->

closed (substitution A n t) = true.
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3.4 The System PAω

In this section we build PAω as a deductive system. From our work in the previous

section, its now easy enough to tell if a given formula A is an axiom:

Definition PA omega axiom (A : formula) : bool :=

match A with

| atom a => correct a a

| neg (atom a) => incorrect a a

| => false

end.

And theorems of PAω are defined inductively: A is a theorem if its an axiom, or if

A is the result of applying a rule of inference to some theorem A′. Thus our definition

begins:

Inductive PA omega theorem : formula -> Prop :=

| axiom : forall (A : formula),

PA omega axiom A = true ->

PA omega theorem A

| exchange1 : forall (A B : formula),

PA omega theorem (lor A B) ->

PA omega theorem (lor B A)

| exchange2 : forall (C A B : formula),
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PA omega theorem (lor (lor C A) B) ->

PA omega theorem (lor (lor C B) A)

There are a few things to notice here. First of all, for a formulaA, PA omega theorem

is of type Prop, while PA omega axiom was of type bool. This is because it is undecid-

able to tell if a given formula A is a theorem (this is called the Entscheidungsproblem).

After all, if we could computably decide (from within PRA) whether or not 0 = 1

is a theorem, then we would not have to go to all this trouble proving this system’s

consistency in the first place. So, the best we can do is show on a case by case

basis that PA omega theorem(A) holds for a given A, but we won’t be able to show

PA omega theorem(A) is false without proving the consistency of PAω in the first

place.

The other important observation is that exchange1 and exchange2 are both

instances of the exchange rule. In fact, our full definition has 4 different instances, and

these correspond to all the possibilities we get from C,D being present or absent in the

way we defined the rule at the beginning of Chapter 2. We were initially tempted to

keep this to one instance by saying that Exchange always takes arguments C,A,B,D,

and sometimes C,D are 0 = 0. However, this scheme is not equivalent, because we

actually don’t have a way of eliminating these 0 = 0’s without using the Cut rule,

and this causes Cut-elimination to fail.

Hence, we are stuck with having multiple non-redundant instances of many of

the other rules too, for when the side formulas are present or absent. In total,

this gave us 18 rules, and hence (including axiom) 19 different constructors for

PA omega theorem. This means that every time we define or prove something in-

ductively over PA omega theorem–as we often will from this point on–we have 19
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different cases we have to address. Albeit many of these cases are similar, so copying

and pasting code across some of these cases often goes a long way.

For the most part, defining the rest of the inference rules was straightforward.

It is worth remarking that quantification required our machinery for closed and

substitution:

| quantification1 : forall (A : formula) (n : nat) (t : term),

closed t t = true ->

PA omega theorem (neg (substitution A n t)) ->

PA omega theorem (neg (univ n A))

But certainly the most nontrivial rule to implement is the ω-Rule:

A(m) for each m ∈ N
∀mA(m)

Recall that we can think of the ω-Rule as taking in a function g, where for any

m, g(m) is a proof of A(m). More precisely though, g exists in our metatheory, and

so really g(m) should return a proof of PAω ` A(m). But how do we tell if a given g

is indeed such a function?

First of all, we need g to be total; a natural class of total functions is the primitive

recursive functions. These have the additional property that they are exactly the

functions that PRA proves total. On the other hand, our metatheory here is actually

Coq, and the Calculus of Constructions is a much stronger system than PRA, with

the ability to prove many non-primitive recursive functions total as well. Although

we won’t need any of these, and every use of the ω-Rule in chapter 2 only used a
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primitive recursive g, it will be convenient for us to simply use Coq’s native syntax

rather than defining the primitive recursive functions ourselves.

The other point about g is that we need all of its outputs to be proofs, and in

particular g(m) must always be a proof of PAω ` A(m). That is to say, g(m) must

be the correct Type. But this is where Coq shines, as does the BHK interpretation

we mentioned at the beginning of this chapter, when we said:

A proof of ∀x ∈ S, P (x) is a (computable) function that inputs any s ∈ S

and outputs a proof of P (s).

Taking S = N and P (m) as PAω ` A(m), we have:

A proof of ∀m ∈ N, PAω ` A(m) is a (computable) function that inputs

any m ∈ N and outputs a proof of PAω ` A(m).

In other words if we want our computable function g, all we have to do is prove

the theorem ∀m ∈ N, PAω ` A(m). So if we managed to prove (for the appropriate

variable xn):

Theorem g : forall (m : nat),

PA omega theorem (substitution A n (represent m)).

Then we have an object of type ∀m ∈ N, PAω ` A(m), namely g, which is

regarded both as a proof of this universal statement, and as a function that inputs m

and outputs PAω ` A(m). To Coq, these are synonymous, and so type theory makes

our definition of the ω-Rule simple and elegant:
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| w rule1 : forall (A : formula) (n : nat)

(g : forall (m : nat),

PA omega theorem (substitution A n (represent m))),

PA omega theorem (univ n A)

Alas, there is one final and altogether different complication with the ω-Rule.

We noted as an afterthought in section 4 of chapter 2 that we need proofs in the

ω-Rule to have a uniform bound M on the degree of Cuts used in each PAω proof of

A(0), A(1), ... Now, the theory-metatheory distinction isn’t an obstacle: since we’re

working in constructive logic, g will produce witnesses, i.e. we can extract actual PAω

proof objects and inspect their degree. The only issue here is we haven’t included

degree in our definition here of PA omega theorem.

For that matter we haven’t included ordinals either, and for the same reason:

these proof objects are already relatively cumbersome to reason about in Coq, with

the 19 cases we have to deal with in each definition and proof. Our approach has

been to develop PAω without these tedious ornaments first, so that we can tackle the

harder problems with less awkwardness, and then add these onto our machinery later,

making the requisite minor changes to our proofs/definitions at that time. We said at

the outset that this work is unfinished, and so while we have basically accomplished

the former, we have yet to do the latter, and the rest of the present implementation

that we discuss in this chapter will not have degrees or ordinals attached to proofs.

After a brief 50-line example illustrating the use of the ω-Rule, we get to our first

actual proof of one of our results from chapter 2. Namely, Proposition 2 from 2.3,

that PAω proves the associative rules, and the resemblence between our two proofs
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is evident:

Lemma associativity1 : forall (c a b : formula),

PA omega theorem (lor (lor c a) b) ->

PA omega theorem (lor c (lor a b)).

Proof.

intros.

apply exchange3 in H.

apply exchange2 in H.

apply exchange1 in H.

apply H.

Qed.

That is, after introducing our hypothesis H, we simply apply 3 different instances

of the exchange rule in sequence to it, until H is identical with our goal so we can

apply it (the proof of the other associative rule is similar).

The remaining 300 lines in the section merely proving some miscellaneous lemmas

we will need in the next section. Most of these are very simple facts about term

substitution that are hardly ever explicitly mentioned in standard logic texts, let

alone proved. For instance,

Lemma closed subst eq : forall (A : formula) (n : nat) (t : term),

closed A = true -> substitution A n t = A.
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Took 76 lines if we include the auxiliary lemmas needed for it, which in turn had

to be proved by induction over terms, atomic formulas, and formulas. There may

well be implementations of FOL where this lemma really is trivial, but in our case we

often had to reason often about our free variable lists, and in this regard put to good

use the elementary list lemmas we proved in section 1.

3.5 PAω proves LEM

The aim of this section is to prove Lemma 1 from Chapter 2:

Lemma 8. For any closed terms s and t, if s = t is correct and A(x) is a formula

with x the only free variable (or A is closed), then PAω ` ¬A(s) ∨ A(t).

Back there, we proved this, and then as a corollary proved that PAω ` ¬A∨A, and

we will call these results LEM term and LEM, respectively. In our implementation,

we opted to prove LEM first, and then LEM term completely separately. The first

reason for this is that it was not (and is not) clear to us if LEM would follow as an

easy corollary the way it did on paper; as discussed above with closed subst eq,

reasoning formally about substitution is rather complicated, even for closed formulas.

But the more important reason for this order is that we simply tried proving LEM

first to see if it would work–as getting this right was already nontrivial–and then we

could use these proof strategies for LEM term, copying over the relevant code so and

then handling the substitution differences.

The inductive argument for LEM is rather subtle, at least when formalized. To a

first approximation, we are inducting over the number of connectives/quantifiers in

a formula. We break this up into the predicates P1, P2, P3 in the code: P1(A) simply

states that if A is closed, then ¬A∨A is provable, so proving ∀A,P1(A) is our ultimate
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goal. P2(A, n) states that for a given n, if A has that many connectives then P1(A)

holds. P3(n) simply says that P2(A, n) holds for every A:

P1(A) : closed(A)→ (PAω ` ¬A ∨ A)

P2(A, n) : num conn(A) = n→ P1(A)

P3(n) : ∀A,P2(A, n)

If we can prove ∀n, P3(n) then we are done, since this implies ∀A∀n, P2(A, n)

which in turn implies ∀A,P1(A) (and further down, we prove these implications quite

easily in Coq as P1 lemma, P2 lemma, and P3 lemma). And we actually need to prove

∀n, P3(n) by strong induction, since as a careful reading of our proof of Lemma 1

in the last chapter would reveal, in order to show that P2(A, n + 1) holds for an

arbitrary formula A, we will need the fact that P1(B) holds for every formula B with

≤ n connectives. Now, Coq has regular induction built deeply into its syntax, but we

need to explicitly prove that this implies strong induction:8

Lemma P3 strongind aux :

P3 0 ->

(forall n,

((forall m, m <= n -> P3 m) -> P3 (S n))) ->

(forall n, m <= n -> P3 m).

8Most of our code on this is adapted from pldev.blogspot.com/2012/02/

proving-strong-induction-principle-for.html



107

Lemma P3 strongind :

P3 0 ->

(forall n,

((forall m, m <= n -> P3 m) -> P3 (S n))) ->

(forall n, P3 n).

Which in standard notation is:

P3(0)→ ∀n((∀m ≤ n, P3(m))→ P3(n+ 1))→ ∀n∀m ≤ n, P3(m)

P3(0)→ ∀n((∀m ≤ n, P3(m))→ P3(n+ 1))→ ∀n, P3(n)

With that in mind, we finally do the main inductive step.

Lemma P3 inductive : forall n, (forall m, m <= n -> P3 m) -> P3 (S n).

And this proof follows quite closely with our argument in chapter 2. Our imme-

diate corollary is:

Lemma LEM : forall (A : formula),

closed A = true -> PA omega theorem (lor (neg A) A).

Proof. apply P1 lemma. Qed.

We now move on to LEM term, the statement that PAω ` ¬A(s)∨A(t) when s, t

are terms that evaluate to the same number. Here, the atomic case is less straight-

forward and takes 123 lines, most of which involves lemmas about substitution a,
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substitution t, eval, and correct a, but our upshot is:

Lemma LEM term atomic :

forall (a : atomic formula) (n : nat) (s t : term),

correct a (equ s t) = true ->

free list a a = [n] ->

PA omega theorem (lor (neg (atom (substitution a a n s)))

(atom (substitution a a n t))).

After this, the inductive argument is almost identical to that of LEM: we de-

fine Q 1, Q 2, Q 3, and prove strong induction on Q 3. The inductive step itself

(Q3 inductive) also closely follows the argument in chapter 2, except there are a few

more lines for managing substitution trivia. Ending the section, we have:

Lemma LEM term : forall (A : formula) (n : nat) (s t : term),

correct a (equ s t) = true ->

free list A = [n] ->

PA omega theorem (lor (neg (substitution A n s)) (substitution A n t)).

Proof. apply Q1 lemma. Qed.

3.6 The System PA

This section of our code is blank as of this writing, because we have not done

this yet. However, we are quite confident this will be easy: it has a similar structure

to the system PAω, except without the ω-Rule, which we’ve noted was the trickiest
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part of the latter. One other notable difference is that PA has more axioms and only

two rules of inference, but since each of the axioms have a simple formulaic structure

(unlike PA omega axiom) we expect them to be even easier.

3.7 PA ⊆ PAω

We also haven’t started on this section, and of course can’t until we implement PA.

After finishing LEM and LEM term, we expected (and expect) this to be straightforward,

but potentially time-consuming. The reader can verify this for themselves: our proofs

of Lemmas 2 and 3 simply involved building explicit proofs, which we can easily do

in the same manner we implemented Proposition 2. Lemma 4 will likely take some

thought and a number of auxiliary lemmas, but we would be surprised if it were more

difficult than Lemma 1, given the machinery we have in place. Thus, we determined

that Cut-elimination is the more interesting and conceptually difficult part of the

proof, so we undertook to first build the requisite machinery for that instead.

3.8 Proof Trees in PAω

In Mendelson’s [20] formulation of Gentzen’s proof, on which our own chapter 2

exposition is based, the notion of a proof tree is introduced first. In most first-order

systems, a proof is simply viewed as a sequence of formulas with a certain structure,

i.e. each is either an axiom or the result of an inference rule applied to a previous

formula in the sequence. In PAω however, the DeMorgan and Cut rules require two

premises A and B, each of which require their own proofs. This is best visualized by

imagining the proof “branch out” into the two separate proofs for A and B, which

are then connected by DeMorgan/Cut. In Mendelson’s scheme, this is seen as:
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Where E is the conclusion of the proof, A,B,C,D are axioms, and the 2-forked

branchings are easily seen. On other hand, the ω-Rule gives us ω-forked branchings

as follows:

Where C1, C2, C3, ... are premises in the ω-Rule which themselves have their own

proofs. These proofs, in turn, may use the ω-Rule, so our tree might have several

ω-forks in a row. In addition, Mendelson also defines the degree and ordinal of a
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proof tree right from the beginning. This of course differs from our own chapter 2

presentation, where we never particularly felt the need to mention proof trees by

name, and we didn’t discuss degrees and ordinals until they were actually needed for

Cut-elimination.

Nevertheless, when we began implementing this proof, proof trees were among

the first problems we tackled, and they proved to be the most difficult. To define

the tree structure itself was mostly straightforward,9 but it was harder to define it

such that every member of the type had the required structure vis-à-vis the inference

rules, degrees, and ordinals. We tried a simpler example, where we imagined having

the type:

Inductive nat btree : Type :=

| leaf : nat -> nat btree

| unary : nat btree -> nat -> nat btree

| binary : nat btree -> nat btree -> nat -> nat btree.

And wanting to define a special nat btree to be a nat btree where every node

is either:

1. A leaf

2. A node with value n+ 1 and exactly one child of value n

3. A node with value n2 and exactly two children of value n

Of course, we knew we could always define a boolean valid predicate on nat btree

to determine if a given tree matched (1-3), but it was our understanding at the

9Handling the ω-forkings did take some thought.
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time that the “professional” way to achieve our aims was by defining our subtype

special nat btree, in which every inhabitant provably has the desired properties.

We asked this on StackOverflow [31] and were informed that a certain type-theoretic

structure called a Σ type does what we were asking for.

We then spent some time learning about Σ types, but they proved to be quite

unwieldy for our purposes, due to the way that at each step, they demanded a proof

that our tree was of the right structure, and we saw no convenient way to carry these

around. Since one comment on our post asked why we could not accomplish our

goals by simply defining the valid predicate, we concluded that it was not considered

amateurish to do that in the situation we were in.

Even so, the way we defined proof trees, with all the inference rules as well as

the degrees and ordinals, it was very difficult to do anything nontrivial with these

structures because of how cumbersome they were. We more or less gave up on them

for a few months, and in the intervening time studied Mendelson’s proof in greater

detail, built up more of the basic FOL machinery, and, most of all, struggled through

ordinal definitions to produce what is now section 2.

After this extended break, we decided to drop degrees and ordinals, both as a

temporary simplifying measure, but also because we noticed that the entire proof

of PA ⊆ PAω doesn’t involve these, and that none of these results are used in

Cut-elimination, so we could safely do the first half of the whole proof without them

anyways.

We also gave up proof trees, and instead opted to simply define theorems in PAω

in the usual inductive manner, and this resulted in the work described in section 4.

In particular, after proving the associative rules quite easily–even these trivial facts

were a struggle with our original proof trees–we gained the confidence to continue
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further, and this resulted in proving LEM term. While this was a considerable amount

of work, as we described in section 5, it felt quite smooth compared to what we had

been working with before.

As such, we hoped to make this second half of the proof work without having to

define proof trees. But despite the considerable effort expended into this, the fact

is that Lemma 6 from chapter 2 (and everything onward) absolutely requires the

ability to reason about proofs as objects. Whereas the arguments behind PAω all

involve building explicit step-by-step inferences and otherwise doing “local” actions,

the invertibility lemmas involve making “global” substitutions across an entire proof

in a delicate way. For this purpose, we cannot simply induct over formulas/theorems

as we had been doing previously, but we had to induct over proofs themselves.

When we built proof trees this time, now that we had several months of experience

with both Coq and this proof, we were able to make things more streamlined than

before. For one thing, we decided to do so without degrees/ordinals to convince

ourselves that the fundamentals work, so we named our new type ftree (“formula

tree”) to emphasize that these are not real proof trees since they just have the bare,

undecorated formulas. Also, we found that the most natural way to build the inference

rules is to let them take as arguments one or more of the formulas A,B,C,D. For

instance, ftree begins:

Inductive ftree : Type :=

| node : formula -> ftree

| exchange ab : formula -> formula -> ftree -> ftree

| exchange cab : formula -> formula -> formula -> ftree -> ftree
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So that node simply takes a single formula (presumably an axiom), exchange ab

takes in the two formulas A,B that it will swap, exchange cab takes in three formulas

C,A,B (in that order), and similarly with the other rules. The exceptions are

Quantification and the ω-Rule, which are structurally different from the other rules

and so will be the exceptions in most definitions/proofs in this section. Thus further

down our definition of ftree we find:

| quantification ad : formula -> formula -> nat -> term -> ftree -> ftree

| w rule a : formula -> nat -> (nat -> ftree) -> ftree

quantification ad inputs (in order) the principal formula A, the side formula

D, the (index of the) substitution variable xn, and the ftree that yielded ¬A(t)∨D,

giving:

¬A(t) ∨D
Quantification

¬∀A(n) ∨D

Similarly, w rule a takes in the principal formula A, the (index of the) substitution

variable xn, and a computable function g such that g(n) is a proof of A(n).

The function ftree formula simply returns the formula at the bottom of an

ftree, i.e. the conclusion of a given proof, and begins:

Fixpoint ftree formula (P : ftree) : formula :=

match P with

| node A => A

| exchange ab A B P’ => lor B A
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Next we define the predicate valid, which determines if a given ftree actually

represents a proof in PAω, and begins:

Fixpoint valid (P : ftree) : Prop :=

match P with

| node A => PA omega axiom A = true

| exchange ab A B P’ => ftree formula P’ = lor A B ∧ valid P’

Of note, Weakening requires that the new formula introduced is closed:

| weakening ad A D P’ => ftree formula P’ = D ∧ closed A = true ∧ valid P’

The ω-Rule is:

| w rule a A n g => forall (m : nat),

ftree formula (g m) = substitution A n (represent m) ∧ valid (g m)

and we remark again that a proper definition here would mandate a uniform

bound on the degrees of every g(m), but we have not done this yet because we have

not attached degrees to our proofs yet.

It is now natural to define:

Definition provable (A : formula) : Prop :=

exists (t : ftree), ftree formula t = A ∧ valid t.
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Lemma provable theorem : forall (A : formula),

PA omega theorem A -> provable A.

Proof. Admitted.

Lemma theorem provable : forall (A : formula),

provable A -> PA omega theorem A.

Proof. Admitted.

That is, a formula A is provable if it is the conclusion of some ftree. It can then

be shown that provable(A) holds if and only if PA omega theorem(A) holds, so that

our earlier easier-to-work-with formulation of PAω is identical to the present one, and

so we do not have to go back and prove (e.g.) LEM term with proof trees. We have

not actually shown this equivalence yet, but we estimate it will be a straightforward

induction over each of these 19-case definitions. The Admitted keyword allows us to

save an incomplete proof while still using the theorem itself in future proofs. This is

the first use of Admitted (or an equivalent) in the file, and the only other two are

even more trivial.

As a proof of concept, we prove associativity with proof trees:

Lemma associativity 1 : forall (C A B : formula),

provable (lor (lor C A) B) -> provable (lor C (lor A B)).
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Proof.

unfold provable. intros. destruct H as [t H].

eapply ex intro.

instantiate (1:= exchange ab (lor A B) C

(exchange cab A C B

(exchange abd C A B t))).

simpl. auto.

Qed.

And we accomplish something we never managed do with our proof trees from

months before. Still, this is less straightforward than our proof of associativity1

back in section 4. After the intros, our proof window looks like the following:

H : exists t : ftree, ftree formula t = lor (lor C A) B ∧ valid t

(1/1)

exists t : ftree, ftree formula t = lor C (lor A B) ∧ valid t

Where the bar separates our hypothesis H from our goal on the bottom (the (1/1)

indicates that we are on case 1 out of 1). Since Coq is constructive, from the existential

statement we have we can extract a specific witness, and so calling destruct H as

[t H] gives us an ftree called t, as well as the hypothesis H that it satisfies the

conjunction. On the flipside, to prove our existential statement we need to produce a

specific ftree witness, and eapply ex intro sets us up to do that by removing the

existential quantifier in place of a variable name we must instantiate. We can now
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use the instantiate command to construct this object (the 1:= simply indicates

we’re instantiating the first (and in our case only) variable): start with t, the tree we

already have by assumption, then apply exchange abd to it, apply exchange cab to

the resulting tree, and in turn apply exchange ab to this result, and we now an ftree

which Coq recognizes (after a simpl and auto) is identical to the one we wanted.

Not including the existential management, this proof is structurally identical with

our proof of associativity1. However, while there we could start with our proof

and apply the 3 exchange rules in sequence step-by-step, here we have to apply them

all at once, and backwards, so it is harder to construct longer derivations this way. We

can see our intermediate steps if we make them as assert statements, and in fact this

was how we originally constructed the above proof, but that takes somewhat longer

than being able to apply our inference rules to our hypothesis directly. We cannot

do this here, because once we discharge the existential quantifier with destruct, we

now have a t and our hypothesis about it. We can do something like:

pose (exchange abd C A B t) as t’.

Which would create the following in our proof window:

t’ := exchange abd C A B t : ftree

But this does not really get us anywhere and this could be handled much better

with an assert. Hence, for longer step-by-step derivations, which are the mainstay

of the PA ⊆ PAω proof, our PA omega theorem is strongly preferred, and so we

intend to use that and port its proofs over with provable theorem above. Luckily,
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the rest of the consistency proof will not involve these, and we will mostly come down

to making delicate proof substitutions, for which (as we will see in the next section)

proof trees are well-suited for.

In preparation for this, the rest of the section proves some prerequisite lemmas.

Namely, that all theorems are closed formulas, that syntactic equality of formulas is

decidable, and that if we have a proof tree:

...
A(0)

...
A(1)

...
A(2) . . .

ω-Rule
∀mA(m)

Then for every m, the proof tree g(m) is valid and has ftree formula A(m).

3.9 Invertibility Lemmas

The final 1000 lines of our code deals with Lemma 6 of chapter 2, and most

particularly the substitution indicators we mentioned there. We do not know of

any source that discusses the details of proof substitution even to the depth we did

in chapter 2. In fact, on first reading of Mendelson’s [20] proof, we were scarcely

conscious of the inescapable need to make non-local substitutions, and we even gave

a full lecture in the Boise State Set Theory seminar on this proof where this gross

omission was not even noticed. It was only in the process of writing chapter 2 that

we came to see that understanding these global formula substitutions is probably the

most important part of understanding this second half of the proof deeply, and so we

studied Mendelson’s proof with more care.

Even so, it was only after actually trying to implement this in Coq that we realized

that we didn’t fully understand how these proof substitution procedures work. Our
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discussion of all this in chapter 2 was only possible after we had actually struggled

with this implementation for a few weeks. In particular, devising the data structure

that eventually became substitution indicators was among the most difficult puzzles

of this implementation, at least on par with the ordinal definitions and proof trees, if

not greater.

From our discussion of Lemma 6 in chapter 2, it was relatively straightforward to

implement the ProofSub procedure there, but only after implementing proof trees.10

Handling our obstacle (b) discussed on page 65 also posed little obstacle with the

machinery presented up to now, since our proof tree transformation procedure already

had to be formally defined across all 19 cases anyways, and so making an exception

for (e.g.) the Negation rule was easy to accommodate.

The heart of the matter was obstacle (a), mentioned on page 65, where we consider

what happens if we have a proof:

...
¬¬B ∨ ¬¬B

Then we want to transform this into a proof:

...
B ∨ ¬¬B

But if we näıvely substitute B in place of ¬¬B, we instead get a proof:

...
B ∨B

Hence, we only want to make substitutions at certain places in our final formula.

But this means we only want to make substitutions at certain places in the formulas

above it. For instance, if our original proof tree looked like:

10This was the part of the proof where we were forced into doing, and only after about a week of
trying to make it work without changing the basic structure of PA omega theorem.
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...
¬¬B ∨ ¬¬B

Exchange
¬¬B ∨ ¬¬B

Then we want to change it to:

...
¬¬B ∨B

Exchange
B ∨ ¬¬B

Because if we look at the first ¬¬B in the conclusion of the original proof, and

“trace its path” up the proof tree, we see that this path goes through the second

¬¬B in the penultimate formula of the original proof. Mendelson did allude to this

issue, and called this the history of (the first) ¬¬B, although this was not rigorously

defined. It is understandable why, since this history notion would have to be defined

on a case-by-case basis with all the inference rules. For instance, we could also have:

...
(¬¬B ∨ ¬¬B) ∨ (¬¬B ∨ ¬¬B) ∨ ¬¬B

Contraction
(¬¬B ∨ ¬¬B) ∨ ¬¬B

...
¬¬¬B ∨ ¬¬B

Cut
(¬¬B ∨ ¬¬B) ∨ ¬¬B

Exchange
¬¬B ∨ (¬¬B ∨ ¬¬B)

Associativity
(¬¬B ∨ ¬¬B) ∨ ¬¬B

Contraction¬¬B ∨ ¬¬B

In which case its easy to lose track of “where the first ¬¬B went” unless one has

a very specific understanding of how to trace its path on a rule-by-rule basis. But

even prior to this, suppose we could trace its history. That is, in the formula:

(¬¬B ∨ ¬¬B) ∨ (¬¬B ∨ ¬¬B) ∨ ¬¬B

that shows up in the above proof tree, suppose we did know which ¬¬B’s are in

the history. How exactly do we implement the appropriate substitution?
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Our ultimate solution was to define a new data structure called a substitution

indicator, which consists of 0’s and 1’s in nested parentheses. These parentheses are

meant to match up with the parentheses of a given formula, so that each 0 or 1 will

match up with a subformula that is either atomic formula, negated, or quantified, but

never a disjunction of formulas.11 A “1” indicates that its corresponding subformula

is a substitution target, while a “0” indicates it should be left alone. For instance, in

the formula above, its substitution indicator should be of the form:

(b1 b2) (b3 b4) b5

where every bi ∈ {0, 1}. In particular (and as the reader can verify), in the above

proof, this formula’s substitution indicator will come out to:

(1 0) (1 0) 0

Then the resulting substitution would target the 1st and 3rd ¬¬B, but not the

2nd, 4th, or 5th. Our implementation of this new structure is quite simple:

Inductive subst ind : Type :=

| ind 0 : subst ind

| ind 1 : subst ind

| lor ind : subst ind -> subst ind -> subst ind.

11For formulas like ¬(C∨D) or ∀x(C∨D), we thankfully never have to “reach inside” the negations
or quantifiers in the substitutions we make, so these are always matched with a simple 0 or 1.
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Notation "(0)" := ind 0.

Notation "(1)" := ind 1.

Notation "( x y )" := (lor ind x y).

Once we have this defined, we have to make sure that in substitutions over entire

proof trees, we can track how the structure of a formula changes on a rule-by-rule

basis, and change our subst ind accordingly. In particular, in the proof tree example

above, we want to have:

...
(1 0) (1 0) 0

Contraction
(1 0) 0

...
0 1

Cut
(1 0) 1

Exchange
1 (1 0)

Associativity
(1 1) 0

Contraction
1 0

But we need more machinery to make this work. For one thing, even in just

plain formula substitution, we need the substitution indicator to actually match the

structure of our formula. So we define a boolean test for this:

Fixpoint subst ind fit (A : formula) (S : subst ind) : bool :=

match (A, S) with
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| (lor B C, lor ind S B S C) =>

subst ind fit B S B && subst ind fit C S C

| ( , lor ind ) => false

| (lor , ) => false

| ( , ) => true

end.

Then our formula substitution function formula sub ind will first call this, doing

nothing if there’s a mismatch,12 otherwise calling the function formula sub ind fit

which actually performs the substitution.

In the case of substitution over entire proofs, an immediate complication that

arises is when new formulas get introduced as we move up the proof tree. For instance,

in a case of Cut:

...
¬¬B ∨ A

...
¬A ∨ ¬¬B

Cut¬¬B ∨ ¬¬B

A might itself be a disjunction; indeed it may be of any structure possible. But

either way, we do not want to substitute for anything in A no matter what it is. This

motivates us to define:

12This will not actually happen in anything we are doing, but due to low-level technical details it
has to be handled.



125

Fixpoint non target (A : formula) : subst ind :=

match A with

| lor B C => lor ind (non target B) (non target C)

| => (0)

end.

Which takes a formula A, and returns the subst ind with the matching paren-

thetical structure whose binary values consist of all 0’s. That way, we can track the

substitution indicators in the previous Cut as follows:

...
1 (non target A)

...
0 0

Cut
1 0

The next 100 lines are simply proving some basic lemmas about this machinery,

mainly the conditions when a sub ind fits a given formula. After that, the remainder

of this section is devoted to proving part (1) or Lemma 6, namely that if PAω `

¬¬B ∨D, then PAω ` B ∨D.

First, our task is to define our double negation substitution operation. Over

formulas, this is just:

Definition dub neg sub formula (A E : formula) (S : subst ind) : formula :=

formula sub ind A (neg (neg E)) E S.

Over proof trees, the operation will be called dub neg sub ftree, and this will

first check to make sure the given sub ind matches the ftree formula, and if so,
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it will call dub neg sub ftree fit. This takes in a proof tree P, formula E, and

substitution indicator S, and replaces ¬¬E with E as appropriate in the entire proof

tree. At 118 lines, it is by far the longest definition in the file, and begins:

Fixpoint dub neg sub ftree fit

(P : ftree) (E : formula) (S : subst ind) : ftree :=

match P, S with

| node A, => P

| exchange ab A B P’, lor ind S B S A =>

exchange ab

(dub neg sub formula A E S A)

(dub neg sub formula B E S B)

(dub neg sub ftree fit P’ E (lor ind S A S B))

In the node case, A is an axiom and so is not going to be ¬¬E anyways. For

exchange ab, our ftree formula is A ∨ B, so our sub ind will be of the form S B

S A, so we simply switch these and pass them along up the proof tree. Our case of

Cut follows our discussion above:

| cut cad C A D Q1 Q2, lor ind S C S D =>

cut cad
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(dub neg sub formula C E S C)

A

(dub neg sub formula D E S D)

(dub neg sub ftree fit Q1 E (lor ind S C (non target A)))

(dub neg sub ftree fit Q2 E (lor ind (0) S D))

Some of the rules are actually simple, since their conclusion cannot have ¬¬E

anyways. For instance, the ω-Rule without a side formula is just:

| w rule a A n g, => P

On the other hand, with D it becomes rather interesting. The situation is:

...
A(0) ∨D

...
A(1) ∨D

...
A(2) ∨D . . .

ω-Rule
(∀xA(x)) ∨D

Where D can be anything, and we might want to perform substitutions in D and

its history. This means that the function g we have, which originally returned proofs

of A(n) ∨ D, needs to be modified so it returns proofs of this formula except with

dub neg sub formula applied to D. This results in:
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| w rule ad A D n g, lor ind S A S D =>

w rule ad

A

(dub neg sub formula D E S D)

n

(fun (n : nat) =>

dub neg sub ftree fit (g n) E (lor ind (non target A) S D))

The fun keyword is a classic functional programming construct which allows us

to define anonymous functions. In this case, our expression on the last two lines

defines the function which inputs n, and outputs the ftree that results from applying

our proof tree substitution to g(n) (and carrying around the substitution indicators

properly).

Lastly, the Negation rule is the important special case we discussed in chapter 2.

But here, deleting that node in the proof tree is straightforward:

| negation a A P’, =>

(match eq f A E, S with

| true, (1) => P’

| , => P

end)

Finally, after some more small lemmas, we prove the following:
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Lemma dub neg ftree formula’ : forall (P : ftree) (E : formula),

valid P ->

forall (S : subst ind),

subst ind fit (ftree formula P) S = true ->

ftree formula (dub neg sub ftree P E S) =

dub neg sub formula (ftree formula P) E S.

Which took 142 lines, our longest proof so far, due to the 19 cases we had to cover

when we inducted over ftree. Since the result holds trivially if the subst ind fit

assumption is false, we easily obtain from this:

Lemma dub neg ftree formula : forall (P : ftree) (E : formula),

valid P ->

forall (S : subst ind),

ftree formula (dub neg sub ftree P E S) =

dub neg sub formula (ftree formula P) E S.

Which we repeatedly use in the proof of the following:
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Lemma dub neg valid : forall (P : ftree) (E : formula),

closed E = true -> valid P ->

forall (S : subst ind),

subst ind fit (ftree formula P) S = true ->

valid (dub neg sub ftree P E S).

which goes on for 377 lines. This also inducts over 19 cases, but also more subcases

and subsubcases within those than the previous lemma. None of these repeated

themselves enough to be amenable to the basic automation tactics this author is

currently aware of, although there were certain patterns common enough that we can

imagine the existence of such tactics. But with that in place, we relatively easily

prove the final two theorems in the file:

Lemma double negation invertible a : forall (A : formula),

provable (neg (neg A)) -> provable A.

Lemma double negation invertible ad : forall (A D : formula),

provable (lor (neg (neg A)) D) -> provable (lor A D).

Remaining from section 4 of chapter 2, of course, are parts (2-3) of Lemma 6,

which involve making the formula substitutions [¬B/¬(B ∨ C)] and [B(n)/∀xB(x)]

instead of [B/¬¬B]. But as our proofs there indicate, there is nothing else different

about these procedures besides the inference rule where we have to delete a node in

the proof tree, and that was a trivial part of this implementation.

There is also Lemma 7 (Erasure Lemma), where we are actually erasing formulas



131

from a proof tree, and thus changing the structure of formulas as we go up. For

this we will have to change a few things in our proof template, particularly how the

substitution indicators will change on a rule-by-rule basis with these deletions, but we

would be surprised if writing these definitions took more than a few minutes thought.

Lastly, Lemmas 6 and 7 also make claims about ordinals and degrees, which we

do not have yet. However, there is no reason to believe our results in this section will

not go through when we attach these, and we expect this to be a tedious but routine

matter.

3.10 Cut-Elimination

There is no code here presently, but this is where we will do the actual Cut-

elimination argument from section 5 of chapter 2. At this point, we will have both the

invertibility lemmas from the previous section and the ordinal arithmetic machinery

from much earlier. Here, we will actually have to do nontrivial operations on the

ordinals attached to proof trees. While we don’t expect this to be difficult, we cannot

be completely certain on this point until we’ve actually decorated our proof trees and

seen how the ordinals interact.

Otherwise, the other arguments here involve nothing we have not already done.

Case (4) is the most involved, and will involve defining some new substitution pro-

cedures over proof trees, but nothing any harder than the previous section, and we

expect to be able to use that template without major roadblocks.

3.11 Dangerous Disjuncts
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Here is where we plan on making the high-level observations about the consistency

of PA. From chapter 2, this is section 2 at the beginning of the proof, as well

as Corollaries 3 and 4 at the very end. Here, we will have to define consistent,

dangerous disjunction, and dangerous rule. This will take a modest amount of

machinery we do not currently have, but we would claim that there is very little room

that part of our discussion for any particularly difficult proofs to hide.
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CHAPTER 4

CONCLUSION

Given our observations in Chapter 3, we estimate it will take about 2-3 more

months to finish implementing our Chapter 2 proof in Coq. This will end up being

substantially more than our current 5000 lines, mainly because there are many proofs

we will have to do that are similar to the proof tree transformations described

in section 3.9. These will all mostly follow the template of dub neg valid, but

unfortunately each of these will still require distinct (and tedious) proofs.

Besides this, the main task is to attach degrees and ordinals to our proof trees. As

we emphasized in chapter 3, we do not expect this to pose many significant challenges,

but this probably will result in our proof trees being more cumbersome when we have

to carry these decorations around in every computation. We are not sure exactly how

much extra tedium this will introduce, and this is our main uncertainty in the above

estimate.

However, there is a deeper problem with our implementation that the above does

not include: the proof-theoretic strength of the Calculus of Constructions is much

greater than PRA+ ε0. Hence, once this implementation as described is finished, we

cannot really claim to have verified:

PRA+ ε0 ` ConPA
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But instead we will have merely verified the (trivial and unsurprising) statement:

CoC ` ConPA

Of course, it is our claim that, even though we have had access to the powerful

machinery of CoC, we have not actually used it, and everything we have done can be

formalized in PRA+ ε0. And we believe that any diligent reader who scrolls through

our current 5000+ lines together with our 50+ page explanation of it in chapter 3 will

agree with us. Nevertheless, this is still a claim, a claim that we have not verified.

We have not thought deeply about how to address this. We do have tentative ideas,

which but these remarks should be taken to be preliminary and not well-researched:

1. In the worst-case scenario, we can use a different theorem prover besides Coq. In

particular, we would like something in the “logical framework”[23] style (such as

Isabelle) where the underlying theory is malleable, and consequently its proof-

theoretic strength flexible. We have not used any theorem prover besides Coq,

so we know little about how this works, but certainly we expect to be able to

figure this out in relatively short order. At that point, it is unclear how easily

we can transfer our code into this new prover, but certainly the concepts need

not be reinvented, and so this should take much less time than it took to get

to this point. We are also not certain if there are theorem provers in this style

that can support theories as weak as what we want; PRA is quite weak in the

context of mainstream mathematics outside of proof theory, and we know of

very little work that involved computer-verifying anything of proof theory.

2. We can build the system PRA + ε0 within Coq, much as we built PAω (and

expect to easily build PA), and then prove something akin to:
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Theorem main result : PRA e0 theorem Con PA.

Proof.

pose proof PRA e0 theorem Con PA omega.

...

The main drawback to this is, we would always be trying to “reason one level

down”, the difference in every theorem being:

Theorem theorem name : theorem statement.

Theorem theorem name : PRA e0 theorem theorem statement.

And our experience with PAω suggests that it is usually much more awkward

to prove PA omega theorem A than to prove A directly in Coq.

There is also a technical obstacle here in how to get PRA to represent proof

trees in PAω. In our discussion of the ω-Rule that began on page 101, we

pointed out that we can recast the rule to require a primitive recursive function

g such that:

PRA ` ∀n“g(n) is a PAω proof of A(n)”

The problem is, since PAω proofs are infinite, PRA cannot in general formulate

the statement in quotes. We thank Jeremy Avigad for pointing this out to us,

and suggesting continuous cut elimination as a potential workaround, but we

have not yet had the time to pursue this matter further.
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3. We noted above that, in the best-case scenario, we will simply verify that we

have not done anything beyond PRA + ε0 in all 5000+ lines. Suppose there

were a way to do this somehow. How would this work?

There would have to be some Coq function, call it RM, that automatically does

reverse mathematics: it can look at another Coq proof, tactic-by-tactic, and

scrutinize what axioms it is using. Of course, actual mathematicians in reverse

mathematics scrutinize theorems rather than specific proofs. That is to say,

if a theorem was proved with strong axioms, they will try to come up with

a new proof that uses weaker axioms, but proof discovery is a much harder

problem than what we wish to tackle with this hypothetical tool. But reverse

mathematicians also often spend time tediously scrutinizing existing proofs for

which axioms are used, and in our view this process can plausibly be automated

to a large degree.

And ultimately, the extent of this matters, and RM could only (feasibly) give a

relatively coarse upper bound on the axiomatic strength of a given proof. For

instance, if the proof uses induction on the natural numbers, this is easy to

detect, and it may well say that it is using the strength of PA with its induction

schema. But then, it can also determine the number of alternating quantifiers

in the formula inducted on, e.g. if its a Σ1 formula, then we can say we are

only using the power of IΣ1. But there is also an infinite hierarchy of theories

between Q and IΣ1, starting with IΣ0, and there is even an infinite hierarchy

of theories even between Q and I∆0 [42].

The fact is, it would not be infeasible to do this in a way that will satisfy every

proof theorist. However, it may be realistic to hard-code enough rules to roughly
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assess proof-theoretic strength in most proofs, and furthermore, to locate tactics

that apparently carry axiomatic heft. The example above illustrates how RM

might do this in many cases. Other “black-box” tactics like auto may have

to be actively dissected, but our impression is that these tend to do relatively

simple things that can be formalized in nearly trivial systems.

Such a tool may not exist currently for us to use, but the above remarks suggest

that it may be feasible to design one that can upper-bound the proof-theoretic

strength of most of our code in one fell swoop, leaving scattered other parts

which can be verified manually. In our estimation, this is very unlikely to be

worth making for this specific case, but it may be more broadly applicable, since

it could be applied to all existing Coq proofs, and in so doing perhaps yield a

wealth of (very coarse-grained) reverse math facts for free.

With that all being said, we think it is not premature to reflect on what this

implementation would mean once it is finished.

In developing his consistency proof, Gentzen heralded the beginning of ordinal

analysis, introduced the now ubiquitous proof-theoretic technique of cut-elimination,

and even reshaped our thinking of proof calculi in general, by developing the systems

of natural deduction and sequent calculus in the process. For these reasons, we believe

it is fair to consider his result the most significant in all proof theory, after Gödel’s

2nd incompleteness theorem.

The latter had not been mechanized in a theorem prover until it was done in

2013 in Isabelle, as described in [21, 22], and to our knowledge this is the most

comparable research project to ours. This was done by Larry Paulson, Isabelle’s

original developer, using the theory of hereditarily finite sets (HF) to make the Gödel
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encoding more natural, and thereby proving both incompleteness theorems (the 1st

had been done before in multiple provers). In future work we hope to study this–to

the extent our knowledge of Isabelle syntax allows–to get a better understanding of

how to arithmetize proof theory and represent proofs within proofs. According to

slides from one of Paulson’s presentations, the project took, “<9 months for the first

theorem, a further 4 for the second”,1 and according to one of the resulting papers,

“the machine proofs are fairly concise at under 12,400 lines for both theorems.”

Another related project, also in Isabelle, is a 2004 mechanized proof of Gödel’s

completeness theorem [19]. This is a simpler theorem, with the code being just over

2000 lines, but has cut-elimination of pure FOL as a corollary. Hence, our project will

technically not be the first mechanization of cut-elimination, but to our knowledge,

it is the first mechanization of the class of techniques that proof theorists associate

with the term “cut-elimination”.

Moreover, we believe that this is important, given the detail-oriented nature of

cut-elimination arguments. We have already noted how we failed to understand the

subtleties of the cut-elimination step in chapter 2, even after we lectured about it to a

seminar of logicians. But anecdotes aside, even many published cut-elimination argu-

ments have later been shown incorrect [18, 12, 6]. Given the nature of cut-elimination,

this is not surprising: to our understanding, there is no simple explanation “why it

works”; rather it works because that is how a large mess of details happen to work the

way they do (and this varies from system to sytem). The 4-color theorem, for instance,

seems to have a proof but no explanation, where by the latter we mean (roughly) a

small set of reasons that can help a human understand why a a theorem is true. In

this regard, the 4-color theorem has no rival, but we feel that cut-elimination has a

1https://www.cl.cam.ac.uk/~lp15/papers/Formath/Goedel-slides.pdf
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similar quality, and hence we cannot easily gain confidence in (particular uses of) it

without some tool that excels at checking/verifying details.

Gentzen’s result itself, of course, stood quite firmly on its own before our verifica-

tion efforts, having been independently pored over in detail by 3 generations of proof

theorists. Nevertheless, as we noted in section 1.11, the early consistency proofs,

however interesting, suffered from counterexamples. So there is something to be said,

however symbolically, for getting things right this time around.
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first-order Gödel logic. J. Logic Comput., 23(1):59–86, 2013.

[19] James Margetson and Tom Ridge. Completeness theorem. Archive of Formal

Proofs, September 2004. http://isa-afp.org/entries/Completeness.html,

Formal proof development.

[20] Elliott Mendelson. Introduction to mathematical logic. D. Van Nostrand Co.,

Inc., Princeton, N.J., 1964.

[21] Lawrence C. Paulson. A machine-assisted proof of Gödel’s incompleteness
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