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ABSTRACT

In the development of complex systems, such as user-centric privacy management

systems with multiple components and attributes, it is important to formalize the

process and develop mathematical models that can be utilized to automatically make

decisions on the information sharing actions of users. While valuable, the current

state-of-the-art models are mostly based on enterprise/organizational privacy per-

spectives and leave the main actor, i.e., the user, uninvolved or with limited ability

to control information sharing actions. These approaches cannot be applied to a

user-centric environment since user privacy policies are dynamic because they change

based on the information sharing context and environment. In this thesis, we focused

on developing the main core of the framework which is the privacy formalization and

verification engine that allows for the guided and flexible specification of users privacy

policies. The formalization and verification engine reasons about the users privacy

rules to find privacy violating information sharing actions and ensure that the privacy

norms are unambiguous and consistent. Utilizing these privacy norms the framework

monitors users information sharing actions to detect privacy violations. In cases that

an action is not compliant with the privacy norms, the framework utilizes a game

theoretic approach to generate a privacy decision model. This model enables the

users to proceed with the violating action without compromising their privacy by

suggesting an information negotiation protocol based on the information sensitivity,

users trust, and the reward of information sharing action.

iv
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CHAPTER 1

INTRODUCTION

A Privacy Bill of Rights was endorsed by the White House in 2012, a response to

an increasingly loud objection of citizens to the lack of privacy and fair information

practices guidelines [26]. The predicament was not only recognized by the US gov-

ernment, but also has been investigated and studied at the international stage and

has resulted in reports such as ”Rethinking personal data: Strengthening trust” by

the World Economic Forum (WEF) [50] and ”Recommendations for businesses and

policymakers” by the Federal Trade Commission (FTC) [16]. Despite all these efforts,

ubiquitous online monitoring of users’ activities [36] and scandalous data breaches,

e.g. Facebook and Cambridge Analytica, continue to haunt Online Social Network

(OSN) users [2, 15]. These privacy breaches are often due to lack of regulatory

standardization, thus, delegating it to users to manage what information should

be shared with whom and when. However, keeping track of this vast amount of

information sharing can be an overwhelming task [57]. Therefore, ample tools and

algorithms should be developed and provided to users to define and enforce their own

customized, unambiguous privacy policies and have control over how their information

is shared. The state-of-the-art research on privacy management mostly consists of:

access control languages [4, 41, 49], different privacy settings in applications, and

formal privacy policies [5, 14, 19, 45]. While valuable, the previous works are mostly
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based on enterprise/organizational privacy management and leave the main actor, i.e.,

the user, uninvolved or with limited ability to control information sharing actions. In

addition, uniform privacy regulations like HIPAA or a corporation’s privacy policies

are domain-specific and static with a little or no change over time. However, the user’s

privacy policies are dynamic and change based on the information sharing context

and environment. In addition to dynamicity, the privacy framework should provide

the user with customizable policies since the definition of privacy varies from user to

user based on their personality, cultural background, etc.

The proposed framework is considered as the first step toward our efforts to build

a user-centric privacy management system. In this paper, we focus on developing the

main core which is the privacy formalization and verification engine that allows for

the guided and flexible specification of users’ privacy intentions. The formalization

and verification engine performs formal reasoning about the user’s privacy rules to find

privacy violations and ensure that the privacy policy is unambiguous and consistent.

The underlying formalization utilizes two formal models, the user’s behavior model,

and the privacy-preserving behavior model. The user’s behavior model represents all

the user’s information transfers. The privacy verification is performed by mapping

each user’s behavior state to a state in the privacy-preserving model; a state with no

mapping indicates a privacy violation. As a proof of concept, the privacy formalization

and verification engine is implemented as a Java program 1 that detects privacy

violations as the user shares information in real-time. Since this framework is targeted

for smart devices, which usually have low memory and low processing power, its

performance was evaluated on both a PC and a Raspberry Pi model B to show the

practicality of our approach.

1https://github.com/wxyzabc/UserCentricPrivacy
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The future work will extend the current effort to include other layers, i.e. user

privacy requirement elicitation, identifying and categorizing information shared by

users, and establishing the relationship between a user and recipients.

1.1 Thesis Statement

• Design and Implementation of a users-centric privacy formalization and verifi-

cation engine that specifies the privacy norms from the user’s perspective.

• Describing run-time approaches in the privacy framework to detect privacy

disclosure events and inconsistent privacy norms.

• Upon creation of privacy verification framework, suggesting a privacy negotia-

tion protocol that enables users to negotiate private data with the third party

services.
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CHAPTER 2

RELATED WORKS

For over 120 years researchers have been studying privacy in different settings of

technological advances [53, 58]. The first privacy theory emerged when newspapers

started to publish personally intrusive articles and photographs [53]. This led to

seclusion and non-intrusion theory of privacy that defined the user’s privacy as “the

right to be left alone” [58] or being free from intrusion [23]. As new technologies were

introduced such as databases containing the personal information of the users [53]

the information-related privacy concerns [47] emerged. To address these concerns

researchers developed the control [59], limitation [21], and Restricted Access/Limited

Control (RACL) [40] theories to enable users to control and limit their privacy while

sharing information with others. In RACL theory, the user’s privacy is implied as

“a situation with regard to others [if] in that situation the individual. . . is protected

from intrusion, interference, and information access by others.” [54] The control,

limitation and RACL theories assume a rigid definition of privacy, while in the

current technological era the meaning of privacy changes based on the societal norms.

To address this issue, Nissenbaum proposed the Contextual Integrity (CI) theory of

privacy, [43] where privacy behaviors are affected by the context of the information

sharing environment.
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To implement the above theories, privacy policy languages were created based

on the theories of limitation, control and RACL. The early privacy languages were

either created by augmentation of access control languages or had the same structure

of specifying policies as a set of access roles and information categories in a struc-

tured format like Extensible Markup Language (XML). Some well-known examples of

such Languages are Platform for Privacy Preferences Project (P3P) [49], Enterprise

Privacy Authorization Language (EPAL) [4], eXtensible Access Control Markup

Language (XACML) [41], and Confab [25]. The early version of these languages

lacked temporal modalities that were solved in the extended versions of them such as

adding spatio-temporal attributes to XACML [33,44,55].

Another common formalism for privacy is based on transition systems where

the policies are specified as action and state of information sharing. Formalizing

privacy policies were based on the privacy-preserving and privacy-violating actions

in the system. Also, in this formalism, the temporal characteristic of privacy was

modeled using Linear Temporal Logic (LTL). Lu et al. [35] proposed a technique

that translated the privacy specification of web services to LTL formulas. Then a Pri-

vacy Interface Automata (PIA) was presented to transform the messaging structure

extracted from the web service business process execution language (WS-BPEL) into

an automaton, creating their privacy policy model. Krishnan et al. [32] also proposed

an approach to enforce privacy requirements using role-based access control and

LTL. The authors base their technique on behavior automata that model the system

behavior (gathering or using data) and access control automata, which enforce the

privacy policies. Kouzapas et al. [31], combined the π-calculus and privacy calculus

to verify privacy policies formally. Their framework has a type system to capture

privacy related notations and a language for expressing the privacy policies. Grace
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and Surridge [22] proposed a model of user-centric privacy with a labeled transition

system, which compares the cloud service privacy policies with the users’ privacy

preferences. However, while they provide customizable privacy preferences, they do

not consider environmental variables in their model. Although this group specifies

the privacy utilizing a formal semantic and considers the temporal modalities, the

action based modeling of the system is not scalable [5].

The scalability issue in action based systems were addressed by Aucher et al. [5]

that proposed to specify the privacy policies over the knowledge that the information

sharing action exposes to the recipients of the information. In this model, privacy

policy is specified as allowed and prohibited knowledge rather than actions, and

different actions can result in different knowledge exchange. They used dynamic

epistemic deontic logic (DEDL) as the foundation of their language. The authors

define information sharing conditions as permitted or forbidden knowledge and the

proposed language does not support temporal modalities. Also, Pardo et al. [45],

presented a formal language for privacy policy, using epistemic logic for social network

models. However, their formal privacy policy did not contain time features; later,

[30, 46] extended [45] to include time characteristics to the privacy language by

adding time interval and LTL which led to the creation of timed privacy frameworks

for social media. Both frameworks used a social network model and privacy policies

as properties for model checking [8] verification.

While the variety of implementations based on the theory of limitation, control

and RACL continues to grow, with the advent of CI, Barth et al. [9] have proposed

the formalization of CI theory of privacy. The authors have utilized first-order logic

and LTL to model the transfer of knowledge between agents during the information

sharing activities that are governed by Nissenbaum’s concept of norms. In this
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context, a positive norm is defined as a permission that allows information sharing

activity and a negative norm prevents the information sharing activity. Further,

implementation of CI was extended by DeYoung et al . [19] to include the notion of

purpose and self-reference based on their Privacy Least Fixed Point (LFP) framework.

The proposed framework resulted in the broader formalization of HIPAA and GLBA

privacy laws.

The above approaches assume that the privacy policies will be created in a manner

that are consistent with one another. However, user privacy is dynamic in nature and

as relationships and user’s requirements changes so should the privacy norms. These

changes can result in privacy policy conflicts. Therefore, Breaux et al. [14] proposed

Eddy that utilized CI. The goal of their research was to find privacy conflicts in

multi-stakeholder privacy policies. In order to achieve that goal, natural language

policies are translated to Description Logic (DL) [6] so it can be used in the formal

reasoning process to investigate whether the policies are consistent. Eddy and many

other frameworks that are based on CI theory are designed and developed based on

the organizational privacy requirements which are not compatible with individual

users privacy requirements. Table 2.1 summarizes the formal privacy studies that are

related to this research.

2.1 Privacy Policy Negotiation Protocol

Compared to the existing negotiation methods [29,48,52] that heavily involve users in

decision making or compromise user’s privacy for reaching an agreement on sharing

information, in the proposed method the user does not need to change the privacy

settings to share information that might be disclosing and the user is able to share
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Table 2.1: Relate works in formal privacy policies
Paper Formalism used Privacy Policy Domain Evaluation Method Evaluated Policy

[45] Epistemic logic Social Networks Model Checking Facebook, Twit-
ter

[30] Epistemic logic,
LTL

Social Networks Model Checking Facebook, Twit-
ter

[31] π-calculus, Pri-
vacy calculus

Legal definition
of privacy-
Enterprise

Model Checking Electronic
traffic pricing,
Speed-limit
enforcement

[22] Labeled Transi-
tion System

Cloud Services Model-driven
analysis over all
transitions

OPERANDO
project
trials-Health
care area

[5] dynamic
epistemic
deontic logic
(DEDL)

Enterprise- Web
services

Model Checking Authors
example of a
website policy

[19] least fix point
logic (LFP)

Enterprise Model Checking HIPAA-GLBA

[14] description logic
(DL)

Enterprise multi
stakeholder pri-
vacy policies

Logical conflict
detection
algorithm

Facebook-
Zynga- AOL
Advertising

[35] LTL,interface
automata

Web services Model Checking
(SPIN)

Online shopping
scenario

[32] Role base access
control and LTL

Enterprise Model Checking
(SAL symbolic
model checker)

Authors privacy
scenarios

[41] XML Access control
at the enterprise
level

Security
Monitors

-

[4] XML Access control
at the enterprise
level

Security
Monitors

-

[49] XML Internet users
and websites

Security
Monitors

-
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such information in a secure non disclosing manner. To make this goal happen we

need to use secure multi-party protocol as part of our privacy negotiation. The

secure multi-party protocols were designed as a solution to the problem of comparing

different values without revealing the values. The major methods in this area are:

Garbled Circuit (GC) This function representation was used in the first multi-

party protocol, by Yao [62, 63]. Yao introduces the multi-party protocol as a

solution to the millionaire problem in which there are two millionaire that want to

know who is the richest among them without disclosing the amount of their wealth.

As a solution, both parties inputs are given to a Garbled circuit that represents

computation function method, and the result of the circuit based on the inputs is the

answer to the comparison of the inputs.

Oblivious Transfer In oblivious transfer, the sender sends messages to the client

but doesn’t keep the order of the messages. Later Yao’s work was expanded by

Jakobsson and Yung [27] by defining the socialist millionaire problem in which the

two parties want to know if they have the same amount of wealth or not. Continuing

these studies different methods for secure multi-party computation was proposed. An

efficient way of oblivious transfer was proposed by Naor and Pinkas [42].

Homomorphic Encryption(HE) A form of encryption that is the result of a

specific type of computation on the encrypted data equals to the result of the data

as if the same computation was done on it and then the result was encrypted [56].

Set intersection Being able to share an integer privately enables us to share

datasets privately. Freedman et al. [20] introduced multi-party computation of
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set intersection known as PSI-CA using homomorphic encryption and Hamming

Distance. Later [12, 13] built their framework upon PSI-CA as a cryptography

foundation and used Jacquard distance and Mini-hash to compute the similarity of

two sets and employ the PSI-CA as the protocol.

Development in this area resulted in creating generic tools that perform secure

multi-party protocols like TASTY [24], Fairplay [38], and VIFF [17]. Table 2.2

presents some detail on each tool. Tasty was developed after Fairplay and VIFF and

it contains the functionalities of both tools. In addition, FairplayML can be used as

a function language in Tasty.

Table 2.2: Comparison of 3 generic tools for secure multi-party protocol
TASTY Fairplay VIFF

Function Description Boolean circuit, secure
multi-party computation
language, arithmetic circuit
based functions

Boolean circuit, se-
cure multi-party com-
putation language

arithmetic
circuit
based
functions

Protocol Implementation GC, HE GC HE
Tool Language Python Java Python

The mentioned mechanisms and libraries are not applicable to all information

types and comparisons. Also, they are computationally expensive which makes them

impractical solutions for every communication in a user-centric environment. Besides,

in order for users to be able to use such protocols both sides of the communication

have to implement and use the protocol which may not be the case with third party

services.
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CHAPTER 3

METHODOLOGY

This research extends the concept of contextual integrity [9] to provide mathe-

matical models and algorithms that enables the creation and management of privacy

norms for individual users. The extension includes the augmentation of environmental

variables, i.e. time. date, etc. as part of the privacy norms, while introducing an

abstraction and a partial relation over information attributes.

The proposed framework is based on two sets of formal models: 1- User’s Behavior

Model (UBM) that represents the information sharing activities in real-time, and 2-

Privacy-Preserving Model (PPM) that formally specifies the user’s privacy require-

ments. Finally, the privacy verification is performed by mapping each action in UBM

to its corresponding action in PPM and the actions without mapping are marked as

privacy-violating. The rest of this section explains the above concepts in details.

3.1 The User Behavior Model (UBM)

In this research, we draw from the formal definition of entities that construct Informa-

tion Communication to model user’s information sharing behavior with the recipients,

which are defined as agents [5, 9]. Hence, P is defined as a set of agents that are the

recipient of the information sent from the user. For example, Alice and Bob are

agents that the user shares information with. In addition, T is a set of attributes
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that defines the information shared with p ∈ P such as “home address” or “credit

card number”.

From the above definitions, a knowledge state κ is defined as a set of tuples of

the form (p, {t1, . . . , tk}), which describes the attributes ti ∈ T that is shared with an

agent p. For example (Alice, {home address, credit card number}) means that Alice

knows about the “home address” and “credit card number”. As a result, if agents

have no knowledge about the user then κ can be the empty set. Therefore, the absence

of tuples for p indicates that the agent p possesses no information about the user, i.e.,

the elements (p, ∅) /∈ κ. Thus, κ can be defined as follows where P is a set of agents

and P(T ) is the power set of attributes,

κ ⊆ ∅ ∪ (P × (P(T ) \ ∅))

For brevity we use t̃ to represent an element of P(T ), i.e., {t1, . . . , tk}.

In the proposed framework the user can perform two commands either to share or

to stop sharing information with an agent. Each share, sh, or stop sharing, st com-

mand results in a communication action which we define as a triple (a, p, t̃), where a ∈

{sh, st}. For example, when a user intends to share his/her home address with Alice,

the following communication action has to be performed: (sh,Alice, {home address}).

Thus, all possible communication actions can be defined as

Act = {sh, st} × P × (P(T ) \ ∅)

Based on the entities defined so far, the user’s behavior model could be defined

by a transition system where each state represents the information shared with the
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agents. Further, each transition is triggered by the communication action performed

by the user.

Definition 1 ( The User Behavior Model (UBM) ) Let UBM = (K,Act,→

, κ0) be a 4-tuple transition system where:

• K is a finite set of knowledge states κ.

• κ0 ∈ K is the initial state κ0 = ∅ (no initial disclosures).

• Act is a set of communication actions.

• δ : K × Act 7→ K is a transition function, transform the system state with

actions (a, p, t̃ ) as follows:

– δ(κ, (sh, p, t̃ )) = κ′, where κ′ = κ ∪ {(p, t̃ )},

– δ(κ, (st, p, t̃ )) = κ′, where κ′ = κ \ {(p, t̃′) | t̃ ∩ t̃′ 6= ∅}.

It is important to note that the proposed model differentiates between the sequen-

tially/simultaneously sharing of t1 and t2 with p. The sequential sharing results in

κ1 = {(p, {t1}), (p, {t2})} while the simultaneous sharing results in κ2 = {(p, {t1, t2})}.

In κ2 if the action (sh, p, {t1, t2}) occurs (p, {t1, t2}) is added to the new knowledge

set. Thus a state contains all three tuples κ3 = {(p, {t1}), (p, {t2}), (p, {t1, t2})}. On

the other hand, the performance of the stop command (st, p, t2) on κ3 will result in

deletion of all the information attributes that contained t2 resulting in κ′ = {(p, {t1})}.

For the sequential information sharing model, we consider a scenario where a user

first shares his “GPS” information with Alice, second shares his “home address” with

her, and third shares his billing information which is a combination of {home address,

credit card number} with Alice. If the commutation action of stop sharing “home
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address” with Alice occurs then all the tuples that contain “home address” like billing

information will be removed from the state.

3.2 Privacy-Preserving Model (PPM)

The Privacy-Preserving Model is designed to manage user’s information sharing ac-

tivities at run-time. Therefore, based on the proposed UBM in the previous section,

PPM model is required to govern the transitions between knowledge states according

to the norms that the user specifies.

Since in a user-centric approach it is inefficient to define a separate privacy norm for

each ρ (role) and τ (attribute type), the proposed model abstracts these two elements.

These abstractions allow to have the same information disclosure norms for a set of

agents or disclose a collection of attributes in a similar manner. For example, the

user could share her current location with all transportation applications, or the user

could share her credit and debit cards’ numbers with her close family members. The

following section describes the structure of the abstractions:

3.2.1 Abstractions and Conditions

Let T be a set of attribute types and let AT be a partial map AT : P(T ) ⇀ T . That

is, AT maps t̃ to an attribute type τ ∈ T . We can impose a partial order � on τ

based on the subset relation between AT ’s domain elements t̃. We say that τ1 � τ2 if

there are exist t̃1 and t̃2 such that AT (t̃1) = τ1, AT (t̃2) = τ2 and t̃1 ⊆ t̃2.

Figure 3.1, and 3.2 demonstrate an example of this hierarchy structure and some

attributes and attribute types in that structure. The dashed lines represent the
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mapping between attributes and their type and the solid lines depict the order relation

between the attribute and types.

Figure 3.1: An example of the partial order of the attributes and attribute types where
the top layer show the attribute types and the bottom layer show the information
themselves.

Figure 3.2: t1 =GPS information, t2 = home address, and t3 = credit card number.
The middle layer represents the information that are used together for example the
credit card number and the home address go together for billing information that is
a considered as financial type.

Similar to [9] that defines the concept of role abstraction, we define a set of agent

roles R that can be assigned to an agent p. An agent can be assigned to multiple roles

and roles are partially ordered based on their implication relation of their semantics.

In this framework, the partial order ≤ on R is predefined as an input to the model,

such that the role, ρ1, “close friend” implies the role, ρ2, “friend”, i.e., ρ2 ≤ ρ1. The
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order between roles implies the amount of relative privacy restriction of them where

ρ2 ≤ ρ1 means that ρ2 is more restrictive compared to ρ1.

In this approach each agent must be associated with at least one role. Thus, we

define the agent role as a function AR that maps an agent to a nonempty set of

roles: AR : P 7→ P(R) \ ∅. When role ρ is assigned to an agent p, then the system

adds additional roles that related to ρ through ≤. In other words, the set of roles

for p should be closed under ≤. For example, if the agent p is assigned the role

“close friend” ρ1, then the system adds “friend” role ρ2 to p as well, resulting in

AR(p) = {ρ1, ρ2}.

For brevity to show the roles and information attributes that have a common child

but are not in a partial relation with each other we use the < child > notation as

follows:

1. ρ1 < p > ρ2 = ∃p ∈ P : ρ1 ∈ AR(p) ∧ ρ2 ∈ AR(p) ∧ ρ1���ρ2 ∧ ρ2���ρ1

2. τ1 < t > τ2 = ∃t̃ ∈ P(T ) : AT (t̃) � τ1 ∧ AT (t̃) � τ2 ∧ τ1���τ2 ∧ τ2���τ1

Using these abstractions the user can define access permissions A as a subset of

R× T such that if an element (ρ, τ) ∈ A then all agents with role ρ are allowed to

access attributes with type τ .

The above abstractions of roles and information attributes provide a better flexibility

in defining privacy norms. However, this definition is not complete yet, as it does

not take into consideration the environmental conditions where the information is

disclosed to the recipients and has no sensitivity over the patterns and sequence of

the information disclosure. Imagine, the user is interested in restricting access of

agents in ρ role to its attribute type τ to a particular time interval during a work

day. Moreover, the user might allow only up to two (ρ, τ) accesses per such interval.
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In order to overcome this limitation, our formalism introduces the logic for environ-

mental conditions ψ and temporal conditions ϕ to the definition of the privacy norm.

In this model, environmental conditions are represented a set of variables V , where

each v ∈ V describes the state of an environment such as system’s time, day and other

attributes. Then, V is partitioned into subsets Vi by variables’ type like integers,

boolean, reals and so on. It is assumed that each type has a set of predicates Predi

and set of syntax rules to construct such predicates from the variables and non-logical

symbols, e.g., constants. Then an environmental condition (ψ) is expressed as a

propositional logic over those predicates and variables, i.e., v ∈ Vi, predi ∈ Predi as

follows:

ψ ::= ¬ψ | ψ ∧ ψ | ψ ∨ ψ | predi,∀Vi ∈ V

While Predi could be produced by an arbitrary complex yet decidable theory for

the data type such as Presburger arithmetic for integers, we argue that less complex

theories could be adequate [3]. For example, for integer environmental variables VI

and boolean VB environmental variables the following grammar could be sufficient to

express basic and easily comprehensible predicates predi:

predI ::= v ≤ n | v < n | v == n, v ∈ VI , n ∈ Z

predB ::= v | true | false, v ∈ VB

The next entity that is defined as part of the privacy norm is the temporal condition

ϕ. In order to keep the conditions flexible and generic, we utilize temporal logic

expressions to describe temporal features of the privacy requirements. While Linear
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Temporal Logic (LTL) is very popular in expressing broad range of liveness conditions,

they are difficult to read and understand. Utilizing LTL requires a strong mathemat-

ical background, and is cumbersome for an average system modeler to implement.

Further, to define temporal conditions in privacy norm, a simplified regular expression

will suffice, e.g the precedence of two communication actions or a constant occurrence

a communication action can be sufficiently expressed by the concatenation and Kleen

star operations over A (the alphabet):

ϕ, φ ::= (ρ, τ) | ϕ · φ | ϕ∗, (ρ, τ) ∈ A

The Φ notation is used to represent a set of ϕ, in which each ϕ for a given role ρ, can

be expressed as a regular expression that allows sharing attributes of type τ2 after

the sharing of attributes of type τ2 as follows:

ϕ = A∗1 · ((ρ, τ1) · A∗1 · (ρ, τ2))∗ · A∗1

Here A1 = A\{(ρ, τ1), (ρ, τ2)} In addition, the repetition of an event up to a constant

k times could be expressed with the following formula, where the power operator

describes the number of times a regular expression should be repeated.

ϕ = A∗2((ρ, τ) · A∗2)k

where A2 = A \ {(ρ, τ)}.

Now that we have defined each element in the privacy norm, the next section describes

the formal specification of the privacy norm and techniques to ensure the consistency

of the privacy requirements.
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3.2.2 Norms and their Consistency

In this research, norms are the formal definition of user’s privacy requirements that

are used to govern user’s information sharing behavior. In order to minimize the

risk of unwanted information sharing, we assume that if an action is not explicitly

defined as part of the user’s privacy policies then it is forbidden. Therefore, the only

type of norms that the user defines are positive norms, i.e., allowed norms. In this

context norm is formulated as a relation between access permission, environmental,

and temporal conditions. Hence, norm is represented as a tuple ((ρ, τ), ψ, ϕ, ), where

(ρ, τ) ∈ A and ψ ∈ Ψ, ϕ ∈ Φ. The first element of the tuple represents the privacy

policy, while the second and the third elements of the tuple describe the conditions

under which the transfer of information should occur. The set of such is referred to

as a set of norms N .

The set N has the uniqueness property, that is, only one tuple with the given (ρ, τ)

values is allowed in the set. However, the uniqueness property is not sufficient to

ensure the consistency of the privacy norms due to the partial relations that exist

among the roles and attribute types. Thus, in order to utilize N for privacy manage-

ment and detection of information disclosure, a consistency check is required. Table

3.1 demonstrates a detailed explanation with examples of the different possible cases

of role and attributes types that two norms can have during consistency checking.

The row headers show the roles and the column headers show the attribute types.

The cells in gray are the example of their above conditions.
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Table 3.1: The possible consistency cases based on the roles and information attribute
types relations and the constrains over the conditions that result in consistency.
The notations Fr=Friends, BFr=Best Friends, CoWr=Co-Workers, Fml=Family,
Loc=Location, Fin=Finance, Hlth=Health, and Bank=Banking information

1 2 3 4 5
τ1 < τ2 τ2 < τ1 τ1 = τ2 τ1 < e > τ2 τ1 < none > τ2
Loc < Fin Loc < Fin Loc = Loc F in < Loc > HLth Loc < none > Bank

A ρ1 < ρ2
c2 ⇔ c1
L(s1) = L(s2)

c2 =⇒ c1
L(s1) ⊆ L(s2)

c2 =⇒ c1
L(s1) ⊆ L(s2)

c2 =⇒ c1
L(s1) ⊆ L(s2)

True

B Fr < BFr Share Loc with Fr
when c1 an s1, share
Fin with BFr when c2
and s2. Fin should be
guarded the same or
better, c1 =⇒ c2,
L(s2) ⊆ L(s1). BFr
can have less restric-
tive access, c2 =⇒
c1, L(s1) ⊆ L(s2)

Share Fin with Fr
when c1 and s1, share
Loc with BFr when c2
and s2. Fin should be
guarded the same or
better, c2 =⇒ c1,
L(s1) ⊆ L(s2). BFr
can have less restric-
tive access c2 =⇒ c1,
L(s1) ⊆ L(s2)

Share Loc with Fr
when c1 and s1, sare
Loc with Bfr when
c2 and s2. Loc
should be guarded at
least the same way,
c1 ⇔ c2, L(s1) =
L(s2). BFr can have
less restrictive condi-
tions, c2 =⇒ c1,
L(s1) ⊆ L(s2)

Share Fin with Fr and
Health with BFr (or
vice versa) which can
share Loc. Loc should
be guarded at least
the same way c1 ⇔ c2,
L(s1) = L(s2). BFr
can have less restric-
tive condition, c2 =⇒
c1, L(s1) ⊆ L(s2)

Since Loc and Bank
are incomparable then
those norms should al-
ways be consistent.

C ρ1 = ρ2
c1 =⇒ c2
L(s2) ⊆ L(s1)

c2 =⇒ c1
L(s1) ⊆ L(s2)

False
c2 ⇔ c1
L(s1) = L(s2)

True

D Fr = Fr Share Loc with Fr
when c1 and s1, share
Fin with Fr when c1
and s2. Fin should be
guarded the same or
better way c1 =⇒ c2,
L(s2) ⊆ L(s1). Fr
should have at least
the same access, c1 ⇔
c2, L(s1) = L(s2).

Share Fin with Fr
when c1 and s1, share
Loc with Frien when
c2 and s1. Fin should
be guarded the same
or better way, c2 =⇒
c1, L(s1) ⊆ L(s2). Fr
should have at least
the same access c1 ⇔
c2, L(s1) = L(s2)

There should be only
one rule for the same
role and attribute
type - the uniqueness
property

Share Fin with Fr
when c1 and s1, share
Health with Fr when
c2 and s2, which can
share the same at-
tribute Loc. Loc
should be guarded at
least the same way
c1 ⇔ c2, L(s1) =
L(s2). Fr should have
the same access c1 ⇔
c2, L(s1) = L(s2)

Since Loc and Bank
are incomparable then
those norms should al-
ways be consistent.

E ρ1 < p > ρ2
c1 =⇒ c2
L(s2) ⊆ L(s1)

c2 =⇒ c1
L(s1) ⊆ L(s2)

c2 ⇔ c1
L(s1) = L(s2)

c2 ⇔ c1
L(s1) = L(s2)

True

F Fr Anna CoWr Share Loc with Fr
when c1 and s1, share
Fin with CoWr when
c2 and s2, which have
Anna as a common
agent. Fin should be
guarded the same or
better way c1 =⇒
c2, L(s2) ⊆ L(s1).
Fr and CoWrk should
have at least the same
access to Loc c1 ⇔ c2,
L(s2) = L(s1), since
they share an agent.

Share Fin with Fr
when c1 and s1, share
Loc with CoWrk
when c2 and s2, which
have Anna a common
agent. Fin should
be guarded better
than Loc c2 =⇒ c1,
L(s1) ⊆ L(s2). Fr
and CoWrk should
have at least the same
access to Loc c2 ⇔ c1,
L(s1) = L(s2), since
they share an agent.

Share Loc with Fr
when c1 and s1, share
Loc with CoWrk,
when c1 and s2,
which have Anna as a
common agent. Loc
should be guarded the
same way c1 ⇔ c2,
L(s1) = L(s2). Fr and
Cowrk should have
the least the same
access to Loc, c1 ⇔ c2,
L(s1) = L(s2), since
they share an agent.

Share Fin with Fr
when c1 and s1, share
Health with CoWrk
when c2 and s2, which
have Anna as a com-
mon agent. Loc
should be guarded at
least the same way
c1 ⇔ c2, L(s1) =
L(s2). Fr and CoWrk
should have the same
access to Loc c1 ⇔ c2,
L(s1) = L(s2), since
they share an agent.

Since Loc and Bank
are incomparable then
those norms should al-
ways be consistent.

G ρ1 < none > ρ2 True True True True True
H Fr, none, Fml Since Fr and Fml

are incomparable then
those norms should al-
ways be consistent.

Since Fr and Fml
are incomparable then
those norms should al-
ways be consistent.

Since Fr and Fml
are incomparable then
those norms should al-
ways be consistent.

Since Fr and Fml
are incomparable then
those norms should al-
ways be consistent.

Since Fr and Fml
are incomparable then
those norms should al-
ways be consistent.
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Definition 2 (Trivial Consistent Norms ) Two norms n1 = ((ρ1, τ1), ψ1, ϕ1)

and n2 = ((ρ2, τ2), ψ2, ϕ2) are consistent when one of the four consistency conditions

holds:

C1: @p ∈ P : ρ1 ∈ AR(p) ∧ ρ2 ∈ AR(p), that is, the norms defined for the roles

with no common agents. (Table 3.1 row G)

C2: @t̃ ∈ P(T ) : AT (t̃) � τ1 ∧ AT (t̃) � τ2, that is, norms are defined for attribute

types with no common information attribute.(Table 3.1 column 5)

Before defining the last two conditions of consistency, we propose some limitations

over the access permission and sequencing conditions of the privacy norms. Since

both of these elements are defined for a specific roles and attribute type parameters,

the first restriction is defined over the roles so that the same role should be used

in the access permission and the sequencing condition of a norm. In the absence of

this restriction, it is possible to create two norms that have a consistent sequencing

condition but inconsistent access permission or vice versa. In addition, this restriction

enforces a constant role across the regular expression of the sequencing condition that

reduces the regular expression’s complexity by eliminating the need for a homomor-

phic function over the roles. The second restriction is defined over the attribute

types, ∀τ ∈ ϕ τi���τj 0 ≤ i, j ≤ n (An attribute type and its children are not

allowed to exist in the same regular expression). This restriction ensures that all the

communication actions are inspected not only for the super-type τ , that is explicitly

inferred from the communication action, but also for all the children of τ that will

be implicitly revealed by that communication action. Without this restriction, it is



22

possible to create a regular expression that allows for sharing an attribute type and

its children consecutively while it is not taking into the account that the children are

shared more than once.

Further, the comparisons of the access permission component of the norms are con-

ducted based on the partial relations that exists over the roles and attribute types. In

addition, the comparison between the environmental conditions is implemented based

on the Boolean algebra. To examine the sequencing conditions for consistency, we

need to compare the regular expressions. the comparison of two regular expressions is

not possible if they do not share the same alphabet. Therefore, we need to introduce

a mechanism that projects the language of one regular expression to the other one

and brings the regular expressions to a common alphabet.

Definition 3 ( Projection of the Language ) Let ϕ1 and ϕ2 have the following

symbols to be tracked:

ϕ1 = {(ρ, τ1), (ρ, τ2), . . . , (ρ, τk)}

ϕ2 = {(ρ′, τ ′1), (ρ′, τ ′2), . . . , (ρ′, τ ′n)}

We define ϕ̃1 = L↓(ϕ1)ϕ2 as the projection of ϕ1 on ϕ2 where L↓ receives a regular

expression and maps it to another one. The regular expression consistency checking

process is described in Algorithm 1.

The process of mapping is described Line 2 and 3 of Algorithm 1 for ϕ1, ϕ1 which

calls a function described in Algorithm 3. To achieve a similar language to compare

ϕ1, ϕ2 we traverse over each one. For each attribute type we check for its children or

another attribute type that has a common child in the other regular expression and

add the children or the common child to a set in a map. After traversing over all the
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Algorithm 1: Substituting attribute types to reach a same alphabet

Input: Two regular expressions in form of ϕ1 = {(ρ, τ1), (ρ, τ2), . . . , (ρ, τk)}
and ϕ2 = {(ρ′, τ ′1), (ρ′, τ ′2), . . . , (ρ′, τ ′n)}

Output: True if ϕ1 is consistent with ϕ2 and False otherwise
1 function regexConsistencyCheck(ϕ1, ϕ2)
2 map1=findReducedAlphabet(ϕ1,ϕ2);
3 map2=findReducedAlphabet(ϕ2,ϕ1);
4 ϕ̃1=regexSubstitution(map1,ϕ1,k);
5 ϕ̃2=regexSubstitution(map2,ϕ2,n);
6 if ρ > ρ′ then
7 if L(ϕ̃2) ⊆ L(ϕ̃1) then
8 return True;
9 else

10 return False;

11 else if ρ < ρ′ then
12 if L(ϕ̃1) ⊆ L(ϕ̃2) then
13 return True;
14 else
15 return False;

16 else if ρ1 ∩ ρ′1 6= ∅ or ρ == ρ′ then
17 if L(ϕ̃1) == L(ϕ̃2) then
18 return True;
19 else
20 return False;

21 else
22 return True;
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Algorithm 2: Algorithm that create the same alphabet for two regular expres-
sions

Input: Two regular expressions in form of ϕ1 = {(ρ, τ1), (ρ, τ2), . . . , (ρ, τk)}
and ϕ2 = {(ρ′, τ ′1), (ρ′, τ ′2), . . . , (ρ′, τ ′n)}

Output: A map of the ϕ1 children that exist in ϕ2

1 function findReducedAlphabet(ϕ1, ϕ2)
2 forall τi ∈ ϕ1 do
3 map1={};// A map that hold the attribute types and it

possible substitutions

4 forall τ ′j ∈ ϕ2 do
5 if τ ′j.isChildOf(τi) then
6 map1.add(τi, τ

′
j); // add τ ′j to the set of possible

mappings for τi
7 else if hasCommonChild(τi, τ

′
i) then

8 map1.add(τi, getCommonChildren(τi, τ
′
j))

9 return map1

Algorithm 3: Substitution algorithms for a regular expression that reduces the
language based on the mapping of the uncommon alphabet.

Input: A regular expression ϕ,map of substitutions and the |ϕ|
Output: The substituted regular expressions ϕ̃

1 function regexSubstitution(map, ϕ, size)
2 for i from 1 to size do
3 if !map.get(τi).isEmpty() then
4 psb=allPossibleSubs(map1.get(τi));
5 ϕ̃1=ϕ1.subForRegex(τi,psb);

6 return ϕ̃;



25

attribute types in both ϕ1, ϕ2 the roles in them decide the consistency of two regular

expression.

In line 4 and 5 of Algorithm 1 calls a function from Algorithm 3 to substitute the

uncommon parts of the regular expressions by the common alphabet retrieved form

Algorithm 2. In Algorithm 3 the function “allPossibleSubs” generate all the possible

substitution for attribute type τi. The substitution for τi for reaching a common

language is a disjunctive regular expression. The disjunctive regular expression is

generated as follows. Let sub be a set of all τi children and common children that

has been found in the other regular expression. We define s̃ub = P(sub) \ ∅. For

each s ∈ s̃ub we generate all the permutations of elements of s and add them to

the regular expression with disjunction operator. For example, sub = {τa, τb} then

s̃ub = {{τa}, {τa}, {τa, τb}} and the result of the regular expression that is used for

substitution is τa|τb|τaτb|τbτa. After reaching a same alphabet the consistency of the

regular expressions can be decides based on their roles.

C3: ρ1 < ρ2 and either τ1 � τ2 or τ2 � τ1 then ψ1 =⇒ ψ2 ∧L↓(ϕ1)ϕ2 ⊆ L↓(ϕ2)ϕ1,

that is, n2 is for a specialized role ρ2 of ρ1 and its attribute type τ2 encompasses τ1 or

vise verse then environmental condition of ψ2 should be the same or less restrictive

than of ψ1 and its regular expression ϕ2 should describe the same or less restricted

projected language than of ϕ1.(Table 3.1 row A,C and columns 1,2,3)

C4: ρ1 < p > ρ2 or τ1 < t > τ2 then ψ1 ⇔ ψ2 ∧ L↓(ϕ1)ϕ2 = L↓(ϕ2)ϕ1.

If there is at least one agent that can be assigned to both unrelated roles or an

information attribute that share a common child then the environmental conditions
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and the projected language of the regular expressions must be equivalent.(Table 3.1

row E and columns 4)

3.2.3 Policy Compliance Verification

The set of norm N defines a Privacy-Preserving Model, (PBM) which describes

compliant information communication actions at the level of attribute type and agent

role abstraction levels. The knowledge states of PBM are consists of tuples (ρ, τ),

which indicate that at least one agent with ρ role know about attribute represented

by τ . The transitions represent the abstracted communication actions Âct from

{sh, st} ×R× T guarded by conditions Φ and Ψ defined in N .

Definition 4 ( Privacy-Preserving Model) is a set of observers over norms N

where each observer is a tuple of (K̂, Âct, c,m) representing ni = ((ρ, τ), ψ, ϕ) ∈ N

where K̂ = {P(A)}, c = ψ is the pre-condition and m is a monitor representing ϕ

regular expression. The transition set Âct members are given to Monitor m to update

the state of the monitor.

3.2.4 Verification

To ensure that the user’s behavior is compliant with the privacy policy, we need to

map the current state and the next state of user’s behavior model to the privacy

preserving behavior model.

Definition 5 ( Mapping from user behavior to privacy preserving do-

main) Let MS : K → K̂ be a surjective function, where MS(p, t̂) = {(ρ, τ)|ρ =

AR(p), τ = AT (t̃)} and MT : Act→ Âct where:

MT (a, p, t) = {(ρ, τ)|ρ ∈ AR(p) ∧ τ ∈ AT (t)} if a = sh
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In the case that there is no mapping for the next state in the PPM, the communi-

cation action that triggered that transition will be reported to the user as disclosing.

Definition 6 ( Valid user behavior) Let user behavior system be at state k that

maps to k̂ in the privacy preserving behavior model and the action (sh, p, t) happens.

If MS(p, t) exists, and the environmental variables satisfy ψ and m(MT (a, p, t)) is

in the final state then the communication action Act is valid.

The goal of privacy rules is to prevent the user from entering into a privacy

violating states. After reporting a privacy-violating action the user can ignore it

and the framework allow the information sharing to happen. All this communication

happens through the user interface of the framework. The next section provides

implementation details of the framework’s components.

3.3 Negotiation Protocols in Case of Invalid Behavior

This framework reports the violating actions to the user and allows the user to decide

whether he wants to proceed with the action or not. However, if the users decide

to continue with the action, they can compromise their privacy. As a solution,

the proposed framework creates a decision model for invalid actions that enables

the user to share the information without compromising the privacy. To create the

decision model we define the information sharing as a game form Γ(N, (Σi)i∈N) where

N = {1, · · · , n} is a finite number of recipient agents and Σi is a set privacy decisions

that they can play [11]. We can compute ui for each strategy to show the utility of

each player after information sharing. The utility function u shows how satisfied the

users is with the communication action. The utility function defined in this paper

depends on four parameters that according to recent literature are contributing factors
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to the users privacy decisions [37, 60, 61]. The first parameter is the privacy policies.

The privacy policies dictate the amount of the information that the user is willing

to share with the other agents which brings us to the second and third parameters

the “information sensitivity” and “trust”. For each information attribute the user

can assign a sensitivity value. Also, for each recipient agent a trust value is assigned.

These three parameters capture the nature of access permission; However, recent

studies [34,37] show that there is another contributing factor known as “reward” that

makes privacy decisions more than an access control mechanism. The following section

describes each one these parameters in detail and then creates a utility function upon

them.

The u < 0 is an indication of privacy violating action due to lack of an access

permission and u = 0 is an special case that the access permission exists but the

privacy conditions are not satisfied. In such cases when the u ≤ 0 and the user

also requires a result from the service then there are two options available. The first

option is to ignore the privacy norms and share the information. Although convenient,

ignoring the privacy norms can have serious consequences. The second option is to use

different privacy mechanisms based on the parameters of the utility function. These

mechanisms allow the users to share information without jeopardising their privacy.

3.3.1 Information Sensitivity

The users assign different values to different information attributes. Although, these

value assignments for users do not have a metric and they are subjective, when

the information attribute value is transformed into a measurable metric for example

expressing the values in dollar amount, users become more privacy cautious [51,

61]. Since privacy preferences vary from person to person, the relative sensitivity of
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information attributes is also different for different users. For the purposes of this

research, we assume that these values are learned through some mechanism from the

user behaviour and are available to our decision model.

We define the information sensitivity s for each information attribute that is not

a combined attribute. Then, for each combined attribute we sum-up the sensitivity

of its children and add a sensitivity of s′ to it. This way an information attribute

with more children is considered more sensitive since it is more revealing.

Information sensitivity s = (pr, fd) consists of parameters pr as information

attributes permanency and fd as the frequency of information sharing to the diversity

of the recipients. A more permanent information attribute has greater sensitivity

compared to the less permanent attributes. For example, the user’s birthday is a

permanent information attribute, however, the current GPS values of the user’s device

are less permanent. Therefore, we define pr as the permanency factor of information

attribute t. The permanency factor for a combined information attribute equals to

the permanency factor of its child with the greatest permanency factor.

Another good indicator of information sensitivity is the frequency that an infor-

mation attribute is shared [51]. The information attributes that are shared more

frequently can be considered as less sensitive. However, the frequency alone is not

reliable enough. In order to have a better sense of how sensitive information is to the

user, we need to look at the ratio of frequency to the recipient diversity. This way, if a

user is sharing an information attribute frequently with a large number of recipients,

he is considering this information attribute less sensitive compared to an information

attribute that is shared frequently with only a few. For example, the users that

have a habit of adding location tags to their posts on social media can be considered

as users that assign a low sensitivity value to their current location. Although the
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frequency to recipient diversity ratio can be used to separate the dependency between

the information sensitivity and trust parameters, it is not sufficient for expressing the

user relationship with the recipients. Hence, we need to define trust as a separate

factor.

3.3.2 Trust

Studies show that trust and information sensitivity have a direct relationship with

each other [34,60]. Users tend to share more sensitive information with the recipients

that are more trusted. We define the amount of trustworthiness of a recipient with

the variable tr ∈ [0, 1] where 1 represents total trust in the recipient and 0 indicates

an untrustworthy recipient. Trust is computed as a function of information sensitivity

s, frequency f , and duration d of the sharing. We assign trust values to the recipient

agents and based on the agents trust-score, agents are clustered into different trust

roles. Therefore, a role that is more specialized has a higher score compared to its

child roles. In this setting, the roles are the boundaries of trust in addition to their

societal semantics. Thus, if an agent belongs to a specific role but the trust score is

not in the range of the roles trust score then the agent has to be moved to a role that

matches its trust-score. This way, we can capture the dynamic relationship between

the user and the recipient agents as their relationship gets stronger or fades away.

The formal definition of trust is as follows:

tr(zi) =
ezi∑
j e

zj

where zi is the sum of s, f, d of each communication action with the agent pi
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3.3.3 Reward

The reward is a quantifier on how rewarding the information sharing is to the user.

A simple method of computing the reward is subtracting the profit gained by infor-

mation sharing from the cost of disclosure. The literature that exists in this area

considers two categories of rewards, the monetary reward, and the none monetary

reward. Also, the literature categorizes reward as with and without incentive. An

example of information sharing with monetary reward can be a mobile application

that offers the users an ad-free application only if the user shares the current location

with the application. Also, an example of a non-momentary reward Can be a Face-

book account that collects users data instead of providing free services that connect

users on the application platform. Although it might seem that Facebook is providing

free services to the users, they are actually paying Facebook by sharing their data

that is used for the targeted advertisements to the account holders. The reward of

information sharing is not always getting a service, it can also be by making a complex

process more convenient. Computing the amount of reward for each communication

action is a hard task; however, for the purposes of this research, we are assuming

that there is a mechanism that can be used to return the reward of a communication

action.

3.3.4 Privacy Game

We are assuming that each privacy game has one player who is the user and the other

player is the information recipient. The recipient of the information can be a service,

another human or an application. The users goal is to keep their information as

private as they can and the opponent player goal is to get most information possible.
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We can categorize the opponent players based on their game strategies into different

groups. The rest of this section will describe the different possible player.

Third Party Services Strategies

Take it or leave it: These are the players that they only have one game strategy.

Most services and applications fall into this category. The “take it or leave it” players

only provide services to the user if the user provides them with all the information

they need. Therefore, if the information request from these services be against the

users’ policies the utility function of the users u(s, t, r) < 0 for all the strategies and

negotiation is not possible with this type of players.

Greedy Players: The greedy players are the developed version of “Take It or

Leave It” players. They have a minimum requirements for information sharing but

they always ask for more than the minimum they need and they don’t reveal that

providing the rest of the information is optional. However, when the user denies them

the optional information they still provide services. The applications that request

access permissions but still provide complete or partial services when the permission

access is denied are greedy players. The Greedy players number of strategies is based

on the number of extra information they need.

Let Sg = {s0, · · · , sk} be all the strategies that a greedy player has. The sk being

the first move of the greedy player where it asks for all the information(the minimum

requirement plus the extra ones) and s0 be the strategy that it only asks for the

required information. Therefore, it is possible to negotiate with them.
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Luring Players: The Luring players are the players that provide an additional

reward for sharing information with them. They can be considered as greedy players

but they try to increase the users utility function by providing rewards for each extra

information they want. An example of luring players are the applications that remove

the advertisements if the user shares his or her location with them.

3.3.5 User’s Game Strategy

For each privacy game, we assume that vector V ecp =< t0, · · · , tk > is all the

information attributes that opponent agent p requires to perform the service. Also,

we assume that the user is unaware of the p playing strategy. However, the user

knows whether the information sharing is rewarding or not. The users wins the game

when they get the service they want. The game ends either by winning or running

out of strategies. The user starts the game with strategy

s0 = {(sh, p, t)|∃n = (ρ′, τ ′, ψ, ϕ)s.t.ρ′ = AR(p) ∧ τ ′ = AT (t)}

which is only sharing the information attributes with p that are allowed by privacy

norms. If the user does not win with s0 the system sorts elements of V ecp = V ecp−s0

in ascending order based on the value of InformationSensitivity
Reward

. Moreover, if the com-

munication action is not rewarding the vector is sorted by the information sensitivity

alone. Then we create strategy si = si−1 ∪ viwhere vi ∈ V ecp until the game ends.

The sharing mechanism for vi is available in Table 3.2 where S, T,R are information

sensitivity, trust and reward respectively. Also, H,M,L indicate high, medium and

low vales and +,− describe whether the communication action is rewarding or not.
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Table 3.2: Sharing mechanism for violating information types
(S,T,R) Mechanism
(H,H,+) Control Loop
(H,L,+) Secure Computation
(H,M,+) Obfuscation
(H,H,-) Control Loop
(H,L,-) Secure Computation
(H,M,-) Obfuscation
(L,H,+) Control Loop
(L,L,+) Control Loop
(L,M,+) Control Loop
(L,H,-) Control Loop
(L,L,-) Control Loop
(L,M,-) Control Loop
(M,H,+) Control Loop
(M,L,+) Secure Computation
(M,M,+) Obfuscation
(M,H,-) Control Loop
(M,L,-) Secure Computation
(M,M,-) Obfuscation
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CHAPTER 4

IMPLEMENTATION AND PERFORMANCE

EVALUATION

4.1 Implementation

As a proof of the concept, we prototyped the proposed framework in the Java program-

ming language 1. Figure 4.1 depicts a diagram of the implementation’s architecture.

The proposed framework is modularized into three layers:

• User interface layer which takes the user’s intentions in a structured format.

• Translation layer which translates the frameworks from UI to privacy norms

and formal notation.

• Verification layer that evaluates norms consistency and compliance of the infor-

mation sharing action with privacy norms.

In the following sections describe the implementation details of each of the compo-

nents in each layer.

4.1.1 User Interface Layer

The user interface (UI) layer facilitates interactions between the user and the proposed

framework. Through the UI the user can add and view the existing privacy norms

1https://github.com/wxyzabc/UserCentricPrivacy
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Figure 4.1: The architecture of user-centric privacy framework. The blue components
show the libraries and technologies used in the proposed framework.

and get privacy violation reports. The UI is designed to conceal the complexity of the

underlying formalism and verification from the user. The UI hides the complexities

by allowing the users to express their privacy intentions as a structured input. Using

the UI the user can select the role and attribute type from a drop-down list. To create

the environmental conditions, the user can provide arbitrary inputs for environmental

variables or choose between predefined conditions e.g., daytime, nighttime, weekends.

Also, the user can specify the desired information sequence in the form of precedence

or repetition templates like “X happens after Y” or “X happens k times”. These

templates will be translated to sequencing conditions. The UI was created with

JavaFX framework and the Figure 4.2 depicts UI of the framework.
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Figure 4.2: The norm creation UI.

4.1.2 Translation Layer

The translation layer receives the structured input from the UI and translates it into

formal notation. The formal notations and maps described in the methodology section

can be implemented as tables in a database. The norm are stored in the norms table

where the table attributes are the role, attribute type, the environmental conditions,

and the DFA state of the sequencing conditions. The primary key of the norms table

is the pair of (ρ, τ). The system queries the database to retrieve the norms in order

to either verify an action or check the consistency of a new norm. In this framework,

MariaDB version 10.2 was used as the database. To evaluate each action with the

attribute t and the agent p, norms that have roles where ρ = AR(p) and attribute

type τ = AT (t) are retrieved from the norm table and sent to the verification layer.
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4.1.3 Verification Layer

This layer verifies the information sharing actions compliance with the privacy norms

and the consistency of a new norm with existing norms. If an information sharing

action violates the privacy norms or a new norm causes inconsistency, then this layer

sends a violation report to the UI to inform the user. The user can ignore the

violation caused by the information sharing action and allow the information to be

shared. With an inconsistent norm, the user has to change the new norm so that it

will be consistent with other norms. The rest of this section describes the verification

method of information sharing actions and privacy norms in more detail.

Verification of Norms for Inconsistency

When a new norm is created, the framework checks the consistency of the new norm

with the existing norms. Based on the consistency constraints in section 3.2.2 the

framework first ensures that the new norm access permission does not exist in the

database. Then the new norm’s environmental conditions are checked for consistency.

The framework parses the string of the environmental conditions and translates them

to satisfiability modulo theories (SMT) solver formulas. Then the SMT solver proves

that the implication or equivalency relation holds and is always valid. Validation

assessment of formula f by SMT solvers is done by proving that ¬f is unsatisfiable,

hence f always evaluates to true. By proving that there is no combination of variables

that satisfy ¬f it can be concluded that f is a tautology. In a case that the solver finds

a solution to ¬f , the user is asked to change the inconsistent new norms. Further,

since efficiency is important in real-time systems, we need to assign a time limit for the

solver. If the solver times out or returns UNKNOWN the user will be notified. Finally,



39

if the new norm is consistent it will be added to the database. The implementation of

the proposed framework utilizes JavaSMT [28] with the Z3 solver version 4.3.2 [18] for

consistency checking over the environmental variables and “brics” automate library

version 1.12-1 [39] for sequencing conditions.

Verification of Actions for Violation

For each action (sh, p, t) , the framework finds the attribute type of t and the role

of p. Then the privacy norms tables are queried to find the norms with the access

permission (AR(p), AT (t)) as their primary keys. If the query returns no results, it

means that no norm allows sharing information t with agent p. However, If the query

returns results, it indicates that there exists a mapping from a state in UBM to a

state in the PPM. Then the framework checks for the satisfaction of the environmental

conditions and sequencing conditions before taking the transition to the mapped state.

Since the norm conditions are dynamic, they cannot be hard-coded in the verifi-

cation engine. Therefore to check the environmental variables a mechanism is needed

to enable the verification engine to handle change in the conditions. Therefore,

the conditions are formed and evaluated at run-time based on the stored environ-

mental constraints in the database. For the implementation of such a mechanism

that allows for dynamic manipulation and evaluation of conditions, the Expression

Languages (EL) can be used. EL receives an object and a logical expression as a

string and evaluates whether the object properties satisfy the expression or not. In

our implementation,the current snapshot of the environment is given to the EL as

the input object that has the environmental values and the EL expression string

is the environmental constraints of the retrieved privacy norms. This framework

employs Spring Expression Language (SpEL) [1] as the EL library. EL only checks
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for the satisfaction of the environmental conditions and if they are not satisfied

then the transition guard is not satisfied. Therefore, the action violates the privacy

model. However, if the environmental conditions are satisfied then we check for the

satisfaction of sequencing conditions.

Sequencing conditions are implemented as run-time monitors from the regular expres-

sions stored in the database. A run-time monitor is a deterministic finite automaton

(DFA) that is created based on a regular expression. The DFA representing the

sequencing condition has a pointer to its current state and changes its state with the

occurrence of information sharing actions. If the new state in the DFA monitor is

not a final state, then the action is not valid, and the system reports the violation to

the user. Different libraries exist for creating run-time monitors such as AspectJ, but

the monitors created by them are static. Therefore, a change in one of the regular

expressions demands a reset in all the monitors. In the proposed framework the

regular expressions are dynamic, and changing a regular expression only causes a

reset in the corresponding DFA. Another method for implementing the sequencing

conditions is to store a history of information sharing actions; however, with each

information sharing action, the history will grow, and to potentially infinite size.

With the run-time monitors, the number of the DFAs are constant and equal to the

number of the norms with sequencing conditions. Algorithm 4 shows the general steps

taken to implement the information sharing action verification process. Considering

the implementation bellow, in the next section we discuss the performance evaluation

of the proposed framework.
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Algorithm 4: Action verification algorithm.

1 Input: ISA (An information sharing action)
2 Output:Boolean value indicating the verification result.
3 norms=[]
4 recipientGroups=ISA.recipient.getGroups()
5 for g in recipientGroups do
6 norms.append(getnorms(ISA.InformationType, g))
7 if (norms.size> 0) then
8 for j in norms do
9 if !(j.evalEnvironmentalCondition (ISA.environment)) then

10 return false
11 else
12 if !(j.evalSequencingCondition(ISA)) then
13 return false

14 return true

15 return false

4.2 Performance Evaluation

The proposed framework is designed for user-centric applications; therefore, it should

have acceptable performance on smart devices such as smart-phones, internet of things

devices and etc. The main challenge in this area is that usually, these devices have

low memory and computational power. Since detection of privacy violations in such

applications is supposed to be real-time, a framework with a substantial performance

overhead cannot deliver the desired results. Therefore, our implementation was tested

for performance evaluation on a Raspberry Pi model B with 700 MHz CPU, 512 MB

RAM and running Raspbian 4.9 operating system, as well as a PC with 3.0 GHz

AMD Phenom II X4 945 processor, with 8 GB of memory and Windows 7 operating

system. The privacy policy created for this test contained 81 privacy norms over

12 attribute types and 16 roles which 8 of them have nonempty intersections with

groups.
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Table 4.1 shows the results of the information sharing action verification per-

formance evaluation. The number in each column indicates the average verification

response time for each part of the privacy norm. The average was computed for 20

information sharing actions which half were privacy violating actions and the other

half were non-violating actions. The performance evaluation was over 2 environmental

variables time and day and the allowed sequencing conditions were “a after b” and

“a occurred k times”. Also, notice that the performance of the action verification

depends on the performance of the underlying database software and expression

language library. In the implementation of our framework, we used MariaDB version

10.2 database and SpEL 3.1.0 as the EL library.

Table 4.1: Action verification performance evaluation results. The columns show
the response time for Access Permission (AP), Environmental Conditions (EC),
Sequencing Conditions (SC) and All shows the average verification time for a norm
that have all the elements.

Machine
Action Verification

AP EC SC
PC 1.5 ms 0.5 ms 3.5 ms

Pi B 39 ms 6 ms 540 ms

The average time for the consistency check performance evaluation on the PC

was 39 ms and for the Raspberry Pi model B was 849 ms. Also, notice that the

performance of this consistency checking depends on the performance of the under-

lying solver and the domain size of the environmental variables (since the solvers

are faster when the search domain is smaller). For example, in our implementation,

the norms time conditions were specified as (hours×100+minutes) and time intervals

could be subsets of each other. Table 4.2 shows the SMT-solver performance for

constraints with 5,10,20,50,100, and 500 environmental variables. The over-head of

bric library for language sunset and equivalency is around 7ms on average. However,
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the projection algorithm is the bottle neck since it computes the permutation of the

information types that are needed for substitution in the regular expression. Due to

this drawback the framework limits the number of children for each attribute to 5

children.

Table 4.2: Performance of consistency checking for Environmental Variables
Number of Variables 5 10 20 50 100 500
Implication time (ms) 26 28 30 40 35 66
Equivalency time (ms) 32 34 35 46 41 67
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Administrating and managing users’ privacy is a major challenge in the digital

age. Privacy has a different meaning to different users depending on their personality,

age, social status, cultural background, and many other factors. Furthermore, users’

privacy policies are dynamic in nature and evolve to reflect the changes in users’

relationships and present situations. However, current privacy management systems

cannot address these privacy needs adequately since they are not designed based on

the users’ privacy perspective. This issue in privacy management systems decreases

their usability among everyday users and puts unaware users at risk of information

disclosure. The proposed framework provides a privacy formalism and verification

engine to specify and model privacy from the user’s perspective. Moreover, as a

proof of concept, a framework was implemented and tested based on the described

formalism. In the proposed model, the contextual integrity theory has been cus-

tomized to address the privacy needs of individual users. Further, the user-centric

privacy framework is meant to be used in user devices, which compared to servers and

general purpose computers that are targeted in the existing work have lower memory

and computational power. These limitations justify the use of regular expressions

instead of Linear Temporal Logic (LTL) in our paper since empirical evidence [10]

shows that the evaluation of the regular expressions has significantly less overhead
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compared to LTL. Furthermore, our framework similar to [7] allows for adding

environmental conditions to the privacy norms which makes the policy creation more

accurate. In addition, for privacy enforcement and verification our framework utilizes

a two layered mapping approach from a transition system to a guarded transition

system which has less overhead compared to model checking techniques. Further,

the proposed framework allows suggested privacy decisions based on information

sensitivity, trust and reward. There are multiple privacy negotiation mechanisms

that utilize obfuscation and secure computation, without compromising their privacy.

However, these methods are not always applicable to all information types.

Since this work is our first step toward a formal dynamic user-centric privacy

model which is creating a formal model of privacy policy, the burden of providing

input for the rule creation process is on the user. In our future work, the current

user interface will be removed, and rule inputs will be created automatically utilizing

text analysis, speech recognition and AI algorithms that can infer a user’s privacy

policy based on the users relationships and information sharing behavior. Also, at this

point of our work the framework assumes that the values for computing information

sensitivity, trust and reward is given. Another assumption of our framework is that all

the environmental variables have deterministic values for the evaluation and cannot

handle non-deterministic situations. In our future works we intend to address the

above limitations by expanding the logic to overcome non-deterministic situations,

increase the number of users, and add new rule formulas to our language.
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