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ABSTRACT

Application performance often depends on achieved memory bandwidth. Achieved

memory bandwidth varies greatly given specific combinations of instruction mix and

order, working set size, and access pattern. Achieving good application performance

depends on optimizing these characteristics within the constraints of the given ap-

plication. This task is complicated due to the lack of information about the impact

of small changes on the performance. Some information is provided by benchmarks,

but most memory benchmarks are confined to simple access patterns that are not

representative of patterns found in real applications.

This thesis presents AdaptMemBench, a configurable benchmark framework de-

signed to explore the performance capabilities of compute kernels extracted from

applications. AdaptMemBench provides a framework to emulate application-specific

memory access patterns. A set of templates manages standard timing and mea-

surement tasks. The build system accommodates the polyhedral model, making the

framework provides a convenient testbed for potential code optimizations.

AdaptMemBench supports reproducibility in experimental results and facilitates

sharing results. Given that small changes in benchmarks have a large impact on

performance a common framework isolates the measured portions of code. This eases

the process of rerunning experiments and porting to new systems. The strengths of

AdaptMemBench are demonstrated through a collection of case studies on common

compute kernels including: streaming patterns, multidimensional stencils, and sparse

matrix operations.
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Chapter 1

INTRODUCTION

This thesis presentsAdaptMemBench, a configurable memory benchmarking frame-

work that measures achieved memory performance by emulating application-specific

memory access patterns. This framework, directed at reliability and reproducibility

of performance experiments in large scale projects, is designed to measure execu-

tion characteristics of isolated portions of code extracted from applications. Adapt-

MemBench provides a starting point to identify performance bottlenecks, evaluate

potential optimizations, and explore the potential gains of those optimizations.

Many scientific applications are considered memory bound, meaning that in-

teractions with memory are the limiting factor for performance improvement. In

computer hardware, the memory performance has improved more slowly than floating

point performance, the diverging exponential increase between the two has created

a bottleneck referred to as the memory wall [68]. The CPU speed of the fastest

available microprocessors is growing at approximately 80% [39] per year, while the

speed of memory devices has been increasing only at the rate of 7% per year [22]. This

ever-growing gap significantly impacts the performance of most scientific applications

that constitute memory bound compute kernels.

The growing complexity of modern architectures makes it difficult to write memory-

efficient software and achieve sustained application performance across architectures.
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Modern memory architectures are hierarchical, hiding some of the impact of the

memory wall. Smaller, faster, and more expensive cache memories are placed between

the processor and main memory reducing latency. The depth and configuration of

memory hierarchies is constantly changing. In recent high performance computing

architectures, the system memory is physically fragmented and the memory hierar-

chies are getting deeper. The speed of processing units has been increasing but not

at a rate that satisfies demand. Modern architectures have incorporated high levels

of parallelism to improve performance.

Multi-core CPU architectures consist of multiple processing cores, each of which

can concurrently execute its own sequence of instructions, increasing overall system

performance. Existing multicore hardware configurations are more diverse and com-

plex, complicating the development and optimization of application code. This is

exacerbated with resources shared among cores depending on the residency of the

data being accessed. Parallelism and cache coherency protocols increase the design

complexity and change the impact of code optimizations.

Memory bound application codes spend a significant fraction of their processing

time moving data across the memory subsystem, causing performance bottlenecks.

Optimizing code to take the best advantage of the memory subsystem has been

researched for many years. Reducing working set sizes is considered a good first step

in optimization to take advantage of the caching capability of machines. However,

optimizing is more complex than that, especially when dealing with shared memory

parallelization. The application characteristics including memory access patterns,

instruction mix and order, data sharing across caches, and vectorizability must all be

considered in concert.

A combination of implementation challenges discourages effective code optimiza-
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tion. The hardware, and therefore performance characteristics, change significantly

between hardware releases; testing and verifying optimizations within the context of a

large application is error prone; and optimizations obfuscate the primary computation

in the application. Automating optimizations in a compilation stage resolves the last

two challenges, but the compiler still needs an indication of which optimizations will

be successful. Given the difficulty around manipulating access patterns in situ when

working with a large application, fewer optimization strategies are attempted and

potential performance improvements are overlooked. Additionally, performance tools

such as hardware counters, remain difficult to use in the context of a large application.

A framework that allows extracted code to be isolated and measured will benefit

the optimization process for specific projects. During the exploration and experi-

mentation phase, many different variants of the same code are produced. Tracking

the differences between variants and maintaining correct execution becomes time

consuming and challenging. A shared framework that supports experimentation and

tracks code versions while outputting metadata with measurements will ease this

challenge.

This thesis presents a benchmarking framework to explore the design landscape

of a target architecture [32]. The AdaptMemBench1 framework can be used to

measure system performance and to guide application-specific optimization decisions.

Expensive kernels extracted from larger applications can be manipulated in isolation

to find the best optimization strategies. The framework reduces the amount of code

that is transferred and provides mechanisms to experiment with data storage layout,

execution order, and parallelization strategies.

AdaptMemBench provides several execution templates. The templates are com-

1https://github.com/BoiseState-AdaptLab/AdaptMemBench
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bined with user-provided code segments. The templates provide a common command

line interface, handle all timing and hardware counter code, and output metadata

and measurements in a common format. The code segments provided by the user

can be expressed as C code or by using the polyhedral model. The latter provides

a convenient mechanism for optimization experiments. Combining benchmarking

techniques with compiler transformation techniques enhances reproducibility of ex-

perimental results, with separate groups required to only exchange the core of the

code in question.

Several benchmarks [38, 28, 50, 49, 53, 6, 37, 60, 18, 2] exist that measure machine

performance, with the benchmarking results conveying essential information about

the application performance on the memory hierarchy of the machine. Existing

memory benchmarks [38, 50, 49] measure performance using a limited collection of

streaming access patterns. However, benchmarking application-specific patterns that

tend to be more complex remains a challenge. Current benchmarks [39, 28] are further

constrained by the data sizes which can be executed, specifically in the higher levels

of the memory subsystem.

AdaptMemBench differs from previous efforts by incorporating polyhedral code

generation. This creates a configurable benchmarking framework that measures

achieved memory bandwidth while mimicking application-specific memory access

patterns. The existing set of benchmark templates support a variety of kernels which

involve arbitrary random reads and writes with non-strided accesses. The Polyhedral

model [64] simplifies writing the initial benchmark and provides a mechanism to

automatically transform the code. Furthermore, our benchmark supports parallel

applications and systems, and measures memory performance for data sizes across all

levels of the memory hierarchy.
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1.1 Problem Statement

Performance optimization is often abandoned because of its time-consuming na-

ture, causing large scientific applications to run inefficiently on large supercomputers.

The performance of memory-bound applications is determined by a combination of

memory access patterns, instruction mix, and instruction order. Small changes to

these characteristics impact achieved memory performance significantly. The changes

are typically unpredictable, requiring a manual search of the optimization space. This

is cumbersome and error-prone within large scientific applications.

1.2 The Proposed Solution

This thesis presents a configurable memory performance benchmarking framework

that enables measuring application-specific access patterns. The framework charac-

terizes the memory performance of compute kernels isolated from applications. It

supports reproducibility in performance results that facilitates rerunning experiments

and porting to new systems. Accommodation of the polyhedral model in the build

system provides a convenient testbed for potential code optimizations. Access to

hardware performance counters offers insights on the interaction of the application

with the memory subsystem.

1.3 Contributions

The primary contribution of this thesis is the AdaptMemBench benchmarking

framework along with the comprehensive case studies on common compute kernels
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using AdaptMemBench that demonstrates its strengths. The contributions of this

thesis include:

• AdaptMemBench, a configurable benchmarking framework for application-specific

memory performance characterization.

• A performance study on common compute kernels for the impact of implicit

barriers, shared data spaces and false sharing. An interleaved execution schedule

is proposed with demonstrated performance speedup for the triad pattern.

• An evaluation of existing spatial and temporal tiling strategies for multidimen-

sional Jacobi patterns on modern multicore architectures, using polyhedral code

generation.

• A comparison of the performance variation of Sparse Matrix-Vector (SpMV)

multiplication implemented using different sparse matrix representations bench-

marked with real-world sparse matrices.
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Chapter 2

BACKGROUND

This chapter gives an overview on multicore architectures, the polyhedral model,

and sparse matrix representations.

2.1 Modern Multicore Architectures

This section provides preliminaries on modern computer architectures emphasizing

multicore hardware, shared memory systems, hierarchical memory structures, and

caching in multicore systems.

2.1.1 Node Configurations

Over the past few decades, with the increasing demand for maximizing memory

performance, computer hardware has evolved with larger and faster memories, along

with faster and more complex processing units. Typically, every new processing

generation increased clock frequency allowing for more operations to be performed

per time unit. However, this trend had to be slowed down due to the power wall, with

high power consumption and the ability to handle on-chip heat reaching its physical

limit.

Modern compute nodes comprise multicore processors. A collection of simple

compute cores work together in parallel to replace a single monolithic compute core.
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The parallel cores are tightly coupled on a single chip. By running concurrently, they

yield better overall performance than the equivalent single cores, leading to the shift

from sequential computing to parallel computing. Most existing large-scale scientific

applications thus have to be parallelized, tuned, and deployed on multicore processors.

Shared memory systems consist of multiple processors or processor cores that

share main memory, and communication between them occurs through the shared

memory itself. Shared memory systems are typically implemented with a physically

distributed memory where each processor has its own local memory that can be

accessed by the other processors. In order to achieve optimal parallel performance, it

is non-trivial to understand the memory hierarchy of the system.

Figure 2.1: A modern NUMA system, with four nodes and four CPUs per node.

Modern multicore systems are based on Non-Uniform Memory Access (NUMA)

architecture, where cores are grouped together in a set of nodes. Each core has

its own local memory and each node is connected with one another by means of

high speed interconnect links, as indicated in figure 2.1. This is in contrast to the
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Uniform Memory Access (UMA) architecture, where a single shared bus connects

all cores to main memory, thereby eliminating memory bandwidth bottlenecks. In

NUMA system, the address space is global and remote memory accesses can introduce

latencies, implying that high memory performance can be utilized only if memory

accesses are scattered over all cores.

2.1.2 Hierarchical Memory Structures

The arithmetic units of current processors perform operations on registers, which

typically have very limited storage capacity, forcing CPU to often load data to and

flush data from registers. This requires processors to fetch data directly from Dynamic

Random Access Memory (DRAM) frequently with very low access speed, causing

latency. High performance processors overcome this limitation by inserting small

low-latency cache buffers between the slow memory and high speed registers of the

CPU.

Figure 2.2: Memory hierarchy in modern computers.
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Caches

Several layers of caches are present to uncouple fast registers from slow main

memory. Typically, a combination of a small low-latency L1 memory is backed by

a higher capacity, yet slower, L2 memory, followed by L3 memory with much larger

memory and lower speed. In previous generation multicore hardware systems, the

cache levels below L1 were shared among the processor cores. Most recently, L1

(both instruction and data caches) and L2 caches are dedicated to each core and the

L3 is shared among cores that are on a single socket. A machine may have multiple

sockets making the memory hierarchy deeper and more complex. Figure 2.3 shows

the shared memory organization of R2 HPC cluster at Boise State University, which

has two sockets with each of them consisting of 14 processor cores.

Figure 2.3: Memory organization of R2 HPC Cluster

False Sharing

When running a diverse range of applications, there may be substantial periods of

execution during which performance degrades due to a mismatch between the memory

system requirements of the application and the memory hierarchy implementation.
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Thread synchronization, saturated memory bus, and false sharing are some of the

circumstances that limit performance.

Caches read from, or write data to the DRAM in blocks of memory called cache

lines. A cache line is typically 64 bytes or 128 bytes wide. When a multithreaded

code reads data, caches contain a subset of information located in the DRAM and a

cache can be private to its cores. Simultaneous updates of elements in the same cache

line from different cores invalidate the entire cache lines, although these modifications

are logically independent of each other. Other cores accessing a different element in

the cache line find it marked invalid. They are compelled to load a more recent copy

of the cache line from memory, though the accessed element is not modified. While

a cache line is being updated, access to the elements in the line is restricted.

This circumstance is called false sharing. Though different threads are not sharing

data, they are involuntarily sharing a cache line. This leads to an increase in memory

traffic and causes overhead. False sharing occurs when multiple processors share data

within the same cache line, or when shared data is modified by multiple processors.

False sharing can be avoided by padding arrays to the end of a cache line to ensure

that the array elements begin on a cache line boundary. Another solution is by using

thread-local copies of data. Compiler’s optimization features could also be used to

eliminate false sharing.

Prefetching

Prefetching is a mechanism employed by processors to fetch data into the cache

that may be accessed in the near future. This minimizes latencies of data loaded from

memory to caches. Prefetching can either be performed at the hardware level or be

initiated by the software. Hardware prefetchers are based on algorithms that monitor
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access patterns and predict future access. Hardware prefetching can effectively be

utilized by streaming access of sequential elements.

2.2 The Polyhedral Model

The polyhedral model expresses and manipulates loop constructs using a well-

defined mathematical model. An iteration space that describes a loop nest is consid-

ered an affine space if the lower and upper bounds of each loop can be expressed as

a linear function.

The execution schedule of a loop nest can be represented with the following

components:

• Iteration Space: the set of statements in the block and the loop iterations where

instances of the statement are executed.

• Access Relations: The set of reads, writes, and may-writes that relate statement

instances in the iteration space to data locations.

• Dependences: The set of data dependences that impose restrictions on the

execution order.

• Schedule: The overall execution order of each statement instance represented

by a lexicographically ordered set of tuples in a multidimensional space.

Figure 2.4 shows a loop nest for solving the heat equation. The associated iteration

space is shown graphically as a two-dimensional space (i, j). Each node in the graph

represents an iteration. Polyhedral representations are expressed using Presburger

arithmetic, and can be extracted from source code by analyzing loop bounds and

array subscript expressions. The Presburger formula for this example is shown at the

bottom of the figure.
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Figure 2.4: An example of polyhedral code generation with ISCC/ISL.

Code generation is performed on sets through polyhedral scanning, the result is a

control flow that produces the iterations in lexicographical ordering. As expressed in

Figure 2.4 the original code would be produced. The polyhedral model provides

a separation of concerns between the statement instances and the corresponding

execution order. Polyhedral optimizations change the execution schedule without

affecting the set of statements that are executed. Transformations on the code are

realized through the application of relations (or functions).

Loop interchange is a loop transformation that switches the order of two loops.

Figure 2.5 shows the relation used to apply loop interchange for the code in Figure 2.4.

For the relation from {i,j} to {j,i}, we apply the transformation on the execution

domain defined, using the intersection operator. Other transformations such as
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fission, fusion, reversal, skewing, and tiling can be performed with ease using the

polyhedral model.

Figure 2.5: An illustration of loop interchange using ISCC.

In this thesis, to automatically generate schedules for the application kernel initial-

ization, execution, and validation, we use the ISCC [64] polyhedral code generation

tool, which offers an interface to the functionality provided by Integer Set Library

(ISL) [63] and Barvinok library [62]. This tool enables the end user to manipulate

sets and relations and generate source code reflecting their input.

This tool, however, is restricted to iteration spaces that are affine. Affine loop

bounds are considered constant at runtime time and allows for static analysis at

compile time. A significant amount of work has been done to expand the iteration

spaces and schedules that can be represented, including work that uses schedule trees

for code generation within ISL [63].

The Omega+ code generation tool incorporates iteration bounds based on runtime

information using uninterpreted functions [11]. Uninterpreted functions are mathe-

matical symbols that act as placeholders, and consist of only a name and an n-ary

form. The runtime realizations of uninterpreted functions can be implemented as
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arrays, functions, or macros. The input and output of the uninterpreted functions are

unknown at compile time and cannot be statically analyzed, hence the term. These

functions can be applied to represent non-affine loop bounds that are data-dependent

or based on functions that are unknown at compile time.

Even with recent advances, the polyhedral model cannot express all C kernels.

An example is conditional statements in an iterative loop that are not tied to the

loop iterator. Recursive statements and while loops can also not be represented

using the polyhedral model. Hence, polyhedral compilation can be bypassed in the

AdaptMemBench specifications to represent such kernels in the benchmark.

2.3 Sparse Matrix Storage Formats

Matrices used in real-world applications are typically large and sparse, meaning

most data elements are zero. A simple method to store a sparse matrix is using a two-

dimensional dense array to store all the components of the matrix including the zero

valued elements. It offers random access to the value at any coordinate in constant

time. However, the dense representation is inefficient since a lot of memory space is

consumed by storing zeros, degrading performance due to unnecessary computations.

It can be impractical to utilize a dense array to store very large and hypersparse

matrices due to lack of memory.

Several sparse matrix representations have been proposed that exploit the sparsity

of its components to compactly use memory and to avoid unnecessary computations.

In this thesis, we represent sparse matrices in the Coordinate (COO) format [5],

Compressed Sparse Row (CSR) [46] , Block CSR (BCSR) [25], Diagonal (DIA) [30]

and Ellpack (ELL) [46], each of which is described below.
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Coordinate (COO) format

Coordinate format [5] keeps a list of non-zero values and two index arrays that

map into dense indices. In figure 2.6, array A stores the non-zero values and the

supplementary arrays row and col respectively are used to represent the row and

column coordinates of each non-zero element. Many sparse matrix storage file formats

like the Matrix Market exchange format (.mtx files) [10] used in this thesis mimic the

COO format. This minimizes pre-processing cost as constructing the COO format

requires only appending the values and the coordinates to the val, row and col

arrays. This format could be used when the sparse matrix is used only once in the

code, since it is more efficient to represent data with the COO format instead of

converting existing data to another format. This format, however, does not provide

efficient random access and when used more often, performance degrades.

Figure 2.6: The Coordinate (COO) format representation.

Compressed Sparse Row (CSR)

The CSR [46] format compresses out the redundantly stored row coordinates in

the COO format. From the COO format, the val and col arrays are retained, but

the row array only has one element per row, indicating the first element of that row
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(figure 2.7). Compression of the row coordinates increases the performance of memory

intensive computations.

Figure 2.7: The Compressed Sparse Row (CSR) format representation.

Block Compressed Sparse Row (BCSR)

In the Block CSR (BCSR) format [25], the non-zero elements are clustered to-

gether in a collection of small dense blocks and the blocks where necessary are padded

with zero values. The array A_prime consists of all such non-zero blocks (figure 2.8).

The block_col array tracks the column of the upper left element of each non-zero

block. The block_col array indicates the index of the first element of the rows in

the array A. This reduces storage and the computation could be performed in a small

dense array.

Figure 2.8: The Block CSR (BCSR) format representation.



18

Diagonal (DIA)

The Diagonal (DIA) format [30] is most effective for banded matrices, which have

non-zero elements restricted to a few dense diagonals. Such matrices are common in

grid and image applications. The offset supplementary array represents the offset

from the main diagonal as shown in figure 2.9.

Figure 2.9: The Diagonal (DIA) format representation.

Ellpack (ELL)

Figure 2.10: The Ellpack (ELL) format representation.

The Ellpack (ELL) format [46] is suited for sparse matrices that contain a bounded

number of non-zeros per row. This format uses a two-dimensional matrix with a fixed

number of non-zeros per row and rows with fewer non-zeros are padded with zero

values. The col matrix keeps track of the columns for the non-zeros, as in figure
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2.10. ELL is more efficient when most rows have a similar number of non-zeros,

because of a fixed number of iterations and no indirection in the loop bounds.



20

Chapter 3

THE ADAPTMEMBENCH FRAMEWORK

The AdaptMemBench framework is designed with flexibility and consistency to

mimic memory access patterns from applications. This framework accommodates

code extracted from applications and facilitates memory performance measurements

by providing a space to experiment with the execution order, data storage layout,

and parallelization strategies. AdaptMemBench provides a starting point to diagnose

the performance bottlenecks, examine potential optimizations to overcome those

bottlenecks, and explore the potential gains of those optimizations. The framework

assists in keeping track of how small changes in application characteristics impact the

achieved performance of different code variants that arise during the exploration and

experimentation phase of a project.

AdaptMemBench provides a unified framework with the following capabilities:

• The framework benchmarks multithreaded kernels on shared memory systems

using the OpenMP [41] parallel programming model.

• AdaptMemBench measures performance in terms of execution time, memory

bandwidth and floating point operations per second. It is also capable of

recording the execution time of each core under execution.

• It offers low overhead access to hardware performance counters using the low

level Performance API (PAPI) [40].
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• AdaptMemBench provides a flexible testbed to explore potential code optimiza-

tions using polyhedral code generation.

• The framework enables visualization of performance results using a late analysis

tool that plots 2D and 3D graphs from the output metadata.

The AdaptMemBench framework separates the user interface, validation, and

output of the benchmark from the code being measured. Each computational kernel

of interest is coded in a pattern specification. If that pattern specification optionally

involves the polyhedral model, it is passed through a polyhedral compiler. The

resulting (or original) c code is compiled together with one of several potential

templates. The templates provide a uniform interface and handle code to vary the

working set size to cover each portion of the memory hierarchy, along with timing,

PAPI data collection, and output formatting. The use of the polyhedral model adds

a great deal of flexibility in terms of exploring optimizations.

3.1 Design of the Framework

AdaptMemBench accepts a set of pattern specifications and a benchmark driver

template as input. The framework uses a collection of generic benchmark driver

templates for all variations of the access patterns. These driver templates provide a

standard command line interface and output machine parsable and human readable

metadata. The pattern specifications consist of a header file and three code files that

specify the execution schedule, initialization steps, and validation conditions. The

input to the framework is marked green in the workflow diagram (figure 3.1).

AdaptMemBench supports any memory access pattern - patterns involving arbi-

trary random reads and writes, non-unit strides, indirect memory accesses, and so
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Figure 3.1: The overall workflow of the proposed framework.

on. The kernel to be measured is specified either using C or using the polyhedral

model. When utilized, the polyhedral model offers the ability to compose sequences

of transformations for the input access pattern. AdaptMemBench leverages the ISCC

and the Omega+ code generation tools. The former is used for access patterns that

can be represented with affine spaces, and the latter for non-affine constraints. The

polyhedral code generation could be turned off for the access patterns that cannot be

represented using the polyhedral model and/or for simplistic kernels.

The custom benchmark driver is created by configuring the user-chosen driver

template with files from the pattern specifications. If polyhedral code generation is

enabled, the code files specifying the execution schedule, initialization steps and the

validation conditions are input as ISCC script (.in) files. These three script files

are passed through the polyhedral compiler (either ISCC or Omega+, depending on
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the template chosen) and the resultant C code files generated are used to customize

the template along with the header file (figure 3.2). If polyhedral code generation

is disabled, the three code files are accepted as actual C code files bypassing the

polyhedral compiler, and the customized benchmark driver is generated.

Figure 3.2: The process of generating the three C code files when polyhedral code
generation is enabled.

The generated driver is then compiled and executed to benchmark the kernel

specified in the pattern specification. The executable accepts runtime arguments

such as the working set size, thread count, the number of repetitions, and other

parameters depending on the access pattern benchmarked. The performance results

are output in terms of execution time, cumulative memory bandwidth, and floating

point operations per second (FLOP/s). The framework also offers an option to access

the hardware counters using PAPI. In this case, the timers are replaced with the PAPI

events in order to avoid the minimal overhead of running the timers while monitoring

the hardware counters.

The output metadata can optionally be visualized graphically using the late

analysis tool of AdaptMemBench. This tool transforms the raw data that consists
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of the working set size, execution time, memory bandwidth and other metrics into

two-dimensional and three-dimensional graph plots. The late analysis tool leverages

the matplotlib python library [24] to plot graphs.

3.2 Framework Components

This subsection elucidates the building blocks of the proposed framework - the

benchmark driver templates and the pattern specifications.

3.2.1 Benchmark Driver Templates

The AdaptMemBench framework provides three benchmark driver templates. The

unified and independent data space templates for affine spaces, and the non-affine

spaces template suited for indirect memory access patterns. Each of the templates is

described below with examples.

1. Templates for Affine Spaces :

This set of templates is suited for access patterns that can be represented in

affine space, i.e., for regular applications that consist of constant loop bounds

or conditions at runtime. They are intended for static analysis that can be

performed at compile time. The ISCC polyhedral code generation tool can be

used to generate loop constructs for execution schedule, initialization steps, and

the validation conditions to be customized in these templates. The polyhedral

compilation could optionally be disabled to feed in the original C code files from

the user into these templates.

• Unified Data Spaces Template:

This template is used for data structures that are shared among threads
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in shared memory applications. This form of representation adds overhead

due to additional communication between threads. Listing 3.1 below shows

the core components of this template.

1 ...
2 // Include Header file
3 #include "<kernel >.h"
4 ...
5

6 // Include Initialization Steps
7 #pragma omp parallel for
8 #include "<kernel >_init.c"
9 ...

10 /* start the timer */
11 // Include the execution schedule
12 #pragma omp parallel
13 {
14 #pragma omp parallel for OMP_CLAUSE
15 for (int k = 0; k < num_repetitions; k++) {
16 #include "<kernel >_run.c"
17 }
18 <kernel >_postrun ()
19 }
20 /* stop the timer */
21 ...
22 // Validate results
23 if(! verify_code(ntimes , measurements , A, B)){
24 return;
25 }
26 /* Calculate execution time , memory bandwidth and GFLOPS/s */
27 ...

Listing 3.1: The unified data spaces template.

• Independent Data Spaces Template:

The data structures in this template are independently allocated for the

threads. This implementation eliminates cross-thread communication and

improves performance at the higher memory hierarchy levels. For this

template, the constructs for OpenMP parallelization are reorganized from
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the unified data spaces template to accommodate distinct data structures

for each thread under execution.

1 ...
2 // Include Header file
3 #include "<kernel >.h"
4 ...
5

6 // Include Initialization Steps
7 #pragma omp parallel
8 {
9 #include "<kernel >_init.c"

10 }
11 ...
12 /* start the timer */
13 // Include the execution schedule
14 #pragma omp parallel
15 {
16 int t_id = omp_get_thread_num ();
17 for (int k = 0; k < num_repetitions; k++) {
18 #include "<kernel >_run.c"
19 }
20 <kernel >_postrun ()
21 }
22 /* stop the timer */
23 ...
24 // Validate results
25 if(! verify_code(ntimes , measurements , A, B)){
26 return;
27 }
28 /* Calculate execution time , memory bandwidth and GFLOPS/s */
29 ...

Listing 3.2: The independent data spaces template.

2. Template for Non-affine Spaces :

This generic template supports non-affine constraints, i.e., the loop bounds that

are data-dependent or based on the output of the functions that are unknown

at compile time, as in sparse matrix index structures. The execution schedule

for this template is generated using the uninterpreted functions supported by

the Omega+ library [11]. The initialization steps and the validation conditions
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are accepted as original C code files for brevity. The execution schedule could

also be input as original C code, bypassing the polyhedral code generator. The

parallelization constructs are not part of the template and the input pattern

specification files must include the appropriate OpenMP constructs.

1 ...
2 // Include Header file
3 #include "<kernel >.h"
4 ...
5 // Include Initialization Steps
6 #include "<kernel >_init.c"
7 ...
8 ...
9 /* start the timer */

10 // Include the execution schedule
11 #include "<kernel >_run.c"
12 /* stop the timer */
13 ...
14 ...
15 // Validate results
16 if(! verify_code(ntimes , measurements , A, B)){
17 return;
18 }
19 /* Calculate execution time , memory bandwidth and GFLOPS/s */
20 ...

Listing 3.3: The template for non-affine spaces.

3.2.2 Pattern Specifications

The input pattern specification describes the execution order and the statement

instances separated into concerns. It provides information on memory allocation,

data mapping, and validation conditions. The purpose and functionality of each

component in the pattern specifications shown in figure 3.2 are described below:

1. Header file (<kernel>.h):

This file contains the definitions of the memory mappings, statement macros,

and the allocation code.
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• Memory Mapping : Indicates how the statements should map into memory

using iterators as input.

• Statement Macros : The definition of the statement macros substituted in

each of the C code files generated from the .in/.c input files. Any data

referred to within the statement should be referred to indirectly through

the data mapping.

• Allocation Code: Specifies memory allocation of the data spaces used in

the given application kernel.

An example header file for a stencil 2D heat solving equation is shown

below in listing 3.4.

1 // Allocation Code
2 #define Stencil2D_alloc double* A = double *) malloc(sizeof(

double) * n * n); \
3 double* B = double *) malloc(sizeof(double) *

n * n); \
4

5 // Memory Mapping
6 #define A_map(i,j) A[i*n + j]
7 #define B_map(i,j) B[i*n + j]
8

9 // Initialization
10 #define Stencil2D_init(i) A_map(i) = i*1.12; B_map(i) = i*1.12;
11

12 // Statement Definition
13 #define Stencil2D_run(i,j) A_map(i,j) = (B_map(i-1,j) + B_map(i

+1,j) + B_map(i,j) + B_map(i,j-1) + B_map(i,j+1)) * 0.2;
14

15 // Validation Condition
16 #define Stencil2D_val(j) flag_err = abs(( A_map(i,j) - ((i-1)*n+j)

*1.12 + ((i+1)*n+j)*1.12 + ((i*n+j)*1.12) + ((i*n+j-1) *1.12) +
((i*n+j+1) *1.12) ) *0.2 ) <= EPS && !flag_err ? 1 : flag_err;

17

18 // OpenMP clause
19 #define CLAUSE schedule(static)

Listing 3.4: Header file <Stencil_2D.h> for the 5-pt stencil 2D benchmark.
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2. Initialization steps (<kernel>_init.in/<kernel>_init.c):

This input file specifies the schedule for which the data domains allocated in

the header file are initialized. In the C code file generated with ISCC, the

associated statement macro specifying initialization steps is substituted when

the benchmark is executed.

1 Domain_init := [n] -> {

2 Stencil2D_init[j,i] :

0<=i<n and 0<=j<n; };

3 codegen (Domain_init);

1 for (int c0=0; c0 <n; c0+=1)

2 for (int c1=0; c1 <n; c1+=1)

3 Stencil2D_init(c0 , c1);

Listing 3.5: The files Stencil2D_init.in and Stencil2D_init.c are on the
left and the right respectively.

3. Execution Schedule (<kernel>_run.in/<kernel>_run.c):

An input file that defines the iteration space in which the access pattern is

executed. The application kernel defined as a macro in the header file is

replaced in the .c file generated. This code file consists of the for loop constructs

associated with the execution domain which will be substituted in the driver

when executed.

1 Domain_run := [n] -> {

2 Stencil2D_run[j,i] : 1<=

i<=n-2 and 1<=j<=n-2; };

3 codegen (Domain_run);

1 for (int c0=1; c0 <=n-2; c0+=1)

2 for (int c1=1; c1 <=n-2; c1+=1)

3 Stencil2D_run(c0, c1);

Listing 3.6: The code on the left and right are the files Stencil2D-run.in and
Stencil2D-run.c respectively.

4. Validation condition (<kernel>_val.in/<kernel>_val.c):
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This input file describes the schedule for which the results after executing the

kernel is validated. The corresponding C code file generated is then called in

the header file to validate the results.

1 Domain_val := [n] -> {

2 Stencil2D_val[j,i] :

0<=i<n and 0<=j<n; };

3 codegen (Domain_val);

1 for (int c0=0; c0 <n; c0+=1)

2 for (int c1=0; c1 <n; c1+=1)

3 Stencil2D_val(c0, c1);

Listing 3.7: The files Stencil2D_init.in and Stencil2D_init.c are on the
left and the right respectively.

3.3 Timing the Benchmark

The proposed framework enables performance measurement across all the levels

of the memory hierarchy. AdaptMemBench implements a tight loop (listing 3.8)

that records a single cumulative execution time across all the time steps and then

calculates the average run time for the kernel benchmarked. This makes computation

of memory bandwidth possible for data sizes in the L1 and L2 caches. This approach

of setting up the timers for the benchmarks overcomes the dependence on the system

timer granularity.

Cold start cache miss is not an issue with our timing approach since the data

spaces are initialized right before benchmarking the execution schedule. This means

that the execution time of the first time iteration while benchmarking need not be

discarded. This approach, however, does suffer from the drawback that we are unable

to measure the execution time of each pass through the data and observe variations.
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AdaptMemBench also measures the execution time for each thread under exe-

cution. The framework leverages the omp_get_wtime() method from the OpenMP

library [41] to measure the start time and the end time of the execution. There are

other tools such as Intel VTune [43] and Likwid [59] that could be used to measure

each thread’s execution time. The OpenMP timers are preferred for lower overhead

and for accommodation in the driver templates.

1 ....

2 //Start measuring execution time for num_reps iterations

3 init_time = get_time ();

4 for ( int k = 0; k < num_reps; k++) {

5 for (int i = 0; i < n; i++) {

6 #include "<kernel >_run.c"

7 }

8 }

9 //Stop time measurement

10 exec_time = get_time () - init_time;

11 // Calculate average execution time for a single time iteration

12 avg_exec_time = exec_time/num_reps;

13 ...

Listing 3.8: Timing the benchmark in AdaptMemBench

3.4 Accessing Performance Counters

Hardware performance counters are special-purpose registers built into modern

microprocessors that store critical information of hardware events. Hardware events

are transpirations of particular signals akin to the function of a processor. Hardware
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counters provide information on events such as hit/miss rate at each memory level,

cycle count, instruction count, branch prediction accuracy, TLB invalidations, and

pipeline stalls. Performance experts and hardware engineers rely on these counters

for hardware verification or debugging, and for low-level performance monitoring,

analysis or tuning.

Information on accessing these counters is limited and it is quite challenging to

record hardware related events. The Performance Application Programming Interface

(PAPI) [56, 40] provides machine and operating system independent access to perfor-

mance counters in most modern processors. It offers a consistent interface to interpret

the relation between software performance and processor events. PAPI provides access

to a collection of components that offers performance monitoring opportunities across

the hardware and software stack.

PAPI offers two interfaces to access hardware events: the high-level and low-

level interface. The high-level interface provides users simple and straightforward

start, stop, and read routines which provides access to specified event information

from hardware counters. This doesn’t require code to be rewritten for different

architectures and is useful for instrumenting end-user applications. The low-level

interface provides an advanced interface for all applications and tools. It is fully

programmable, thread-safe, and allows user to define their own event sets. In this

thesis, we leverage the low-level interface due to its efficiency from lower overhead

and its flexible functionality.

Other than PAPI, there exist other performance counter tools. The likwid-perfctr

[61] supported by likwid Marker API [59], provides self-monitoring of an application.

Compared to PAPI, it has to specify the events to be monitored on the command-line

rather than in user’s code. Furthermore, likwid-perfctr causes much higher overhead
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than PAPI since it requires context switch into the kernel each time it reads or

writes to counters. The LiMiT tool [1] provides fast, userspace access to performance

counters compared to PAPI. It is however quite complicated to use and is unstable

due to frequent system crashes [59], and hence it is commonly not preferred. We

thus incorporate AdaptMemBench with PAPI to monitor the performance counters

instead the other existing tools.

Hardware counters are most commonly monitored by performance engineers to

interpret the interaction of the software with the hardware and advise optimizations.

Access to PAPI in the benchmarking framework gives opportunities even for novice

software developers to understand the relation between application performance and

processor events. This offers them an interface in guiding them with performance

enhancement strategies at the node level.

In the AdaptMemBench framework, monitoring the hardware counters is optional.

If enabled, the timers are replaced by the PAPI events to avoid the overhead added

by the timing events while accessing the hardware counters. Listing 3.9 shows the

core of the modified independent data spaces template with PAPI enabled.

1 ...

2 // Include Header file

3 #include "<kernel >.h"

4 ...

5

6 // Include Initialization Steps

7 #pragma omp parallel

8 {

9 #include "<kernel >_init.c"

10 }

11 ...
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12

13 //PAPI events

14 int events [3] = {PAPI_L1_DCM , PAPI_CA_SHR , PAPI_CA_CLN };

15

16 //Start the PAPI events

17 PAPI_start_counters(events , 3);

18

19 // Include the execution schedule

20 #pragma omp parallel

21 {

22 int t_id = omp_get_thread_num ();

23 for (int k = 0; k < num_repetitions; k++) {

24 #include "<kernel >_run.c"

25 }

26 <kernel >_postrun ()

27 }

28 //Stop the PAPI events

29 PAPI_stop_counters(values , 3);

30 ...

Listing 3.9: The modified independent data spaces template with PAPI enabled.
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Chapter 4

CASE STUDIES

A series of case studies were performed to demonstrate the capabilities of Adapt-

MemBench. The case studies extend the capabilities of existing memory benchmark

suites and include computer kernels that are commonly used in performance opti-

mization studies. Existing benchmark suites were used as a baseline to establish

the validity of the framework’s results. Compute kernels are pieces of code that

capture characteristics common in scientific applications. They are commonly used

to showcase the impact of new optimization strategies that are difficult to reproduce.

This chapter describes a set of case studies on three compute kernels that include:

1. Streaming Triad Kernel

• An evaluation of the overhead associated with implicit barriers and shared

data spaces.

• A demonstration of interleaved scheduling that leverages prefetching to

enhance the performance of triad.

2. Multidimensional Jacobi Patterns

• An evaluation of the impact of false sharing on achieved performance.

• A study on the efficacy of spatial and temporal tiling strategies for higher

dimensional Jacobi kernels.
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3. Sparse Matrix Computations

• A comparison of different sparse matrix representations for Sparse Matrix-

Vector (SpMV) multiplication with real-world matrices of varying sparsity

structures.

Experimental Setup

Hardware: Experiments were run on one of the nodes in the R2 HPC cluster at

Boise State University. R2 has dual 2.40GHz Intel Xeon E5-2680 v4 CPUs with Intel

Turbo boost turned on. Each node consists of two NUMA domains each containing

14 cores. Each core has a dedicated 32K L1 data cache and 256K L2 cache. The 35

MB L3 cache is shared among all the cores in each NUMA domain. The size of each

cache line in this architecture is 64 bytes.

Compilers: GNU’s gcc (version 7.2) and Intel’s icc (version 18.0.1) compilers were

used to compare the memory performance results on executing the triad kernel. Since

the execution on gcc compiler yielded higher and consistent results, all the other

benchmarks are compiled with the gcc compiler.

Compilers Options: When building C++ benchmark drivers, -fopenmp and -O3

optimization flags were set. The -lpapi flag was set for PAPI-enabled benchmark

drivers. The gcc compiler option -ftree-vectorizer-verbose=[n] is used to obtain

vectorization reports, with n ranging from 0 (no information reported) to 6 (all

information reported).

Profiling Tool: The benchmark drivers are instrumented with the Performance API

(PAPI) [40] library to access performance counters across the CPUs evaluated. PAPI

is used to measure cache hits and the requests for exclusive access to cache lines.
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Problem size: We executed the benchmarks with problem sizes across all levels of

cache and those which exceeded the last-level cache and fit into the main memory.

Table 4.1 shows the range of the working sets executed for the streaming and stencil

benchmarks. Each benchmark is executed for 1000 time iterations. The number of

repetitions is configurable.

Table 4.1: Range of working sets tested for all streaming and stencil benchmarks.

Memory Unit Initial working
set size

Final working
set size Stride

L1 Cache 5 KiB 900 KiB 10 KiB
L2 Cache 900 KiB 10 MiB 256 KiB
L3 Cache 10 MiB 80 MiB 512 MiB
Main memory 80 MiB 180 MiB 1 MiB

4.1 Streaming Triad Kernel

The simplest case of a loop kernel reads data sequentially from an array and writes

updated values with no temporal locality. Triad is one such streaming kernel that

involves three data spaces, as in listing 4.1, where array a is updated by multiplying a

scalar c with array d and then adding the resultant to array b. It often achieves opti-

mal performance since (i) this pattern accesses three prefetching lanes simultaneously

and (ii) the operation utilizes the Fused Multiply Add (FMA or fmadd) unit.

This simplistic access pattern is quite common and its performance is well un-

derstood with the STREAM benchmark [38]. In this work, the benchmarked results

of triad from AdaptMemBench is used for validation against STREAM. This basic

pattern is used to explore the impact of implicit locks and shared data spaces.



38

1 for (int i = 0; i < n; i++){
2 A[i] = B[i] + scalar * C[i];
3 }

Listing 4.1: Streaming Triad code.

4.1.1 Performance Validation with the STREAM benchmark

STREAM [38] is considered the de facto benchmark for streaming kernels that

measures main memory bandwidth. However, the way the timers are set up in

STREAM for benchmarking makes it impossible to measure performance at higher

levels of the memory subsystem.

STREAM executes each kernel for ntimes time steps and records the execution

time for each of the time iteration. The best bandwidth among ntimes is then

computed with the minimum execution time across all time steps. Though this

method yields reliable results for large working set sizes in the main memory, it

is impossible to calculate the bandwidth for smaller data sizes in the higher cache

levels, mainly due to dependence on the granularity of the system timer.

The timing approach in AdaptMemBench, as elucidated in chapter 3.3 enables

performance measurement at all levels of the memory hierarchy. To ensure correctness

of our timing approach, the memory bandwidth results from AdaptMemBench are

validated by comparing them with the measurements STREAM. The streaming triad

kernel is used for the comparison.

The triad benchmark driver is generated from AdaptMemBench using a combi-

nation of input C code files. Code from Listings 4.2 and 4.3 are customized with

the unified data spaces template in Listing 3.1 to create a custom benchmark for

the triad kernel, bypassing the polyhedral compiler for simplicity. Alternatively, the

kernel could have been expressed as a set: {[j]|0 <= j < n} for code generation using
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1 // Allocation Code
2 #define Triad_alloc double* A = double *) malloc(sizeof(double) *

n); \
3 double* B = double *) malloc(sizeof(double) *

n); \
4 double* C = double *) malloc(sizeof(double) *

n);
5 // Memory Mapping
6 #define A_map(i) A[i]
7 #define B_map(i) B[i]
8 #define C_map(i) C[i]
9 // Initialization

10 #define Triad_init(i) A_map(i) = 1.0; B_map(i) = 3.0; C_map(i) =
4.0;

11 // Statement Definition
12 #define Triad_run(i) A_map(i) = B_map(i) + scalar * C_map(i);
13 // OpenMP clause
14 #define CLAUSE schedule(static)

Listing 4.2: Header file <triad.h> for the triad benchmark.

1 for (int j = 0; j < n; j++){
2 Triad_run(j);
3 }

Listing 4.3: The execution schedule of the benchmark driver generated by
combining the input file <triad_run.c> and the template.

the polyhedral model. The results are equivalent.

The AdaptMemBench triad driver and the STREAM benchmark are both com-

piled with g++ and gcc compilers respectively. In figure 4.1a, we observe a near-

to-perfect match of bandwidth values between AdaptMemBench and STREAM for

serial execution, with a minor deviation during the transition from L3 cache to main

memory. However, in case of parallel execution with 28 threads (figure 4.1b), our

benchmark achieves higher bandwidth than STREAM in most working set sizes.

There are two primary differences between the two benchmarks that cause this. First,

the use of the C++ compiler rather than the C compiler in AdaptMemBench, and

second, the use of dynamic memory allocation in AdaptMemBench.
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(a) Serial Execution (b) Parallel Execution with 28 Threads

Figure 4.1: Validating AdaptMemBench with STREAM for serial and parallel execu-
tion.

4.1.2 Cost of Barriers in OpenMP

We use the triad benchmark generated by AdaptMemBench to evaluate the over-

head associated with barriers in OpenMP. Triad is specifically chosen due to its

simplicity and minimal dependencies associated with the pattern. A barrier is a

synchronization mechanism in which, at a point of execution in a parallel program,

all active threads wait for each other until all the threads in the team arrive at

that point (figure 4.2). Many directive-based parallel programming models such as

OpenMP impose implicit barriers to avoid race conditions. Implicit barriers when

induced at a part of a program that involves threads that are independent of each

other, causes unnecessary performance bottlenecks.

In OpenMP, barriers could be explicitly avoided by adding a nowait clause to

the pragma omp for construct in the inner loop of the triad benchmark. With the

AdaptMemBench framework, creation of such a benchmark driver is simplified by just

modifying the definition of the macro CLAUSE in the header triad.h to be nowait.
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Figure 4.2: Illustration of barriers in multithreaded programming.

As memory bandwidth results in Figure 4.3 indicate, there is a significant overhead

caused by the barrier, and by breaking the barrier using the nowait clause, we are

able to achieve a reasonable speedup. Though this modification may not be possible

for all computations, e.g. those that have loop carried dependencies, our intention

is to demonstrate the performance degradation caused by implicit locks using the

simplistic triad kernel.

4.1.3 Overhead of Shared Data Spaces

The shape of the curve in the performance results on the triad benchmark is

disconcerting. Specifically, bandwidth in L1 is less than that in L2. There is a

significant amount of overhead to utilize shared memory parallel applications. We

explore the performance bottleneck caused by cross-thread communication with two

variants of the triad benchmark: unified data spaces and independent data spaces.

The first variant is implemented with unified data spaces using OpenMP’s work

sharing constructs. Listing 4.4 is a part of the benchmark driver generated from

the unified data spaces template with the macro OMP_CLAUSE in triad.h set to
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Figure 4.3: The impact of OpenMP barriers on achieved memory bandwidth.

schedule(static, n/t) nowait.

1 for(int k = 0; k < ntimes; k++) {
2 #pragma omp parallel for schedule(static , n/t) nowait
3 for (int i = 0; i < n; i++){
4 A[i] = B[i] + scalar * C[i];
5 }
6 }

Listing 4.4: Utilizing the OpenMP work sharing construct for data spaces of size
n and t number of threads.

The second benchmark uses the independent data spaces template from Listing 3.2

implemented with distinct data spaces independent of the threads. The data mapping

for the data structures in the header file triad.h are modified to be A[t_id], B[t_id]

and C[t_id]. The listing 4.5 shows the resulting execution schedule after macro

expansion in the generated driver.

Memory bandwidth results in Figure 4.4 clearly indicate the benefit of using

distinct data spaces over the shared data spaces variant implemented using OpenMP
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1 int N = n/t;
2 #pragma omp parallel
3 {
4 int t_id = omp_get_thread_num ();
5 for(int k = 0; k < ntimes; k++) {
6 for (int i = 0; i < N; i++){
7 A[t_id][i] = B[t_id][i] + scalar * C[t_id][i];
8 }
9 }

10 }

Listing 4.5: The resultant triad benchmark using the independent data spaces
driver template

work-sharing and scheduling constructs. Using independent data spaces separates

data domains into separate memory regions, eliminating cross-thread communication.

This in turn eliminates performance bottlenecks, for example, avoiding multiple

threads accessing the same cache line. We observe an approximate two-fold per-

formance boost in the L1 cache with this approach compared to unified data spaces

using OpenMP work-sharing constructs, which is deemed to be efficient.

Figure 4.4: Illustrating the overhead associated with data shared among threads.
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Figure 4.5: An experiment to identify the number of data streams fetching simulta-
neously that gives optimal performance on parallel execution with 28 threads.

1 for (int i = 0; i < n/2; i++){
2 A[i] = B[i] + scalar * C[i];
3 A[i+n/2] = B[i+n/2] + scalar * C[i+n/2];
4 }

Listing 4.6: Customized benchmark driver with unified spaces illustrating
interleaved optimization for triad

4.1.4 Interleaved Scheduling

The triad pattern that comprises three data spaces is often considered to yield

optimal performance in a given architecture. With the configurability offered by our

benchmarking framework, we expand the number of data spaces evaluated from 3 (in

triad) to 20 data streams that are simultaneously read in the body of the loop. This is
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Figure 4.6: Illustration of interleaved optimization with a single data space of size n.

achieved by modifying the statement definition and memory allocation specifications

in the header file. The framework generates each of the drivers by accepting the

triad pattern and the number of data streams triad has to be expanded to, without

requiring the user to manually manipulate pattern specifications for each driver.

Figure 4.5 shows the results of running this experiment in parallel with 28 threads.

The memory bandwidth values are inconsistent for working set sizes that sit in L1

cache since small data sets are shared among a large number of threads. Considering

working sets in L2 cache, where the performance is more consistent, we observe that

the achieved memory bandwidth peaks for 11 data spaces, which is considerably higher

when compared to triad that comprises 3 data streams. Not all access patterns may

require access to such number of data spaces. We thus reschedule triad to represent

the kernel to utilize more number of data streams and improve its overall performance

by better exploiting the benefit of prefetching.

Listing 4.6 describes the interleaved execution schedule implemented for triad.
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This schedule splits each data spaces of size n into two independent data blocks of

size n
2
each. Each of these blocks are executed simultaneously within a single iteration

by fusing their execution. This reduces the number of iterations to half of the total,

which means, the data elements at [0.....n
2
− 1] and [n

2
.....n] are accessed in n

2

iterations.

Figure 4.6 illustrates how a single data space is interleaved into two blocks and

fused together to be accessed simultaneously within a single iteration. In the case of

triad, this implies that the three data spaces access six prefetching lanes simultane-

ously. This behavior is equivalent to the hexad operation which comprises six data

spaces that accesses six prefetching lanes.

Figure 4.7: Interleaved optimization for triad is beneficial in L1 cache on parallel
execution with 28 threads.

Performance results in Figure 4.7 illustrate the improvement in achieved band-

width for triad in the L1 cache. A maximum speedup of 22% is observed from the
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naïve triad operation implemented with independent data spaces. For working set

sizes outside of the L1 cache, this optimization is ineffective, and hence the working set

size is a crucial factor when applying the interleaved schedule. The memory achieved

memory bandwidth is quite similar for the interleaved triad (3 data spaces) and the

naïve hexad (6 data spaces), both of which access 6 prefetching lanes. We attempted

interleaving data spaces for triad with interleaving factors greater than 2, but the

resulting execution schedules do not perform better.

4.2 One-dimensional Jacobi Kernel

This section provides background on stencil computations and then an evaluation

on the impact of false sharing for the 3-pt Jacobi 1D kernel.

4.2.1 Stencil Computations

Stencil computations are algorithmic patterns at the core of a wide range of scien-

tific applications. They are represented under the Structures Grid motif [4], one of the

seven motifs of high performance computing. In a typical stencil computation, each

element of a multidimensional grid is (iteratively) updated by performing a stencil

operation to a neighborhood of its elements. This applies a stencil function, which

describes the choice of neighboring elements accessed to perform the corresponding

operation.

Stencil patterns with lower arithmetic intensity are mostly memory bandwidth-

limited and data locality in caches impact achieved performance. Optimizing stencils

to maximize performance has been researched for many years. The case study on

stencil patterns using AdaptMemBench showcase an optimization space exploration.
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Incorporation of the polyhedral model into the proposed framework offers a flexible

proving ground for code transformations.

Figure 4.8: An illustration of 3-point 1D Jacobi iterative stencil.

In this thesis, we consider Jacobi iterative stencil loops, where the result of

updating the grid is stored in a secondary grid instead of overwriting the values of the

input grid. We implement 3-point 1D, 9-point 2D and 7-point 3D Jacobi operations

in this work. For these patterns, we study the impact of false sharing and the efficacy

of existing tiling optimizations.

4.2.2 Impact of False Sharing

Figure 4.9 demonstrates the process of custom benchmark generation for 3-pt

Jacobi 1D using polyhedral code generation with the input pattern specifications

using the unified data spaces benchmark template. Allocating independent spaces is

advantageous for this pattern as well, as reflected by the memory bandwidth results in

Figure 4.10. However, performance scaling in L1 is still an issue, due to false sharing.
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Figure 4.9: Illustration of custom benchmark generation for 3-pt Jacobi 1D kernel
with unified data spaces using the polyhedral model.

Figure 4.10: Demonstration of overhead associated with shared data spaces in SMP
systems with Jacobi 1D.
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1 #pragma omp parallel
2 {
3 int t_id = omp_get_thread_num ();
4 for(int k = 0; k < ntimes; k++) {
5 for (int i = 1; i < n - 1; i++){
6 A[t_id * 8][i] = (B[t_id * 8][i - 1] + B[t_id * 8][i] + B

[t_id * 8][i + 1]) * 0.33;
7 }
8 }
9 }

Listing 4.7: The resultant independent data spaces benchmark driver reflecting
array padding for Jacobi 1D

In symmetric multiprocessing systems, where each processor core has dedicated

local cache(s), false sharing is a well-known performance issue. False sharing occurs

when multiple threads involve in modifying independent variables sharing the same

cache line, requiring unnecessary cache flushes and subsequent loads. The potential

source of false sharing is multiple threads accessing dynamically allocated or global

shared data structures simultaneously.

Padding arrays is a common solution to overcome false sharing. In the architecture

evaluated, each cache line is of size 64 bytes. As shown in Listing 4.7, the data

spaces of type double are padded with a factor 8 to allocate each element in different

cache lines to avoid false sharing. With AdaptMemBench, this can be achieved just

by modifying the memory mapping with the scaled padding factor for each data

structure. Eliminating false sharing leads to a drastic performance speedup in the L1

cache, as the results in Figure 4.10 reflect.

The impact of false sharing is assessed by recording the performance counters

using PAPI. We measure the data cache hits in L1 and the requests for exclusive

access to shared cache lines in Figures 4.11 and 4.12. We observe that the shared

data spaces get affected by cache misses nearly 10 times more than the independent



51

(a) Independent Data Spaces (b) Number of requests to shared cache line

Figure 4.11: Number of L1 data cache misses for 3-pt Jacobi 1D.

data spaces (Figure 4.11). The cache misses recorded for independent data spaces is

much lesser, but the variation in number of exclusive requests to clean cache line for

the three cases in Figure 4.12 is much higher for L1 in the case that suffers from false

sharing. The PAPI results were collected by running the same code configurations

with a PAPI driver within the framework, and the memory bandwidth results are

exclusive of the minimal overhead of accessing hardware counters.

The source of false sharing needs to be identified and carefully avoided without

hindering the effective use of the available caches. This experiment showcases the abil-

ity of AdaptMemBench to identify the performance bottlenecks in isolated hotspots

of an application. This framework assists in analyzing the approaches of overcoming

such bottlenecks, and evaluate the potential gains of that optimization.

4.3 Performance Comparison Across Compute Kernels

Application performance is a function of the memory footprint, instruction mix

and order, memory access patterns, and achieved memory bandwidth. Forming
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(a) Independent Data Spaces (b) Number of requests to shared cache line

Figure 4.12: Number of requests for exclusive access to shared cache line for 3-pt
Jacobi 1D.

reasonable expectations for application performance requires understanding these

application characteristics, target resource behavior, and their interactions. In this

section, we evaluate the impact on achieved performance due to small changes in the

application characteristics.

To understand this, we consider the following access patterns which are apparently

similar and simple: triad, scale, and Jacobi 1D. Triad writes to a single data space

in a streaming pattern while reading from two data spaces in the same pattern. It

is commonly used for benchmarking systems. Scale and Jacobi 1D both write to a

single dataspace in a streaming pattern and read from a single data space. The read

pattern in Jacobi requires 3 neighboring values be in registers simultaneously, and

performs two additions along with the multiply it has in common with scale.

• Triad [38]: a[i] = b[i] + scalar * c[i]

• Scale [38]: a[i] = scalar * b[i]
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• Jacobi 1D: a[i] = (b[i-1]+b[i]+b[i+1])*.33

(a) Memory Performance in GiB/s (b) Memory Performance in GFLOPS/s

Figure 4.13: Comparing the performance of Triad, Scale and 3-pt Jacobi 1D.

Figure 4.13 illustrates how widely their performance varies with small changes in

the instruction mix and order, and the access pattern. Viewing performance as a

function of bandwidth shows that triad is the more efficient pattern and viewing it

as a function of FLOPs per second shows that Jacobi 1D performs best. The data

presented in Figure 4.13 are benchmarked results from the drivers generated using

the independent data spaces template avoiding false sharing. The benchmark driver

for scale is generated similar to the driver created for triad in section 4.1.3, after

modifying the pattern specifications accordingly for scale. demonstrate the impact of

access patterns. The case studies on streaming kernels, stencil patterns and indirect

access patterns using AdaptMemBench in this chapter further elaborate on the impact

of application characterisitics on achieved performance for a given access pattern.
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Figure 4.14: Illustration of custom benchmark generation for 9-pt Jacobi 2D kernel
with unified data spaces using the polyhedral model.

4.4 Multidimensional Jacobi Kernels

In this section, we evaluate the 9-pt Jacobi 2D and 7-pt Jacobi 3D kernels. The

case study on tiling transformations showcases an optimization space exploration

using AdaptMemBench.

The process of creating a custom benchmark driver for 9-pt Jacobi 2D using

unified data spaces is illustrated in Figure 4.14. A 7-point Jacobi 3D benchmark

driver can be similarly created with an added dimension to the code generation script

and corresponding modifications to the pattern specification. The benchmark drivers

for these two patterns can similarly be created using the independent data spaces

template to understand the effect of shared data spaces and false sharing.

From Figures 4.15a and 4.15b, it can be observed that separating data spaces into

different memory regions is beneficial for both Jacobi 2D and Jacobi 3D. However,



55

(a) 9-pt Jacobi 2D (b) 7-pt Jacobi 3D

Figure 4.15: Impact of varying memory allocations for Jacobi 2D and Jacobi 3D.

false sharing doesn’t affect performance and both the patterns struggle to scale in the

L1 cache. For multidimensional stencils, factors beyond false sharing such as cache

locality affect performance, which motivates us for tiling optimizations.

4.4.1 Tiling Optimizations

Though currently available caches are significantly large, stencil computations

perform global sweeps through data spaces that are generally beyond the capacity of

the data caches. The magnitude of data reuse is constrained to the typically small

number of points in the stencil. This affects data locality in cache, which influences

execution time within each computing node. Hence, these computations achieve only

a small fraction of the theoretical peak performance.

Over the years, several optimization techniques [48, 45, 35, 31, 67, 8] have been

proposed to improve the performance of multiple nested loops which are generally

the most time-consuming parts of computationally intensive programs. Loop tiling

optimizations [42, 66, 51, 20, 7] are one of those, which attempt to exploit data locality
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(a) The original iteration space. (b) Modified iteration space on tiling

Figure 4.16: An illustration of the iteration space of two-dimensional stencil operation
upon tiling.

in caches by operating computations on cache-sized chunks of data called tiles before

moving on to the next tile. The size and shape of the tiles, and the scheduling strategy

are the factors which impact locality, parallelism and communication cost of the code

upon tiling.

Spatial Tiling Strategies

Rectangular space tiling [26] is one of the traditional optimization strategies for

stencil computations. Rectangular tiling breaks a large iteration space into a set

of smaller iteration spaces, which improves spatial and temporal locality. When

iterating over a large two-dimensional data space applying a multipoint stencil, it is

highly probable that one of the neighbors accessed would have fallen out of the cache

while the iteration comes around to the same point again. Tiling iteration space

eliminates such cache misses and improves data reuse. This optimization is explored,

not to provide another data point on the impact of tiling, but to demonstrate the

advantages of including polyhedral code representations in the framework.
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Tiling 9-pt Jacobi 2D

We implement the rectangular tiling strategy on a 9-point 2D Jacobi iterative

stencil. We initially decompose the equidimensional 2D iteration space into smaller

square tiles of size ranging from 16 to 256 for a maximum grid size of 3000. With the

results obtained on square tiling, we observed it is not beneficial for any data size,

even on collapsing the loop nests using OpenMP. Listing 4.8 shows the input code to

polyhedral compiler and the corresponding code generated.

1 Domain_run := [n] -> {
2 J2D_Tiling_run[j,i] : i <= n and i >= 1 and j<=n and j >= 1;
3 };
4 Tiling := [n] -> {
5 J2D_Tiling_run[j,i] -> J2D_Tiling_run[tj,ti,j,i]: exists rj ,ri

:
6 and 0<=rj <64 and j=tj*64+rj
7 and 0<=ri <32 and i=ti*32+ri;
8 };
9 codegen (Tiling * Domain_run);

1 for (int c0 = 0; c0 <= floord(n, 64); c0 += 1)
2 for (int c1 = 0; c1 <= n / 32; c1 += 1)
3 for (int c2 = max(1, 64 * c0); c2 <= min(n, 64 * c0 + (64 -

1)); c2 += 1)
4 for (int c3 = max(1, 32 * c1); c3 <= min(n, 32 * c1 + (32 -

1)); c3 += 1)
5 J2D_Tiling_run(c2 , c3);

Listing 4.8: ISCC script Jacobi2D_xy_tiled.in and the generated C code file
Jacobi2D_xy_tiled.c.

A rectangular tile sweep, i.e., an exhaustive search for the most performant tile

size and shape was performed. The memory bandwidth results are plotted in the

perpendicular y-axis of the 3D graph with horizontal z-axis denoting the area of the

tiles executed for the working set sizes in x-axis. We observe no speedup with any tile

area for any data size in figure 4.17, compared to the peak performance of each data
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Figure 4.17: Achieved memory bandwidth with rectangular sweep for Jacobi 2D with
a tile sweep for sizes ranging from 16 to 256 in both the directions. Higher the
bandwidth, better is the memory performance.

size in figure 4.15a. The reason for this well-known tiling strategy being ineffective in

practice is largely-sized on-chip data caches in modern microprocessors, causing the

entire data space to fit in caches, limiting data reuse [28].

Tiling 7-pt Jacobi 3D

We now implement this spatial tiling strategy on the 7-point Jacobi 3D transfor-

mation. The initial approach is to tile in the 3D grid in all directions. We initially

block the iteration space in all the three dimensions, for block sizes 16× 16, 32× 32

and 64×64. The experimental results show no performance gain with strategy caused

by poor spatial locality due to frequent discontinuities in the memory stream since

the array elements are read in a non-contiguous fashion (as described in [28]).
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We implement the partial blocking strategy [45] in which blocking is done in two

least significant dimensions alone. This results in a series of 2D slices that are stacked

one over the other in the unblocked dimension. Listing 4.9 shows the ISCC input

script and corresponding C code file generated for this benchmark. AdaptMemBench

simplifies the implementation of this optimization with this input ISCC script as

execution schedule file with the other pattern specifications remaining the same as

for the naïve Jacobi 3D benchmark.

1 Domain_run := [n] -> {
2 STM_3DS_run[k,j,i] : i <= n and i >= 1 and j<=n and j >= 1

and k<=n and k >= 1;
3 };
4 Tiling := [n] -> {
5 STM_3DS_run[k,j,i] -> STM_3DS_run[tk,tj,ti,k,j,i]: exists rk,

rj ,ri:
6 0<=rk <32 and k=tk*32+rk
7 and 0<=rj <64 and j=tj*64+rj
8 };
9 codegen (Tiling * Domain_run);

1 for (int c0 = 0; c0 <= floord(n, 64); c0 += 1)
2 for (int c1 = 0; c1 <= n / 32; c1 += 1)
3 for (int c2 = max(1, 64 * c0); c2 <= min(n, 64 * c0 + 63); c2

+= 1)
4 for (int c3 = max(1, 32 * c1); c3 <= min(n, 32 * c1 + 31);

c3 += 1)
5 for (int c4 = 1; c4 <= n; c4 += 1)
6 STM_3DS_run(c2 , c3, c4);

Listing 4.9: ISCC script Jacobi3D_xyz_tiled.in and the generated C code file
Jacobi3D_xyz_tiled.c.

We tested the efficacy of this technique on grid sizes up to 256, with block

sizes ranging from 16 to 64 in both directions. This approach too does not offer

any speedup if we compare the peak bandwidth from Figure 4.15b with the most

performant block area in figure 4.18. Large on-chip caches affect cache reuse and thus

offer no performance gain with this blocking strategy. Increasing grid sizes would be
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Figure 4.18: Achieved memory bandwidth with 2D Cache blocking for Jacobi 3D with
a tile sweep for sizes ranging from 16 to 64 in both the tiled directions. Higher the
bandwidth, the better is the memory performance.

impractical since many scientific applications, such as computation fluid dynamics,

typically use a box size of 643 or less [3].

These results confirm conclusions from previous studies [28, 14, 27] on these

tiling strategies performed for serial execution. We extend these studies to parallel

applications and systems using with the flexibility of the polyhedral model offered by

AdaptMemBench. This behavior of spatial tiling strategies motivates us to evaluate

temporal tiling strategies such as the overlapped tiling [31].

Temporal Overlapped Tiling

Overlapped Tiling [31] is a space-time tiling strategy that eliminates inter-tile

dependencies by duplicating points in the original iteration space, implying that same
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iteration point can be member of neighboring tiles, as in figure 4.19. This is achieved

by adding a triangular region to the side of a standard tile overlapping with the

iteration points in the right end of the neighboring tile. This removes dependency

between adjacent tiles in the horizontal direction. This strategy improves data locality

and eliminates the overhead of pipelined parallelism at the cost of slightly increased

computational time.

Figure 4.19: Overlapped tiling with 1D stencil and 1D time.

We implement the overlapped tiling technique on the 9-pt Jacobi 2D benchmark

(figure 4.14). The listings 4.10 and 4.11 respectively show the ISCC input script and

the corresponding tiling code generated. The first step is to unroll the outermost

time iterator loop by 4. Each of the resulting iterations are tiled with overlapping

iteration points across all the directions, the tile iterators are fused together for all

the four unrolled iterations.

1 J2D_overlapped := [ntimes ,n] -> {

2 S1[t,i,j]->[t,ii ,jj ,0,i,j] : exists a,ri,rj: 1 <= t <= ntimes

&& t = 4a + 1 && 1 <= i <= n && 1 <= j <= n &&

3 0-3<=ri <8+3 and i=ii*8+ri

4 and 0-3<=rj <8+3 and j=jj*8+rj;

5
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6 S2[t,i,j]->[t,ii ,jj ,1,i,j] : exists a,ri,rj: 1 <= t <= ntimes &&

t = 4a + 1 && 1 <= i <= n && 1 <= j <= n &&

7 0-2<=ri <8+2 and i=ii*8+ri

8 and 0-2<=rj <8+2 and j=jj*8+rj ;

9

10 S3[t,i,j]->[t,ii ,jj ,2,i,j] : exists a,ri,rj: 1 <= t <= ntimes &&

t = 4a + 1 && 1 <= i <= n && 1 <= j <= n &&

11 0-1<=ri <8+1 and i=ii*8+ri

12 and -1<=rj <8+1 and j=jj*8+rj ;

13

14 S4[t,i,j]->[t,ii ,jj ,3,i,j] : exists a,ri,rj: 1 <= t <= ntimes &&

t = 4a + 1 && 1 <= i <= n && 1 <= j <= n &&

15 0<=ri <8 and i=ii*8+ri

16 and 0<=rj <8 and j=jj*8+rj ;};

17

18 codegen(J2D_overlapped);

Listing 4.10: ISCC script Jacobi2D_overlapped_tiled.in

1 for (int c0 = 1; c0 <= ntimes; c0 += 4)

2 for (int c1 = -1; c1 <= floord(n + 3, 8); c1 += 1)

3 for (int c2 = -1; c2 <= floord(n + 3, 8); c2 += 1) {

4 for (int c4 = max(1, 8 * c1 - 3); c4 <= min(n, 8 * c1 + 10)

; c4 += 1)

5 for (int c5 = max(1, 8 * c2 - 3); c5 <= min(n, 8 * c2 +

10); c5 += 1)

6 S1(c0, c4, c5);

7 for (int c4 = max(1, 8 * c1 - 2); c4 <= min(n, 8 * c1 + 9);

c4 += 1)

8 for (int c5 = max(1, 8 * c2 - 2); c5 <= min(n, 8 * c2 +

9); c5 += 1)
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9 S2(c0, c4, c5);

10 for (int c4 = max(1, 8 * c1 - 1); c4 <= min(n, 8 * c1 + 8);

c4 += 1)

11 for (int c5 = max(1, 8 * c2 - 1); c5 <= min(n, 8 * c2 +

8); c5 += 1)

12 S3(c0, c4, c5);

13 for (int c4 = max(1, 8 * c1); c4 <= min(n, 8 * c1 + 7); c4

+= 1)

14 for (int c5 = max(1, 8 * c2); c5 <= min(n, 8 * c2 + 7);

c5 += 1)

15 S4(c0, c4, c5);

16 }

17

Listing 4.11: The generated C code file Jacobi2D_overlapped_tiled.c

Overlapped tiling is evaluated with square grids of sizes 32, 64, 128, 256, 384,

512, 768, 1024, and 2048 in both the directions. Rectangular overlapping tile sizes of

8, 16, 32, 48, 64, and 128 in each direction were applied. For comparison, the same

benchmarking constraints were applied for spatial rectangular tiling.

The achieved memory performance results comparing the original schedule, spa-

tial rectangular tiling, and temporal tiling are shown in figure 4.20. The blue bar

represents the achieved memory bandwidth with the actual schedule without tiling.

The orange and green bars represent the most performant tile for rectangular tiling

and overlapped tiling respectively.

As results indicate, the overlapped tiling consistently achieves higher performance

compared to spatial tiling and the original schedule. Rectangular tiling is ineffective

for grid sizes that fit into the caches. This tiling experiment clearly exhibits the
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Figure 4.20: Comparing the achieved memory bandwidth between the original sched-
ule, spatial rectangular tiling, and temporal overlapped tiling.

flexibility of the proposed framework for evaluating potential optimizations for given

patterns. Other temporal tiling strategies such as the diamond tiling [7], time-skewing

[67], cache oblivious blocking [20] can be implemented with AdaptMemBench, which

is not covered in this work.

4.5 Sparse Matrix-Vector Multiplication

Sparse matrix computations are at the heart of various applications that involve

iterative methods for solving large sparse linear systems, graph applications, and

molecular dynamics. Sparse matrix representations store only the non-zero values

of the matrix using supplementary arrays to record the row and column positions.

These computations are memory bandwidth limited due to irregular accesses to these

supplementary arrays and achieve only a fraction of theoretical peak performance.

In this thesis, we implement the Sparse Matrix-Vector (SpMV) multiplication

kernel using AdaptMemBench to demonstrate its support for indirect memory ac-

cess patterns. The SpMV kernel is commonly used in conjugate gradient solvers



65

in sparse linear algebra. This kernel typically achieves 10% or less of the peak

memory bandwidth [65], which motivates us to explore its performance with different

representations using AdaptMemBench.

The SpMV kernel multiplies a sparse matrix with a dense vector and the resultant

is a dense vector. Using index notations [44], it can be represented as:

yi = Aij · xj

where A is the input sparse matrix and x and y are the input and resultant dense

matrices respectively.

In this work, we implement the SpMV kernel with Coordinate (COO), Com-

pressed Sparse Row (CSR), Block CSR (BCSR), Diagonal (DIA), and Ellpack (ELL)

formats (each of which is described in chapter 2.4). These SpMV representations

are benchmarked with a collection of real-world sparse matrices with varying sparsity

structures.

4.5.1 SpMV Implementation

Sparse matrix representations mostly store the non-zero data elements reducing

computation and storage requirements. These storage representations involve indi-

rection matrices to locate the non-zero elements in the corresponding dense matrix,

and thus these memory access patterns are irregular and unpredictable at compile

time. The block CSR, Ellpack and Diagonal representations exploit the structure

of non-zero elements present in the sparse matrix by inserting a small number of

zero-valued elements into sparse representations. This in effect makes the access

patterns more sparse and regular, at the cost of increasing computations.
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The irregular access patterns involve non-affine code constructs with indirect

accesses like X[Y[i]]. In this thesis, we represent the polyhedral schedules for these

constructs using uninterpreted functions supported by the Omega+ library [11]. Un-

interpreted functions are mathematical symbols that act as placeholders and consist

of a name and an n-ary form. The runtime realizations of uninterpreted functions

can be implemented as arrays, functions, or macros. The input and output of

the uninterpreted functions are unknown at compile time and cannot be statically

analyzed, hence the term.

1 for (i = 0; i < N; i++)

2 for(j = index[i]; j < index[i+1]; j++)

3 y[i] += A[j]*x[col[j]];

Listing 4.12: SpMV code based on the CSR format

Listing 4.12 shows the implementation of SpMV based on the CSR format. The

inner loop has non-affine loop bounds and the reference x[col[j]] has a non-affine

array subscript. The iteration space for this SpMV code can be represented as:

I = {[i, j]|0 ≤ i < N ∧ index(i) ≤ j < index(i+ 1)}

The array expression in the loop bound of j is input as an uninterpreted function.

The compiler encodes index as an uninterpreted function of the outer loop i. The

argument to the uninterpreted function is encoded as a relation. The inputs to

the relation are the outer loop variables and the output for the relation is the

array subscript expression. The representation of non-affine loop bounds utilizing

uninterpreted functions paves the way for transformations to manipulate these loop

bounds, which are not evaluated in this work.
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Similar to the CSR representation of SpMV, the SpMV kernel is implemented

with the other storage formats using uninterpreted functions supported by Omega+.

The generated code for COO, BCSR, ELL and DIA formats are shown in listings

4.13, 4.14, 4.15 and 4.16 respectively. The generated code is customized with the

non-affine spaces driver template to create separate benchmark drivers for each of

the storage representations.

1 for (i = 0; i < nnz; ++i)

2 y[row[i]] += A[i] * x[col[i]];

Listing 4.13: SpMV code based on the COO format

1 for (ii = 0; ii < N/R; ii++) {

2 for (jj = brow[ii]; jj < row[ii+1]; jj++) {

3 kk = bcol[jj];

4 for (ri = 0; ri < R; ri++) {

5 for (ck = 0; ck < C; ck++) {

6 i = ii * R + ri;

7 k = kk * C + ck;

8 m = offset3(jj, ri , ck , R, C);

9 y[i] += a[m] * x[k];

10 }

11 }

12 }

13 }

Listing 4.14: SpMV code based on the Block CSR format

1 for (i = 0; i < N; i++) {

2 for (j = 0; j < M; j++) {

3 k = cols[offset2(j,i,N)];
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4 y[i] += A[offset2(j,i,N)] * x[k];

5 }

6 }

Listing 4.15: SpMV code based on the Ellpack format

1 for (i = 0; i < N; i++) {

2 for (d = 0; d < ND; d++) {

3 k = ND * i + d;

4 j = (i + offsets[d]) % N;

5 y[i] += A[k] * x[j];

6 }

7 }

Listing 4.16: SpMV code based on the Diagonal format

4.5.2 Evaluation

Table 4.2: Summary of the real-world sparse matrices from the SuiteSparse Matrix
Collection [15] used in the experiment.

Matrix Domain Dimensions Non-zeros Density
solver100K CFD 105127×154699 8018171 6×10−4

Facebook75K Social Media 75027×105436 2185005 2×10−4

microEco2 Economics 195220×195220 3854576 4×10−4

spectral Machine Learning 250050×250050 6562418 1×10−3

lbnl01 Networking 241628×241628 8564504 2×10−3

tweetsre1 Social Media 95250×125740 7528526 2×10−3

pdb1M Protein Database 325245×325245 12854678 1×10−3

webbase Web connectivity 285475×285475 850379 9×10−5

pwtk Wind tunnel 157427×101525 4505420 2×10−4

scircuit Circuit 75452×156214 3505465 8×10−3
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(a) solver100K (b) Facebook75K

(c) microEco2 (d) spectral

(e) lbnl01 (f) tweetsre1
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(g) pdb1M (h) webbase

(i) pwtk (j) scircuit

Figure 4.21: Sparse matrices from real-world applications with varying non-zero
structures.

The different SpMV implementations are benchmarked with real-world matrices

from the SuiteSparse Matrix Collection [15]. Table 4.2 reports some of the relevant

statistics pertaining to these sparse matrices. Figure 4.21 shows pictures of each of

the chosen matrices with varying density of non-zeros.

The sparse matrices were specifically chosen with an expectation to suit the

different storage representations based on the structure of non-zeros present in the

matrices. For example, we expect tweetsre1 and spectral to perform well with
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BCSR format, and microEco2 and Facebook75K to be suitable for the Diagonal

format.

Each of the SpMV benchmarks is executed with these ten sparse matrices. Each

benchmark is executed 10 times and the average execution time is plotted in figure

4.22. The x-axis in the graph represents the 10 matrices benchmarked and the y-axis

represents the average execution time in seconds.

The performance results are as expected. The following are the observations from

these results:

• The sparse matrices Facebook75K and solver100K perform the best with the

Ellpack format since both of these matrices consist a similar of number non-zeros

in each row.

• Both DIA and BCSR representations run with lower execution times for spectral

since it has non-zeros clustered at the diagonal in the form of blocks.

• tweetsre1, lbnl01 and spectral perform the best with BCSR format since

the non-zeros in these matrices are structured as blocks.

• The Diagonal format suits microEco2 and spectral with the non-zero data

elements in these matrices being dense at the diagonals.

As expected, we observe that no sparse matrix storage format is universally

superior, each representation is well-suited for distinguishing conditions. The ideal

format for sparse matrix computations depends on the structure and sparsity of

the data. An application may require any, or several of these formats, and hence

AdaptMemBench provides a unified flexible framework to examine the performance

variation between different sparse representations for a given computation. This



72

Figure 4.22: Comparing the execution time of the SpMV kernel implemented with
different sparse matrix representations.

framework enhances reproducibility of performance results which could be shared

between research groups and helps compare the results across different architectures.

4.6 Summary

The AdaptMemBench framework offers a convenient mechanism for manipulating

isolated kernels from larger applications and measures execution characteristics. This

framework assists in identifying the source of performance bottlenecks, testing po-

tential optimizations of overcoming those bottlenecks, and interpreting the potential

benefits of those optimizations. AdaptMemBench aids in experimenting with different

data storage layouts, execution orders and parallelization strategies. This enhances

reproducibility and sharing performance results, and porting to new systems. The

case studies on diverse compute kernels in this chapter showcased the various capa-

bilities of the proposed benchmarking framework, which are summarized as follows:

• The convenience to modify the memory mapping, execution order, and the state-

ment instances, and the access to hardware counters facilitated evaluation of
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the impact of cross-thread communication and cache coherency on the memory

performance of streaming and stencil patterns.

• The flexibility of the framework aided in manipulating the number of data

spaces accessed in the triad. This experiment led to an interleaved execution

schedule that achieved a speedup for triad in the L1 cache.

• The accommodation of the polyhedral model in the build system simplified the

study on spatial and temporal tiling optimizations for multidimensional stencil

operations, without requiring to rewrite the entire computation.

• AdaptMemBench’s support for indirect memory access patterns enabled the

performance comparison of sparse matrix operations implemented with different

sparse matrix representations, benchmarked using real-world sparse matrices of

varying sparsity structures.
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Chapter 5

RELATED WORK

Several categories of memory benchmarks have been developed over the years.

Most relevant to our work are the streaming bandwidth benchmarks, which use a

predefined set of access patterns to measure achieved memory bandwidth, the stencil

benchmarks and the cache bandwidth benchmarks. The following sections present

representatives from each benchmarking category.

The proposed benchmarking framework adds capabilities beyond these bench-

marks by offering configurability to explore the performance of scientific applications.

It emulates application-specific memory access patterns and enhances reproducibility

of performance results across different large-scale applications and architectures. It

is a flexible and consistent proving ground for various code optimizations without

needing to modify or port the entire application.

5.1 Streaming Bandwidth Benchmarks

STREAM [38] is a microbenchmark that measures sustainable memory bandwidth

and the corresponding computation rates for the performance evaluation of high

performance computing systems. STREAM measures the performance of four op-

erations: COPY (a[i] = b[i], measures data transfer without arithmetic), SCALE

(a[i] = q*b[i], with a simple arithmetic operation), SUM (a[i] = b[i] + c[i],
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tests multiple load and store operations) and TRIAD (a[i] = b[i] + q*c[i]). The

STREAM benchmark does not measure memory bandwidth for small data sizes in

the higher levels of memory hierarchy, i.e., in level 1 cache and some portions of

level 2 cache, depending on the target architecture. AdaptMemBench calculates the

cumulative computation time for the overall execution of the kernel and enabling it

to explore achieved performance in higher levels of cache.

MultiMAPS [50, 57] is a benchmark probe designed to measure platform-specific

bandwidths, similar to STREAM, it accesses data arrays repeatedly. In MultiMAPS,

the access pattern is varied in stride and array size varying spatial and temporal

locality. It measures achieved memory bandwidth of different memory levels, different

size working sets and a small set of access patterns. This benchmark is most closely

related to ours. The primary difference is the ability of AdaptMemBench to include

arbitrary memory access patterns, and test optimization strategies.

Stanza triad [28], a microbenchmark, is a derivative of STREAM, which measures

the impact of prefetching on modern microprocessors. It works by comparing the

bandwidth measurements by varying stanza length L and stride of access S for

different data sizes and predicts performance. This being a serial benchmark, cannot

be scaled to parallel applications, and cannot be configured for patterns other than

triad.

5.2 Synthetic Memory Benchmarks

Apex-MAP [53] is a synthetic benchmark that characterizes application perfor-

mance, implemented sequentially [54], and in parallel using MPI [55]. This benchmark

approximates the memory access performance based on concurrent address streams
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considering regularity of access pattern, spatial locality, and temporal reuse. Using a

set of characteristic performance factors, its execution profile is tuned such that these

factors act as a proxy for the performance behavior of code with similar characteristics.

Stencil Probe [28] is a lightweight, flexible stencil application-specific benchmark

that explores the behavior of grid-based computations. Stencil Probe mimics appli-

cation kernels that use stencils on structured grids by modifying the operations in the

inner loop of the benchmark. Similar to Stanza Triad, this benchmark is serial and

cannot be extended to large-scale parallel applications and systems. Furthermore,

this probe is not friendly for testing code optimizations and requires rewriting of the

entire benchmark code for each transformation.

Bandwidth [49] is an artificial benchmark to measure memory bandwidth on

x86 and x86_64 based architectures. This benchmark can be used to evaluate the

performance of the memory subsystem, the bus architecture, the cache architecture,

and the processor. Memory bandwidth is measured by performing sequential and

random reads and writes of varying sizes across the levels of the memory hierarchy.

However, this benchmark is neither application-specific nor customizable. It measures

performance based on a predefined set of memory access patterns and cannot be

configured specifically to a target application. Moreover, this benchmark executes

serially and cannot be scaled to parallel systems and applications.

5.3 Application Benchmarks

Application Benchmarks are used as exemplars of application patterns. The NAS

Parallel Benchmarks [6] comprises benchmarks developed to represent the major

types of computations performed by highly parallel supercomputers and mimic the
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computation and data movement characteristics of scientific applications. It consists

of five parallel kernel benchmarks (EP - an embarrassingly parallel kernel, MG - a

simplified multigrid kernel, CG - a conjugate gradient method, FT - fast Fourier

transforms and IS - a large integer sort) and three simulated application benchmarks

(LU - lower and upper triangular system solution, SP - scalar pentadiagonal solver

and BT - set of block tridiagonal equations).

The HPC Challenge benchmark suite [37] provides a set of benchmarks that define

the performance boundaries of future Petascale computing systems. This hybrid

benchmark suite examines the performance of HPC architectures as a function of

memory access characteristics using different access patterns. It is composed of well

known computational kernels such as STREAM, HPL [19], matrix multiply, parallel

matrix transpose, FFT, RandomAccess and bandwidth/latency tests that span high

and low spatial and temporal locality space.

The access patterns used in these application benchmarks is a predefined set and

they do not effectively mimic the kernels found in diverse application code. This thus

makes it intricate to refine their performance results specific to a given application in

the architecture evaluated.

5.4 Cache Bandwidth Benchmarks

Likwid-Bench [60], part of Likwid-Tools [59] performance analysis suite, is de-

signed to measure cache and main memory bandwidth of multithreaded assembly

kernels. It is limited to one-dimensional streams and permits execution of a maximum

of 38 streams, and it is impossible to benchmark multidimensional data structures.

pmbw (Parallel Memory Bandwidth Benchmark) [2] is an effort that overcomes the
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limitations of likwid-bench. However, both of these tools are coded in assembly for

serial execution with architecture-dependent intrinsics for vectorization, requiring to

rewrite the entire benchmark for different instruction sets.

Deakin et. al. present a portable infrastructure [18] that sidesteps this shortcom-

ing by using an extension of the BabelStream [16, 17] benchmark suite (described in

5.5) to determine cache bandwidth, coded using C and OpenMP that is autonomous

of the architecture evaluated. This benchmark is however limited to the four kernels

from the STREAM benchmark. AdaptMemBench is distinct from these works by

allowing for configuration of the benchmarks and measurement of cache and DRAM

bandwidths, and at the same time independent of the instruction sets.

5.5 Benchmarking Heterogeneous Systems

Heterogeneous computing systems are composed of a mix of compute devices

such as commodity multicore processors, graphics processing units, reconfigurable

processors, and others. SHOC [13] is a suite of benchmarks for scalable heterogeneous

computing platforms, targeted at GPUs for the OpenCL and CUDA programming

models. clpeak [9] is a benchmarking tool to measure peak performance capabilities

of GPUs achieved using vector instructions, but is serial in nature and tests only a

single device.

BabelStream [16, 17] is a tool for benchmarking GPUs and supports various

programming models such as CUDA, OpenACC, OpenCL, Raja, and Kokkos. Ba-

belStream doesn’t include transfer time over the PCIe bus, unlike the other GPU

benchmarks like SHOC. BabelStream is an enhancement of the STREAM benchmark

to GPUs, and is thus limited to its four streaming kernels.
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Though AdaptMemBench currently benchmarks only single-node performance

with OpenMP, it can be very well extended to GPUs and support for different parallel

programming models by accommodating different benchmark driver templates in the

future.

5.6 Performance Models

While benchmarks measure achieved performance on a hardware platform, ana-

lytical and theoretical performance models predict the performance or runtime of the

code in question. Performance models reduce complexity by simulating abstractions

which provide a close prediction of the code to be executed, eliminating the need

of running that code on different hardware architectures to understand potential

performance bottlenecks. Benchmarks, on the other hand, provide a perfect and

accurate performance measure of the executed code by actually running those kernels

on the target platform. Thus, benchmarks and performance models deal with a

balance between complexity and accuracy. Theoretical performance models most

relevant to this thesis are the Roofline model and the Execution-Cache-Memory model

which are described in the following subsections.

5.6.1 The Roofline Model

Sustainable memory bandwidth can be predicted using the Roofline Model [47].

This model is optimistic by its design, i.e., it yields an absolute lower execution time

limit for a loop. The model gives the maximum achievable bandwidth for memory

hierarchy on a machine by evaluating arithmetic intensity and a maximum floating

point operations per second (FLOP/s) rate for the architecture. The Roofline model is
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based on the fundamental assumption that data transfer across the memory hierarchy

overlaps perfectly with in-core execution (computational work).

Figure 5.1: Roofline Model for R2 HPC
Cluster at BSU.

The Roofline model for a given archi-

tecture can be plotted using the Empirical

Roofline Toolkit (ERT) [36]. The software

calculates the maximum FLOP/s rate and

arithmetic intensity, from which it derives

the plot. It repeatedly makes calls to either

1-FLOP or 2-FLOP kernel functions (i.e., a

= b + c, a = a*b + c respectively) to ex-

ecute the desired number of FLOPs. Figure

5.1 shows the Roofline model executing a

2-FLOP on a single node with 28 threads

in the R2 cluster.

This model computes the bounds of

memory performance in a given architecture

using simple synthetic application kernels. The Roofline model hence is not indicative

of the performance capabilities of a given application and understand the outcome of

different code transformations.

5.6.2 The Execution-Cache-Memory Model

The Execution-Cache-Memory (ECM) model [58, 23] is based on the same funda-

mental idea as the Roofline model that the data transfer or execution of instructions,

whichever takes longer, determines the runtime of the loop. In contrast to the Roofline

model, it drops the assumption of a single bottleneck- transfers of data through the
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memory hierarchy are serialized across the memory levels of a core and therefore

contribute to the reduction of the total performance overlapping with one another.

This model also presents a more precise metric than floating operations per second:

cycles per cache line (cy/CL), the unit of work that gives more importance to the

cache hierarchy.

The ECM model accommodates Layer Condition (LC) analysis [52, 21] that

allows for predicting cache requirements for stencil codes. The basis of LC analysis

is the least-recently-used (LRU) cache replacement policy, which is not perfectly

implemented in large and real caches, but gives a good estimate on current archi-

tectures like the Intel and AMD CPUs. By taking the relative data access offsets

and assuming sequential increments during the subsequent iterations, access hit/miss

can be predicted depending on given cache sizes. The LC calculator can predict the

optimal tile areas for spatial blocking of stencil codes. This, however, can neither

predict the optimal tile size along each dimension, nor be extended to temporal

blocking strategies. AdaptMemBench provides a testbed to interpret the optimal

tile sizes invariant of the type of the tiling strategy evaluated.
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Chapter 6

CONCLUSIONS

This thesis presents a configurable benchmarking framework to effectively emu-

late application-specific memory access patterns. This enables in characterizing the

memory performance of compute kernels isolated from large applications. Adapt-

MemBench assists in identifying the influence of minor variations in the application

characteristics on the overall performance. The use of the polyhedral model and

associated code generation tools allows for quick development and experimentation

with optimization strategies. This unified framework enhances reproducibility and

sharing of performance results, and porting to new systems.

A collection of case studies exhibited various competences of the proposed bench-

marking framework. The ability to manipulate the memory mapping, execution order,

and the statement instances using AdaptMemBench enabled simplified analysis of the

benefit of using distinct data spaces on threads and evaluate the overhead of false

sharing on streaming and stencil patterns. A comparison of spatial and temporal

tiling strategies was performed on multidimensional stencils with polyhedral code

generation for flexible loop transformations. Sparse matrix-vector multiplication with

different representations involving indirect access patterns was benchmarked with

real-world sparse matrices of varying sparsity structures.
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6.1 Future Directions

The work in this thesis can be extended in different directions which is summarized

below:

• This framework currently supports shared memory parallelization. The sup-

port can be extended to benchmarking Graphics Processing Units (GPUs) and

distributed memory systems by adding more benchmark driver templates.

• Automatic kernel extraction from large applications can be incorporated into or

implemented in AdaptMemBench. KGen [29], Code Isolator [33] and Codelet

Finder [34] are some of the existing tools that automatically extract kernels.

• Using the proposed framework, software-induced and hardware-induced perfor-

mance variability across different architectures can be explored.

• Isolated portions of expensive compute kernels from real-world applications can

be benchmarked using the proposed framework. The kernels studied in this

thesis are proxies of realistic application patterns.

• Extend the case studies to a larger collection of application patterns, beyond

steady-state loop kernels and indirect memory access patterns.
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This appendix explains the infrastructure and build instructions to reproduce the

STREAM triad benchmark results with AdaptMemBench.

1. Installation

For running this benchmarking framework, the following libraries are required

to be installed:

(a) gcc/6.3.0

(b) intel/compiler/64/2018/18.0.1

(c) python/intel/3.5

(d) papi/gcc/5.6.0 (The Performance API [40])

(e) iscc/0.16.1 (The polyhedral code generation tool)

(f) Omega+ Calculator (Part of the CHiLL library [12])

2. Benchmark Customization

The entire process of customizing the driver template by substituting the pat-

tern specifications and generating the benchmark driver code is fully automated

by the means of a python script, which accepts the name of the kernel, driver

template and benchmark mode as command line argument. For the STREAM

triad kernel with timers, the benchmark driver using unified data spaces is

generated as follows:

$ python adaptMemBench_driver_gen template=unified mode=unified

kernel=triad

EXECUTING THE ADAPTMEMBENCH FRAMEWORK
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This creates the benchmark driver file named adapt_membench_triad.cpp cus-

tomized for the STREAM triad kernel with the following user input pattern

specifications.

3. Running the Benchmark

The generated benchmark driver file adapt_membench_triad.cpp is compiled

by running make command from the parent directory.

$ make adapt_membench_triad
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The corresponding executable file named the same as the driver is run with

the benchmark configuration parameters as command line arguments. For this

kernel, the parameters are the working set size in bytes (–wss or -I), the number

of threads (–num_threads or -T) and the total number of iterations (–ntimes

or -N).

$ ./ adapt_membench_triad --wss 1048576 --num_threads 4

--ntimes 1000

4. Performance Results

With the above input configuration parameters for the triad operation, the

following performance results are obtained:

Configuration:adapt_membench_triad ,

wss :1048576 , num_threads :4,ntimes :1000

Cumulative Results:

num_elements_accessed :43690 ,

CumulativeMemoryBandwidth(GiB/s):122.008206 ,

TotalRunTime(s):0.008004

Performance Results with respect to individual threads:

Thread 0: 30.531278 GiB/s

Thread 1: 30.538607 GiB/s

Thread 2: 30.538566 GiB/s

Thread 3: 30.535006 GiB/s



95

Appendix B



96

Table B.1 shows the cost of running the benchmarks executed in terms of running

time on a single R2 node. Execution times are put up for single, 14 and 28 thread

configurations in 1000 time iterations.

Table B.1: Total running time of the benchmarks executed.

Kernel

Total time taken for running the benchmark

Serial Execution 14 Threads 28 Threads

L1/L2

(mins)

L3

(mins)

RAM

(hours)

L1/L2

(mins)

L3

(mins)

RAM

(hours)

L1/L2

(mins)

L3

(mins)

RAM

(hours)

Triad 1 10 0.4 0.6 6 0.25 0.3 3.3 0.15

1D Stencil 5 20 0.8 3.5 11 0.45 2 7 0.3

2D Stencil 8 35 1.5 6 22 0.9 4 14 0.6

2D Stencil

Rectangular

Tile Sweep

30 120 108 18 75 88.5 11 65 68.2

3D Stencil 9 18 2.8 4.5 10 1.3 4 10 1.2

3D Stencil

Partial blocking
20 80 25 9 47 15 7.5 39.5 13

COST OF RUNNING THE BENCHMARKS




