
COMPUTABLE REDUCIBILITY OF EQUIVALENCE

RELATIONS

by

Marcello Gianni Krakoff

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mathematics

Boise State University

May 2019

Marcello Gianni Krakoff

SOME RIGHTS RESERVED

This work is licensed under a Creative

Commons Attribution 4.0 International

License.

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Marcello Gianni Krakoff

Thesis Title: Computable Reducibility of Equivalence Relations

Date of Final Oral Examination: 12 March 2019

The following individuals read and discussed the thesis submitted by student Mar-
cello Gianni Krakoff, and they evaluated his presentation and response to questions
during the final oral examination. They found that the student passed the final oral
examination.

Samuel Coskey, Ph.D. Chair, Supervisory Committee

John D. Clemens, Ph.D. Co-Chair, Supervisory Committee

Marion Scheepers, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Samuel Coskey, Ph.D., Chair
of the Supervisory Committee. The thesis was approved by the Graduate College.

To Ezra.

iv

ACKNOWLEDGMENTS

I would to thank the Boise State University Math department for the summer

research fellowship financial support in 2018, as well as the teaching assistantship. I

would like to thank Marion Scheepers for serving on the supervisory committee for

this thesis. The other math grad students at Boise State for their stimulating if not

sometimes distracting conversations. I would express gratitude to Sam Coskey for

his guidance throughout this process. John Clemens for always having his office door

open and allowing me to bug him with questions. And most of all Kayla, for her

patience and love.

v

ABSTRACT

Computable reducibility of equivalence relations is a tool to compare the

complexity of equivalence relations on natural numbers. Its use is important to

those doing Borel equivalence relation theory, computability theory, and computable

structure theory. In this thesis, we compare many naturally occurring equivalence

relations with respect to computable reducibility. We will then define a jump operator

on equivalence relations and study proprieties of this operation and its iteration. We

will then apply this new jump operation by studying its effect on the isomorphism

relations of well-founded computable trees.

vi

TABLE OF CONTENTS

DEDICATION . iv

ACKNOWLEDGMENTS . v

ABSTRACT . vi

1 Introduction . 1

1.1 Introduction . 1

1.2 Borel Equivalence Relation Theory . 2

1.3 Computability Theory . 6

1.4 Computable Structure Theory . 10

1.5 Trees . 12

2 Computability Theoretic Hierarchies . 14

2.1 Arithmetical Hierarchy . 14

2.2 Hyperarithmetical Hierarchy . 16

2.3 Analytical Hierarchy . 19

3 Computable Reducibility of Equivalence Relations 25

3.1 Basics . 25

3.2 Computably Enumerable Equivalence Relations 28

3.3 Equivalence Relations on c.e. Sets . 36

3.4 Relative Computable Reducibility . 41

vii

4 A Jump Operator on Equivalence Relations 45

4.1 Friedman-Stanley Jump and its Computable Variant 45

4.2 Benchmark Equivalence Relations . 49

4.3 Iterating Computable FS-jump through Computable Ordinals 60

4.4 Computable FS-jump fixed points . 61

5 Computable Trees of Computable Ordinal Rank 63

5.1 Isomorphism Relation on Computable Trees . 63

5.2 Well-Founded Trees . 67

REFERENCES . 69

A Forcing . 72

viii

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Computable reducibility is a notion of reduction of equivalence relations on ω.

Definition 1.1.1. Let E and F be equivalence relations on ω. We say that E

is computably reducible to F , denoted E 6 F , if there is a computable function

f : ω → ω such that for all n, n′ ∈ ω

nEn′ ←→ f(n)Ff(n′).

Computable reducibility is of interest to many different fields of mathematics such

as descriptive set theory, computability theory, and computable structure theory.

To descriptive set theorists, specifically those working in Borel equivalence relation

theory, computable reducibility is a natural computable analogue to Borel reducibil-

ity. One may investigate analogous equivalence relations on ω that mirror Borel

equivalence relations and see to what extent the computable reducibility hierarchy

mimics the Borel reducibility hierarchy. To computability theorists it serves as another

notion of reducibility to compare the complexity of subsets of natural numbers (or

tuples thereof). Of particular interest is the structure of computably enumerable

equivalence relations (ceers) under computable reducibility. To computable structure

2

theorists the notion is important in studying equivalence relations on computable

structures. For example, one may ask how complicated is the isomorphism relation

or how complicated is the computable isomorphism relation for various classes of

computable structures such as trees, groups, graphs, etc.

In chapter 1 we will explain the fields for which computable reducibility is of interest

as well as build up machinery to be used in this thesis. In chapter 2 we will give

a comprehensive outline of the computability theoretic hierarchies of which we will

use to classify equivalence relations. In chapter 3 we survey results about computable

reducibility in the literature. In chapter 4 we define a jump operator analogous to the

Friedman-Stanley jump in Borel equivalence relation theory for equivalence relations

on natural numbers. Finally in chapter 5 we look at the isomorphism relation on

trees of bounded rank and relate it to the jump operation defined in chapter 4.

1.2 Borel Equivalence Relation Theory

The standard reference for claims and theorems regarding Borel theory presented here

is Gao [11] and Kanovei [14].

Definition 1.2.1. A Polish space is a complete, separable, metrizable space. A Borel

set of a topological space is a member of the least σ-algebra containing all the open

sets. A function f is a Borel function if for every Borel set B, f−1(B) is a Borel set.

Borel equivalence relation theory studies the complexity of equivalence relations on

Polish Spaces. For the majority of this paper the polish spaces we will consider are

Baire space, ωω, or Cantor Space, 2ω. Let X be a Polish space; a Borel equivalence

3

relation is an equivalence relation that is a Borel subset of X ×X with the inherited

product topology. Two Borel equivalence relations may be compared the following

notion of reducibility.

Definition 1.2.2. Let X and Y be Polish spaces, with Borel equivalence relations

E and F defined on each space respectively. We say that E is Borel reducible to F ,

denoted E 6B F , if there is a Borel function f : X → Y such that for all x, x′ ∈ X

xEx′ ←→ f(x)Ff(x′).

It is clear from the definitions of computable reducibility and Borel reducibility

why computable reducibility is natural to Borel complexity theorists. A computable

(Borel) reduction of equivalence relations has two requirements; the forward direction

requires that images of elements that were E-equivalent become F -equivalent and the

reverse direction requires that images of elements that were E-inequivalent become

F -inequivalent. Thus the F equivalence relation forms a set of complete invariants

for the E equivalence relation.

One use of Borel equivalence relation theory is the classification of the isomorphism

relation on a space of countable models. At a high level, a space of countable models

is constructed by encoding each countable model as a real number and taking at the

corresponding Polish space of such reals.

Definition 1.2.3. Let L be a countable relational language, i.e. L = {Ri} for i ∈ I,

where I is a countable index set. To each Ri we assign a natural number ni, the

arity of Ri. Let Mod(L) denote the collection of all countable models of L, where we

4

identify the universe of each model with ω. Thus each element of Mod(L) may be

identified with an element of

XL =
∏
i∈I

2ω
ni .

The set XL is a product of countably many copies of Cantor space, 2ω and thus is

a compact Polish space with the product topology. Explicitly, for each x ∈ XL let

Mx ∈ Mod(L) be a countable model coded by x in the following way; for any i ∈ I

and (k1, . . . , kni
) ∈ ωni ,

RMx
i (k1, . . . , kni

)←→xi(k1, . . . , kni
) = 1.

The isomorphism relation will be induced by the action of S∞ (the group of permu-

tations of ω) on Mod(L) by saying that g · M = N if and only if

RNi (k1, . . . , kni
) = RMi (g−1(k1), . . . , g

−1(kni
))

for all i ∈ I and (k1, . . . , kni
) ∈ ωni . Thus g · M = N if and only if g is an

isomorphism fromM onto N . The orbit equivalence relation of this action is exactly

the isomorphism relation on Mod(L) and is denoted ∼=L.

For example, consider the space of countable graphs. The language of graphs consists

of one binary relation E denoting the edge relation. We may then identify the space

of all countable models of graphs in the space

G ⊂ 2ω
2

.

5

Where x ∈ G if and only if Gx ∈ Mod({E}) is a countable graph coded by x. The

action by S∞ on graphs may be thought of as a permutation of the vertices.

We further restrict the space of models in the following way; let ϕ be an Lω1,ω sentence

(we allow countable conjunctions, disjunctions, and finite quantifiers) in the language

L, define the set

Mod(ϕ) = {M ∈ Mod(L) | M � ϕ}.

We denote the isomorphism relation on models of ϕ as ∼=ϕ.

Dichotomy theorems are an important tool in Borel equivalence relation theory in

order to get non-reduction results.

Theorem 1.2.1. (Silver) If X is Polish space and E is a coanalytic equivalence

relation on X, then either there are countably many E-classes or there is a perfect

set of pairwise E-inequivalent elements of X.

Let X be a set, define the identity equivalence relation Id(X) as

xId(X)y←→x = y.

Since every Borel set is coanalytic, it follows that every Borel equivalence relation is

subject to Silver’s dichotomy theorem. One can use Silver’s dichotomy theorem to

show that if E is smooth (an equivalence relation E is smooth if E 6B Id(2ω)), then

exactly one of the following holds: either E ∼B Id(2ω) or E 6B Id(ω). If E has a

perfect set of pairwise inequivalent elements, then Id(2ω) 6B E. If E has countably

many classes we may enumerate them in a Borel way and then may map the nth-class

6

to n. Define the equivalence relation E0 to be the finite difference equivalence relation

on 2ω; formally,

xE0y←→(∃m)(∀n)(n > m→ x(n) = y(n)).

The most famous dichotomy result is called the Glimm-Effros dichotomty theorem.

Theorem 1.2.2. (Harrington-Kechris-Louveau) If X is a Polish space and E is a

Borel equivalence relation on X, then either E is smooth or E0 6B E.

In fact, the Glimm-Effros dichotomy indicates something stronger; in the case that

E is not smooth, it gives us that E0 continuously embeds into E. Proofs of both

the Silver and Glimm-Effros dichotomies make vital use of effective methods and the

Gandy-Harrington topology with the associated notion of forcing (see [14], Theorem

10.1.1 and Theorem 10.4.1). It was shown in Coskey et al. [6] that there is no analogue

to Silver’s theorem for computable reducibility. Though it remains open whether there

is an analogue to the Glimm-Effros dichotomy for computable reducibility. While

there may be no obvious dichotomy theorems for computable reducibility, there is a

powerful tool for obtaining non-reducibility results that Borel theory does not have,

and that is the appeal to the descriptive complexity of the equivalence relations.

The structure of Borel equivalence relations form a highly non-trivial hierarchy under

the notion of Borel reducibility. Computable reducibility compares equivalence rela-

tions on ω in the same way but with computable functions instead of Borel functions.

1.3 Computability Theory

The references for most computability theory presented here is Soare [18] and Cooper

[5].

7

We will assume that the reader is familiar with computability up to Turing machines.

Since each Turing machine is finitely presented, we may effectively assign to each

machine a natural number called a code or index. To each (code for) Turing machine

e there is an associated partial function ϕe : ω → ω so that ϕe(n) ↓= m if and only

if machine e halts on input n and outputs m. The set of all n such that ϕe(n) ↓ is

called the domain of ϕe and is denoted We. A function f : ω → ω is called computable

if it is partial computable and is defined for all n ∈ ω. A set A ⊂ ω is computable

if its characteristic function χA is computable; in other words, χA is a total ϕe for

some e. A set A ⊂ ω is called c.e. (computably enumerable) if it is the domain of

a partial computable function; in other words, if A = We for some index e. The set

K = {e | ϕe(e) ↓} is c.e. since we may run a machine on the code for itself and, if

it halts, we enumerate the index into K; however, if it does not halt in some timely

manner we may never know its fate.

There are many notions of reducibility in computability theory. Reducibility compares

the complexity or information content with subsets of natural numbers.

Definition 1.3.1. Let A,B ⊂ ω, we say A is many-one reducible to B, written

A 6m B if there is a computable function f such that for all x

x ∈ A←→f(x) ∈ B.

If f is injective, we will say A is one-one reducible to B and write A 61 B.

For sets A and B we say that A is Turing reducible to B, written A 6T B if there

is a program that computes A relative to B, i.e. using B as an oracle. That is, we

8

can ask questions of the form “Is n ∈ B?” when trying to decide if some natural

number is in A. We say that A ≡T B if A 6T B and B 6T A. Note that ≡T is an

equivalence relation and each equivalence class is called a Turing degree. The least

Turing degree is denoted 0 and is the equivalence class of all computable sets. Bold

lowercase latin letters will denote Turing degrees. Let A be a set, define ϕAe (x) to

be the eth machine run on x with oracle A. Since we can identify subsets of ω with

reals, we say a machine has a given real as an oracle. The jump set of A, denoted A′,

is {e ∈ ω | ϕAe (e) ↓}. The halting set, denoted K, is identified with the previous set

where A is taken to be the empty set.

Next we present several key theorems from computability theory which will be used

throughout this paper.

Theorem 1.3.1. (Padding Lemma) For a given e, there are infinitely many e′ so

that ϕe = ϕe′.

Proof. Given a ϕe, then for each n there is machine that waits for n steps and then

mimics ϕe.

Theorem 1.3.2. (s-m-n Theorem) For each m and n, and each ϕe in variables

y = (y1, . . . , ym) and x = (x1, . . . xn), there is a computable injective function f of

m+ 1 variables such that

ϕf(e,y)(x) = ϕe(y, x).

The s-m-n theorem allows us to treat a parameter of a function as fixed and effectively

find a new index for a machine.

We will denote the complement of a set A by A. A subset A ⊂ ω is called simple if A

9

is c.e., A is infinite and A meets every infinite c.e. set. If A is simple then A is called

immune. Simple sets arose out of Post’s attempt to solve the question of whether there

are intermediate c.e. degrees. This problem was solved independently by Friedburg

and Muchnik using the priority method. Another solution is given by the existence

of a low simple set. We will be particularly interested in immunity proprieties later

in this paper. The following construction given in Cooper [5] Theorem 6.2.3 gives

a proof the existence of a simple set. Notice the construction is effective and thus

simple sets are c.e.

Theorem 1.3.3. There exists a simple set A.

Proof. We computably enumerate A that satisfy the following requirements:

Ne : |A ∩ {0, 1, . . . , 2e}| 6 e

Pe : If We is infinite, then We ∩ A 6= ∅.

for all e ∈ ω. If Ne for all e is satisfied then |A ∩ {0, 1, . . . , 2e}| > e, so A is infinite.

Also, requirement Pe is part of the definition of simple set. This is essentially a

priority argument with no injury since we have two competing requirements, one of

which attempts to put elements into A while the other tries to keep elements out of

A. The construction is as follows:

(i) For each unsatisfied Pe, wait for a stage s at which there is a number x ∈ We,s

with x > 2e.

(ii) If such an x appears, enumerate x into A, at which stage Pe becomes satisfied.

Lemma 1.3.1. Pe is satisfied for each e ∈ ω.

10

Proof. Assume that We is infinite. Let s be the least stage at which we get some

x ∈ We,s with x > 2e. By the construction at stage s, Pe is not already satisfied, which

means that it becomes so via part (ii) of the construction at stage s via x ∈ We∩A.

Lemma 1.3.2. Ne is satisfied for each e ∈ ω.

Proof. Since we can only enumerate a number x into A with x 6 2e on behalf of

some Wi with i < e and for each i at most one such x is enumerated, the lemma

follows.

This proves the existence of a simple set.

We will often give a description of a machine that computes a reduction since we may,

given a description of a machine, effectively find an index for a machine with that de-

scription.

1.4 Computable Structure Theory

Computable structure theory investigates the syntactic properties of familiar struc-

tures and how they relate to the intrinsic complexity of structures. The complexity is

most often measured in Turing degrees. The degree of structure A, denoted deg(A), is

the least upper bound of the degree of the universe, relations, and functions. It follows

that a structure A is computable if its domain is ω (or computable subset thereof)

and all functions and relations on A are computable. For example, a countable linear

order is computable if there is a program that can determine, for each pair (a, b),

whether a < b or a > b.

Definition 1.4.1. Let L be a computable language and M be an L-structure. Let

LM be the language ofM with constants added for each m ∈M . The atomic diagram

11

ofM is the set of all atomic, or negation of atomic, formulas, ϕ(m) in LM such that

M � ϕ(m).

Definition 1.4.2. A model is said to be computable if its atomic diagram is com-

putable. For a computable model M, an index for M is a number e such that ϕe

enumerates the codes for atomic sentences and negated atomic sentences α such that

M � α.

For example, let N = 〈ω,+, ·〉 be the standard model of arithmetic and Th(N) =

{ϕ | N � ϕ}, which is a theory called true arithmetic. The model N is computable

since the structure has computable atomic diagram. The atomic and negated atomic

sentences of this language consist of only equality and negated equality. Since addition

and multiplication are computable operations, we can check the veracity of each

atomic formula of arithmetic. It is important to differentiate between computable

and decidable models. A model is decidable if, given any formula in the language, we

can tell whether the model satisfies that formula. The model N is computable, but

not decidable by Tarski’s theorem. The theory Th(N) is recursively isomorphic to

0(ω)1 ([5], Theorem 15.2.1), so it is far from being computable. For each structure, we

may define the degree spectrum. This is the set of degrees of structures isomorphic

to A, Spec(A) = {deg(B) | A ∼= B}. A seminal result in the field is given by the

following.

Theorem 1.4.1. (Knight) The degree spectra of a non-trivial structure is upward

closed in the Turing degrees.

In other words, if A is subset of ω and for a non-trivial structure M <T A, there

is an isomorphic copy of M, denoted N , such that N ≡T A. The non-trivialness

10(ω) = deg(∅(ω)) where ∅(ω) = {〈i, n〉 | i ∈ ∅(n)}.

12

condition is that M and N are not computably isomorphic. For instance, consider

the structure 〈ω,6〉, which is the standard ordering on ω. Let a be a Turing degree

and let {ai | i ∈ ω} be an a-computable enumeration of some A ∈ a. Define a new

ordering on ω by ordering the evens by placing 2i+1 in between 2ai and 2ai+2. Note

that on both ordered structures we can define a successor operation, where s(x) is

the 6-least element so that x 6 y. The succesor on the first structure is computable,

whereas the successor operation on second structure computes A.

Definition 1.4.3. The index set for M is the set we denote I(M) of all indices

of computable isomorphic copies of M. For a class of structures K, closed under

isomorphism, the index set I(K) is the set of all indices of computable members

of K. We say that K has a has a computable characterization if its index set is

hyperarithmetical.

In this paper we will be looking at the isomorphism relation on computable trees.

1.5 Trees

A tree T is a subset of ω<ω that is closed under predecessor i.e. if τ ∈ T and σ 6 τ ,

then σ ∈ T . The top node will be denoted with ∅, where ∅ is its own predecessor.

A tree will be computable if its predecessor function is computable. A path through

a tree T is a real x (an element of Baire space) such that every initial segment of x

is in T . The body of a tree T denoted [T] is the set of paths in T ,

[T] = {x ∈ ωω | (∀n)(x �n∈ T)}.

13

A tree T is well-founded if and only if [T] = ∅.

Computable trees can be effectively coded in several ways; we give one such way.

For each n > 0 there is a bijection f : ωn → ω. An example of such a function for

n = 2 is given by

f(n,m) =
(n+m)(n+m+ 1)

2
+ n.

Examples of other pairing functions for n > 2 can be found by induction on the

n = 2 case. We denote f(x1, . . . , xn) by 〈x1, . . . , xn〉. We will use this function to

code computable trees in the following way. First, for a computable tree T , find

the root. Then label all the children of the root with increasing natural numbers.

Do similar inductively for each of the branches coming off each node. For instance,

{(), (0), (1), (0, 0), (0, 1), (1, 0)} is the tree with two branches coming off the root and

the left branch coming off the root has two children and right branch coming of

the root has one child. Thusly we may formally identify a tree with sequences that

describe its branches. Let tree T be identified with the following set

{〈s0, . . . , sn〉 | for all (s0, . . . , sn) ∈ T }.

In this sense a tree will be computable if the set of codes for its branches is a

computable set.

14

CHAPTER 2

COMPUTABILITY THEORETIC HIERARCHIES

2.1 Arithmetical Hierarchy

In the quest to understand the descriptive complexity of equivalence relations on

ω, we must have a well-defined hierarchy to classify such relations. We define three

hierarchies, each properly extending the previous, the arithmetical, hyperarithmetical,

and analytic. A subset A of ω is called arithmetical if it is definable in the language of

Peano Arithmetic (PA). The complexity of the class of arithmetical sets is structured

into the arithmetical hierarchy. The set Σ0
0 of computable relations form the base of

the arithmetical hierarchy. We say a relation S(x) is Σ0
1 or computable enumerable

(c.e.) if there is a computable relation R such that S(x) = (∃y)R(x, y). A relation

is Π0
1 (co-c.e.) if it is the negation of a c.e. relation. A relation is Π0

n if it is the

complement of a Σ0
n relation. The recursive clause of the arithmetical hierarchy states

that a relation S(x) is Σ0
n+1 when there is a Π0

n relation R so that S(x) = (∃y)R(x, y).

The ∆0
n classes are exactly those relations that are simultaneously Σ0

n and Π0
n. A result

by Kleene states that a relation is computable if it and its complement are both

c.e. Thus if a relation has both a Σ0
1 and a Π0

1 definition it is computable. So the

computable relations are also known as the ∆0
1 class. The arithmetical hierarchy has

many nice closure properties; the Σ0
n sets are closed under conjunction, disjunction,

bounded quantification and existential quantification.

15

The hyperarithmetical and analytical hierarchy are motivated by the study of subsets

natural numbers that are not arithmetical, but are still definable in other ways. One

explicit example of a non-arithmetical, reasonably definable set of natural numbers

is the set {]ϕ | ϕ ∈ Th(N)}, where]ϕ is the Gödel code of ϕ. This is a direct result

of the Tarski’s theorem of the undefinability of truth; that is, there is no formula in

the language of PA that takes in a Gödel code of a formula and outputs a yes or no

answer as to whether that sentence is satisfied in the standard model. The classes

Σ0
n,Π

0
n,∆

0
n and those classes that we will define for the hyperarithmetic and analytic

hierarchy are called point classes.

Definition 2.1.1. Let Γ be a point class, say a set A is Γ-complete if A ∈ Γ and for

all equivalence relations B ∈ Γ, B 6m A.

The arithmetical hierarchy can also be defined by iterating the Turing jump through

the finite ordinals. This is justified by Post’s Theorem, which is as follows:

Theorem 2.1.1. (Post) Let A ⊂ ω then for all n > 0 the following hold

(i) ∅(n+1) is a Σ0
n+1-complete set;

(ii) A ∈ Σ0
n+1 if and only if A is c.e. in ∅(n);

(iii) A ∈ ∆0
n+1 if and only if A 6T ∅(n).

There are two ways to extend the arithmetical hierarchy. One way is to iterate the

Turing jump through the computable ordinals using ordinal notations, which gives us

the hyperarithmetical hierarchy. The other is to notice that the arithmetical relations

have natural number quantifiers, so if we extend this to allow natural number function

16

quantifiers, or equivalently real number quantifiers, we get the analyitcal hierarchy.

First we define the hyperarithmetical hierarchy.

2.2 Hyperarithmetical Hierarchy

The standard reference for these topics is Sacks [16], though we follow Ash and Knight

[4] which gives a more modern treatment. Ordinal notations are a way to effectively

assign natural numbers to computable ordinals. An ordinal is computable if there is

a computable well-ordering of natural numbers with that order-type. For example,

ω · 2 is a computable ordinal since 0, 2, 4, . . . , 1, 3, 5, . . . is a computable well-ordering

of ω.

Definition 2.2.1. The set O ⊂ ω, called Kleene’s O, is a system of notations which

assigns a natural number a to each computable ordinal α, and we denote |a|O = α:

(i) The ordinal 0 is given the notation 1;

(ii) If a is a notation for α, the 2a is the notation given to α + 1;

(iii) For limit λ, the notations are numbers 3 · 5e such that ϕe is a total computable

function with values in O, and α is the least upper bound of αn = |ϕe(n)|O.

There is a natural partial order structure on O. Note that the notations for transfinite

computable ordinals are not unique. Since there are only countably many codes, there

is a least countable ordinal that does not have a notation, that ordinal is ωck
1 .

The hyperarithmetical hierarchy is a generalization of the arithmetical hierarchy

where the Turing jump is iterated through the computable ordinals. To do this

effectively, we must iterate the jump through the notations for computable ordinals.

17

Definition 2.2.2. Define the sets Ha for a ∈ O by transfinite recursion on ordinals

|α| as follows:

(i) H1 = ∅;

(ii) H2a = (Ha)
′;

(iii) H3·5e = {〈u, v〉 | u <O 3 · 5e and v ∈ Hu}.

Under this system each finite ordinal n has unique notation a such that Ha = ∅(n).

If |a| = |b| = α, where a and b are distinct, then Ha and Hb are distinct sets.

Furthermore, since α is infinite, there are infinitely many notations a for α that

define infinitely many distinct sets Ha. The key that allows the hierarchy to be well

defined is that if |a| = |b| = α, then Ha ≡T Hb. We will prove this in several steps.

Lemma 2.2.1. (Kleene) There is a partial computable function which assigns to each

pair (x, y) of elements of O such that x 6O y, an index for Hx as a set computable

in Hy.

Proof. If x, y ∈ O with x 6O y, then by shortening the stack of 2’s in y we arrive at

z 6O y and finite n such that |z| + n = y. There are now two cases. The first case

is x = z, for any n ∈ ω we can uniformly find an index for X as a set computable in

X(n). In the second case, |z| is a limit ordinal and x <O z. Then we have

u ∈ Hx←→〈x, u〉 ∈ Hz.

So we can find an index for Hx computably in Hz. We may then find an index for

Hx as a set computable in Hy by the first case.

18

Lemma 2.2.2. (Kleene) There is a partial computable function f such that for each

a ∈ O, f(a) is an index for {b ∈ O | |b| < |a|}as a set computable in (Ha)
′.

Proof. The function is defined by computable transfinite recursion on ordinal nota-

tions. For case 1 suppose that a = 1 and let f(1) be an index for {b ∈ O | |b| <

|a|} = ∅ relative to ∅′. Now for case 2, suppose that a = 2b; we show how to define

f(a) in terms of f(b) already defined. Note that d ∈ O and |d| < |2b| if and only if

one of the following holds

(i) d = 1;

(ii) d has the form 2c, where c ∈ O and |c| < |b|;

(iii) d has the form 3 · 5e, where for all n, ϕe(n) ∈ O, |ϕe(n)| < |b| and ϕe(n) <

ϕe(n+ 1).

To see whether d satisfies (i) is trivial. Assume that f(b) is an index for {c ∈ O | |c| <

|b|} relative to (Hb)
′; we can determine whether d = 2c satisfies (ii) using H2b . We can

determine whether d = 3·5e satisfies (iii) using (H2b)
′ since for each n we can determine

whether ϕe(n) ∈ O and |ϕe(n)| < |b|, using H2b and we determine ϕe(n) <O ϕe(n+1).

Now we can find an index for {d ∈ O | |d| < |2b|} as a set computable in (H2b)
′ and

define that index to be f(2b). Finally in case 3, a = 3 · 5e. Given the sequence

f(ϕe(n)) for n < ω, we define f(3 · 5e) as follows. We know:

d ∈ O ∧ |d| < |3 · 5e| ←→ (∃n)(d ∈ O ∧ |d| < |ϕe(n)|).

Assuming that f(ϕe(n)) is an index for {d ∈ O | |d| < |ϕe(n)|} as a set computable

in (Hϕe(n))
′, we can determine whether d is a notation for an ordinal less that |ϕe(n)|.

The procedure here is uniform in n. Then we determine whether d is in the union using

19

(H3·5e)
′. It follows that we can computably find an index for {d ∈ O | |d| < |3 · 5e|}

as a set computable in (H3·5e)
′ and define that index to be f(3 · 5e).

Corollary 2.2.1. (Kleene) There are partial computable functions that assign to each

b ∈ O indices for {a ∈ O | |a| 6 |b|} and {a ∈ O | |a| = |b|} as sets computable in

H
22b

.

Theorem 2.2.1. (Kleene) There is a partial computable function f such that for

a, b ∈ O with |a| 6 |b|, f(a, b) is an index for Ha as a set computable in Hb.

Proof. Similar as above, see [4].

This theorem gives us that Ha 6T Hb for notations |a| 6 |b|. Thus, if equality holds,

then Ha ≡T Hb.

2.3 Analytical Hierarchy

Similarly to iterating the Turing jump through the computable ordinals to extend the

arithmetical hierarchy to get the hyperarithmetical hierarchy, we extend by allowing

the quantification over natural numbers functions or reals to get the analytical hier-

archy. As before with the arithmetical hierarchy, for a point class Γ, we will say a

relation R is Γ, if it is defined by a Γ formula.

Definition 2.3.1. Let R(n, x) be a computable relation of natural number n and

real x, then

(i) A Σ1
1 relation is of the form (∃x)(∀n)R(n, x);

(ii) A relation is Σ1
n is of the form (∃x)(∀x1) · · · (Qxn−1)(∀k)R(x, x1, . . . , xn−1, k),

where Q is ∃ or ∀ depending on the parity of n;

20

(iii) A relation R is Π1
1 is R is Σ1

1;

(iv) If a relation is both Σ1
1 and Π1

1 then it will be ∆1
1.

In this paper we will be mostly concerned with Σ1
1 and Π1

1 relations. We will now

prove an important fact that demonstrates the link between the hyperarithmetic and

analytical hierarchy, but first we will need an important fact about Kleene’s O.

Theorem 2.3.1. (Kleene) Kleene’s O is a Π1
1-complete set.

We will prove this theorem in several steps. First we will define the Kleene-Brouwer

ordering on trees. Then we will show that for a Π1
1 set there is a computable function

that assigns codes for well-founded trees on exactly members of that set. Finally, we

will show that O is in fact Π1
1.

Lemma 2.3.1. Given an index for a computable linear order 〈A,<〉, there is a

computable function f so that {m | m < n} is well-ordered if and only if f(n) ∈ O,

and f(n) is the notation for the order-type of {m | m < n}.

Definition 2.3.2. For a tree T ⊂ ω<ω, define the Kleene-Brouwer ordering of T by

s <KB t←→t ⊂ s ∨ (∃i ∈ ω)(∀j < i)(s(j) = t(j) ∧ s(i) < t(i)).

Lemma 2.3.2. If T ⊂ ω<ω is a tree then T is well-founded under the Kleene-Brouwer

ordering if and only if T has no path.

Proof. If T is well-founded under the Kleene-Brouwer order, then there is no infinite

descending sequence in T so T can have no path. If there is an infinite descending

sequence then there is a sequence

σ0 > σ1 > σ2 > · · ·

21

in T so that, by induction on n, σk(n) is constant for all sufficiently large k. Thus

define

π(n) = lim
k→∞

σk(n),

then π is a path in T .

The next theorem gives that for Π1
1 sets we can effectively find an index for a

computable well-order.

Theorem 2.3.2. (Kleene-Spector) Let S be Π1
1, then there is a computable function

that assigns to each n ∈ ω an index for a linear order An such that

n ∈ S ←→ An is a well-ordering.

Proof. By the normal form theorem for Π1
1 sets then for some c.e. relation R(n,m)

we have

n ∈ S ←→ (∀x)(∃t)R(n, x �t).

Let An be the subtree of ω<ω consisting of those σ such that if σ has length s, then

for all t 6 s, the pair (n, σ �t) is not in our stage s approximation of R(n,m). Then

An is a computable subtree of ω<ω. Moreover,

n ∈ S ←→ An has no path.

Let An = (An, <n), where <n is the restriction of the Kleene-Brouwer ordering An.

Then by the above lemma

An has no path ←→ An is a well ordering.

22

Therefore, given n, we can find an effective index for An.

Putting this altogether, we get that if S is Π1
1 then we can effectively find an index

for a computable well-order. Then given a computable well-ordering, we can pass

effectively to an element of Kleene’s O and therefore S 6m O, so Kleene’s O is

a Π1
1-complete set. The crucial link between the hyperarithmetical and analytical

hierarchies is that a subset of natural numbers is hyperarithmetic if and only if it is

∆1
1.

Theorem 2.3.3. (Kleene) X hyperarithmetic implies X is ∆1
1.

Proof. Given a hyperarithmetic X we will produce two predicates, one Π1
1 and one Σ1

1,

that both express membership in X. First note the each of the following predicates

a ∈ O ∧ b ∈ Ha and a ∈ O ∧ b /∈ Ha

are Π1
1 since they are the conjunction of all real solutions to the predicate which

expresses membership in O. One can show this rigorously through proper coding,

see in [16](Lemma II.2.1). Now recall Kleene’s T predicate which which expresses the

following; for a real x and a code, s, for a finite initial segment of x (representing

only a finite amount of an oracle is used in any oracle computation) then for U a

computable function

ϕxe(n) ↓= m←→(∃k)(∃s)(T (s, e, n, k) ∧ U(k) = m).

Now let ϕ(e, a, n, i) express the following statement

23

(∃k)(∃s)(T (s, e, n, k) ∧ lh(s) = n ∧ U(k) = i

∧ (∀b < k)(s(b) = 1→ a ∈ O ∧ b ∈ Ha)

∧ (∀b < k)(s(b) = 0→ a ∈ O ∧ b /∈ Ha)).

By the previous remark this formula is Π1
1, thus if we fix x and e and assume that

X = WHa
e , that is, X is enumerated by some partial computable function with

hyperarithmetic oracle Ha then we have

n ∈ X←→ϕ(e, a, n, 1)

←→¬ϕ(e, a, n, 0).

Thus membership in X is expressible as both a Π1
1 statement and a Σ1

1 statement and

hence is ∆1
1.

For the following theorem define the set Ob = {a ∈ O | |a| < |b|}. We will need the

following theorem, and though we will not provide a proof, one can be found in ([16],

Corollary I.5.6).

Theorem 2.3.4. (Spector Boundedness Lemma) Let A ⊂ O and A be Σ1
1, then there

is an element b ∈ O such that |a| 6 |b| for all a ∈ A.

Theorem 2.3.5. (Kleene) If X is ∆1
1 then X is hyperarithmetic

Proof. Let X be ∆1
1; since O is Π1

1-complete there is a computable function g such

that for all n ∈ ω

n ∈ X←→g(n) ∈ O.

24

Define a set A by the following

m ∈ A←→(∃n)(n ∈ X ∧m = g(n)).

Notice that membership in A is ∆1
1 and hence Σ1

1. Thus by Spector’s boundedness

lemma there is b ∈ O such that A ⊂ Ob. Thus we have

n ∈ X←→g(n) ∈ Ob.

However, as was showed in an above theorem, the set Ob is hyperarithmetic, since we

can effectively find an index for Ob in H2b . Thus X is hyperarithmetic.

This theorem can also extend to the hyperarithmetic sets over ωω (and products

thereof). The light face classes, which start with what we call the effective open sets,

is some computable enumeration of a countable basis for ωω. We close under effective

countable union and complements, as done when we define the Borel hierarchy to get

∆1
1. If we relativize the effective unions to all reals x i.e. ∆1

1(x), coupled with the fact

that ⋃
x∈ωω

∆1
1(x) = ∆1

1

we recover a famous theorem of Suslin.

Theorem 2.3.6. (Suslin) X is ∆1
1 if and if only X is Borel.

25

CHAPTER 3

COMPUTABLE REDUCIBILITY OF EQUIVALENCE

RELATIONS

3.1 Basics

Recall the definition of computable reducibility given in section 1.1.

Definition 3.1.1. Let E and F be equivalence relations on ω. We say that E

is computably reducible to F , denoted E 6 F , if there is a computable function

f : ω → ω such that for all n, n′ ∈ ω

nEn′ ←→ f(n)Ff(n′).

From now on all equivalence relations will be on ω unless otherwise specified. A

computable reduction of equivalence relations is very similar to a many-one reduction

in computability theory. The difference is subtle but very important. Given a set

of pairs A and B, for a many-one reduction we must specify a computable function

that takes in a pair from A and outputs a pair in B and sends pairs in A to pairs

in B. For a computable reduction, we specify what the computable function does

to a natural number and show that this function preserves the equivalence relation

structure. When we write |E| we mean the number of equivalence classes in E.

26

Theorem 3.1.1. If E 6 F , then |E| 6 |F |.

Proof. A computable reduction must preserve equivalence classes, thus if |E| > |F |,

then two E-inequivalent elements must become F -equivalent. This contradicts the

definition of computable reducibility.

Theorem 3.1.2. If E 6 F , then E 6m F .

Proof. Suppose f witnesses E 6 F , then we have a computable function f so that

for all pairs (n,m)

(n,m) ∈ E ←→ (f(n), f(m)) ∈ F.

To illustrate the two previous theorems, let E be the equivalent mod 3 relation and F

be the equivalent mod 2 relation. Since both equivalence relations E and F are finite,

non-empty, and computable, they are both many-one equivalent as sets of pairs, that

is E ≡m F . However, there can be no computable reduction from E to F since both

equivalence relations are finite and E has more classes than F . A powerful method

of obtaining non-computable reducbility results comes from the following theorem.

Theorem 3.1.3. If Γ is a point class, B ∈ Γ and A 6m B, then A ∈ Γ.

We will give an example of how the previous theorem works. Suppose that A 6m B,

and B is Π0
2. Then there is a computable relation R so that

k ∈ B←→(∀n)(∃m)R(k, n,m).

27

The reduction A 6m B gives us a function f so that i ∈ A if and only if f(i) ∈ B.

Putting this together we get

i ∈ A←→f(i) ∈ B

←→(∀n)(∃m)R(f(i), n,m).

Thus membership in A is defined by a Π0
2 relation.

To see how this theorem is used, suppose equivalence relation E is computably

reducible to some Π0
2 equivalence relation and suppose that F is a known properly

Σ0
3 equivalence relation. Then by the above theorem F 66 E. This makes computable

reducibility distinct from Borel reducibility in the following sense. If E and F are

Borel equivalence relations then it is possible that E 6B F , even if F has lower rank

in the Borel hierarchy than E does.

Definition 3.1.2. An equivalence relation E is Γ-complete for computable reducibility

if E ∈ Γ for all F , F 6 E.

Clearly if E is Γ-complete for computable reducibility then E is Γ-complete.

Corollary 3.1.1. Suppose A ⊂ E is an equivalence class of E. If A ∈ Γ, then E is

in some point-class Γ′ extending Γ.

Proof. Note that the identity function is a computable function that witnesses A 6m

E.

This corollary will allow us to get lower bounds on the descriptive complexity of an

equivalence relation by looking at the the complexity of its classes.

28

By properties for computable functions we immediately have that E 6 E and if

E1 6 E2 and E2 6 E3 then E1 6 E3. Thus 6 defines a quasi-order on the set of

equivalence relations on ω. So we can define the equivalence relation E ≡ F , where

we say E is computably bireducible with F if and only if E 6 F and F 6 E. We

will call the set of equivalence relations on ω modulo ≡ the computable reducibility

hierarchy.

Theorem 3.1.4. The computable reducibility hierarchy is a partial order.

This will be proven in the section on c.e. equivalence relations. Throughout this

thesis we will show that the computable reducibility hierarchy is rich in structure

and complicated to study. So we may consider substructures of the computable

reducibility hierarchy, such as the set of computably enumerable equivalence relations

modulo ≡.

3.2 Computably Enumerable Equivalence Relations

Definition 3.2.1. An equivalence relation E on ω is called a ceer (computably

enumerable equivalence relation) if E is a c.e. subset of ω2.

Intuitively, if E is a ceer we may enumerate the E-equivalent pairs. We can study

the structure of the equivalence classes of ceers under computable reducibility in the

same way we might study the Turing degrees. In this section we will investigate the

structure of the ceers under computable reducibility. Ceers were first introduced in

Gao and Gerdes [12]. A detailed analysis of the structure of ceers under computable

reducibility is given in [1], [2], and [3].

29

We will define two operations on ceers that increase the complexity of ceers.

Definition 3.2.2. For a ceer E define the halting jump of E by

nE ′m←→n = m ∨ ϕn(n) ↓ Eϕm(m) ↓ .

That is, n is E ′-equivalent to m if and only if n = m or the nth machine run on n

halts and the mth machine run on m halts and both outputs are E-equivalent.

Theorem 3.2.1. [12] If E is a ceer then E 6 E ′.

Proof. Let f send n to the machine that halts on n and outputs n, thus

nEm←→f(n) = f(m) ∨ ϕf(n)(f(n)) ↓ Eϕf(m)(f(m)) ↓

←→f(n)E ′f(m).

Notice that the halting jump operator does not increase the descriptive complexity of

a ceer, that is, E ′ is still a ceer. If E is computable, then E < E ′, since if this was not

the case we would have a properly c.e. equivalence class mapping into a computable

class.

Theorem 3.2.2. [12] For ceers E and F , if E 6 F then E ′ 6 F ′.

Proof. Suppose f witnesses E 6 F . By the s-m-n theorem find a computable injective

function g such that for all n, k ∈ ω ϕg(n)(k) = f(ϕn(n)). Then ϕg(n)(g(n)) halts if

30

and only if f(ϕn(n)) does, and outputs the same value. The fact that g is injective

guarantees the following

nE ′m←→ n = m ∨ ϕn(n) ↓ Eϕm(m) ↓

←→ n = m ∨ f(ϕn(n)) ↓ Ff(ϕm(m)) ↓

←→ g(n) = g(m) ∨ ϕg(n)(g(n)) ↓ Fϕg(m)(g(m)) ↓

←→ g(n)F ′g(m).

Thus E ′ 6 F ′.

The next operation is the join of ceers (though the join can be defined for any

equivalence relations on ω). For ceers E and F define the join ceer

uE⊕Fv←→


nEm if u = 2n and v = 2m,

nFm if u = 2n+ 1 and v = 2m+ 1.

Theorem 3.2.3. E 6 E⊕F and F 6 E⊕F .

Proof. The computable function that maps n to 2n witnesses E 6 E⊕F and the

computable function that maps n to 2n+ 1 witnesses F 6 E⊕F .

We now classify all computable (ceers) up to computable bireducibility and look at

some of the structure of ceers under computable reducbility. Let Idn be equivalence

relations such that aIdnb if and only if a ≡ b mod n.

Lemma 3.2.1. [6] If ceer E has finitely many equivalence classes then E is com-

putable.

31

Proof. Suppose E has n classes, let i1, . . . , in be a collection of pairwise E-inequivalent

elements. We give a procedure to decide aEb for arbitrary a and b. Start enumerating

E-equivalent pairs until we find aEiji and bEij2 , then aEb if and only if j1 = j2.

Note that E being a ceer is necessary to the proof, since we enumerated the E-

equivalent pairs. There are ∆0
2 equivalence relations with finitely many classes that

are not computably bi-reducible with Idn for some n.

Theorem 3.2.4. [6] If E is a ceer with exactly n equivalence classes then E is

computably bi-reducible with Idn.

Proof. Let i1, . . . , in be a collection of pairwise E-inequivalent elements. Define

function f so that f(a) computes the division algorithm on a by n and maps the

remainder r to ir+1. Then f computable and aIdnb if and only if a and b have

the same remainder when divided by n means that f(a)Ef(b). Thus f witnesses

Idn 6 E. Now suppose that E is a ceer with n many classes, then E is computable

and we can order the E classes. Then given a, map a to na + j just in case a is in

the jth class. Then f is computable and if aEb and a is the jth class then b is as well,

then na + jIdnnb + j. And if a is not E-equivalent to b then they are in different

classes say i and j. Then na+ i is not Idn-equivalent to nb+ j, thus E 6 Idn.

All ceers with finitely many classes are computably bireducible with Idn for some n.

Lastly we show the Idn for n < ω form a strict hierarchy.

Theorem 3.2.5. [6] Idn < Idn+1.

Proof. One can see that Idn+1 66 Idn, since under any computable reduction at

least two elements that were Idn+1-inequivalent would become Idn-equivalent. Define

32

the function f(k) that computes the remainder r of k by n and then maps k to

(n+ 1)k + r.

This gives us a strict hierarchy of the ceers with finitely many classes

Id1 < Id2 < · · · < Idn < · · · .

Let Id be the identity equivalence relation, xIdy if and only if x = y.

Theorem 3.2.6. [6] For each n, Idn < Id.

Proof. Similar as to the proof that Idn < Idn+1.

Theorem 3.2.7. [6] For any computable ceer E with infinitely many classes E ≡ Id.

Proof. To see E 6 Id, order the equivalence classes by least element. To do this

observe that since E is computable there is algorithm that answers yes or no whether

a number is in a class, thus for a given class simply ask if 0 is in the class, if 1 is in

the class, and so on. This process is computable and will terminate, and give us the

least element in the class. The map the sends a to j just in case a is in the jth class

witnesses the reduction. To see Id 6 E, enumerate E-inequivalent elements i1, i2, . . .

then send a to ia.

Note that the above theorem works for infinite Π0
1 equivalence relations, since we

can enumerate E-inequivalent pairs. The computable ceers form an ω+ 1 order-type

initial segment of structure of the ceers under computable reducibility

Id1 < Id2 < · · · < Idn < · · · < Id.

33

To complete the study of the ceers under computable reducibility it remains to classify

the non-computable ceers. The structure of ceers under computable reducbility fork

at the computable ceers, those which the identity relation is computably reducible to

and those that the identity is not computably reducible to, thus we make the following

definition.

Definition 3.2.3. A ceer E is called light if Id 6 E and E is called dark if it has

infinitely many equivalence classes and is not light.

One might characterize the light ceers are those which we have an effective enumer-

ation of pairwise E-inequivalent elements.

Definition 3.2.4. Let A ⊂ ω, define the following equivalence relation

nEAm←→n = m ∨ n,m ∈ A.

Theorem 3.2.8. [6] There is a dark ceer.

Proof. Consider the equivalence relation EA where A is a simple set. Suppose for

contradiction that f witnesses Id 6 EA. First we note that if f witnesses Id 6 E

for any E then f is injective. Thus there is at most one n ∈ ω such that f(n) ∈ A.

Suppose f(n) ∈ A then f(ω \ {n}) is an infinite c.e. subset of A. If there is no n such

that f(n) ∈ A then f(ω) is an infinite c.e. subset of A. Both of these cases contradict

the fact that A is immune.

Dark ceers are not always of the form EA for A a simple set. For example in [7] they

constructed a dark ceer with only finite classes.

Definition 3.2.5. A ceer U is called universal if for all ceers E, E 6 U .

34

Theorem 3.2.9. There is a universal ceer.

Define the relation enumerated by ϕe in the following way. To each n in the domain of

ϕe associate a unique ordered pair (k,m) so that, via the pairing function, 〈k,m〉 = n.

Now take the transitive closure of that relation along with the diagonal and for each

(k,m) include (m, k), this will be an equivalence relation denoted Ee. All ceers can

be defined this way. To see this let E be a ceer then the E-equivalent pairs are

enumerated by some ϕe. By the s-m-n theorem we can find an e′ so that ϕe′ halts on

n if and only if 〈k,m〉 = n and kEm.

Proof. Define the universal c.e. relation by 〈e, a〉Uce〈e′, a′〉 if and only if e = e′ and

aEea
′. The map a 7→ 〈e, a〉 witnesses Ee 6 Uce.

Observe that for a universal ceer U then Id < U . For a dark ceer E, E 66 Id, for

the following reason. Suppose E 6 Id, we know that Id 66 E, thus E < Id. But

this means that E ≡ Idn for some n, but E by definition has infinitely many classes.

Thus if U 6 Id, then E 6 Id, which is a contradiction. Note that that if E is a

universal ceer then E ′ ≡ E, thus the halting jump is not a proper jump operator. We

will define a proper jump operator for equivalence reltaion on ω in chapter 4.

The next two theorems will show the relationship between computable reducbility

and one-one reducibility and ceers of the form EA where A is a c.e. set.

Theorem 3.2.10. If A and B are properly c.e. then EA 6 EB if and only if A 61 B.

In [6] A and B are required to be both properly c.e. and in [1] A and B are just

required to be c.e. and B infinite.

35

Proof. Suppose that A and B are infinite c.e. and that A 61 B via f . Then f , since

it is injective, witnesses the reduction of EA to EB since

nEAm←→ n = m ∨ n,m ∈ A

←→ f(n) = f(m) ∨ f(n), f(m) ∈ B

←→ f(n)EBf(m).

Now suppose that f witnesses EA 6 EB, we wish to build an injective g that witnesses

A 61 B. Note that either the ranf �A⊂ B or is a singleton. If ranf �A were a

singleton, say {n}, then the f−1({n}) = A would be computable contrary to A being

properly c.e.. Thus ranf �A⊂ B and so f witnesses A 6m B, moreover is already

injective on A. Then we inductively define a function g so that g(0) = f(0) and

g(n+ 1) = f(n+ 1) if for all k 6 n, f(n+ 1) 6= g(k). If f(n+ 1) = g(k) then we need

f(n+ 1) ∈ B, enumerate B until an element appears not equal to any other g(k) and

set g(n+ 1) to be that number.

Theorem 3.2.11. Suppose E is a ceer and A is a c.e. set. If Id 6 E 6 EA then

there is a c.e. set B such that E ≡ EB.

Proof. Let A be c.e. and let f witness E 6 EA. Note that the range of f is infinite,

thus we can define a computable bijection f : ranf → ω. We claim the set B is the

range of ranf ∩ A. First we show that g ◦ f witnesses E 6 EB

36

xEy←→f(x)EAf(y)

←→f(x) = f(y) ∨ f(x), f(y) ∈ A

←→f(x) = f(y) ∨ f(x), f(y) ∈ A ∩ ranf

←→g(f(x)) = g(f(y)) ∨ g(f(x)), g(f(y)) ∈ B

←→g(f(x))EBg(f(y))

The computable function h(x) = (µy)(g(f(y)) = x) witnesses EB 6 E.

The last theorem, proved by Andrews and Sorbi in [2], gives an idea of the richness

the structure of the ceers under computable reducibility.

Theorem 3.2.12. [2] Let E be a non-universal ceer. There are pairwise incomparable

dark ceers Ei for i ∈ ω such that for every i and ceer F , Ei 66 E and

F < Ei → (∃n)(F 6 Idn).

3.3 Equivalence Relations on c.e. Sets

In order to prove some results in the next section we give some preliminary results

from Coskey et al. [6]. There are many benchmark equivalence relations in Borel

equivalence relation theory that can be ported down to the computable world by

considering them restricted to indices for c.e. sets. Equality on c.e. sets will be

denoted =ce, where e =ce e′ if and only We = We′ . In general, if we are considering

some equivalence relation E, then when E is only considered restricted to indices for

c.e. sets we will denote it by Ece. We will sometimes use e and e′ for natural numbers

37

here to emphasize when we are interpreting our natural numbers as indices for c.e.

sets.

Definition 3.3.1. For any equivalence relation E, then define Ece to be

eEcee′←→We E We′ .

For example if E is an equivalence relation on reals, then Ece is that same equivalence

relation but restricted to c.e. reals.

Theorem 3.3.1. [6] =ce is a Π0
2-complete set of pairs.

Proof. First note that the following formula shows that =ce is Π0
2

e =ce e′←→(∀n)((∃s)n ∈ We,s←→(∃t)n ∈ We′,t).

To see that =ce is Π0
2-complete, recall that the set TOT = {e | We = ω} is Π0

2-complete

([18], Theorem IV.3.2). TOT is a =ce-class. There is m-reduction from TOT to that

=ce-class by function that, on input e, outputs n just in case ϕe halts on input n.

Theorem 3.3.2. [6] If E is a ceer, then E <=ce.

Proof. First note that =ce 66 E, by descriptive complexity. Each E-class is only c.e.

and by the previous theorem =ce has a Π0
2-complete class. To see there is a reduction

of E to =ce, notice every E-class is c.e. so let f send each n to the machine e that

enumerates [n]E. Then nEm if and only if [n]E = [m]E.

Definition 3.3.2. The finite difference, or almost equal, equivalence relation E0 is

given by AE0B if and only if A4B is finite. Then eEce
0 e
′ if and only if We4We′ is

finite.

38

Theorem 3.3.3. [6] Ece
0 is a Σ0

3-complete set of pairs.

Proof. The following formula shows that Ece
0 is Σ0

3. Let ϕ(m, e, e′) be a Π0
2-formula

that expresses m is in the symmetric difference of We and We′ then

eEce
0 e
′←→(∃n)(∀m)(ϕ(m, e, e′)→ m 6 n).

To see that Ece
0 is Σ0

3-complete, recall that the set COF = {e | We is cofinite} is

Σ0
3-complete ([18], Theorem IV.3.5). Any cofinite We has a finite symmetric difference

with any other cofinite We′ , thus Ece
0 has COF as one of its classes.

Theorem 3.3.4. [6] =ce< Ece
0 .

Proof. We show first that =ce6 Ece
0 , given an index e define f(e) as follows. Whenever

n is enumerated intoWe then f(e) enumerates codes for the pairs (n, 0), (n, 1), (n, 2),

Then we have We and We′ differ if and only if Wf(e) and Wf(e′) differ infinitely often.

The descriptive complexity of the equivalence relations prevents the reduction in the

other direction since Ece
0 has a Σ0

3-complete class and =ce is Π0
2.

If E is a Borel equivalence relation then when restricted to indices for c.e. sets or

equivalently c.e. reals, the complexity of Ece directly relates to the complexity of

E. At a high level there is an existential quantifier introduced on the inside of the

formula defining E. This gives justification for appropriately considering equivalence

relations on reals and then considering the c.e. version Ece of E.

Theorem 3.3.5. Let E be a Borel equivalence relation. Then if E is Π0
2n+1 then Ece

is Π0
2n+2.

For this proof will proceed by induction but we will only show the base case since

that is where all the work actually happens. The proof makes crucial use of quantifier

39

contraction ([18], Theorem II.1.3), by which a formula that has two universal quan-

tifiers, with appropriate coding, may be expressed as one universal quantifier. The

same is true for existential quantifiers.

Proof. We work with the following encoding of c.e. reals on 2ω into natural numbers.

Recall that ϕe,s(n) ↓ is a computable relation R(e, s, n) of natural number. A real x

is a c.e. real coded by some index e, if the nth digit of x, x(n), is given in the following

way:

x(n) = 1←→n ∈ We

←→ϕe(n) ↓

←→(∃s)ϕe,s(n)

←→(∃s)R(e, s, n).

Let E be a Π0
1 Borel equivalence relation defined by

E(x, y)←→(∀n)(∀m)S(x, y, n,m).

for some computable relation S. For the given formula expressing relationship be-

tween coordinates of reals, x(n) and y(m), then S(x, y, n,m) becomes, for some

computable R′ of natural numbers, an expression for Ece where e and e′ code c.e.

reals in the above defined way

Ece(e, e′)←→(∀n)(∀m)(∃s)(∃t)R′(e, e′, s, t, n,m).

By quantifier contraction Ece is Π0
2.

40

Corollary 3.3.1. (i) If E is Π0
2n then Ece is Π2n.

(ii) If E is Σ0
2n+1 then Ece is Σ2n+1.

(iii) If E is Σ0
2n then Ece is Σ2n+1.

Proof. This is immediate by taking complements when necessary and appropriate use

of quantifier contraction.

For example consider Turing equivalence, ≡T , as a Borel equivalence relation. Turing

equivalence is a Σ0
3 Borel equivalence relation since

x 6T y←→(∃e)(x = W y
e)

←→(∃e)(ϕye is total) ∧ (∀n)(x(n) = 1←→ϕye(n) ↓= 1).

is Σ0
3 and taking the conjunction of x 6T y and y 6T x doesn’t add to the descriptive

complexity. Thus by the above theorem ≡ceT , that is

e ≡ceT e′←→We ≡T We′

is a Σ0
3 equivalence relation on natural numbers.

Let us look at an example that leads to an open problem in computable reducibility.

Notice that Id(2ω) 6B≡T since there is a perfect set of pairwise Turing incomparable

reals, this follows immediately from Silver’s dichotomy theorem. On the other hand

≡T is not a smooth Borel equivalence relation. Since E0 is a sub equivalence relation

of ≡T , i.e. if xE0y then x ≡T y, then if E0 6B Id(2ω) then ≡T6B Id(2ω). To that end

suppose that E0 6B Id(2ω) via f . This would be absolute over some ground model

41

V . In the forcing extension V [g] adding a Cohen real g the real x such that f(g) = x

does not depend on g, since any finite change to g is still generic. But the claim that

a real maps to x is absolute so g differs in at most finitely many places from a real

in V so it could not have been generic, hence ≡T 66B Id(2ω). The analogous theorem

for computable reducibility

Theorem 3.3.6. [6] =ce<≡ceT .

The Glimm Effros dichotomy theorem implies that E0 6≡T . It was shown by Slaman

and Steele in [17] that ≡T is not hyperfinite (those equivalence relations who are the

countable, increasing union of equivalence relations with all classes finite), and since

the Borel equivalence relations E such that E 6B E0 are precisely the hyperfinite

ones [11] (Theorem 7.2.3) we conclude E0 <B≡T .

Open Question: Are Ece
0 and ≡ceT comparable with respect to computable re-

ducibility? To mirror their counterparts in Borel equivalence relations we would

like Ece
0 <≡ceT

3.4 Relative Computable Reducibility

We define a new notion of reducibility with respect to an oracle

Definition 3.4.1. Let E and F be equivalence relations on ω, and let d be a Turing

degree, E is d-computably reducible to E, written E 6d F if there is a d-computable

function f such that for all x, y ∈ ω

xEy ←→ f(x)Ff(y).

42

This definition was made in passing in Coskey et al [6] and explored in Fokina et al

[7]. For every pair of equivalence relations E and F on ω, where |E| 6 |F |, there is

always a degree d that witnesses a reduction from E to F . In fact, the degrees that

compute the reduction exist on a cone above deg(E ⊕ F).

Definition 3.4.2. Let (E,F) be pair of equivalence relations. The reducibility

spectrum of (E,F), denoted S(E,F) is the set of Turing degrees d such that E 6d F .

The degree of reducibility of (E,F) is the least degree d ∈ S(E,F) if a least degree

exists.

For instance if E 6 F then the degree of reducibility of (E,F) is 0.

Theorem 3.4.1. Let (E,F) be a pair of equivalences, then S(E,F) is either empty

or upward closed, and if empty then |E| > |F |.

Proof. Assume |E| 6 |F |, let a = deg(E⊕F) and define f to be the a-computable

function such that f(0) = 0 and

f(x+ 1) =


f(y) (∃x 6 y)(y ∈ [x+ 1]E)

(µz)[(∀y 6 x)(z /∈ [f(y)]F)] otherwise.

Now since |E| 6 |F |, then we will never run out of equivalence classes. This f

witnesses E 6a F . To see that the spectrum of reducibility is closed upwards it is

enough to note that any a-computable function is also d-computable for any d >

a.

It should be noted here that computable reducibility of equivalence relations as defined

is not directly analogous to Borel reducibility. In fact computable reducibility would

be directly analogous to continuous reducibility (replace Borel with continuous in the

43

definition of Borel reducibility), and Borel reducibility would be directly analogous

to hyperarithmetic reducibility. But if we were to take the definition of computable

reducibility and replace the existence of a computable function with that of a hy-

perarithmetic function then many equivalence relations on ω would be trivial. For

instance, take E and F to be any two arithmetic equivalence relations with |E| 6 |F |,

then since deg(E⊕F) is computable in 0(ω) then there is a 0(ω)-computable function

that witnesses E 60(ω) F .

It is worth noting that although |E| 6 |F | implies there is a non-empty reducibility

spectrum for (E,F), the authors of [7] haave shown that there is not always a degree

of reducibility. One question that arises is to see if degrees of reducibility exist for

nice equivalence relations.

Definition 3.4.3. A subset A ⊂ ω is called partial transversal for E if x, y ∈ A, then

¬(xEy) or x = y.

Theorem 3.4.2. d ∈ S(Id, E) if and only if d computes an infinite partial transversal

for E.

Proof. Suppose that d ∈ S(Id, E), if f is the d-computable function that witnessed

Id 6 E then ranf is an infinite partial transversal for E. For the converse suppose

that d computes an infinite partial transversal for E, call it A. Use the oracle d to

order A = {a0, a1, . . . }. Define the d-computable function f so that f(n) = an, thus

d ∈ S(Id, E).

We have shown that Id 66 EA, where A is a simple set. Let a = deg(A), then

Id 6a EA. First a-computably enumerate A then the map which sends i to ai,

witnesses the reduction. The set A is an infinite partial transversal for EA since if

44

ai, aj ∈ A then ai = aj if and only if i = j, and furthermore there are no ai ∈ A.

Define E ≡d F if and only if E 6d F and F 6d E. Continuing the example we

can use a to decide, for some n, whether n ∈ A or n ∈ A. Thus we can define an

a-computable reduction between EA and Id as follows

f(n) =


0 if n ∈ A

(µk > 1)(∀m < n)(k > f(m)) otherwise.

Thus we have that Id ≡a EA.

45

CHAPTER 4

A JUMP OPERATOR ON EQUIVALENCE RELATIONS

In this chapter we will define a jump operation for equivalence relations on ω analogous

to a well-studied jump operator on Borel equivalence relations.

4.1 Friedman-Stanley Jump and its Computable Variant

Definition 4.1.1. Let E be a Borel equivalence relation on a Polish space X. The

Friedman-Stanley jump1 of E, denoted E+ is the equivalence relation on Xω defined

by

(xn)E+(yn)←→ {[xn]E | n ∈ ω} = {[yn]E | n ∈ ω}.

The equivalence relation E+ is Borel since the jump adds only an ∀∃ quantifier to E

as shown

(xn)E+(yn)←→(∀n)(∃m)(xnEym) ∧ (∀m)(∃n)xnEym.

It is immediate that E 6B E+ since the map that sends x to the constant sequence

of x is a reduction. Also we have that if E 6B F then E+ 6B F+. In fact, with quite

a bit of work one may show that E <B E
+, which goes through the famous theorem

about the non-existence of a Borel diagonalizer.

1Kanovei in [14] calls this the countable power operation.

46

Theorem 4.1.1. [11] If E is a Borel equivalence relation, then there is no Borel

function f : Xω → X with the two following properties: for all x, y ∈ Xω

(i) xE+y → f(x)Ef(y)

(ii) (f(x), xn) /∈ E for all n ∈ ω.

The are at least two proofs of this, one of which is in [11] which goes through the

non-existence of a Borel separator set for certain projective sets. Another, which uses

forcing, given by Friedman in [10]2 Proposition C, is a wonderful example of using

forcing with the end goal not being an independence result. The gist of the forcing

proof is to assume such a function exists with the above properties, extend your given

model by adding a generic object and conclude with absoluteness that the generic

object must have existed in the ground model. The main contradiction of the proof of

E <B E
+ is that a reduction of E+ 6B E implies the existence of a Borel diagonalizer

for E++.

We define a computable Friedman-Stanley (FS) type jump for equivalence relations

on ω. We then see how much this mirrors the structure of Borel equivalence relations

with the FS-jump.

Definition 4.1.2. Let E be an equivalence relation on ω. Define the computable

FS-jump of E, denoted E+, on ω (thought of as indices for c.e. subsets of ω2), by

eE+e′ ←→ {[ϕe(n)]E | n ∈ We} = {[ϕe′(n)]E | n ∈ We′}.

2This is originally attributed to Leo Harrington.

47

Formally one may see this as the following

eE+e′ ←→(∀n ∈ We)(∃m ∈ We′)ϕe(n)Eϕe′(m)

∧ (∀m ∈ We′)(∃n ∈ We)ϕe(n)Eϕe′(m).

This might be viewed as a more complex variant of the halting jump operator defined

for ceers by Gao and Gerdes in [12], which we looked at in section 3.2.

Definition 4.1.3. Let E be an equivalence relation on ω then:

(i) E0+ = E

(ii) E(n+1)+ = (En+)
+

.

Theorem 4.1.2. Let E be an equivalence relation on ω, then E 6 E+.

Proof. Let f send each e to the code for a machine that halts on all inputs and

outputs e. Then

eEe′ ←→(∀n ∈ Wf(e))(∃m ∈ Wf(e′))eEe
′

∧ (∀m ∈ Wf(e′))(∃n ∈ Wf(e))eEe
′

←→(∀n ∈ Wf(e))(∃m ∈ Wf(e′))ϕe(n)Eϕe′(m)

∧ (∀m ∈ Wf(e′))(∃n ∈ Wf(e))ϕe(n)Eϕe′(m)

←→f(e)E+f(e′).

Theorem 4.1.3. If E 6 F then E+ 6 F+.

48

Proof. Suppose f witnesses E 6 F . By the s-m-n theorem find computable injective

function g such that for all e, n ∈ ω, ϕg(e)(n) = f(ϕe(n)). Then ϕg(e)(n) halts if and

only if f(ϕe(n)) does, and outputs the same value.

eE+e′ ←→((∀n ∈ We)(∃m ∈ We′)ϕe(n)Eϕe′(m)

∧ (∀m ∈ We′)(∃n ∈ We)ϕe(n)Eϕe′(m))

←→((∀n ∈ We)(∃m ∈ We′)f(ϕe(n))Ff(ϕe′(m))

∧ (∀m ∈ We′)(∃n ∈ We)f(ϕe(n))Ff(ϕe′(m)))

←→((∀n ∈ Wg(e))(∃m ∈ Wg(e′))ϕg(e)(n)Fϕg(e′)(m)

∧ (∀m ∈ Wg(e′))(∃n ∈ Wg(e))ϕg(e)(n)Fϕg(e′)(m))

←→g(e)F+g(e′).

Thus g witnesses E+ 6 F+.

Corollary 4.1.1. For all n, En+ 6 E(n+1)+.

Proof. Iterating Theorem 4.1.3.

Corollary 4.1.2. If E ≡ F then E+ ≡ F+.

Theorem 4.1.4. E+⊕F+ 6 (E⊕F)+.

Proof. By the s-m-n theorem find two injective functions f and g so that for all e and

n, ϕf(e)(n) = 2ϕe(n) and ϕg(e)(n) = 2ϕe(n) + 1 and using padding we can suppose

f, g have disjoint ranges. We will show that the function h defined h(2e) = 2e and

h(2e+ 1) = g(e) gives the reduction. For two even numbers 2e, 2e′

49

2eE+⊕F+2e′←→eE+e′

←→(∀n ∈ We)(∃m ∈ We′)(ϕe(n)Eϕe′(m))

∧ (∀m ∈ We′)(∃n ∈ We)(ϕe(n)Eϕe′(m))

←→(∀n ∈ We)(∃m ∈ We′)(2ϕe(n)E⊕F2ϕe′(m))

∧ (∀m ∈ We′)(∃n ∈ We)(2ϕe(n)E⊕F2ϕe′(m))

←→(∀n ∈ Wf(e))(∃m ∈ Wf(e′))(ϕf(e)(n)E⊕Fϕf(e′)(m))

∧ (∀m ∈ Wf(e′))(∃n ∈ Wf(e))(ϕf(e)(n)E⊕Fϕf(e′)(m))

←→f(e)(E⊕F)+f(e′)

←→h(2e)(E⊕F)+h(2e′).

By a similar argument one can show

2e+ 1E+⊕F+2e′ + 1←→h(2e+ 1)(E⊕F)+h(2e′ + 1).

For 2e and 2e′ + 1, these are never E+⊕F+ equivalent. Assume that

h(2e)(E⊕F)+h(2e′ + 1),

under the assumptions f, g have disjoint ranges f(2e) 6= g(2e′ + 1), this happens

because of parity.

4.2 Benchmark Equivalence Relations

We will examine the computable FS-jump applied to some benchmark equivalence

relations on ω. We will investigate the effect of the computable FS-jump has on

50

descriptive complexity. Consider Id, let us calculate Id+.

eId+e′ ←→(∀n ∈ We)(∃m ∈ We′)ϕe(n)Idϕe′(m)

∧ (∀m ∈ We′)(∃n ∈ We)ϕe(n)Idϕe′(m))

←→{[ϕe(n)]Id | n ∈ We} = {[ϕe′(n)]Id | n ∈ We′}

←→{ϕe(n) | n ∈ We} = {ϕe′(m) | m ∈ We′}

←→ranϕe = ranϕe′ .

Thus eId+e′ ←→ ranϕe = ranϕe′ .

Theorem 4.2.1. =ce is computably bi-reducible with equality of ranges of partial

computable functions.

Proof. For the 6 direction, given e let

ϕf(e)(n) =


n ϕe(n) ↓,

↑ otherwise.

If e =ce e′ then ϕe and ϕe′ halt on precisely the same inputs, which implies ranϕf(e) =

ranϕf(e′). For other direction suppose that e 6=ce e′ ,then there is an m such that

ϕe(m) ↓ and ϕe′(m) ↑. Which means that there is an m ∈ ranϕf(e) such that

m /∈ ranϕf(e′), therefore ranϕf(e) 6= ranϕf(e′)

For the > direction, given e let

51

ϕf(e)(n) =


n (∃s)(∃x)ϕe,s(x) ↓= n,

↑ otherwise.

If ranϕe = ranϕe′ then f(e) =ce f(e′). Conversely, if ranϕe 6= ranϕe′ then there is an

m, a stage s, and an x such that ϕe,s(x) ↓= m and for all s such that ϕe′,s(x) halts it

never outputs m, therefore f(e) 6=ce f(e′).

For the analogy of this theorem to the FS-jump see ([14] Lemma 5.1.3(i)). The

previous theorem gives us a bit of room to be loose with having to consider when we

care about the range or domain of a function.

Corollary 4.2.1. Id+ ≡=ce.

Theorem 4.2.2. Id < Id+.

Proof. By Theorem 4.1.2 we have Id 6 Id+. We cannot have reduction the other

way since by Theorem 3.3.1 Id+ has a Π0
2-complete equivalence class while Id only

has computable equivalence classes.

Now let us compute (=ce)+, which is

{[ϕe(n)]=ce | n ∈ We} = {[ϕe′(n)]=ce | n ∈ We′}.

First some notation, for a set A ⊂ ω define the nth column of A, denoted A[n] to be

the set {m | 〈n,m〉 ∈ A}.

Definition 4.2.1. The equality on columns equivalence relation is given as follows

eEce
sete

′←→{W [n]
e | n ∈ ω} = {W [n]

e′ | n ∈ ω}.

52

Informally we see eEce
sete

′ if and only if We and We′ thought of as subsets of ω2 have

the same set of columns.

Theorem 4.2.3. (=ce)+ is computably bireducible with Ece
set.

Proof. We first show the > direction. Given e we define a computable function f on

pairs (n,m) ∈ We such that

f((n,m)) =


1 ϕϕe(n)(m) ↓

↑ otherwise.

Intuitively we want that the nth column to be Wϕe(n). Suppose that eEce
sete

′ we wish

to show

{[ϕf(e)(n)]=ce | n ∈ Wf(e)} = {[ϕf(e′)(n)]=ce | n ∈ Wf(e′)}.

Make the observation that [ϕf(e)(n)]=ce is the nth column of We. Now eEce
sete

′ have

precisely the same set of columns thus equality of the sets of =ce-classes holds. If e

was not Ece
set-equivalent to e′ then there would be a column in Wf(e) or Wf(e′) that

the other one didn’t have, thus equality of the =ce classes would not hold.

For the 6 direction the same computable function witnesses the reduction.

Corollary 4.2.2. Id2+ is computably bireducible with Ece
set.

In Borel Equivalence relations, the equivalence relation Eset is well studied. It is also

called F2 and is Borel bireducible with =+, or the FS-jump of the equality on 2ω. It

is worth noting that =ce is equality on 2ω restricted to c.e. reals. We have the second

computable FS-jump of equality is computably bireducible Ece
set, since we start the

53

iterated computable FS-jump at Id. The similarities between the FS-jump and the

computable FS-jump are still quite apparent.

Theorem 4.2.4. The set (=ce)+ is a Π0
4-complete set of pairs.

Proof. There is a computable function f such that {Wf(n) | n ∈ ω} consists of exactly

the recursive sets ([18], Exercise II.2.11). Recall that the set of indices for computable

functions, Rec, is a Σ0
3-complete set ([18], Corollary IV.3.6). Let A be Π0

4, we show

a reduction to the (=ce)+-class of f . For some Σ0
3 relation R and h a computable

function such that

x ∈ A←→(∀y)R(x, y)

←→(∀y)(h(x, y) ∈ Rec).

Now define the partial computable function

ϕe(x)(y) =


f(n) y = 2n

h(x, n) y = 2n+ 1.

This function witnesses the reduction from A to the (=ce)+-class of f .

Corollary 4.2.3. Ece
set is a Π0

4-complete set of pairs.

Corollary 4.2.4. Id+ < Id2+.

Theorem 4.2.5. For a ceer E, E+ computably reducible to =ce. Moreover, if E is

light, then =ce≡ E+.

54

Proof. Given e we let f compute the E-saturation of the range of ϕe, i.e. the set

{x | (∃n)xEϕe(n)}. Thus we have

eE+e←→Wf(e) = Wf(e′)

←→f(e) =ce f(e′).

If E is light then Id 6 E and by the monotinicity of the computable FS-jump then

Id+ 6 E+. Thus =ce6 E+.

We will now begin to look at partial results approaching =ce6 E+ for any ceer E.

We know that the prototypical example of a dark ceer is the case when EA for a A

a simple set. There are many kinds of immunity3 properties that subsets of natural

numbers can have, for a diagram see ([18], page 211).

Definition 4.2.2. (i) For a finite set A = {x1, . . . , xk} where x1 < · · · < xk, the

canonical index for A is y =
∑

i 2
xi . Let Dy denote the finite set with canonical

index y.

(ii) A sequence {Fn} for n ∈ ω of finite sets is a strong (weak) array if there is

a computable function f such that Fn = Df(n) (Fn = Wf(n)), and an array is

disjoint if its members are pairwise disjoint.

(iii) A c.e. set A is (hyperhypersimiple) hypersimple if A is infinite and there is no

disjoint strong (weak) array {Fn} for n ∈ ω such that Fn ∩ A 6= ∅ for all n.

Theorem 4.2.6. Let A be a non-hyperhypersimple set, then =ce≡ E+
A .

3Cooper [5] characterizes immunity of set as a sense of difficulty in computably finding infinitely
members of a set.

55

Proof. Let A be a non-hyperhypersimple set, then there is a disjoint strong array

{Bn} for n ∈ ω such that Bn ∩ A 6= ∅ for all n. Given e let f enumerate the set

{Bn | n ∈ We}. Then since the Bn are disjoint we have ¬Wf(e)E
+
AWf(e′) if and only

if e 6=ce e′.

Theorem 4.2.7. If E is any ceer with infinitely many classes, then Id 6 E+.

Proof: The key idea to the proof is to use the fact that E is a ceer to give enough

computable information to build a transversal for E+. Recall by Theorem 3.4.2 that

Id 6 E+ if and only if there is a computable enumeration of an infinite transversal

of E+. We’ll then use the transversal to find computable function f so that f(i) is a

Σ1-index for a finite set with some element that not E-equivalent with any finite set

already defined. To that end, we will use a moving marker construction to meet the

following requirement;

Ri : (∀j < i)(∃n ∈ Wf(i))(∀m ∈ Wf(j))(¬mEn).

We do this by enumerating the complement of an infinite partial transversal B =⋃
sBs for E+. We then let f computably find an index for a finite set Wf(i) so that

is an element that is not E-equivalent to any k ∈ Wf(j) for j < i. We now verify

that if each requirement Ri is met the function f will witness Id 6 E+. If i = j,

then Wf(i) = Wf(j) and so f(i)E+f(j). If j < i, then there will be an n ∈ Wf(i)

that is not E-equivalent to any m ∈ Wf(j), and hence f(i) 6E+ f(j). Start with a

computable enumeration {Es} for s ∈ ω of E, we can safely assume that (is, js) and

(js, is) are enumerated into E at stage s. Let {xsi} be a collection of movable markers,

that denote the position of the ith element of Bs at stage s, i.e. Bs = {xs0 < xs1 < · · · }.

56

Construction: At stage s = 0 set B0 = ∅. At stage s+1 assume we have constructed

Bs, we consider marker xsi and computably check if (xsi , k) ∈ Es for any k ∈ Bs. If

the answer is yes we enumerate it into Bs and set Bs+1 = Bs ∪ {xsi} and move the

markers. Otherwise we computably find an index for {xsi | s ∈ ω} = Wf(i), and move

the markers.

Lemma 4.2.1. Each Ri, i ∈ ω is satisfied.

Proof. Since we have infinitely many classes for every Bs there will be a stage t > s

so that we see an x such that x 6E k for any k ∈ Bs.

Lemma 4.2.2. For each i ∈ ω, we have xi = lims x
s
i is finite.

Proof. Since we have infinitely many classes we eventually see an element that is no

E-equivalent to anything that we have seen before. If we enumerate xsi at stage s we

never move the marker again. Otherwise the marker xsi can only be moved for the

sake of some xsk for k < i. This happens at most i many times, so each marker comes

to a rest.

Definition 4.2.3. Let A ⊂ ω be infinite, if A = {a0 < a1 < a2 < · · · }, define pA as

the function that sends n to an. A function f majorizes g if for all x, f(x) > g(x). A

function f majorizes A if it majorizes pA.

To illustrate an example note that the Post simple set A is not hyperhypersimple,

since A is majorized by f(x) = 2x ([18], Theorem V.2.3). We can explicitly write

down a reduction from Id to E+
A as follows. Given e let Wf(e) = [0, 4e] then

22e−1 6 |Wf(e) \ A| 6 22e.

57

Then ¬Wf(e)E
+
AWf(e′) if and only if e 6= e′. Thus f witnesses Id 6 E+

A .

We will now construct a coinfinite set A such that Id 66 E+
A . Note that this con-

struction is necessarily non-effective since we have that Id computably reduces to

the jump of any ceer. The construction will essentially be by computable Mathias

forcing. Consider the poset of pairs of (s, A), where s is finite and A is infinite. Say

that (s, A) 6 (t, B) if t ⊂ s, A ⊂ B, and s \ t ⊂ B. We might think of the set A as a

reservoir from with to extend s.

Lemma 4.2.3. If A,B,C ⊂ ω then at least one of A4B, A4C, or B4C must be

coinfinite.

Proof. Assume for contradiction that the complements the above symmetric differ-

ences are finite. If A,B and C are all finite then the result holds. Without loss of

generality consider C to be infinite, then C without A4C∪B4C is infinite, but that

set is a subset of A4B, which we assumed to be finite. This contradiction implies

that one of the symmetric differences must be coinfinite.

Theorem 4.2.8. There exists a set A so that Id 66 E+
A .

Proof. Consider the poset of conditions described above. We will construct a set A

so that A =
⋃
s for all (s, B) that meet the following dense sets (requirements).

D0
n : {(s, B) | |s| > n}

D1
e : {(s, B) | We infinite → We ∩B 6= ∅}

D2
f : {(s, B) | (∃i 6= j)ranϕf(i)4ranϕf(j) ∩B = ∅}.

58

Notice that if requirements D0
n and D1

e for all n and for all e, then A is immune.

Then there would be no way to computably enumerate an infinite c.e. subset of A,

which is what a reduction of the identity to E+
A would do. Note that for eE+

Ae
′

there are two possibilities, either both ranϕe and ranϕe′ meet A or both miss A and

ranϕe4ranϕe′ ⊂ A. If the condition D2
f is met for each computable f , though we can

safely assume that f is injective, then either ranϕe and ranϕe′ both meet or both miss

A. So we can make sure that, for every computable function, there are two different

e’s that both meet A and therefore Id 6 EA+.

Fix an ordering for how to meet the requirements

D0
0 > D1

0 > D0
0 > D0

1 > D1
1 > D2

1 > · · · .

To meet the D0
n requirements, if we are given a (s, B) we can extend to some (s′, B′)

by enumerating n elements of B, then (s′, B′) 6 (s, B). To meet the requirements

D1
e , ask if We is infinite, and if it is, find an n ∈ We such that n > max(s) and

enumerate n into s. Call that s′ and B′ = B \ {n}, then (s′, B′) 6 (s, B). If We is

finite do nothing. To meet D2
f , given (s, B), see that there are infinitely many i and

j such that

(ranϕf(i)4ranϕf(j)) ∩ [0,max(t)] = ∅.

Fix three such i, j, k. Then by the above lemma at least one the symmetric differences

of the ranges of f(i), f(j) and f(k) must be coinfinite. Say ranϕf(i)4ranϕf(j) is

coinfinite, then define B′ = B \ ranϕf(i)4ranϕf(j), and s = s′. So (s′, B′) 6 (s, B).

Finally take A =
⋃
s over all (s, B) that meet the above conditions in the given

59

order. And so no computable function f can witness Id 6 E+
A .

The previous theorem gives us that there is an equivalence relation E so that =ce is

not computably reducible the computable FS-jump of E+. The previous construction

was not effective so this leads to the following question.

Open Question: What is the descriptive complexity of the set A in the previous

proof? The constructive seems to be computable in ∅(3), is this optimal?

Conjecture 4.2.1. If E is a ceer then E+ ≡=ce.

Whereas there are equivalence relations E so that Id 66 E+ the next theorem shows

that this is the worst failure.

Theorem 4.2.9. For any E with infinitely many classes, Id 6 E2+.

Proof. Given n, let f(n) be the machine that enumerates all sets with n elements.

Since f is a function we clearly have

nIdn′ → f(n)E2+f(n′).

For the converse, we argue the contrapositive, suppose n 6= n′, since E has infinitely

many classes we are guaranteed to have a set with n′ many E-inequivalent elements

and thus

{[ϕf(n)(i)]E+ | i ∈ Wf(n)} 6= {[ϕf(n′)(i)]E+ | i ∈ Wf(n′)}.

Thus Id 6 E2+.

Corollary 4.2.5. For any E with infinitely many classes, Idn+ 6 E(n+2)+.

60

4.3 Iterating Computable FS-jump through Computable Or-

dinals

Definition 4.3.1. Iterating the FS-jump through the computable ordinals we make

use of Kleene’s O. Let E be an equivalence relation on ω, for each a ∈ O, define Ea+

by recursion as follows

(i) If a = 1, then Ea+ = E.

(ii) If a = 2b, then Ea+ = (Eb+)+.

(iii) If a = 3 · 5e, then Ea+ =
(⊕

n<ω E
ϕe(n)+

)+
.

By the above definition this implies Id 6 Ea+ for any |a| an infinite ordinal. We are

particularly interested in the case when E = Id in the previous definition.

Lemma 4.3.1. For every a ∈ O, E 6 Ea+. If a, b ∈ O and a <O b then Ea+ 6 Eb+.

Conjecture 4.3.1. Every hyperarithmetic equivalence relation E on ω, is computably

reducible with Ida+ for some computable ordinal α.

It is not true that every hyperarithmetic equivalence relation is computably bire-

ducible with Ida+ for some a. Let A be a simple set, then EA is computably

incomparable with Id. Also Id+ cannot computably reduce to EA because EA has only

c.e. classes and Id+ has a Π0
2-complete equivalence class. The iterates in this sense

would weakly parameterize the computable reducible hierarchy for hyperarithmetic

equivalence relations.

Andrews and Sorbi in [3] have shown that for transfinite jumps of the halting jump

operator that there are notations |a| = |b| = ω2 such that Ida | Idb.

61

A proof of the following theorem will appear in a furture article.

Theorem 4.3.1. For hyperarithmetic equivalence relations E, E < E+.

Conjecture 4.3.2. Idn+ is a Π0
2n-complete set of pairs.

4.4 Computable FS-jump fixed points

In this section we will show there are Σ1
1 fixed points of the computable FS-jump.

Given a hyperarithmetic equivalence relation on ω it is clear that computable FS-jump

preserves the hyperarithmeticity of the equivalence relation, since we are essentially

adding two natural number quantifiers.

Definition 4.4.1. A fixed point of the computable FS-jump is an equivalence relation

E such that E ≡ E+.

In Borel equivalence relation theory the FS-jump has as a fixed point the isomorphism

relation on countable graphs, which is Borel complete and Σ1
1. This gives more

evidence that the computable FS-jump as defined is analogous to the FS-jump in

Borel Theory.

For instance, Fokina et al.[9] it was shown that the isomorphism relation on com-

putable trees was Σ1
1-complete4 for computable reducibility, we will give a proof of

this fact in section 5.1. There are also constructions of a universal Σ1
1 equivalence

relation such as in Fokina [8] akin to the construction of a universal ceer which is

given in Coskey et al. [6]. That proof relativizes to arbitrary oracles, if we take z to

4This is sometimes called being “on-top for computable reducibility” see Montalbán [15] pg.
15− 16.

62

be a Σ1
1-complete real (identifying subsets of ω with reals) then U z

ce is a universal Σ1
1

equivalence relation.

Theorem 4.4.1. Given a Σ1
1-complete real z, then (U z

ce)
+ 6 U z

ce.

Proof. Adding natural number quantifiers to a Σ1
1 relation creates a new Σ1

1 relation

([13], Lemma 25.2). We are defining a new equivalence relation so we get an Σ1
1

equivalence relation. Thus (U z
ce)

+ is a Σ1
1 equivalence relation. Since U z

ce is Σ1
1-

complete for computable reducibility, then (U z
ce)

+ 6 U z
ce.

This brings up an important open question in the theory of computable reducibil-

ity. In Borel theory the notion of being Borel complete and Σ1
1-complete for Borel

reducibility are not the same. So far for computable reducibility no such notion has

been found to mirror the what it means for a Borel equivlance relation to be Borel

complete.

63

CHAPTER 5

COMPUTABLE TREES OF COMPUTABLE ORDINAL

RANK

5.1 Isomorphism Relation on Computable Trees

Computable reducibility allows the analysis of equivalence relations on c.e. structures.

Recall that a structure A is c.e. if there is an index e that enumerates the atomic

diagram of A.

Definition 5.1.1. Let ∼=ce
bin denote the isomorphism relation on codes for c.e. binary

relations. That is, let e ∼=ce
bin e′ if and only if We and We′ thought of as binary

relations1 on ω are isomorphic.

Isomorphism relations on computable structures that are coded by natural numbers

are Σ1
1, since the isomorphism relation can be thought of as being defined a statement

of the form “(there exists a function)(something arithmetical)”, where the function

is appropriately coded by a real. We can use computable reducibility to analyze the

complexity of the isomorphism relation on computable structures. As an example

of this, we present a proof from [9] that shows that the isomorphism relation on

computable trees ∼=T is Σ1
1-complete for computable reducibility.

1If n ∈We then use the pairing function to think of n as some pair (k,m) where n = 〈k,m〉.

64

Definition 5.1.2. Let T be a subtree of ω<ω. Define the tree rank of τ ∈ T denoted

tr(τ) by induction

(i) tr(τ) = 0 if τ has no successor.

(ii) For α > 0, tr(τ) = α if α is the least ordinal greater than tr(σ) for all immediate

successors σ of τ .

(iii) tr(τ) =∞ if τ does not have ordinal tree rank.

The tree rank of T is defined to be tr(∅).

Definition 5.1.3. Let S, T ⊂ ω<ω be trees. Define a tree S ∗T in the following way.

We think of elements (σ, τ) ∈ S ∗ T as ordered pairs. At level 0 of S ∗ T , we have

(∅,∅). For an element (σ, τ) at level k of S ∗ T , σ and τ are at level k of S and T ,

respectively. The successors (σ′, τ ′) of (σ, τ) are defined in the caseσ′ is the successor

of σ ∈ S and τ ′ is a successor of τ ∈ T .

Definition 5.1.4. A computable tree T ⊂ ω<ω is rank saturated provided that for

all τ ∈ T

(i) If tr(τ) is an ordinal α then for all β < α, τ has infinitely many successors τ ′

such that tr(τ ′) = β.

(ii) If tr(τ) =∞, then for all computable β, τ has infinitely many successors τ ′ such

that tr(τ ′) = β and τ has infinitely many successors τ ′ such that tr(τ ′) =∞.

Lemma 5.1.1. [9] There is a computable rank-saturated tree T ∞ such that tr(T ∞) =

∞.

Lemma 5.1.2. [9] If T is a computable tree, then T ∗ T ∞ is a computable rank-

saturated tree of the same rank as T .

65

It is also important to note before the proof that rank saturated trees of infinite or

computable ordinal rank are unique up to isomorphism. This is a straight forward

proof on by induction on rank.

Theorem 5.1.1. [9] ∼=T is Σ1
1-complete for computable reducibility.

Proof. Let E be a Σ1
1 equivalence relation on ω. We will show that there is computable

sequence of trees (Tn) for n ∈ ω such that for all n,m ∈ ω

mEn←→Tm ∼= Tn.

Recall that if A is Σ1
1 subset of ω then there exists a uniformly computable sequence

of computable (Tn) for n ∈ ω such that

n ∈ A ←→ Tn has an infinite path.

Thus since E is Σ1
1 there exists a uniformly computable sequence of trees (Tm,n) for

m,n ∈ ω such that

¬mEn ←→ Tm,n is well founded.

Say that ¬mEn is witnessed by stage α < ωck
1 if and only if Tm,n has tree rank less

than α.

We want an appropriate class of trees to use for the reduction. The strategy to

build (Tn) for n ∈ ω is as follows. Uniformly in m,n we build a computable tree T ∗m,n

with the following properties

(i) T ∗m,n ∼= T ∗n,m

66

(ii) mEn→ T ∗m,n ∼= T ∞, where T ∞ is the rank-saturated tree with an infinite path

(iii) ¬mEn→ T ∗m,n ∼= T α, where T α is the rank-saturated tree of rank α, for α least

such that for all m′ ∈ [m]E and n′ ∈ [n]E the relation ¬m′En′ is witnessed by

stage α.

For every m,n ∈ ω uniformly and effectively construct a new tree T ′m,n in the following

way. Let σi for i ∈ ω be an effective enumeration of ω<ω. Suppose σs = (a0, . . . , als),

then under the sth node on level 1 of T ′m,n we put the tree Ps = Tm,a0∗Ta0,a1∗· · ·∗Tals ,n,

identifying the top node Ps with s. Then

tr(T ′m,n) = sup{tr(Ps) + 1 | s ∈ ω}.

We show that the trees T ′m,n still preserve the property of nEm if and only if T ′m,n

has an infinite path. If mEn, then Tm,n has infinite path i.e. tr(Tm,n) = ∞. Under

P0, the indexed node of the empty sequence, in T ′m,n we have the tree Tm,n, thus

tr(T ′m,n) =∞. If ¬mEn, then for every σ = (a0, . . . , al), tr(Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tal,n)

is a computable ordinal. To see this, fix n,m ∈ ω such that ¬mEn. For every finite

sequence σs consider the corresponding tree Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n. Consider

the function F from the set of finite sequences into the set of computable well founded

trees such that F (s) is the code of Ps. The function F is hyperarithmetical, its domain

is computable. By Spector Bounding ([16]), there is a computable bounded on the

range of F . Therefore, T ′m,n has rank α for some computable α. We now show

everything we have done is well-defined. To that end, note that for all m′ ∈ [m]E and

n′ ∈ [n]E, we show that we get the same bound α. Let m′Em, n′En and let β be the

computable bound on the ranks of trees constructed using finite sequences starting

with m′ and ending with n′. Let Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n be as above. Then

67

tr(Tm′,m ∗ Ps ∗ Tn,n′) = tr(Ps), thus α 6 β. Similarly one can show that β 6 α.

Let T ∗m,n = T ′m,n ∗ T ∞. The tree T ∗m,n is a computable rank-saturated tree, tr(T ∗m,n) =

tr(T ′m,n), and the construction is uniform.

Now we build the desired sequence (Tn) for n ∈ ω. Take the tree T consisting

exactly of the sequences (m,m, . . . ,m) of length i 6 m for m ∈ ω. Now fix n and for

every m, attach T ∗m,n to the mth leaf of T . The resulting tree is Tn. We claim that

the resulting sequence (Tn) for n ∈ ω witnesses the reduction. Suppose that nEm,

(i) For every k in the E-class of n and m,the tree rank of T ′k,m and T ′k,n are infinite.

Thus T ∗k,m ∼= T ∗k,n ∼= T ∞ and so Tm ∼= Tn.

(ii) for every k not in the E-class of m the tree rank of T ′k,m and T ′k,n are some fixed

computable ordinal α. Thus T ∗k,m ∼= T ∗k,n ∼= T α, and so Tm ∼= Tn.

Finally, if ¬mEn, then T ∗m,m ∼= T ∞, so on the mth leaf of Tm we have T ∞. While

T ∗m,n ∼= T α, and therefore Tm 6∼= Tn.

Corollary 5.1.1. ∼=T is a fixed point for the computable FS-jump.

5.2 Well-Founded Trees

We continue our investigation of the relationship between the FS-jump and the com-

putable FS-jump by analyzing analogies between a theorem relating the isomorphism

relation on countable trees and the FS-jump. First some preliminaries

Definition 5.2.1. Let Tr be the Polish space of all countable trees. Define the set

WF ⊂ Tr to be the set of all well-founded trees.

68

The set WF is a non-Borel Π1
1 subset of Tr, since it of the form there is does not exist

a order preserving map (which is coded by a real) from ω into some tree T .

Definition 5.2.2. The height of a tree T , denoted ||T || is the least ordinal such that

there is an order preserving map from T into the ordinals. Define the rank of a tree

||T ||, denoted tr(T), as tr(T) = ||T || + 1. Let WFα be the set of trees of rank less

than or equal to α.

For each α < ω1 the set WFα is Borel. Let ∼=α denote the isomorphism relation on

WFα.

Definition 5.2.3. The iterated FS-jump of equality is defined by transfinite recursion

on the countable ordinals as follows

(i) =0+= Id(ωω)

(ii) =(α+1)+= (=α+)+

(iii) For limit λ, =λ+= Πα>λ =α+.

The following theorem gives the relationship between iterates of the FS-jump and the

isomorphism relation on WFα.

Theorem 5.2.1. For each α < ω1, ∼=3+α is Borel bireducible with =α+.

Proof. See [11] Theorem 13.2.5.

In a forthcoming work we hope to provide a computable version of this theorem.

69

REFERENCES

[1] Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro,

and Andrea Sorbi. Universal computably enumerable equivalence relations. J.

Symb. Log., 79(1):60–88, 2014.

[2] Uri Andrews and Andrea Sorbi. Joins and meets in the structure of Ceers. arXiv

e-prints, page arXiv:1802.09249, February 2018.

[3] Uri Andrews and Andrea Sorbi. Jumps of computably enumerable equivalence

relations. Ann. Pure Appl. Logic, 169(3):243–259, 2018.

[4] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical

hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.

North-Holland Publishing Co., Amsterdam, 2000.

[5] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca Raton,

FL, 2004.

[6] Samuel Coskey, Joel David Hamkins, and Russell Miller. The hierarchy of

equivalence relations on the natural numbers under computable reducibility.

Computability, 1(1):15–38, 2012.

[7] Ekaterina Fokina, Dino Rossegger, and Luca San Mauro. Measuring the

complexity of reductions between equivalence relations. arXiv e-prints, page

arXiv:1806.10363, June 2018.

70

[8] Ekaterina B. Fokina and Sy-David Friedman. On Σ1
1 equivalence relations over

the natural numbers. Math. Log. Q., 58(1-2):113–124, 2012.

[9] Ekaterina B. Fokina, Sy-David Friedman, Valentina Harizanov, Julia F. Knight,

Charles McCoy, and Antonio Montalbán. Isomorphism relations on computable

structures. J. Symbolic Logic, 77(1):122–132, 2012.

[10] Harvey Friedman. On the necessary use of abstract set theory. Adv. in Math.,

41(3):209–280, 1981.

[11] Su Gao. Invariant descriptive set theory, volume 293 of Pure and Applied

Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2009.

[12] Su Gao and Peter Gerdes. Computably enumerable equivalence relations. Studia

Logica, 67(1):27–59, 2001.

[13] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag,

Berlin, 2003. The third millennium edition, revised and expanded.

[14] Vladimir Kanovei. Borel equivalence relations, volume 44 of University Lecture

Series. American Mathematical Society, Providence, RI, 2008. Structure and

classification.

[15] Antonio Montalbán. Computability theoretic classifications for classes of struc-

tures. In Proceedings of the International Congress of Mathematicians—Seoul

2014. Vol. II, pages 79–101. Kyung Moon Sa, Seoul, 2014.

[16] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic.

Springer-Verlag, Berlin, 1990.

71

[17] Theodore A. Slaman and John R. Steel. Definable functions on degrees. In Cabal

Seminar 81–85, volume 1333 of Lecture Notes in Math., pages 37–55. Springer,

Berlin, 1988.

[18] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in

Mathematical Logic. Springer-Verlag, Berlin, 1987. A study of computable

functions and computably generated sets.

72

APPENDIX A

FORCING

Forcing was originally introduced by Paul Cohen to show that the continuum hypoth-

esis was not provable in ZFC. We give a brief treatment here for reference.

Definition A.0.1. Given model M (usually countable and transitive) of set theory

a notion of forcing is a poset P = 〈P,6〉 such that P ∈ M. The elements of P are

called conditions. If p 6 q, then p is said to be stronger than q.

Definition A.0.2. A set D ⊂ P is called dense if for all p ∈ P there is a q ∈ D so

that q 6 p. A filter G on P is a subset P such that the following hold

(i) For all p ∈ G and for all q ∈ P , if p 6 q then q ∈ G.

(ii) For all p, q ∈ G there exists r ∈ G so that r 6 p and r 6 q.

A filter G is called generic if for all dense sets D in P , then G ∩D 6= ∅.

Forcing a Cohen Real

Let M � ZF be countable and transitive. Let P = 2<ω, where σ 6 τ if and only

if σ ⊃ τ . We think of the conditions of P as finite partial functions from ω to 2.

This notion of forcing is called Cohen forcing. Let G ⊂ P be a generic filter. For

compatible p, q ∈ G we have they agree on the intersection or domain, thus p 6 q or

q 6 p. It also follows that there is an r such that r 6 p and r 6 q. Thus G is linear

73

ordered. Let xG =
⋃
G. We must show that xG is typical in the following way. It

is possible that xG have a small domain, but requiring that G meet every dense set

allows us make xG different from every real in the ground model M. For n ∈ ω let

Dn = {p ∈ P | n ∈ dom(p)}. We can meet these dense sets since if n /∈ dom(p), then

we can extend p by defining it for n, and thus meeting Dn. For a real h : ω → 2

define Eh = {p ∈ P | (∃n)(n ∈ dom(p))(p(n) 6= h(n))}. We can meet this dense set

since for given undefined p(n) define it to be 1 if h(n) = 0 and to be 0 if h(n) = 1.

Then every condition sees that xg is not equal to any other real h.

Forcing in Computability Theory

Forcing is used in computability theory to construct subsets of natural numbers that

have certain properties. It is equivalent to forcing a Cohen real except that we don’t

require our filter to meet every dense set, only certain arithmetically definable ones.

Definition A.0.3. A set A ⊂ ω is called n-generic if for every Σ0
n set S ⊂ 2<ω either

(i) (∃τ ⊂ A)(τ ∈ S)

(ii) (∃τ)(∀σ ⊃ t)(σ /∈ S)

If (i) holds we say that A meets S, and if (ii) holds then we say A misses S.

Thus we are saying here that A is n-generic if it meets or avoids every Σ0
n set of

strings.

Theorem A.0.1. There is a 1-generic set A 6T ∅′.

74

Proof. We’ll construct strings σi so that for each i we have σi meeting Wi or avoiding

Wi, and let A =
⋃
i σi. At stage s = 0 set σ0 = ∅. At stage s = i+1 ask the question

(∃t ⊂ σi)(τ ⊃ τ ′ for some τ ′ ∈ Wi).

If there is such a τ pick the least one and set σi+1 = τ . As a result σi+1 ∈ Wi and

satisfies (i) of the definition. If there is no such τ , then define σi+1 = σi
_ 0. As a

result every extension of σi+1 misses Wi and satisfies (ii) of the definition. Finally it

is clear that A as defined misses or meets every c.e. set and is thus 1-generic. To see

that this construction is computable in ∅′, notice that our question at each stage is

Σ0
1.

