THE ENDOSYMBIOTIC GUT FUNGUS ZANCUDOMYCES CULISETAE
INFLUENCES TRANSSTADIAL TRANSMISSION OF HOST-ASSOCIATED

MICROBIOTA IN THE YELLOW FEVER MOSQUITO (AEDES AEGYPTI)

by

Jonas Frankel-Bricker

A thesis
submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Biology

Boise State University

May 2019



© 2019

Jonas Frankel-Bricker

ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING
APPROVALS

of the thesis submitted by

Jonas Frankel-Bricker

Thesis Title: The Endosymbiotic Gut Fungus Zancudomyces culisetae Influences
Transstadial Transmission of Host-Associated Microbiota in the Yellow
Fever Mosquito (Aedes aegypti)

Date of Final Oral Examination: 4 March 2019

The following individuals read and discussed the thesis submitted by student Jonas
Frankel-Bricker, and they evaluated the student’s presentation and response to questions

during the final oral examination. They found that the student passed the final oral
examination.

Merlin M. White, Ph.D. Chair, Supervisory Committee
Sven Buerki, Ph.D. Member, Supervisory Committee
Kevin Feris, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Merlin White, Ph.D., Chair of the
Supervisory Committee. The thesis was approved by the Graduate College.



ACKNOWLEDGEMENTS

This project was supported by Institutional Development Awards (IDeA) from the
National Institute of General Medical Sciences of the National Institutes of Health under
Grants #P20GM103408 (Idaho INBRE) and #P20GM109095 (Idaho COBRE), the
Robert W. Lichtwardt Student Research Award from the Mycological Society of
America, a College of Arts and Sciences Award from Boise State University, and NSF
grant DEB 1441677. All sequencing data collection and preliminary analyses performed
by the IBEST Genomics Resources Core at the University of Idaho were supported in
part by NIH COBRE grant #P30GM103324. | would like to thank Dr. Sven Buerki, Dr.
Kevin Feris, and Dr. Merlin White for serving on my committee and providing continued
guidance and support throughout the duration of this project. Special thanks to Laura
Bond for her expertise and advice regarding the statistical analyses conducted, to Mick
Song for continued collaboration on multiple research projects past and present, and to
Michael Wohjahn for instruction and recommendations for coding in R. Finally, thank
you to our collaborators at the University of Idaho Genomics Resources Core: Sam
Hunter, Matt Fagnan, and especially Dan New for their knowledge and support

throughout the next generation sequencing workflow.



ABSTRACT

Mosquitoes are vectors for a variety of human pathogens and have a significant
impact on human health worldwide. There is growing evidence that host-associated
microbiota influence mosquito vector competence for certain viruses. Transstadial
transmission of bacteria from larvae through pupae to adults could affect these
interactions, though further studies are needed to fully unravel the mechanisms involved.
Current microbiome research primarily focuses on bacterial communities, whereas the
potential role endosymbiotic gut fungi have in transstadial transmission dynamics
remains largely unknown. Trichomycetes is an ecological group of endosymbiotic
microfungi that colonize the digestive tracts of arthropod hosts, including the Yellow
Fever Mosquito (Aedes aegypti). The trichomycete fungus Zancudomyces culisetae
infects A. aegypti populations in the wild and was investigated using laboratory-based
assays to identify fungal-bacterial-host interactions in mosquito larvae and adults.

Next generation sequencing of 16S rDNA gene amplicons and measures of
microbiome diversity found that fungal infestation in the larval digestive tract influenced
their microbiomes and reduced microbial transstadial transmission variability.
Comparative analyses of beta diversity measures indicated that fungal infestation affected
larval microbiome composition. Measures of alpha diversity revealed that newly emerged
fungal adults contained microbiomes characterized by high bacterial diversity and even
community distributions. In contrast, non-fungal adults harbored microbiomes with

variable compositional structures, often with low bacterial diversity and high levels of



dominance by few taxa. Additionally, transstadial transmission processes impacted
certain bacterial families. Fungal infestation in larvae restricted the transmission and
establishment of the bacterial taxon Burkholderiaceae and increased relative abundance
of Corynebacteriaceae and Moraxellaceae in newly emerged adults. Identifying biotic
factors that interact with host-associated microbiota and contribute to adult microbiome
formation may reveal microbial interactions that affect human pathogen contraction and
transmission in mosquitoes. These findings emphasize the importance of accounting for

endosymbiotic gut fungi in host-associated microbiome studies.
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INTRODUCTION

Arthropods coexist with communities of microbes collectively referred to as a
microbiome. Mosquitoes have become target organisms for microbiome studies due to
their vast geographic ranges (Kraemer et al., 2015) and high vector competence for a
variety of human pathogens according to the CDC. They are holometabolous, developing
from eggs to larvae and then forming pupae in aquatic environments, later to emerge as
flying terrestrial adults. These life history traits provide a system for the observation and
study of microbiomes across developmental stages in an organism prevalent in
ecosystems worldwide and associated with significant human health concerns.

Mosquito-associated microbiota have been studied in larvae (Rani et al., 2009;
Duguma et al., 2013; Coon et al., 2014), adults (Rani et al., 2009; Gusméo et al., 2010;
Chandler et al., 2015; Dickson et al., 2018), and compared across mosquito species
(Zouache et al., 2011; Coon et al., 2014; Muturi et al., 2016b; Muturi at al., 2017).
Microbial communities can impact larval development (Chouaia et al., 2012; Coon et al.,
2014), affect adult fitness (Minard et al., 2013), and play a role in the key processes
related to blood digestion and egg production (Gaio et al., 2011; Coon et al., 2016). Adult
microbiomes also influence mosquito-human pathogen interactions (Dennison et al.,
2014), which can change host vector competence for malarial parasites (Dong et al.,
2009) and arboviruses (Ramirez et al., 2012; Jupatanakul et al., 2014; Hegde et al., 2015;
Carissimo et al., 2015). Certain bacterial genera, including Wolbachia (Bian et al., 2010;

Pan et al., 2012; Bourtzis et al., 2014), Chromobacterium (Ramirez et al., 2014), and



Serratia (Apte-Deshpande et al., 2012) contribute to differential host-pathogen
interactions, and vector competence can vary across different populations of the same
mosquito species (Charan et al., 2013; Gongalves et al., 2014). Additionally, gut
microbiomes change compositionally in response to temporal shifts of pathogen exposure
(Novakova et al., 2017) and after contraction (Zink et al., 2015). The significant
microbial interactions impacting mosquito vector competence motivate continued
research into factors that influence adult gut microbiome composition, structure, and
function.

Larval microbiome dynamics have impacts on adults. Native larval gut
microbiomes impede vertical transmission of Wolbachia (Hughes et al., 2014), whereas
successful establishment of this genus in larvae impacts microbiome structure in adults
(Audsley et al., 2018). Additionally, larval exposure to various environmental bacteria
alters adult susceptibility to pathogen contraction (Dickson et al., 2017). Investigating the
processes that contribute to these developmental stage microbe inter-relationships
provide insights regarding the extent to which larval and adult microbiomes are
connected.

A source for initial adult microbe acquisition is via bacteria transferred through
preceding larval and pupal stages. Certain bacterial taxa present in larvae are
transstadially transmitted and found in adults (Wang et al., 2011; Coon et al., 2014; Chen
et al., 2015; Duguma et al., 2015). However, adults and larvae harbor microbiomes that
differ in composition and structure (Wang et al., 2011; Gimonneau et al., 2014; Duguma
et al., 2015), indicating that processes during life stage transitions and disparate

phenotypic traits result in distinct bacterial communities. Importantly, morphological and



physiological mechanisms reduce the bacterial load in mosquito digestive tracts during
and after pupation (Moll et al., 2001; Moncayo et al., 2005). It is unclear how
transstadially transmitted taxa establish in adult digestive tracts after this process. One
explanation is that these microbes are not expelled because they inhabit other anatomical
parts of the larval host that are not shed during pupation, such as the hemocoel (Brown et
al., 2018) and the salivary glands (Sharma et al., 2014). Whether these communities
establish in adult digestive tracts after pupation is uncertain. However, certain bacteria
colonize the digestive tracts and malpighian tubules in larvae, are transstadially
transmitted through the malpighian tubules, and reestablish in newly emerged adult
digestive tracts (Chavshin et al., 2013; Chavshin et al., 2015). Research that analyzes
mechanisms which influence the microbiome transition across developmental stages is
crucial to further our understanding of how adult gut microbiomes form and influence
vector competence.

The quantity of bacteria in a microbiome could affect microbe-host dynamics.
Novel protocols have been developed that add controlled amounts of nonnative bacteria
(Smets et al., 2016; Stdmmler et al., 2016) to experimental samples prior to sequencing,
and are more accurate than gPCR when quantifying entire bacterial communities
(Stammler et al., 2016). SCML (Stammler et al., 2016) is a protocol that clarifies whether
observed taxonomic shifts in relative abundance are due to increased proliferation or to
differential die-off of certain bacterial taxa within a microbiome.

Many microbiome studies assess bacteria and archaea, however, mosquitoes also
harbor communities of fungi (Chandler et al., 2015; Muturi et al., 2016b) which can

impact host fitness and interact with gut microbiota. Several entomopathogenic fungi



decrease bacterial diversity, accelerate death rates in adults (Wei et al., 2017), and affect
gut bacterial load (Ramirez et al., 2018). Additionally, an endosymbiotic fungus

increased vector competence for the dengue virus in adults and inhibited growth of
certain gut bacterial taxa (Angler6-Rodriguez et al., 2017). These studies reveal important
fungal-bacterial-host dynamics in adults, but are understudied in larvae. To the best of
our knowledge, the potential impacts of endosymbiotic gut fungi on transstadial
transmission of host-associated microbiota have never been addressed.

Trichomycetes include a group of microfungi that are obligate endosymbionts of
certain larval, aquatic arthropods (Lichtwardt, 1986). Zancudomyces culisetae, a well-
studied member of the Harpellales, infests the hindguts of several dipteran hosts
(Williams and Lichtwardt, 1972; Lichtwardt 1984). Asexual fungal spores in the aquatic
environment are ingested by larvae, extrude sporangiospores that attach to the lining of
the digestive tract in response to physiological cues, and develop in the hindgut.
Experimental fungal infestation assays have allowed for the study of these mechanisms
(Williams, 1983; Horn, 1989; McCreadie and Beard, 2003; VVojvodic and McCreadie,
2007). Whereas the nature of this fungal-host relationship is presumed to be
commensalistic, it can shift towards mutualism under altered environmental conditions
(McCreadie et al., 2005). The Yellow Fever Mosquito (Aedes aegypti), a vector for the
human pathogens Yellow, Dengue, Chikungunya, and Zika fevers, is one of the known
hosts of Z. culisetae in nature (Alencar et al., 2003). If this gut fungus affects A. aegypti
microbiome dynamics, wild populations could experience distinct host-microbiome
interactions contingent on the presence of Z. culisetae in their local environment, which

may lead to differential vector competence across mosquito populations.



To investigate fungal-bacterial-host interactions across developmental stages, A.
aegypti larvae were experimentally infected with Z. culisetae in a controlled laboratory
environment. Microbiomes of larvae and newly emerged adults were analyzed with 16S
rDNA gene amplicon sequencing and comparative metagenomic analyses to identify
potential changes in transstadial transmission patterns and shifts in newly emerged adult
microbiome compositional structures influenced by fungal infestation of the larval
digestive tract.

Materials and Methods

Fungal Strain Culturing and Spore Collection

A culture of Z. culisetae (USDA-ARS Collection of Entomopathogenic Fungal
Cultures, Ithaca, New York, USA, ARSEF 9012, Smittium culisetae, COL-18-3) was
maintained at room temperature on a 1/10 BHI agar plate with 3 milliliters (ml)
autoclaved Nanopure Water (Barnstead Thermolyne Corp., Dubuque, 1A, USA) overlay
containing 2 milligrams (mg)/ml of penicillin and 7mg/ml of streptomycin to prevent
bacterial contamination. Fungal mycelia were transferred to a new 1/10 BHI agar plate
with 3ml autoclaved Nanopure Water 8 days prior to the start of the experiment.

Fungal spores were harvested at the start of the experiment by sterilely collecting
and filtering the overlay through a sheet of Miracloth® (EMD Millipore, Burlington,
MA, USA) with a pore size of 22-25 micrometers and transferring to a 1.5ml
microcentrifuge tube (Eppendorf, Hamburg, Germany). Spores were concentrated by
centrifugation at 900xG for 10 minutes (min). The supernatant was discarded, and spore
pellets were combined and resuspended in 1ml autoclaved Arrowhead® bottled spring

water (Nestle, Vevey, Switzerland). Spore concentration was calculated by counting



viable spores (non-germinated asexual spores that illuminated under phase optics with a
light microscope) using a Neubauer Improved C-Chip Hemocytometer® (SKC Inc.,
Covington, GA, USA).

Experiment Preparation and Daily Maintenance

Aedes aegypti eggs, derived from the USDA-ARS Gainesville line, were
purchased (Benzon Research Inc., Carlisle, PA, USA) and stored at room temperature for
7 days. Histology containers (Fisher Scientific, Pittsburgh, PA, USA) containing 350ml
of bottled spring water were autoclaved. Four containers were assigned to each of four
experimental treatments A, B, C, D (non-fungal larvae, fungal larvae, non-fungal adults,
fungal adults, respectively). Approximately 50 eggs were added to each rearing container,
which were covered with 4 layers of autoclaved Miracloth to mitigate airborne
contamination, and were separately placed in a vacuum chamber (SP Industries Inc.,
Warminster, PA, USA) for 30 min to synchronize egg hatch timing (as described in
Foggie and Achee, 2009). The larval mosquito food source was prepared by finely
grinding Tetramin Fish Food (Tetra, Melle, Germany) with a mortar and pestle and
suspending 0.2 grams (g) of fish food powder in 10ml of autoclaved bottled spring water.
One milliliter of this slurry was added to each rearing container at the start of the
experiment. Rearing containers from treatments B and D were inoculated with
approximately 400,000 fungal trichospores. All mosquitoes were reared at 24°C +/- 1°C
with a 16:8 hour light/dark cycle in a low temperature refrigerated incubator (Fisher
Scientific, model #3724). Rearing containers were removed from the incubator daily,

counts of the mosquitoes and their estimated larval instar stages recorded, and 1-2ml of



fish slurry added. All maintenance protocols were performed on a sterilized laboratory
workbench next to a Bunsen burner to minimize contamination.

Larval Digestive Tract Visualization

Third and fourth instar larvae were collected from all treatments with at least one
collected for 14 of the 16 experimental replicates to visualize fungal infestation in
treatments B and D and to check for fungal contamination in treatments A and C. Eight
dissections were performed on larvae from treatment A, 14 from treatment B, 9 from
treatment C, and 15 from treatment D. Hindguts were removed and visualized with
phase-contrast and Nomarski microscopy to observe and record fungal infestation rates in
the digestive tracts of experimental larvae (Table B.1). No fungal material was recorded
in treatments A or C.

Mosquito Sample Collection

Fourth instar larvae from treatments A and B were individually transferred to
sterile 1.5ml microcentrifuge tubes and surface-sterilized using a modified larval protocol
described in Coon et al., 2014. Microbial DNA extractions were performed on larvae
after surface-sterilization. Mosquitoes from treatments C and D were reared to the pupae,
transferred to sterile 1.5ml microcentrifuge tubes, and surface-sterilized following a
modified adult protocol described in Coon et al., 2014. Surface-sterilized pupae were
transferred separately to sterile 15ml centrifuge tubes (Corning Inc., Corning, NY, USA)
containing 7ml autoclaved bottled spring water and reared axenically for 2-3 days until
adult emergence. The sex of newly emerged adults was visually identified, individual
adults were transferred to sterile 1.5ml microcentrifuge tubes, and microbial DNA

extractions were performed on female mosquitoes.



Microbial DNA Extraction

Microbial DNA was extracted from larvae, adults, and other possible
experimental sources with the Quick-DNA Fungal/Bacterial Kit® (Zymo Research,
Irvine, CA, USA) following the protocol provided by the manufacturer with the
following modifications: Lysis buffer was added directly to the 1.5ml microcentrifuge
tubes containing harvested mosquitoes. Mosquitoes were manually ruptured in the
microcentrifuge tubes with an autoclaved pellet pestle (DWK Life Sciences, Wertheim,
Germany) for approximately 30 seconds (s) for larvae and 1-2 min for adults.
Homogenized tube mixtures were transferred to bead tubes supplied with the extraction
kit and were disrupted using a vortex mixer at maximum setting for 5 min. The elution
buffer was heated to 45°C prior to its application to the spin-filters supplied by the
extraction kit and remained on the filter surface for 5 min prior to the final elution spin.
Extracted microbial DNA was stored at -80°C.

At least 4 DNA extractions were performed on mosquitoes from each replicate
container for non-fungal larvae, non-fungal adults, and fungal adults, and at least 2 DNA
extractions were performed from each replicate container for fungal larvae. Other DNA
extractions were carried out on approximately 400,000 Z. culisetae trichospores, 50 A.
aegypti eggs, and fish food slurry over the course of 3 days after original preparation.
Additional DNA extractions were performed on a suite of negative control samples.
These included extractions of autoclaved spring water, blank extraction kit reagents from
the 4 Kits used, rearing water from an empty rearing container across 3 experimental time
points, and autoclaved water from two 15ml centrifuge tubes containing surface-sterilized

pupae. Two blank PCR were also carried out to identify potential contamination of PCR



reagents. All PCR reactions were performed using 5PRIME HotMasterMix (Quantabio,
Beverly, MA, USA).

Amplification of Fungal 18S rDNA

Targeted 18S rDNA PCR using primer pair TR3/TR4 (Tables B.2, 3, 4: Rxn_1)
were performed on DNA extracted from 18 surface-sterilized larvae collected from
treatment B for confirmatory detection of Z. culisetae (Rizzo and Pang, 2005). PCR
products were visualized on 1.5% agarose gels and 17 of the 18 samples successfully
amplified. All 18 samples were selected for sequencing.

Amplification of Bacterial 16S rDNA

The V3/V4 hypervariable regions of the microbial 16S rDNA gene were
amplified with primer pair 341f/785r (Klindworth et al., 2013), with linker sequences
(Takahashi et al., 2014), and adapter and spacer sequences provided by the University of
Idaho GRC (University of Idaho, Moscow, ID, USA) (Table B.2: Rxn_2). Targeted 16S
PCR were carried out (Tables B.3, 4: Rxn_2) on extracted experimental DNA samples
with four 341f/785r primer pair variants containing spacer sequences of different lengths
to mitigate amplification biases. PCR products were visualized on 1.5% agarose gels to
confirm amplification of 16S rDNA. Additional targeted 16S PCR were carried out
(Tables B.2, 3, 4: Rxn_3) on a subset of experimental samples spiked with DNA
extracted from the halophilic bacterium, Salinibacter ruber (ATCC product BAA-605D-
5). Salinibacter ruber DNA concentration was quantified with a Qubit
Fluorometer® (Invitrogen, Carlsbad, CA, USA) and 16S copies per nanogram of DNA
were calculated. Approximately 1,000,000 16S copies were added in addition to

experimental sample template DNA for use in SCML analyses (Stammler et al., 2016).
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Preparation and Sequencing of 16S Amplicons

Secondary PCR were performed (Tables B.2, 3, 4: Rxn_4) to attach barcode
sequences provided by the University of Idaho GRC to PCR amplicons. Amplicons were
visualized on 1.5% agarose gels and pooled based on gel band intensity. Amplicon
sequencing was performed with an Illumina MiSeq v3 (Illumina Inc., San Diego, CA,
USA) at the University of Idaho GRC, which produced 300 base pair (bp) paired-end
reads. Reads were demultiplexed by sample barcode sequences by the sequencing
facility.

Raw Read Processing and OTU Assignment

Amplicon lengths were estimated using FLASH (Mago¢ and Salzberg, 2011) for a
subset of samples. The majority of amplicons were estimated at 430bp or shorter (Figure
A.1). Paired-end reads were processed using the DADAZ2 pipeline (Callahan et al., 2016).
Forward and reverse reads were trimmed to 278bp and 167bp, respectively, trimmed at
the location of the first occurrence of a base call with a Phred score less than or equal to
15, and were filtered by removing reads with any number of N base calls or containing
greater than or equal to 6 estimated errors. Reads were merged with a minimum overlap
of 12 bases. Experimental samples with less than 100 reads after initial filtering were
removed from the pipeline. Chimeric sequences were discarded, and merged reads were
dereplicated and clustered into OTUs based on 97% sequence similarity. Read counts
were calculated and tracked for each step in the workflow (Table B.5). Taxonomy was
assigned to OTUs using the SILVA v132 database (Pruess et al., 2007; Quast et al.,
2013). A neighbor-joining tree was inferred using the phangorn package in R (Schliep,

2011) and a generalized time-reversible with gamma rate variation maximum likelihood



11

tree was fit using the neighbor-joining tree as the starting point. The phylogenetic tree,
taxonomically assigned OTUs, read count data, and experimental sample metadata were
combined into a single object using the Phyloseq package in R (McMurdie and Holmes,
2013).

Phyloseq Object Data Preparation and Analyses

Of the negative controls sequenced, 3 of the 4 extraction kits had over 100 reads
after initial filtering and chimeric sequence removal in the DADAZ2 pipeline, while all
other negative controls sequenced had less than 100 reads and were removed from
analyses (Table B.5). Reagents from extraction Kits add contaminant sequences to
experimental samples (Salter et al., 2014) and the removal of contaminant OTUs is
recommended to ensure the quality and accuracy of sequencing data analyses.
Contaminant sequences introduced from all 4 kits combined were identified with the
decontam package in R (Davis et al., 2018) using the “prevalence” method and the
threshold set to 0.5. All OTUs identified as kit contaminants were removed prior to
downstream analyses.

Data from the Phyloseq object were subset into unique datasets and independently
processed for comparative analyses for larva type (non-fungal and fungal), adult type
(non-fungal and fungal), developmental stage of non-fungal mosquitoes (larvae and
adults) and fungal mosquitoes (larvae and adults), and a set of positive controls (food and
eggs). Alpha diversity measures of Simpson and Shannon diversity indices were
calculated using the estimate_richness function in Phyloseq, and boxplots were generated
in ggplot2 (Wickham, 2011). CV values (the ratio of the standard deviation to the mean)

have been used as a metric to measure variation in alpha diversity across groups (Flores
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et al., 2014; Galloway-Pena et al., 2017). Coefficient of variation values for each alpha
diversity metric in each group compared were calculated with the cv function in the
sjstats package in R (Lidecke, 2018). The R package cvequality (Marwick and
Krishnamoorthy, 2018) was used to test for significant differences of CV values for alpha
diversity measures using an asymptotic test (Feltz and Miller, 1996) and a MSLRT
(Krishnamoorthy and Lee, 2014).

Rarefaction curves were generated using the ggrare function in the ranacapa
package (Kandlikar et al., 2018) along with ggplot2 in R (Figure A.2). Rarefaction read
cutoff values were selected for each dataset independently to maximize richness captured
while minimizing the number of samples cut for each comparative analysis (Table B.5).
Singletons were removed and datasets were further processed by discarding OTUs that
were not represented by at least 6 reads in one sample within a dataset after rarefaction.

Beta diversity measures of Bray-Curtis dissimilarity, unweighted UniFrac, and
weighted UniFrac distances were calculated in Phyloseq, and tests for significant
differences due to the main effect in a comparison (Treatment or Developmental Stage)
were carried out with PERMANOVA (Anderson, 2017) with 999 permutations using the
adonis function in the Vegan package in R (Dixon, 2003) in combination with the
nested.npmanova function in the BiodiversityR package in R (Kindt, 2016). Nested
PERMANOVA calculated the correct pseudo-F and P values for the main effect and
accounted for random effects across rearing containers. Dispersions of beta diversity
measures can be calculated and utilized as an additional comparative metric (Anderson et
al., 2006). Variances of beta diversity measures for each group were calculated using the

betadisp function in Vegan. Permutational statistical tests for the homogeneity of
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dispersions in each group comparison (Anderson, 2006) were calculated with the
permute.test function in Vegan with 999 permutations. Boxplots of the dispersals were
created in ggplot2, and NMDS plots of beta diversity measures were created using the
plot_ordination function in Phyloseq along with ggplot2. Relative abundances of the top
15 bacterial families shared between groups (which accounted for greater than 80% of the
total reads) in each dataset were calculated, and stacked bar plots were created using the
plot_bar function in Phyloseq in combination with ggplot2.

SCML Read Processing

Combined data from the Phyloseq object were subset for samples that were spiked
with S. ruber DNA. A conversion factor was calculated by dividing the number of S.
ruber reads in each sample by the average number of S. ruber reads in a group. Total read
counts for each sample were calibrated by multiplying the total reads by the sample-
specific conversion factor so that all samples had the same read counts for S. ruber.

Linear Mixed Models

The statistical significance of the main effect on mean alpha diversity measures,
relative abundances of each of the top 15 bacterial families shared between groups, and
the SCML calibrated read counts for each dataset were calculated by fitting a linear
mixed model to account for random effects across rearing containers using the Imer
function in the Ime4 package in R (Bates et al., 2015). Models were tested with Type II
Wald F tests with Kenward-Roger degrees of freedom using the Anova function in the

car package in R (Fox et al., 2018).
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Results

Fungal Infestation Reduces Microbiome Taxonomic Composition Variation in Larvae

Reads for non-fungal and fungal larvae were rarefied to 5251 reads, with 154
OTUs identified across 38 samples. Linear mixed models did not detect a significant
difference in mean alpha diversity measures due to fungal infestation (Table B.6).
PERMANOVA did not detect a fungal infestation effect on beta diversity measures
(Table B.7), however, unweighted UniFrac distance dispersal was higher in non-fungal
larvae (F, 3s= 4.6534, P=0.036, Figure 2.E). Relative abundances of the top 15 bacterial
families shared between non-fungal and fungal larvae were calculated and plotted (Figure
3.A). Linear mixed models did not detect differences in relative abundances due to fungal
infestation (Table B.8).

Fungal Infestation Reduces Transstadial Transmission Pattern Variation and Affects

Transference of Certain Taxa

Reads for non-fungal larvae and adults were rarefied to 2560 reads, with 484
OTUs identified across 36 samples. Linear mixed models did not detect differences in
mean alpha diversity measures across developmental stages (Table B.6), however, CV
values were higher in adults for Simpson (P<0.001, Figure 1.A) and Shannon (P<0.001,
Figure 1.B) diversity indices. PERMANOVA detected differences in Bray-Curtis
dissimilarity (Pseudo-F,6=3.7052, P=0.022), unweighted UniFrac (Pseudo-F,
6=6.9677, P=0.035), and weighted UniFrac distances (Pseudo-F(1,6=8.9194, P=0.031)
across developmental stages (Table B.7). Non-metric multidimensional scaling plots
show separation between larvae and adults for these metrics (Figure 2.A, B, C). Beta

diversity variation was higher in adults relative to larvae for Bray-Curtis dissimilarity
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(Fa,32=31.461, P<0.001, Figure 2.D) and unweighted UniFrac distance (Fq, 34=43.821,
P<0.001, Figure 2.E). Relative abundances of the top 15 bacterial families shared
between non-fungal larvae and adults were calculated and plotted (Figure 3.B). Linear
mixed models detected differences in relative abundances for certain families across
developmental stages (Table B.8). Microbacteriaceae and Rhizobiaceae decreased in
adults relative to larvae (P=0.002, P=0.015, respectively), whereas Burkholderiaceae
increased (P=0.002).

Reads for fungal larvae and adults were rarefied to 2229 reads, with 600 OTUs
identified across 31 samples. Linear mixed models detected differences in mean alpha
diversity measures across developmental stages for Shannon Diversity (P=0.011, Figure
1.B) (Table B.6). Coefficient of variation values were not different for Simpson or
Shannon diversity indices (Table B.6). PERMANOVA detected differences in beta
diversity for Bray-Curtis dissimilarity (Pseudo-F,6=6.2994, P=0.028), unweighted
UniFrac (Pseudo-F1,6=10.7434, P=0.03), and weighted UniFrac distances (Pseudo-
F(1,6=8.4334, P=0.025) across developmental stages (Table B.7). Non-metric
multidimensional scaling plots show separation between larvae and adults for these
metrics (Figure 2.A, B, C). Beta diversity variation was higher in adults relative to larvae
for Bray-Curtis dissimilarity (F, 20=32.067, P<0.001, Figure 2.D) and unweighted
UniFrac distance (F(1,20=53.22, P<0.001, Figure 2.E). Relative abundances of the top 15
bacterial families shared between fungal larvae and adults were calculated and plotted
(Figure 3.C). Linear mixed models detected differences in relative abundances for certain

families across developmental stages (Table B.8). Microbacteriaceae and Rhizobiaceae
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decreased in adults relative to larvae (P=0.013, P=0.013, respectively), whereas
Corynebacteriaceae increased (P=0.002).

Altered Transstadial Transmission Patterns Lead to Distinct Microbiomes in Newly

Emerged Adults

Reads for non-fungal and fungal adults were rarefied to 1777 reads, with 881
OTUs identified across 33 samples. Linear mixed models did not detect differences in
mean alpha diversity measures due to fungal infestation during the larval stage (Table
B.6), however, CV values were higher in non-fungal adults for Simpson (P < 0.001,
Figure 1.A) and Shannon (P < 0.001, Figure 1.B) diversity indices. PERMANOVA did
not detect a larval fungal infestation effect for Bray-Curtis dissimilarity or unweighted
UniFrac distance (Table B.7), though weighted UniFrac distance had a low P value
(Pseudo-F1,6=5.6849, P=0.05). Relative abundances of the top 15 bacterial families
shared between non-fungal and fungal adults were calculated and plotted (Figure 3.D).
Linear mixed models detected differences in relative abundances of certain taxa due to
larval fungal infestation (Table B.8). Corynebacteriaceae and Moraxellaceae had higher
relative abundance in fungal relative to non-fungal adults (P=0.025, P=0.048,

respectively).
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Figure 1. Boxplots of Alpha Diversity Measures

Boxplots of alpha diversity measures for Simpson (A) and Shannon (B) diversity indices of microbiome communities in fungal (red)
and non-fungal (Blue) mosquitoes collected at larval and adult stages. Solid lines in each boxplot represent median values and
horizontal edges of the boxes indicate quartiles. Statistical results from linear mixed models comparing mean alpha diversity measures
between treatments and across developmental stages within treatments are indicated with lowercase letters above each boxplot, with
significant results indicated with asterisks. Significant combined results of asymptotic and MSLRT comparing CV values between
treatments and across developmental stages within treatments are indicated with solid black lines labeled “CV” above boxplots.
Statistical significance of comparative analyses is indicated with *p<0.001.
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Beta diversity measures visualized with NMDS plots for Bray Curtis dissimilarity ( - A), unweighted UniFrac (B), and weighted
UniFrac (C) distances for mosquito microbiomes between fungal (red) and non-fungal (blue) treatments and across developmental
stages within treatments. Boxplots representing beta diversity variance for each group are shown for Bray Curtis dissimilarity (D),
unweighted UniFrac (E), and weighted UniFrac (F) measures. Solid lines in each boxplot represent median values and horizontal
edges of the boxes indicate quartiles. Variance of measures for each group were calculated by measuring the distance of each sample
to the group centroid for each metric. Significant results from comparisons of mean beta diversity variance using permutational tests
for homogeneity of dispersals are indicated by solid black lines above boxplots. Statistical significance of comparative analyses is
indicated with *P<0.05, **P<0.01, ***P<0.001
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Larval Microbiomes Have Larger Bacterial Loads than Adults

Total reads for 16 non-fungal and 26 fungal larvae and adults were calibrated
using the SCML method. Linear mixed models showed that larvae had higher calibrated
read counts than adults for both groups (P=0.019, P=0.038, respectively) (Figure A.3,
Table B.9).

Discussion

Laboratory-based experiments with A. aegypti revealed distinct microbial
transstadial transmission patterns and taxonomic compositions in mosquitoes infested
with Z. culisestae. In non-fungal mosquitoes, no differences in mean alpha diversity
measures were detected, however, CV values were higher in adults relative to larvae for
Simpson (P<0.001, Figure 1.A) and Shannon diversity (P<0.001, Figure 1.B) indices
(Table B.6), indicating that newly emerged non-fungal adult microbiomes have higher
variability in taxonomic diversity and distribution than larvae. In contrast, mean alpha
diversity measures in fungal mosquitoes were higher in adults relative to larvae for
Shannon diversity (P=0.011, Figure 1.B). Additionally, no differences in CV values were
detected for Simpson (P<0.14) or Shannon diversity (P<0.1) indices (Table B.6),
demonstrating that fungal infestation of the larval digestive tract leads to higher
taxonomic diversity, but similar distribution in newly emerged adult microbiomes
relative to larvae.

For both groups of mosquitoes, beta diversity analyses showed divergent
microbiomes between larvae and adults. In non-fungal mosquitoes, beta diversity
differences for Bray-Curtis dissimilarity (P=0.022, Figure 2.A) and weighted UniFrac

distance (P=0.031, Figure 2.C) showed clear shifts in microbiome compositional
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structures, whereas the difference in unweighted UniFrac distance (P=0.035, Figure 2.B)
indicated disparities in the microbial taxa present across developmental stages. These
findings were conserved in fungal mosquitoes, where differences in beta diversity across
developmental stages were detected for Bray-Curtis dissimilarity (P=0.028, Figure 2.A),
unweighted UniFrac (P=0.03, Figure 2.B), and weighted UniFrac distances (P=0.025,
Figure 2.C). Additionally, beta diversity variation was higher in adults relative to larvae
for both non-fungal and fungal mosquitoes for Bray-Curtis dissimilarity (P<0.001, Figure
2.D) and unweighted UniFrac distance (P<0.001, Figure 2.E), demonstrating that the
mosquito microbiome undergoes changes in compositional structure across
developmental stages, supporting findings from (Wang et al., 2011; Gimonneau et al.,
2014; Duguma et al., 2015), regardless of fungal infestation. Additionally, these data
show that newly emerged adults harbor microbiomes with higher variability in taxonomic
composition and structure relative to larvae.

Whereas statistical analyses showed significant changes in microbiomes across
developmental stages, certain bacterial families present in larvae were observed in newly
emerged adults (Table B.8). Shifts in relative abundances of certain taxa in adults relative
to larvae were observed in both non-fungal (Figure 3.B) and fungal (Figure 3.C)
mosquitoes. These observations support other studies that revealed adults inherit a subset
of their associated microbiota from larvae and pupae through transstadial transmission
(Wang et al., 2011; Coon et al., 2014; Chen et al., 2015; Duguma et al., 2015). Fungal
infestation affects the outcomes of transstadial transmission for certain taxa. In non-
fungal mosquitoes, Burkholderiaceae, a minor community member in larvae (2.23%),

was transferred to adults and became the dominant taxon (42.16%, P=0.002). In contrast,
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Burkholderiaceae in fungal larvae (9.57%) did not increase in adults (5.59%, P=0.511),
demonstrating that fungal infestation leads to differential transstadial transmission of
certain taxa. Conversely, in both groups of mosquitoes Microbacteriaceae was the
dominant taxon in larval microbiomes (49.47% in non-fungal, 31.26% in fungal), as was
recorded in Coon et al., 2014, and decreased to low abundances in adults (0.30%,
P=0.002, non-fungal; 3.32%, P=0.013, fungal). A similar pattern was observed for
Rhizobiaceae, which was present at moderate levels in larvae from both groups (10.26%
in non-fungal, 8.23% in fungal), but decreased to low abundances in adults (1.28%,
P=0.015, non-fungal; 1.61%, P=0.013, fungal). Collectively, these data demonstrate that
only certain bacterial taxa are capable of successful transstadial transmission, and fungal
infestation can lead to differential relative abundances of these taxa in newly emerged
adults.

Direct comparisons between non-fungal and fungal adults revealed that the
transstadial transmission patterns impacted the compositions and structures of
microbiomes in newly emerged adults. Whereas no difference was detected for mean
alpha diversity measures, fungal adults had high values for alpha diversity indices and
lower CV values for Simpson (P<0.001, Figure 1.A) and Shannon diversity (P<0.001,
Figure 1.B) than non-fungal adults, indicating that fungal mosquitoes emerged with
distinct microbiomes characterized by high richness and even taxonomic distribution. In
contrast, non-fungal adults had high CV values for alpha diversity measures and emerged
with variable microbiome compositional structures. Many of the non-fungal adults had
low values for Shannon and Simpson diversity indices, indicative of microbiomes with

low diversity and high levels of dominance by certain taxa. The wide dispersal of these
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measures could be a reflection of variable Burkholderiaceae dominance in non-fungal
adult microbiomes. This family only increased in non-fungal adults, though it was present
on mosquito eggs (Figure A.4) and both mosquito groups would have been exposed to it.
Altered transstadial transmission patterns resulted in distinct adult microbiome
taxonomic compositions. The family Corynebacteriaceae, had higher relative abundance
in fungal (12.58%) relative to non-fungal (4.08%) adults (P=0.025). This taxon was
present in the fish slurry fed to all mosquitoes during the experiment (Figure A.4).
Additionally, Moraxellaceae was also higher in fungal (3.91%) relative to non-fungal
(1.31% ) adults (P=0.048), and was found on the mosquito eggs (Figure A.4). The
disparity in the relative abundances of these families in newly emerged adults
demonstrates differential establishment of certain bacterial taxa, possibly a result of
altered microbiome dynamics influenced by larval fungal infestation. There is evidence
of variable taxonomic composition in non-fungal larvae based on the high dispersal of
unweighted UniFrac distance (P=0.036, Figure 2.E). In the absence of fungal infestation,
certain taxa may differentially proliferate in larvae, leading to variable transstadial
transmission patterns often resulting in adult microbiomes with low taxonomic diversity
and high levels of dominance by Burkholderiaceae. In contrast, fungal infestation could
reduce taxonomic composition variability in larvae, resulting in highly diverse adult
microbiomes with low levels of dominance by Burkholderiaceae. Suppression of
Burkholderiaceae establishment in fungal adults by fungal-bacterial-host interactions in
larvae may have provided opportunities for other taxa to establish during or after
pupation. This hypothesis is supported by the consistently high measures for Simpson

and Shannon diversity indices in fungal adults.
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SCML analyses (Stammler et al., 2016) revealed that newly emerged adults
harbor microbiomes with smaller bacterial loads relative to larvae for both non-fungal
and fungal mosquitoes (Figure A.3, Table B.9). Small adult bacterial loads may be due to
the conserved reduction of Microbacteriaceae and Rhizobiaceae in adults. If these taxa
inhabit the digestive tract in larvae, this decrease could be the result of morphological and
physiological processes that occur during and after pupation (Moll et al., 2011 and
Moncayo et al., 2005). However, certain taxa are successfully transstadially transmitted
in both groups of mosquitoes and increase in relative abundance in adults. It is unclear
whether these bacteria were established in the digestive tract or other anatomical regions
in the larvae. These taxa may inhabit larval salivary glands (Sharma et al., 2014),
hemocoels (Brown et al., 2018), or malpighian tubules (Chavshin et al., 2013; Chavshin
et al., 2015), allowing for successful transmission across developmental stages.
Furthermore, it is unknown whether these taxa subsequently colonized the newly
emerged adult digestive tract, as was observed in Chavshin et al., 2013 and Chavshin et
al., 2015. Implementation of fluorescence-based-assays on identified transstadially
transmitted taxa would allow for the investigation of these transmission pathways. This
could also reveal potential spatial interactions that occur between fungi and bacteria,
which could help explain the differential transstadial transmission patterns and adult
microbiome compositions recorded in this experiment. Other studies should investigate
the role that dominant bacterial taxa, such as Burkholderiaceae and Microbacteriaceae,
have on influencing transmission and establishment dynamics of other microbial
community members during and after pupation by utilizing inoculation experiments of

gnotobiotic larvae similar to studies previously described in Coon et al., 2014 and
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Dickson et al., 2017. Understanding the morphological and physiological mechanisms
occurring in the mosquito holobiont that affect transstadial transmission of bacteria is
crucial to reveal the interactions involved in the formation of microbiomes in newly
emerged adults, which may impact host vector competence. Future research could
investigate these processes by utilizing fungal infestation protocols used in this
experiment along with vector competence assays (see Gongalves et al., 2014 and Dickson
et al., 2017). If fungal infestation influences these interactions, it is possible that
microbial communities associated with mosquito populations that exhibit variable vector
competence (Charan et al., 2013 and Gongalves et al., 2014) are impacted by fungal-
bacterial-host interactions.
Perspectives

The microbial communities analyzed in this study represent snapshots of the
newly emerged adult microbiome formed by transstadial transmission in a laboratory
environment. However, adult microbiomes are influenced by nutrient intake (Rani et al.,
2009; Oliveira et al., 2011; Wang et al., 2011; Terenius et al., 2012) and shift in
composition and structure during adult development (Muturi et al., 2016a). Future
research should analyze whether the altered transstadial transmission patterns observed in
this experiment influence the formation of the adult microbiome throughout its lifespan.
This would help inform whether the patterns observed herein have long-lasting
implications for mosquito-pathogen interactions and carryover impacts on human health
issues. It should be noted that those results, and the results of other microbiome
laboratory experiments, are not necessarily representative of microbiome dynamics in

wild mosquito populations. Additionally, bacterial taxa have differential 16S gene copies
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per genome. Relative abundances reported here may not accurately reflect absolute
abundances of bacterial families.

The findings of this study may have been affected by several factors. Illumina
sequencing Yyielded variable read coverage within and across the datasets analyzed.
Rarefaction was used to minimize potential biases in taxonomic richness estimates,
however, this may have led to underestimations of microbial diversity. Additionally,
efforts were made to limit bacterial exposure of experimental mosquitoes to egg microbes
and those in the fish slurry (Figure A.4). Although protocols were implemented to
mitigate external laboratory contamination, some levels of contamination may have
affected results (Salter et al., 2014). Negative control samples were sequenced to account
for this, and the decontam package in R was used to identify and remove contaminant
OTU sequences found in extraction Kit reagents. As with all microbiome studies,
independent replication under different laboratory conditions will be essential to confirm
the findings of this and other such experiments, as has been proposed and implemented in
human microbiome studies (Sinha et al., 2015; Sinha et al., 2017). Finally, fungal
infestation could not be directly quantified for DNA extracted from fungal larvae.
Targeted 18S PCR were performed to confirm the presence of fungal DNA at larval
harvest, though it is likely that larvae collected from this treatment had varying levels of
fungal infestation, possibly influencing our results and conclusions.

Conclusion

Fungal interactions in host microbiomes are often overlooked. Our results provide

the first evidence that mosquito larvae infested with an endosymbiotic gut fungus

experience distinct fungal-bacterial-host interactions that reduce transstadial transmission
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variability and result in microbiomes characterized by high taxonomic diversity, even
distributions, and unique compositions. These results emphasize that future microbiome
studies include fungal data in analyses of microbe-host interactions. Mosquitoes have
significant impacts on human health worldwide, and the study of biotic interactions that
affect their fitness is essential to fully understand the factors driving mosquito vector
competence for human pathogens. We hope that the findings from this experiment will
encourage future collaboration between microbial ecologists and mycologists to improve
the scientific community’s ability to holistically and accurately analyze host-microbe

systems.



29

REFERENCES

Alencar YB, Rios-Velasquez CM, Lichtwardt RW, Hamada N. Trichomycetes
(Zygomycota) in the Digestive Tract of Arthropods in Amazonas, Brazil. Mem
Inst Oswaldo Cruz 2003; 98: 799-810.

Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions.
Biometrics 2006; 62: 245-253.

Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta
diversity. Ecol Lett 2006; 9: 683-693.

Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley
StatsRef: Statistics Reference Online 2017; 1-15.

Anglero-Rodriguez Y1, Talyuli OAC, Blumberg BJ, Kang S, Demby C, Shields A, et al.
An Aedes aegypti-associated fungus increases susceptibility to dengue virus by

modulating gut trypsin activity. Elife 2017; 6: e28844.

Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN. Serratia odorifera a
midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to
dengue-2 virus. PLoS One 2012; 7: e40401.

Audsley MD, Seleznev A, Joubert DA, Woolfit M, O’Neill SL, McGraw EA. Wolbachia
infection alters the relative abundance of resident bacteria in adult Aedes aegypti
mosquitoes, but not larvae. Mol Ecol 2018; 27: 297-309.

Bates D, Maechler M, Bolker B, Walker S, Maechler Martin, Walker S. Package ‘Ime4’:
Linear Mixed-Effects Models using ‘Eigen’ and S4. J Stat Softw 2015.

Bian G, Xu Y, Lu P, Xie Y, Xi Z. The Endosymbiotic Bacterium Wolbachia Induces
Resistance to Dengue Virus in Aedes aegypti. PLoS Pathog 2010; 6: e1000833.



30

Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, et al. Harnessing
mosquito-Wolbachia symbiosis for vector and disease control. Acta Trop 2014;
132: S150-S163.

Brown LD, Thompson GA, Hillyer JF. Transstadial transmission of larval hemocoelic
infection negatively affects development and adult female longevity in the
mosquito Anopheles gambiae. J Invertebr Pathol 2018; 151: 21-31.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADAZ2:
High-resolution sample inference from Illumina amplicon data. Nat Methods
2016; 13: 581-583.

Carissimo G, Pondeville E, McFarlane M, Dietrich I, Mitri C, Bischoff E, et al. Antiviral
immunity of Anopheles gambiae is highly compartmentalized, with distinct roles
for RNA interference and gut microbiota. Proc Natl Acad Sci 2015; 112: E176-
E185.

Chandler JA, Liu RM, Bennett SN. RNA Shotgun Metagenomic Sequencing of Northern
California (USA) Mosquitoes Uncovers Viruses, Bacteria, and Fungi. Front
Microbiol 2015; 6: 1-16.

Charan SS, Pawar KD, Severson DW, Patole MS, Shouche YS. Comparative analysis of
midgut bacterial communities of Aedes aegypti mosquito strains varying in vector

competence to dengue virus. Parasitol Res 2013; 112: 2627-2637.

Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Raeisi A, Zarenejad F.
Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles

stephensi: A preliminary model for paratransgenesis. Symbiosis 2013; 60: 17-24.

Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Zarenejad F, Terenius O.
Malpighian tubules are important determinants of Pseudomonas transstadial
transmission and longtime persistence in Anopheles stephensi. Parasites and
Vectors 2015; 8: 36.

Chen S, Bagdasarian M, Walker ED. Elizabethkingia anophelis: Molecular manipulation
and interactions with mosquito hosts. Appl Environ Microbiol 2015; 81: 2233-
2243.



31

Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, et al. Delayed larval
development in Anopheles mosquitoes deprived of Asaia bacterial symbionts.
BMC Microbiol 2012; 12: S2.

Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for
development. Mol Ecol 2014; 23: 2727-27309.

Coon KL, Brown MR, Strand MR. Mosquitoes host communities of bacteria that are
essential for development but vary greatly between local habitats. Mol Ecol 2016;
25: 5806-5826.

Coon KL, Brown MR, Strand MR. Gut bacteria differentially affect egg production in the
anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito
Aedes atropalpus (Diptera: Culicidae). Parasites and Vectors 2016; 9: 375.

Davis NM, Proctor D, Holmes SP, Relman DA, Callahan BJ. Simple statistical
identification and removal of contaminant sequences in marker-gene and

metagenomics data. Microbiome 2018; 6: 226.

Dennison NJ, Jupatanakul N, Dimopoulos G. The mosquito microbiota influences vector

competence for human pathogens. Curr Opin Insect Sci 2014; 3: 6-13.

Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, et al.
Carryover effects of larval exposure to different environmental bacteria drive

adult trait variation in a mosquito vector. Sci Adv 2017; 3: e1700585.

Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rua A, et al. Diverse
laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial

microbiome. Parasites and Vectors 2018; 11: 207.

Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci 2003; 14:
927-930

Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in
the defense against malaria parasites. PLoS Pathog 2009; 5: e1000423.

Duguma D, Rugman-Jones P, Kaufman MG, Hall MW, Neufeld JD, Stouthamer R, et al.

Bacterial Communities Associated with Culex Mosquito Larvae and Two



32

Emergent Aquatic Plants of Bioremediation Importance. PLoS One 2013; 8:
e72522.

Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Terenius O, Neufeld JD, et al.
Developmental succession of the microbiome of Culex mosquitoes Ecological and
evolutionary microbiology. BMC Microbiol 2015; 15: 140.

Feltz CJ, Miller GE. An asymptotic test for the equality of coefficients of variation from
k populations. Stat Med 1996; 15: 647—658.

Flores GE, Caporaso JG, Henley JB, Rideout JR a., Domogala D, Chase J, et al.
Temporal variability is a personalized feature of the human microbiome. Genome
Biol 2014; 15: 531.

Foggie T, Achee N. Standard Operating Procedures : Rearing Aedes aegypti for the
HITSS and Box Laboratory Assays Training Manual 2009; 1-18.

Fox J, Weisberg S, Price B, Adler D, Bates D, Baud-Bovy G. Package ‘car’. R Doc 2018.

Gaio ADO, Gusméo DS, Santos A V., Berbert-Molina MA, Pimenta PFP, Lemos FJA.
Contribution of midgut bacteria to blood digestion and egg production in Aedes
aegypti (Diptera: Culicidae) (L.). Parasites and Vectors 2011; 4: 105.

Galloway-Pefia JR, Smith DP, Sahasrabhojane P, Wadsworth WD, Fellman BM, Ajami
NJ, et al. Characterization of oral and gut microbiome temporal variability in

hospitalized cancer patients. Genome Med 2017; 9: 21.

Gimonneau G, Tchioffo M, Abate L, Boissiere A, Awono-Ambene P, Nsango S, et al.
Composition of Anopheles coluzzii and Anopheles gambiae microbiota from
larval to adult stages. Infect Genet Evol 2014; 28: 715-724.

Goncalves CM, Melo FF, Bezerra JMT, Chaves BA, Silva BM, Silva LD, et al. Distinct
variation in vector competence among nine field populations of Aedes aegypti

from a Brazilian dengue-endemic risk city. Parasites and Vectors 2014; 7: 320.

Gusmao DS, Santos A V., Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA.

Culture-dependent and culture-independent characterization of microorganisms



33

associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial
colonization in the midgut. Acta Trop 2010; 115: 275-281.

Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in
mosquitoes. Curr Opin Virol 2015; 15: 97-102.

Horn BW. Ultrastructural Changes in Trichospores of Smittium culisetae and S. culicis
during in Vitro Sporangiospore Extrusion and Holdfast Formation. Mycologia
1989; 81: 742-753.

Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al.
Native microbiome impedes vertical transmission of Wolbachia in Anopheles
mosquitoes. Proc Natl Acad Sci 2014; 111: 12498-12503.

Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector
competence for arboviruses. Viruses 2014; 6: 4294-4313.

Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft NJB, et al. ranacapa:
An R package and Shiny web app to explore environmental DNA data with

exploratory statistics and interactive visualizations. F1000Research 2018; 7.
Kindt R. Package ° BiodiversityR ’. R Proj 2016.

Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of
general 16S ribosomal RNA gene PCR primers for classical and next-generation

sequencing-based diversity studies. Nucleic Acids Res 2013; 41: el.

Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The
global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus.
Elife 2015; 4: e08347.

Krishnamoorthy K, Lee M. Improved tests for the equality of normal coefficients of
variation. Comput Stat 2014; 29: 215-232.

Lichtwardt RW. Species of Harpellales Living Within the Guts of Aquatic Diptera
Larvae. Mycotaxon 1984; 19: 529-550.

Lichtwardt RW. The Trichomycetes: Fungal Associates of Arthropods. Springer-Verlag.
New York Inc.; 1986.



34

Ludecke D. Sjstats: Statistical Functions for Regression Models. 2017.

Mago¢ T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve
genome assemblies. Bioinformatics 2011; 27: 2957—-2963.

Marwick B, Krishnamoorthy K. cvequality: Tests for the Equality of Coefficients of
Variation from Multiple Groups. 2016.

McCreadie JW, Beard CE. The microdistribution of the trichomycete Smittium culisetae
in the hindgut of the black fly host Simulium vittatum. Mycologia 2003; 95: 998—
1003.

McCreadie JW, Beard CE, Adler PH. Context-dependent symbiosis between black flies
(Diptera: Simuliidae) and trichomycete fungi (Harpellales: Legeriomycetaceae).
Oikos 2005; 108: 362-370.

McMurdie PJ, Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis
and Graphics of Microbiome Census Data. PLoS One 2013; 8: e61217.

Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the
mosquito holobiont. Parasites and Vectors 2013; 6: 146-158.

Moll RM, Romoser WS, Modrakowski MC, Moncayo AC, Lerdthusnee K. Meconial
Peritrophic Membranes and the Fate of Midgut Bacteria During Mosquito
(Diptera: Culicidae) Metamorphosis. J Med Entomol 2001; 38: 29-32.

Moncayo AC, Lerdthusnee K, Leon R, Robich RM, Romoser WS. Meconial Peritrophic
Matrix Structure, Formation, and Meconial Degeneration in Mosquito
Pupae/Pharate Adults: Histological and Ultrastructural Aspects. J Med Entomol
2005; 42: 939-944.

Muturi EJ, Bara JJ, Rooney AP, Hansen AK. Midgut fungal and bacterial microbiota of
Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus
infection. Mol Ecol 2016a; 25: 4075-4090.

Muturi EJ, Kim CH, Bara J, Bach EM, Siddappaji MH. Culex pipiens and Culex restuans
mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasites
and Vectors 2016b; 9: 18.



35

Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative analysis of gut microbiota of
mosquito communities in central Illinois. PLoS Negl Trop Dis 2017; 11:
e0005377.

Novakova E, Woodhams DC, Rodriguez-Ruano SM, Brucker RM, Leff JW, Maharaj A,
et al. Mosquito microbiome dynamics, a background for prevalence and
seasonality of West Nile virus. Front Microbiol 2017; 8: 526.

Oliveira JHM, Gongalves RLS, Lara FA, Dias FA, Gandara ACP, Menna-Barreto RFS, et
al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti
and allows proliferation of intestinal microbiota. PLoS Pathog 2011; 7: e1001320.

Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive
oxygen species (ROS)-dependent activation of the Toll pathway to control dengue
virus in the mosquito Aedes aegypti. Proc Natl Acad Sci 2012; 109: E23-E31.

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a
comprehensive online resource for quality checked and aligned ribosomal RNA
sequence data compatible with ARB. Nucleic Acids Research 2007; 35: 7188-
7196.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
ribosomal RNA gene database project: Improved data processing and web-based
tools. Nucleic Acids Res 2013; 41: D590-D596.

Ramirez JL, Souza-Neto J, Cosme RT, Rovira J, Ortiz A, Pascale JM, et al. Reciprocal
tripartite interactions between the Aedes aegypti midgut microbiota, innate
immune system and dengue virus influences vector competence. PLoS Negl Trop
Dis 2012; 6: e1561.

Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium
Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has
Entomopathogenic and In Vitro Anti-pathogen Activities. PLoS Pathog 2014; 10:
e1004398.



36

Ramirez JL, Dunlap CA, Muturi EJ, Barletta ABF, Rooney AP. Entomopathogenic
fungal infection leads to temporospatial modulation of the mosquito immune
system. PLoS Negl Trop Dis 2018; 12: e0006433.

Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of
larvae and adult midgut microflora using culture-dependent and culture-
independent methods in lab-reared and field-collected Anopheles stephensi-an
Asian malarial vector. BMC Microbiol 2009; 9: 96.

Rizzo AM, Pang K. New primers for detection of Smittium spp . ( Trichomycetes ,
Zygomycota ) in insect hosts. Fungal Divers 2005; 19: 129-136.

Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and
laboratory contamination can critically impact sequence-based microbiome
analyses. BMC Biol 2014; 12: 87.

Schliep KP. phangorn: Phylogenetic analysis in R. Bioinformatics 2011; 27: 592-593.

Sharma P, Sharma S, Maurya RK, De T Das, Thomas T, Lata S, et al. Salivary glands
harbor more diverse microbial communities than gut in Anopheles culicifacies.
Parasites and Vectors 2014; 7: 235.

Sinha R, Abnet CC, White O, Knight R, Huttenhower C. The microbiome quality control
project: Baseline study design and future directions. Genome Biol 2015; 16: 276.

Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, et al. Assessment of
variation in microbial community amplicon sequencing by the Microbiome
Quality Control (MBQC) project consortium. Nat Biotechnol 2017; 35: 1077—
1086.

Smets W, Leff JW, Bradford MA, McCulley RL, Lebeer S, Fierer N. A method for
simultaneous measurement of soil bacterial abundances and community
composition via 16S rRNA gene sequencing. Soil Biol Biochem 2016; 96: 145—
151.

Stammler F, Glasner J, Hiergeist A, Holler E, Weber D, Oefner PJ, et al. Adjusting
microbiome profiles for differences in microbial load by spike-in bacteria.
Microbiome 2016; 4: 28.



37

Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M. Development of a
prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea
using next-generation sequencing. PLoS One 2014; 9: e105592.

Terenius O, Lindh JM, Eriksson-Gonzales K, Bussiére L, Laugen AT, Bergquist H, et al.
Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol 2012; 80:
556-565.

Vojvodic S, McCreadie JW. The effect of temperature and host species on the
development of the trichomycete Smittium culisetae (Zygomycota). Mycologia
2007; 99: 412-420.

Wang Y, Gilbreath TM, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life
history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 2011; 6:
1-9.

Wei G, Lai Y, Wang G, Chen H, Li F, Wang S. Insect pathogenic fungus interacts with
the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci 2017,
114: 5994-5999.

Wickham H. Ggplot2. Wiley Interdiscip Rev Comput Stat 2011; 3: 180-185.

Williams MC. Spore Longevity of Smittium culisetae (Harpellales , Legeriomycetaceae).
Mycologia 1983; 75: 171-174.

Williams MC, Lichtwardt RW. Infection of Aedes aegypti larvae by axenic cultures of
the fungal genus Smittium (Trichomycetes). Am J Bot 1972; 59: 189-193.

Zink SD, van Slyke GA, Palumbo MJ, Kramer LD, Ciota AT. Exposure to west nile virus
increases bacterial diversity and immune gene expression in Culex pipiens.
Viruses 2015; 7: 5619-5631.

Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P,
et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes
aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol
2011; 75: 377-389.



APPENDIX A

Supplementary Figures

38



Paired-end reads for | sample from non-fungal larvae (A), fungal larvae (B), non-fungal adults (1C), and fungal adults (D) treatment groups were merged to

assess amplicon lengths prior to read filtering and tnmming.
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Figure A1  Amplicon Length Estimates Using FLASH
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Rarefaction curves generated for datasets containing reads For larva type (A), adult type (B), non-fungal mosquitoes (C), and fungal mosquitoes (D),

Rarefaction values used for each dataset are indicated with dashed lines.
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Calibrated read counts for non-fungal and fungal larvae and adults using the SCML method. Error hars represent the standard error. Significant differences in
mean calibrated counts across developmental stages within treatments were caleulated using linear mixed models and mdicated with solid Imes black lines
labeled with *£<0.035.
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Figure A.3  Bar Plot of SCML Calibrated Read Counts
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Relative abundances of the top 15 bacterial families in mosquito eggs (A) and the top 15 bacterial families shared in a food sample
across 3 days after preparation (B). Colored segments in each bar represent different bacterial families and the height of each
segment corresponds to the relative percentage of reads assigned to a given family out of the total reads belonging to the top 15
families. Family colors are consistent across all plots.
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Table B.1 Supplemental Larval Dissections
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Dissections of larvae from each treatment were performed over the course of the
experiment to assess fungal infestation in treatments B and D and fungal contamination
in treatments A and C. Hindguts were removed and visualized with phase-contrast and
Nomarski microscopy and fungal infestation was subjectively quantified.

Treatment | Container | ID | Name | Instar | Date Infestation Level
A 1 1 Al 1 - 6/15/18 none
A 3 1 A3 1 4 6/15/18 none
A 3 2 A3 2 4 6/15/18 none
A 3 3 A3 3 4 6/15/18 none
A 3 4 A3 4 4 6/15/18 none
A 4 | A4 1 - 6/15/18 none
A 4 2 A4 2 - 6/15/18 none
A 4 3 A4 3 - 6/16/18 none
B 1 1 Bl 1 4 6/10/18 mid
B 1 2 Bl 2 4 6/10/18 high
B 1 3 Bl 3 4 6/10/18 mid
B 1 4 Bl 4 4 6/10/18 mid
B 2 | B2 1 - 6/10/18 mid
B 2 3 B2 3 - 6/10/18 none
B 3 1 B3 1 3 6/7/18 none
B 3 2 B3 2 4 6/7/18 low
B 3 3 B3 3 4 6/10/18 high
B 3 4 B3 4 4 6/10/18 low
B 3 5 B3 5 4 6/10/18 none
B 4 | B4 1 - 6/10/18 high
B 4 2 B4 2 - 6/10/18 high
B 4 3 B4 3 4 6/10/18 high
C 2 | C2 1 4 6/16/18 none
C 2 2 c2 2 4 6/16/18 none
C 2 3 C23 4 6/19/18 none
C 3 | C3 1 - 6/19/18 none
C 3 2 C3 2 - 6/19/18 none
C 3 3 C33 4 6/19/18 none
C 4 1 C4 1 4 6/16/18 none
C 4 2 Cc4 2 4 6/16/18 none
C 4 3 C4 3 4 6/19/18 none
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D 1 1 DI 1 3 6/7/18 none
D 1 2 D1 2 3 6/7/18 none
D 1 3 DI 3 4 6/10/18 high
D 1 4 D1 4 4 6/10/18 high
D 1 5 D1 5 4 6/10/18 high
D 1 6 D1 6 4 6/19/18 high
D 2 1 D2 4 6/10/18 high
D 2 2 D2 2 4 6/10/18 high
D 2 3 D2 3 4 6/10/18 none
D 3 1 D3 1 4 6/10/18 none
D 3 2 D3 2 4 6/15/18 none
D 3 3 D3 3 4 6/16/18 none
D 4 1 D4 1 4 6/10/18 nud

D 4 2 D4 2 4 6/10/18 none
D 4 3 D4 3 4 6/10/18 high




Table B.2

Primer Sequences
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Primer ID | Paired ID | Spacer | Linker Primer Sequence
341f 1 785r 1 . AG CCTACGGGNGGCWGCAG
341f 2 785r 2 T AG CCTACGGGNGGCWGCAG
341f 3 785r 3 CT AG CCTACGGGNGGCWGCAG
341f 4 785r 4 GCT AG CCTACGGGNGGCWGCAG
785r 1 3411 1 . CT GACTACHVGGGTATCTAATCC
785r 2 3411 2 T CT GACTACHVGGGTATCTAATCC
785r 3 341f 3 AT CT GACTACHVGGGTATCTAATCC
785r 4 3411 4 GAT CT GACTACHVGGGTATCTAATCC

TR3 TR4

GGCACTGTCAGTGGTGAAATAC

TR4 TR3

GATTTCTCTTACGGTGCCAAGCA




Table B.3 PCR Setup
Total Master Mix | 10uM Primer | Template DNA | 8. ruber DNA | Nuclease Free H:0
1D {ul) | Primer ID {ul) {ul) {ul) {ul) {ul)
Rxn | 50 TR3-TR4 20 2 2 26
Rxn 2 50 341 £-785r 20 2 2 . 26
Rxn 3 50 341 £-785r 20 2 2 0.59 2541
Rxn 4 25 Barcodes 10 0.94 1.25 12.81
Table B.4 PCR Thermocycler Settings
Initial Duration Duration Duration Duration Final Duration
D Denaturation {min) Denaturation {min) Annealing | {min) Elongation {min) Cwyeles | Elongation {min)
Rxn 1 05°C 2 95°C 1 55°C 1.5 72°C 1.5 35 72°C 10
Rxn 2 94°C 3 94°C 0.75 H0°C 1 72°C 1.5 i5 T20C 10
Rxn_ 3 94°C 3 94°C 0.75 60°C 1 72°C 1.5 is 72°C 10
Rxn 4 94°C 1.5 94°C 0.5 60°C 0.5 725C 1.5 10 725 5

Ly
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Table B.5 Experimental Sample Read Counts

Total read counts for experimental samples throughout the DADAZ2 pipeline. Raw reads
(Input) were filtered based on quality filtering thresholds (Filtered). After filtering and
merging, chimeric sequences were removed (Final). Final reads were used in
downstream analyses.

Input | Filtered | Final
Sample 1D Larva Type Reads | Reads | Reads
Alil6eS Non-Fungal 30503 | 10305 8357
Alul6s Non-Fungal 19731 6740 5748
Alinl6s Non-Fungal 33025 7649 5957
AlIV16S Non-Fungal 36177 9725 7204
AlV16S Non-Fungal 26734 8669 7098
AIVII6S Non-Fungal 34814 | 12025 9730
A2il6S Non-Fungal 21713 1768 6302
A211168 Non-Fungal 26364 | 6029 4256
AZinl6s Non-Fungal 102021 | 22260 15857
A2IV16S Non-Fungal 55246 | 16159 11399
A2V165 Non-Fungal 40984 | 9423 6821
A31168 Non-Fungal 28682 71772 5954
A3ul6Ss Non-Fungal 53382 | 14702 11516
A3ml6s Non-Fungal 31690 | 9696 6765
A3IV16S Non-Fungal 48438 | 13459 9789
A3V16S Non-Fungal 2247 607 517
AJVIL6S Non-Fungal 46631 | 11336 8161
Adil6S Non-Fungal 36206 8915 6729
Adiil65 Non-Fungal 30948 8624 6792
Adinl6S Non-Fungal 108466 | 23371 19406
A4IV16S Non-Fungal 82115 | 23930 19977
A4V165 Non-Fungal 33193 8718 5938
A4VII6S Non-Fungal 33683 | 10501 7613
Blil6S Fungal 17910 | 6007 5251
Blul6Ss Fungal 23021 1937 6961
Bliuul6Ss Fungal 32738 71753 5658
BIVI16S Fungal 38019 9730 6653
BIVII16S Fungal 23064 5001 3510
BIXI16S Fungal 28316 8634 6550
B2il65 Fungal 26605 7894 6014
B2V165 Fungal 31523 9362 7469
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B2VII16S Fungal 37173 0224 7727
B2VIIII6S Fungal 23434 6669 5354
B2XII16S Fungal 73279 17003 13436
B3ul6S Fungal 45081 10832 8416
B3IV16S Fungal 35372 10344 7908
B3V165 Fungal 34849 9726 71556
B3VI16S Fungal 33090 09084 7498
B3VIIII6S Fungal 44932 12346 9028
B4116S Fungal 27720 6869 5383
B4X165 Fungal 73456 | 13836 11032
Adult Tvpe
Clil6S Non-Fungal 30959 2477 2225
Clules Non-Fungal 61070 8192 7452
Clinl6S MNon-Fungal 33209 6741 6007
ClIV16S Non-Fungal 34877 2752 2248
CIV165 Non-Fungal 9685 1583 1312
CIVII6S Non-Fungal 46577 7530 6787
C2116S Non-Fungal 37258 0438 8379
C2ul6S Non-Fungal 22263 6756 5973
C2il6S MNon-Fungal 15165 3812 3533
C2IV16S MNon-Fungal 52548 4585 4168
C2V165 Non-Fungal 20136 6995 6553
C3116S5 Non-Fungal 18369 3347 3050
C3ul6s Non-Fungal 57055 8448 T585
Clil6S Non-Fungal 19861 5466 5094
C3IVI16S Non-Fungal 44140 1825 1309
C3VII6S Non-Fungal 23932 404 212
C4il65 Non-Fungal 18620 2891 2658
C4ul65 Non-Fungal 40259 3056 2770
Cdinnl6S Non-Fungal 13488 2417 2212
C4IV16S Non-Fungal 34615 3482 3127
C4V16S Non-Fungal 19444 644 481
C4VII6S Non-Fungal 24502 544 257
C4VIIl6S Non-Fungal 19332 421 193
DI1116S Fungal 27012 1298 929
D1i1l65 Fungal 31538 1392 971
Dlinl6S Fungal 11703 1929 1437
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DIIV16S Fungal 8248 2793 2499
D2i165 Fungal 32813 6026 5538
D21116S Fungal 16159 2380 2043
D2inl6S Fungal 26063 2967 2564

D2IV16S Fungal 35618 3587 2908
D2V16S Fungal 40220 | 3914 3044

D2VII16S Fungal 6469 2324 1951
D31165 Fungal 19160 | 4008 3456
D31116S Fungal 12151 2861 2371
D3 l6S Fungal 32827 6044 5488

D3IV16S Fungal 15892 3213 2727
D3V16S Fungal 36320 5848 5268

D3VII6S Fungal 20009 1150 848
D4i16S Fungal 39065 2879 2274
D41116S Fungal 37759 1747 1197
D4inl6S Fungal 32686 | 6791 6012

D4IV16S Fungal 18234 | 3285 2562
D4V16S Fungal 33153 2334 1453

D4VII6S Fungal 18120 | 6030 5425

D4VII16S Fungal 26429 1620 987

SCML Larva Type

Alial6S Non-Fungal 17706 5675 5222

Alualbs Non-Fungal 49012 12740 11276
A2ial6s Non-Fungal 124337 | 32007 | 28200

Alual6s Non-Fungal 14921 4854 4448
Adalbs Non-Fungal 15794 3R7R 3567

Alnal6S Non-Fungal 27801 6744 6440
Adial 68 Non-Fungal 87100 | 18955 17793

Adualbs Non-Fungal 26875 H66E 5807
Blial6S Fungal 56789 | 13665 12983

Bliial 65 Fungal 79438 | 18647 18064

Blinal6S Fungal 45785 8848 8394

B1Val6S Fungal 26276 8417 7200

B1VIIal6S Fungal 30284 8925 8227
B1Xlal6S Fungal 25337 7267 6695
B2inal6S Fungal 14585 4238 3856

B2Val6S Fungal 19949 6340 5809
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B2VIlal6S Fungal 25744 8146 7682
B2VIIIal6S Fungal 32858 | 10232 9433
B2XIlal6S Fungal 21277 6355 5613
B3imal6S Fungal 25045 8407 7313
B3IVal6s Fungal 29793 9671 8145
B3Val6S Fungal 19758 6117 5386
B3VIal6s Fungal 30488 9790 8272
B3iVIIlal6S Fungal 14770 | 4683 3985
B4ial6S Fungal 23375 8020 7012
B4Xal6S Fungal 40529 | 12130 10999
SCML Adult Type
Clial6S Non-Fungal 88981 | 24380 | 24213
Clual6s Non-Fungal 26604 1777 7709
C2ial 65 Non-Fungal 15067 5515 5422
Cliial6S Non-Fungal 21511 6858 6430
C3ial 68 Non-Fungal 38792 | 10976 10893
C3iial6s Non-Fungal 28146 8102 8030
Chal6s Non-Fungal 38257 | 11681 11560
C4ial6s Non-Fungal 32408 9438 9349
Dlial65 Fungal 25051 8740 8676
Dliial6S Fungal 23889 7357 7279
D2ial 65 Fungal 30855 9766 9698
D2iial 65 Fungal 20892 6400 6342
D31al65 Fungal 34257 9759 9653
D3iial 65 Fungal 35003 9362 9221
Ddial 65 Fungal 66826 | 18787 18649
Ddiial 65 Fungal 67662 | 19755 19574
Control Type
FT22165 Pupa Tube Water 20809 155 50
FT31165 Pupa Tube Water 12631 174 85
KBO0165 Extraction Kit 13731 139 59
KB1165 Extraction Kit 14243 204 112
KB2165 Extraction Kit 11619 241 173
KB3165 Extraction Kit 17370 400 272
SP1316S Spore Inoculum 15918 152 32
SWI16S Autoclaved Spring Water 18466 128 30




52

EE16S 50 Mosquito Eggs 38341 14352 10633

FDI116S Fish Slurry 43325 7940 7142

FD2165 Fish Slurry 1 Day After Preparation | 25570 BO25 B188
Fish Slurry 2 Days After

FD316S Preparation 31533 | 12613 12379




Table B.6 Measures of Alpha Diversity and Coefficient of VVariation Values

Measures of alpha diversity, CV values, and results from statistical analyses on group means and vanation of measures. P (Treatment
or Developmental Stage) values were calculated with linear mixed models. CV P values were calculated with an asymptotic test and

MSLRT. Significant P values are shown in bold text.

P cv e
Dataset Metric | F Value {Treatment) Non-Fungal CV | Fungal CV | (Combined)
Larva Type | Simpson | 0.798 0.406 9.02% 5.91% =0.1
Larva Type | Shannon | 1.94] 0.214 17.65% 11.77% =0.1
Adult Type | Simpson | 4.039 0.091 39.64% B.42% <0.001
Adult Type | Shannon | 3.277 0.120 34.45% 1 7.76% <0.001
P cvp
(Developmental Stage) Larval CV Adult CV | (Combined)
Non-Fungal
Mosquitoes | Simpson | 1.4683 0.271 9.02% 39.64% <0.001
Non-Fungal
Mosquitoes | Shannon | 0.0063 0.939 17.65% 54.45% <0001
Fungal
Mosquitoes | Simpson | 3.227 0.127 5.91% 8.42% =(.14
Fungal
Mosquitoes | Shannon | 13.903 0.011 11.77% 17.76% =0.1

€S



Table B.7  Measures of Beta Diversity and Group Dispersals

Measures of beta diversity and results from statistical analyses on group centroids and variation of measures. Pseudo-F and P
(Treatment or Developmental Stage) values were calculated with nested PERMANOVA. P (Homogeneity) values were calculated
using permutational tests of dispersal homogeneity between groups. Significant P values are shown in bold text.

P P
Dataset Metric Pseudo-F { Treatment) F {Homogeneity)
Larva Type Bray-Curtis L0415 0.442 0.5369 0489
Larva Type | Unweighted UniFrac 10848 1.359 4.6534 0036
Larva Type Weighted UniFrac 0977 0.442 0.2971 0.544
Adult Type Bray-Curtis 1.7003 0.088 27112 0.1
Adult Type | Unweighted UniFrac 1.506 0.08 0. 8596 0.383
Adult Type Weighted UniFrac 5.6849 0.05 . 0.035] 0,864
P
(Developmental Stage)
Mon-Fungal
Mosquitoes Bray-Curtis 3.7052 0.022 3l.461 =<0.001
Mon=Fungal
Mosquitoes | Unweighied UniFrac 6.9677 0035 43,821 =0.001
MNon-Fungal
Mosquitoes Weighted UniFrac 80194 0031 0.0523 0.824
Fungal
Mosquitoes Bray-Curtis 6.2004 0028 32067 <0011
Fungal
Mosquitoes | Unweighted UniFrac 10,7434 0.03 53.22 =0.001
Fungal
Mosquitoes Weighted UniFrac B.4334 0025 0.2496 0.632
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Table B.8 Relative Abundances of Bacterial Families

Relative abundances and results from statistical analyses on group means of the top 15
bacterial families shared between groups n each dataset. P (Treatment or Developmental
Stage) values were calculated with linear mixed models. Sigmificant P values are shown
in bold text.

Relative Abundance | Relative Abundance P
Dataset Family (Non-Fungal) (Fungal) (Treatment)
Larva Tvpe Bacillaceae 0.10% 9.35% 0.348
Larva Tvpe Bdellovibrnonaceae 0.55% 1.66% 0.152
Larva Type Bejjerinckiaceae 2. 10 1.47% 0.514
Larva Tvpe Burkholderiaceae 2.24% 10.18% 0.219
Larva Type Caulobacteraceae 0.46% (.54% 0.253
Larva Type Chitinophagaceae 650 2.05% (.433
Larva Tvpe Enterobacteraceae 0.69% 1.46% 0466
Larva Type env.OP5 17 001 % 1.73% (.146
Larva Type Flavobacteriaceae 003% 4.41% (.34%
Larva Tvpe Microbactenaceae 49 95% 29.41% 0.177
Larva Tvpe Pseudomonadaceae 2.74% 5.536% 0.178
Larva Type Rhizobiaceae 10.11% B42% (.5348
Larva Tvpe Sphingobactenaceae B.21% 9.39% 0.792
Larva Type Sphingomonadaceae 0.72% 1.22% (.428
Larva Type Weeksellaceae 12.74% B.92% (646
Adult Type Burkholderiaceae 40195 10.44% 0.077
Adult Type Corynebacteriaceae 4.08% 12.58% 0.025
Adult Type Enterobactenaceae 6. 14% 1.23% 0413
Adult Type Family XI 2.10%% 4.92% .063
Adult Type | Geodermatophilaceae 1.53% 1.25% 0.978
Adult Type Lactobacillaceae .95 0.97% 0.987
Adult Type Microbactenaceae 0.23% 2.78% 0.363
Adult Type Micrococcaceae 2.16% 4.60% (.398
Adult Type Moraxellaceae 1.31% 3.91% 0048
Adult Type Pseudomonadaceae B.12% 4.27% 0483
Adult Type Ehizobiaceae 1.22% 1.32% 0.5891
Adult Type Rhodobacteraceae .8 4% 1.58% 0.335
Adult Type Sphingomonadaceae 1.80%% 2.12% 0.808
Adult Type Staphylococcaceae 7.16% 18.57% 0.054
Adult Type Streplococcaceae 1.77T% 2.99% 0.301
Relative Abundance | Relative Abundance P
{Larvae) (Adults) (Developmental Stage)
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Mon-Fungal

Mosquitoes Beyjennckiaceae 2. 10%% (.38% 0.144

Mon-Fungal

Mosquitoes Burkholdenaceae 2.23% 42 16% 0.2

Mon-Fungal

Mosquitoes Chitinophagaceae 6.20%% 0.27% 0.259

Mon-Fungal

Mosquitoes Corynebacteriaceas 0.01% 3.32% 0007

Mon-Fungal

Mosquitoes Enterobactenaceae 0.5 6.33% 0316

Mon-Fungal

Mosguitoes Family XI 0.01% 2.29% 0.042

Mon-Fungal

Mosquitoes Microbactenaceae 49.47% 0.30% 0.2

Mon-Fungal

Muosquitoes Moraxellaceae 0.22% 1.25% 0h.012

Mon-Fungal

Mosquitoes Pseudomonadaceae 2.68% E.69% 0.254

Mon-Fungal

Mosquitoes Rhizobiaceae 10.26% 1.28% s

Mon-Fungal

Mosquitoes Rhodobacteraceae 0.41% 1.06% 0.192

Mon-Fungal

Mosquitoes Sphingobacteriaceae BT 0.11% 0.115

Mon-Fungal

Mosquitoes | Sphingomonadaceae .64% 1.27% 0.33%9

Mon-Fungal

Mosquitoes Staphylococcaceae 0.02% 7.15% 0.044

Mon-Fungal

Mosquitoes Weeksellaceae 12.66% 0.42% 0.103
Fungal

Mosquitoes Bacillaceae 9.0 (.64% (.382
Fungal

Mosquitoes Burkholdenaceae 95T 5.59% 0.511
Fungal

Mosquitoes Corynebacteriaceas 0.02% 12.05% 0.002
Fungal

Mosquitoes Enterobactenaceae 1.34% 1.48% (.650
Fungal

Mosquitoes Family XI 0.01% 5.05% 0001
Fungal

Mosquitoes Flavobacteriaceae 4.33% 0.14% 0.374
Fungal

Mosquitoes Microbacteriaceae 31.26% 3.32% 0.013
Fungal

Mosquitoes Micrococcaceae AL 4.98% 0.101
Fungal

Mosquitoes Moraxellaceae 0.26% 4.44% 0000
Fungal

Mosquitoes Pseudomonadaceae 3.35% 5.06% (.94]
Fungal

Mosquitoes Rhuzobaceae B.23% 1.61% 0013
Fungal

Mosquitoes | Sphingobacteriaceae 9.91% (.18% 0007
Fungal

Mosquitoes Sphungomonadaceae 1.28% 2.31% 0.098
Fungal

Mosquitoes Staphylococcaceae 007 15.49% 0.003
Fungal

Mosquitoes Weeksellaceae B.67% 0.12% 0.150
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Table B.9 SCML Calibrated Read Counts

Total reads for expenimental samples spiked with Salinibacter ruber DNA, the number of
reads belonging to 5. ruber, calibrated read counts using the SCML method, and results
of statistical analyses comparing SCML calibrated read counts across developmental
stages within treatments. P (Developmental Stage) values were calculated using linear
mixed models. Significant P values are shown in bold text.

Total SCML
Sample ID | Treatment | Developmental Stape Reads S.ruber Reads Reads
Alial6s MNon-Fungal Larvac 53222 4256 11741
Alnal6S | Non-Fungal Larvae 11276 9511 11345
AZial 65 Non-Fungal Larvac 28200 24148 11175
Anal6S | Non-Fungal Larvac 4448 3370 12630
Adial6s Non-Fungal Larvac 3567 3176 10747
Alnal6S | Non-Fungal Larvac 6440 6184 Q965
Adial 6S Non-Fungal Larvac 17793 15974 10659
Adnal6S | Non-Fungal Larvac 5807 4439 12518
Clialas MNon-Fungal Adults 24213 24213 9569
Clual6s | Non-Fungal Adults 7709 T697 9584
Clial6s Non-Fungal Adults 5422 5334 9727
C2iial65 | Non-Fungal Adults 6430 5184 11869
Clialbs Non-Fungal Adults 10893 10893 9569
C3ual6S | Non-Fungal Adults BO30 79493 0613
CdialbS MNon-Fungal Adults 11560 11452 9659
Cdiial65 | Non-Fungal Adults 9349 Q280 9640
Blialas Fungal Larvac 12983 11945 8379
Blual 65 Fungal Larvac 18064 17338 8032
Blual6s Fungal Larvac 5394 7927 8163
B1Val6S Fungal Larvac 7200 4836 11477
BlVIlal&s Fungal Larvae 8227 6913 9174
B1XIal6Ss Fungal Larvac 6695 5564 9276
B2mal6s Fungal Larvac 3856 3175 9362
B2Val6s Fungal Larvac SHO9 4380 10224
B2VIlal68 Fungal Larvac 7672 6790 8710
BXVIIIal6S Fungal Larvae 9433 T824 9294
B2XIIal6S Fungal Larvac 5613 4244 10196
B3mal6s Fungal Larvac 7313 3859 14609
B3IValbs Fungal Larvac 8145 4129 15207
BiValas Fungal Larvac 5386 3434 12091




B3VIalas Fungal Larvac 8272 4104 15538
BiVIllal6S Fungal Larvac 3985 2268 13545
Bdialas Fungal Larvac 7003 4371 12351
B4Xales Fungal Larvac 10999 8427 10062
Dlial6s Fungal Adults BOTH 8673 7712
Dliial65 Fungal Adults 7279 7272 7716
D2ial6s Fungal Adults 9693 G670 7727
D2ial6s Fungal Adults 6342 6301 7759
D3ialbs Fungal Adults 9653 9638 7721
D31ial65 Fungal Adults 9221 9174 7748
Ddialbs Fungal Adults 18649 18642 7712
Ddiial65 Fungal Adults 19574 19532 7725
P
Dataset DF Num DF Den F Value | (Developmental Stage)
MNon-Fungal
Mosquitoes 1 & 10.183 0.019
Fungal
Mosquitoes 1 & 6.974 0.038
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