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ABSTRACT 

Mosquitoes are vectors for a variety of human pathogens and have a significant 

impact on human health worldwide. There is growing evidence that host-associated 

microbiota influence mosquito vector competence for certain viruses. Transstadial 

transmission of bacteria from larvae through pupae to adults could affect these 

interactions, though further studies are needed to fully unravel the mechanisms involved. 

Current microbiome research primarily focuses on bacterial communities, whereas the 

potential role endosymbiotic gut fungi have in transstadial transmission dynamics 

remains largely unknown. Trichomycetes is an ecological group of endosymbiotic 

microfungi that colonize the digestive tracts of arthropod hosts, including the Yellow 

Fever Mosquito (Aedes aegypti). The trichomycete fungus Zancudomyces culisetae 

infects A. aegypti populations in the wild and was investigated using laboratory-based 

assays to identify fungal-bacterial-host interactions in mosquito larvae and adults. 

Next generation sequencing of 16S rDNA gene amplicons and measures of 

microbiome diversity found that fungal infestation in the larval digestive tract influenced 

their microbiomes and reduced microbial transstadial transmission variability. 

Comparative analyses of beta diversity measures indicated that fungal infestation affected 

larval microbiome composition. Measures of alpha diversity revealed that newly emerged 

fungal adults contained microbiomes characterized by high bacterial diversity and even 

community distributions. In contrast, non-fungal adults harbored microbiomes with 

variable compositional structures, often with low bacterial diversity and high levels of 
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dominance by few taxa. Additionally, transstadial transmission processes impacted 

certain bacterial families. Fungal infestation in larvae restricted the transmission and 

establishment of the bacterial taxon Burkholderiaceae and increased relative abundance 

of Corynebacteriaceae and Moraxellaceae in newly emerged adults. Identifying biotic 

factors that interact with host-associated microbiota and contribute to adult microbiome 

formation may reveal microbial interactions that affect human pathogen contraction and 

transmission in mosquitoes. These findings emphasize the importance of accounting for 

endosymbiotic gut fungi in host-associated microbiome studies.
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INTRODUCTION 

Arthropods coexist with communities of microbes collectively referred to as a 

microbiome. Mosquitoes have become target organisms for microbiome studies due to 

their vast geographic ranges (Kraemer et al., 2015) and high vector competence for a 

variety of human pathogens according to the CDC. They are holometabolous, developing 

from eggs to larvae and then forming pupae in aquatic environments, later to emerge as 

flying terrestrial adults. These life history traits provide a system for the observation and 

study of microbiomes across developmental stages in an organism prevalent in 

ecosystems worldwide and associated with significant human health concerns. 

Mosquito-associated microbiota have been studied in larvae (Rani et al., 2009; 

Duguma et al., 2013; Coon et al., 2014), adults (Rani et al., 2009; Gusmão et al., 2010; 

Chandler et al., 2015; Dickson et al., 2018), and compared across mosquito species 

(Zouache et al., 2011; Coon et al., 2014; Muturi et al., 2016b; Muturi at al., 2017). 

Microbial communities can impact larval development (Chouaia et al., 2012; Coon et al., 

2014), affect adult fitness (Minard et al., 2013), and play a role in the key processes 

related to blood digestion and egg production (Gaio et al., 2011; Coon et al., 2016). Adult 

microbiomes also influence mosquito-human pathogen interactions (Dennison et al., 

2014), which can change host vector competence for malarial parasites (Dong et al., 

2009) and arboviruses (Ramirez et al., 2012; Jupatanakul et al., 2014; Hegde et al., 2015; 

Carissimo et al., 2015). Certain bacterial genera, including Wolbachia (Bian et al., 2010; 

Pan et al., 2012; Bourtzis et al., 2014), Chromobacterium (Ramirez et al., 2014), and 
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Serratia (Apte-Deshpande et al., 2012) contribute to differential host-pathogen 

interactions, and vector competence can vary across different populations of the same 

mosquito species (Charan et al., 2013; Gonçalves et al., 2014). Additionally, gut 

microbiomes change compositionally in response to temporal shifts of pathogen exposure 

(Novakova et al., 2017) and after contraction (Zink et al., 2015). The significant 

microbial interactions impacting mosquito vector competence motivate continued 

research into factors that influence adult gut microbiome composition, structure, and 

function. 

Larval microbiome dynamics have impacts on adults. Native larval gut 

microbiomes impede vertical transmission of Wolbachia (Hughes et al., 2014), whereas 

successful establishment of this genus in larvae impacts microbiome structure in adults 

(Audsley et al., 2018). Additionally, larval exposure to various environmental bacteria 

alters adult susceptibility to pathogen contraction (Dickson et al., 2017). Investigating the 

processes that contribute to these developmental stage microbe inter-relationships 

provide insights regarding the extent to which larval and adult microbiomes are 

connected. 

A source for initial adult microbe acquisition is via bacteria transferred through 

preceding larval and pupal stages. Certain bacterial taxa present in larvae are 

transstadially transmitted and found in adults (Wang et al., 2011; Coon et al., 2014; Chen 

et al., 2015; Duguma et al., 2015). However, adults and larvae harbor microbiomes that 

differ in composition and structure (Wang et al., 2011; Gimonneau et al., 2014; Duguma 

et al., 2015), indicating that processes during life stage transitions and disparate 

phenotypic traits result in distinct bacterial communities. Importantly, morphological and 



 

 

3 

 

physiological mechanisms reduce the bacterial load in mosquito digestive tracts during 

and after pupation (Moll et al., 2001; Moncayo et al., 2005). It is unclear how 

transstadially transmitted taxa establish in adult digestive tracts after this process. One 

explanation is that these microbes are not expelled because they inhabit other anatomical 

parts of the larval host that are not shed during pupation, such as the hemocoel (Brown et 

al., 2018) and the salivary glands (Sharma et al., 2014). Whether these communities 

establish in adult digestive tracts after pupation is uncertain. However, certain bacteria 

colonize the digestive tracts and malpighian tubules in larvae, are transstadially 

transmitted through the malpighian tubules, and reestablish in newly emerged adult 

digestive tracts (Chavshin et al., 2013; Chavshin et al., 2015). Research that analyzes 

mechanisms which influence the microbiome transition across developmental stages is 

crucial to further our understanding of how adult gut microbiomes form and influence 

vector competence. 

The quantity of bacteria in a microbiome could affect microbe-host dynamics. 

Novel protocols have been developed that add controlled amounts of nonnative bacteria 

(Smets et al., 2016; Stämmler et al., 2016) to experimental samples prior to sequencing, 

and are more accurate than qPCR when quantifying entire bacterial communities 

(Stämmler et al., 2016). SCML (Stämmler et al., 2016) is a protocol that clarifies whether 

observed taxonomic shifts in relative abundance are due to increased proliferation or to 

differential die-off of certain bacterial taxa within a microbiome. 

Many microbiome studies assess bacteria and archaea, however, mosquitoes also 

harbor communities of fungi (Chandler et al., 2015; Muturi et al., 2016b) which can 

impact host fitness and interact with gut microbiota. Several entomopathogenic fungi 
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decrease bacterial diversity, accelerate death rates in adults (Wei et al., 2017), and affect 

gut bacterial load (Ramirez et al., 2018). Additionally, an endosymbiotic fungus 

increased vector competence for the dengue virus in adults and inhibited growth of 

certain gut bacterial taxa (Angleró-Rodríguez et al., 2017). These studies reveal important 

fungal-bacterial-host dynamics in adults, but are understudied in larvae. To the best of 

our knowledge, the potential impacts of endosymbiotic gut fungi on transstadial 

transmission of host-associated microbiota have never been addressed. 

Trichomycetes include a group of microfungi that are obligate endosymbionts of 

certain larval, aquatic arthropods (Lichtwardt, 1986). Zancudomyces culisetae, a well-

studied member of the Harpellales, infests the hindguts of several dipteran hosts 

(Williams and Lichtwardt, 1972; Lichtwardt 1984). Asexual fungal spores in the aquatic 

environment are ingested by larvae, extrude sporangiospores that attach to the lining of 

the digestive tract in response to physiological cues, and develop in the hindgut. 

Experimental fungal infestation assays have allowed for the study of these mechanisms 

(Williams, 1983; Horn, 1989; McCreadie and Beard, 2003; Vojvodic and McCreadie, 

2007). Whereas the nature of this fungal-host relationship is presumed to be 

commensalistic, it can shift towards mutualism under altered environmental conditions 

(McCreadie et al., 2005). The Yellow Fever Mosquito (Aedes aegypti), a vector for the 

human pathogens Yellow, Dengue, Chikungunya, and Zika fevers, is one of the known 

hosts of Z. culisetae in nature (Alencar et al., 2003). If this gut fungus affects A. aegypti 

microbiome dynamics, wild populations could experience distinct host-microbiome 

interactions contingent on the presence of Z. culisetae in their local environment, which 

may lead to differential vector competence across mosquito populations. 
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To investigate fungal-bacterial-host interactions across developmental stages, A. 

aegypti larvae were experimentally infected with Z. culisetae in a controlled laboratory 

environment. Microbiomes of larvae and newly emerged adults were analyzed with 16S 

rDNA gene amplicon sequencing and comparative metagenomic analyses to identify 

potential changes in transstadial transmission patterns and shifts in newly emerged adult 

microbiome compositional structures influenced by fungal infestation of the larval 

digestive tract. 

Materials and Methods 

Fungal Strain Culturing and Spore Collection 

A culture of Z. culisetae (USDA-ARS Collection of Entomopathogenic Fungal 

Cultures, Ithaca, New York, USA, ARSEF 9012, Smittium culisetae, COL-18-3) was 

maintained at room temperature on a 1/10 BHI agar plate with 3 milliliters (ml) 

autoclaved Nanopure Water (Barnstead Thermolyne Corp., Dubuque, IA, USA) overlay 

containing 2 milligrams (mg)/ml of penicillin and 7mg/ml of streptomycin to prevent 

bacterial contamination. Fungal mycelia were transferred to a new 1/10 BHI agar plate 

with 3ml autoclaved Nanopure Water 8 days prior to the start of the experiment. 

Fungal spores were harvested at the start of the experiment by sterilely collecting 

and filtering the overlay through a sheet of Miracloth (EMD Millipore, Burlington, 

MA, USA) with a pore size of 22-25 micrometers and transferring to a 1.5ml 

microcentrifuge tube (Eppendorf, Hamburg, Germany). Spores were concentrated by 

centrifugation at 900xG for 10 minutes (min). The supernatant was discarded, and spore 

pellets were combined and resuspended in 1ml autoclaved Arrowhead bottled spring 

water (Nestle, Vevey, Switzerland). Spore concentration was calculated by counting 
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viable spores (non-germinated asexual spores that illuminated under phase optics with a 

light microscope) using a Neubauer Improved C-Chip Hemocytometer (SKC Inc., 

Covington, GA, USA). 

Experiment Preparation and Daily Maintenance 

Aedes aegypti eggs, derived from the USDA-ARS Gainesville line, were 

purchased (Benzon Research Inc., Carlisle, PA, USA) and stored at room temperature for 

7 days. Histology containers (Fisher Scientific, Pittsburgh, PA, USA) containing 350ml 

of bottled spring water were autoclaved. Four containers were assigned to each of four 

experimental treatments A, B, C, D (non-fungal larvae, fungal larvae, non-fungal adults, 

fungal adults, respectively). Approximately 50 eggs were added to each rearing container, 

which were covered with 4 layers of autoclaved Miracloth to mitigate airborne 

contamination, and were separately placed in a vacuum chamber (SP Industries Inc., 

Warminster, PA, USA) for 30 min to synchronize egg hatch timing (as described in 

Foggie and Achee, 2009). The larval mosquito food source was prepared by finely 

grinding Tetramin Fish Food (Tetra, Melle, Germany) with a mortar and pestle and 

suspending 0.2 grams (g) of fish food powder in 10ml of autoclaved bottled spring water. 

One milliliter of this slurry was added to each rearing container at the start of the 

experiment. Rearing containers from treatments B and D were inoculated with 

approximately 400,000 fungal trichospores. All mosquitoes were reared at 24°C +/- 1°C 

with a 16:8 hour light/dark cycle in a low temperature refrigerated incubator (Fisher 

Scientific, model #3724). Rearing containers were removed from the incubator daily, 

counts of the mosquitoes and their estimated larval instar stages recorded, and 1-2ml of 
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fish slurry added. All maintenance protocols were performed on a sterilized laboratory 

workbench next to a Bunsen burner to minimize contamination. 

Larval Digestive Tract Visualization  

Third and fourth instar larvae were collected from all treatments with at least one 

collected for 14 of the 16 experimental replicates to visualize fungal infestation in 

treatments B and D and to check for fungal contamination in treatments A and C. Eight 

dissections were performed on larvae from treatment A, 14 from treatment B, 9 from 

treatment C, and 15 from treatment D. Hindguts were removed and visualized with 

phase-contrast and Nomarski microscopy to observe and record fungal infestation rates in 

the digestive tracts of experimental larvae (Table B.1). No fungal material was recorded 

in treatments A or C. 

Mosquito Sample Collection  

Fourth instar larvae from treatments A and B were individually transferred to 

sterile 1.5ml microcentrifuge tubes and surface-sterilized using a modified larval protocol 

described in Coon et al., 2014. Microbial DNA extractions were performed on larvae 

after surface-sterilization. Mosquitoes from treatments C and D were reared to the pupae, 

transferred to sterile 1.5ml microcentrifuge tubes, and surface-sterilized following a 

modified adult protocol described in Coon et al., 2014. Surface-sterilized pupae were 

transferred separately to sterile 15ml centrifuge tubes (Corning Inc., Corning, NY, USA) 

containing 7ml autoclaved bottled spring water and reared axenically for 2-3 days until 

adult emergence. The sex of newly emerged adults was visually identified, individual 

adults were transferred to sterile 1.5ml microcentrifuge tubes, and microbial DNA 

extractions were performed on female mosquitoes. 
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Microbial DNA Extraction 

Microbial DNA was extracted from larvae, adults, and other possible 

experimental sources with the Quick-DNA Fungal/Bacterial Kit® (Zymo Research, 

Irvine, CA, USA) following the protocol provided by the manufacturer with the 

following modifications: Lysis buffer was added directly to the 1.5ml microcentrifuge 

tubes containing harvested mosquitoes. Mosquitoes were manually ruptured in the 

microcentrifuge tubes with an autoclaved pellet pestle (DWK Life Sciences, Wertheim, 

Germany) for approximately 30 seconds (s) for larvae and 1-2 min for adults. 

Homogenized tube mixtures were transferred to bead tubes supplied with the extraction 

kit and were disrupted using a vortex mixer at maximum setting for 5 min. The elution 

buffer was heated to 45°C prior to its application to the spin-filters supplied by the 

extraction kit and remained on the filter surface for 5 min prior to the final elution spin. 

Extracted microbial DNA was stored at -80°C. 

At least 4 DNA extractions were performed on mosquitoes from each replicate 

container for non-fungal larvae, non-fungal adults, and fungal adults, and at least 2 DNA 

extractions were performed from each replicate container for fungal larvae. Other DNA 

extractions were carried out on approximately 400,000 Z. culisetae trichospores, 50 A. 

aegypti eggs, and fish food slurry over the course of 3 days after original preparation. 

Additional DNA extractions were performed on a suite of negative control samples. 

These included extractions of autoclaved spring water, blank extraction kit reagents from 

the 4 kits used, rearing water from an empty rearing container across 3 experimental time 

points, and autoclaved water from two 15ml centrifuge tubes containing surface-sterilized 

pupae. Two blank PCR were also carried out to identify potential contamination of PCR 
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reagents. All PCR reactions were performed using 5PRIME HotMasterMix (Quantabio, 

Beverly, MA, USA). 

Amplification of Fungal 18S rDNA  

Targeted 18S rDNA PCR using primer pair TR3/TR4 (Tables B.2, 3, 4: Rxn_1) 

were performed on DNA extracted from 18 surface-sterilized larvae collected from 

treatment B for confirmatory detection of Z. culisetae (Rizzo and Pang, 2005). PCR 

products were visualized on 1.5% agarose gels and 17 of the 18 samples successfully 

amplified. All 18 samples were selected for sequencing. 

Amplification of Bacterial 16S rDNA 

The V3/V4 hypervariable regions of the microbial 16S rDNA gene were 

amplified with primer pair 341f/785r (Klindworth et al., 2013), with linker sequences 

(Takahashi et al., 2014), and adapter and spacer sequences provided by the University of 

Idaho GRC (University of Idaho, Moscow, ID, USA) (Table B.2: Rxn_2). Targeted 16S 

PCR were carried out (Tables B.3, 4: Rxn_2) on extracted experimental DNA samples 

with four 341f/785r primer pair variants containing spacer sequences of different lengths 

to mitigate amplification biases. PCR products were visualized on 1.5% agarose gels to 

confirm amplification of 16S rDNA. Additional targeted 16S PCR were carried out 

(Tables B.2, 3, 4: Rxn_3) on a subset of experimental samples spiked with DNA 

extracted from the halophilic bacterium, Salinibacter ruber (ATCC product BAA-605D-

5). Salinibacter ruber DNA concentration was quantified with a Qubit 

Fluorometer (Invitrogen, Carlsbad, CA, USA) and 16S copies per nanogram of DNA 

were calculated. Approximately 1,000,000 16S copies were added in addition to 

experimental sample template DNA for use in SCML analyses (Stämmler et al., 2016). 
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Preparation and Sequencing of 16S Amplicons 

Secondary PCR were performed (Tables B.2, 3, 4: Rxn_4) to attach barcode 

sequences provided by the University of Idaho GRC to PCR amplicons. Amplicons were 

visualized on 1.5% agarose gels and pooled based on gel band intensity. Amplicon 

sequencing was performed with an Illumina MiSeq v3 (Illumina Inc., San Diego, CA, 

USA) at the University of Idaho GRC, which produced 300 base pair (bp) paired-end 

reads. Reads were demultiplexed by sample barcode sequences by the sequencing 

facility. 

Raw Read Processing and OTU Assignment 

Amplicon lengths were estimated using FLASH (Magoč and Salzberg, 2011) for a 

subset of samples. The majority of amplicons were estimated at 430bp or shorter (Figure 

A.1). Paired-end reads were processed using the DADA2 pipeline (Callahan et al., 2016). 

Forward and reverse reads were trimmed to 278bp and 167bp, respectively, trimmed at 

the location of the first occurrence of a base call with a Phred score less than or equal to 

15, and were filtered by removing reads with any number of N base calls or containing 

greater than or equal to 6 estimated errors. Reads were merged with a minimum overlap 

of 12 bases. Experimental samples with less than 100 reads after initial filtering were 

removed from the pipeline. Chimeric sequences were discarded, and merged reads were 

dereplicated and clustered into OTUs based on 97% sequence similarity. Read counts 

were calculated and tracked for each step in the workflow (Table B.5). Taxonomy was 

assigned to OTUs using the SILVA v132 database (Pruess et al., 2007; Quast et al., 

2013). A neighbor-joining tree was inferred using the phangorn package in R (Schliep, 

2011) and a generalized time-reversible with gamma rate variation maximum likelihood 
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tree was fit using the neighbor-joining tree as the starting point. The phylogenetic tree, 

taxonomically assigned OTUs, read count data, and experimental sample metadata were 

combined into a single object using the Phyloseq package in R (McMurdie and Holmes, 

2013). 

Phyloseq Object Data Preparation and Analyses 

Of the negative controls sequenced, 3 of the 4 extraction kits had over 100 reads 

after initial filtering and chimeric sequence removal in the DADA2 pipeline, while all 

other negative controls sequenced had less than 100 reads and were removed from 

analyses (Table B.5). Reagents from extraction kits add contaminant sequences to 

experimental samples (Salter et al., 2014) and the removal of contaminant OTUs is 

recommended to ensure the quality and accuracy of sequencing data analyses. 

Contaminant sequences introduced from all 4 kits combined were identified with the 

decontam package in R (Davis et al., 2018) using the “prevalence” method and the 

threshold set to 0.5. All OTUs identified as kit contaminants were removed prior to 

downstream analyses. 

Data from the Phyloseq object were subset into unique datasets and independently 

processed for comparative analyses for larva type (non-fungal and fungal), adult type 

(non-fungal and fungal), developmental stage of non-fungal mosquitoes (larvae and 

adults) and fungal mosquitoes (larvae and adults), and a set of positive controls (food and 

eggs). Alpha diversity measures of Simpson and Shannon diversity indices were 

calculated using the estimate_richness function in Phyloseq, and boxplots were generated 

in ggplot2 (Wickham, 2011). CV values (the ratio of the standard deviation to the mean) 

have been used as a metric to measure variation in alpha diversity across groups (Flores 
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et al., 2014; Galloway-Peña et al., 2017). Coefficient of variation values for each alpha 

diversity metric in each group compared were calculated with the cv function in the 

sjstats package in R (Lüdecke, 2018). The R package cvequality (Marwick and 

Krishnamoorthy, 2018) was used to test for significant differences of CV values for alpha 

diversity measures using an asymptotic test (Feltz and Miller, 1996) and a MSLRT 

(Krishnamoorthy and Lee, 2014). 

Rarefaction curves were generated using the ggrare function in the ranacapa 

package (Kandlikar et al., 2018) along with ggplot2 in R (Figure A.2). Rarefaction read 

cutoff values were selected for each dataset independently to maximize richness captured 

while minimizing the number of samples cut for each comparative analysis (Table B.5). 

Singletons were removed and datasets were further processed by discarding OTUs that 

were not represented by at least 6 reads in one sample within a dataset after rarefaction. 

Beta diversity measures of Bray-Curtis dissimilarity, unweighted UniFrac, and 

weighted UniFrac distances were calculated in Phyloseq, and tests for significant 

differences due to the main effect in a comparison (Treatment or Developmental Stage) 

were carried out with PERMANOVA (Anderson, 2017) with 999 permutations using the 

adonis function in the Vegan package in R (Dixon, 2003) in combination with the 

nested.npmanova function in the BiodiversityR package in R (Kindt, 2016). Nested 

PERMANOVA calculated the correct pseudo-F and P values for the main effect and 

accounted for random effects across rearing containers. Dispersions of beta diversity 

measures can be calculated and utilized as an additional comparative metric (Anderson et 

al., 2006). Variances of beta diversity measures for each group were calculated using the 

betadisp function in Vegan. Permutational statistical tests for the homogeneity of 
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dispersions in each group comparison (Anderson, 2006) were calculated with the 

permute.test function in Vegan with 999 permutations. Boxplots of the dispersals were 

created in ggplot2, and NMDS plots of beta diversity measures were created using the 

plot_ordination function in Phyloseq along with ggplot2. Relative abundances of the top 

15 bacterial families shared between groups (which accounted for greater than 80% of the 

total reads) in each dataset were calculated, and stacked bar plots were created using the 

plot_bar function in Phyloseq in combination with ggplot2. 

SCML Read Processing 

Combined data from the Phyloseq object were subset for samples that were spiked 

with S. ruber DNA. A conversion factor was calculated by dividing the number of S. 

ruber reads in each sample by the average number of S. ruber reads in a group. Total read 

counts for each sample were calibrated by multiplying the total reads by the sample-

specific conversion factor so that all samples had the same read counts for S. ruber. 

Linear Mixed Models 

The statistical significance of the main effect on mean alpha diversity measures, 

relative abundances of each of the top 15 bacterial families shared between groups, and 

the SCML calibrated read counts for each dataset were calculated by fitting a linear 

mixed model to account for random effects across rearing containers using the lmer 

function in the lme4 package in R (Bates et al., 2015). Models were tested with Type II 

Wald F tests with Kenward-Roger degrees of freedom using the Anova function in the 

car package in R (Fox et al., 2018).
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Results 

Fungal Infestation Reduces Microbiome Taxonomic Composition Variation in Larvae 

Reads for non-fungal and fungal larvae were rarefied to 5251 reads, with 154 

OTUs identified across 38 samples. Linear mixed models did not detect a significant 

difference in mean alpha diversity measures due to fungal infestation (Table B.6). 

PERMANOVA did not detect a fungal infestation effect on beta diversity measures 

(Table B.7), however, unweighted UniFrac distance dispersal was higher in non-fungal 

larvae (F(1, 36)= 4.6534, P=0.036, Figure 2.E). Relative abundances of the top 15 bacterial 

families shared between non-fungal and fungal larvae were calculated and plotted (Figure 

3.A). Linear mixed models did not detect differences in relative abundances due to fungal 

infestation (Table B.8). 

Fungal Infestation Reduces Transstadial Transmission Pattern Variation and Affects 

Transference of Certain Taxa 

Reads for non-fungal larvae and adults were rarefied to 2560 reads, with 484 

OTUs identified across 36 samples. Linear mixed models did not detect differences in 

mean alpha diversity measures across developmental stages (Table B.6), however, CV 

values were higher in adults for Simpson (P<0.001, Figure 1.A) and Shannon (P<0.001, 

Figure 1.B) diversity indices. PERMANOVA detected differences in Bray-Curtis 

dissimilarity (Pseudo-F(1, 6)=3.7052, P=0.022), unweighted UniFrac (Pseudo-F(1, 

6)=6.9677, P=0.035), and weighted UniFrac distances (Pseudo-F(1, 6)=8.9194, P=0.031) 

across developmental stages (Table B.7). Non-metric multidimensional scaling plots 

show separation between larvae and adults for these metrics (Figure 2.A, B, C). Beta 

diversity variation was higher in adults relative to larvae for Bray-Curtis dissimilarity 
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(F(1, 34)=31.461, P<0.001, Figure 2.D) and unweighted UniFrac distance (F(1, 34)=43.821, 

P<0.001, Figure 2.E). Relative abundances of the top 15 bacterial families shared 

between non-fungal larvae and adults were calculated and plotted (Figure 3.B). Linear 

mixed models detected differences in relative abundances for certain families across 

developmental stages (Table B.8). Microbacteriaceae and Rhizobiaceae decreased in 

adults relative to larvae (P=0.002, P=0.015, respectively), whereas Burkholderiaceae 

increased (P=0.002). 

Reads for fungal larvae and adults were rarefied to 2229 reads, with 600 OTUs 

identified across 31 samples. Linear mixed models detected differences in mean alpha 

diversity measures across developmental stages for Shannon Diversity (P=0.011, Figure 

1.B) (Table B.6). Coefficient of variation values were not different for Simpson or 

Shannon diversity indices (Table B.6). PERMANOVA detected differences in beta 

diversity for Bray-Curtis dissimilarity (Pseudo-F(1,6)=6.2994, P=0.028), unweighted 

UniFrac (Pseudo-F(1,6)=10.7434, P=0.03), and weighted UniFrac distances (Pseudo-

F(1,6)=8.4334, P=0.025) across developmental stages (Table B.7). Non-metric 

multidimensional scaling plots show separation between larvae and adults for these 

metrics (Figure 2.A, B, C). Beta diversity variation was higher in adults relative to larvae 

for Bray-Curtis dissimilarity (F(1, 29)=32.067, P<0.001, Figure 2.D) and unweighted 

UniFrac distance (F(1, 29)=53.22, P<0.001, Figure 2.E). Relative abundances of the top 15 

bacterial families shared between fungal larvae and adults were calculated and plotted 

(Figure 3.C). Linear mixed models detected differences in relative abundances for certain 

families across developmental stages (Table B.8). Microbacteriaceae and Rhizobiaceae 
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decreased in adults relative to larvae (P=0.013, P=0.013, respectively), whereas 

Corynebacteriaceae increased (P=0.002). 

Altered Transstadial Transmission Patterns Lead to Distinct Microbiomes in Newly 

Emerged Adults 

Reads for non-fungal and fungal adults were rarefied to 1777 reads, with 881 

OTUs identified across 33 samples. Linear mixed models did not detect differences in 

mean alpha diversity measures due to fungal infestation during the larval stage (Table 

B.6), however, CV values were higher in non-fungal adults for Simpson (P < 0.001, 

Figure 1.A) and Shannon (P < 0.001, Figure 1.B) diversity indices. PERMANOVA did 

not detect a larval fungal infestation effect for Bray-Curtis dissimilarity or unweighted 

UniFrac distance (Table B.7), though weighted UniFrac distance had a low P value 

(Pseudo-F(1, 6)=5.6849, P=0.05). Relative abundances of the top 15 bacterial families 

shared between non-fungal and fungal adults were calculated and plotted (Figure 3.D). 

Linear mixed models detected differences in relative abundances of certain taxa due to 

larval fungal infestation (Table B.8). Corynebacteriaceae and Moraxellaceae had higher 

relative abundance in fungal relative to non-fungal adults (P=0.025, P=0.048, 

respectively). 
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Figure 1. Boxplots of Alpha Diversity Measures 

Boxplots of alpha diversity measures for Simpson (A) and Shannon (B) diversity indices of microbiome communities in fungal (red) 

and non-fungal (Blue) mosquitoes collected at larval and adult stages. Solid lines in each boxplot represent median values and 

horizontal edges of the boxes indicate quartiles. Statistical results from linear mixed models comparing mean alpha diversity measures 

between treatments and across developmental stages within treatments are indicated with lowercase letters above each boxplot, with 

significant results indicated with asterisks. Significant combined results of asymptotic and MSLRT comparing CV values between 

treatments and across developmental stages within treatments are indicated with solid black lines labeled “CV” above boxplots. 

Statistical significance of comparative analyses is indicated with *p<0.001.
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Figure 2. NMDS Plots of Beta Diversity Measures and Boxplots of Group Dispersals 
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Beta diversity measures visualized with NMDS plots for Bray Curtis dissimilarity ( - A), unweighted UniFrac (B), and weighted 

UniFrac (C) distances for mosquito microbiomes between fungal (red) and non-fungal (blue) treatments and across developmental 

stages within treatments. Boxplots representing beta diversity variance for each group are shown for Bray Curtis dissimilarity (D), 

unweighted UniFrac (E), and weighted UniFrac (F) measures. Solid lines in each boxplot represent median values and horizontal 

edges of the boxes indicate quartiles. Variance of measures for each group were calculated by measuring the distance of each sample 

to the group centroid for each metric. Significant results from comparisons of mean beta diversity variance using permutational tests 

for homogeneity of dispersals are indicated by solid black lines above boxplots. Statistical significance of comparative analyses is 

indicated with *P<0.05, **P<0.01, ***P<0.001
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Figure 3. Bar Plots of the Relative Abundances of the Top 15 Bacterial Families Shared within each Dataset 

Relative abundances of the top 15 bacterial families shared between non-fungal and fungal larvae (A), non-fungal larvae and adults (B), 

fungal larvae and adults (C), and newly emerged non-fungal and fungal adults (D). Colored segments in each bar represent different 

bacterial families and the height of each segment corresponds to the relative percentage of reads assigned to a given family out of the 

total reads belonging to the top 15 families shared between groups. Family colors are consistent across all plots.
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Larval Microbiomes Have Larger Bacterial Loads than Adults 

Total reads for 16 non-fungal and 26 fungal larvae and adults were calibrated 

using the SCML method. Linear mixed models showed that larvae had higher calibrated 

read counts than adults for both groups (P=0.019, P=0.038, respectively) (Figure A.3, 

Table B.9). 

Discussion 

Laboratory-based experiments with A. aegypti revealed distinct microbial 

transstadial transmission patterns and taxonomic compositions in mosquitoes infested 

with Z. culisestae. In non-fungal mosquitoes, no differences in mean alpha diversity 

measures were detected, however, CV values were higher in adults relative to larvae for 

Simpson (P<0.001, Figure 1.A) and Shannon diversity (P<0.001, Figure 1.B) indices 

(Table B.6), indicating that newly emerged non-fungal adult microbiomes have higher 

variability in taxonomic diversity and distribution than larvae. In contrast, mean alpha 

diversity measures in fungal mosquitoes were higher in adults relative to larvae for 

Shannon diversity (P=0.011, Figure 1.B). Additionally, no differences in CV values were 

detected for Simpson (P<0.14) or Shannon diversity (P<0.1) indices (Table B.6), 

demonstrating that fungal infestation of the larval digestive tract leads to higher 

taxonomic diversity, but similar distribution in newly emerged adult microbiomes 

relative to larvae. 

For both groups of mosquitoes, beta diversity analyses showed divergent 

microbiomes between larvae and adults. In non-fungal mosquitoes, beta diversity 

differences for Bray-Curtis dissimilarity (P=0.022, Figure 2.A) and weighted UniFrac 

distance (P=0.031, Figure 2.C) showed clear shifts in microbiome compositional 



22 

 

  

structures, whereas the difference in unweighted UniFrac distance (P=0.035, Figure 2.B) 

indicated disparities in the microbial taxa present across developmental stages. These 

findings were conserved in fungal mosquitoes, where differences in beta diversity across 

developmental stages were detected for Bray-Curtis dissimilarity (P=0.028, Figure 2.A), 

unweighted UniFrac (P=0.03, Figure 2.B), and weighted UniFrac distances (P=0.025, 

Figure 2.C). Additionally, beta diversity variation was higher in adults relative to larvae 

for both non-fungal and fungal mosquitoes for Bray-Curtis dissimilarity (P<0.001, Figure 

2.D) and unweighted UniFrac distance (P<0.001, Figure 2.E), demonstrating that the 

mosquito microbiome undergoes changes in compositional structure across 

developmental stages, supporting findings from (Wang et al., 2011; Gimonneau et al., 

2014; Duguma et al., 2015), regardless of fungal infestation. Additionally, these data 

show that newly emerged adults harbor microbiomes with higher variability in taxonomic 

composition and structure relative to larvae. 

Whereas statistical analyses showed significant changes in microbiomes across 

developmental stages, certain bacterial families present in larvae were observed in newly 

emerged adults (Table B.8). Shifts in relative abundances of certain taxa in adults relative 

to larvae were observed in both non-fungal (Figure 3.B) and fungal (Figure 3.C) 

mosquitoes. These observations support other studies that revealed adults inherit a subset 

of their associated microbiota from larvae and pupae through transstadial transmission 

(Wang et al., 2011; Coon et al., 2014; Chen et al., 2015; Duguma et al., 2015). Fungal 

infestation affects the outcomes of transstadial transmission for certain taxa. In non-

fungal mosquitoes, Burkholderiaceae, a minor community member in larvae (2.23%), 

was transferred to adults and became the dominant taxon (42.16%, P=0.002). In contrast, 
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Burkholderiaceae in fungal larvae (9.57%) did not increase in adults (5.59%, P=0.511), 

demonstrating that fungal infestation leads to differential transstadial transmission of 

certain taxa. Conversely, in both groups of mosquitoes Microbacteriaceae was the 

dominant taxon in larval microbiomes (49.47% in non-fungal, 31.26% in fungal), as was 

recorded in Coon et al., 2014, and decreased to low abundances in adults (0.30%, 

P=0.002, non-fungal; 3.32%, P=0.013, fungal). A similar pattern was observed for 

Rhizobiaceae, which was present at moderate levels in larvae from both groups (10.26% 

in non-fungal, 8.23% in fungal), but decreased to low abundances in adults (1.28%, 

P=0.015, non-fungal; 1.61%, P=0.013, fungal). Collectively, these data demonstrate that 

only certain bacterial taxa are capable of successful transstadial transmission, and fungal 

infestation can lead to differential relative abundances of these taxa in newly emerged 

adults. 

Direct comparisons between non-fungal and fungal adults revealed that the 

transstadial transmission patterns impacted the compositions and structures of 

microbiomes in newly emerged adults. Whereas no difference was detected for mean 

alpha diversity measures, fungal adults had high values for alpha diversity indices and 

lower CV values for Simpson (P<0.001, Figure 1.A) and Shannon diversity (P<0.001, 

Figure 1.B) than non-fungal adults, indicating that fungal mosquitoes emerged with 

distinct microbiomes characterized by high richness and even taxonomic distribution. In 

contrast, non-fungal adults had high CV values for alpha diversity measures and emerged 

with variable microbiome compositional structures. Many of the non-fungal adults had 

low values for Shannon and Simpson diversity indices, indicative of microbiomes with 

low diversity and high levels of dominance by certain taxa. The wide dispersal of these 
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measures could be a reflection of variable Burkholderiaceae dominance in non-fungal 

adult microbiomes. This family only increased in non-fungal adults, though it was present 

on mosquito eggs (Figure A.4) and both mosquito groups would have been exposed to it. 

Altered transstadial transmission patterns resulted in distinct adult microbiome 

taxonomic compositions. The family Corynebacteriaceae, had higher relative abundance 

in fungal (12.58%) relative to non-fungal (4.08%) adults (P=0.025). This taxon was 

present in the fish slurry fed to all mosquitoes during the experiment (Figure A.4). 

Additionally, Moraxellaceae was also higher in fungal (3.91%) relative to non-fungal 

(1.31% ) adults (P=0.048), and was found on the mosquito eggs (Figure A.4). The 

disparity in the relative abundances of these families in newly emerged adults 

demonstrates differential establishment of certain bacterial taxa, possibly a result of 

altered microbiome dynamics influenced by larval fungal infestation. There is evidence 

of variable taxonomic composition in non-fungal larvae based on the high dispersal of 

unweighted UniFrac distance (P=0.036, Figure 2.E). In the absence of fungal infestation, 

certain taxa may differentially proliferate in larvae, leading to variable transstadial 

transmission patterns often resulting in adult microbiomes with low taxonomic diversity 

and high levels of dominance by Burkholderiaceae. In contrast, fungal infestation could 

reduce taxonomic composition variability in larvae, resulting in highly diverse adult 

microbiomes with low levels of dominance by Burkholderiaceae. Suppression of 

Burkholderiaceae establishment in fungal adults by fungal-bacterial-host interactions in 

larvae may have provided opportunities for other taxa to establish during or after 

pupation. This hypothesis is supported by the consistently high measures for Simpson 

and Shannon diversity indices in fungal adults. 
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SCML analyses (Stämmler et al., 2016) revealed that newly emerged adults 

harbor microbiomes with smaller bacterial loads relative to larvae for both non-fungal 

and fungal mosquitoes (Figure A.3, Table B.9). Small adult bacterial loads may be due to 

the conserved reduction of Microbacteriaceae and Rhizobiaceae in adults. If these taxa 

inhabit the digestive tract in larvae, this decrease could be the result of morphological and 

physiological processes that occur during and after pupation (Moll et al., 2011 and 

Moncayo et al., 2005). However, certain taxa are successfully transstadially transmitted 

in both groups of mosquitoes and increase in relative abundance in adults. It is unclear 

whether these bacteria were established in the digestive tract or other anatomical regions 

in the larvae. These taxa may inhabit larval salivary glands (Sharma et al., 2014), 

hemocoels (Brown et al., 2018), or malpighian tubules (Chavshin et al., 2013; Chavshin 

et al., 2015), allowing for successful transmission across developmental stages. 

Furthermore, it is unknown whether these taxa subsequently colonized the newly 

emerged adult digestive tract, as was observed in Chavshin et al., 2013 and Chavshin et 

al., 2015. Implementation of fluorescence-based-assays on identified transstadially 

transmitted taxa would allow for the investigation of these transmission pathways. This 

could also reveal potential spatial interactions that occur between fungi and bacteria, 

which could help explain the differential transstadial transmission patterns and adult 

microbiome compositions recorded in this experiment. Other studies should investigate 

the role that dominant bacterial taxa, such as Burkholderiaceae and Microbacteriaceae, 

have on influencing transmission and establishment dynamics of other microbial 

community members during and after pupation by utilizing inoculation experiments of 

gnotobiotic larvae similar to studies previously described in Coon et al., 2014 and 
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Dickson et al., 2017. Understanding the morphological and physiological mechanisms 

occurring in the mosquito holobiont that affect transstadial transmission of bacteria is 

crucial to reveal the interactions involved in the formation of microbiomes in newly 

emerged adults, which may impact host vector competence. Future research could 

investigate these processes by utilizing fungal infestation protocols used in this 

experiment along with vector competence assays (see Gonçalves et al., 2014 and Dickson 

et al., 2017). If fungal infestation influences these interactions, it is possible that 

microbial communities associated with mosquito populations that exhibit variable vector 

competence (Charan et al., 2013 and Gonçalves et al., 2014) are impacted by fungal-

bacterial-host interactions. 

Perspectives 

The microbial communities analyzed in this study represent snapshots of the 

newly emerged adult microbiome formed by transstadial transmission in a laboratory 

environment. However, adult microbiomes are influenced by nutrient intake (Rani et al., 

2009; Oliveira et al., 2011; Wang et al., 2011; Terenius et al., 2012) and shift in 

composition and structure during adult development (Muturi et al., 2016a). Future 

research should analyze whether the altered transstadial transmission patterns observed in 

this experiment influence the formation of the adult microbiome throughout its lifespan. 

This would help inform whether the patterns observed herein have long-lasting 

implications for mosquito-pathogen interactions and carryover impacts on human health 

issues. It should be noted that those results, and the results of other microbiome 

laboratory experiments, are not necessarily representative of microbiome dynamics in 

wild mosquito populations. Additionally, bacterial taxa have differential 16S gene copies 
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per genome. Relative abundances reported here may not accurately reflect absolute 

abundances of bacterial families. 

The findings of this study may have been affected by several factors. Illumina 

sequencing yielded variable read coverage within and across the datasets analyzed. 

Rarefaction was used to minimize potential biases in taxonomic richness estimates, 

however, this may have led to underestimations of microbial diversity. Additionally, 

efforts were made to limit bacterial exposure of experimental mosquitoes to egg microbes 

and those in the fish slurry (Figure A.4). Although protocols were implemented to 

mitigate external laboratory contamination, some levels of contamination may have 

affected results (Salter et al., 2014). Negative control samples were sequenced to account 

for this, and the decontam package in R was used to identify and remove contaminant 

OTU sequences found in extraction kit reagents. As with all microbiome studies, 

independent replication under different laboratory conditions will be essential to confirm 

the findings of this and other such experiments, as has been proposed and implemented in 

human microbiome studies (Sinha et al., 2015; Sinha et al., 2017). Finally, fungal 

infestation could not be directly quantified for DNA extracted from fungal larvae. 

Targeted 18S PCR were performed to confirm the presence of fungal DNA at larval 

harvest, though it is likely that larvae collected from this treatment had varying levels of 

fungal infestation, possibly influencing our results and conclusions. 

Conclusion 

Fungal interactions in host microbiomes are often overlooked. Our results provide 

the first evidence that mosquito larvae infested with an endosymbiotic gut fungus 

experience distinct fungal-bacterial-host interactions that reduce transstadial transmission 
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variability and result in microbiomes characterized by high taxonomic diversity, even 

distributions, and unique compositions. These results emphasize that future microbiome 

studies include fungal data in analyses of microbe-host interactions. Mosquitoes have 

significant impacts on human health worldwide, and the study of biotic interactions that 

affect their fitness is essential to fully understand the factors driving mosquito vector 

competence for human pathogens. We hope that the findings from this experiment will 

encourage future collaboration between microbial ecologists and mycologists to improve 

the scientific community’s ability to holistically and accurately analyze host-microbe 

systems.
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Figure A.1 Amplicon Length Estimates Using FLASH 
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Figure A.2 Dataset Rarefaction Curves 
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Figure A.3 Bar Plot of SCML Calibrated Read Counts 
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Figure A.4 Bar Plots of the Relative Abundances of Bacterial Families from Positive Controls 
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Table B.1 Supplemental Larval Dissections 
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Table B.2 Primer Sequences  
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Table B.3 PCR Setup  

 

 

 

 

 

Table B.4 PCR Thermocycler Settings 
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Table B.5 Experimental Sample Read Counts 
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Table B.6 Measures of Alpha Diversity and Coefficient of Variation Values 
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Table B.7 Measures of Beta Diversity and Group Dispersals 
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Table B.8 Relative Abundances of Bacterial Families  
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Table B.9 SCML Calibrated Read Counts  
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