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ABSTRACT 

In nonpolar, cold climate zones, snow accounts for 17% of the total terrestrial 

water storage. Estimating the amount of water stored in a snowpack, the snow water 

equivalent (SWE), and its spatial distribution is crucial to providing water managers with 

parameters to predict runoff timing, duration and amount. Reservoir management, 

hydropower and flood forecasting depend on SWE estimates. While landscape features 

such as aspect and slope are dominant controls on radiative energy in non-forested areas, 

forest cover can shift the energy balance composition from turbulent exchange in 

exposed, windy sites to primarily radiative inputs in the subcanopy. Additionally, forest 

cover moderates wind speed, and hence snow redistribution, and intercepts snow during 

storm events. Shading from forest cover reduces the effect of solar radiation. Forests 

cover approximately half of the snow-covered landmasses on Earth during peak snow 

extent, therefore accounting for them in snow mass and energy balance models is critical. 

Classifying forest cover into structural characteristics that correlate to snow accumulation 

and melt processes can inform snow interception and melt models, and thus estimates of 

SWE. In this study, we use terrestrial laser scanning (TLS) data from the 2016/2017 

NASA SnowEx field campaign in Grand Mesa, CO, to assess the effect of forest canopy 

on the spatial distribution of snow depth during the accumulation period, prior to 

significant melt.  
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INTRODUCTION 

Forest Controls on Snow Processes 

Forests cover approximately half of the snow-covered landmasses on Earth during 

peak snow extent (Kim et al., 2017), with snow in nonpolar, cold climate zones 

accounting for 17% of the total terrestrial water storage (Rutter et al., 2009; Guntner et 

al., 2007). Estimating the amount of water stored in a snowpack, the snow water 

equivalent (SWE), and its spatial distribution under various physiographic conditions, is 

crucial to providing water managers with parameters to predict runoff timing, duration 

and amount. However, climate change has redefined historical weather patterns, 

including the spatial and temporal distribution and intensity of precipitation, and changes 

in the rain-snow transition (Nolin and Daly, 2006). An indirect result of this has been 

large-scale stand replacing events due to wildfire and mountain bark beetle infestation 

which significantly alter the hydrologic response (Bewley et al., 2010). Forest 

composition and cover will continue to change as this trend is projected to be sustained 

for decades at mid-latitudes globally (Moritz et al., 2012). Therefore, understanding the 

effect of forest structure on radiation partitioning and understory snow accumulation 

across various regions, synoptic weather regimes and spatial scales will be critical in 

adapting snow models to altered forest stands and regular occurrences of anomalous 

weather patterns (Lundquist et al., 2013).  

Snow depth, density and their spatial distribution vary significantly between the 

forested and open landscapes in mountainous terrain. Snow accumulation under the forest 
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is affected by forest type and distribution, canopy cover, topography and other 

meteorological inputs like wind (interception loss) and insolation (sublimation). The 

subcanopy radiative regime, when integrated across an entire melt season, is a function of 

the climate (temperature and atmospheric insolation) and the tree distribution (Currier 

and Lundquist, in press; Seyednasrollah et al., 2013). The concept of a “radiative 

paradox” holds that the reduction in solar radiation from forest shading is oftentimes 

offset and even surpassed by longwave radiative enhancement (Sicart et al., 2004). As 

such, radiation input in the subcanopy is non-linearly correlated to the forest density and 

the degree of canopy cover – i.e. sky view fraction (SVF). Adding complexity to these 

nonlinear subcanopy energy inputs, is that canopy interception efficiency (CIE) responds 

differently to the same tree and forest stand characteristics which control subcanopy 

radiative energy exchange. Tree distribution, wind speed, air temperature and relative 

humidity, snow stickiness and density as well as branch and leaf stiffness can all govern 

the fraction of snow either lost to sublimation or deposited to the subcanopy floor. Net 

change in energy input to subcanopy snowpack must be reconciled with interception 

losses (Troendle & King, 1985) to measure the cumulative effect of forest canopy on net 

SWE input to a particular basin, watershed or hydrological unit of interest. Investigations 

into forest snow interactions characterize the canopy with quantitative measurements of 

canopy cover and density, like canopy closure and leaf area index (LAI) from 

hemispherical photos or remotely-sensed optical imagery (Hedstrom and Pomeroy, 

1998).  

Snow distribution patterns are also a reflection of wind redistribution, with snow 

drifts in certain environments containing a disproportionally large amount of SWE 
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relative to their area (Tinkham et al., 2013). In the open, snow distribution patterns during 

the accumulation period (non-forested areas) are largely a reflection of wind 

redistribution due to topographical roughness and shrub cover (Shook & Gray 1997; 

Trujillo et al., 2007; Deems et al., 2006). While global topographical parameters, i.e. 

static properties, like slope, aspect and curvature are correlated to areas of snow 

redistribution, indices which simulate wind redistribution built from these DEM 

parameters explain much more of the variation in snow depth than slope, aspect or 

curvature independently for example. Wind redistribution modeling utilizes either direct 

wind field models (Liston and Sturm, 1998), or terrain parameterizations (Winstral et al., 

2002) with measured wind direction during storms. Terrain parameterizations adjust 

precipitation assigned to cells using statistical models by optimizing drift and scour 

patterns based on the relative position and inclination of a target cell (potential drift or 

scour location) to an upwind location. In relation to forest ecotones, the edges of forests 

are host to consistent inter-annual patterns of snow drifts (Hiemstra et al., 2006). In this 

case, vegetation is treated as ground in a digital surface model – “vegetation topography” 

(Deems et al., 2006), and snow drifting along forest edges is simulated similar to the 

effect of topography (Hiemstra et al., 2002). An alternative method to incorporate spatial 

SWE distribution patterns into a hydrological modeling framework is via snow-depletion 

curves, which scale SWE based on statistical relationships between measured snow depth 

points to fractional covered area in a given basin or area (Luce.et al., 1999).  

A crucial step in representing forest snow interactions in snow models is 

characterizing the forest structure itself. Data for this research was collected during the 

accumulation period in mid-winter, and as such, this research will focus on snow 
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accumulation and redistribution; particularly how forest affects snow distribution in two 

areas with distinct snow distribution patterns: the open (non-forested areas) and the 

subcanopy. In the forest, we will explore the relationship between vertical canopy metrics 

with snow depth, to better constrain interception processes across various forest types, 

densities and spatial scales during mid-winter. Additionally, we will explore how snow in 

open areas is affected by its proximity and location in relation to the surrounding forest 

structure.  

Thesis Organization 

This thesis consists of two main studies. The remainder of this introductory 

chapter will summarize information common to both studies, including site description 

and data processing methods. The next two chapters are the two separate studies, 

followed by an overall conclusion. Both studies use data from the same research 

campaign, but not all the same sites. While separate topics, they focus on the effect of 

forest canopy on snow distribution. The first study investigates effects of forest edge on 

wind distribution in large canopy openings. To this effect, common topographic metrics 

(aspect, slope and curvature), and those characterizing the geographic position of the 

response variable (snow depth) in relation to the forest edge are assessed for evidence of 

wind redistribution using multilinear models. The second study compares snow depth 

distribution in the subcanopy to overhead canopy properties derived from TLS point 

clouds. Analysis is performed at multiple pixel sizes and at a larger, plot scale to 

thoroughly mine for correlation across multiple process scales.  
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SnowEx Campaign and Grand Mesa 

SnowEx is an ongoing, multi-year NASA-led research campaign aimed at 

evaluating systems for remotely sensing snow properties, to inform future satellite 

deployments, with a primary focus of monitoring SWE across all snow climates and 

throughout the accumulation and melt. This research uses data collected during SnowEx 

Year 1 (2016-2017). The science goals for Year 1 were to: 1) Characterize the effect of 

forest cover on remote sensing retrievals. 2) Determine the effect of forest cover on snow 

depth and SWE variation. In fall 2016 and spring 2017, in-situ and remotely sensed data 

were collected across two main study areas - Grand Mesa and Senator Beck. Grand Mesa 

was selected as the primary study area due to its large range of canopy density, range in 

SWE, along with minimal slope and aspect. I will use TLS datasets from five ~ 300m 

diameter sites collected at Grand Mesa. Sites were scanned once in the fall, and at least 

one time during the winter. 

Grand Mesa is a plateau which rises up 1.7 km from the surrounding region, with 

an area of approximately 470 km2 and elevation ranging from 2922 m to 3440 m, rising 

along a west to east gradient. Vegetation on Grand Mesa follows an east/west gradient. 

Vegetation in the west, where wind speeds are highest, is comprised mostly of shrubs 

with patches of spruce and fir, the center portion of the mesa is semi-continuous forest 

cover consisting of fir and spruce interspersed with meadows, and in the east, where wind 

speeds are lowest, there is dense forest consisting of fir and spruce with some aspen 

(Populus tremuloides) at the lowest elevations. The dominant spruce and fir species 

across the mesa are Engelmann Spruce (Picea engelmannii) and subalpine fir (Abies 

lasiocarpa). 
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Meteorological data available for this analysis originated from two weather 

stations: West Mesa and Mid Mesa. West Mesa is situated beside Site A, at the western 

extent of forest cover on the plateau. Mid Mesa is next to Site M, in the center of the 

mesa, situated amidst denser forest. 

Data Processing and Products 

TLS Specifications and Scanning Logistics 

Data from two separate field teams and instruments were used: Riegl VZ-1000 

and Leica ScanStation C10. The main difference between them is the laser wavelength 

for each scanner. The Riegl has a 1550 nm laser, whereas the Leica has a 532 nm laser. 

Multiple scans (5-15 in the fall, 4-18 in the winter) were taken at each site and 

coregistered to produce a single point cloud for each collection date at each site. In the 

winter, scanning one site effectively took all day. In the fall, longer daylight hours and 

snow-free (quicker) scanner and reflector setup allowed for scanning of up to two sites a 

day, depending on the amount of forest cover. Individual scans were taken from 50 

degrees off-nadir, to 150 degrees above nadir, in a 360 degree rotation at a 0.03 degree 

increment (angular resolution of 0.03 degrees) in both rotation planes with the Riegl 

scanner. Coregistered scans were then georegistered using surveyed locations within the 

plots with the scanner’s proprietary software, RiSCAN. At most sites, each scan shared at 

least two GPS-surveyed ‘tie points’. If quality or line of sight issues resulted in an 

inadequate number of tie points, then fixed objects (trees or build structures) were used 

instead. Global position coordinates (GPS) were collected with a Topcon HiPer V Real 

Time Kinematic (RTK) GPS for each tie point and the base station, with an accuracy of 

<1 cm. The base station coordinates were corrected for drift using the National Oceanic 
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and Atmospheric Administration Online Positioning User Service and tie points were 

adjusted to the updated base station coordinates. Scanning workflows were not available 

at this level of detail for the Leica, however it is known that the point density was thinned 

to 1 point/10cm2 and points greater than 100m from the scanner were discarded. 

Point Clouds to Rasters 

The point clouds were classified into ‘ground’ and ‘canopy’ using Terrasolid 

(Bently MicroStation V8i). The classification algorithm begins with an initial triangular 

irregular networks (TIN) surface model and iteratively classifies ground points based 

their distance to the TIN plane and angle off TIN vertices. The remaining points are 

either classified as canopy or discarded as outliers based on distance, position and 

clustering criteria. After this initial classification, the canopy points were further filtered 

using the Cloth Simulation Filter (CSV; Zhang et al., 2016) within a point cloud 

processing software, CloudCompare (CloudCompare 2.8.1, 2016). This filtering step 

removed grass and low-lying vegetation to reduce classification confusion between forest 

and other vegetation. The CSV filter is similar to the ground/canopy classification routine 

from Terrasolid, but it uses rasters instead of TINs to classify ground and canopy using a 

height threshold. For instance, at Site K, points lower than 80cm were removed from the 

canopy, i.e. the canopy contained only points 80cm or greater.  

Point clouds were conservatively subset (i.e. extents clipped) to avoid erroneous 

or ambiguous laser returns from occlusion, weak return signal, or beam divergence 

uncertainty. Sites were at a minimum, limited to points no more than 50m from each scan 

location. The point cloud was further manually cleaned at each site for each scan date. 
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Sections with line of site and occlusion issues from vegetation or topography were 

manually removed.  

Using the classified point cloud, rasterized canopy height models were made 

using BCAL Lidar Tools (Streuker and Glenn, 2006). The general workflow to go from 

point cloud to pixel, involves binning all points from the TLS point cloud into grid cells 

of a specified size. Using the geographic extent of a site, it is divided into grid cells, and 

all points are binned into the grid cell in which they reside. Within each cell, multiple 

statistical measures were calculated for the canopy points. Raster sizes were 1m2 for the 

first manuscript (non-forested areas) and ranged from 0.25m2 to 3m2 for the second 

manuscript (subcanopy). 

To calculate snow depth, a simple method commonly used in geomorphology to 

measure surface change, called DEMs of Difference (Schaffrath et al., 2015) was used. 

Alternative methods like Iterative Closest Point (Nissen et al., 2012) and direct point 

cloud differencing were also considered. For simplicity and in accordance with previous 

lidar snow studies (Deems et al., 2006; Trujillo et al., 2007), we used the DEMs of 

difference. For this method, two DEMs from the same site, one from fall and one winter, 

are georegistered together and differenced. The bare ground (fall) mean elevation is 

subtracted from the snow surface (winter) mean elevation, resulting in spatially explicit 

snow depth (Deems et al., 2013).  
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EVALUATING WIND REDISTRIBUTION PROCESSES ALONG THE FOREST 

EDGE EXPLICTLY AND IMPLICITLY  

Introduction 

One of the most challenging components of modelling snow accumulation is 

accounting for wind redistribution of snow. While major components of snowmelt energy 

balance like solar irradiance and longwave radiation can be calculated using global 

parameters from DEMs (e.g. slope and aspect), along with measurements of temperature 

and estimates of cloud cover (Marks et al., 1998), wind redistribution requires much more 

a priori knowledge (training data) and optimization to be computationally-feasible and 

accurate. Early efforts to identify predictors of snow depth distribution in mountainous 

terrain which neglected wind redistribution of snow revealed that more than half of the 

variation in snow depth remained unexplained (Elder et al., 1991). The integration of 

snow redistribution into mass and energy balance snow models was a relatively late 

addition which greatly improved model skill. Winstral and Marks (2002) were able to 

explain 8-23% more of the variation in snow depth by incorporating a terrain parameter 

which integrates upwind conditions to estimate scour and deposition, using a “wind 

exposure index”, to adjust the snow accumulation from each storm. 

Terrain however is not the only physiographic cause of snow drifts. Snow 

redistribution along forest edges adheres to similar principles as those governing snow 

scour and deposition due to topography. As with concavities and leeward ridges, flow 

separation zones occur on the leeward edge of forests, making significant and persistent 
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snow drifts (Hiemstra et al., 2002). Snow distribution along forest edges is further 

affected by uneven radiative energy inputs due to solar shading from off-nadir solar 

declination angles during the ablation period. Webster et al. (2017) found significant 

differences in radiation loads and temperature ranges around canopy edges based on a 

forest edge’s azimuth; wherein south-facing forest edges and those whose solar path is 

unimpeded by trees during the day receive more solar radiation than north-facing edges 

or those which are otherwise shaded. A recent study (Currier & Lundquist, in press) 

found that wind redistribution at the forest edge occurs at distances within three to ten 

times the average tree height of the surrounding forest, and the magnitude of snow 

drifting is a function of wind, climate and forest porosity. 

Until the recent use of airborne lidar, large-scale remote sensing observations of 

snow distribution in mountainous terrain were limited to binary presence absence (Hall et 

al., 1995). Geostatistical analysis from lidar datasets both validated interpretations from 

transect and point based field data, and revealed large-scale trends linking depositional 

and melt processes to scales of the underlying physiography more comprehensively than 

was possible with point measurements. Trujillo et al. (2007) used lidar-derived snow and 

vegetation elevation data to correlate surface physiography like vegetation cover and 

topographical roughness to snow depth distributions using spectral analysis techniques 

over 1km2 “Intensive Study Areas” in the Colorado Rocky Mountains. In non-forested 

sites with moderate to heavy wind speeds, topographical roughness was the primary 

cause of snow depth variation. Using the same airborne lidar dataset as Trujillo, from 

NASA’s Cold Land Processes Experiment in Colorado, Deems et al. (2006) were able to 

qualitatively link “vegetation topography” (topography + vegetation elevation) 
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distributions to snow depth distribution. They infer mechanisms which control snow 

distribution, including interception from vegetation canopy, wind redistribution due to 

vegetation topography and topography, and orographic effects (precipitation shadow).  

This research will expand on this line of questioning by analyzing the snow 

distribution in open areas abutting forest edges, at high (meter) resolution over an 

approximately 300m extent, at multiple sites. Snow distributions from TLS sites across a 

gradient of wind and forest regimes will be explored to quantify relationships of snow 

patterns to forest edge metrics and commonly-used topographical predictors of snow 

distribution. Snow distribution adjacent to forest edges should reflect wind depositional 

processes and will be manifested in snow drifting and scour along forest edges concurrent 

with the prevailing winds. 

Methods 

Two Types of Metrics: Topographical and Edge  

After the point clouds were processed and classified, rasters (1m2) representing 

topography and forest canopy were created for use in analysis. Topographical rasters 

include elevation, slope, aspect and concavity and canopy metrics include distance from 

forest edge and edge direction (Table 2.1). Below are descriptions of each variable, 

followed by context for their inclusion in this analysis. Terrain parameterizations such as 

upwind slope and slope break (Winstral et al., 2002) were not used in this analysis as the 

site extents were too small to optimize these parameters to accurately represent the scale 

of wind depositional processes. 
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Topographical Metrics 

Slope, aspect and concavity were calculated from the site DEMs. Concavity 

determines whether a location is relatively concave or convex (Shrivakshan and 

Chandrasekar, 2012), and is intended to be a general index of snow scour and deposition, 

independent of wind direction. All three of these topographic variables were derived from 

the fall scan, and therefore represent the bare ground topography, not the snow surface. 

Slope was calculated using a 3 X 3 Sobel 2D convolution kernel (Jähne, B. et al., 1999), 

to approximate the gradient magnitude. With gradient magnitudes from the above slope 

calculation, the aspect, or azimuth of the maximum slope was calculated, and ranged 

from 0° - 360°. The 3 X 3 Sobel is the same convolution kernel used with the ArcGIS 

Aspect and Slope Tools (ArcGIS 10.4.1 for Desktop). Topographical aspect was 

sinusoidal-transformed, specifically a cosine transformation. A north aspect of 0° would 

therefore be cos(0), or 1. This resulted in a range of values from -1 to 1 (Table 2.1).  

Topographical concavity was calculated using a 2D convolution kernel, the 

Laplacian of the Gaussian (LoG), a filter commonly used in edge detection (Jähne et al., 

1999). The LoG is the result of convolving a 3 X 3 Laplacian kernel with a Gaussian 

kernel parameterized by size and standard deviation (SD), which varied by site (values 

stated below). The Gaussian component smooths high frequencies that occur at smaller 

spatial scales than we would like concavity to be measured at, while the Laplacian 

approximates the second spatial derivative over the smoothed DEM. For this application, 

the LoG is used to classify the DEM pixels as either convex or concave, with an 

associated measure of magnitude. This is a continuous variable with fractional values 

both positive and negative prior to normalization. 
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Parameters for the LoG were chosen systematically by testing three combinations 

of filter parameters at each site to find the one with the greatest individual correlation to 

snow depth. Maximum size was constrained as to retain most grid cells along the edge of 

the forest. Increasing the size of the LoG filter shrunk the edges of the convolution 

product (concavity grid). This was because at each site there were places where the DEM 

barely extended past the forest edge, and grid cells convolved near the forest edge were 

assigned no value for concavity if there were not at least 50% DEM grid cells within the 

square LoG kernel window. 

The LoG filter was optimized for each site to maximize variance of snow depth 

explained. Filter sizes tested included: 9x9m, 15x15m and 25x25m with SDs of 1, 2 and 3 

respectively. Correlation to snow depth plateaued at 9x9m for Sites K and F. Site O 

showed better correlation up to 25x25m, however 15x15m was used as the larger kernels 

shrunk the site area to an unacceptable degree. Sites K and F used a LoG filter of size 

9x9m with SD of 1. Site O was 15m2 with an SD of 2.  

Topographical Spatial Scale 

A limitation imposed by the use of topographic variables in this chapter was the 

requirement of continuous gridded data within the 3X3 moving window used to calculate 

slope and aspect; one grid cell with no data resulted in a nine-fold reduction in calculated 

slope and aspect grid cells. Therefore, the choice of grid size was bracketed by a desire 

for the finest resolution on one end, and an evenly-distributed rasterized dataset of 

variables on the conservative end. A visual examination of the slope and aspect maps 

created from the two DEMs showed an uneven spatial distribution for the smaller, 0.5m2 
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pixel size. Salvaging the 0.5m2 topographical data would require substantial interpolation 

or smoothing.  

To ensure that the 1m2 pixels were not capturing noise from high frequency local 

slope patterns (rocks, holes, etc.), slope was calculated with coarser scale DEMs. At Site 

K, decreasing the spatial resolution of the DEM from 1m2 to 3m2 decreased the maximum 

slope value from 23º to 17º, and slightly improved the correlation to snow depth from 

0.11 to 0.14 values of r2. The 3m2 grid size was investigated at the remaining sites with 

similar results. Ultimately, the 1m2 resolution was chosen because it had a good spatial 

distribution and it was not noisy. Also, snow depth increased asymptotically moving 

away from the forest edge out to approximately 10 meters at Site K. We wanted to 

capture this variation with finer resolution distance increments. 

Delineating Forest Edge 

In order to create metrics defining spatial relationships of snow distribution to the 

forest edge, the forest was consolidated into larger polygon patches. Canopy rasters 

created in the BCAL Lidar Tools (Streuker and Glenn, 2006) were used to define areas of 

forest canopy. Pixels with a maximum height above 0.5m were defined as canopy, to 

avoid including misclassified forest canopy close to the ground. As seen from Figure 2.1, 

vegetation pixels are sometimes isolated or in small clusters. To avoid an unmanageable 

amount of tiny polygons, these outliers were aggregated into larger patches by 

reclassifying the canopy with an inverse distance squared moving window. This also 

helped to smooth discontinuous forest edges. 

The workflow for aggregating forest patches is as follows: 
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1. A 2D moving window filter was passed over each pixel in the canopy raster, 

which is either classified as canopy or non-canopy (binary).  

2. The weighted proportion of canopy classified grid cells within the moving 

window is calculated. Weights are assigned based on inverse distance squared 

weighting (Equation 1) from the target pixel. 

3. If this weighted proportion is above a threshold (0.4), then the cell is reclassified 

as canopy. 

4. Pixels classified as canopy cannot be reclassified as non-canopy. 
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Figure 2.1: Effect of moving window parameters on a small sample (100 m x 100 

m). Dimensions are in number of grid cells. Weighted sum refers to Zj from Equation 

1 using inverse distance squared weighting. Threshold > 0.4 to classify as canopy. a) 

Site K, satellite image. b)  Classification direct from point cloud. c) 7 X 7 moving 

window weighted sum. d) Classification of canopy including change with 7X7 moving 

window. d) 13X13 moving window weighted sum. f) Classification of canopy including 

change with 13X13 pixel window size. 

Multiple combinations of window sizes and inverse distance weighting schemes 

(distance2, distance0.5, distance3, etc.) were compared using Equation 1. The optimal 

window size and weighting scheme were ultimately chosen qualitatively, through trial 

and error. The goal was to ensure that forest edges were at most, minimally expanded. In 

the case of this dataset, a window-size of 7x7, with an inverse distance squared weighted 

scheme was found to preserve the original edge, and consolidate islands. A threshold of 
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0.4 was selected as it effectively aggregated small pixel clusters and smoothed the forest 

edge with minimal canopy reclassification. For instance, within the moving window 

centered on any pixel (position j from Equation 1), the weighted sum of pixels classified 

as canopy (Zj) had to be 0.4 or greater to be reclassified from non-canopy to canopy. 

 
Equation 1) Inverse distance weighting. If Zj > 0.4, then cell is classified as canopy. 

Once the pixels were reclassified, polygons were fit around canopy edges using 

ArcMAP (ArcGIS 10.4.1 for Desktop). This can be seen as the green outline in Figure 

2.2 which will be discussed later. 

Edge Metrics 

Forest polygons were used to create two metrics relating the location of snow in 

the open to the closest forest edge: distance from edge and edge direction. Distance from 

edge is simply the distance of a grid cell in the open to the closest canopy edge, or the 

minimum distance away from a canopy edge. It will be referred to as “distance” 

throughout this manuscript. The second metric, edge direction, imputes the orientation of 

the closest edge to each grid cell in the domain. Orientation, or edge direction, refers to 

the normal direction of the line segment in the forest patch polygon, pointing away from 

the forest edge. Therefore, a forest edge on the west side of a patch, would have an edge 

direction of east. Directions were discretized into the eight sub-cardinal directions. They 

are intended as covariates of preferential wind deposition. Edge direction will be 
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shortened to “edge” throughout this thesis. Edge metrics, along with topographic metrics, 

were ultimately used as predictors for inferential snow depth models.  

Snow Depth 

Snow depth was calculated to match the spatial resolution of the topographic and 

edge metrics (1m2) per the methods outlined in Chapter 1. 

Statistical Analysis and Workflow 

Analysis was performed on all pixels located outside of the canopy – i.e. in the 

“open” or non-forested areas within each site. Model selection utilized a cross-validation 

framework, using edge direction, distance to edge and topographic variables in linear and 

multilinear models. As a preliminary step to thin variables prior to model building, each 

metric was regressed against snow depth individually, and measures of model fit were 

evaluated. Variables with low individual correlation, coefficient of determinations (r2) 

less than 0.01, and minimal improvement in correlation when interacted with other terms 

(r2<0.01) were thinned prior to model selection. To test for non-linear interactions, the 

above step was repeated with transformed variables; distance was log-transformed and 

slope was both square-rooted and raised to the second and third power. At all sites, 

transformed slope had lower correlation to snow depth than the non-transformed slope 

and was not used in subsequent analysis. Grand Mesa was selected as a study area to 

control for slope, as such slope was minimal. Maximum slopes of 23º, 23º, and 31º were 

found at Sites K, F and O respectively. Slope is generally used in snow models as proxies 

for solar loading or as components of more complex snow drift and scour indices 

(Winstral et al., 2002).  
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After thinning variables with low correlation (r2<0.01) and no interaction effect, 

each site had a different group of variables with which to build candidate models: Site O 

used all variables, Site K all but slope, and Site F used distance, edge, and concavity. At 

each site, every possible combination of remaining variables was combined into 

candidate models in the form of a multilinear regression against snow depth for each site 

(Tables 2.3, 2.4 and 2.5). Each variable was also individually regressed in a linear 

regression. 1,000 Monte Carlo simulations within a cross-validation framework were run 

for each model. For each Monte Carlo run the dataset was partitioned into 75% training 

and 25% testing data (75 to 25 partition). Each Monte Carlo simulation randomly 

sampled a subset from the entire dataset to train the model, with the remaining data used 

for testing. Data was replaced for each subsequent Monte Carlo run. For all models, the 

mean r2 and root mean squared error (RMSE) of the 1,000 Monte Carlo simulations were 

used to measure model strength. Significance was assessed for each model, as well as all 

variables within each model using average p-values from the 1,000 simulations.  
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Figure 2.2: Aerial photos and snow depth maps for Sites K, F and O. Subplots a) – 

c) Aerial photos with delineated forest edges from point cloud extent. *Note: outer 

boundaries which delineate edge within forest are the furthest extent of point cloud 

perimeter. They have no snow depth on their border and are therefore not applicable 

to analysis. Subplots d) – f) Snow depth maps in the open.  
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Results 

Correlation coefficients varied by site and model, and there was not a single 

variable that consistently showed relatively strong correlation to snow depth at all three. 

The best models were able to explain up to 40%, 39% and 64% of the variation in snow 

depth at Sites K, F and O, respectively. With most models, adding multiple variables 

together yielded an r2 that was approximately the sum of the individual models – i.e. 

distance had an r2 = 0.01 (p-value=0.01; Table 2.3), and edge had an r2 = 0.16 (p-value = 

0.00) for a sum of 0.17. Using these same variables as interaction coefficients with a 

distance * edge term yielded an r2 of 0.28, or a 0.11 increase in r2 from the additive model 

(Figure 2.3). In this case, each edge direction (N, NE, E, etc.) had its own associated 

intercept and slope, as opposed to distance + edge where each edge direction only varied 

by intercept with just one shared slope. At Site K for instance, snow depth from a 

southwestern facing edge (SW) would be modelled with: 151cm + 0.05 * Dist (p-value = 

0.09 and 0.01 for intercept and slope respectively; Table A.1). A western facing edge (W) 

would be: 138cm + 0.10 * Dist (p-value = 0.01 and 0.15). The stated p-values are the 

result of Anova tests between the model for the specific direction in comparison to north 

facing (N) model for intercept and slope respectively. 

This interaction effect between distance and edge was apparent at all sites to 

varying effect sizes (Tables 2.3, 2.4 and 2.5). Model performance also improved at Site O 

with the interaction of topographical metrics (Figure 2.3), particularly slope * aspect. The 

relative RMSE (RMSE normalized by the site mean) between modelled snow depth and 

measured snow depth ranged from 5 - 13.6% (Tables 2.3, 2.4 and 2.5) across all sites, and 

the increase in RMSE between the best and worst model at each site was 4 cm at most. 
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The RMSE of the constant model (i.e. mean snow depth) at each site was 17, 16 and 

13cm for Sites K, F and O, respectively. These three values matched the RMSE of the 

worst performing models at each of the respective sites. Therefore, the models with the 

lowest RMSEs at each site showed no improvement over the constant model. 

Model coefficients are listed in tables A.1, A.2 and A.3. Note that concavity is 

normalized to one standard deviation. For instance, in Table A.1, the coefficient for 

concavity is 6.9, which can be translated as: for every one SD of increased concavity, 

snow depth increased by 6.9cm. Distance is log-transformed (base e) for all sites except 

Site F where both distance and log distance had low correlation to snow depth (r2<0.02), 

with slightly higher correlation using log-transformed distance, particularly when 

interacted with edge in distance * edge. Edge is a categorical variable, and therefore is 

not transformed. 

Below are the results for each of the three sites used in this analysis. 
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Figure 2.3: Site O Interaction. Total bar height is the r2 of the model with 

interaction. The different segments of the bar graph are the r2 value from one-to-one 

relationships. The remainder brings the r2 value to that of the model with each 

variable with interaction. 

Table 2.1: Raster metrics derived from the point cloud. 

 

Table 2.2: Snow depth statistics for each site. 
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Site K 

 

Site K occurs in the forest at the edge of the ecotone from shrub-steppe to forest 

habitat. It has a nearly closed u-shaped open area surrounded by coniferous forest which 

opens facing north (Figures 2.2A and D). Snow scans of Site K were taken on February 

22, 2017. It had the deepest snow depth of the three sites with a mean depth of 170cm 

(SD = 13cm; Table 2.2). Distance (log-transformed) from edge was the strongest 

predictor of snow depth (Table 2.3). Log transforming distance doubled the correlation 

from r2 =0.11 to 0.22 compared with non-transformed distance, confirming the nonlinear 

relationship between snow depth and distance observed (Figures 2.5) The formula for the 

log distance model is: 1.43cm + 0.68 * Log Distance (log distance maximum is 3.82; 

distance maximum is 46m [Table 2.2]). Aside from distance, r2 values for individual 

variables in predicting snow depth were low, 0.04 – 0.11 (Table 2.3). Intercepts were 

8cm less on average for north-facing edges (N NE NW: p-values = 0.00, 0.00 and 0.29, 

respectively) than south-facing edges (S SE SW: p-values = 0.00, 0.01 and 0.00, 

respectively; Table A.1). Of all models tested, the most complex model which used every 

variable had the highest r-squared of 0.40. The range in RMSE for all models was 14-

17cm (Relative RMSE = 8.9 - 10.8%). The constant model had an RMSE of 17cm. 
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Figure 2.4: Site K selected metrics. a) Edge. b) Distance (log-transformed). c)  

Slope. d) Concavity. 

 
Figure 2.5. Non-transformed effect of distance from edge on snow depth at Site K 

(all pixels in the open; n=18,775 1m2 pixels). 
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Table 2.3: Results from model building process for Site K. 

 

Site F 

Site F is located along the road, close to the southern edge of the plateau in the 

shrub-steppe to forest ecotone (Figures 2.2B, 2.2E and 1.1). The site has one large central 

forest patch with smaller patches along the periphery. TLS measurements were made on 

February 21, 2017. Mean snow depth was 118cm (SD = 14cm). Concavity had the 

strongest correlation of the three individual predictors (r2 = 0.18, RMSE = 13cm; Table 

2.4) at Site F. The constant model had a 16cm RMSE. Edge metrics were only weakly 

correlated to the snow depth, but the relationship did improve when setting edge direction 

and distance as interaction terms as with Site K for edge * distance. Distance from edge 

did not display a nonlinear relationship, as opposed to Site K. The strongest model, edge 
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* distance + concavity, had an r-squared of 0.35 (RMSE = 13cm). All models had 

relatively low RMSEs (13 – 16cm) and were statistically significant (p-values < 0.00). 

Although distance had low individual correlation with snow depth, its interaction effect 

in distance * edge was a strong improvement over the additive model (r2 = 0.16 vs. 0.11 

respectively). 

 
Figure 2.6: Site F selected predictor variables. a) Edge. b) Distance. c) Slope. d) 

Concavity 
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Table 2.4. Results from model building process for Site F.  

 

Site O 

Site O is on the east side of Grand Mesa, approximately 5km east of the Mid 

Mesa Met Station. It is similarly sheltered like K, with thick forest on 3 sides and a large, 

exposed opening facing east, nearly parallel with the predominant wind direction (Figures 

2.2C and F). Site O has a significant hill in the southeast corner (Figure 2.7C) strewn 

with boulders and small dense trees, which abuts a u-shaped forest edge. Snow scans 

were taken on February 25th, 2017. Mean snow depth was 159cm (SD = 13cm). The 

strongest predictor variable at Site O was aspect with an r2=0.25 (RMSE = 11cm; Table 

2.5). The RMSE of the constant model was 13cm. The next were concavity and edge with 

r2 values of 0.15 and 0.16 respectively (RMSEs of 12cm for both). Distance (log-

transformed) was not correlated to snow depth (r2 = 0.01), however when interacted with 

edge as edge * distance the correlation nearly doubled (r2 = 0.30; RMSE = 11cm) when 

compared to an additive model (Figure 2.3). Of note too was the interaction between 

topographical metrics. Independently, slope had no correlation (r2 = 0.00). When 

interacted with aspect, the interaction explained an additional 14% of the variation in 
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snow depth at the site (Slope * Aspect r2
 = 0.39; RMSE = 10cm). The range of slope 

values was much greater for Site O than for Sites K and F, with a maximum slope of 

31.7º (Table 2.1). Aside from a steep hill in the southeast corner of the site, Site O had 

similar relief (less than 18°) to the other sites.  

 
Figure 2.7. Site O selected predictor variables. a) Edge. b) Slope. c) Aspect. d) 

Concavity.  
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Table 2.5: Results from model building process for Site O.  
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Discussion 

No single metric or model showed consistently good correlation with snow depth 

across sites. However, the strongest and most parsimonious models always included edge 

representation, either implicit or explicit. Sites O and K had modest correlation between 

edge metrics and snow depth (R2 = 0.30 for edge * distance at both sites). An implicit 

representation of edge direction, asp * slope, outperformed the explicit edge * distance at 

Site O and aligned with expected wind deposition given the wind direction and forest 

shape (u-shaped enclosure). Variation in coefficient strength and model correlation at 

each site depend on the wind regime and forest structure. Spatial variation in snow depth 

should reflect accumulation and redistribution processes as snow depth scans were taken 

in February when no melt was observed in snow pit profiles on Grand Mesa. 

The rapid, asymptotic increase in snow depth away from the forest edge at Site K 

(out to approximately 5m) could be due to canopy interception or wind redistribution 

along forest-related topographical features. The concavity and slope at Site K, 

particularly in the southern and southeastern region of the canopy opening, follow the 

contour of the forest edge (Figures 2.4C and D). There are local depressions in this area 

bordered by the forest on the south and east, and slight hills to the west and north. This 

SE corner has deeper snowpack atop these convex features. Wind redistribution may be 

occurring along topographical features that follow the forest shape, at tens of meters from 

the forest edge where edge direction is more indiscriminate and overlaps with nearby 

forest edge directions.  

The edge direction metric struggled classifying topological relationships along 

curved edges and u-shaped enclosures. This is evident at Site F. The large drifts on the 
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north edges of the two patches were almost exclusively within N and NW edge 

directions. Model intercepts (coefficients) for these edges were the largest at the site (129 

and 122cm for N and NW; mean intercept for all edges = 115cm; Table A.2). However, 

the other clear snow drift, within the u-shaped enclosure midway down the eastern edge 

of the large patch is composed of nearly every edge direction. These drifts are consistent 

with the NW-SE prevailing winds recorded at the Mid Mesa meteorological station, the 

closest weather station to Site F on Grand Mesa.  

Site O is within 5km distance of the Mid Mesa meteorological tower, and is 

situated in a similar forest type and topography. Mid Mesa records the predominant wind 

direction as nearly symmetrical along the SE-NW axis, with more frequent heavier winds 

to the NW (Figure 2.8). Winds blowing NW account for 36% of total wind distribution vs 

25% for SE blowing wind. Site O has significant relief (hills), so direct comparisons to 

the wind dynamics at Sites K and F are nuanced. The forest enclosure along this SE hill 

acts as a snow fence (Hiemstra et al., 2002), wherein blowing snow has no escape route 

to enable a flow separation zone in which to deposit snow. Snow is deepest along this hill 

(Figure 2.2F), however a gentler, but still relatively steep hill in the NE corner of the site 

shows the opposite effect (less than site average snow depth). This demonstrates why 

slope independently of a wind or terrain parameterization has an ambiguous relationship 

to snow redistribution, and why slope had no correlation to snow depth (r2=0.00) at this 

site.  

As with Site O, the edge direction calculation is not ideal because the forest edge 

delineation workflow incorporates short edge segments from high frequency changes, 

producing large ranges of edge directions over short distances, not representative of the 
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predominant direction in u-shaped enclosures and jagged forest edges. Aspect was more 

successful than edge at Site O (r2 = 0.25 and 0.16 respectively) because the slope was 

steep enough to produce only a small range of zenith measurements (aspect) under the 

large snow drift in the SE corner that aligned with the predominantly west-northwest 

facing forest edge.  

Each of these sites represent areas with distinct physiographic characteristics 

along Grand Mesa and this is borne out in the range of topographic metric values (Table 

2.1) and modelling results between sites. Site K is just on the edge of the shrub-steppe to 

forest ecotone about midway across the Grand Mesa Study Area; Site F is situated in an 

intermediate forest density area; Site O, 22km to the east, is in a dense continuous forest 

among rolling hills and small lake depressions. As has been reported with similar 

approaches relating snow depth to static topographical parameters that ignore wind 

redistribution, much of the variation will go unexplained. This analysis would benefit 

from a dataset with a larger extent such as airborne lidar to capture the range in 

topography and forest configurations, or in the case of this data, the gradient between 

these sites. This would enable a large sample size of forest patches and edges, and the 

testing of terrain parameterizations designed to model wind deposition from topography. 

Distance in edge * distance reinforced previous work constraining forest edge 

wind deposition to specific distance ranges away from the forest edge, and showed that 

edges have significantly different snow distributions at close ranges depending on their 

direction. The r2 went up 13%, 37% and 39% (0.26 to 0.30, 0.10 to 0.16, and 0.17 to 

0.28) for Sites K, F and O respectively from the additive edge + distance to edge * 

distance models. The improvement in correlation from adjusting the intercept and slope 
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coefficients in the linear regression for each edge direction in all cases was an 

improvement over simply varying the intercept between edge directions. Not all edge 

direction adjustments were statistically significant, however the intercepts in particular 

had ranges of 15cm (136 – 151cm) and 19cm (103 – 122cm) at Sites K and F 

respectively (Tables A.1 and A.2). Edges could be aggregated into cardinal directions or 

custom ranges aligning optimally with site or region specific prevailing wind directions.  

Implicit edge representations may also be worth testing at sites with meadow 

forest patch complexes such as Grand Mesa with similar snow drifts along or at the base 

of slopes. Edge direction, as represented by the implicit edge representation, aspect * 

slope, had modest correlation at Site O and outperformed the best explicit edge model, 

edge * direction. Aspect * slope was the best performing two metric model at any of the 

sites. For Site O, the snow drifting in the SE corner was seemingly driven by a relatively 

steep hill partially-enclosed by a forest edge oriented perpendicular to the predominant 

wind direction. Aspect and slope (Figure 2.7C and B) in aspect * slope are able to isolate 

the relatively deep snow drift on the hill below the snow fence and more accurately 

classify edge direction than the explicit edge or edge * distance models. In both the 

implicit and explicit edge models, metrics with no correlation to snow depth at a 

particular site added significant correlation to models as interaction terms.  

Static topographical representations (global parameters) of flow confluence zones 

in respect to wind flow are commonly used to predict snow distribution (Williams et al., 

2009). Edge direction and distance has primarily been used to understand the energy 

balance inside forest gaps (Webster et al., 2017), and more recently to identify 

differential ablation and accumulation along forest edges (Currier and Lundquist, in 
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press). In this study they were tested as proxies for wind redistribution along forest edges. 

Aside from Site O, there was mostly weak to moderate correlation, even with the models 

that used all available metrics. Site O had relatively strong correlation, with an r2 = 0.64 

using common topographic variables and the edge metrics. This may be because the 

spatial variation is distributed evenly throughout Sites K and F, as opposed to the 

localized snow drift at Site O. A more sophisticated edge direction metric that 

differentiates exposed edges from u-shaped alcoves which can also incorporate the 

predominant edge direction (disregard small-scale changes) may be capable of modelling 

wind distribution patterns along forest edges. More precise metrics applied to a larger 

area with more forest edge and gap samples may prove useful in an approach 

incorporating edge direction metrics.    

 
Figure 2.8: Wind direction and frequency at three meteorological towers on Grand 

Mesa. 
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Conclusion 

Three TLS plots representing a range of forest cover and wind conditions from 

the 2016-2017 SnowEx field campaign at Grand Mesa, CO, were used to test the 

relationship between simple proxies for wind deposition in open areas along forest edges 

prior to the onset of the snowmelt period. Correlation was modest at sites with evenly-

distributed snow depth and minimal slope, and strong at the site with larger, concentrated 

snow depth variation and a steeper slope. The strongest and most parsimonious models 

always included either implicit or explicit edge representation. Site O, a site with a large, 

concentrated snow drift showed the best overall correlation at r2 = 0.64. Log-transformed 

distance (distance) alone explained 22% of the variation at Site K, and edge 18% at Site 

O. Nearest edge direction and log-transformed distance from edge (edge * distance) had 

an r2 = 0.30 at Sites O and K, indicating significant differences in snow depth based on 

edge direction, distance from edge or both, and a non-linear change in snow depth away 

from the forest edge. At Site O, the implicit measure of edge direction and distance, 

aspect * slope, had an r2 = 0.39, outperforming the explicit edge representation, edge * 

distance. This alternative edge representation may be useful at windy, hilly sites.  
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CORRELATING THE SPATIAL DISTRIBUTION OF SNOW DEPTH UNDER 

VARIOUS FOREST COVER TYPES AND SCALE REPRESENTATIONS 

Introduction 

The incorporation of remotely-sensed data into snow process research has been 

recognized for decades by snow hydrologists as crucial to understanding large process 

scales (Rango, 1993). Various airborne sensors have successfully captured watershed-

scale and continent-scale data to this effect (Painter et al., 2016; Hall et al., 1995), but 

remote sensing retrievals in forested regions are confounded by forest cover (Deems et 

al., 2013). Lidar however is capable of penetrating relatively dense forest to retrieve 

spatially-distributed snow depth measurements. Challenges with lidar exist, particularly 

accessibility due to cost and extent of coverage. There are no mid-latitude orbiting 

satellites designed to monitor snow hydrology with lidar (though IceSAT-2 was recently 

launched and its photon counting technology will be used for cryosphere observations 

over relatively coarse spatial and temporal scales, and was designed for monitoring ice 

sheets and glaciers in the polar regions, not seasonal snow). Watersheds in California, 

including the Toulomne Basin, are one of few examples worldwide where lidar is used 

operationally to forecast water supply in a snow dominated watershed (Hedrick et al., 

2018). As a result, multi-year subcanopy snow observations on large, regional scales are 

limited.  

The recognition of the knowledge gap in subcanopy regions by the snow science 

community and NASA comprises much of the motivation for the SnowEx mission, and 
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this research. Forests are characterized in the snow literature qualitatively (“gap”, 

“thinned”, “old growth” [Dickerson-Lange et al., 2015]; “uniform”, “discontinuous”, 

“dense” [Pomeroy et al., 2009]), yet translating this into quantifiable measurements 

depends on the application and data source. Unlike optical imagery and 

photogrammetrically-derived point clouds, lidar can reach the forest floor, allowing three 

dimensional forest structure effects on snow accumulation and ablation to be studied at 

much finer scales and accuracies than current optical-based satellite canopy cover 

products (National Land Cover Database 2011 United States Forest Service tree canopy 

analytical). Measures of canopy cover (canopy closure or sky view fraction [SVF]) and 

cross-sectional foliar density (leaf area index) are the main canopy proxies in interception 

models (Hedstrom et al., 1998). SVF is essentially the proportion of unobstructed sky 

from a given spot on the ground facing upward (Matzarakis and Matuschek, 2011). 

Radiation is calculated using SVF to partition sky, snow and canopy longwave emissions, 

as well as direct solar radiation. Forest cover metrics can be incorporated into watershed 

and regional scale models by relating canopy cover distributions to fractional melt 

patterns using snow depletion curves (Dickerson-Lange, et al., 2015; Luce et al., 1999), 

as pixel-level tuning with binary or weighted (Hedrick et al., 2018) snow depth correction 

factors, or a hybridized fashion that adjusts hydrological outputs differently in open areas 

based on their size and relationship to the surrounding forest (Seyednasrollah & Kumar, 

2014). In either case, the model scale must be optimized to the process scale (Bloschl et 

al., 2001) in representing snow processes.  

Snow mass and energy balance models can significantly underestimate net snow 

water input in forested areas when pixel resolution is too coarse to capture the high 
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frequency variation in depth present along the edge and under the canopy (Broxton et al., 

2015). Given the unique gradient in forest density, structure and configuration at Grand 

Mesa, units of analysis in this study will be both at the pixel scale, and at the patch level. 

The concept of patches has been used in landscape ecology to investigate relationships 

between ecological phenomena or processes and patterns of forest cover (McGarigal et 

al., 2002). Tree stands of similar environmental states with distinct boundaries can be 

aggregated into larger units, or patches. The conditions that enable various forest 

configurations and patch properties can be attributed to coupled environmental, geologic, 

geomorphic and physiographic processes including wind patterns and soil moisture and 

snow distribution (Malanson et al., 2007). Forest shape and configuration is not only a 

result of these processes, but part of a feedback loop which equilibrates physiographic 

landscape attributes with snow and moisture distribution patterns. Ribbon forests, a 

common forest type within the timberline to alpine ecotone in the Rocky Mountains, 

illustrate this concept. Characterized by rows of thin, strip-like forest ribbons oriented 

perpendicular to the prevailing winds (Smith et al., 2003), ribbon forests are a first order 

result of exposure to heavy winds and subsequent snow deposition processes which 

promote krummholz tree forms on windward exposures, and upright forests on sheltered, 

leeward sides (Malanson et al., 2007). A gradation from sparse ribbon forests to more 

typical, mature forests expands upslope as wind turbulence is impeded by progressively 

denser forests. Grand Mesa exhibits a similar forest cover progression, albeit not a ribbon 

forest. 

The impetus for this study is to further contribute to the understanding of forest 

canopy – snow interactions by exploring how vertical forest canopy structure differences 
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affect snow depth distribution during the snow accumulation period. Various spatial 

scales will be investigated to relate evidence of scale-dependency to forest type density 

and shape. We hypothesize that subcanopy snow depth will be best correlated to canopy 

metrics at spatial resolutions within the correlation length of the canopy. As forest 

density, tree spacing and distribution drive patterns in spatial variation of the canopy, it 

follows that a spatial resolution less than the correlation length of the canopy yet small 

enough to detect small changes in that range, should yield the best correlation if snow 

depth variation is due to canopy interception at the tree level.  

Methods 

Evaluating Spatial Resolution Limits 

We wanted to leverage the inherently fine spatial capabilities of TLS data by 

using the finest spatial resolution possible, which in this case was limited by the 

distribution of ground returns. Ground point distribution in the fall scans was effectively 

thinned to the frequency of the surface roughness by the ground classification algorithm. 

Therefore, ground and consequently snow depth, was the limiting factor in upsampling to 

smaller snow depth grid cells.  

To determine the lowest acceptable spatial resolution of our data, progressively 

smaller snow depth maps were created from the point cloud and loss in coverage was 

compared. Our main consideration was not the area lost, but representation lost, i.e. 

“coverage”. Each snow depth pixel requires a pair of overlapping ground (fall) and snow 

surface (winter) pixels or points. For instance, upsampling from a 1m2 pixel into four 

0.5m2 pixels can result in either zero, one, two, three, or four overlapping, paired 

fall/winter pixels (0, 25, 50, 75 or 100% coverage). If at least one of the four resampled 
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0.5m pixels contains overlapping ground and snow points, then a snow depth pixel can be 

created, and this is considered “coverage”. However, if the larger pixel did not contain a 

single smaller pixel, then the upsampling resulted in a loss in coverage at that pixel 

(Figure 3.1). This workflow was run at progressively smaller pixel sizes: 0.5m2, 0.25m2, 

and 0.10m2. Percent coverage was calculated for each resampled size at Sites K and N as 

the percent of original 1m2 snow depth pixels with coverage after upsampling. As an 

example, coverage from Site K for the 0.5m2 resolution is presented in Figure 3.2. 

   
Figure 3.1. Two examples of coverage. Red circle indicates ground points in the 

fall. Blue are ground points in the winter (snow surface). Shaded gray are pixels with 

point pairs where snow depth can be calculated. Upsampled with resultant coverage 

(upper row); upsampled with no coverage (lower row).  

 

.  

Figure 3.2. Coverage in canopy. A) 1m2 point pairs (i.e. overlapping fall and winter 

points where snow depth can be calculated). B) 0.5m2 point pair. C) Percent 

Coverage: Percent 0.5m2 point pairs contained within 1m2 point pairs.  
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Delineating Individual Trees 

Individual tree locations and heights were found using a local maxima (LM) 

algorithm. LM algorithms are a ubiquitous method for single-tree identification in forest 

inventory surveys, and in multiple comparison tests are top-performers in optimizing 

commission and omission errors (Vauhokenen et al., 2011, Eysn et al. 2015) and 

identifying dominant and subdominant trees in airborne lidar tree surveys. Multiple 

studies have found that smoothing the canopy height model prior to the LM run is the 

most critical part (Solberg et al., 2006); more so than the point density of the data or 

algorithm selection (Vauhkonen et al., 2011). For this dataset, the canopy height model 

(CHM) was interpolated from the cleaned and classified point cloud at a 0.5m resolution. 

Maximum height within each cell was assigned to each cell. Gaussian and median filters 

are commonly used to remove noise from the raw CHM (Solberg et al., 2006; Persson et 

al., 2002). This CHM was filtered using a 2 dimensional 3X3 median filter to remove 

noise. Our CHM size was 0.5m. CHM sizes of 0.25m and 1m were also tried along with 

all local maxima window sizes from 1 to 7 pixels. Best results were found with the 0.5m 

CHM and two pixel search window for the LM process. Parameters were optimized using 

Site K as validation both visually and with measures of classification accuracy, 

commission and omission.  

The above referenced literature and discussion refers to airborne lidar, whereas 

this dataset is TLS. As point density has not been found to significantly impact the results 

of raster-based tree identification, it follows that these algorithms are effective with hyper 

dense TLS point clouds. Site K was used for validation. Tree locations were manually 

identified from the point cloud for the entire site. Manually located tree tops were 
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compared to the results from the automatically identified trees to assess accuracy (Figure 

3.3). For this method at Site K the commission rate was 8% and the omission rate was 

17% (Table 3.1). For comparison, tree detection (matching) rates for single layer and 

multi-layer coniferous forests using state-of-the-art extraction methods (LM or otherwise) 

in an alpine environment was 60% and 35% respectively (Eysn et al., 2015) for airborne 

lidar. For the dominant height classes, tree matching rates regularly achieve 80% range in 

the referenced studies. Based off the high accuracy of this automated tree detection 

method found at Site K, and the cited success in identifying larger, dominant trees, we 

used this method to identify trees in the remaining sites (Sites F, O and N). The mean 

height of detected and undetected trees was 18.8m and 15.8m respectively. Undetected 

trees were generally in close proximity to larger trees, and had overlapping, sometimes 

indeterminate canopies. 

 
Figure 3.3: Sample patch of automated tree top extraction results. All dots are tree 

tops manually identified in the point cloud (true trees). Black circles are modelled tree 

crown canopies based off measured height values for true trees. Red dots are true tree 

tops 
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Table 3.1: Classification assessment from individual tree identification 

 

Vegetation Metrics: Canopy Structure Models 

Multiple vegetation metrics were calculated at all sites. Variables directly 

calculated from the point cloud were created using BCAL Lidar Tools. These variables 

are used as proxies for forest canopy cover. There are 35 metrics which can be classified 

into two categories: vertical distribution metrics and point classification metrics 

(Appendix A.4; Dhakal, 2016). To calculate these metrics, the point cloud is overlaid 

with discrete cells. Lidar points contained within each grid cell boundary are used to 

calculate each of the 35 metrics at each respective grid cell, yielding a continuous raster 

with values for each of the 35 metrics. For example, mean is the mean height of all 

classified canopy points within a pixel. Metrics include basic statistical descriptors of 

distribution (minimum, maximum, range, etc.), moments (mean, variance, skewness and 

kurtosis), the interquartile range and frequency of points within a defined range (i.e. 5m-

10m), height values at specified percentiles (i.e. 5th) as well as other variables capable of 

differentiating vertical height distribution nuances (i.e. median absolute deviation from 

median height). Within the vertical distribution category there was also a functional 

covariate of vegetation canopy distribution called foliar height diversity (FHD) 

(MacArthur and MacArthur., 1961). The second category of BCAL metrics, point 

classification metrics, convey both the actual and relative number of ground and canopy 

points within each cell. Values of 0.15m and 0.5m ground and canopy thresholds were 

used respectively as parameters to calculate ‘Vegetation Metrics’ in BCAL Lidar Tools. 
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The ‘vertical bin spacing’ parameter used to calculate FHD was set to match the 

horizontal spacing (i.e. 1m for 1m2 and 3m for the 3m2 grid size). 

Scales of Analysis 

Correlation analysis was performed at both the pixel and patch scales. For the 

pixel scale, multiple spatial resolutions were examined for scale-dependent relationships 

between the forest canopy and snow depth. The patch scale approach delineated large 

forest patches as objects and compared bulk properties of the patch to those of the snow 

depth. 

Pixel-Level Analysis 

Up to four spatial resolutions were used: 0.25, 0.5, 1 and 3m2. Snow depth was 

regressed against each of the 35 BCAL metrics at each pixel location, and a linear model 

was fit based on r2 values in order to rank the best individual predictors of snow depth. 

As will be discussed later, metrics were clustered based on their coefficients of 

covariance (Figure A.1), and at a minimum, one metric from each group will be 

presented and discussed. 

Patch-Level Analysis 

In contrast to pixel-level analysis, patch-level analysis aggregates the forest into 

homogenous, distinct patches. At each site, patches were manually delineated using the 

canopy height model as a guide, along with optical satellite imagery (National 

Agricultural Imagery Program, NAIP) to visualize the smaller TLS sites in the larger 

context of the landscape. Polygon boundaries were drawn around large forest clusters at 

each site. All sites but one (Site A) had two patches, for a total of seven forest patches 

across the four sites (Figures 3.4, 3.5, 3.6). Patches were easily identifiable for all but Site 
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N. This site was logged in the 1950’s and now is covered with second-growth pine with 

evenly distributed individual trees as opposed to distinctive patches (Figure 3.4). Due to 

this, patches were delineated using subtle edge breaks between adjoining patches. The 

western patch at Site K involved some subjectivity as one smaller tree cluster was 

detached but nestled on the edge of the patch. The patch was traced excluding this cluster 

as the perspective from the NAIP image revealed that the majority of this patch’s border 

was continuous, and without small aggregated clusters. Site A was situated on the edge of 

a single, isolated patch. As such, Site A only produced one patch for analysis. There was 

a slight inroad into the canopy ~20m from the furthest snowcover extent where the 

canopy point cloud was noticeably thinner, which was used to demarcate the eastern edge 

of the patch. The limited spatial extent of TLS, particularly in the forest, resulted in the 

point cloud only covering a portion of the larger patches on which they were situated. 

Therefore, the patches we used are samples of and assumed to be representative of larger 

patches. The exception is the smaller, eastern patch at Site F. 

At each patch, pixels were averaged, yielding one mean value per metric, per 

patch. Pixels without canopy cover were assigned zero, and included in the average. In 

addition to the BCAL metrics, statistics from delineated trees were used. These included: 

tree density (stems per acre), total number of trees, average tree height and standard 

deviation of tree height per patch. In contrast to the BCAL metrics, these are not patch 

averages of pixel values, they are direct measures of the population of trees identified 

within each patch. Elevation of the patch was also analyzed for correlation. Patch means 

accounted for fractional cover as open pixels were assigned zero, lumped in and averaged 

with the canopy pixel. This in effect accounted for fractional canopy cover within each 
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patch. As an additional, basic measure, fractional cover was also created. Fractional cover 

was simply the number of pixels within the patch with canopy cover over the total 

number of pixels, from 0 to 100%.  

Open areas without canopy cover (polygons) were also delineated to compare 

with forested areas. Each site had one representative open area. The size of each open 

polygon was well within one order of magnitude of the canopy patches, and in some 

cases, larger. Roads and trails were avoided, as well as snow drifts and scour areas. The 

snow distribution from these open areas were compared with snow under the canopy. 

Specifically, the ratio of canopy:open was calculated using the average snow depth from 

both (or one at Site A) canopy patches and the average from the open area.  

 
Figure 3.4: NAIP images of sites with patch boundaries outlined (red). Site names 

labeled on figure. 
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Figure 3.5: Sites K and N foliar height diversity (FHD) and snow depth with patch 

border (red). A) Site K with FHD metric displayed. B) Site N with FHD metric. C) 

Site K snow depth. D) Site N snow depth 

 
Figure 3.6: Sites F and A foliar height diversity (FHD) and snow depth with patch 

border (red). A) Site F with FHD metric displayed. B) Site A with FHD metric. C) 

Site F snow depth. D) Site A snow depth 
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Variable Assessment and Workflow 

Each of the variables was regressed versus snow depth in a linear regression. 

Many of the variables, particularly those in the heavily represented vertical distribution 

(n=30) category were highly correlated. A correlation matrix was created (Figure 3.4), 

and 40% of all variable pairings had correlation coefficients of a magnitude greater than 

0.8. Variables were distilled to reduce data and illustrate the most pertinent relationships 

to the narrative of our hypothesis. A general ruleset was used to thin variables to be used 

in further discussion. This included:  Variables with r2 < 0.57 were not shown (due to an 

abrupt threshold where the next highest correlation was r2=0.44) and only one variable 

from groupings of highly correlated variables were shown. Exceptions are explained 

below. 16 of the 45 variables had r2 > 0.5. Each of the three categories (vertical 

distribution, points and trees) had at least one variable with an r2>0.57. Correlation 

between variables was visually assessed using the correlation matrix, and groups of 

correlated metrics were noted. To minimize redundant information, only one variable 

from each group was presented in graphical form. Despite being highly correlated to 

maximum canopy height (max), standard deviation (std) and mean height (mean) are 

shown as they are common statistics, and are relevant for comparisons. From 45 

variables, seven variables are displayed and discussed in the results. Elevation, the one 

miscellaneous variable, or site property, was not shown but had an r2 = 0.30.  

Geostatistical Analysis at Patches 

Experimental variograms were made for each patch for both the snow depth and 

canopy. Max was used as the metric in the vegetation variogram. A spherical model was 

fit to each of the variograms using R.1.414 (R Core Team, 2017) with the package gstat 



56 

 

(Pebesma, E.J., 2018) using the default settings (least squares). Lag spacing varied by 

patch (~0.25m – 0.5m); patches with short ranges were given shorter lag spacings to 

provide more accurate model fit. Parameters from the spherical model fits included range 

and sill. The uncertainty of model fit was assessed using a randomly sampled 75% of the 

data for 1,000 Monte Carlo simulations (with replacement) for each patch. Uncertainty 

was assessed as the standard deviation of the model parameter estimates of the 1,000 

Monte Carlo simulations. 

Results 

Pixel-Scale 

We found that the 25cm2 pixel size was the finest achievable resolution at our 

sites. Unacceptable coverage at 0.1m2 resolution, a large drop in coverage from 0.25m2 to 

0.1m2, and overall sparse distribution of pixels at Sites K and N limited our resolution to 

the 0.25m2 size. At the 0.1m2 spatial resolution the percent coverage was 55 and 68% for 

Sites K and N respectively (Table 3.2). In other words, Site N had only 68% 

representation of the original ~9,700 1m2 pixels by at least one of the 0.1m2 pixels. At 

Site K, there was only 55% coverage from an original ~ 9,900 1m2 pixels. Progressively 

smaller resolutions were analyzed at each site until correlation was worse or stagnated. 

Table 3.2: Change in coverage from upsizing various pixel sizes at Sites N and K. 

 

Two of our sites showed weak to no correlation with any spatial resolution. Site K 

had moderate correlation which can be ascertained both from the r2 value and the 
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scatterplot of Depth vs. Max (Figure 3.7). Site K showed slight improvement at the larger 

3m2 spatial resolution compared to 1m2. Snow distribution at Site N had relatively strong 

correlation with multiple lidar metrics, with correlation progressively increasing, and then 

peaking at the 50cm2 pixel size. Correlation at the 25cm2 decreased slightly. 

Site A showed no correlation between any of the metrics and snow depth at any 

pixel size, with the best correlation being r2 = 0.05 at FHD above ground (FHD_ab_grd) 

for the 3m2 resolution. Site F had very weak correlation at best with r2 = 0.16 for 

FHD_ab_grd at 1m2 resolution. At 3m2 resolution this same metric performed the best, 

but at a much lower r2 = 0.06. Site K also had weak correlation, but better than Sites A 

and F. The 3m2 resolution showed slightly better correlation than the 1m2 (Average of all 

metrics r2  = 0.12 and r2  = 0.10 for 3m2 and 1m2 respectively). Max and 95th percentile 

(per_95th) both had an r2 of 0.27. Site N showed the best correlation to canopy metrics, 

and also the greatest scale-dependency (Average of all metrics r2  = 0.10 and 0.18 for 3m2 

and 0.5m2, respectively). At the 0.5m2 pixel size, correlations were relatively high (r2 

values of: max = 0.51, per_95th = 0.43 and FHD_all = 0.42). While the difference in the 

average r2 was only 0.08 between the two cell sizes, the greatest r2 for the 3m2 was 0.24 

(max) compared with 0.51 (max) using the 0.5m2 cell size.  
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Figure 3.7: Pixel-level correlation at each site. A) Site A. B) Site F. C) Site K. D) 

Site N (Note: scales differ) 

Patch-Scale 

Patch averaged statistics had substantially higher correlation to snow depth than 

even the best pixel-scale relationships. FHD_ab_grd had the highest correlation at 0.94 

(Figure 3.8a). Basic canopy distribution statistics like max, interquartile range (intrqrtle) 

and Std were all at or above 0.75 (0.78, 0.76 and 0.75, respectively). Other quartiles also 

performed well, with progressively better correlation in the higher quarter ranges. 
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per_95th, per_90th, per_75th, per_25th, per_10th and per_5th were 0.69, 0.66, 0.61, 0.44, 

0.32 and 0.26, respectively. Note that the 50th percentile (per_50th) output was excluded 

due to miscalculation issues with the BCAL software. Of note too was the 0.62 r2 for 

height_avg, which is the average height identified trees within each patch (Table A.5). 

Site K for instance had average tree heights of 21.2m (n=131 trees) and 16.6m (n=180 

trees) for the west and east patch, respectively. The standard deviation of identified trees 

per patch (Height_std) was 0.22; Tree count and tree density had no relationship to snow 

depth (r2 =0). Elevation also had no correlation (r2=0.03). Select results are shown in 

Figure 3.9. Site A did not have statistics from identified trees as we found the automated 

delineation method insufficient, and manual delineation impossible. The broad shape of 

trees in the upper canopy led to layering with the lower canopy. This made identifying 

lower canopy trees suspect. Tightly clustered trees were also indiscernible in many 

instances. 

 
Figure 3.8: Snow depth vs. A) foliar height diversity (FHD_ab_grd) and B) 

fractional cover   
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Figure 3.9: Regression results from patch analysis showing a subsample of metrics. 

Seven of the 45 patch properties tested.  

Variogram Analysis 

All sites but Site A had clearly defined sills for both the snow depth and max 

variograms. Variogram shapes matched well between the canopy and snow (Figures 3.10 

and 3.11), and the range values from model fits were similar between the canopy and 

snow for most sites. At six of the seven patches, the canopy range was larger than the 

snow range. Site N had the shortest ranges (3m), and Site F, the largest range (8m). 
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Table 3.3: Parameters from spherical variogram models. Canopy is max and 

Snow is snow depth. 
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Figure 3.10: Variograms for Sites A and F using snow depth and max height. A) Site 

A. B) Site F - west. C) Site F - east 
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Figure 3.11: Variograms for Sites K and N. A) Site K - west. B) Site K - east. C) Site 

N - north. D) Site N south. 

Canopy vs. Open 

Open areas at all sites had deeper snow than in the canopy (Table 3.4). The ratio 

of canopy:open was identical between Sites K and F (Table 3.5), and nearly identical 

between Sites A and N.  

 

 



64 

 

Table 3.4: Patch list with properties. *Tree heights not found at Site A. 

 

Table 3.5: Ratio of snow depth under canopy to open 

 

Discussion 

Overall, pixel-level correlation between snow depth and forest canopy metrics 

was modest, with maximum canopy height (max) having the best correlation to snow 

depth for almost all sites and pixel sizes. Sub-meter spatial resolution (0.5m2) 

significantly improved the relationship at Site N (r2 = 0.42 to 0.51). At the other three 

sites, 1-3m spatial resolution was optimal. At the patch-level, we found very strong 

relationships between mean patch lidar metrics and snow depth across Grand Mesa (r2 = 

0.90). 35 statistical descriptors of vertical tree structure were tested, along with stand 
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characteristic measures. Results support a strong correlation for many metrics. The best 

vertical distribution metric, FHD, had only slightly stronger correlation with snow depth 

than fractional cover (R2 = 0.94 and 0.92 for FHD and fractional cover, respectively; 

Figure 3.8). The performance of percent fractional cover suggests that tree height, size 

and individual tree density minimally affect interception at the patch-scale. However, the 

sample size was small (n=7) and spatial autocorrelation was not addressed. Patches 

within each site were orders of magnitude closer in distance to each other than patches 

across sites (tens to hundreds of meters vs. kilometers). Spatial autocorrelation in forest 

properties (i.e. mean height) and snow depth was observed (similar mean depths and 

mean canopy metric values at neighboring patches; Figure 3.8), as these properties are 

driven by spatially correlated site properties like wind and temperature. 

As opposed to patch-level, the pixel-level analysis was purely focused on snow 

distribution directly underneath canopy cover. This approach does not incorporate direct 

or indirect measures about the patch density, fractional cover or spacing between trees. 

Visually comparing snow and canopy rasters (Figure 3.5 and 3.6), and their distributions 

(Figure 3.12) did not reveal any consistent pattern to explain disparities in correlation 

success between sites. Snow distributions appeared mostly normal at all sites, however 

sample sizes were too large to test for normality using common normality tests (Shapiro-

Wilkes test the Kologorov-Smirnov test). Sites A and F had nearly the same mean snow 

depth (~80cm), approximately 65% and 55% that of Sites K and N, respectively. To 

compare snow depth distributions among sites, statistics were normalized to the 

respective site mean (Table 3.6). The coefficient of variation (CV) of snow depth, a 

measure of the normalized variation, shows that sites with low pixel-level correlation 



66 

 

(Sites A and F) have more relative variation in snow depth than sites with the highest 

pixel-level correlation (Sites K and N; Table 3.6). Therefore, there was variation in snow 

depth which the pixel-level analysis was unable to explain. Other statistical distribution 

measures are shown for comparison, including interquartile range and skewness. 

Table 3.6: Snow depth distribution statistics 

 

  

 
Figure 3.12. Distribution of snow depth and maximum canopy height (max) of 1m2 

pixels for patches at each site (pixels combined for sites with two patches). Values 

standardized by the mean across sites – i.e. snow depth by the mean snow depth of all 

sites, and max by mean of max. Interquartile range and mean shown in boxes; wings 

extend to outliers. 
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Average measured tree height was approximated at each site to determine whether 

tree height was a first-order cause of pixel-level correlation. As we were unable to 

identify individual trees at Site A, the average of max was used as a surrogate for 

measured tree height. As opposed to the patch metrics, this average did not incorporate 

cells without canopy values, therefore this should correlate well to the measured tree 

sizes. This measure was also uninformative; there was no trend indicating that patch tree 

height determines pixel-level correlation. However, Site N had the shortest trees and 

substantially higher pixel-level correlation than the other three sites. Its distinct species 

composition, spatial distribution and size is in stark contrast to the dense clusters of the 

taller, older fir and spruce present elsewhere on Grand Mesa. This is perhaps where the 

pixel-level approach failed to explain the observed variability in snow depth; spatial 

distribution of trees is not incorporated. 

The variogram analysis highlighted the similarity between canopy and snow 

distribution, both qualitatively and quantitatively. In particular, range parameters of snow 

depth and vegetation drawn from the experimental variogram models were similar at 

most sites. Site N had a short range, and distinctly sharp rise to the sill for vegetation 

which is a reflection of the forest topography and spacing at Site N, and in contrast to 

Sites A and F particularly. While without the same variogram shape, a more gradual 

approach to the sill, Site K has the next shortest canopy range values (note: Site F east is 

tied with Site K east for the fourth shortest range [range = 5.5m]). However, the range in 

the snow depth variogram is much larger for Sites N and K relative to the canopy 

variogram. The ratio of snow to canopy ranges for the two patches at Sites K and N are 

2.6, 1.9, 1.8 and 2.0, respectively. The ranges for the remaining sites, F west, F east and 
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A, are 1.0, 1.4 and 1.1, respectively. These results indicate that the canopy and snow 

spatial distribution have very similar scaling properties (i.e. correlation length), 

particularly at the denser sites (Sites A and F). 

The canopy:open ratio was promising, if not confounding. Sites K and F had 

identical ratios and similar patch configuration and overall forest stand characteristics. 

They are from very similar landscapes: patchy forest landscape with expansive open 

areas and continuous irregularly shaped patches. Site F is further west and is directly 

exposed to large open areas to the east and north. Site K is a sheltered, u-shaped 

enclosure which opens to the north, into a large, ~500-1000m wide, open area. Snow 

depth in the open patch at Sites F and K are 118cm and 185cm respectively. Despite Site 

F having a much shallower snowpack than Site K (60% less average snowpack), their 

ratios of canopy:open snow depth is identical. Sites A and N also had nearly identical 

ratios. Site A contains the westernmost forest patch on Grand Mesa, and has a massive 

snow drift at a south-facing leeward edge and accompanying shallow scour zone along its 

windward edge, with a snow depth distribution in the open tracking the overlaying shrub 

patches in the open. Site N on the other hand has more loosely clustered trees with small 

treeless openings. The trees are on average much shorter at Site N (approximately 10m). 

Snow pits within the vicinity of Sites A, F and K showed negligible snow density 

differences between the canopy and the open, indicating that there is more SWE in the 

open at Grand Mesa than under the canopy, due to depth differences not density. This 

agrees with Musselman et al. (2008) who found much smaller snow density differences 

relative to depth difference based on distance from tree bole. However, an analysis of all 

pits across Grand Mesa was not undertaken for this study. More TLS sites would be 
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necessary, along with observations closer to the date of maximum SWE to generalize this 

finding to Grand Mesa or similar cold regions. 

As snow depth scans were taken in February, when no significant melt was 

observed in snow pit observations at Grand Mesa, interception should be responsible for 

intracanopy and canopy to open snow depth variation. Per modelled results from 

Hedstrom et al. (1998), higher wind speeds can functionally turn a canopy that is not 

fully-closed into a closed canopy – i.e. the effective canopy cover becomes “unity.”  

Horizontal wind speed can transport falling snow from openings into the lower branches 

after they enter canopy interspace. Sites F and A had near maximum fractional cover to 

begin with. It is possible that tightly-packed forests with near unity canopy cover have a 

more uniform range of canopy interception efficiency (CIE) across the patch. This is a 

plausible explanation for the lack of pixel-level correlation between snow depth and 

canopy metrics at Sites F and A, the two most exposed and windy sites. Three of our sites 

were distinctive subalpine climax communities with rigid-needled, patchy forest 

structures typical of the region, while Site N was well-spaced, short-statured second 

growth pine. In addition to the spatial distribution differences, pine has much lower tree-

level CIE as compared to subalpine species (Hedstrom et al., 1998). Pixel-level 

correlation was relatively strong at this site suggesting good application at disturbed, 

second-growth locations. Given the inconsistent pixel-level results across patches and the 

strong similarities between canopy and snow depth spatial distribution from variogram 

analysis, the greatest utility of forest canopy data in snow accumulation modelling might 

be a subgrid parameterization of SWE based on stand-level geostatistical properties of the 

forest, e.g. snow depletion curves (Luce et al., 1999). 
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Taking into account the limited sample size of patches, fractional cover may not 

sufficiently explain snow depth variation in many circumstances and additional height 

and vertical distribution metrics may be necessary. That simple binary canopy cover had 

an r2 above 0.90 at the patch-level indicates that other sources of remotely-sensed data 

capable of measuring two-dimensional fractional cover may be adequate for modelling 

interception in large-scale snow models. However, binary measures derived from optical 

imagery are only superficial characteristics of the upper layer of the canopy. Radiative 

energy fluxes may be significantly more sensitive to spatial gradients in structural forest 

canopy attributes than the interception processes observed during this study. 

Conclusions 

This study used TLS point clouds collected at four sites across Grand Mesa, CO, 

to investigate the effect of forest canopy properties on snow depth during the snow 

accumulation period in February, 2017. Correlation analysis was performed at multiple 

scales to determine the optimal scale to represent snow and forest canopy interactions. 

Strong correlation was found between canopy cover and snow depth at the forest patch-

scale for a small number of samples (n=7 patches). Weighting canopy cover with vertical 

distribution metrics of the canopy (i.e. maximum height, standard deviation, etc.) only 

minimally improved the patch-level correlation (from r2 = 0.92 to r2 = 0.94). Pixel-level 

correlation was relatively lower with r2 = 0.03 to r2 =0.51, but at a much more robust 

sample size. Denser sites, or those with more canopy cover had very low correlation at 

the pixel scale. The second growth pine site showed the best correlation (r2 =0.51), 

indicating that vertical distribution metrics derived from point clouds have utility in 

gridded, spatially distributed snow models as snow depth correction factors under sparse 
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forests. The 0.5m2 pixel size at Site N significantly improved the correlation compared to 

the 1m2 size (r2 = 0.40m2), but decreased at finer resolutions indicating that 

approximately meter scale resolution is optimal for subcanopy snow modelling whereas 

relationships fall apart at the centimeter scale. The similarity in scaling properties 

between collocated canopy and snow distributions drawn from variogram analysis, and 

the consistent canopy:open ratio, could prove useful information in models using subgrid 

parameterization where forest cover data is present. 
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CONCLUSION 

The purpose of this thesis was to investigate the effect of forest canopy on snow 

depth distribution, both in the subcanopy and in open areas abutting the forest. The 

majority of spatial distribution patterns of SWE are controlled by vegetation and 

topography. While abnormal synoptic weather occurs, fractional snow melt patterns are 

generally consistent interannually, and share scaling properties with these landscape 

features. The translation of fundamental, process-based forest snow relationships into 

general forest structure properties that can be measured via remote-sensing is crucial. 

The first study characterized snow depth near the canopy based on distance to 

forest edge, and the direction the edge was oriented. Using these and common 

topographic metrics, multilinear models were tested for effectiveness in characterizing 

wind redistribution of snow near the forest. Model results were interpreted with the 

assumption that in mid-winter, snow distribution patterns would be due to wind 

redistributive processes. This methodology was applied at three sites across the mesa. 

Preferential snow distribution along the prevailing wind path was indicated by both 

explicit and implicit edge direction representations at one site. Log-transformed distance 

from edge performed well at a sheltered site, indicating a uniform edge effect due to 

interception. 

The second study uses four sites to characterize the subcanopy snow distribution 

and relate it to the vertical distribution of forest in the overstory and various other forest 

properties. Two of the sites are the same as the first study. Analysis was performed on the 
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pixel scale, and a larger forest patch scale. Canopy metrics were only predictive at sites 

with less fractional forest cover – i.e. discontinuous and second-growth forests. Minimal 

correlation was observed at the two sites with near continuous canopy cover. Variation in 

snow depth was equivalent between all sites, indicating that the pixel-level approach did 

not explain the variation in snow depth in dense forest. Geostatistical analysis showed 

that the spatial distribution of snow was closely aligned with that of the forest canopy, 

even in sites with poor pixel-level correlation. Patch-level correlation was very strong, 

albeit using an analysis with small sample sizes (n=7), but the benefit of adding vertical 

canopy distribution information was minimal. Additionally, the ratio of snow depth in the 

canopy to snow in the open remained consistent between two of the sites with the most 

similar canopy characteristics. Snow was shallower under the canopy compared to the 

open at all sites. These outcomes suggest that data on forest cover is important for 

adjusting subcanopy SWE, and that the requirement for vertical forest structure 

information in modelling snow accumulation depends on the model type and spatial 

resolution, and forest properties of the model domain. 

This experiment was designed in large part as ground validation for aerial remote 

sensing products such as airborne lidar. Due to logistics and cost, only one repeat 

measurement at most was made at each site, during which time period, only a small 

amount of snow had fallen. Similar snow studies in the future would benefit from 

collecting data over an entire snow season, or specifically during either the accumulation 

or ablation period. Additional TLS-derived measures such as biomass or leaf area index 

may also be insightful for dense canopy sites where we observed very weak pixel-level 

correlation to canopy metrics. 
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Model Coefficients and Effect Size Tables 

Table A.1: Site K Model 11.  
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Table A.2: Site F Model 7.  

 

 

Table A.3: Site O Model 18 
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Vegetation and Patch Metric Lists 

Table A.4: Vegetation Metrics (BCAL). 
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Table A.5: Patch metrics. 

 

Figure A.1: Covariance matrix from patch analysis. 

 


