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ABSTRACT

Real-time study of erupting vents is important for both monitoring and scientific pur-

poses; because direct in-situ study of erupting vents is impractical, our best tools for

studying eruptions in real time involve monitoring eruptive products and waves that

travel far from the volcano. The atmosphere is a particularly advantageous medium

for studying propagation and transport of volcanic waves and products: acoustic

waves pass through it with minimal scattering, particles follow predictable trajecto-

ries, and the atmospheric structure that affects both is well-monitored. Analyses of

acoustic waves and tephra deposits can provide important information on eruptions

including total explosive energy, volume, and fragmentation processes. Additionally,

the hazards associated with these processes justify the need to understand and model

them.

Despite the apparent simplicity of volcanic-atmospheric phenomena, many open

questions and difficulties remain. This dissertation aims to address some of the chal-

lenges and help develop a better understanding of volcanic-atmospheric phenomena.

In this work, I discuss and demonstrate tools to improve our understanding of such

phenomena. A general introduction to atmospheric physics and eruptive processes is

provided in chapter 1.

A particularly severe problem addressed by this dissertation is analysis of pressure

waves from powerful volcanic explosions. Due to theoretical and numerical difficulties

vi



associated with shock wave physics and the hazardous environment around explod-

ing vents, existing theory, models, and observations are all insufficient to account for

nonlinear shock wave propagation near the vent. This problem adds considerable

uncertainty to potentially valuable acoustic inferences of eruptive activity. I address

this problem in three ways. In chapter 2, I use numerical models of volcanic explo-

sions to demonstrate a new framework for analyzing nonlinear pressure waves from

powerful explosions, showing that tools developed for studying chemical and nuclear

explosions can be adapted to study explosive volcanic eruptions. In chapter 3, I use

existing acoustic theory and models to investigate an unusually powerful and well-

instrumented vulcanian eruption at Volcan Tungurahua (Ecuador), calculating the

volume of erupted gas and tephra (∼ 0.5 km3), classifying subsequent tremor into

distinct mechanisms by its infrasound, and showing the relationship of volcanic light-

ning to vent activity. In chapter 4, I describe the development and use of a novel

infrasound instrument (the Gem infrasound logger) intended to address limitations of

existing instrumentation that particularly affect our ability to record shock waves. As

the lowest-cost, lightest, and most flexible infrasound instrument currently available,

the Gem is an ideal tool for recording shock waves in remote or hazardous settings

where the risk of instrument loss must be tolerated and installation by drones with

limited payload capacity may be necessary.

Finally, in chapter 5, I explore numerical modeling tephra transport from severe

eruptions, focusing on two case studies. The first eruption, a 2015 lava fountain at

Volcan Villarrica (Chile), produced a plume 6-8 km above the vent and deposited

tephra in a narrow band extending tens of kilometers downwind. A custom La-

grangian model of tephra transport considering actual wind conditions at the time
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of the eruption shows good agreement with a map of the deposit obtained from field

mapping and satellite imagery, including the finding of tephra grading perpendicular

to the wind direction. In the second eruption, the 2013 vulcanian eruption at Tungu-

rahua, I use the same Lagrangian model to calculate ballistic trajectories and times

of impact with the ground, and show that coincident infrasound cannot be explained

by other sources and probably originates in ballistic impacts. Infrasound due to bal-

listic impacts (which has previously not been documented) could be used to improve

monitoring by enabling estimates of explosive properties to be made given ballistic

properties, which could be detected and estimated rapidly after an eruption onset.
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CHAPTER 1:

INTRODUCTION

Erupting volcanoes are the final step of magmatic systems, geochemical conduits from

the earth to the atmosphere, agents of ecological disturbance, awe-inspiring icons, and

formidable hazards to human life and property. With their scientific, economic, and

cultural importance, they demand our attention.

The volcanoes of greatest interest to humans are found at the boundary between

the solid earth and atmosphere, and many important eruptive processes are generated

within the volcanic system and propagated by atmospheric phenomena. This disserta-

tion explores these volcanic-atmospheric phenomena. The present chapter describes

the eruptive and atmospheric processes that respectively create and propagate the

volcanic phenomena studied in this dissertation–namely, pressure waves and tephra

plumes. In chapter 2, I model shock waves radiated from volcano-like explosions and

propose analytical methods for nonlinear infrasound. In chapter 3, I apply linear

infrasound modeling and analysis to an unusually powerful and well-instrumented

vulcanian eruption on 14 July 2013 at Volcan Tungurahua, Ecuador. In chapter 4,

I discuss instrumentation challenges involved in recording pressure waves in the field

and describe the development of a novel infrasound sensor-logger, which will facili-

tate recording pressure waves in the field in future studies. Chapter 5 describes the

physics of tephra and ballistic dispersal in eruptions and the modeling of tephra fall



2

in two very different eruptions (the 14 July 2013 eruption at Volcan Tungurahua and

the 3 March 2015 eruption at Volcan Villarrica, Chile).

Background on explosion types

Explosive volcanism can occur in a variety of styles, all of which are driven by the

behavior of pressurized, buoyant gas (the main species being H2O, CO2, and SO2).

The processes that turn a magma’s dissolved volatiles into accumulations of exsolved,

pressurized gas that can explode at the magma surface depend on properties of the

magma and volcanic system, which ultimately control the eruptive style.

Magmatic controls on explosivity

Volcanic gas begins as dissolved volatiles in magma; as magma approaches the surface,

its pressure decreases, causing the solubility of volatiles in magma to decrease. Ac-

tual exsolution of volatiles depends on the availability of nucleation sites in addition

to magma chemistry, pressure, and temperature (Proussevitch & Sahagian, 1998).

Once exsolved, gas behavior as bubbles depends on magma viscosity and bubble size:

bubble coalescence and growth occurs more readily in less viscous magmas. Simi-

lar processes control bubble ascent: large bubbles in low-viscosity magma can rise

buoyantly (with respect to the melt) with relatively little drag. Finally, the nature

of the magma-air contact determines the vigor with which gas is released from the

magma. A lava lake surface allows bubbles to burst immediately upon reaching the

surface; conversely, a viscous or rigid seal prevents gas release until gas accumulates

in sufficient volume and pressure to rupture it. Further, when the top surface of

the magma is a downward-propagating fragmentation wave, relatively immobile gas

bubbles burst continuously, leading to sustained gas and tephra emission (Alidibirov,

1994).
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Table 1.1: Symbols

c sound speed, equal to
√
γRT and

√
γp
ρ

(m · s−1)

Cp specific heat at constant pressure (J · kg−1 ·K−1)
CV specific heat at constant volume (J · kg−1 ·K−1)
E energy density (J ·m−3)
f Coriolis parameter 2Ωsin(θ) (s−1)
g acceleration from effective gravity (true gravity plus centrifugal force) (m · s−2)
i the imaginary number

√
−1

K diffusivity tensor (m2s−1)
p pressure (Pa)
q mass flow rate of displaced atmosphere from a volumetric acoustic source (kg · s−1)
Q any conserved quantity (any units)
r radial distance (m)
R specific gas constant (for air, ∼ 287J · kg−1 ·K−1)
S source terms in conservation equations
t time (s)
T temperature (K, unless indicated otherwise)
v velocity vector (m · s−1)
w wind velocity vector (m · s−1)
x cartesian position vector [x, y, z] (m)

x, y, z cartesian coordinates (m)
γ specific heat ratio Cp/CV , 1.4 for air (unitless)
θ latitude (◦)
µ dynamic viscosity (Pa · s)
ρ fluid density (kg ·m−3)
τ scale time of turbulent eddies (s)
τ viscous stress tensor (Pa)
φ flux of a conserved quantity Q (units of Q times m−2s−1)
ϕ longitude spherical coordinate (◦)
ω angular frequency (2π times frequency) (radians·s−1)
Ω rotation vector of the earth (radians·s−1)
Ω Coriolis parameter (radians·s−1)

Ωatm solid angle subtended by the atmosphere (steradians)
∇ the ’del’ operator ( ∂

∂x
, ∂
∂y
, ∂
∂z

)

ρ̄, v̄, p̄, etc. characteristic scales of density, velocity, pressure, etc.
ρ∗, v∗, p∗, etc. dimensionless density, velocity, pressure, etc.
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Table 1.2: Unit abbreviations: SI units are used (sometimes with standard
metric prefixes) except when existing convention prefers another unit.

m meter
s second
kg kilogram
K Kelvin
Pa Pascal (kg ·m−1 · s−2)
J Joule (kg ·m2 · s−2)
◦ degree of arc or latitude
sr steradian

An important characteristic of explosive eruptions is the fragmentation efficiency,

the ability of the explosion to fragment magma into fine tephra. Like ordinary sed-

iment, tephra is classified by size, the divisions being less than 2 mm (ash), 2-64

mm (lapilli), and greater than 64 mm (bombs if molten, blocks if already solidified)

(Houghton et al., 1999).

Strombolian Eruptions

Strombolian eruptions occur in volcanic systems with low-viscosity magma that en-

ables gas bubbles to grow, coalesce, and rise to the surface. Upon reaching the surface,

the bubble pushes a membrane of lava upward, eventually bursting it and fragment-

ing it mainly into lapilli and bombs (Vergniolle & Mangan, 1999). Infrasound signals

from strombolian eruptions are produced by bubble growth at the surface or gas re-

lease as the bubble bursts, and typically consist of a discrete pulse followed by a coda

consisting of echoes (Witsil & Johnson, 2018) and crater resonance effects (Johnson

et al., 2018).
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Lava Fountains

Lava fountain eruptions occur in conduit conditions similar to strombolian eruptions,

but with a greater ratio of gas to melt. The resulting annular or dispersed flow trans-

ports clots of magma upward out of the conduit in a gas-dominated jet (Vergniolle

& Mangan, 1999). Hawaiian activity can occur as “curtain of fire” eruptions along

a fissure, or as a lava fountain erupting from a singe vent; the former style often

transitions to the latter. Lava fountains have low fragmentation efficiency, and most

tephra consists of bombs and lapilli that falls near the vent with ballistic trajecto-

ries, though convective plumes carrying finer material can also form above the lava

fountains and carry material far downwind (Wolff & Sumner, 1999). Gas and tephra

ejection is continuous in lava fountain eruptions, and so is the resulting infrasound

(Johnson et al., 2018).

Vulcanian Eruptions

When the top of a magma conduit is sealed by a dome or plug of viscous degassed

magma, gas can accumulate until the seal ruptures catastrophically in a vulcanian

eruption. Vulcanian eruptions produce compositionally and texturally diverse tephra,

including blocks broken from the plug, material eroded from the conduit wall, and

juvenile ash (Narvaez, 2014). Infrasound signals from vulcanian eruptions begin with

a discrete pulse that can be quite powerful (e.g., Iguchi et al., 2008); the pulse can

be followed by potentially long and complex continuous signals from gas and tephra

emission. A gradual rise in pressure lasting around 1 s sometimes immediately pre-

cedes the main discrete pulse; this is interpreted to originate in pre-rupture plug

deformation (Yokoo et al., 2009; Yokoo & Iguchi, 2010).
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Plinian and Subplinian Eruptions

Plinian eruptions are characterized by a somewhat steady emission of gas and tephra

from a downward-propagating fragmentation wave in an ascending magma column.

The fragmentation wave is a surface along which bubbles have grown enough to

physically separate pieces of liquid magma, transitioning from a flow of melt con-

taining bubbles to a flow of gas containing pieces of melt and tephra (Alidibirov,

1994). This transition removes the weight of the tephra from the magma column,

causing the pressure to decrease, enabling further bubble growth and magma ascent.

The resulting sustained eruption can produce powerful and high columns that create

extensive ash deposits; particularly powerful columns can penetrate the tropopause

and disperse ash and aerosols into the stratosphere, where it can remain for months

or years (Cioni et al., 1999). Infrasound from plinian eruptions is continuous and

high-amplitude, corresponding to the continuous emission of gas and tephra (Matoza

et al., 2011).

Eruptions Discussed in Subsequent Chapters

This dissertation focuses on two major volcanic eruptions. On 14 July 2013, Volcan

Tungurahua, Ecuador experienced a powerful vulcanian eruption that produced py-

roclastic density currents and was audible at least 180 km away (Instituto Geof́ısico–

Escuela Politécnica Nacional (Ecuador), 2013). I analyze infrasound from this erup-

tion in chapter 3 and model ballistic fall from the eruption in chapter 5. The second

eruption discussed in the dissertation was a hawaiian eruption on 3 March 2015 at

Volcan Villarrica, Chile, which produced a lava fountain reaching 1.5 km above the

vent and a tephra plume that reached 6-8 km above the vent and drifted 400 km
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downwind (Sennert, 2015). I model tephra dispersal from this eruption in chap-

ter 5. Additionally, I briefly mention a weak vulcanian eruption at Volcan Fuego

(Guatemala) in chapter 4; infrasound recorded from this eruption is used to estimate

eruptive gas flux and demonstrates the capabilities of a new infrasound logger.

Fluid dynamics of atmospheric air

Modeling volcanic-atmospheric processes requires an understanding of atmospheric

gas dynamics. Classical mechanics and thermodynamics of air are governed by a sys-

tem of partial differential equations enforcing conservation of mass, momentum, and

energy (the Navier-Stokes system). It is common in fluid dynamics (and necessary,

given the intractability of the full Navier-Stokes system) to neglect and approximate

terms in the equations depending on the scale of the phenomenon being modeled. This

approach enables us to model a variety of atmospheric processes with approximations

that are highly accurate and easy to use. I use such approximations (described further

in this section) to model pressure waves (chapter 2) and tephra (chapter 5).

Conservation Equations

The conservation of mass, momentum, and energy are perhaps the most fundamental

tenets of classical mechanics (which includes geophysical phenomena like pressure

waves and atmospheric transport). Local conservation laws are expressed in integral

form as a balance between the rate of accumulation within a volume and the net flow

out of the volume across its bounding surface:

∫
V

∂Q

∂t
dV +

∫
S

φ · n̂ dA = 0 (1.1)
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where Q is the conserved quantity per unit volume, φ is the flow vector of the con-

served quantity per unit area, V is the volume being tracked, S is the bounding

surface, and n̂ is the outward-facing unit vector normal to the surface. When Q and

φ are differentiable with respect to position and time, the divergence theorem can be

used to put this law in the clearer differential form:

∂Q

∂t
+∇ · φ = 0 (1.2)

The assumption of differentiability is not strictly satisfied in the presence of discon-

tinuous shocks. However, for reasons of clarity I use this formulation for theoretical

discussion, knowing that the more opaque integral form is required in the finite-

volume numerical implementation (LeVeque, 2002). I use an Eulerian formulation of

conservation equations (Chung, 2002) here and in chapter 2.

Importantly, conservation equations contain two unknowns: Q and φ. To close

the system, a relationship must be established between conserved quantities and

their fluxes. Mass flux can occur only by advection (φ = Qv), whereas momentum

and energy flux can occur by advection, forces, or other processes. In chapter 2,

the relevant fluxes are advection by particle motion (φ = Qv) and forces and work

involving the pressure gradient ∇p. In chapter 5, the relevant terms are advection by

steady winds that vary only with elevation (v = w(z)) and advection by turbulent

eddies, which can be represented as diffusion (φ = −K∇Q), where K is a constant

diffusivity tensor.
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The Navier-Stokes System of Equations

The Navier-Stokes system, a set of three partial differential equations conserving

mass, momentum, and energy, is the most general system of governing equations for

fluids at macroscopic, non-relativistic scales. This system describes fluid phenomena

at a broad range of scales, ranging from infinitesimal sound waves to planetary-scale

circulation, and even fluid flow within stars and nebulae (Vallis, 2006).

The terms in the mass equation represent (in order) the change in density ρ

balanced against the advection of mass (density times velocity vv).

∂ρ

∂t
+∇ · (ρv) = 0 (1.3)

The momentum equation includes (in order) the change in momentum (ρv) bal-

anced against advection of momentum, the pressure gradient force, viscous forces

τ , and body forces b like gravity, electromagnetic forces, centrifugal force, and the

Coriolis force.

∂ρv

∂t
+∇ · (ρv ⊗ v) +∇p−∇ · τ + b = 0 (1.4)

Note that the momentum advection term ρv ⊗ v denotes ρ times the outer product

(tensor product) of v with itself. In Cartesian coordinates, the tensor is expressed as

(ρv ⊗ v)ij = ρvivj, and the divergence of this tensor is the vector (∇ · (ρv ⊗ v))i =
3∑
j=1

∂

∂xj
(ρvivj).

Volumetric energy density is defined as E = Ek + Ei, the sum of kinetic energy

density Ek = 1
2
ρ|v|2 and internal energy density Ei = ρCV T (the product of density,

specific heat at constant volume CV , and temperature). The energy equation includes

the change in energy, advection of energy, work done against a pressure gradient, work
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done against viscous stress, work done against body forces, and conductive heat flow.

∂E

∂t
+∇ · (Ev) +∇ · (pv)−∇ · (τv) + b · v +∇ · q = 0 (1.5)

The Navier-Stokes system includes three equations but contains many more free

variables. Therefore, additional equations are needed to close the system, including

an equation of state relating pressure, temperature, density, and internal energy, and

constitutive equations to calculate heat flow and viscous forces.

Body Forces in Atmospheric Fluid Dynamics

The main body forces relevant to Earth’s atmosphere are gravity, centrifugal force,

and the Coriolis force (Vallis, 2006). Although centrifugal force and the Coriolis force

are “fictitious” forces, they appear in conservation equations constructed in rotating

systems and are indistinguishable from “true” forces in that context.

The “true” gravitational force is the simplest of the body forces, equal to ρggrav,

where ggrav is a vector pointing toward the center of the earth with magnitude given

by Newton’s law of gravitation.

The centrifugal force and Coriolis force both depend on latitude θ and the rotation

vector of the earth Ω (defined as having a direction pointing from the center of the

earth to the North Pole, and a magnitude equal to the angular rotation rate of the

earth |Ω| = Ω = 2π
T

(T being one sidereal day).

Centrifugal force acts in the outward direction perpendicular to earth’s rotation

axis: Fce = ρΩ × (Ω × re) (where re is the position vector relative to the center of

the Earth). When working in a locally Cartesian coordinate system (x being East, y

North, and z upward), the centrifugal acceleration can be added to gravity to make an
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“effective gravity” vector: g = ggrav+Ω×(Ω×re). It is worth noting that even though

the magnitude of the true gravitational force is much greater than the magnitude of

the centrifugal force, g will generally not point exactly toward the center of the earth.

This does not cause problems on the spatial scales described in this dissertation: the

vertical direction k̂ is simply defined to be parallel to the effective gravity vector g

so that the horizontal components of gravity are always zero.

The Coriolis force represents inertia perpendicular to the earth’s rotation axis of

bodies moving with respect to the earth and is defined as Fco = −2Ω × vρ. This

definition can be simplified by neglecting the vertical component of the Coriolis force,

which is typically very small compared to effective gravity. In Cartesian coordinates,

the horizontal Coriolis force is defined as Fco = ρf k̂×v, where the Coriolis parameter

f is defined as 2Ωsin(θ). The horizontal components of this vector can be written

explicitly as (ρfvy,−ρfvx). At large spatial scales in which the Coriolis force and

the pressure gradient are the dominant horizontal terms in the momentum equation,

circulation around low-pressure zones is anti-clockwise in the Northern hemisphere

and clockwise in the Southern hemisphere.

Combining these terms, the body force vector may be defined as the sum of the

effective gravity and Coriolis force b = ρ(g+ f k̂× v). These terms are both relevant

at long time scales only: they are negligible in typical volcano infrasound, but are

essential in calculating mean winds that transport tephra (discussed in chapter 5)

(Vallis, 2006).

Euler Equations

Although the Navier-Stokes system applies to fluids in general, this dissertation fo-

cuses on a single fluid: atmospheric air. Air has extremely small values of viscosity
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and conductivity; consequently, the governing equations can be simplified by dropping

terms related to heat conduction and viscous stress (which do not affect waveforms

at macroscopic scales, including when shocks are present). This leads to the Euler

equations, a simplified set of conservation equations that assume inviscid, adiabatic

flow.

The mass conservation equation is the same as in the Navier-Stokes system:

change in density depends on mass advection.

∂ρ

∂t
+∇ · (ρv) = 0 (1.6)

The momentum equation is the same as in the Navier-Stokes system except that

the viscosity term is neglected:

∂ρv

∂t
+∇ · (ρv ⊗ v) +∇p+ b = 0 (1.7)

In the energy equation, terms related to viscosity and heat conduction are ne-

glected:

∂E

∂t
+∇ · (Ev) +∇ · (pv) + b · v = 0 (1.8)

To close the system of equations, an equation of state defining pressure in terms of

ρ, v, and E is needed. Finding an equation of state can be facilitated by assuming the

gas to be ideal. In an ideal gas, the share of volume occupied by molecules is negligible

and molecules interact by elastic collisions only. The ideal gas assumption is most

valid in temperatures that are not very cold and pressures that are not very high,

and is a good approximation to atmospheric air at any realistic pressure/temperature

condition at the surface of the earth and for the compressed gas explosions modeled
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in chapter 2. In an ideal gas, the pressure-temperature-density relation is p = ρRT

(where the specific gas constant R is defined as R = Cp − CV = (γ − 1)CV ). The

ideal gas law allows Ei to be conveniently rewritten in terms of pressure instead of

temperature: Ei = ρCV T = p
γ−1

. (The specific heat ratio γ = Cp/CV is an important

descriptor of a gas’s thermodynamics, and depends on gas chemistry: γ ≈ 1.667 in

monatomic gases like He, γ ≈ 1.4 in diatomic gases the main constituents of air N2

and O2, and γ ≈ 1.3 in many triatomic gases like the main volcanic volatiles H2O,

CO2, and SO2). The definition of energy suffices as a general equation of state (and

is used in the shock wave modeling in chapter 2):

E =
1

2
ρ|v|2 +

p

γ − 1
(1.9)

In the specific case of isentropic disturbances (physical changes that do not change

entropy), the simpler isentropic equation of state can be used:

p = p0

(
ρ

ρ0

)γ
= p0

(
T

T0

) γ
γ−1

(1.10)

T = T0

(
p

p0

) γ−1
γ

= T0

(
ρ

ρ0

)γ−1

(1.11)

Eq. 1.11 is often referred to as the adiabatic equation of state, and its application to

sound speed calculation results in what is often called the adiabatic sound speed. The

term adiabatic is perhaps problematic, as it refers merely to processes that do not

involve heat flow. However, eq. 1.11 requires the stronger assumption of a reversible

adiabatic process that does not change entropy and is therefore called isentropic.

For example, rapid changes like shock waves increase entropy even in perfectly non-
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conductive gas, a situation that is adiabatic but not isentropic. Therefore, eq. 1.11 is

valid over continuous parts of a pressure wave, but does not apply to discontinuous

shocks themselves (Lighthill, 1978; Hugoniot, 1889).

Application of the Euler equations to pressure waves

The Euler equations without body forces can be justifiably applied to modeling

pressure waves at macroscopic scales. Air has low viscosity and heat conductivity

(Lighthill, 1978), meaning that viscous forces and heat conduction do not matter in

ordinary atmospheric conditions at macroscopic scales. In addition to viscosity and

heat flow, body forces can also be neglected over time and space scales relevant to

pressure wave propagation, including when shocks are present.

In the immediate vicinity of a shock wave, viscosity and heat conduction do result

in the transition between shocked and ambient states being finite but extremely thin

(on the order of 10−7m) instead of the true discontinuity that would occur at the

limit of zero viscosity and heat conductivity (Lighthill, 1978). The difference between

a shock being infinitesimally thin instead of extremely thin does not affect shock

propagation at macroscopic scales (LeVeque, 2002); further, because computational

expense limits spatial grid spacing to values much greater than the shock thickness,

the shock itself cannot be resolved in models. In particular, the precise values of

viscosity, heat conduction, and shock thickness do not affect energy dissipation from

the shock wave. Consequently, the Euler equations are used widely in theoretical work

(Rankine, 1870; Hugoniot, 1889; Sachs, 1944; Taylor, 1950a) and numerical modeling

of shocks in air (Bethe et al., 1944; Brode, 1959; Crepeau et al., 2001). Therefore,

the numerical modeling in chapter 2 uses the Euler equations without body forces:
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∂ρ

∂t
+∇ · (ρv) =0 (1.12)

∂ρv

∂t
+∇ · (ρv ⊗ v) +∇p =0 (1.13)

∂E

∂t
+∇ · (Ev) +∇ · (pv) =0 (1.14)

E =
1

2
ρ|v|2 +

p

γ − 1
(1.15)

Scale Invariance of the Euler Equations

Nondimensionalization is a powerful tool for understanding physical systems: dividing

reference values from variables in governing equations can clarify how the system’s

behavior varies at different scales. The Euler equations can be nondimensionalized by

substituting ρ = ρ̄ρ∗, v = v̄v∗, p = p̄p∗, and E = ĒE∗, and the derivatives∇ = x̄−1∇∗

and ∂
∂t

= t̄−1 ∂
∂t∗

. In each substitution, starred quantities represent nondimensional

variables and barred quantities represent characteristic scales of that variable; e.g., ρ̄

could be selected as the ambient atmospheric density, and x̄ could be a length scale

like the radius of a feature in the initial condition.

Nondimensionalization of the Euler equations results in the system

( ρ̄
t̄

) ∂ρ∗
∂t∗

+
( ρ̄v̄
x̄

)
∇∗ · (ρv) =0 (1.16)(

ρ̄v̄

t̄

)
∂ρ∗v∗

∂t∗
+

(
ρ̄v̄2

x̄

)
∇∗ · (ρ∗v∗v∗) +

( p̄
x̄

)
∇∗p∗ =0 (1.17)(

Ē

t̄

)
∂E∗

∂t∗
+

(
Ēv̄

x̄

)
∇∗ · (E∗v∗) +

( p̄v̄
x̄

)
∇∗ · (p∗v∗) =0 (1.18)
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which can be re-arranged as

(
x̄/t̄

v̄

)
∂ρ∗

∂t∗
+∇∗ · (ρv) =0 (1.19)(

x̄/t̄

v̄

)
∂ρ∗v∗

∂t∗
+∇∗ · (ρ∗v∗v∗) +

(
p̄/ρ̄

v̄2

)
∇∗p∗ =0 (1.20)(

x̄/t̄

v̄

)
∂E∗

∂t∗
+∇∗ · (E∗v∗) +

( p̄
Ē

)
∇∗ · (p∗v∗) =0 (1.21)

Barred quantities can be chosen arbitrarily, but careful selection of barred quanti-

ties can make each coefficient consisting of barred quantities reduce to one, simplifying

the system. It is clear that

v̄ =
x̄

t̄
(1.22)

and

v̄2 =
p̄

ρ̄
. (1.23)

The form p̄
ρ̄

is reminiscent of the sound speed c =
√

γp
ρ

, suggesting that v̄ = c =√
p̄
ρ̄
, p̄ = Ē = γp0, and ρ̄ = ρ0 are convenient reference values. The reference length

x̄ and reference time t̄ are unconstrained except that x̄ = v̄t̄; any convenient length

or time scale may be selected as long as their ratio is the velocity scale.

Having selected reference values, the nondimensional system is now scale-free:

∂ρ∗

∂t∗
+∇∗ · (ρv) =0 (1.24)

∂ρ∗v∗

∂t∗
+∇∗ · (ρ∗v∗v∗) +∇∗p∗ =0 (1.25)

∂E∗

∂t∗
+∇∗ · (E∗v∗) +∇∗ · (p∗v∗) =0 (1.26)

Consequently, solutions of the Euler equations at one set of scales can be adapted
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to different scales as long as the relationships among the reference values follow the

constraints in eqs. 1.22-1.23. For example, the pressure waves found by modeling an

explosion with initial radius r can be adapted to an explosion of initial radius 5r just

by multiplying every possible length scale (e.g., sensor distance and wavelength) and

time scale (e.g., wave arrival time and period) by 5 (applied in chapter 2). This is a

technique is simple but powerful, considering that calculating solutions to the Euler

equations is very computationally expensive.

Acoustic Waves

The Euler equations can be simplified immensely by assuming that pressure dis-

turbances are much smaller than ambient pressure ((p1 − p0) � p0). Infrasound

recordings are usually less than 1% of ambient pressure (Johnson & Ripepe, 2011),

so this assumption is often justified at sites where sensors are placed but is gener-

ally invalid very near explosive sources (discussed in chapter 2. The simplification

begins by taking the time derivative of the mass equation and the divergence of the

momentum equation (1.15), and re-arranging:

∂∇ · (ρv)

∂t
= −∂

2ρ

∂t2
, (1.27)

∂∇ · (ρv)

∂t
= −∇2p−∇ · (∇ · (ρv ⊗ v)). (1.28)

Substitution leads to

∂2ρ

∂t2
= ∇2p+∇ · (∇ · (ρv ⊗ v)). (1.29)

Up to this point, the equation is still exactly consistent with eq. (1.15) in that no
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approximations or extra assumptions have been made. Now, the infinitesimal nature

of the waves enables two approximations to simplify the equation.

First, without loss of generality, a reference frame velocity can be selected by

Galilean invariance so that fluid velocity consists of infinitesimal perturbations from

zero. Then, the final term in the equation is must be quadratic in velocity. Reasoning

that products of two or more infinitesimal quantities are negligible, the final term can

be dropped:

∂2ρ

∂t2
= ∇2p (1.30)

This leaves a single equation of two variables, so another equation is needed to re-

late pressure and density and close the system. Because infinitesimal disturbances

conserve entropy, the isentropic equation of state p/p0 = (ρ/ρ0)γ can be used. Differ-

entiating the pressure-density relationship yields

dρ = dp
ρ0

γp0

(1.31)

so that

∂2p

∂t2
=
γp0

ρ0

∇2p = c2∇2p (1.32)

This is the linear acoustic wave equation, with sound speed c defined as

c =

√
γp0

ρ0

=
√
γRT0 (1.33)

(Lighthill, 1978). The formulation in terms of temperature is found by applying the

ideal gas law p = ρRT , where R is the specific gas constant (≈ 287 J
kgK̇

for air) and T is

absolute temperature in Kelvins. Plane-wave solutions of the acoustic wave equation



19

in a homogeneous space are of the form

p(x, t) = Aeiω(t±s·x), (1.34)

where A is the wave’s amplitude, ω is angular frequency, and s = c−1î is the slowness

vector (the vector oriented in the direction of propagation î with magnitude c−1.

Spherical waves take the form

p(r, t) =
A

r
eiω(t±r/c). (1.35)

Geostrophic Balance

A different simplification of the Euler equations must be derived to explain large-scale

atmospheric winds with periods longer than about an hour (for example, the ambient

winds used to calculate tephra trajectories in chapter 5). At these large, gradually

varying scales, the dominant horizontal forces are the Coriolis force ρf k̂ × v and

the pressure gradient, and the dominant vertical forces are gravity and the vertical

pressure gradient (a situation referred to as hydrostatic balance: ∂p
∂z

= gρ). These

assumptions are justified at these scales except in the atmospheric boundary layer

where interactions with earth’s surface become relevant. Starting with equation 1.7,

the Coriolis force is included as a body force, and terms including derivatives of

non-pressure variables are dropped due to their gradual rate of change, resulting in

∇p− b = 0 (Vallis, 2006). From this balance, the east and north components of the

wind vector can be written explicitly as
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vx = − 1

ρf

∂p

∂y
(1.36)

vy =
1

ρf

∂p

∂x
(1.37)

The balance of the Coriolis force against the horizontal pressure gradient is re-

ferred to as geostrophic balance, and the resulting wind is called the geostrophic

wind. Note that in geostrophic balance, the wind direction is perpendicular to the

pressure gradient and therefore flows along isobars. Winds averaged over time scales

greater than a few minutes (below which turbulence dominates; see figure 1.1) tend

to be approximately geostrophic. With velocity defined explicitly using the momen-

tum equation, the mass and energy equations can now be simplified. Geostrophic

winds are much slower than the speed of sound (a regime in which air is relatively

incompressible: ∇ · v = 0) and are perpendicular to the pressure gradient (so that

v · ∇p = 0). Consequently, the mass and energy equations simplify to

∂ρ

∂t
+ v · ∇ρ =0 (1.38)

∂E

∂t
+ v · ∇E =0 (1.39)

which are simply transport equations that describe the advection of a passive tracer.

So, in geostrophic flow, density and energy fluctuations (typically due to temperature

or compositional variability) are simply advected with the wind and do not affect it

(Vallis, 2006).
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Earth’s Atmospheric Structure and Processes

Earth’s atmosphere is divided into five layers: the troposphere, stratosphere, meso-

sphere, thermosphere, and exosphere. Unlike the solid earth, the atmosphere lacks

sharp material contrasts. Therefore, atmospheric layer boundaries (the tropopause,

stratopause, mesopause, and thermopause) are defined by temperature maxima and

minima, and therefore vary in elevation depending on season and latitude. Atmo-

spheric flows originating on the surface of the earth usually remain within the tropo-

sphere due to the temperature minimum at the tropopause; only the most powerful

plumes from volcanic or nuclear explosions reach the stratosphere as a result. How-

ever, acoustic waves from powerful explosions can propagate throughout the entire

atmosphere and refract back to the surface at long distances from explosive sources

(Fee & Matoza, 2013).

Atmospheric properties including pressure, temperature, density, and wind veloc-

ity are central in modeling tephra dispersal (chapter 5) and pressure wave propagation

(chapters 2, 3). The variability of these properties depends strongly on the time scale

(figure 1.1). In particular, very little variation occurs in the band between a few hours

and a couple tens of minutes, referred to as the “spectral gap” (Shuttleworth, 2012).

Therefore, it is convenient and common to represent atmospheric properties as the

sum of long-period (“mean” or “advective”) and short-period (“turbulent” or “eddy”)

components, where the latter is considered unresolvable and handled statistically.

Through most of the atmosphere, the mean wind flow is geostrophic (horizontal

and controlled by the balance of the horizontal pressure gradient and the Coriolis

force; see section 1.2.6). Accordingly, these winds flow mainly horizontally and par-

allel to isobars. The gradual variability of these winds (and of other atmospheric
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Figure 1.1: Representative spectrum of variability of atmospheric proper-
ties. The strongest variations occur at periods of one year (the seasonal
cycle), approximately 100 hours (the synoptic scale, which includes ma-
jor weather systems), one day (the diurnal cycle), and approximately one
minute (turbulent eddies). The band centered at one hour period has
very little variability, and provides a natural division between resolvable
long-period fluctuations and unresolvable short-period fluctuations. Fig-
ure taken from (Shuttleworth, 2012).



23

variables) is exemplified by the coarse (but acceptable) resolution of real-time global

weather models. For example, the Global Forecast System (Kalnay et al., 1990) has

a spatial grid resolution of 0.25 degrees latitude/longitude and a temporal resolution

of 6 hours.

Turbulence

Atmospheric turbulence mostly arises from air flow over an uneven topography and

is destroyed by forming successively smaller eddies that are eventually dissipated by

viscosity upon reaching very small spatial scales (Shuttleworth, 2012). Turbulent

motions appear random and can be described as having a characteristic time scale

τ ≈ 1 min (fig. 1.1), a variable velocity variance σ2
v , and zero mean velocity. Random

motion of this sort causes properties advected with the flow to spread out, away from

regions of high concentration toward regions of low concentration, similar to molecular

diffusion. In fact, the diffusion equation describes this process well:

∂Q

∂t
= ∇ · (K∇Q) (1.40)

where K is a tensor representing diffusivity by turbulence (instead of by true molecu-

lar diffusion) and C is the conserved atmospheric quantity being advected. When K

is isotropic and constant over space, the diffusion equation simplifies to ∂Q
∂t

= K∇2Q.

When modeling tracers affected by turbulence in a Lagrangian framework, the

equation of motion consists of a decaying inertial term and random motions:

vi+1 = vi(1− δt/τ) +

√
2Kδt

τ
N(0, 1) (1.41)

where N(0, 1) represents a normally distributed random number with mean zero and
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variance one.

Infrasound Analysis

Inversion of Discrete Volcano Infrasound

Infrasound from volcanic explosions provides scientists with important information

on explosion intensity, which is most easily estimated as the volume of air displaced

by the eruption (the subject of chapter 3). Early work (Johnson et al., 2003) on this

topic used a simple acoustic model including a linear monopole source and spherical

spreading:

q(t− r/c) = Ωatmr

∫ t2

t1

p(t)dt (1.42)

q being the mass flow rate of displaced atmosphere, r the distance between vent and

receiver, c the atmospheric speed of sound, p the infrasound excess pressure, and Ωatm

the solid angle subtended by the atmosphere around the vent (2π for a half-space,

and between 2π and 4π for a conical volcano). Importantly, this model neglects

effects like topographic scattering, refraction by atmospheric winds and sound speed

heterogeneity, and source anisotropy.

Development of a fast, user-friendly finite-difference acoustic model (Kim & Lees,

2014) permitted effects of topographic scattering and atmospheric refraction to be

predicted easily. This advance enabled subsequent work to deconvolve these effects

from recordings and improve accuracy of source volume estimates (Anderson et al.,

2018; Fee et al., 2017; Kim et al., 2015). Recent work has even constrained multi-

pole source components by recording infrasound on tethered balloons anchored over

volcanic vents (Jolly et al., 2017).

Propagation effects discussed so far are purely linear–that is, they can be expressed
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exactly as a function to be convolved with a source function to obtain the recorded

infrasound:

q(t) ∗G(t) = p(t) (1.43)

G(t) being the Green’s function representing propagation effects. Obtaining the

source function is then simply a matter of deconvolving the Green’s function from the

recorded infrasound. When infrasound is recorded simultaneously at multiple sensors

in different locations, a linear system can be set up and inverted to find the ordinary

least-squares solution:

qi =
3∑
j=1

Hijpj, (1.44)

where H is the generalized inverse of the matrix of Green’s functions (Anderson et al.,

2018; Kim et al., 2015).

Analysis of Continuous Volcano Infrasound

In addition to explosions, volcano infrasound can arise from continuous vent pro-

cesses such as resonance of open-vent systems and jetting. Resonance occurs when

a vent and conduit radiate particular frequencies in response to a source; it can be

excited by both continuous (e.g., roiling of a lava lake surface) and discrete (e.g.,

strombolian explosions) disturbances. Vent resonance has been used to estimate vent

geometry (Richardson et al., 2014; Goto & Johnson, 2011), explain tremor (Fee et al.,

2010b) strombolian explosion coda (Witsil & Johnson, 2018), and infer lava lake stage

(Johnson et al., 2018).

Volcanic jets are rapid, sustained, turbulent emissions of gas and tephra from a

vent. Although turbulent acoustic sources are difficult to model from first princi-
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ples, the problem of turbulent jet acoustics has received considerable empirical study

due to the importance of noise reduction from jet engines. Volcanic jets produce

infrasound whose spectrum can be related to properties of the jet like its diameter

and speed (Matoza et al., 2009). Jet noise spectra are often complex but can be fit

approximately by models corresponding to large-scale turbulence or fine-scale turbu-

lence. Additionally, supersonic gas jetting creates a type of tremor called “crackle”,

which consists of asymmetric pulses consisting of strong compressions followed by

gradual rarefactions; crackle has been observed at Nabro volcano (Fee et al., 2013)

and possibly Tungurahua (Anderson et al., 2018, discussed in chapter 3).

Slowness vector and source location estimation using infra-

sound arrays

An additional application of volcano infrasound is to locate the absolute position or

the direction of acoustic sources, particular when it is necessary to distinguish between

multiple volcanic vents (Ichihara & Matsumoto, 2017) or track moving sources like

pyroclastic flows (Ripepe et al., 2010), rockfalls (Johnson & Ronan, 2015), or lahars

(Johnson & Palma, 2015).

The ability of a set of infrasound sensors to locate sources depends on its geometry.

Two or three-dimensional arrangements of microphones installed much closer to each

other than to possible sources are called arrays and can be used to identify the slowness

vector of incident sound waves. In a two-dimensional array, only the two slowness

vector components in the plane of the array can be calculated directly; the third

component must be found by assuming a sound speed c and using the constraint

|s| = c−1 (Arechiga et al., 2011). Arrays are a popular tool in infrasound despite the

limitation that they can only calculate the direction to the source and not the absolute
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source location. Many reasons justify this, including ease of installation (needing less

time and access to fewer sites) and the near-certainty of signal coherency across an

array. On the other hand, sets of infrasound sensors installed surrounding potential

sources are called networks, and can be used to identify absolute source locations.

Source locations can also be identified by obtaining propagation directions from two

or more arrays and finding the point where they intersect (Jones & Johnson, 2011).

Infrasound source location problems depend on calculating time delays among

coherent arrivals at spatially separated microphones. Time delays between pairs of

infrasound recordings can be determined directly by cross-correlation, then used as

part of an inverse problem to determine the wave’s slowness vector or source location

(see equation 1.34) (Arechiga et al., 2011). Alternatively, possible combinations of

time delays can be determined by grid search of candidate source locations or slowness

vectors, and an optimal location or slowness be determined by calculating semblance

or F-statistic for each set of time delays (Jones & Johnson, 2011). More sophisticated

methods like the Multiple Signal Classification algorithm (MUSIC) have also been

used to calculate infrasound slowness vectors (Marcillo et al., 2016).

One additional application of array processing is inferring atmospheric properties

when a source location is already known. This has been accomplished using volcanic

infrasound tremor (Johnson et al., 2012; Marcillo & Johnson, 2010) and explosion

signals (Ortiz et al., 2018).
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CHAPTER 2:

MODELING NONLINEAR PRESSURE WAVES

FROM VOLCANIC ERUPTIONS

Summary

Powerful volcanic eruptions produce shock waves when high-pressure volcanic gas

is released into ambient air; the shock waves propagate nonlinearly as they exit the

conduit and diffract out of the volcanic crater, and eventually decay into linear infra-

sound waves. The physical processes that occur in volcanic shock waves are poorly

understood and much more difficult to model than ordinary infrasound. This problem

limits the field of volcanic infrasound because in order to infer source processes from

infrasound recordings, all propagation phenomena must be accounted for–including

shock wave processes.

This chapter addresses the problem of shock wave propagation from volcanic ex-

plosions by combining analytical methods used to understand chemical and nuclear

explosions with numerical modeling. Simple but powerful analyses have been de-

veloped to infer sources of such explosions; the most powerful tools include scaling

analyses by which properties of recorded pressure signals can be related to source

energy. However, such explosions occur at much higher pressure (and therefore, a

much higher initial volumetric energy density) than volcanic explosions, and lack the
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severe topography around which volcanic shocks propagate; therefore, the methods

developed for chemical and nuclear explosions cannot be applied directly to volcanic

explosions.

To assess the utility of similar scaling analyses in the context of volcanoes, I ran

numerical models simulating volcano-like explosions at many reasonable combinations

of pressure and temperature, both with and without topography, and analyzed results

of the models in the context of scaling laws. Results show that scaling laws are

valid for explosions with no topography and are sometimes valid when topography is

present. A primary control on the validity of scaling laws with topography is wave

diffraction around the crater rim: short waves diffract less readily around the crater

and are therefore recorded with spuriously weak amplitude along the ground surface.

Although it would be much more difficult than recording along a volcano’s slope,

recording infrasound either above or within the crater could avoid this problem.

Numerical models allow a wide range of initial conditions to be tested, but are

time-consuming to set up and computationally expensive; scaling laws vastly decrease

the number of models that need to be run. This combination of several pre-generated

explosion models with scaling laws allows explosive energy to be estimated from

an infrasound waveform. Although the numerical models used here are simplified

compared to true eruptions (in particular, they do not account for the gas species

and solid content of the erupted material), this provides a promising framework for

infrasound analysis of discrete eruptions.

Introduction

As discussed in chapter 1, infrasound recordings can provide important constraints

on source physics, including the important parameter of explosive volume. However,
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Table 2.1: Symbols

c sound speed, equal to
√
γRT and

√
γp
ρ

(m · s−1)

Cp specific heat at constant pressure (J · kg−1 ·K−1)
CV specific heat at constant volume (J · kg−1 ·K−1)
E energy density (J ·m−3)
k scaling parameter (varying definitions, proportional to W 1/3

p pressure (Pa)
Q any conserved quantity (any units)
r radial distance (m)
R specific gas constant for air (∼ 287J · kg−1 ·K−1)
S source terms in conservation equations
t time (s)
T temperature (K)
v velocity vector (m · s−1)
x cartesian position vector [x, y, z] (m)

x, y, z cartesian coordinates (m)
γ specific heat ratio Cp/CV , 1.4 for air (unitless)
θ latitude spherical coordinate
ρ fluid density (kg ·m−3)
ϕ longitude spherical coordinate
∇ the ’del’ operator, ( ∂

∂x
, ∂
∂y
, ∂
∂z

) in Cartesian coordinates

Table 2.2: Subscripts and Superscripts

0 density, pressure, velocity, sound speed, or energy density of unshocked gas

1 density, pressure, velocity, sound speed, or energy density of shocked gas

s in cs, the speed of a shock

atm pressure or density of ambient atmospheric air

exp pressure or density of compressed air in initial condition

i spatial index in finite volume method
n time index in finite volume method

the methods discussed so far neglect the possibility of nonlinear infrasound propaga-

tion. Assuming wave propagation to be linear is justified when pressure amplitudes

are much lower than atmospheric pressure, which is normally valid at the relatively

distant sites (hundreds of m to tens of km) where infrasound is typically recorded.
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Table 2.3: Unit abbreviations: SI units are used (sometimes with standard
metric prefixes) except when existing convention prefers another unit.

m meter
s second
kg kilogram
K Kelvin
Pa Pascal (kg ·m−1 · s−2)
J Joule (kg ·m2 · s−2)

kgTNT energy of 1 kg of TNT (defined here as 4.184× 106 J)

However, a pressure wave that is linear at the site where it is recorded may have a

partly nonlinear history. Explosive source pressures can be as high as several tens

of atmospheres (Clarke et al., 2015), meaning that pressure waves near cannot be

assumed to propagate linearly near the vent in explosive eruptions. The potential

existence of nonlinear propagation effects complicates infrasound analysis: they are

difficult to model, cannot be implemented as a convolution, and cannot be removed

by solving a linear system. Therefore, they are typically neglected, even in significant

vulcanian eruptions.

Past research has provided essential theory for understanding the formation and

structure of shock waves when propagation is nonlinear; however, we still lack simple

analytical solutions analogous to equation 1.42. Further work has helped mature

our understanding of shock waves in the special case of synthetic explosions when

simplifying assumptions can be made (Kinney & Graham, 1985). However, a proper

understanding of shock waves in the context of volcanic explosions still eludes us,

despite recent attempts to study them with numerical models (Morrissey & Chouet,

1997), field data (Marchetti et al., 2013), and laboratory experiments (Medici et al.,

2014).
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Nonlinear Effects on Waves

Nonlinear effects on waveforms generally fall into three categories. First, areas along

the wave profile with high pressure normally have a higher sound speed and particle

velocity than other parts of the wave, meaning that they tend to propagate faster

and overrun the rest of the wave. Consequently, the front of the wave tends to

steepen into an extremely narrow shock, a process referred to as the wave over-

steepening, breaking, or shocking-up. At high pressures, this process can occur even

when the initial condition has gradual spatial variations only. Finally, the narrow,

high-gradient shock front causes irreversible compression, meaning that the wave

continuously dissipates energy by increasing the entropy of shocked gas.

Waveform steepening in nonlinear waves

Acoustic waves propagate at the isentropic sound speed plus the particle velocity.

When wave amplitude is not infinitesimal, these quantities vary along the waveform:

compressions will have faster particle velocities and higher sound speed than rarefac-

tions.

The method of characteristics (Lighthill, 1978) graphically illustrates the effects

of variable propagation speed in a simplified one-dimensional scenario (although the

outcome holds qualitatively in higher dimensions too). For particle velocity v and

sound speed c =
√

γp
ρ

(where p is pressure, ρ is density, and γ is the specific heat ratio

introduced in section 1.2.3), the method of characteristics finds that certain quantities

(referred to as Riemann invariants) remain constant from the initial condition along

lines in x−t space (referred to as “characteristics”) with slopes of v−c, v, and (plotted

in fig. 2.1) v + c. Of those characteristics, v − c and v + c correspond to advected
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pressure waves (which can carry differences in pressure and particle velocity normal to

the shock), while the characteristic with slope v corresponds to pure advection (which

can only carry shock-parallel velocity and temperature-related density differences).

When v and c vary spatially, characteristics diverge in some regions and converge in

others, causing the waveform to change in shape: compressions tend to develop sharp

onsets and gradual drop-offs (fig 2.1).

However, the method of characteristics as so far implemented breaks down when

characteristics intersect, and predicts unphysical multi-valued solutions (in the real

world and in FV models, a location can have only one pressure). Therefore, a dissipa-

tive shock surface is needed to truncate characteristics to prevent them from crossing.

In order to truncate both the ambient and shocked-state characteristics, the shock

speed must be c0 < cs < (c1 + v1), where the unshocked air has sound speed c0 and

velocity v0 = 0, the shocked air has sound speed c1 and velocity v1, and the shock

moves at cs. By invoking the Rankine-Hugoniot theory of jump conditions (discussed

in section 2.2.1), one can identify a unique speed at which the shock must propagate

(equation 2.7) as well as a means of dissipation–irreversible compression–particular

to the shock (demonstrated in figure 2.3).

Rankine-Hugoniot Shock Jump Conditions

I have so far described the governing equations in terms of modeling wave propagation

through the atmosphere. It is also sometimes necessary to explicitly describe the

shock itself in terms of the shock’s speed and fluid density, pressure, and velocity

upstream and downstream of the shock. The problem of theoretically predicting

changes across a shock in an inviscid, non-conducting gas was solved by Rankine
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Figure 2.1: Schematic overview of the method of characteristics and shock
formation in nonlinear wave propagation. An initially Gaussian right-
propagating pressure disturbance (C) changes in shape as it propagates
(A-B), forming a steep onset and more gradual decay. Correspondingly,
characteristic curves (D) converge near the front of the wave and diverge
at the back of the wave.
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Figure 2.2: Characteristics for an initial condition consisting of a step in
pressure. A: Naive use of the method of characteristics predicts unphysical
multi-valued solutions (gray lines in panels C-E). B: When the Rankine-
Hugoniot relations are used to define a dissipative shock front that trun-
cates characteristics, the solutions become more realistic (colored lines in
panels C-E, corresponding to times in A-B).
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Figure 2.3: Process by which shock waves heat the air as they pass.
A: pressure waveform of passing shock. B: pressure-volume plot, color
coded to match waveform segments in A. Black lines are isentropes. Ini-
tially, the air is at ambient pressure on an isentrope corresponding to low
entropy (blue dot in B, first blue line in A). The arrival of the shock
wave increases entropy as it irreversibly compresses the air (following
the Rankine-Hugoniot relations), driving the state to high pressure on
a higher-entropy isentrope (red). Subsequent changes are isentropic, and
the subsequent rarefaction (green) and re-equilibration (blue) follow the
new adiabat. After the shock passage, the air is again at ambient pres-
sure but with lower density, higher temperature, and higher entropy than
before.
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(1870) (deriving jump conditions that conserved mass, momentum, and energy but

increased entropy) and Hugoniot (1889) (deriving the non-isentropic pressure-density

relationship in instantaneous changes). These works established the key physical

principles of shock waves: that mass, momentum, and energy must be conserved

everywhere, and that the ordinary isentropic equation of state p/ργ = constant is

true everywhere except at the shock (meaning that entropy increases as the shock

passes). Because the shock wave problem lay at the intersection of two esoteric, late-

to-mature fields (thermodynamics, and calculus of discontinuous functions), it was

solved slowly and controversially, and remained widely misunderstood even decades

after the contributions of Rankine and Hugoniot (Salas, 2007).

Calculation of conditions across a shock can be simplified by adopting a reference

frame moving at the same speed as the shock. In this reference frame, ambient-

pressure gas (represented with the subscript 0) flows at supersonic speed into the

shock. At the shock front, the pressure, density, and sound speed of the gas increase

and the gas velocity decreases, making the velocity of the shocked gas (represented by

the subscript 1) subsonic. Conservation of mass, momentum, and energy following the

Euler equations requires the following (referred to as the Rankine-Hugoniot relations)

to hold:

ρ0v0 = ρ1v1 (2.1)

ρ0v
2
0 + p0 = ρ1v

2
1 + p1 (2.2)

v0(E0 + p0) = v1(E1 + p1) (2.3)

(2.4)
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where the mass density E = 1
2
ρv2 + p

γ−1
is the same as in eq. 1.9, and velocity v

is assumed to be perpendicular to the shock. These equations can be applied directly

to standing shocks, with supersonic gas leaving a nozzle being a common example.

However, when studying explosions, the ambient air is typically stationary and the

shock is not, so switching to a reference frame with stationary ambient air is necessary.

Further, it is convenient to solve for the jump conditions as a function of pressure (an

easily and commonly measured quantity). With these ends in mind, the following

relationships can be derived from the stationary-shock equations (with the subscripts

0 and 1 still referring to ambient and shocked states):

ρ1

ρ0

=
(p1
p0
− 1)(γ + 1) + 2γ

(p1
p0
− 1)(γ − 1) + 2γ

(2.5)

v1 =

(
p1

p0

− 1

)
c0

γ
√

1 + γ+1
2γ

(p1
p0
− 1)

(2.6)

The speed of the shock front is

cs = c0

√
1 +

γ − 1

2γ

(
p1

p0

− 1

)
. (2.7)

Note that c0 < cs < (c1 + v1) and that cs is not a sound speed, fluid velocity, or their

sum.

Notably, the Rankine-Hugoniot relations show that the shock speed, fluid velocity,

and pressure ratio across the shock can be arbitrarily high; however, density ratio

across the shock has a strict upper bound: ρ1
ρ0

< γ+1
γ−1

. The decoupling of density

from pressure makes the shock’s compression irreversible so that entropy necessarily
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increases across a shock; consequently, the final temperature of ambient air after re-

equilibrating to ambient pressure is necessarily higher than the initial temperature

before the shock’s arrival.

In atmospheric air, we normally assume that normal dissipative processes (viscos-

ity and heat conduction) are negligible at macroscopic scales (due to air’s very low

values of viscosity and thermal conductivity). However, these dissipative terms are

proportional to gradients of velocity and temperature (eqs. 1.3-1.5), which become

extreme in the nearly-discontinuous shock. Consequently, these otherwise negligible

processes control the width of the shock (approximately 10−7m in air). However,

macroscopic features and processes of the shock wave are insensitive to changes in

viscosity or conductivity as long as their values remain very small (Lighthill, 1978):

in fact, the Rankine-Hugoniot jump conditions (eq. 2.5-2.7) apply when viscosity

and conductivity are arbitrarily close to zero. In practice, numerical methods used

to model shock waves–for example, the Lax-Wendroff-Leveque method employed by

Clawpack (LeVeque, 2002)–typically include small diffusive terms for the purpose of

numerical stability (Chung, 2002). Consequently, viscosity and heat conduction do

not need to be modeled explicitly in theoretical (Taylor, 1950a) or numerical models

of shocks (Bethe et al., 1944) except when investigating the very small spatial scales

at which those properties are relevant (< 1µm).

Shock wave theory for chemical and nuclear explosions

A great deal of past research has explored shock waves in the context of deliberate

and accidental explosions due to their importance in industry and warfare (Kinney &

Graham, 1985). The resulting body of shock wave theory has helped elucidate shock

wave propagation, particularly when shock waves initiate in simple and compact



40

sources.

The most important aspect of an explosion is the total released energy W (re-

ferred to as the “yield”); waves from explosive sources that are equal in yield but

different in other ways (e.g., pressure, temperature, volume) will resemble each other

at sufficiently long distances. This makes an observed or modeled blast wave for an

explosion of a given energy broadly applicable to other explosions of that energy. W

can be measured in J or (more commonly with chemical and nuclear explosions) with

kgTNT (defined here as 1 kgTNT = 4.184 MJ , though this definition varies among

sources).

High explosives

High explosives are defined as chemicals that decompose in a chemical reaction that

propagates faster than the material’s sound speed by mechanical energy transfer, re-

ferred to as a detonation. By contrast, the chemical reaction in low explosives moves

through the explosive material at a subsonic rate and transfers energy by thermal

processes; this process is referred to as a deflagration (Kinney & Graham, 1985). A

high explosive and low explosive of equal energy might produce blast waves of equal

intensity at a great distance, but the high explosive will be more effective at breaking

an adjacent object (a property termed brisance) because it releases energy instanta-

neously before explosive material can be dispersed by the explosion. Additionally,

high explosives are easier to model because it is sufficient to assume that energy re-

lease occurs homogeneously within the original explosive volume, rather than having

to model the chemical reaction and explosion kinematics simultaneously.

High explosives, exemplified by TNT, have been the subject of considerable nu-

merical and empirical study due to their industrial and military importance and the
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relative simplicity of their explosions (Kinney & Graham, 1985). Among the results

of this work is a reference blast wave profile showing the evolution of a blast wave

emanating from a free-air explosion of 1 kg of TNT in typical sea-level atmospheric

conditions (fig. 2.4).

Following the Rankine-Hugoniot relations (eq. 2.5-2.7), shock overpressure cor-

responds to shock propagation speed: shocks with higher overpressures propagate

faster. This means that a powerful shock wave could arrive at a receiver in noticeably

less time than a sound wave from the same source. However, because shock waves

decay so rapidly, most of that arrival advance occurs from high wave speeds very

near the source, and explosions must be quite powerful for supersonic propagation to

noticeably affect arrival times (fig. 2.5). Like other time scales involved in the Euler

equations, arrival times can be scaled following eq. 2.9.

Although the high explosive case is more compact than low explosives or com-

pressed gas explosions, the mass and finite radius of the explosive are significant

very near the source. This differs from nuclear explosions, which are approximately

point-like in that the explosive mass and radius are insignificant considering the im-

mense yield. However, nuclear explosions are themselves complicated by the fact that

considerable energy goes into electromagnetic radiation rather than the blast wave,

and that air’s equation of state changes at high temperature due to ionization and

dissociation of molecules (Kinney & Graham, 1985).

Compressed gas explosions

The term “compressed gas explosion” generally refers to sudden releases of gas stored

at pressures well above one atmosphere but below initial pressures of high explosions.

For such explosions, W = (pexp−patm)V

γ−1
. Compressed gas explosions have received
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Figure 2.4: Peak overpressure ratio (p−patm
patm

) vs. scaled distance (z =

rW−(1/3)) for ideal shock waves produced by chemical and nuclear explo-
sions of 1 kgTNT energy (from Kinney & Graham (1985)), figure 6-4.
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Figure 2.5: Arrival times of waves with a nonlinear propagation history
relative to waves that have propagated only at the speed of sound (adapted
from Kinney & Graham (1985)). Arrival time advance is calculated at
long distance where the wave propagates at the speed of sound. Shock
waves are only noticeably supersonic for a short period before decaying to
approximately sonic speeds.
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relatively little study compared to high explosives (whose applications and hazards

are more widespread). Compressed gas explosions typically have much lower initial

pressures (and therefore energy density) than high explosives, meaning that they are

less point-like and have lower energy density. Because of effects of finite explosion

radius, blast waves from explosions of equal energy will differ from high explosives

near the source but tend to converge at long distance (figure 2.6). Consequently,

every initial gas pressure must be modeled separately, though scaling laws (below)

still apply to explosions of equal pressure and different volumes (Baker et al., 1978;

Esparza & Baker, 1977; Blanc et al., 2017).

Scaling laws for explosions

Simple scaling laws allow a blast wave profile for one explosion to be scaled up or

down to explosions of similar type but different energy. Scaling laws can be used to

rescale simulations of explosions to new initial conditions that differ only in scale.

This criterion requires that topography or atmospheric structure either be absent

or that its geometry scale along with the explosion. As shown in section 1.2.4, the

Euler equations are exactly scale-invariant as long as velocity scaling (typically sound

speed) is equal to length scaling divided by time scaling. Therefore, shock waves

produced by an explosion of a sphere of compressed gas should scale up exactly if the

only parameter that changed was the radius of the gas. The additional scaling tools

discussed below provide approximate scaling of shock wave length scales with the cube

root of explosive energy (W = (pexp−patm)Vexp/(γ−1) for compressed gas explosions).

Because the cube root of the explosive gas volume Vexp is proportional to the length

scale, scaling by energy is equivalent to scaling by length (and is therefore exact) for

explosions of equal pressure, but is only approximate when explosive pressure differs
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Figure 2.6: Peak overpressure (P̄s = p−patm
patm

) as a function of scaled dis-

tance R̄ = r(W/patm)−(1/3) and initial pressure for shock waves produced by
compressed gas explosions (from Baker et al. (1978)). Note that the bar
notation in the axis labels is different from the barred scales in section
1.2.4. Each profile corresponds to a different initial pressure; the profiles
converge at long distances.
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among explosions.

The scaling parameter k, related to the cube root of explosive energy, is central

to explosion scaling. Three schemes with different degrees of generality can be used

to calculate k. The first assumes equal atmospheric pressure and temperature among

explosions: k = W (1/3), commonly expressed in units of (kg TNT )1/3 (Hopkinson,

1915; Cranz, 1926). The second allows variable atmospheric pressure but assumes

constant temperature: k = (W/patm)(1/3) (Sachs, 1944), which can be expressed in

units of length (e.g., m). The third, which can be expressed in units of m−(1/3)s−(2/3)

allows variable atmospheric pressure and temperature: k = (W/ρatm)(1/3), where

density ρatm can be obtained from pressure and temperature following the ideal gas

law p = ρRT (Kinney & Graham, 1985). Any scheme is valid as long as it is used

consistently and its assumptions are satisfied, though the second scheme may be

preferred for dimensional reasons (it has simple units and can be used directly as a

length scale) assuming that temperature does not vary much.

To demonstrate the application of scaling laws, consider two explosions (with

subscripts A and B) differing only by their scaling parameters kA and kB, and a

“reference explosion” with kref = 1. Pressure-related properties of explosions, like

the peak overpressure of a shock, can be defined for all explosions with similar but

scaled initial conditions as a function of scaled distance r/k only: pref = pref (r/k).

Consequently, if the peak overpressure profile of explosion A pA(r) is known for all

distances r, then the peak overpressure from explosion B can be predicted at any

given distance rB:

pB(rB) = pref (rB/kB) = pA(rBkA/kB) (2.8)

Shock wave parameters with dimensions of time, like arrival time and positive
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phase duration, are only slightly more complicated: for some time-dimension shock

wave parameter tA from explosion A, scaled time tref = tA/kA can be defined as

a function of scaled distance: tref = tref (r/k). Then, shock wave scaling among

explosions can be determined as

tB(rB) = kBtref (rB/kB) =
kB
kA
tA(rBkA/kB) (2.9)

Obtaining large numbers of blast wave profiles is difficult and inconvenient, whether

by experiment or numerical model. However, with the scaling relationships, a result

from a single explosion can be generalized with simple arithmetic to other explosions

of widely varying energies, making the scaling relationships a powerful tool in blast

wave study of chemical and nuclear explosions (Kinney & Graham, 1985); however,

their utility has not yet been assessed in the case of volcanic explosions, which are

complicated by topography and comparatively low, variable explosive pressure.

Strong shock approximation

“Strong shocks” are waves whose pressure amplitudes are much greater than ambient

pressure (Taylor, 1950a), enabling additional simplifications of their behavior. Strong
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shock waves in a homogeneous atmosphere obey the following proportionalities:

r ∝ t−
2
5 (2.10)

cs ∝ t−
3
5 ∝ r−

3
2 (2.11)

p1

p0

∝ t−
6
5 ∝ r−3 (2.12)

v1 ∝ t−
3
5 ∝ r−

3
2 (2.13)

ρ1

ρ0

=
γ + 1

γ − 1
(2.14)

(2.15)

In these equations, r is the radial distance traveled by the wave, t is the time since

the explosion, cs is the shock speed, p1 and p0 are the shocked and ambient pressure,

v1 is the shocked particle velocity, and ρ1 and ρ0 are the shocked and ambient gas

density.

Strong shock theory assumes that the wave is far enough from the source that

effects of finite explosion volume are small but near enough that shock pressure is

much greater than ambient pressure. Specifically, the shock pressure must be high

enough that the density equation in the Rankine-Hugoniot relations (eq. 2.5) can be

approximated by its infinite shock strength limit ρ1
ρ0

= γ+1
γ−1

. These assumptions are

satisfied over long distances for nuclear explosions; consequently, blast wave record-

ings from nuclear explosions agree well with strong shock theory (Taylor, 1950b).

Strong shock assumptions are satisfied over a much smaller range for high explosives

(Taylor, 1950a) and not at all for typical compressed gas explosions (including vol-

canic eruptions). However, they provide an illuminating upper bound on the rate of

decay of a shock’s overpressure and speed.
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Volcanic Shock Wave Studies

Most previous shock wave research has studied chemical, nuclear, and (to a much

lesser degree) compressed gas explosions. This past research, discussed in the preced-

ing sections, has developed a body of theory and observations that make shock wave

study possible despite the intractable governing equations. Such explosions differ sub-

stantially from explosive volcanic eruptions, and assessing the applicability of such

tools to volcanic settings is a focus of this chapter. However, past work has worked on

volcanic shocks specifically with modeling, lab experiments, and field observations.

Nonlinear propagation should occur whenever a wave’s pressure amplitude is non-

negligible with respect to ambient pressure. Vulcanian eruptions exemplify this con-

dition: source pressures in vulcanian eruptions can reach 10-15 MPa (though are

usually less than 5 MPa) (Clarke et al., 2015), compared to ambient pressures of

0.1MPa or less (depending on vent elevation). Nonlinear propagation must occur in

these eruptions, at least very near the vent. Despite the certainty of near-vent nonlin-

ear propagation in powerful eruptions, the phenomenon’s effects being negligible has

often been assumed or stated (e.g., Buckingham & Garces, 1996; Kim et al., 2015;

Fee et al., 2017).

A few studies have attempted to elucidate nonlinear volcanic infrasound. Morris-

sey & Chouet (1997) first modeled volcanic shocks with the objective of recovering

burst pressures. Their sophisticated model varied the particle concentration and burst

pressure in the exploding gas using a system of eight partial differential equations (the

Navier-Stokes system with two phases). However, aspects of the model were unre-

alistic: it neglected topography, assumed the source volume (normally unknown) to

be fixed, and treated the atmosphere as consisting of steam rather than air. Despite
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these limitations, their results show a clear dependence of shock strength and shock

speed on particle concentration and initial gas pressure. A more recent nonlinear

acoustics project has applied the Lattice Boltzmann method–a Lagrangian formula-

tion of subsonic nonlinear gas dynamics–to volcano infrasound (Brogi et al., 2018).

This work modeled the wavefields that would result from a pulse of subsonic gas into

the atmosphere. It found good agreement with linear acoustic theory when sources

are relatively weak (consistent with the assumptions of linear theory) but that sources

with higher Mach numbers of injected gas (Ma > 0.3) could create anisotropic ra-

diation patterns. Further, it found that asymmetric waveforms like the Friedlander

waveform, which are sometimes interpreted as originating in nonlinear processes (e.g.,

Marchetti et al., 2013), can form in purely linear processes as well. Numerical fluid

dynamic models have been used for broader volcanic applications as well, for example

simulating pyroclastic flows at Montserrat (Esposti Ongaro et al., 2008) and Mt. St.

Helens (Esposti Ongaro et al., 2012).

Visible pressure waves (“flashing arcs”) have been observed in many eruptions

(Perret, 1912; Nairn, 1976; Genco et al., 2014). Visible waves are sometimes at-

tributed to condensation of atmospheric water vapor due to compression in the shock

(Marchetti et al., 2013); however, water vapor actually condenses in powerful rar-

efaction waves–not compressions–which trail the shock and move no faster than the

speed of sound (Yokoo & Ishihara, 2007). The compressive shock front (which may

be supersonic) may manifest itself as a change in the air’s index of refraction (Perret,

1912) or as vaporization of pre-existing clouds (Yokoo & Ishihara, 2007).

Observation of supersonic propagation of flashing arcs would be valuable because

it would enable recording of near-vent volcanic shocks from a safe distance. Unfortu-
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nately, many studies of flashing arcs either fail to measure the wave speed, or find a

wave speed indistinguishable from sound. As an exception, Ishihara (1985) did record

videos of supersonic flashing arcs at Sakurajima volcano, Japan, but did not record

infrasound for comparison. More recently, Marchetti et al. (2013) observed features

analogous to flashing arcs in thermal videos of strombolian eruptions at Yasur vol-

cano, Vanuatu. This study tracked a cold feature in their thermal images apparently

moving at supersonic speeds, though with high uncertainty in the feature’s speed.

The interpretation of the wave being supersonic is problematic because the estimated

wave speeds in different eruptions did not vary with infrasound amplitudes recorded

farther away (waves that were more powerful at a distance should have propagated

faster near the vent). Further, the waves did not decelerate as they spread outward

from the vent (shock speed depends on overpressure following eq. 2.7, so decaying

shock waves necessarily decelerate). Additionally, when the 1/r spreading rule is used

to estimate wave amplitudes 20-80 m from the vent (where the thermal feature was

tracked) from the relatively low pressure amplitudes recorded on distant microphones,

the estimated overpressure of the wave is insufficient for it to be noticeably supersonic.

Although the pressure waves in these relatively small explosions were not significantly

supersonic, the ability to observe pressure waves near the vent with thermal video is

promising for future studies of more powerful eruptions.

The problem of volcanic shock wave propagation has also been addressed with

lab models. Controlled shock waves can be generated using devices called shock

tubes that contain regions of compressed and ambient gas separated by a diaphragm.

Breaking the diaphragm causes three wave-like features to form: a compressive shock

surface that propagates at supersonic speed into the ambient gas; a contact disconti-
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nuity surface that moves at the fluid velocity and separates regions of equal pressure

and velocity but different density; and a rarefaction region that propagates at vari-

able but subsonic speeds into the compressed gas. The scaling properties of the Euler

equations make small shock tubes a viable means of conveniently studying volcano-

scale shocks inside a lab. Medici et al. (2014) used shock tube experiments to simulate

a sudden release of pressurized gas from a conduit into the free atmosphere. Médici

& Waite (2016) expanded on that work by using shock tube experiments to explain

the occurrence of multiple shocks in a single explosive event. Simple explosions were

already known to commonly produce waveforms containing either one shock (e.g., the

Friedlander waveform) or two shocks (e.g., the “N wave”, which has a trailing shock

formed by overexpansion, collapse, and rebound of exploding gases in addition to the

primary shock); however, they generally do not form complex series of subsequent

shocks or pulses. Médici & Waite (2016) found that supersonic jets trailing the main

shock wave in a shock tube experiment could form subsequent pressure pulses, anal-

ogous to pressure pulses emanating from volcanic jets. Chojnicki et al. (2006) used

shock tubes for a different purpose: understanding the effects of suspended ash on

shock propagation. Volcanic eruptions often release two-phase flows including vol-

canic gas and ash; dynamics of ash particles differ strongly from gas and complicate

the physics of flow and wave propagation. This paper showed the inadequacy of theo-

retical predictions of two-phase flow in experiments analogous to vulcanian eruptions,

and proposed a new set of empirical laws for those conditions.

Methods

I use numerical modeling to explore shock wave behavior in a volcanic context.

Unlike linear acoustic modeling discussed in chapter 3, nonlinear pressure wave models
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must consider the full Euler equations instead of the much simpler acoustic wave

equation, and are therefore more complex, computationally expensive, and prone to

instability. Consequently, I use a set of numerical methods, implemented in the code

Clawpack (“Conservation LAWs PACKage”), to model shock waves from explosions

of compressed gas (LeVeque, 2002). The scenarios I simulate are analogous to discrete

volcanic eruptions, but have been simplified to facilitate modeling. As volcanic shock

modeling progresses, future work will use fewer simplifications and model volcanic

eruptions more faithfully.

Finite Volume Models

Clawpack uses the Finite Volume (FV) method, a class of numerical schemes used to

solve partial differential equations. The FV method is similar to the Finite Difference

(FD) and Finite Element (FE) methods, but has certain properties that make it well-

suited for modeling hyperbolic systems of conservation laws like the Euler equations.

FV models implement systems of conservation laws, normally expressed in the

differential form

∂Q

∂t
+ ∇ · φ = 0 (2.16)

where Q is volumetric density of a conserved quantity (such as mass, momentum,

energy, or charge) and φ = f(Q) is the flux of that conserved quantity (having di-

mensions of the conserved quantity divided by area and time). However, as mentioned

in chapter 1, the differential form is actually found from the infinitesimal volume limit

of the conservation law’s integral form

∂

∂t

∫
V

QdV +

∫
S

f(Q) · n̂dA = 0, (2.17)
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where V is a control volume with bounding surface S. When spatial derivatives φ are

defined everywhere, the divergence theorem can be used to to rewrite this integral as

∂
∂t

∫
V
QdV +

∫
V
∇ · φdV =

∫
v
(∂Q
∂t

+ ∇ · φ)dV = 0. However, this assumption is not

met when shocks are present, so it is necessary to use the integral form of eq. 2.17 in

which the conserved quantity is tracked over a volume instead of at a point.

The integral formulation of conservation laws lends itself well to the FV numeri-

cal scheme, which tracks a large number of control volumes (termed grid cells) that

completely fill the model region; the conserved quantity within each volume is cal-

culated in each time step according to the fluxes, and fluxes are calculated on the

surfaces between cells according to the conserved quantity within each cell. As a

result, any flux across a boundary is subtracted from the upstream cell and added to

the downstream cell, meaning that the total conserved quantity within the model re-

gion never changes–a desirable numerical property when modeling conservation laws.

(Appropriate exceptions to this rule occur when waves encounter nonreflecting model

boundaries.)

For simplicity, I briefly discuss the discrete formulation of the FV method in one

dimension. Higher dimensions follow identical principles but have more cumbersome

notation. Time and space must first be discretized: the current moment in time

is labeled n and is separated from the subsequent time step by ∆t, and the cell of

interest is labeled i and is of length ∆x. The change in notation from t to n∆t and

x to i∆x, with i and n being integers, reflects the discretization that has occurred.

In one dimension, Qn
i represents the average density of a conserved quantity per unit

length within cell i at time n (note that superscripts represent the time index and not

exponents). So, the total conserved quantity within a cell is ∆xQn
i and the change
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within the cell between times n and n+ 1 is written as ∆x(Qn+1
i −Qn

i ).

Because fluxes are calculated between cells and not within cells, the spatial indices

are somewhat different: the flux from cell i − 1 to i at time n is written as F n
i−1/2.

Perhaps inconsistently, the time index n (instead of n+ 1/2) is retained even though

the flux occurs between times n and n+1; this is because the flux is purely a function of

Qn and is not at all influenced by the later state Qn+1. The FV method can therefore

be concisely written in one dimension as ∆x(Qn+1
i − Qn

i ) = ∆t(F n
i−1/2 + F n

i+1/2), or

more explicitly as

Qn+1
i = Qn

i +
∆t

∆x
(F n

i−1/2 − F n
i+1/2). (2.18)

This numerical method generalizes to multiple spatial dimensions and multiple con-

served quantities; although the notation becomes increasingly complex, it consistently

maintains the principle that the change in a conserved quantity within a cell equals

the net influx of the quantity into the cell from other cells.

Riemann Solvers

Notably, I have not yet included any information from the Euler equations except

that they are conservation equations, and so the fluxes F remain undefined. The next

step is therefore to define what a given flux F n
i−1/2 must be given Qn. Unfortunately,

the answer given by a simple average of the flux function of the two cells–F n
i−1/2 =

1
2
(f(Qn

i−1) + f(Qn
i ))–is unstable. A more sophisticated method is therefore needed to

guarantee model stability. Some methods used to calculate flux exploit the known

wave structure of the governing equations; the Euler equations in one dimension,

for example, feature one left-going and one right-going acoustic wave along with

an “entropy wave” that actually corresponds to advection. Knowing the speed and
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form of the waves, the conserved quantities can be decomposed into a superposition

of them. Once the wave amplitudes are known, it is straightforward to calculate

fluxes arising from wave propagation. This approach to flux calculation is called

the “Riemann Problem”, and codes that calculate fluxes by this method are called

“Riemann Solvers”. Many Riemann solvers are available, including both exact solvers

and highly accurate, computationally efficient approximations (LeVeque, 2002).

Non-Hyperbolic Terms

So far, I have discussed conservation laws without considering source terms. A more

general formulation of a conservation law takes the form ∂Q
∂t

+∇·φ) = S, where S(x, t)

is a source term. In FV modeling, the concept of a source term is often interpreted

liberally to encompass any non-hyperbolic term, including terms representing geo-

metric spreading, second-derivative terms like viscosity (e.g., Alghamdi et al., 2011),

external forces, and actual injections of new mass, momentum, or energy into the

model. In the models discussed in this chapter, the only source term used is that

of geometric spreading: the models represent propagation into three dimensions, but

exploit symmetries in the problem to simulate the propagation using only one com-

putational dimension (when spherical symmetry applies, such as a free-air explosion)

or two computational dimensions (when cylindrical symmetry applies, such as an

idealized conical volcano).

Geometric source terms arise from the definition of divergence in spherical or

cylindrical coordinates. In the case of spherical symmetry (where ∂
∂ϕ

= ∂
∂θ

= 0)

being modeled in one computational direction (the r̂ direction, so that φ = φrr̂),

the divergence can be rewritten as ∇ · φ = 1
r2

∂
∂r

(r2φr) = ∂φr
∂r

+ 2
r
φr. In the case of
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cylindrical symmetry in cylindrical coordinates (where φ = φrr̂+φzẑ), the divergence

is rewritten as ∇ ·φ = 1
r
∂
∂r

(rφr) + ∂φz
∂z

= ∂φr
∂r

+ ∂φz
∂z

+ 1
r
φr. By contrast, the divergence

in one dimension is merely ∇ · φ = ∂φr
∂r

, and in two cartesian dimensions is ∇ · φ =

∂φr
∂r

+ ∂φz
∂z

. Therefore, when a single computational dimension is used to represent

either two or three dimensions, ∇ · φ will consist of the normal ∂
∂r
φr term present

in the one-dimensional divergence as well as an extra term 1
r
φr or 2

r
φr. This non-

hyperbolic term representing geometric spreading can be considered a source term.

Accuracy of Numerical Methods

All discrete numerical methods are approximations to continuous methods, and their

accuracy is often described in terms of the order of the approximation. For example, a

simple linear approximation would consist of a constant plus a term of degree one; such

an approximation would be referred to as first-order and its errors would be of second

order. A second-order approximation would include a constant and terms of degree

one and two, and its errors would be of third order. The order of an approximation

determines the nature of the errors it results in. Odd-order approximations suffer

from dissipative errors in which the signal is artificially smoothed, resulting in energy

loss (e.g., fig. 2.7a-b). Even-order approximations suffer from dispersive errors in

which high gradients are spread out as spurious oscillations (e.g., fig. 2.7c-d).

The numerical method used by Clawpack is an adaptively weighted combination of

the second-order Lax-Wendroff method with the first-order “upwind” method (LeV-

eque, 2002). The upwind method is less accurate in general, but as a first-order

method suffers only from dissipative errors, not dispersive errors (fig. 2.7a-b). The

Lax-Wendroff scheme is the more accurate of the two but suffers from dispersive errors
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in the presence of discontinuities (fig. 2.7c-d).The second-order term in the numeri-

cal approximation controls dissipation: when this term has the correct coefficient (as

in Lax-Wendroff), dissipation does not occur, but when the term has an incorrect

coefficient or is neglected (as in upwind), dissipation becomes the dominant error.

Real-world pressure waveforms in gases are piecewise-continuous: they are smooth

except at isolated shocks. Armed with this knowledge about the waveforms being

modeled, it is apparent that preserving their shape would be best accomplished by

suppressing dissipation over most of the waveform, and increasing dissipation where

the gradient is very high to avoid dispersive errors. Clawpack accomplishes this by

adaptive weighting of the dissipation term; the weights are provided by nonlinear

functions called limiters. Limiters depend on the values along the waveform and their

output is essentially a measure of wave smoothness; in smooth parts of the waveform,

the limiter output suppresses the dissipative term, whereas in high-gradient areas the

limiters increase the dissipative term to eliminate dispersive errors. The combination

of the Lax-Wendroff and upwind methods with limiters is sometimes referred to as

the Lax-Wendroff-LeVeque method, and produces much more accurate results than

either constituent scheme could on its own (fig. 2.7e-f). A wide variety of limiters

have been developed, and many are included as options in Clawpack.

The CFL (Courant-Friedrichs-Lewy) number, defined in one dimension as CFL =

∆t
∆x
cmax (with cmax being the fastest possible wave in the system) is an important

quantity in any numerical model (Chung, 2002). In the Euler equations, cmax is the

highest value of c+ |v| within the model. Model stability is partly determined by the

CFL number: the condition CFL ≤ 1 is necessary (but not sufficient) for a model to

be stable. Additionally, the CFL number helps determine the accuracy of numerical
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Figure 2.7: Examples of numerical schemes. A, B: The first-order upwind
method suffers from dissipative errors, which smooth out the signal and
cause severe attenuation over time. C, D: The second-order Lax-Wendroff
scheme does not suffer from major dissipative errors, but is affected by
dispersive errors that cause spurious oscillations near areas with high gra-
dients. E, F: The Lax-Wendroff-LeVeque scheme using the “MC” limiter
to optimally adjust the amount of dissipation according to the local gra-
dient. This prevents dispersive errors around shocks while minimizing
dissipative errors in smooth regions of the waveform. All models shown
are of the advection equation with 200 nodes (not all shown for clarity), a
speed of 1 m/s, CFL number = 0.8, and periodic boundary conditions (so
that the x axis represents the circumference of a circle and the waveform
circles around to the starting position once per second).
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schemes: in general, dissipative and dispersive errors tend to be smaller when CFL

approaches but does not exceed unity.

Comparison of Finite Volume and Finite Difference Methods

By contrast, the FD method is implemented on a large number of points (termed grid

nodes) distributed throughout the model region, instead of grid cells. The govern-

ing partial differential equations of the system are then discretized and implemented

directly on the nodes. So, while FV works in terms of accumulated conserved quan-

tities (stored within cells) and their fluxes (which occur from cell to cell), FD sim-

ply calculates numerical spatial derivatives at each node (thereby assuming that the

spatial derivatives exist) and inserts them into the governing equations to solve for

time derivatives. Consequently, the FD method does not conserve variables exactly

even when the governing equations are conservation equations written as eq. 2.16;

however, by not requiring conservation, it can be applied sensibly to directly model

non-conserved variables like displacement or pressure.

FD methods are widely used in geophysics; for example, I use the FD method

of (Kim et al., 2015) to model linear infrasound at Volcán Tungurahua in chapter 3.

However, the propensity of nonlinear systems of equations (like the Euler equations)

to spontaneously form undifferentiable shocks makes FD difficult to use with such

systems. Consequently, I use the FV code Clawpack to model shock waves in air.

Clawpack

Clawpack (Clawpack Development Team, 2018) is a package of codes used to solve

hyperbolic systems of partial differential equations with numerical finite-volume meth-
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ods. Any finite-volume model must, at minimum, calculate fluxes between grid cells

in each time step and update cells accordingly. Clawpack calculates fluxes between

cells using Riemann solvers, which are specific to the system of equations being solved

and can be implemented in different ways; many common systems of equations, in-

cluding the Euler equations, are already implemented in Clawpack with one or more

Riemann solvers. The work presented in this chapter uses the PyClaw branch of

Clawpack; PyClaw is a Python-based implementation of the methods of Clawpack

and includes a convenient user interface to configure a model run, manage variables

in the model, and output data (Ketcheson et al., 2012). I also use the parallelization

methods in the PetClaw (Alghamdi et al., 2011) branch of Clawpack, which enable

large models to be run quickly on a high-performance computing cluster.

Assumptions of Model Simulations

I used Clawpack to simulate pressure disturbances following the Euler equations (eqs.

1.6-1.8) with equation of state given by eq. 1.9. In doing so, I assume the medium

to consist of nonconductive, inviscid ideal gas, with negligible effects from gravity at

these small length and time scales. Although the Euler equations do not explicitly

contain temperature, I refer to gas temperature in this chapter as an intuitive proxy

for density and sound speed.

The only relevant properties of the gas that depend on its chemical composition are

its specific heat ratio γ = Cp
CV

and its gas constant R = p
ρT

(although, like temperature,

R does not explicitly appear in the Euler equations). I assume that the propagation

medium is solely atmospheric air (γ = 1.4, R = 287 J
kg◦C

).

I assume the gas to be homogeneous in composition but variable in initial pressure

and temperature. The initial condition therefore consists of a small region of high-
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temperature, high-pressure gas otherwise contained in air under ordinary sea-level

atmospheric conditions (analogous to compressed volcanic gas suddenly exposed to

the atmosphere in an instantaneous opening of the vent). Because the initial condition

represents the state of the vent at the precise moment of opening, all gas is initially

stationary.

Explosive yield W is a key parameter in these models. Yield can be quantified by

calculating the total initial energy over the compressed gas region and subtracting the

final energy in that region. This problem can be simplified with the constraints that

all explosions tested in this project have zero initial fluid velocity, and that the model

volume must eventually reach equilibrium at normal atmospheric pressure with zero

velocity. From eq. 1.9, volumetric energy density in stationary gas is E = p/(γ−1), so

total energy of a spherical explosion of radius r is W = 4
3
πr3 pexp−1Atm

γ−1
. Two explosions

with equal energy but different pressures must therefore have different source radii

as well. According to the ideal gas law (which can be written as pV = mRT ),

total energy could equivalently be formulated as being proportional to the product

of temperature T and mass m instead of pressure p and volume V .

Model Run Configuration

With PyClaw, model run settings are set in a Python script (initially provided with

PyClaw as examples, but heavily modified by the user for each simulation). The basic

parameters to be set are properties of the grid (number of spatial dimensions, number

of nodes in each dimension, time and space intervals, and desired CFL number), the

governing equations of the model and their numerical implementation (i.e., the Rie-

mann solver, source terms, model order, and limiter), initial condition, and boundary

conditions. Because the configuration script is written in Python, it is straightfor-
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ward to write flexible configurations that can be combined with other scripts to launch

many different model runs simultaneously–a convenient ability when working with a

high-performance computing cluster.

Model Results and Discussion

I ran two sets of explosion models. The first set included free-air explosions of

spheres of hot compressed gas in order to determine the effects of initial pressure,

temperature, and radius on recorded signals. The second set tested explosions of hot

compressed gas within the conduit of an idealized volcanic edifice in order to deter-

mine effects of initial pressure and conduit geometry on recordings. The simulations

discussed in this chapter are summarized in tables 2.4 and 2.5.

Free-Air Explosions: Waveform Parameters and Scaling Laws

I first ran a set of Clawpack models of explosions in the free atmosphere (table 2.4).

Each model simulated an initial condition including a sphere of high-pressure, high-

temperature air surrounded by ambient atmospheric air (101.325 kPa, 15 ◦C for

consistency with the reference explosion in (Kinney & Graham, 1985)). Models were

run on a cylindrical coordinate system assuming axial symmetry ( ∂
∂θ

= 0), so the

model grid included two spatial dimensions (z and r). Although this scenario is

spherically symmetric as well and could therefore be simulated more efficiently in

just one spatial dimension (r), cylindrical coordinates were used for consistency with

later models to simulate axisymmetric idealized volcanoes.

The free-air explosion models tested and extended a basic principle of explosion

study: the scalability of explosion waveforms according to explosive energy. The first

test was modeling two explosions differing only in the initial compressed gas radius

(with identical source pressures and temperatures). Resulting waveforms were found
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Table 2.4: Characteristics of free-air explosions depicted in section 2.4.1.
All models were conducted with atmospheric pressure of 0.101325MPa and
temperature of 15◦C.

Energy Exp. Vol. Exp. Rad. Overpressure Exp. Temp. Figures
1.25 GJ 0.1× 103 m3 2.9 m 5 MPa 1000◦C 2.8
12.5 GJ 1.0× 103 m3 6.2 m 5 MPa 1000◦C 2.8
100 GJ 40× 103 m3 21 m 1 MPa 1000◦C 2.9, 2.10, 2.11
100 GJ 8.0× 103 m3 12 m 5 MPa 1000◦C 2.9, 2.10
100 GJ 4.0× 103 m3 9.8 m 10 MPa 1000◦C 2.9, 2.10
100 GJ 2.0× 103 m3 7.8 m 20 MPa 1000◦C 2.9, 2.10
100 GJ 1.3× 103 m3 6.8 m 30 MPa 1000◦C 2.9, 2.10, 2.11
100 GJ 8.0× 103 m3 12 m 5 MPa 400◦C 2.12
100 GJ 8.0× 103 m3 12 m 5 MPa 800◦C 2.12
100 GJ 8.0× 103 m3 12 m 5 MPa 1200◦C 2.12

to obey scaling the scaling laws eq. 2.8-2.9 exactly, in agreement with theoretical

predictions from non-dimensionalization of the Euler equations (section 1.2.3).

Subsequent tests explored the effects of source pressure and temperature on pres-

sure waveforms in explosions of equal energy. The scaling laws eq. 2.8-2.9, which can

be shown to be exact for energy differences due to changes in source radius, are not

exact when energy changes due to a change in source pressure. To test this, I modeled

several explosions with different pressures but equal energy and temperature. The re-

sulting overpressure decay curves show that wave amplitudes can differ strongly vary

near the source; however, the waves quickly converge to a common decay curve while

overpressure is still high (fig. 2.9). Similar results are found for the positive phase

duration: all waves differ near the source, but quickly converge to equal durations

(fig. 2.10). Based solely on the distance, overpressure, and positive phase duration

recorded far from a free-air explosion, it would be easy to determine explosive energy,

but not explosive pressure.



65

Figure 2.8: Scaling laws tested in Clawpack modeling. A, B: The two ex-
plosion sources have identical pressure and temperature of the compressed
gas but different initial radius and energy. Correspondingly, the waves
from the smaller explosion have smaller amplitude and duration. C: Ap-
plication of the scaling laws, where the 100-m3 explosion’s waveforms are
scaled up to represent a 1000-m3 explosion, results in excellent agreement
between the original 1000-m3 explosion and the scaled-up explosion.
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Figure 2.9: Decay of modeled shock amplitude with distance for explosions
of equal energy (100 GJ). Despite having very different source pressures,
waves from all explosions rapidly converge to similar excess pressures.



67

Figure 2.10: Change of shock waves’ positive phase durations with dis-
tance for explosions of equal energy (100 GJ) but different source pres-
sures. Waves initially differ strongly in positive phase duration but rapidly
converge to a common value as they lengthen.
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Pressure waveforms from equal-energy explosions can differ visibly in shape in

the trailing part of the waveform. Waveform differences for equal-energy, equal-

temperature, differing-pressure explosions can be seen but are rather modest (fig.

2.11). Temperature differences produce somewhat more visible waveform differences

in the strength and timing of the trailing shock: lower temperatures result in stronger

trailing shocks that arrive later (fig. 2.12). However, in realistic field conditions

in which scattering by irregular topography is significant, such small effects on the

trailing shock might be difficult to obseprve due to multipathing of the initial shock.

The effect of source temperature on the properties of the trailing shock is probably

a consequence of source temperature controlling sound speed of the decompressing

gas. The rarefaction wave that propagates into the compressed gas is limited by the

sound speed: when the sound speed is low, it takes longer for the rarefaction wave

to reach the center of the gas, meaning that the resulting over-expansion, implosion,

and secondary explosion will take longer, resulting in a delayed secondary shock. By

contrast, an explosive gas with very high temperature and sound speed (e.g., the

explosive products of TNT decomposition) can reach equilibrium so rapidly so that

the trailing shock can be indistinguishable from the initial shock.

This model is consistent with the observation in fig. 2.11 that the trailing shock

timing is later for the higher-pressure explosion than for the lower-pressure explo-

sion. Applying the law of isentropic cooling by decompression ( T
Texp

=
(

p
pexp

) γ−1
γ ≈(

p
pexp

)0.286

) to the initially compressed air, it is clear that a stronger drop in pressure

corresponds to a lower post-shock temperature (and therefore lower post-shock sound

speed). Therefore, for explosions of equal energy and initial temperature, higher-

pressure explosions will have later-arriving secondary shocks than lower-pressure ex-
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Figure 2.11: Waveforms from explosions of equal energy (100 GJ) but
different source pressures.

plosions.

Additionally, as shown in section 2.4.2, secondary shocks are not observed when

waves must propagate around a crater rim. This is noteworthy, as trailing shocks are

typically not observed at volcanoes, probably due to this topographic effect.

Effects of vent geometry

The second set of simulations tested different scenarios of initial gas pressure and vent

geometry. The volcanic topography was idealized as consisting of a conical edifice

(with constant slope of 30◦) containing a crater (with radius 100 m and constant

slope of 45◦) and a vertical-walled conduit with radius 50 m (fig. 2.13b). The conduit

consisted of a cylinder of variable height initially filled with hot compressed gas. The
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Figure 2.12: Waveforms from explosions of equal energy (100 GJ) but
different source temperatures. Differences between the waveforms are
small and limited to the timing and strength of the trailing shock.
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Table 2.5: Characteristics of explosions with topography depicted in sec-
tion 2.4.1. All models were conducted with explosive gas temperature of
927◦C, atmospheric pressure of 0.101325MPa and temperature of 15◦C, vent
radius of 50 m, crater slope of 45◦, and outer volcano slope of 30◦ (see figure
2.13B).

Energy Exp. Volume Exp. Depth Overpressure Figures
59 GJ 157× 103 m3 20 m 0.15 MPa 2.13
157 GJ 157× 103 m3 20 m 0.40 MPa 2.14
255 GJ 157× 103 m3 20 m 0.65 MPa 2.14
353 GJ 157× 103 m3 20 m 0.90 MPa 2.14
147 GJ 393× 103 m3 50 m 0.15 MPa 2.15
294 GJ 785× 103 m3 100 m 0.15 MPa 2.15
589 GJ 1570× 103 m3 200 m 0.15 MPa 2.15

entire volcanic edifice (including the section underlying the conduit gas) is treated as

a perfectly reflecting boundary that confined pressure waves to the open conduit and

atmosphere.

Initial gas pressure and height varied in these tests (table 2.5). Conduit radius was

fixed at 50 m. However, because of the scaling properties of the Euler equations, the

conduit radius could easily be used as a length scale, so that larger or smaller conduit

radii could be modeled in identical atmospheric conditions simply by multiplying the

conduit radius, other length scales in the initial conditions, and length and time scales

in the solutions by the same factor.

Unlike the isotropic free-air explosions discussed earlier, the vent geometry of

the models with topography (and of most true volcanoes) focuses waves upward.

Therefore, in models with topography, recordings must depend on elevation angle

from the vent in addition to distance and time. In the following figures, I therefore

plot pressure fields and infrasound recordings that would be expected directly above

the vent and along the surface of the volcano.
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Fig. 2.13 shows a model result in detail. The initial condition includes a cylindrical

(20-m height, 50-m radius) volume of gas at the top of the conduit (fig. 2.13b). At

2 s after the eruption onset, the vent has reached pressure equilibrium with the

atmosphere and the pressure wave has propagated hundreds of m outwards from

the vent (fig. 2.13c). The vertical and surface pressure profiles (fig. 2.13a,d) differ

significantly: the amplitude of the surface pressure profile is lower and its wavelength

is longer than the vertical pressure profile (both which can be expected for a wave

that diffracts around a corner). Differences in the structure of the rarefaction are also

apparent.

The case of fixed vent geometry with varying source pressures is explored in fig.

2.14. Source pressure has a clear effect on waveforms: explosions with higher source

pressures produce waves that arrive earlier with higher amplitudes and longer positive

phase durations. However, when recordings are scaled in time and taken from constant

scaled distances instead of fixed points, these differences are reduced. In particular,

scaling almost eliminates differences among recordings taken above the vent (fig.

2.14d).

Conversely, fig. 2.15 addresses the case of fixed source pressure (0.25 MPa) and

variable initial gas height. Again, differences among these signals are apparent: larger

explosions produce signals with higher amplitudes and longer wavelengths (just like

free-air explosions (e.g., fig. 2.8). Important differences can be seen between the

raw signals recorded on the surface and above the vent. The effect of supersonic

propagation on arrival times is clear in the signals recorded above the vent but not

on the surface, perhaps because of the generally higher amplitudes for the upward-

propagating wave. Additionally, although all signals recorded above the vent have
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Figure 2.13: Simulation of an explosion of gas initially at 0.25 MPa and
927 ◦C. A: pressure field measured along a vertical line above the center
of the vent (r = 0). B: initial condition of the explosion, with compressed
gas in the vent only. C: the pressure field around the volcano 2 s after
the explosion, having propagated and diffracted out of the vent. The wave
has higher amplitude and shorter wavelength at steep incidence angles
(including along the vertical pressure profile shown in A) than along the
surface (D). D: pressure field measured along the topographic surface,
where sensors are normally placed in field campaigns.
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Figure 2.14: Simulations of explosions with identical geometry (initial gas
height of 20 m) and different source pressures. A: waveforms recorded
along the surface with radial distance of 1 km. B: waveforms recorded
1.3 km directly above the vent. C: scaled waveforms recorded along the
surface at a dimensionless distance of 5. D: scaled waveforms recorded at a
dimensionless distance of 6 above the vent. Explosions with higher source
pressures produce waves with higher amplitudes, longer positive phases,
and earlier arrivals; however, these effects diminish when scaling laws are
applied, particularly for recordings above the vent.
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higher amplitudes than their corresponding signals recorded on the surface, the ratio

between the amplitude varies and the smallest difference between the amplitudes is

seen in the largest explosion, possibly due to their longer wavelength being attenuated

less by diffraction. Finally, similar to the fixed geometry, variable pressure case (fig.

2.14), application of a scaling relationship eliminates much of the differences between

the signals from different explosions, especially for the signals recorded above the

vent.

Discussion of Modeling Results

The numerical modeling shown in this chapter provides a starting point for infer-

ring source properties from infrasound with a nonlinear propagation history. Scaling

laws, commonly applied to chemical and nuclear explosions (e.g., Kim & Rodgers,

2016), appear to be a useful means of studying infrasound from compressed gas ex-

plosions with volcano-like pressures, temperatures, and geometries. Owing to the

scaling properties of the Euler equations, scaling laws are exact in the case of free-air

explosions where explosive yield varies as a result of changes to source radius only:

a wavefield from a small explosion can be scaled to match a wavefield from a larger

explosion exactly (fig. 2.8). The scaling law is not exact but still useful when ex-

plosive pressure or temperature vary: essential waveform parameters like amplitude

and positive phase duration can be matched using scaling laws, but subtle differences

among waveforms remain (figs. 2.11, 2.12). Additionally, scaling relationships are

useful (especially for signals recorded above the vent) but not exact when comparing

explosions of different shapes or pressures within an idealized volcano topography

(figs. 2.14, 2.15). Diffraction around the crater rim significantly affects surface-level

infrasound recordings, suggesting that it may be advantageous to record infrasound
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Figure 2.15: Simulations of explosions with equal source pressure (0.25
MPa) and different gas thicknesses. A: waveforms recorded along the sur-
face with radial distance of 1 km. B: waveforms recorded 1.3 km directly
above the vent. C: scaled waveforms recorded along the surface at a di-
mensionless distance of 5. D: scaled waveforms recorded at a dimensionless
distance of 6 above the vent. Explosions with greater explosive gas vol-
umes produce waves with higher amplitude, longer wavelengths, and less
anisotropy in amplitude. Again, scaling reduces this differences, especially
for waves recorded directly above the vent. Waves from larger explosions
also arrive earlier when recorded above the vent but not when recorded
along the surface, perhaps because upgoing waves are not attenuated by
diffraction and therefore propagate nonlinearly longer.
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in field sites where diffraction is a less significant process (e.g., in the air above the

vent or on the crater rim).

These models show that infrasound interpreted with scaling relationships can be a

viable means of estimating explosive energy from compressed gas explosions at typical

volcanic pressures. However, explosive energy itself is the product of quantities that

may be more interesting to volcanologists (W = (pexp−patm)V

γ−1
= mCv(Texp − Tfinal)).

Without additional constraints, it would be difficult to extend infrasound waveform

interpretation to allow estimation of initial pressure, volume, temperature, or mass:

changes in such properties result in only minor changes to waveforms in equal-energy

explosions, which would be hard to interpret in the presence of minor uncorrected

topographic scattering.

These models have limitations that keep them from being perfectly analogous to

volcanoes. First, all of these models simulated explosions of hot compressed air into

normal atmospheric air, whereas volcanic explosions are driven by variable mixtures

of gases dominated by H2O, CO2, and SO2 along with tephra of a range of sizes.

Even without tephra, these three gas species differ from air in their specific heat ratio

(γ ≈ 1.3, vs. γair ≈ 1.4), meaning that the thermodynamics of such gases differs from

air. The behavior of H2O is further complicated by the possibility of phase changes.

Including very fine tephra (so that tephra particles are in mechanical and thermal

equilibrium with the gas) enables the mix to be treated as a pseudogas; coarser tephra

must be treated as a separate phase (Pelanti & LeVeque, 2006). Besides having

complicated physics, each of these factors adds new free variables to be considered.

Further, the model including volcanic topography cannot test source pressures higher

than about 1 MPa due to a common tendency of models of diffracting shock waves
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to spuriously calculate negative densities for stronger shocks, causing the model to

crash (a problem known as the “backward-facing step”). All of these are significant

computational challenges that will require extension of existing CLAWPACK code to

accommodate.

Conclusion

Volcanic explosions can produce waves that initially propagate nonlinearly, includ-

ing supersonic propagation, changes in waveform shape, and decay. Nonlinear pro-

cesses cannot be represented accurately by common analysis techniques that include

convolutions, and nonlinear pressure waves must be modeled using the compressible

Euler equations (which are difficult to model) instead of the acoustic wave equation

(which is easy to model). Several projects have attempted to clarify volcanic shock

propagation, but we still lack an explicit means of relating infrasound recordings to

source physics when the wave’s propagation history is nonlinear.

However, various tools for studying volcanic shocks can be adapted from past work

on shock waves and anthropogenic explosions. The Rankine-Hugoniot relations, for

example, establish the relationship between pressure ratio across a shock, the speed

of the shock, and other fluid-dynamic properties of interest. These relations can be

used in a volcanic context to estimate pressure from wave speed (if, for example, the

wave speed is tightly constrained at a supersonic speed by video) or vice versa (if the

pressure ratio is already known from amplitude recordings and the propagation speed

is needed). A very energetic eruption is needed to create noticeably supersonic waves

far from the source.

Additionally, scaling relations have an important role to play in inferences of

volcanic explosions. Scaling relations show that the primary control of waveform
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characteristics is the distance from the source divided by a scaling parameter depen-

dent on explosive energy. In this chapter, scaling relations were tested in the context

of free-air explosions and explosions with realistic volcanic topography, and found to

be useful in matching signals from different explosions (and exact in matching signals

whose sources differ only in size).

Scaling relations are a powerful tool: they reduce the computational expense of

modeling by enabling a simulation of one explosion to be scaled up or down to explo-

sions of much greater or much less energy, rather than having to run a time-consuming

new model for every scenario to be tested. Under certain conditions, it should there-

fore be possible to use recordings of explosion infrasound to estimate source energy

with few (if any) new model runs needed. However, estimating properties like pres-

sure and temperature is considerably more difficult and unlikely to succeed given the

inevitable uncorrected scattering that would occur in realistic field situations.

In the presence of realistic volcano topography, diffraction around the crater rim

can complicate infrasound interpretation. Field studies should explore the possibility

of recording infrasound at sites with direct line of sight to the vent, whether from an

aerial platform or overlooking topography. Future modeling work could extend this

modeling to use realistic mixes of volcanic gases and tephra and to use a more robust

and precise numerical method.
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CHAPTER THREE: DIVERSE ERUPTIVE ACTIVITY REVEALED BY ACOUS-

TIC AND ELECTROMAGNETIC OBSERVATIONS OF THE 14 JULY 2013 IN-

TENSE VULCANIAN ERUPTION OF TUNGURAHUA VOLCANO, ECUADOR
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CHAPTER 3:

DIVERSE ERUPTIVE ACTIVITY REVEALED

BY ACOUSTIC AND ELECTROMAGNETIC

OBSERVATIONS OF THE 14 JULY 2013

INTENSE VULCANIAN ERUPTION OF

TUNGURAHUA VOLCANO, ECUADOR

Summary

During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we

recorded exceptionally high-amplitude, long-period infrasound (1600 Pascals peak-

to-peak amplitude, 5.5-second period) on sensors within 2 km of the vent alongside

electromagnetic signals from volcanic lightning serendipitously captured as interfer-

ence. This explosion was one of Tungurahua’s most powerful vulcanian eruptions

since recent activity began in 1999, and its acoustic wave is among the most powerful

volcanic infrasound ever recorded anywhere. We use these data to quantify erupted

volume from the main explosion and to classify post-explosive degassing into distinct

emission styles. Additionally, we demonstrate a highly effective method of recording

lightning-related electromagnetic signals alongside infrasound. Detailed chronologies
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of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive

processes can occur in such eruptions and that near-vent infrasound and electromag-

netic data can elucidate them.

Introduction

Infrasound is a valuable tool for all-weather monitoring of erupting volcanoes.

Infrasound source processes can often be resolved in detail because path effects on

infrasound near the vent are often small (Fee & Garces, 2007; Johnson & Lees, 2010)

or predictable and straightforward to correct (Kim et al., 2015). Local infrasound

is therefore useful in tracking the style (Fee & Matoza, 2013) and vigor (Johnson &

Miller, 2014; Gerst et al., 2013) of eruptions. However, near-vent infrasound recording

is most common at volcanoes with small, frequent eruptions; larger eruptions like the

one in this study are typically recorded at longer distances (e.g., Fee et al., 2010a).

Longer-range recordings are useful, but waves are modified by path effects at such

distances, making detailed inferences of volcanic activity more difficult (e.g., Green

et al., 2012).

Several volcanic processes produce distinct types of infrasound. Some of the most

energetic waves correspond to discrete vulcanian (Iguchi et al., 2008) and strombolian

(Gerst et al., 2013) explosions, in which explosive gas release produces brief infrasound

pulses a few seconds in duration that consist of a compression, rarefaction, and coda.

The most powerful explosions generate nonlinear shock waves (Morrissey & Chouet,

1997) that decay into linear infrasound.

Other volcanic sources can generate continuous, long-duration infrasound tremor.

For example, tremor from the vent can arise in gas jetting (Matoza et al., 2009;

Steffke et al., 2010), streams of bubbles bursting at the lava surface (Ripepe et al.,
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Figure 3.1: (a) Map of Tungurahua volcano and instrumentation network.
(b) Topographic cross section including vent and sensors.

2007; Ulivieri et al., 2013), and periodic series of emission pulses called chugging (Lees

& Ruiz, 2008; Lees et al., 2004, 2008). Tremor also originates from pyroclastic density

currents (PDCs) and lahars, which can be tracked with infrasound networks (Ripepe

et al., 2010; Yamasato, 1997; Johnson & Palma, 2015).

Tungurahua was one of Ecuador’s most active volcanoes from 1999-2016 and a pro-

lific infrasound source. Its activity included strombolian, vulcanian, and subplinian

explosions separated by intervals with weak or absent surface activity (Arellano et al.,

2008; Hall et al., 2015). Tungurahua’s infrasound included explosions, gas jetting, and

chugging (Ruiz et al., 2006; Fee et al., 2010a). The asymmetry of Tungurahua’s crater

and summit (Fig. 3.1) focuses infrasound northwest and complicates recordings (Kim

et al., 2012); these effects can be removed with numeric wave propagation modeling

(Kim et al., 2015).

This paper examines a severe vulcanian eruption at Tungurahua at 11:47 UTC,

14 July 2013. The explosion’s pressure wave was heard 180 km away and its column
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reached 8.3 km above the crater. Falling lapilli damaged solar panels at least 6 km

from the vent, and PDCs traveled 6.5 km from the vent (Instituto Geof́ısico–Escuela

Politécnica Nacional (Ecuador), 2013). The vulcanian eruption was followed by occa-

sional small explosions over the following 23 days (Narvaez, 2014). This was among

Tungurahua’s most powerful explosions since continuous, comprehensive geophysical

monitoring began in 2006, and one of the most powerful vulcanian eruptions recorded

with a nearby geophysical network anywhere in the world (Hall et al., 2015). We de-

scribe infrasound recordings of this violent eruption to elucidate its range of eruptive

processes.

Methods

Field Data Collection

Our installation included two stations 1860 m and 3160 m north of the vent (Fig. 3.1),

each with three infrasonic microphones with flat responses above 0.01 Hz (Marcillo

et al., 2012). Lab tests on these microphone types showed negligible nonlinearity at

the excess pressures measured in this study. Infrasound was logged with a RefTek RT-

130 datalogger at station HIGH and a DataCube-3 at station LOW; the sample rate

at these stations was 1000 Hz and 100 Hz respectively. Both data loggers recorded

at 24-bit resolution with GPS timing. Sensor cables were shielded at station LOW

but not at station HIGH, probably contributing to lightning-related electromagnetic

interference in recordings from station HIGH (discussed in sections 3.3, 4.4, and text

S2).

Terrain and equipment constraints prevented the installation of triangular arrays,

so linear arrays were deployed with 15-m spacing between sensors. Although lin-
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ear arrays cannot be used to calculate a unique backazimuth or incidence angle of

incoming waves, the spatial separation of the array elements permits us to calculate

coherence among sensors, a variable we consider when analyzing tremor (section 3.4).

Numerical infrasound modeling

We computed Green’s functions for our stations using the finite-difference time-

domain method of (Kim et al., 2015) using a grid spacing of 4 m and x, y, and z

extents of 5000 m, 5300 m, and 3756 m respectively. We used a time interval of 0.005

s and total model duration of 40 s, with the source time function being a Blackman-

Harris window with a maximum frequency of 5 Hz. The volcano’s topography was

taken from the ASTER global digital elevation model (NASA/METI/AIST/Japan

Spacesystems, and U.S./Japan ASTER Science Team, 2009) with 1-arcsecond reso-

lution.

Atmospheric temperature, wind, and pressure profiles at the time of the erup-

tion were obtained from the Global Forecast System atmospheric model (with time

resolution of 6 hours and spatial resolution of 0.25 degrees) (Kalnay et al., 1990).

The intrinsic sound speed structure of the atmosphere was calculated from the tem-

perature profile, and the density structure was calculated using the temperature and

pressure profiles (fig. 3.3). The finite-difference method we used does not accept wind

as a parameter; however, because our arrays were installed at approximately the same

azimuth from the vent (∼ 17.5◦), we used wind profiles along with the intrinsic sound

speed to calculate effective sound speed along that azimuth, and used the effective

sound speed as the numerical model’s sound speed profile.

Timing and relative amplitudes of finite-difference results are consistent with the

stations’ distance to the source. However, the modeled pressure traces are compli-
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cated somewhat; although the signals lack prominent secondary arrivals, they are

considerably longer and more complex than the 5-Hz Blackman-Harris source time

function. At both stations, the main arrival lasts approximately 1 s and is followed

by a coda lasting another 2 s. This complexity presumably originates as echoes and

diffraction in the crater and as waves propagate over the rough volcanic topography

(fig. 3.4).

Median Filter

Infrasound recordings from station HIGH contain lightning-related glitches that need

to be removed. We used a median filter for the task (fig. 3.2). Median filters

approximate linear running average filters over non-glitchy data (in which the median

is approximately equal to the mean) but are highly effective at removing glitches (in

which the median is very different from the mean).

Median filters have just one parameter to adjust: the window length. Longer

window lengths result in a lower corner frequency of the filter and more effective glitch

suppression; shorter windows have a higher corner frequency but are not as effective

at removing glitches. Fig. 3.2 shows two median filters with different window lengths.

Both are effective at removing glitches. We selected the longer window length (0.061

s, 61 samples) which approximates a linear low-pass filter with corner frequency (-3

dB) of 7.3 Hz. We selected this filter because the higher frequencies that are affected

by the longer window are not important to our analyses. In general, the negative

effects of median filters can be mitigated or avoided by recording at a high sample

rate.
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Figure 3.2: Application of the median filter to remove lightning-related
glitches from acoustic data. A, B: raw data containing glitches. Glitches
appear simultaneously on all channels with different waveforms on each.
C, D: acoustic data after applying a median filter; results from two filters
with different window lengths (0.061 s and 0.031 s) are shown. Both filters
suppress glitches well without significantly altering the non-glitch data.
E: Approximate impulse responses of the two median filters for glitch-free
data (over which the median filter approximates a linear running average
filter). F: Frequency-domain response of the two filters.
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Analysis

Infrasound analysis enables us to quantify eruptive activity by the amount of air it

displaces (summarized in table S1). We note that some of these analyses address de-

tails of waveforms that can be altered by path effects; therefore, recording infrasound

near the vent where path effects are weak is essential.

Infrasonic pressure can be used to calculate erupted volume during discrete events.

For linear acoustic waves emanating from an isotropic source, pressure recorded at

the microphone corresponds to displaced air at the vent as

q(t) = H(t) ∗ p(t) (3.1)

where q(t) is mass flow rate of displaced air, H(t) is the inverse of the Green’s

function from the source to the receiver, *’ denotes convolution, and p(t) is the

infrasound time series in pressure units. When a signal is recorded at multiple sites

with different Green’s functions, an overdetermined linear system can be constructed

and solved:

qj = Hijpj (3.2)

where Hij is the ordinary-least-squares generalized inverse of the Green’s functions,

and pj is the recorded data from all receivers (using the Einstein summation conven-

tion).

In the particular case when path effects (such as from topography, atmospheric
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heteogeneity, and attenuation) are negligible, equation (3.1) can be simplified as

q(t− r

c
= Ωr

∫ t2

t1

p(t)dt (3.3)

where r is the distance between vent and microphone and Ω is the solid angle

(about 9.08 steradians at Tungurahua) subtended by the atmosphere around the

vent (Lighthill, 1978). Otherwise, equation (3.2) must be used instead with Green’s

functions calculated using numeric models.

Eqs. 1-3 make four assumptions (Johnson et al., 2003). First, any instrument

response, path or site effects, or radiation pattern anisotropy must be accounted for in

H (and must be negligible if using equation 3.3). We calculate Green’s functions using

finite-difference modeling with appropriate topography and atmospheric structure

(figures 3.3, 3.4).

Second, long-period noise (such as from wind) and instrument drift (small trends

in recordings not representative of actual pressure changes) must be negligible. Such

noise is common in infrasound recordings and is problematic because trends and low

frequencies are magnified by inversion, sometimes causing volume flow to be non-zero

long after the end of the signal. Johnson & Miller (2014) solved this problem by

estimating flow rate using equation (3.3) and detrending to make infrasound pressure

and flow rate zero at the end of the signal. We use a slightly different detrending

method because we use Green’s functions from numeric models instead of equation

3.3. Using linear inversion, we find an optimal drift that minimizes the L2 norm of

estimated flow rate:

qi = Hij(pj −mtj) (3.4)
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Figure 3.3: A: Topographic profile through vent and instruments. B:
Effective and intrinsic sound speed profiles obtained from Global Forecast
System; we can use the effective sound speed profile in modeling because
the azimuth to all sensors is about the same. C: Atmospheric density
profile at the time of eruption.
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Figure 3.4: A: Results of finite-difference time-domain modeling. These
waveforms were used to invert recordings of the explosion to calculate
erupted volume. B: detail of modeled waveforms at stations HIGH-1 and
LOW-1. Waveforms are dominated by a short main arrival followed by a
coda.
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where m is the slope of the instrument drift and tj is time (using the summation

convention). Apart from instrument drift, signal-to-noise ratio is high during the

explosion (Fig. 3.5).

Third, the source dimensions must be small compared to acoustic wavelengths

to justify a point source approximation. With vent dimensions of tens of meters

compared to dominant wavelengths exceeding 1 km, this assumption is valid.

Fourth, pressure perturbations must be small relative to ambient pressure to jus-

tify the use of linear acoustic theory. This is easily satisfied for the precursory vent

uplift but possibly not for the explosion. The wave from the explosion exceeded 1200

Pa peak pressure at 2158 m, so the wave’s excess pressure probably reached 10% of

ambient atmospheric pressure within 400 m of the vent. Nonlinear effects in this

region could have caused waveform change and decay, which equations 3.1-3.4 cannot

account for. However, significantly nonlinear propagation typically forms an abrupt

signal onset, which we do not observe in this signal. Although we suggest that nonlin-

ear effects on this wave were probably weak, we must consider our volume calculation

to be conservative.

Main Vulcanian Blast

The eruption began abruptly with a major explosion that produced the high-amplitude

infrasound signal (Fig. 3.5). Like waves from many explosions, the waveform is dom-

inated by a strong compression followed by a longer, weaker rarefaction (Morrissey

& Chouet, 1997). However, unlike many explosion waveforms, the rise from ambient

to peak pressure occurs in several distinct steps; pressure rises quickly at the onset

of the waveform and 0.6 seconds, 1 second, and 1.4 seconds later (Fig. 3.5).

Two of the three channels at station LOW clipped during the peak of the main
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Figure 3.5: Infrasound and erupted volume inferences for the main ex-
plosion and precursory pulse. Times are relative to the explosion onset;
traces are time shifted to vent to show stacking procedure in (a)-(c) but
not in (d)-(f). (a) Reduced pressure of infrasound at all six stations (gray
lines) and time-shifted stack (black). (b and c) Estimated instantaneous
and cumulative volume flow. (d) Infrasound of main explosion. Inset:
detail of stepped pressure rise. (e and f) Volume estimates from linear
inversion with drift correction. Black dashed lines show single-station
estimates of instantaneous volume flow rate. The highest single-station
estimate (HIGH-3) is a clear outlier and is omitted from the multistation
volume estimates (solid gray lines).
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blast arrival; consequently, data from those two microphones are excluded from the

blast analysis. Only the main blast arrival was clipped in these two channels, so we

did consider them in other analyses. The remaining channel at station LOW did not

clip due to its lower sensitivity, and the high input voltage range of the RT-130 logger

prevented clipping on any channel at station HIGH.

We apply equation (3.4) to quantify erupted volume using data from the four

microphones that did not clip. We first estimate the volumetric eruption rate sensor-

by-sensor and find that one sensor (HIGH-3) disagrees with the others (Figs. 3.5e-f).

This outlier is attributed to an uncorrected instrument drift or other long-period

noise, and we omit it from subsequent calculations. The remaining three sensors

agree closely with each other (±10% of cumulative flow). We invert these three

records jointly for erupted volume, finding peak flow rate of 2.39 × 107m3/s and

cumulative volume of 5.31× 108m3.

Precursory Uplift

The first infrasound signal from this eruption was a relatively small emergent pressure

increase (beginning at 11:46:38 UTC at the nearest station) that lasted about 0.71 s

before being obscured by the main blast arrival (Fig. 3.5). No coherent infrasound

was recorded before the onset of the emergent pressure rise.

Inverting the brief, low-amplitude precursor using Green’s functions from numeric

models would be problematic because of possible acausal contamination from the

blast wave. Instead, we invert the precursor using equation 3.3 (which is strictly

causal) and correct for path effects by weighting each trace by the amplitude of the

corresponding Green’s function. Drift removal is performed by subtracting the trends

found in the 14 seconds before the precursor began. Signal-to-noise ratio is not high
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during the precursor, so weighted traces are stacked to reduce noise.

We estimate the volume of displaced atmosphere during this uplift as 2.08×104m3

using equation 3.3 (Fig. 3.5). Following interpretations of similar precursory pressure

increases at Santiaguito (Johnson & Lees, 2010), Sakurajima (Yokoo et al., 2009), and

Suwanosejima (Yokoo & Iguchi, 2010), we attribute this signal to vent surface uplift

before gas escapes. The area of the vent that deformed during this phase is unknown,

so we cannot calculate the height of the uplift.

Electrical Activity

Infrasound from station HIGH contains glitches (brief spikes in the time series)

throughout the first 20 minutes of the eruption. Glitches do not appear at station

LOW, possibly because of differences between the two loggers’ locations, antialias-

ing filters, or cables (which were shielded at LOW but not at HIGH). These glitches

include a one-sample voltage spike preceded and followed by brief oscillations (pre-

sumably induced by the data logger’s antialiasing filter); they appear on all channels

within the same sample interval (0.001 seconds) with distinct waveforms (fig. 3.2).

Such characteristics are unlikely for acoustic waves, but are typical of glitches ob-

served to coincide with lightning strikes during thunderstorms, which are interpreted

as electromagnetic interference from radio waves generated during lightning strikes

(Anderson et al., 2014). Volcanic lightning is common in explosive eruptions and

forms as a result of charging due to violent interactions between ash particles or, if

present, hydrometeors (Behnke et al., 2013; Cimarelli et al., 2014).

Glitches are considered noise for the infrasound analysis and are therefore removed

by a median filter before waveform inversion (text S2). Although glitch elimination

provides cleaned-up acoustic signals to analyze, we also analyze the timing of the
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glitches because they indicate lightning activity during the eruption. Lightning is

absent from 0-25 s, frequent from 25-250 s, sparse from 250-1250 s, and absent after

1250 s (Fig. 3.6). In total, we identify 119 lightning events, of which 93 occurred

within 300 s of the explosion. For comparison, the World Wide Lightning Location

Network (WWLLN, a network that detects lightning globally with low detection

efficiency) detected three events, all of which appear in our data.

Tremor

The main vulcanian explosion is followed by a period of infrasonic tremor. We subdi-

vide the tremor into types 1a, 1b, and 2 by waveform shape, amplitude, and semblance

(Fig. 3.6). The first tremor period (60-1200 s) alternates between tremor 1a and 1b,

and the second tremor period (1200-3000 s) consists of type 2 only. The following

analyses are summarized in table S2. All analyses are done with data from channel

HIGH-2.

Waveform shape varies systematically during the long period of tremor following

the explosion, with some periods composed of strongly asymmetric pulses (higher-

amplitude compressions than rarefactions) and other periods fluctuating more evenly

about zero. To quantify pulse asymmetry over long time scales, we plot Pearson’s

moment coefficient for skewness for moving 50-s windows. Skewness is defined as

µ̃3 =
1

N

N∑
i=1

(
pi − µ
σ

)3

(3.5)

where µ̃3 is skewness, µ is the mean, σ is standard deviation, and N is the number

of samples in a window. This measure quantifies the degree to which tremor is

dominated by strongly asymmetric pulses (Fee et al., 2013).
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Figure 3.6: (a) Acoustic waveforms (gray) and skewness (black). (b) Sem-
blance. (c) Lightning occurrence as binned event counts (black) and cumu-
lative counts (gray). Red line represents World Wide Lightning Location
Network detections (three events detected, all within 11 s). Background
color shows tremor type. (d-f) Examples of tremor types 1a, 1b, and 2.
Tremor types are distinguished in time series by their differing amplitude,
semblance, and waveform shape.
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Additionally, we calculate semblance as an indicator of wave coherence. For a

window of n samples, the semblance S is defined as

S =

∑n
i=1

[∑3
j=1 pj(ti − δtj)

]2

3×
∑n

i=1

∑3
j=1 pj(ti − δtj)2

, (3.6)

where pj is the infrasound recorded at microphone j, ti is the time step i, and δtj

is the time shift at microphone j for the apparent velocity. For each window, we test

a range of apparent velocities and use the maximum semblance value obtained.

Tremor 1a and 1b both feature continuous, stationary waveforms. However, they

differ from each other in skewness, amplitude, and semblance. Skewness of tremor

1b fluctuates around zero, while tremor 1a ranges from about zero to one. Further,

both semblance and amplitude are greater in tremor 1a than tremor 1b.

Tremor 2 differs from tremors 1a and 1b mainly by waveform shape. Unlike the

continuous waveforms of tremor 1a and 1b, tremor 2 waveforms consist of closely

spaced asymmetric pulses separated by irregular time intervals. Each pulse includes

a strong, short-duration compression followed by a weak, longer-duration rarefaction;

amplitudes of compressions are 2-3 times those of rarefactions. Correspondingly,

skewness rises sharply at the onset of type 2 tremor and remains high throughout

that period, demonstrating that the visible differences in waveform shape constitute a

large-scale structural difference between these tremor types. Zero-to-peak amplitudes

of tremor 2 are similar to those of tremor 1a, but peak-to-peak and root-mean-squared

amplitudes are lower in tremor 2; this discrepancy results from the high skewness of

tremor 2.
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Discussion

We divide the volcano’s activity into three periods, including the main vulcanian

explosion and two distinct degassing phases.

Main Vulcanian Explosion

Before the explosion, the vent was sealed and contained a large quantity of pressurized

gas. Surface activity began with a rapid uplift of the vent, creating a precursory

acoustic pulse lasting at least 0.71 s and displacing at least 20800 m3 of air. Because

the shock wave produced by gas release may have propagated supersonically and

partially overrun this precursor, the uplift might be underestimated.

Explosive gas and tephra ejection followed the vent uplift. The stepped rise of

the wave onset in the infrasound data (Fig. 3.5) suggests that gas release occurred

in pulses, probably due to incremental opening of the conduit or successive tapping

of deeper gas-charged sections of the magma column. Altogether, the total erupted

volume from the main explosion is estimated as 5.31×108m3 including gas and tephra

(Fee et al., 2017). If, contrary to our assumptions, nonlinear propagation effects were

significant, these values would be underestimates.

To provide context for the scale of the 14 July 2013 eruption, we compare it to

the two largest explosions from a recent period of explosive activity at Sakurajima

volcano, Japan (explosions 3 and 5 of Johnson & Miller (2014)). Infrasound analysis

indicated that the 2013 Sakurajima explosions erupted 8.3 and 8.4 ×106m3 of volcanic

gas and tephra, a factor of 63 less than the volume erupted at Tungurahua. Compared

to these eruptions, Tungurahua’s blast wave had a longer compression duration (2.4 s

compared to about 1 s at Sakurajima) and a higher peak-to-peak reduced amplitude

(3.4 ×106Pa ·m compared to 3.9×105 and 7.4×105Pa ·m at Sakurajima). Therefore,
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the Tungurahua explosion was considerably larger than these Sakurajima explosions

by several measures, especially by infrasound-inferred erupted volume. By infrasound

amplitude, this explosion was also more powerful than any other discrete explosion at

Tungurahua since the current monitoring network was installed in 2006. In particular,

the peak-to-peak amplitude of the July 2013 explosion exceeds amplitudes of later

vulcanian eruptions in October 2013 and February 2014 by factors of 1.7 and 2.9,

respectively (Hall et al., 2015).

In this explosion, the vent opened in a complex 2-second process including pre-

explosive vent deformation and a series of emission pulses. Similar multi-pulse su-

perposition of blasts is evident, though less pronounced, in explosions at Sakurajima

(Fee et al., 2014; Johnson & Miller, 2014), and similar pre-explosive deformation has

been observed at volcanoes including Sakurajima (Yokoo et al., 2009), and Suwanose-

jima (Yokoo & Iguchi, 2010). These observations demonstrate the complexity of vent

processes that can initiate powerful explosions: vent opening can be a series of events

rather than one single failure. By comparison, the explosive mechanism was much

simpler (single explosive pulse, no pre-explosive deformation) in Tungurahua’s small

explosions in the weeks following 14 July 2013.

Continuous Tephra-rich Degassing

Infrasonic tremor oscillating between types 1a and 1b follows the explosion and is

accompanied by sporadic electrical discharge. The lack of discrete waveforms within

the tremor indicate a relatively continuous emission process, although the variation

in amplitude between these tremor types shows that emission vigor fluctuated over

time scales of tens to hundreds of seconds.

During tremor 1a periods, the high semblance among sensors corresponds to high
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signal-to-noise ratio and a single dominant acoustic source. As a result, we consider

this signal to indicate continuous magma fragmentation at the vent, either by down-

ward propagation of a fragmentation wave (Alidibirov, 1994) or continuous ascent

and bursting of bubbles (Ulivieri et al., 2013).

We interpret the low-semblance signals of tremor 1b to be dominated by incoherent

pressure variations that mask eruptive signals during periods of reduced emission

vigor. This incoherence probably arises from severe wind noise, possibly driven by

updrafts near the vent, as station HIGH was installed in a sparsely vegetated site with

no wind reduction system. Other possible sources of incoherent noise may include

PDCs that passed within hundreds of meters of station HIGH (Hall et al., 2015) and

falling ejecta.

Electrical discharge began before the first tremor period and continued through-

out. The incidence of lightning-linked glitches agrees with the pattern seen in recent

studies at Augustine (Thomas et al., 2007), Redoubt (Behnke et al., 2013), and Ey-

jafjallajokull volcanoes (Behnke & McNutt, 2014). These studies describe explosive

eruptions in which electrical discharge started near the vent soon after explosive ac-

tivity began. Two styles of discharge occur during this period: vent discharge (small

events occurring continuously at the vent), and near-vent lightning (higher-power dis-

crete lightning flashes near the vent). A third type of discharge, referred to as plume

lightning, occurs when a plume is present; plume lightning occurs in long, powerful,

discrete flashes similar to thunderstorm lightning (Behnke et al., 2013).

Similarly, we observe a period between about 25-250 s after the eruption onset

with frequent discharges (around several tens of discharges per minute). The begin-

ning of this phase is abrupt and no discharges are observed earlier. These discharges
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are probably near-vent lightning; our instrumentation is not designed for sensitivity to

electrical activity and is therefore unlikely to record the lower-power vent discharge.

After about 250 s, electrical discharge becomes much less frequent (around 1-2 dis-

charges per minute). Because we cannot locate these events, we cannot classify them

between plume lightning and near-vent lightning. The period of sparse lightning ends

around 1250 s, and no further discharges occur after that time.

Pulsed Degassing

The properties of the tremor signal change abruptly around 1200 s. This new signal,

labeled tremor 2, is dominated by discrete pulses separated by irregular time intervals.

Pulsed degassing continues for 1800 seconds before diminishing.

Electrical discharge also ceases around the beginning of the pulsed degassing

phase. Two interpretations of plume activity could explain the absence of discharges.

The first possibility is that plume electrification was driven by volcanic emissions

during the first tremor period, so lightning diminished when the style of emission

changed. The second possibility is that plume electrification resulted from an initial

intense venting of gas and ashnot by emissions during the first tremor periodand that

by coincidence the plume electrical activity stopped around the transition to tremor

2. In either case, emission during the tremor 2 period was insufficient to create a

column or cloud with electrical activity.

We consider two potential sources for tremor 2, one being small, repeated bursts at

the vent. This mechanism is suggested by the resemblance between these pulses and

explosion waveforms (sharp, brief compressions followed by longer, weaker rarefac-

tions). These events could be bubbles ascending to the magma surface and bursting

(e.g., Ulivieri et al., 2013), or cycles in which permeable crack networks in the magma
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pressurize, burst, and re-seal.

These waveforms also resemble crackle, a type of signal produced by supersonic

jetting. Waveforms similar to tremor 2 were recorded at regional distances during

the June 2011 eruption of Nabro volcano (Eritrea) and Stromboli volcano (Italy),

and were attributed to supersonic gas jetting because of their similarity to noise from

rocket and jet engines (Fee et al., 2013; Goto et al., 2014). Crackle was associated with

the remarkably ash-poor, gas-rich character of the Nabro and Stromboli emissions.

We speculate that ash-poor jetting could potentially explain both the absence of

electrical activity and this tremor.

Recording Volcanic Lightning Alongside Infrasound

Our method of lightning glitch loggingconnecting infrasound microphones to a data

logger with long unshielded cableswas discovered by accident in this campaign but will

be useful in future infrasound projects. If a local infrasound station is already being

installed, this method yields lightning event times with no additional equipment,

expense, or installation time, and minimal extra data processing, and with higher

detection efficiency than is possible with global networks like WWLLN. The timing

and event frequency of volcanic lightningwhich is driven by conditions in the plumecan

therefore serve as an easily obtained but valuable complement to existing monitoring

data (which typically offer little information on plume conditions in cloudy weather).

However, this method has downsides and is inappropriate in some scenarios. For

example, if more detailed information (like discharge location and power) is required,

the method in this paper is insufficient and a dedicated lightning monitoring system

should be used (Behnke & McNutt, 2014). Additionally, because the median filter

acts as a low-pass filter on ordinary data, a higher sample rate than normal may
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be needed to prevent the median filter from attenuating high acoustic frequencies of

interest.

Conclusion

We analyzed near-vent infrasound data from the 14 July 2013 vulcanian erup-

tion at Tungurahua in order to quantify explosion dynamics and describe subsequent

eruptive activity. Ash and gas can be released by diverse and complex processes

in powerful vulcanian eruptions, and near-vent infrasound and electromagnetic data

can differentiate these processes. Lightning-related glitches in the infrasound record

indicate that volcanic lightning began abruptly 25 s after the eruption onset and

diminished over the next 20 minutes; future infrasound projects could easily record

lightning using our method with little effort and no extra equipment.

The eruption began with the opening of a sealed magma conduit containing pres-

surized exsolved gas. A complex failure process including vent uplift and a series of

gas emission pulses opened the vent over a 2-second period, resulting in the rapid

expulsion of at least 5 × 108m3 of gas and tephra. Volcanic lightning (registered as

glitches in acoustic data) began 25 s after the explosion. Continuous fragmentation in

the conduit emitted ash and gas and produced continuous infrasonic tremor starting

50 s after the explosion and lasting about 1150 s. Finally, electrical activity in the

plume ceased; simultaneously, vent activity transitioned to either pulsed degassing or

supersonic ash-poor gas jetting, producing pulsed infrasonic tremor lasting 1800 s.
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CHAPTER FOUR: THE GEM INFRASOUND LOGGER AND CUSTOM-BUILT

INSTRUMENTATION

This chapter was published by the Seismological Society of America in the journal

Seismological Research Letters and should be referenced appropriately as below.

Anderson, J. F., Johnson, J. B., Bowman, D. C., and Ronan, T. J. (2018). The

Gem infrasound logger and custombuilt instrumentation. Seismological Research Let-

ters, 89(1), 153-164.

Reproduced by permission of the Seismological Society of America.
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CHAPTER 4:

THE GEM INFRASOUND LOGGER AND

CUSTOM-BUILT INSTRUMENTATION

Summary

We designed, built, and used a custom infrasound logger (referred to as the Gem)

that is inexpensive, portable, and easy to use, and we describe its design process,

qualities, and applications in this paper. Field instrumentation is a key element of

geophysical data collection, and the quantity and quality of data that can be recorded

is determined largely by the characteristics of the instruments used. Geophysicists

have tended to rely on commercially available instruments, which suffice for many

important types of fieldwork. However, commercial instrumentation can fall short in

certain roles, which motivates the development of custom sensors and data loggers.

In particular, we found existing data loggers to be expensive and inconvenient for

infrasound campaigns, and developed the Gem infrasound logger in response. In this

paper, we discuss development of this infrasound logger and the various uses it has

found, including projects on volcanoes, high-altitude balloons, and rivers. Further,

we demonstrate that when needed, scientists can feasibly design and build their own

specialized instruments, and that doing so can enable them to record more and better

data at a lower cost.
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Introduction

Importance and Needs of Infrasound Campaigns

This paper discusses the development of Do It Yourself (DIY) instrumentation de-

signed for the needs of campaign-style infrasound recording, which we did not consider

to be satisfied by existing instrumentation. Campaigns focus on capturing important

geophysical phenomena by recording data for short time periods (typically days to

weeks). This style of data collection is useful in various geophysical subfields, and has

contributed to the success of volcano infrasound research in particular (Goto et al.,

2014; McKee et al., 2014; Yokoo et al., 2014; Johnson & Ronan, 2015, , among many

others).

The short duration of campaigns presents researchers with an opportunity to

collect valuable data at low cost and with few workers. This is beneficial, especially

to researchers with limited resources, but imposes constraints in the field: many

difficult tasks must be accomplished with limited time and personnel. For example,

the common need to install equipment in remote sites (for reasons like optimizing

signal-to-noise ratio, or to make a network spatially comprehensive) often requires

long hikes and camping, limiting the amount of equipment that can be carried as

well as the time available for installation. In general, the number of stations that can

be installed during a campaign is constrained by instrument portability and ease of

installation, and campaigns that use many portable, easy-to-install instruments can

be more effective than those that rely on few heavy, expensive systems.

Instrumentation needs during campaigns differ from those of long-term projects.

Power consumption of sensors and loggers is critical because it affects portability:



108

for example, a single infrasound station that requires a 10-kg lead-acid battery may

be less portable than several stations powered by 500-g sets of alkaline batteries.

Additionally, time constraints during campaigns mean that installation and retrieval

procedures should be reduced to as few tasks as possible (ideally just site selection,

note taking, and connecting or disconnecting power). Simplifying these procedures

also reduces the probability of data loss occurring due to user error during potentially

stressful conditions encountered in the field. For example, combining the sensor and

logger into a single unit can improve the instrument’s portability and ease-of-use by

eliminating the need for cables (discussed in section 1.2).

Finally, cost determines the number of instruments a researcher can afford to

install, but also affects the quality of data that can be recorded. Equipment in the field

faces a variety of risks, including vandalism, animal attacks, and geologic hazards. (All

of these have affected our instruments in past infrasound campaigns: the authors have

had sensors stolen, damaged by bears, flooded, and buried under lava.) Researchers

face a dilemma regarding signal quality and instrument vulnerability: the best sites

are often the most vulnerable, with the area near a volcano’s vent being a prime

example. When weighing the benefits of better data against the risk of instrument

loss, a cautious researcher would opt for riskier sites with higher data quality when

instruments are cheap, and for safer sites with lower data quality when instruments

are expensive. Therefore, the use of cheaper instruments enables researchers to install

larger networks that include high-risk, high-reward sites.

Inadequacy of Existing Data Loggers in Infrasound Campaigns

Various high-quality seismic data loggers are often used in infrasound campaigns.

Examples include the Omnirecs Datacube (3 channels) as well as the Trimble REF
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TEK 130 (3-6 channels). Each of these loggers records 24 bits at a range of sample

rates with multiple gain settings, which makes them compatible with a wide range

of sensors beyond seismometers, including infrasound sensors. A third datalogger to

consider is the Trimble REF TEK 125A, a single-channel datalogger designed to log

geophones in short deployments during active-source seismic surveys. A limitation of

these data loggers is their expense (at least 1000-2000 USD per channel). These costs

are comparable to broadband seismometers, but exceed by an order of magnitude

the cost of some common infrasound microphones (such as the infraBSU, described

in (Marcillo et al., 2012)). This cost disparity limits the opportunity for large-N

projects and deployments in risky or restrictive environments.

Further, multi-channel data loggers require long cables for effective array geome-

tries, which is logistically problematic for campaign-style infrasound deployment. Ca-

bling limits the aperture of microphone arrays and is expensive, bulky, hard to con-

ceal, prone to pest damage, and generally inconvenient. On the other hand, arrays

of single-channel sensor-loggers may be distributed with a high degree of flexibility

and arbitrarily long spacing. In practice, microphone arrays using single-channel

instruments are much easier to conceal and faster to install, and higher-quality scien-

tific results can be obtained from their more flexible geometries (Christie & Campus,

2010).

Designing a Custom-built Infrasound Logger

We first decided to explore designing and building a custom infrasound logger to over-

come the limitations of existing infrasound logging systems. The Gem was designed

with the priorities of portability, ease of use, power draw, and low cost. The logger

is integrated with a calibrated infrasound sensor (Marcillo et al., 2012); this allowed
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simplifications to be made that reduced the package’s cost, power draw, and size. The

resulting instrument is ideal for infrasound campaigns lasting from hours to months.

The design process for the Gem has lasted around four years off-and-on at the

time of this writing (Table 2) and will probably continue in the form of minor bug

fixes and improving extensibility of the logger. Development began with finding and

testing methods that could record powerful infrasound at 100 samples per second

with high resolution. Ultimately, a 16-bit analog-to-digital converter combined with

an infrasound sensor (Marcillo et al., 2012) was found to work. Subsequent functions

(writing to a micro-SD card, receiving GPS data, and using an efficient power supply)

were added successively, ultimately resulting in a basic infrasound logger. This first

version was merely a proof of concept: signal resolution was poor due to the lack of

an amplifier, assembly was tedious because a printed circuit board (PCB) was not

available, and the makeshift enclosure caused loss of function due to severe overheating

in the sun.

These problems were addressed in the coming months, resulting in the first num-

bered version (0.5). The main improvements to version 0.5 included adding a low-

noise amplifier (so signals could be recorded at high resolution), designing a PCB

(making the manufacturing process less tedious and error-prone), and finding a suit-

able enclosure that was convenient, watertight, and inexpensive. The need to learn

new design skills (PCB design software for example, discussed further in section 4)

and the details of unfamiliar components made progress slow. Mistakes from inex-

perience led to more delays: for example, omitting a protective soldermask from the

PCB inadvertently made soldering much more difficult and time-consuming. Once

complete, version 0.5 was shown to be capable in the field, and some units are still
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in use. However, it had much room for improvement: the logger had insufficient pro-

tection from power supply noise, manufacturing was difficult and slow, and care was

needed during use to avoid short circuits.

Subsequent versions made small changes to hardware (interchangeable parts, re-

ducing self-noise, and improving manufacturing methods) and firmware (improve-

ments to user interface, adding a digital anti-aliasing filter). The most significant

changes occurred in version 0.9, in which most through-hole components and break-

out boards were replaced by compact, inexpensive surface-mount equivalents. Ad-

ditionally, this version incorporated a custom microcontroller board with a built-in

efficient power supply, as well as an analog power plane powered by a noise-reducing

linear regulator. In this paper, all descriptions of the Gem’s design and specifications

refer to version 0.9, and firmware code and hardware designs for this version are pro-

vided in the electronic supplement to this article (codes S1-S3). Gem development was

mainly a side project throughout most of the process, although synergistic application

of the Gem to infrasound research projects provided essential testing opportunities

(described in section 3).

We present this instrumentation to demonstrate the feasibility for individual sci-

entists to develop their own specialized instruments. Hardware design does not nec-

essarily require the resources and expertise of a dedicated instrumentation company.

Development of this sensor-logger package began with integration of DIY-oriented

components, some of which are still used in the current version. We used free, open-

source software to program the microcontroller in a common language (C++) and

to design the printed circuit board. Electronic components, soldering equipment,

a computer, and an inexpensive programming cable were the only supplies needed
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in this process. The authors are not professional engineers and we often relied on

hobbyist-oriented online forums for support.

Theory of Operation

The Gem consists of an infrasound sensor (Marcillo et al., 2012), analog signal

processing circuitry, microcontroller, analog-digital converter (ADC), GPS receiver,

micro SD slot and card, power supply, and sensors to track battery voltage and

temperature (figure 4.1). The electronics occupy two stacked circuit boards, the

lower containing the microcontroller and power supply and the upper containing all

other components. Elements of the popular Arduino platform (ard, n.d.) are used

in this system: the microcontroller runs the Arduino bootloader, Arduino software

is used to program the microcontroller, and the standard pin arrangement of the

Arduino Uno is used for connecting the two boards.

The microcontroller samples infrasound via the ADC at 400 samples per second

(sps), applies an anti-aliasing filter, and writes decimated output to the SD card at 100

sps. State-of-health, GPS location, and GPS time data are also collected and written

to disk periodically. Data are stored as hour-long text files, with each data type

(infrasound, state-of-health, and GPS) written as formatted lines. (Text is preferable

to more-compact binary because text files are easy to read and troubleshoot, and

disk space is not a significant constraint.) Once data acquisition begins, the Gem

logs continuously until the battery dies or the user stops acquisition.

Many aspects of the Gem are user-configurable. Amplifier gain is controlled by

a resistor that can be replaced by the user. Hardware components are modular,

allowing straightforward changing of the pressure transducer model (which controls

the dynamic range) and the capillary filter assembly (which controls the sensor’s
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Figure 4.1: (a) Simplified schematic showing connections between elec-
tronic components. The infrasound sensor produces an analog signal that
is low-pass filtered by a resistor-capacitor (RC) network, amplified by an
instrumentation amplifier, and digitized by the analog-digital converter
(ADC). The microcontroller collects data from the ADC, Global Position-
ing System (GPS), temperature sensor, and battery voltage sensor, and
logs data and environmental information to the SD card. A power supply
converts battery power into a steady 3.3 V that powers the digital compo-
nents; to reduce noise, a linear regulator powers the analog components.
(b) Annotated photo of Gem logger electronics (without enclosure). (c)
Gem logger prepared for field use in a typical watertight enclosure with
rechargeable battery. Solar power is provided through a plug on the out-
side of the enclosure.
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high-pass corner frequency).

Signal Conditioning

Data loggers must eliminate spectral energy above the Nyquist frequency while pre-

serving signals below the Nyquist frequency, and must digitize data with high reso-

lution. To accomplish this, the Gem incorporates filtering stages to eliminate high

frequencies and amplification to ensure high-resolution recordings. These condition-

ing steps are needed to avoid aliasing and to take full advantage of the dynamic range

of the signal.

The sensitivity of the pressure transducer is low (20.4µV/Pa), so amplification is

necessary to align typical output voltages with the input range of the ADC. We use

an instrumentation amplifier to apply a gain of 23.5 to the transducer output to make

the combined sensitivity 478.4µV/Pa. The instrumentation amplifier requires a low-

impedance reference voltage, which is provided by an operational amplifier tracking

a voltage divider. Finally, the ADC samples the amplified signal at 16 bits, with a

resolution of 7.8125µV (16.3 mPa) and clipping amplitude of +/- 256 mV (+/- 536

Pa).

The Gem includes several filters. First, clipping from long-period pressure drifts

of the ambient atmosphere is prevented by a single-pole high-pass pneumatic filter

based on a capillary tube and backing volume (Marcillo et al., 2012). Second, a

resistor-capacitor low-pass filter suppresses high frequency (¿200 Hz) analog signals

to prevent aliasing. Third, the ADC averages the input signal over the 2.1-ms sample

period, which further reduces high-frequency fluctuations. These last two filters are

necessary to prevent aliasing; however, their roll-off is relatively gradual, so a digital

filter is also incorporated to provide a sharper transition. To do this, we oversample
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at 400 sps and apply a digital low-pass FIR filter with 25 sinc coefficients, eliminating

frequencies above 50 Hz. This allows the signal to be downsampled and written to

disk at 100 sps.

The combined effect of these filters approximates our objective of eliminating high

frequencies (¿50 Hz) while preserving lower frequencies (figure 4.2). Aliasing should

be minimal except for cases with weak infrasound and extremely intense audible

signals at particular frequencies. Because most volcanoes (and geophysical sources

in general) emit acoustic energy mainly in the infrasound band (Johnson & Ripepe,

2011), we consider the possibility of aliasing to be remote in realistic field situations.

Real-Time Operating System

Another requirement of the Gem is to digitize data at a precise sample rate with equal

intervals between samples. Although writing to the SD card usually requires little

time, write times can vary and potentially exceed the 2.5 ms sample interval, which

would compromise sample time accuracy. Therefore, we use a real-time operating

system (Greiman, 2017) including two threads to assign tasks different priorities: a

primary thread addresses tasks directly related to sampling, and a secondary thread

performs all other tasks (including processing GPS strings, recording state-of-health

data, and writing to disk). The primary thread interrupts the secondary thread at

the beginning of each sample interval, records a sample, and then returns control to

the secondary thread. This allows coordination of both high- and low-priority tasks,

ensuring that sample times are correct.
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Figure 4.2: Nominal response of the Gem’s antialiasing filter (three stages,
described in the Signal Conditioning section), represented as (a) an am-
plitude spectrum, (b) a phase spectrum, and (c) a time-domain impulse
response. Gray dots in (a) represent measured values from a calibration
using sine waves from a function generator; the observed calibration agrees
closely with the theoretical response.
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GPS Timing

Precise timing is essential for infrasound data loggers and for array processing of

infrasound. The Gem obtains timing information from a built-in GPS module. Every

second, the GPS provides two types of data: a brief pulse marking the exact beginning

of the second, and a text string including the time, date, and location. The logger

writes this information to the SD card so that correct sample times can be determined

during post-processing.

Each GPS, metadata, and data line includes a timer count (accurate to ±30

ppm) from the microcontroller. The data conversion software determines the relation

between the timer count and GPS time and uses the relation to resample data at

regular 0.01-s intervals. This procedure enables accurate sample times to be obtained

without the computational expense of real-time clock drift corrections.

The GPS consumes more power than any other component in the Gem, so it is

activated briefly every fifteen minutes, running long enough to record twenty time

stamps. This GPS cycle is sufficient to maintain timing accuracy of ±2.5ms. Sample

time accuracy was confirmed by comparison against trusted data loggers in lab and

field tests (for example, fig. 4.3).

Metadata

State-of-health information is logged every 10 s. These metadata streams include

battery voltage and internal temperature, along with information on memory use

and processing time. Such information is useful for understanding battery life and

temperature effects on batteries under realistic field conditions, as well as for debug-

ging and investigating unusual recordings. Additionally, the user may connect up

to two extra analog sensors whose output is recorded and logged as metadata. This
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allows users to customize the Gem to record additional environmental information

appropriate for their particular projects.

Power

The power supply for the Gem must be efficient (to maximize battery life) and steady

(to optimize signal quality). However, ordinary Arduino boards are not very efficient:

components not needed in ordinary operation draw significant current, and power

is provided by a wasteful linear regulator. To increase power efficiency, we use a

custom Arduino-like microcontroller board (referred to as the Efficientino) that in-

cludes essential components only and draws power from an efficient switching DC-DC

converter. Further power savings are achieved by running the microcontroller at 3.3

V instead of 5 V, and at 8 MHz instead of 16 MHz. This system also provides

reverse-polarity protection to prevent accidental backwards power connections from

damaging the logger. Current versions of the Gem are not compatible with microcon-

troller boards that run on 5 V (such as the common Arduino Uno). Although future

versions of the Gem may include level shifters for compatibility with 5-V Arduinos,

their low power efficiency makes us recommend against their use when using battery

power.

All components in the logger use common power rails. Although using common

power rails simplifies the circuitry, it risks contaminating the outputs of sensitive ana-

log components (transducer and amplifiers) with noise from digital components (SD

card, microcontroller, and especially the GPS). We combine three standard electron-

ics design practices to protect analog components from power supply noise. Bypass

capacitors in parallel with power supplies smooth out fluctuations in current draw,

and ferrite beads in series with power supplies conduct DC current while resisting
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high-frequency digital noise. Additionally, a low-dropout linear regulator in series

between the common power supply and all analog components reduces power sup-

ply noise further. (Linear regulators would be wasteful for the main power supply;

however, because the analog components draw little current and the voltage drop for

the analog power supply is low, little power is wasted here.) These noise-reducing

components keep actual noise in recordings acceptably low (∼ 15.1mPa RMS, 0.05-25

Hz).

The Gem draws about 107-124 mW when the GPS is on and 36 mW when the

GPS is off (table 1). The total power draw and battery life therefore depends strongly

on how long it takes the GPS to acquire a fix and collect twenty timing points, which

itself depends on GPS reception at the installation site. In one test with partial view

of the sky (near the corner of a building in a wooded area), we found that the GPS

was either searching for a fix or recording samples about 5% of the time; this would

result in an overall power consumption of 41 mW. In a moderately sunny setting, the

Gem can operate indefinitely with a small 3.5-W solar panel and 15-Wh lithium-ion

battery.

Performance

This section evaluates the cost, ease-of-use, and accuracy and reliability of the

Gem.

Cost

Costs of components depends on quantity ordered. Custom-built sensors are often

produced in relatively low quantities; assuming a ten-unit build, the total component

cost is less than about 200 USD per Gem.

Labor costs must also be considered during unit construction. A worker with
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decent soldering skills can build a Gem in 2-4 hours. At a university, student hourly

labor keeps the cost low such that per-unit construction is less than 300 USD. We

find that the build process helps students by developing their electronic skills and

introducing them to the field of engineering and scientific measurements.

Overall, the cost of building the single-channel Gem (with built-in sensor) is less

than 10% of the cost of a conventional seismic-style datalogger even without sensors.

Per-channel, the Gem is less than about 30% of the conventional logger’s cost.

Field tests at volcanoes

We tested the Gem in a range of volcanic settings to determine its accuracy, reliability,

and convenience in the field. Some tests were conducted in parallel with installations

using commercial 24-bit dataloggers. Initial installations were carried out at two

volcanoes–Reventador, Ecuador (November 2015) and Fuego, Guatemala (January

2016)–that produce regular explosions and infrasound. These field tests confirmed the

Gem’s accuracy and ease of use, and were used to identify hardware issues that were

subsequently addressed. Gems have also recorded volcano infrasound at Santiaguito

(Guatemala) in 2015 and Stromboli (Italy) in 2016, and were deployed as a 17-station

network on Tungurahua (Ecuador) in September 2016.

We also performed several tests in controlled environments to assess the noise

level of the Gem. An appropriate testing environment should have GPS reception

and low levels of noise from ambient infrasound and electrical interference, so typical

lab environments are often unsuitable for this task. In these tests, multiple Gems

are co-located and subjected to a common infrasound signal; the resulting recordings

should agree to high precision within the frequency band of interest. The results of

these tests agree with the field tests and establish a noise floor of 7.2-15.1 mPa RMS
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(depending on frequency band) for the most common configuration (table 1).

Volcan el Reventador

Two Gems were installed near Reventador and co-located with an infrasound micro-

phone logged by a commercially available 24-bit Omnirecs Datacube. Although the

instruments were installed by field personnel who had no previous experience with the

Gem, it was reported to be easy and convenient to install and transport. Addition-

ally, the environment at Reventador is very wet and the Gems remained watertight

during the nine-month installation period.

Recovered data quality was excellent as quantified by the high degree of similarity

between recordings from the Gem and Datacube (figure 4.3). In two explosions stud-

ied, correlation between Gem and Datacube recordings was 0.996 and 0.995 over the

0.5-10 Hz band. During the ten seconds preceding these two explosions, the Gem and

Datacube signals differed by 0.019 Pa and 0.027 Pa RMS in the same band, again an

excellent level of agreement.

Volcan Fuego

The Fuego project was conducted to test the usefulness and ease of installation of a

large network of instruments during a short four-day project. A single worker carried

ten Gems in addition to camping equipment, and installed the Gems alone at sites

high on the volcano during one morning of work.

This test demonstrated the utility of the Gem in the field. The light weight (3.6 kg

total weight of all instruments), small size, and fast installation procedure meant that

little time was required to install the network. A great deal of deployment flexibility
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Figure 4.3: Comparison of infrasound recordings at Volcan el Reventador
from collocated reference sensor (infraBSU microphone logged by Dat-
acube, solid gray line) and Gem (overlain dotted dark line). (a,b,d,e)
Time series of two explosions; (g,h) time series between explosions; (c,f,i)
amplitude spectra corresponding to time series. Thin solid lines represent
magnitude-squared coherence between sensors.
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was gained by the single-channel nature of the Gem: the network geometry used at

Fuego would have required hundreds of meters of cable if traditional multi-channel

loggers had been used. Further, with no long cables to bury, it was easy to conceal

the instruments to protect against theft and vandalism in this theft-prone site.

Signals from the network of Gems were used to invert for infrasound sources using

the finite-difference models of (Kim et al., 2015) and the explosion gas flux estimate

method of (Johnson & Miller, 2014). In this procedure, a finite-difference model is

used to calculate Green’s functions from the source to the various receivers. A linear

inversion is then performed in which the Green’s functions and infrasound recordings

are used to estimate gas flux from the vent as a function of time. Fuego’s eruptions

were unusually infrequent and weak during this recording period, but one eruption

had sufficient signal-to-noise ratio at seven stations for analysis (fig. 4.4). Recordings

across these stations were in excellent agreement (fig. 4.4a) and the inversion for gas

flux returned reasonable results (fig. 4.4b).

This project demonstrates the viability of the Gem in an important role in volcano

infrasound: estimating the quantity of gas ejected during explosions. Explosive gas

flux is important for purposes both scientific (tracking volatile flux through the vol-

canic system, and understanding the physics of explosions) and monitoring (serving

as an easy-to-calculate index of explosion size, and affecting the behavior of plumes

and ballistics). Using large numbers of spatially distributed sensors can improve gas

flux inversions, and single-channel, highly portable instruments like the Gem are ideal

for this job.
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Figure 4.4: (a) Observed traces of an explosion (14 January 2016, 13:45
UTC) at Volcan Fuego (Guatemala), shown with synthetic traces found
using numeric models of the volcano’s topography and the inferred gas
flux. Good agreement is seen between modeled and observed infrasound.
Traces are normalized with respect to peak-to-peak amplitude of observed
traces; vertical bars plotted with traces represent 2 Pa. (b) Instantaneous
(black) and cumulative (gray) gas flux found by inversion of recorded data.
(c) Map of stations at Volcan Fuego. (d) Location of Volcn Fuego in
Guatemala.
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Non-Volcanic Applications of the Gem

The Gem is specialized for campaign-style fieldwork on volcanoes. However, its qual-

ities of being portable, inconspicuous, and inexpensive have made it useful for other

infrasound studies, a few of which are summarized in this section.

Aerial Infrasound Recording

Infrasound is normally recorded on the ground. However, airborne infrasound has

received recent attention such as the balloon-based study of (Bowman & Lees, 2015b).

In such work, payload weight and size is limited, so it is important that instruments be

small and lightweight. Additionally, aerial platforms are inherently risky, making low

instrument cost desirable. These demands make the Gem an attractive instrument

for such applications.

Several Gem loggers have now flown on high-altitude balloons, recording infra-

sound tens of km above the surface of the Earth. Two types of balloons have been

tested as platforms for aerial infrasound: solar hot air balloons, and helium balloons.

Recently, a solar balloon was designed that can be built and launched anywhere by a

single worker, requiring several hours of preparation and costing a few tens of USD in

materials (Bowman et al., 2015). Although the balloon can reach altitudes of 16-22

km and can fly as long as sunlight is available, it has an extremely low lift-to-size

ratio and therefore cannot carry heavy payloads. In fact, the Gem is the only known

infrasound recording system that it can carry safely.

In a recent project, a solar balloon-borne Gem at an altitude of 16 km recorded

a controlled explosion on the ground at a range of 320 km (fig. 4.5), demonstrating

the utility of balloon-borne Gems for recording infrasound in order to locate sources



126

or probe atmospheric structure. The weight of the Gem was reduced to 77 g by

removing it from the standard enclosure, and a lightweight 9-V lithium battery was

used to power it. The amplifier gain was increased by changing the resistance of the

gain-setting resistor, resulting in resolution of 4.87 mPa/count; this helped improve

signal fidelity when recording weak infrasound in the stratosphere. Background noise

levels on the Gem logger were comparable to those recorded on the International

Monitoring System infrasound network (fig. 4.6). The 0.2 Hz ocean microbarom

spectral peak was present during the flight, but ground stations in the balloon’s flight

path did not record this signal. The lack of a peak on the ground is consistent with

high wind noise levels during the day (Roger et al., 2005), an issue that balloon-borne

sensors do not seem to have (Bowman et al., 2017).

Gem loggers are also useful as piggyback payloads that can take advantage of ex-

isting balloon campaigns to access regions lacking in traditional infrasound coverage,

like the open ocean and the poles. These large helium balloons are typically carry

instruments such as telescopes that weigh thousands of kilograms; a Gem logger’s

weight is trivial by comparison. However, the scientific impact of recording infra-

sound in the stratosphere is significant (e.g., Bowman et al., 2017), so balloon science

teams are often willing to include such lightweight additions to their main payload.

Gems have been tested in this capacity already: they were present on the 2015 High

Altitude Student Platform flight (Guzik et al., 2008; Bowman & Lees, 2016), where

they successfully operated during a day/night cycle at an altitude of 37 km.
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Figure 4.5: (a) Recordings of a 1000-kg trinitrotoluene (TNT)-equivalent
explosion performed at the Energetic Materials Research and Testing Cen-
ter, Socorro, New Mexico. Infrasound stations include a Gem mounted
on a small inexpensive solar balloon in the stratosphere, an infraBSU and
Datacube carried by a large expensive helium balloon in the stratosphere,
and a Hyperion microphone logged by an RT-130 on the ground. (b)
Photo of a solar balloon carrying a Gem shortly after launch. Large net-
works of solar balloons with Gems could become a cost-effective means
of monitoring infrasound sources on the ground and tracking atmospheric
structure.
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Figure 4.6: Power spectrum of a Gem floating at 16-km altitude on a solar
hot air balloon compared with background noise levels on the International
Monitoring System (IMS) infrasound stations (Brown et al., 2014). Gem
power spectra as recorded (unscaled) and adjusted for decreased acoustic
impedance at altitude (scaled) are presented (Bowman et al., 2017).
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River Infrasound

The Gem was recently used to record infrasound from hydraulic jumps on rivers. We

studied several features in the Boise and Payette rivers, Idaho, USA. As an example,

we discuss a campaign at Big Falls, a stepped series of hydraulic jumps on the South

Fork of the Payette river (Ronan et al., 2017).

The purpose of this project was to record river infrasound through a flood cycle

to track hydrodynamic changes in the rapid and their relationship to river discharge.

This was accomplished by installing an instrument network around the rapid. This

site was difficult to access–in particular, the left bank could only be reached by

whitewater kayak–and had a high risk of vandalism due to heavy recreational traffic.

Consequently, the highly portable, inconspicuous, inexpensive Gem was ideal for this

campaign.

Preliminary results of this work are encouraging. Infrasound recordings are coher-

ent across the network and a semblance grid search reveals a source region downstream

of one of the hydraulic jumps (Fig. 4.7). This project demonstrates the viability of

dense networks of Gems for investigating and tracking fluvial hydrodynamics.

Do-It-Yourself Instrumentation

The rise of custom hardware has helped researchers in Earth science (Mallon, 2014)

and other fields by reducing costs and increasing specialization of research equipment

(Pearce, 2012). Custom instruments based on the popular Arduino platform are used

for a range of tasks including detecting radiation, measuring pH, and analyzing DNA.

This trend has facilitated the sharing of open-source hardware, enabling researchers

and labs to benefit from designs created by others while sharing their own designs in
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Figure 4.7: High-semblance source regions identified by grid search at Big
Falls, South Fork of the Payette River, Idaho (Ronan et al., 2017). In-
frasound data were band-pass filtered from 3 to 6 Hz before calculating
semblance. The ability to image infrasound source regions in complex
rapids using local instrument networks demonstrates this technique’s use-
fulness for studying and tracking hydrodynamics in river features.
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turn. New designs and ideas can spread more rapidly and cheaply than in a typical

commercial marketplace.

Scientists who design their own instruments benefit from a thriving DIY com-

munity, whose members range from casual hobbyists to engineers. Several companies

serve this community by providing easy-to-use components, detailed instructions, and

online support. DIY-oriented suppliers used in this project include Adafruit, Evil-

MadScientist, Pololu, Sparkfun, OSH Park, and OSH Stencils. Other suppliers, like

Digikey and Mouser, have large selections and low prices, but offer less support for

non-experts. Beginners have the option of using DIY-oriented components at first

and advancing to cheaper, conventional parts as they gain experience; this strategy

was used in the development of the Gem.

The DIY instrument designer is further helped by the availability of free software

that does not require specialized training. Two common design tasks require spe-

cialized software: programming the microcontroller’s firmware, and designing printed

circuit boards (PCBs). Free software is available for both of these tasks. The Ar-

duino platform offers a convenient and free means of programming microcontrollers:

firmware is written in a language similar to C++ and uploaded to the microcontroller

by USB. Also, a variety of open-source libraries are available through Arduino; the

Gem firmware uses several and is therefore open-source itself (code S3 in online sup-

plement to this article). We investigated two free programs to help design PCBs:

KiCAD, which is free and open-source, and the light version of Eagle, which is free of

charge and widely used but closed-source, limited to small board sizes, and licensed

for noncommercial use only. As with much software used in science, the learning

curve may initially be steep. We tested both PCB design programs (finding that
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both were powerful and required several days of work for proficiency) and selected

KiCAD because of its lack of restrictions.

Finally, online forums are an essential tool for DIY instrument design. Some

forums are operated by companies (such as the Adafruit and Arduino forums); others,

like StackExchange Electrical Engineering, are non-commercial. Users can search and

browse answers to past questions or initiate new inquiries that will be responded to

quickly. This free expert support is invaluable to beginning instrument designers.

Although DIY instrument design is more feasible now than in the past, scientists

must also consider the disadvantages of designing their own instruments. The main

disadvantage is the amount of time that must be invested in development and the

engineering skills that must be mastered. Additionally, by building their own instru-

ments, scientists take full responsibility for ensuring that instruments work once in

the field. Rigorous instrument testing is a long process and detecting and correcting

every possible malfunction is difficult, so scientists may prefer to leave such tasks to

instrument engineers. Another potential difficulty faced by all non-standard or ad-

justable instrumentation (not just DIY instruments) is the need to conform to stan-

dard formats and completely account for instrument response when archiving data.

(Gem data files can be converted to common seismic formats easily, but researchers

must keep track of any adjustments they make that affect the sensitivity or frequency

response.) Finally, the manufacturing process is affected by economies of scale: com-

ponents or manufacturing processes can be much more expensive or difficult when

building only a few units (typical for an individual) than when building hundreds or

thousands of units (more typical for an instrument company). All of these difficulties

had to be overcome in the process of designing and building the Gem; however, in
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our case, we believe the outcomes of the project justify the challenges we faced.

Conclusions

We designed and built the Gem infrasound logger and collected useful data with

it in the field. This instrument is considerably cheaper and more convenient for

infrasound campaigns than more expensive commercial systems. Instrument design

does not necessarily require the resources of an electronics company: the do-it-yourself

electronics market offers easy-to-use components and free design software accessible

to non-engineers. Designing and building their own equipment has helped scientists

in a range of fields, and geophysicists can benefit from adopting this practice as well.

Future work will explore specialized applications of the Gem. We expect further

innovations related to balloon-borne infrasound recording as this new data collection

method matures. We also expect to see the development of novel means of infra-

sound recording. For example, we have begun testing the Gem as a payload for a

multirotor UAV, and projects to record volcano infrasound by quadcopter are being

planned. Additionally, we are exploring the possibility of recording infrasound un-

derwater using the Gem. The ability to connect auxiliary sensors to the Gem creates

further opportunities for specializations: for example, a Gem recording volcano in-

frasound could simultaneously record radiance of the vent, or a balloon-borne Gem

could record absolute atmospheric pressure alongside infrasound. Finally, the Gem

will continue to be used in traditional ground-based infrasound projects.
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CHAPTER 5:

MODELS AND ANALYSIS OF COARSE

EJECTA DISPERSAL IN VOLCANIC

ERUPTIONS

Summary

Volcanic ejecta contain a wealth of information on explosion and plume physics,

but inferring source processes requires atmospheric effects to be understood and ac-

counted for. This section introduces tephra transport modeling through the ambient

atmosphere and discusses its application in two very different eruptions: the 14 July

2013 vulcanian eruption at Volcan Tungurahua (Ecuador) and the 3 March 2015 lava

fountain at Volcan Villarrica (Chile). In the Tungurahua study, I show that near-vent

acoustic sensors recorded infrasound from falling blocks (whose impacts were indepen-

dently observed at least 2 km from the vent) and that the impact times and locations

are consistent with reasonable eruptive parameters. In the Villarrica project, I show

that a narrow (∼ 10 − 15 km wide, depending on downwind distance), elongate (at

least 30 km) deposit of porous scoria lapilli can be explained with a tephra transport

model that considers actual atmospheric properties from the time of the eruption, and

that wind shear affects the deposit in subtle but noticeable ways. Although tephra
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properties vary widely and the physics of tephra transport is highly scale-dependent,

a simple Lagrangian (particle-tracking) transport model is found to be an efficient

and flexible way of modeling tephra trajectories in a variety of conditions.

Table 5.1: Notation

A cross-sectional area of particle (m2)
CD drag coefficient (unitless)
g acceleration from effective gravity (true gravity plus centrifugal force) (m · s−2)
G total gravitational, centribugal, and buoyant force

k̂ vertical unit vector, defined as parallel to effective gravity
K diffusivity tensor (m2s−1)
m mass of particle
Q volumetric concentration of tephra (kg/m3)
r particle radius (m)
r turbulent wind velocity vector (m · s−1)
S source terms in conservation equations
t time (s)
v velocity vector (m · s−1)
V volume (m3)
w wind velocity vector (m · s−1)
x cartesian position vector [x, y, z] (m)

x, y, z cartesian coordinates (m)
µ dynamic viscosity (Pa · s)
ρ density (kg ·m−3)
τ scale time of turbulent eddies (s)
φ flux of a conserved quantity Q (units of Q times m−2s−1)
∇ the ’del’ operator ( ∂

∂x
, ∂
∂y
, ∂
∂z

)

Table 5.2: Subscripts

atm velocity or density of atmosphere

tephra velocity or density of tephra particle
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Table 5.3: Unit abbreviations: SI units are used (sometimes with standard
metric prefixes) except when existing convention prefers another unit.

m meter
s second
kg kilogram
K Kelvin
Pa Pascal (kg ·m−1 · s−2)

Introduction

Pyroclastic fall deposits are tephra (volcanic ejecta) emplaced by falling to the

ground through air after having been ejected explosively from a vent or carried upward

in a plume (contrasting with volcanic deposits transported along the ground as lava,

rockfalls, or pyroclastic density currents). They have been a major research topic

in volcanology due to their ability to reveal properties of past eruptions (Houghton

et al., 1999) and their role as a major hazard (Wilson et al., 2012).

Physics of Tephra Fall

Change in ejecta momentum (m∂v
∂t

) of a particle depends on the combined gravitational-

buoyant forces acting on it (G, determined by particle size and mass), and atmo-

spheric drag (D, determined by steady winds and random turbulent motion–discussed

in section 1.3.1):

m
∂v

∂t
= G+D (5.1)

Ejecta trajectories (with velocity v and position x) then depend on the initial
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position x0, initial velocity v0, and cumulative accelerations during flight:

v = v0 +

∫ t

0

(G+D)

m
dt (5.2)

x = x0 +

∫ t

0

vdt (5.3)

Gravitational Force

Gravitational force (−mgk̂) on a particle is approximately constant in the atmosphere.

The buoyancy force (Vtephraρatmgk̂) varies with atmospheric density depending on

height, but is generally small due to the large density difference between air and rock.

The combined gravitational-buoyant force is therefore G = −mg(1− ρatm/ρtephra)k̂.

Drag Force

Drag force depends on the particle and wind velocities as well as atmospheric prop-

erties. A particle is in equilibrium with zero acceleration when the drag force exactly

balances the downward gravitational force; this occurs when the horizontal velocity

of the particle is equal to the local horizontal wind speed and the vertical velocity

of the particle is equal to its terminal velocity (or settling velocity) vs. Low-mass

particles like ash typically reach equilibrium so quickly that their trajectories can be

calculated accurately by following the horizontal wind velocity while falling at vs; in

this case, the initial velocity of the particle can be neglected (Folch, 2012). However,

higher-mass particles like lapilli and blocks might take significant time to reach equi-

librium or might never do so before impacting the surface, meaning that in such cases

v0 cannot be ignored.
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Rayleigh Drag (Turbulent Flow)

The method used to calculate drag force depends on the dimensionless Reynolds num-

ber Re = ρatmvL
µ

, a ratio of inertial forces to viscous forces that determines whether

flow is laminar (low Re) or turbulent (high Re) (Folch, 2012). In turbulent flow (high

Re), viscosity is negligible. Rather, the drag force arises from Rayleigh drag (or form

drag), the process of displacing air in the path of the projectile (Shuttleworth, 2012;

Folch, 2012), defined as

D = −CdρatmA(vtephra − vatm)|vtephra − vatm|
2

, (5.4)

where Cd is a dimensionless drag coefficient determined by the particle’s geometry

(0.6 for a sphere, 0.8 for a cube, and higher for rougher geometries) and A is the

cross-sectional area of the particle. Rayleigh drag typically applies to coarse ash

and larger particles (d > 100µm). A particle is said to be falling at its terminal

velocity or settling speed when the upward drag force exactly balances the downward

gravitational and buoyant forcesmg(1−ρatm/ρtephra); with Rayleigh drag, this balance

happens at a settling speed of vs =
√

2mg
CdρatmA

. Settling speed of blocks and bombs

can be high enough that particles may never reach it before striking the ground; such

particles typically follow ballistic-like trajectories (e.g., Mastin, 2001).
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Stokes Drag (Creeping Flow)

On the other hand, particles moving through air with a low Reynolds number (Re <

0.1) are affected mainly by viscous forces, a process called Stokes drag (Slade, 1968):

D = 6πµvsr (5.5)

Where µ is the air’s dynamic viscosity and r is particle radius. For very fine ash

(d < 15µm), Stokes drag as defined in eq. (5.5) fails to account for effects of free

molecular flow and the Cunningham slip correction must be applied (Slade, 1968).

Stokes drag mainly applies to fine particles (d < 100µm), which generally reach

equilibrium rapidly due to their low inertia. Such particles fall at a settling speed of

vs =
2gr2(ρtephra−ρatm)

9µ
.

Atmospheric Winds and Eddy Diffusivity

Atmospheric motions can generally be represented as large-scale ambient winds (vary-

ing on time scales longer than 90 minutes) perturbed by stochastic diffusive motions

from small-scale turbulent eddies (with time scales peaked around one minute) (Shut-

tleworth, 2012). At the scales relevant to pyroclastic fall from a small volcanic plume,

ambient wind is often approximated as purely horizontal, with vertical variation over

scales of hundreds to thousands of meters and gradual horizontal variation over hun-

dreds of kilometers. Such approximations are justified over most of the atmosphere,

but winds can be more complicated within the planetary boundary layer (Shuttle-

worth, 2012).

Instantaneous diffusive motions appear random due to their turbulent nature, and

each particle’s trajectory can be treated as Brownian motion following the Langevin
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equation (Boughton et al., 1987):

ri+1 = ri(1− δt/τ) +

√
2Kδt

τ
N(0, 1) (5.6)

where K and ri are the diffusivity and diffusive component of velocity (at time step i)

in a given dimension, τ is the time scale of turbulent eddies (about 1 minute, as shown

in figure 1.1), δt is the time interval, and N(0, 1) represents a normally distributed

random number with mean zero and variance one.

For time scales longer than the characteristic turbulent time scale, turbulent mo-

tions can be represented well by deterministic diffusive motion following a Fickian

flow law Qr = −K∇Q, where Q is the concentration of a tracer. The eddy diffusiv-

ity tensor K (discussed in section 1.3.1) is commonly written as a diagonal matrix

in Cartesian coordinates with equal horizontal components and a different vertical

diffusivity (often assumed to be zero) (e.g., Bonadonna et al., 2005b):

K =


Kh 0 0

0 Kh 0

0 0 Kz

 . (5.7)

Under certain assumptions (discussed in section 5.2.5), diffusive motion leads to an

analytical solution where particle concentration follows a two-dimensional Gaussian

distribution whose variance is σ2 = 2Kht. (Folch, 2012)

Inertia-less Simplification

Due to the relatively low mass of ash and some lapilli, particles of those sizes are often

modeled assuming the inertial term in eq. 5.1 to be negligible. In such a situation,
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the drag force must balance the gravitational-buoyancy force exactly. Because the

gravitational-buoyancy force is purely vertical, this balance occurs when particles

move at the same horizontal velocity as the surrounding air (so the horizontal drag

is zero) and fall at a speed such that vertical drag force equals the gravitational-

buoyancy force (a speed called the settling speed or terminal fall speed):

v =


wx + rx

wy + ry

wz + rz + vs

 (5.8)

x = x0 +

∫ t

0

vdt (5.9)

Tephra Transport Modeling

Numerical models of tephra dispersal can follow two main approaches of solving (5.1).

“Lagrangian” or “particle-tracking” schemes track a set of particles from their origins

to the ground by approximately solving (5.1) in discrete time steps. “Eulerian”

models, on the other hand, discretize both time and space by dividing the atmospheric

volume into a set of cells, and calculate the flow of a continuous tephra cloud from cell

to cell. A third category of models, Gaussian models like Tephra2 (Courtland et al.,

2012), reduce computational expense by using analytical solutions to the advection-

diffusion equation, but consequently are only valid under certain conditions.
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Lagrangian Models

Lagrangian models predict particle trajectories by combining wind and settling ve-

locities with turbulence as

v = w − vsk̂ + r (5.10)

where v is particle velocity, w is wind velocity, vs is terminal fall speed, and r is

random turbulent motion.

When a particle’s inertia is non-negligible–such as bombs and blocks–a more com-

plicated and general equation of motion must be used:

∂v

∂t
= −(v −w)|v −w|CdAρatm

2m
− gρtephra − ρatm

ρtephra
k̂, (5.11)

where ρatm and ρtephra are the densities of the atmosphere and projectile, Cd, A, and

m are the drag coefficient, cross-sectional area, and mass of the projectile, and g is

the acceleration from gravity.

Particle trajectories depend heavily on atmospheric properties including density,

viscosity, and wind velocity; therefore, calculating tephra paths requires atmospheric

structure to be measured, modeled, or assumed. Such atmospheric parameters are

invalid very near the vent where hot, fast-moving gas erupts alongside the ballistics.

Failing to account for these effects has caused past studies to severely overestimate

ballistic ejection speed and explosive pressure (Fagents & Wilson, 1993; Morrissey

& Mastin, 1999), and it is necessary to account for the speed of eruptive gas if the

purpose of the modeling requires use of the true initial velocity of particles at the vent

itself. However, if the objective is simply to calculate realistic particle trajectories

through ambient air and recovering the true initial velocity is not important, the
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role of erupting gases can be neglected because they affect only a small part of the

particle’s trajectory.

Lagrangian models track individual particles within a flow and therefore do not

explicitly track the flow as a continuum. However, they have a distinct advantage in

that they can be applied to particles with arbitrarily variable and complex physics

with no simplifying assumptions.

Eulerian Models

Equation 5.1 can be reformulated into an Eulerian framework called the advection-

diffusion-sedimentation equation, enabling airborne tephra to be treated as a continu-

ous fluid flow (e.g., the model FALL3D (Folch et al., 2009)). The advection-diffusion-

sedimentation equation can be derived starting with the fundamental conservation

equation ∂Q
∂t

+ ∇ · φ = S, where Q is the conserved quantity (in this case, concen-

tration of tephra particles), φ is the flux of the conserved quantity, and S represents

sources or sinks of the quantity. Because flux of tephra occurs strictly due to its

velocity (as opposed to terms like conduction or forces, which can appear in other

conservation equations), φ = Qv. Eulerian models are mainly applied to particles

with negligible inertia, meaning that particle velocity is determined by gravitational

settling, wind, and eddy diffusion: φ = Qw − Qvsk̂ − K∇Q. This leads to the

advection-diffusion-sedimentation equation

∂Q

∂t
= −∇ · ((w − vsk̂)Q)−∇ · (K∇Q) + S (5.12)

where Q is the tephra concentration, w is the wind velocity, vs is the terminal fall

speed, K is the diffusivity tensor, and S is the source term (representing injection of
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tephra into the atmosphere by the volcano). For a heterogeneous set of tephra, this

equation must be solved several times for different particle types because terminal

settling velocity is highly variable among particles of different size, shape, or density.

Eulerian models are most useful when the flow being modeled consists of a large

number of particles with similar behavior, and has the advantage of explicitly repre-

senting a flow as a continuum. Although it would be convenient to represent the flow

of tephra as a continuum in the 2015 eruption of Villarrica, I use a Lagrangian model

instead because of its flexibility in modeling particles with different properties.

Gaussian Models

An analytical solution to the advection-diffusion-sedimentation equation can be ap-

plied under certain conditions. This method makes the following assumptions: zero

vertical wind or diffusion, horizontal winds varying with elevation only, constant

diffusivity tensor, negligible divergence of settling velocity, and an instantaneous

point-source release of particles. Under these conditions, the advection-diffusion-

sedimentation equation simplifies to

∂Q

∂t
+ (w − vsk̂) · ∇Q−K(

∂2Q

∂x2
+
∂2Q

∂y2
) = Sδ(t− t0)δ(x− x0) (5.13)

where x0, t0, and S are the location, time, and magnitude of the particle source

(Folch, 2012). This system has the analytical solution

Q(x, t) =
1

4πKt
exp(−(x− xc(t))2 + (y − yc(t))2

4Kt
)δ(z − zc(t)), (5.14)
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where the center-of-mass position varies as zc(t) =
∫ t
t0
vz(zc(τ))dτ , xc(t) =

∫ t
t0
vx(zc(τ))dτ ,

and yc(t) =
∫ t
t0
vy(zc(τ))dτ . This analytical solution has the form of a two-dimensional

Gaussian distribution whose mean is the center of mass and whose variance increases

with diffusivity and time.

Methods

I used a custom tephra transport model (Anderson, 2018) written in R for ease of

integration into data analysis scripts (for example, the code provided in Appendix 6).

The transport model is a Lagrangian (particle-tracking) scheme that releases particles

at an initial velocity and position at the vent or in the plume, then tracks them as

they fall through the atmosphere until they cross the topographic surface. The model

makes no assumptions about particle inertia or diffusivity, and is therefore equally

valid for tracking blocks following ballistic trajectories or windblown, diffusing coarse

ash. However, it does assume that the Reynolds number is high enough for Rayleigh

drag (eq. 5.4) to apply; this assumption is valid for the coarse tephra studied in this

dissertation (Folch, 2012).

I use atmospheric models obtained from the Global Forecast System Analysis

dataset (GFS-ANL) (Kalnay et al., 1990) using the rNOMADS package to download

data (Bowman & Lees, 2015a). The GFS data have a temporal resolution of six hours

and spatial resolution of 0.5 degrees of latitude and longitude and include vertical

profiles of pressure, temperature, elevation, and wind (expressed as a two-dimensional

vector in the horizontal plane). Because the latitude and longitude of Volcán Villarrica

do not fall exactly on an atmospheric model location, the atmospheric model used

for tephra dispersal modeling is interpolated between the four nearest GFS-ANL

atmospheric models. The vertical resolution of the model is 5000 Pa in pressure



146

coordinates, corresponding to spacing of about 500 m and 1000 m at elevations of

1500 and 8000 m above sea level. I calculate atmospheric density using the provided

pressure and temperature and the ideal gas law.

GFS atmospheric models are representative of the atmosphere as a whole but are

not accurate immediately around the vent during an eruption, and may fail to capture

topographic effects near the ground. I do not attempt to model tephra transport in

the plume rising above the vent (instead assuming that tephra leaves the plume at

elevations ranging from the vent to the observed top of the plume) and assume that

topographic effects on near-surface winds have negligible effects on tephra.

Topography around these volcanoes was taken from digital elevation models (DEMs)

in the ASTER dataset (NASA/METI/AIST/Japan Spacesystems, and U.S./Japan

ASTER Science Team, 2009).

Ballistic Fall in the 14 July 2013 Eruption of

Tungurahua, Ecuador

Infrasound recordings from the vulcanian eruption at Tungurahua discussed in

chapter 3 include an unusual phase following the main arrival, characterized by an

excursion in source direction away from the vent and subsequent return to the vent.

Such a rapid source migration occurring so early after the eruption is difficult to

explain with already-known acoustic source types at volcanoes. Instead, I attribute

this phase to impacts of falling ballistics.

Explaining a rapidly moving volcanic acoustic source

Infrasound recordings from spatially separated microphones can be compared to de-

termine time lags among the sites. The microphones at the Tungurahua stations
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were installed as linear arrays oriented toward the vent, meaning that analysis of

time lags can determine the angle between the wave incidence direction and the vent.

Therefore, an angle of zero degrees (as recorded during the main blast wave arrival)

corresponds to waves arriving directly from the vent, and an angle of 90 degrees

corresponds to waves arriving from either side of the array or above it.

Changing incidence angles of infrasound recordings reveal a new phase following

the main blast. In this phase, the angle at station 9025 deviates from 0◦ (in-line with

the vent) around 10-15 s, reaches 90◦ at 19 s and peaks slightly later at 106◦, and

again approaches 0◦ around 24 s (fig. 5.2a). The same signal also appears on the

lower station A3H with a 7.6-s delay.

I consider four types of potential acoustic sources with a high incidence angle

(relative to the vent) to explain this unusual signal: a plume, pyroclastic density

currents (PDCs), echoes, and falling ballistics. Although volcanic plumes have been

identified as acoustic sources at other volcanoes (Yokoo et al., 2014), I consider a

plume to be an unlikely explanation for this particular because it would need to

expand at an unreasonably fast speed (averaging at least 97m · s−1) in order to travel

the 1850-m horizontal distance to the station in 19 s. Similarly, moving acoustic

sources (e.g., rock falls and PDCs) are common at volcanoes and can be identified by

their changing propagation directions (Ripepe et al., 2010; Johnson & Ronan, 2015).

However, an unreasonably fast speed of at least 120m · s−1 (about three times as fast

as the fastest PDCs recently recorded at Tungurahua (Hall et al., 2013, 2015)) would

be needed to reach the array in 19 s. Finally, I consider topographic echoes to be

an unlikely source because no major reflectors have an appropriate two-way distance

(6.5 km to explain an arrival at 19 s at a sound speed of 340m · s−1).
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Bombs and impact craters (figure 5.1) were observed in the vicinity of the upper

station and between the two stations after the eruption (Ortiz, 2013), motivating

the investigation of falling ballistics as a possible acoustics source. Having discarded

other explanations for this sound, I therefore test whether ballistic impacts (a source

not previously documented in volcano infrasound studies) can explain this signal, and

find good agreement between ballistic models and infrasound observations.

Ballistic Modeling at Tungurahua

I performed numerical ballistic trajectory models to determine whether the infra-

sound observed from 15-30 s could be explained by falling bombs or blocks striking

the ground. I assumed the model atmosphere to be windless with a density profile

corresponding to actual conditions taken from the Global Forecast System (Bowman

& Lees, 2015a; Kalnay et al., 1990) atmospheric model of the eruption time and

location.

I ran several explosion simulations, each testing a different initial speed and par-

ticle size combination. Each simulation tested a range of ejection angles, but initial

speed and other ballistic properties were identical for all particles within a particular

simulation. Particle radius r and initial speed v0 varied between simulations, but

for simplicity, I fixed particle density ρtephra at 2500kg/m3 and drag coefficient Cd at

0.6 (greater than a sphere, but less than a cube), and assumed particles to be ap-

proximately spherical so that cross-sectional area A ≈ πr2. I performed several such

model runs with different radii and initial speeds in search of a good fit to infrasound

propagation data.

Among the scenarios tested, several resulted in bombs falling first uphill of the

array, then passing downhill of it, then moving uphill of it again (fig. 5.2b). For
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Figure 5.1: A. Map of July 2013 instrument network at Tungurahua. Each
station (LOW and HIGH) included a three-element microphone array ori-
ented toward the vent. B. Topographic cross-section of Volcán Tungurahua
including the stations. C. Signs of ballistic fall after the July 2013 erup-
tion. Photo was taken between stations LOW and HIGH.



150

example, the radius and initial speed combinations of 0.08 m and 225 m · s−1, 0.1

m and 190 m · s−1, 0.15 m and 155 m · s−1, and 0.25 m and 135 m · s−1 reproduce

the observed infrasound propagation pattern, at approximately the correct time. In

reality, the ballistics were probably heterogeneous in their properties and ejection

speed, but these calculations show that simple ballistic models suffice to explain this

unusual infrasound.

Ballistic fall is the only candidate source mechanism that can explain this infra-

sound, and it requires no unlikely assumptions to do so. Although ballistic-derived

infrasound had not been identified before this study, it is probably common in vul-

canian eruptions but difficult to resolve with distant instrumentation; and future

near-vent array studies may detect it as well.

Tephra Dispersal in the 3 March 2015 Eruption of

Villarrica, Chile

After weeks of strombolian activity, Villarrica erupted in a lava fountain in the

early morning of 3 March 2015. The lava fountain reached 1500 m above the summit

and produced a plume rising to 6-8 km above the summit (Johnson & Palma, 2015;

Romero et al., 2018; Sennert, 2015). Porous scoria lapilli coated the summit and

eastern slope of the volcano (fig. 5.3) and fell in a narrow band extending at least 20

km toward the east and southeast.

Field and Satellite Observations of Tephra

The dimensions of the tephra deposit were constrained through a combination of

field mapping and remote sensing. Tephra from the March 2015 eruption could be

distinguished from older deposits in the field by the glossy black appearance of fresh



151

B. Bomb Impacts

D. 19 s E. 23 s F. 27 s

A. Infrasound Slowness

C. 15 s

Figure 5.2: A: Infrasound incidence angle excursion following the arrival
of main blast wave. B: curves showing impact times and locations for
four scenarios (each corresponding to a different ejection speed and par-
ticle size). A variety of explosive scenarios can result in ballistics landing
downhill of the array between 20-25 s after the blast, consistent with the
infrasound. C-F: snapshots of modeled ballistics, assuming ejection veloc-
ity of 135 m/s and particle radius of 25 cm.
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Figure 5.3: The eastern glaciated slope of Volcan Villarrica after the 3
March 2015 eruption: all dark material on the slope is tephra covering
snow and ice.
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scoria, and in many sites the presence of intercepted fresh lapilli on tree branches

confirmed the difference (figure 5.4). I mapped the presence or absence of tephra

at several field sites in order to constrain the width of the deposit. Additionally, I

recorded the dimensions of a sample of at least ten largest pieces found at certain

sites; these sample dimensions were recorded either as scaled photos (figure 5.5a) or

as three-axis dimensions recorded in the field.

Unfortunately, the ability to completely map the tephra deposit was limited by

access to field sites, so I complemented my field observations with satellite images

before and after the eruption (figure 5.6). In many locations covered with snow or

ice, presence or absence of tephra could be determined easily in satellite imagery. My

resulting tephra fall map shows a generally narrow deposit extending at least 30 km

east to southeast from the vent (figure 5.5b).

As expected, particle size grades in the downwind direction: sites far from the

vent have coarser tephra than sites near the vent. Additionally, grading is seen in the

cross-wind direction: at two sites at approximately equal distances from the vent (12-

13 km), tephra was significantly coarser along the deposit’s southern boundary than

along the northern boundary (figure 5.7). I did not observe site-dependent variation

in tephra characteristics other than size among the sites visited.

Modeling Tephra Dispersal

I modeled the Villarrica plume and deposit using the custom transport model de-

scribed in section 5.3, using wind and temperature data taken from the Global Fore-

cast System model of the local atmosphere at the time of the eruption (figure 5.8,

and topography taken from the SRTM dataset (Jet Propulsion Laboratory, 2013).

Two parameters that vary among tephra particles should determine their expected
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Figure 5.4: Example of scoria deposited in the 3 March 2015 eruption of
Villarrica.
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A.

B.

Figure 5.5: A: Field map of tephra deposit. B: Inferred extent of deposit
considering both field and LANDSAT observations.
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A.

B.

Figure 5.6: A: LANDSAT image before eruption. B: LANDSAT image
after eruption. Several areas that were previously covered by snow or ice
are visibly covered with tephra after the eruption.
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Figure 5.7: Map with overlain images of representative samples of coarse
tephra collected at each site. Photos are all scaled according to the scale
bar. Two sites (the upwind site on the north and the downwind site on
the south) are approximately equal distance from the vent, but tephra is
noticeably coarser in the southern site. This effect appears in models as
well and can be explained by wind direction changing with elevation.
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Figure 5.8: The state of the local atmosphere at the time of the 3 March
2015 eruption. Wind speed and direction varies with elevation; most im-
portantly, winds below 6000 m are slower and around to 90 − 110◦, while
winds higher than 6000 m blow faster and around 120−130◦. Consequently,
tephra that falls from high in the plume will be advected more to the south-
east, while tephra that falls low in the plume will be advected more to the
east.

trajectory: the height at which they leave the eruptive column (and begin drifting

with the wind and falling at the settling speed), and tephra aerodynamic parameters

like cross-sectional area, drag coefficient, and mass. I test a range of plausible values

for both of these two properties, without attempting to estimate their distribution.

The 3 March 2015 plume at Villarrica was estimated to reach an elevation of 6-8 km

above the crater (itself at 2850 m above sea level) (Sennert, 2015). Consequently, I

test particle initial elevations at 500-m increments from 3000 m (approximately the

elevation of Villarrica’s vent) to 11500 m above sea level. All particle trajectories

begin above the vent at their initial elevation, moving at the same velocity as the

wind.

The aerodynamic properties of the tephra are generally unconstrained, mainly
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because the drag coefficient and frontal cross-sectional area are difficult to measure in

deposit due to their highly irregular shapes (e.g., figure 5.4). Rather than attempt to

estimate these values, I instead consolidate them into a single “ballistic coefficient”

B = m
CdA

; the ballistic coefficient is a measure of a particle’s resistance to Rayleigh

drag. Due to lack of rigorous constraints, I consider ballistic coefficient to be a

somewhat free parameter, though it must vary substantially due to the range of

tephra sizes found in the field. I found that a ballistic coefficient range between 0.42

and 4.2 kg/m2 resulted in particles falling in distances relevant to the tephra deposit

observations. This range is equivalent to smooth spheres (Cd = 0.47) of dense rock

(2700kg/m3) with particle diameter ranging from 0.11 to 11 mm. Considering that

the Villarrica tephra had considerably lower density (due to its high porosity), higher

drag coefficient (due to its irregular shape), and probably higher ratio of frontal area

to volume, I expect this range of ballistic coefficients to correspond to much coarser

particles, consistent with my observations in the field.

I first calculate particle trajectories in the absence of turbulence (figure 5.9). With-

out turbulent diffusion, these trajectories are completely deterministic: all identical

particles released at equal elevation will follow the same trajectories. Although the

real atmosphere does have turbulence, which significantly affects the width of the

deposit, it is illustrative to test deterministic trajectories first.

In a homogeneous wind field without turbulence, tephra impact distance would

be equal to the wind velocity times the fall time of the particle (itself dependent

on the initial elevation of the particle and the ballistic coefficient). The resulting

deposit would be a thin straight band with particle size decreasing with increasing

distance. However, the deposit in figure 5.9 varies in both orientation and width.
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This can be explained by the variability of the wind direction with elevation: at close

distances to the vent, the deposit aligns with the wind direction at low elevations

(about 100◦), while at greater distances the deposit aligns with the high-level winds

(about 120◦). Intermediate distances (around 5-15 km) include fine particles that fell

from low elevations and coarse particles that fell from high elevations; consequently,

both trends are present here, making the deposit wider and graded south-to-north.

Next, I model the tephra fall including the diffusive effects of atmospheric turbu-

lence. Because the tephra remained in the atmosphere for a long time, atmospheric

turbulence should also cause variation in trajectory for identical particles that leave

the plume at the same height. I use the turbulent diffusivity tensor K to represent

turbulence in both the plume and the ambient atmosphere (eq. 5.12). Because K is

poorly constrained a priori, I consider it a free variable and test different values in

order to match the observed deposit width.

I find that a horizontal diffusivity of 750 m2/s can reproduce the shape and width

of the deposit well (figures 5.10, 5.11). This diffusivity value is within the normal

range used for atmospheric diffusion modeling (∼ 101−104 m2/s), including modeling

volcanic plumes (Bonadonna et al., 2005a). Effects of wind direction shear are again

evident in this model.

Discussion of Villarrica Tephra Modeling

Early observations of the 3 March 2015 tephra deposit at Volcan Villarrica natu-

rally prompted questions on why it took a long, narrow form. In this section, I have

demonstrated that the deposit can be reproduced by simple atmospheric transport

modeling that includes the atmospheric conditions at the time of the eruption, the

local topography, the observed plume height, and reasonable values of ballistic coef-
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Figure 5.9: Modeled tephra deposit assuming no turbulence. Point size
and color correspond to ballistic coefficient: small, blue points represent
particles with ballistic coefficients (generally finer tephra) and large, red
points represent large ballistic coefficients (generally coarser tephra). Par-
ticles grade downwind as expected. Additionally, multiple effects of wind
shear become evident 5-15 km east of the vent: around that distance, the
axis of the deposit changes direction, the width increases, and cross-wind
grading is evident.
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Figure 5.10: Modeled tephra deposit assuming that atmospheric turbu-
lence results in an eddy diffusivity of 750 m2/s). Point size and color
again correspond to ballistic coefficient: small, blue points represent par-
ticles with small ballistic coefficients (generally finer tephra) and large, red
points represent large ballistic coefficients (generally coarser tephra). Due
to diffusive effects of atmospheric turbulence, the deposit is noticeably
wider than in the turbulence free model shown in figure 5.9. However,
similar effects of wind shear remain visible here: the axis of the deposit
varies and ballistic coefficient grades from south to north.
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Figure 5.11: Snapshots of tephra transport models at Villarrica. Left
column assumes no diffusion (particles advected by steady winds only);
right column assumes horizontal eddy diffusivity of 750 m2s−1. Particles
disperse more widely in the models including diffusion by turbulent eddies.
However, tephra grading downwind to the southeast (due to large particles
settling faster) and cross-wind to the northeast (due to wind shear) is
evident in both models.
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ficient and eddy diffusivity. Additionally, I have shown that wind shear played an

important role in the transport process: a small but noticeable shear in wind direction

(20 − 30◦) between about 5000 and 8000 m above sea level can explain particle size

grading in the cross-wind direction and may have caused variability in deposit width

and azimuth. It was not necessary to consider complex and poorly constrained (but

potentially important) processes like plume convection, particle-particle interactions,

particles breaking or aggregating within flight, or topographic effects on boundary-

layer winds.

Limitations of this work include uncertainty related to limited time and access for

field mapping, the unclear relationship between particle size and ballistic coefficient,

and the lack of constraints on eddy diffusivity along particle trajectories. Although

the field map of tephra presence and absence constrains deposit width and orientation,

significant parts of the deposit were simply inaccessible, and it was not possible to

systematically record tephra mass load or particle sizes at all sites. Further, the

difficulty in determining aerodynamic properties of tephra (due to their irregular

shape, uncertain orientation, and possibility of having broken during flight) prevents

us from inferring particle ballistic coefficients at sites based on tephra morphology.

Finally, eddy diffusivity remains a free parameter within a wide range of reasonable

atmospheric values (101 − 104m2/s). If more constraints were available on eddy

diffusivity and ballistic coefficient, particle trajectories could be modeled with greater

certainty, enabling inferences to be made about plume processes and the distributions

of tephra sizes and initial elevations within the plume.
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Conclusions

Pyroclastic fall and ballistics matter to the volcanology community due to the

information they carry about eruptive processes and their roles as hazards. Infrasound

data recorded in the 14 July 2013 eruption of Volcan Tungurahua (Ecuador) show that

near-vent infrasound is a viable means of detecting falling ballistics without depending

on visibility or placing human observers in harm’s way. Ballistic trajectories are useful

because they can reveal explosive processes like initial gas pressure. Future work could

use comprehensive telemetered near-vent infrasound installations to identify impact

times and locations in order to recover explosive parameters in near real time (tens

of seconds).

Pyroclastic fall in the 3 March 2015 eruption of Volcan Villarrica (Chile) fell in

a long, narrow band extending from the vent to the east and southeast. Transport

modeling based on the actual atmospheric properties at the time of the eruption suc-

ceeded in reproducing the general shape of the deposit. Additionally, wind direction

shear was found to cause particle size grading in the cross-wind direction.

Although many valid tephra transport models already exist, I found it advan-

tageous to use a custom code (Anderson, 2018) to model tephra trajectories. Most

importantly, using software written in a common scientific programming language (R)

enabled me to easily and flexibly integrate it into scripts that facilitated visualizing

results and testing a range of eruptive and atmospheric conditions. Additionally, us-

ing an easily modifiable code enabled me to extend the model to consider additional

features beyond the original purpose; consequently, the model is equally valid for cal-

culating trajectories and flight times for ballistic blocks as for fine lapilli transported

by wind, settling velocity, and eddy diffusion. The resulting code reproduced the ob-
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served tephra deposit at Villarrica and would be useful for modeling future eruptions,

with the potential for real-time hazard forecasting applications.
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CHAPTER 6:

CONCLUSION

A single system of governing equations–the Euler equations–describes atmospheric

dynamics at all scales. However, solutions to the Euler equations feature a wide

range of behaviors depending on the scales inherent in the problem, several of which

can be produced by volcanic sources. Such phenomena can be described by a variety

of numerical approaches including finite-volume modeling of the Euler equations,

finite-difference modeling of the acoustic wave equation, and Lagrangian modeling of

tephra dispersal.

Shock waves occur when the initial condition contains strong pressure contrasts

or supersonic flow (chapter 2). Shock wave behavior is complicated: celerity varies

along the wave causing it to change shape while propagating, energy is lost from

the wave and deposited in the air behind it, and the shock speed decreases as the

shock decays. No simplifications of the Euler equations can be made when modeling

shocks, and no analytical solutions are available. Numerical modeling of the full Eu-

ler equations requires complex and computationally expensive finite-volume methods.

Powerful volcanic eruptions produce shock waves, and interpreting them is difficult

due to their nonlinearity, lack of analytical methods, and expense of modeling; in

the absence of linear inversion methods, source inferences would require an expensive

iterative inversion with a new simulation in each step. However, due to the scaling
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properties of the Euler equations, a single solution can be adapted to several differ-

ent eruptive scenarios by application of scaling laws (eq. 2.8-2.9). This combination

of numerical modeling and scaling laws provides a framework by which source pa-

rameters of explosive eruptions (in particular, the energy of the explosion) can be

estimated at reasonable computational expense.

In problems involving infinitesimal pressure and velocity disturbances over length

scales up to several km, the Euler equations are dominated by the pressure gradient

and particle acceleration, resulting in acoustic waves (called infrasound at frequencies

below 20 Hz) following the linear acoustic wave equation (eq. 1.32). Acoustic waves

have simple physics: their speed and attenuation are independent of amplitude, their

propagation is linear can be represented by convolutions, and they can be imple-

mented in simple finite-difference models. Consequently, infrasound has a variety of

powerful analytical and numerical methods that are useful for studying volcanoes. In

chapter 3, I use a numerical model of the acoustic equations to analyze recordings of

a powerful vulcanian explosion at Volcan Tungurahua, Ecuador. Results show that

total erupted volume (gas and tephra) was around 0.5 km3, with excellent agreement

between microphones located over 1 km apart. Additionally, infrasound signals reveal

a short (0.7-s) displacement of air immediately preceding the explosion (interpreted

as an uplift of the vent surface), as well as a complex period of tremor following

the explosion including three types of vent activity. Placing sensors near enough the

vent enabled infrasound to be recorded with relatively little topographic scattering,

enabling detailed inferences of vent activity to be made.

Field data collection is an important part of volcano infrasound study, and requires

instrumentation appropriate for the task. Chapter 4 describes the development, char-
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acteristics, and use of a new infrasound instrument designed for low cost, low power

consumption, and portability. Instrumentation is an essential component of fieldwork

and partly determines the kind of work that can be done and the kind of data that can

be collected; instrumentation whose characteristics are not well aligned with the pur-

pose of fieldwork can limit the success of field campaigns. I was motivated to develop

a new infrasound logger because the price, weight, and power needs of existing data

loggers limited the number of infrasound sensors I could install in volcano fieldwork,

and restricted the installation sites in which I could place them. The resulting Gem

infrasound logger can be purchased and transported in large numbers due to its low

cost, weight, and power consumption, and can be installed in arbitrary geometries.

It has proven useful in volcano fieldwork as well as other applications; in particular,

its light weight makes it an ideal payload for low-cost stratospheric balloons.

Finally, atmospheric transport of tephra is also governed by the Euler equations,

but the result has very different behavior from pressure waves. Chapter 5 describes

Lagrangian modeling of tephra from a lava fountain eruption at Volcan Villarrica,

Chile. In this problem, the time scales are much greater than time scales relevant

to atmospheric turbulent eddies (around 1 minute), meaning that turbulence can be

treated as diffusive random motion. Additionally, the duration of plume transport in

the area of interest is much less than synoptic time scales (hours to days), meaning

that synoptic scale winds controlled by the pressure gradient and Coriolis force dom-

inate and are approximately steady. Consequently, tephra transport consists of two

simultaneous behaviors: advection by ambient winds and settling speed, and diffu-

sion due to random motion from turbulent eddies. My Lagrangian model of tephra

transport accurately reproduces the observed tephra deposit from the eruption, which
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consists of a long, narrow band with coarser tephra on the south side of the deposit.

I applied the same model to predict ballistic trajectories from the vulcanian eruption

at volcan Tungurahua, Ecuador, finding that ballistic impact times and locations

were consistent with unusual infrasound recorded at that time (which could not be

explained using typical volcano infrasound sources).
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This appendix demonstrates the use of the custom tephra model rTephra (An-

derson, 2018) for simulating trajectories of porous lapilli from the 2015 lava fountain

eruption of Villarrica and dense ballistic blocks from the 2013 vulcanian eruption of

Tungurahua (discussed in 5). rTephra is a software package written in the program-

ming language R that can be downloaded and installed from the Comprehensive R

Archive Network (CRAN).

Each simulation should be run from a directory containing the subdirectories

’RDATA’ and ’anim’.

Modeling the 3 March 2015 Eruption of Villarrica

## Install rTephra if you haven’t already

install.packages(’rTephra’)

## load rTephra

library(rTephra)

## load atmosphere at time of eruption

load(’RDATA/AtmProfile_Villarrica_20150303_06.RData’)

## Make functions for interpolating atmospheric profiles

## Atmospheric density is from ideal gas law; ATM$T is in K

rho_a = approxfun(ATM$z, ATM$p/(287*ATM$T))

wind_x = approxfun(ATM$z, ATM$wx) # east component of wind

wind_y = approxfun(ATM$z, ATM$wy) # north component of wind
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## Load Digital Elevation Model (DEM)

load(’RDATA/SRTM_Villarrica.RData’)

## Define function to interpolate topographic elevation at any point

zt = function(x,y)TopoInterp(x,y,VILL)

## Define tephra properties

z0list = seq(3500, 11500, 500) # initial height (masl)

## Ballistic coefficients: w * rho_r/C_d == m/Cd/A

Klist = c(0.05, 0.02, 0.01, 0.005, 0.002, 0.001) * 500/1.2

## Initialize output variables

Plume = list()

Plume$dt = 0.1

Plume$x = Plume$y = Plume$z = list()

Plume$K = Plume$z0 = numeric()

## Select whether to find just the expected trajectories (without diffusion)

## or a realistic set of trajectories (with diffusion).

## Including diffusive effects mean that more trajectories must be

## tested, meaning longer runtimes.

useDiffusion = TRUE

if(useDiffusion){
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Kh = 750 ## Kh = 750 m^2/s is consistent with plume width

nr = 25 ## repeat each height/ballistic coefficient scenario 25 times

dz = 250 ## apply random offsets up to +/- 250 m to starting heights

data_filename = ’RDATA/2015-03-03_Villarrica_simulation_diffusion.RData’

anim_dirname = ’anim/Villarrica_diffusion’

}else{

Kh = 0 ## use 0 to just find expected trajectory

nr = 1 ## no need to repeat simulations when trajectories are deterministic

dz = 0 ## launch particles at nominal heights

data_filename = ’RDATA/2015-03-03_Villarrica_simulation_deterministic.RData’

anim_dir = ’anim/Villarrica_deterministic’

}

## Calculate trajectories for all combinations

for(zi in 1:length(z0list)){ ## loop over starting elevations

for(ki in 1:length(Klist)){ ## loop over ballistic coefficients

for(ri in 1:nr){ ## loop over scenario repetitions

print(paste(zi, ’of’, length(z0list), ’;’, ki, ’of’, length(Klist),

’;’, ri, ’of’, nr))

## Define simulation number

i = nr * ((zi-1) * length(Klist) + (ki-1)) + ri

## Calculate the current trajectory
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Trajectory = Tephra3d(vx0 = wind_x(z0list[zi]), vy0=wind_y(z0list[zi]),

vz0 = 0, z0 = z0list[zi] + runif(1, -dz, dz), rho_r = 500,

r = Klist[ki]/500, dt = Plume$dt, Cd = 1, rho_a = rho_a,

wx = wind_x, wy = wind_y, Kh = Kh, TOPO = VILL)

## Save results in ’Plume’

Plume$x[[i]] = Trajectory$x

Plume$y[[i]] = Trajectory$y

Plume$z[[i]] = Trajectory$z

Plume$K[i] = Klist[ki]

Plume$z0[i] = z0list[zi]

}

}

}

## This can take a while to calculate, so save the results

save(Plume, file = data_filename)

#### Make the map view + section line animation frames

BlastAnim3d(Plume, tframe=50, dir = anim_dir, az = 113, TOPO = VILL)

## ImageMagick shell command to make an animation with frame interval 0.1 sec:

## animate -delay 10 anim/Villarrica_diffusion/*

## Shell code to make an animated gif
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## convert -delay 10 anim/Villarrica_diffusion Villarrica_diffusion.gif

Modeling the 14 July 2013 Eruption of

Tungurahua

## Install rTephra if you haven’t already

install.packages(’rTephra’)

## Load rTephra

library(rTephra)

## Load GFS model of atmosphere at time of eruption

load(’RDATA/AtmProfile_Tungurahua_20130714_12.RData’)

## Make a function to interpolate density with elevation

rho_a = approxfun(ATM$z, ATM$rho) # use the true atmospheric density profile

## Load SRTM Digital Elevation Model

load(’RDATA/SRTM_Tungurahua.RData’)

## Make a function to interpolate topography

zt = function(x,y)TopoInterp(x,y,TUNG)

## Load station map

load(’RDATA/Tungurahua_Network_20130714.RData’)
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## Run the explosion simulation: ballistics ejected at 135 m/s at a range of

## elevation angles and an azimuth of 18.43 (aligned with the sensors).

## Ballistics have density 2500 kg/m^3, radius 25 cm, and drag coef 0.6.

L135 = BlastSim3d(135, th_i = 3*1:29-2, Cd = 0.6, dt = 0.01, rho_r = 2500,

r = 0.25, rho_a = rho_a, zt = zt, th_a = 18.43,

z0 = TopoInterp(0,0,TUNG)+20)

## Finally, make stills of the results (1 every 0.5 seconds)

BlastAnim3d(L135, tframe = 0.5, dir = ’./anim’, az = 18.43,

plotMapView = FALSE, TOPO = TUNG, crossSectionPts = list(x=1800,

y=3900, lab=’HIGH’))
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